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Noise Reduction in Millisecond Pulsar Timing

By Michael Lam, Class of 2011

Advisor: Paul Demorest, National Radio Astronomy Observatory

Astronomers use pulsars as astronomical clocks to perform physical tests, 
such as in testing Einstein's Theory of General Relativity. As these tests 
require more precise clock time measurements, we run into problems 
associated with the pulses traveling through particles in space. Using data 
taken simultaneously at two radio telescopes, we looked to improve the 
precision of measurements taken of two pulsars. We looked for correlations 
between data sets using a variety of techniques to account for the error in 
our measurements. We report our results in the hopes that these methods 
can be used in future pulsar timings.

Introduction
Stars undergo a life cycle 

occurring over millions to billions of 
years with a variety of evolutionary 
tracks. At the end of their lives, stars 
become a new class of celestial object 
based upon their masses. An average 
mass star like our Sun will eventually 
become a Red Giant, expanding in size 
and shedding off its outer, gaseous 
layers, and leaving the burnt out core 
behind, forming what is known as a 
white dwarf.  Larger mass stars between 
1.4 and 2.0 times the mass of the Sun will 
form a Red Supergiant and eventually 
supernova. Left behind is what is called a 
neutron star. Much heavier stars will also 
supernova, the portion left behind 
collapsing under the force of gravity into 
a black hole. This paper will discuss the 
uses of a subset the middle class of stellar 
remnants: pulsars.

Neutron stars are composed of 
mostly neutrons surrounded in a thin 
shell of iron. Those that spin along a 

rotation axis are called pulsars. Pulsars 
viewed from Earth are analogous to 
cosmic lighthouses. Each has a magnetic 
axis offset from their rotation axis that 
shoots off radio beams. It is believed that 
all neutron stars that we see are pulsars 
since no non-rotating neutron stars have 
been discovered, though over the course 
of the age of the Universe many probably 
exist now. A similar offset phenomenon 
can be seen with Earth’s axial tilt. Our 
rotation axis is offset from the plane of 
the solar system which causes seasons 
since once side of the Earth points 
directly toward the Sun on one side of its 
orbit (summer) and away on the other 
side (winter). Similarly, with pulsars, 
when the pulsar’s radio beam sweeps 
along our line of sight we can see the 
radiation since it is pointing directly 
toward us. This happens blah
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Figure 1: Pulsar Schematic

regularly as the pulsar spins and is called 
a pulse. Each pulse from a standard 
pulsar, one set spinning as a result of the 
supernova, occurs on the order of once 
per second.

The pulsars studied here are 
known as millisecond pulsars (MSPs). 
These pulse several hundred times per 
second (once every few milliseconds, or 
one-millionth of a second) and are 
believed to be the result of a pulsar and 
another object, usually a star, in the same 
stellar system. Mass moves from the star 
to the pulsar, increasing the pulsar’s spin 
rate (period) as angular momentum is 
moved. This period slows down as energy 
is lost through the beam, decreasing the 
angular momentum of the pulsar, but the 
effect is very small (on the order of less 
than a nanosecond, or one-billionth of a 
second, per year). Because MSPs rotate 
so rapidly, emit regular pulses, and do 
not slow down much, they are the most 
accurate astronomical clocks know
Using them, we can test properties of 
physics, specifically as the signal passes 
through space, changes in some way, and 
reaches Earth.

The long-term goal of this project 
is to use pulsars as clocks to directly 
detect a phenomenon predicted by 
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Einstein’s Theory of General Relativity 
known as Gravitational Wave Radiation. 
General Relativity provides a geometric 
explanation for gravity in the context of 
space and time. Our universe contains 
three dimensions in space and one in 
time, interconnected in what 
spacetime. While we think of the 
universe as Euclidean in nature, that one 
can move straight in any six directions 
along three perpendicular axes (the x
axes), spacetime is actually curved due to 
mass. In Figure 2, a mass is placed on a 
two dimensional analogy of our three 
spatial dimensions. The mass curves 
space and creates a gravitational 
potential well.

Figure 2: 2D Curved Space

Figure 3a shows the naïve view of space, 
without any mass, with straight lines 
connecting each of the points
adds a mass to the middle and shows 
how points in space curve towards it 
under its gravitational influence. 

Figure 3a: 3D Flat Space

s Theory of General Relativity 
known as Gravitational Wave Radiation. 
General Relativity provides a geometric 
explanation for gravity in the context of 
space and time. Our universe contains 
three dimensions in space and one in 
time, interconnected in what is called 
spacetime. While we think of the 
universe as Euclidean in nature, that one 
can move straight in any six directions 
along three perpendicular axes (the x-y-z 
axes), spacetime is actually curved due to 
mass. In Figure 2, a mass is placed on a 

imensional analogy of our three 
spatial dimensions. The mass curves 
space and creates a gravitational 

Figure 2: 2D Curved Space

Figure 3a shows the naïve view of space, 
without any mass, with straight lines 
connecting each of the points. Figure 3b 
adds a mass to the middle and shows 
how points in space curve towards it 
under its gravitational influence. 
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Figure 3b: 3D Curved Space

In 1974, Hulse and Taylor made 
the first indirect detection of this 
radiation using two pulsars orbiting each 
other. Figure 4 shows that as two massive 
objects orbit each other, gravitational 
waves are produced as a result of ripple-
like disturbances in the curvature of 
spacetime. The two pulsars bldddaha

Figure 4: Spiral Gravitational Waves in 
2D

in the Hulse and Taylor experiment had 
orbits that showed a slight decay, the two 
pulsars rotating toward their common 
center, a consequence of gravitational 
waves consistent with General Relativity. 
Over the past decade, lasers have been 
used to attempt to directly detect 
gravitational radiation passing through 
the beams though so far this has been 
unsuccessful. Recently, efforts have been 
made to utilize pulsars to accomplish a 
direct detection. By measuring extremely 
small shifts in the frequency (rate) of 
pulses as a result of this radiation, 
gravitational waves passing between the 
signal and Earth should be possible to 
detect using a sensitive enough detector.

Currently, detectors are believed 
to be sensitive enough to detect these 

shifts but random scatter in the 
measurements (noise) are overwhelming 
the signal. Systematic effects contribute 
to errors in these measurements. One 
source of this error comes from the 
particles in space known as the 
interstellar medium (ISM). Space is not a 
perfect vacuum but is filled with gas and 
dust particles, though on a significantly 
lower level than found on Earth. Plasma, 
or ionized gas, moves around through 
space, creating screens of particles 
moving together. This turbulent plasma 
in the ISM distorts the path of the signal 
much like the path of starlight changes 
as it passes through the Earth’s 
atmosphere, causing commonly seen 
twinkling. While part of this is due to 
changes in the human eye, the rest relies 
on changes in the path of light. Light 
travels along different paths through 
different mediums, as evidenced by 
sticking a pencil into water and watching 
it appear to bend. The particles in the 
atmosphere are moving chaotically and 
shift the path of light. 

The accuracy in these timing 
measurements is therefore limited by the 
ISM. This scattering effect must be 
removed to reduce noise levels to the 
point where we can even begin to 
attempt to detect gravitational wave 
radiation. Each pulse of the pulsar 
broadens and thus instead of a precise 
measurement of the peak, any fits from 
the regular timing models produce 
errors. This error contribution should be 
proportional to the amount of scattering 
time delay due to the ISM. Errors in 
pulse times of arrival (TOAs) are 
theorized to need to be reduced from 
roughly 100 nanoseconds (ns) to around 1
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ns in order for gravitational wave 
radiation to be detected.

Observations
We present three nights of 

observations taken simultaneously at two 
radio telescopes, Arecibo Observatory 
and the Robert C. Byrd Green Bank 
Telescope (GBT), in mid-2008. The 
process by which radio telescope works is 
different from optical telescopes. Radio 
telescopes are large dish structures that 
collect radio waves into an antenna. 
These signals are stored as voltages, 
which correspond to the energy and 
phase of each radio wave. Optical 
telescopes gather light by sending it over 
mirrors and through lenses, leading it to 
a CCD camera where it counts individual 
photons. By retaining the phase of each 
radio wave, we are able to later 
electronically reconstruct the received 
light and discern something from its 
wave properties.

Observations at each site lasted 
just over one hour in both L (centered 
1410 MHz) and S (2650 MHz) frequency 
bands with a 64 MHz bandwidth, 
described later in the timing analysis 
section. Two different backends were 
used: ASP, which recorded TOAs, and 
the VLBA Mark5 recorder, which records 
raw voltage samples for measurements of 
intensity with respect to time of 
observation and frequency. We ran post-
processing on the samples to obtain any 
time/frequency resolution needed for 
data reduction, provided in a data cube 
known as a dynamic spectrum.

The observations consisted of 
measurements of the pulsars B1937+21 
and B1713+07, chosen because of their 
usefulness in conducting physical tests. 

1937+21 was the first MSP discovered 
(Backer et al. 1982) and is currently the 
second fastest MSP observed. 1713+07 
also has a high flux density, as well as a 
shallow spectrum and sharp pulse profile 
peak, allowing for accurate pulse 
measurements over a large range of 
frequencies. These specifications make 
these prime candidates in these tests. 

Data Reduction
The data was reduced in three 

stages. We began by converting the raw 
data into a readable format. This was 
then processed using a combination of 
pulsar timing analysis packages. The 
PSRCHIVE package 
(http://psrchive.sourceforge.net)
contains a library of data reduction 
algorithms specific to pulsar .fits files. 
Dr. Demorest made several additions and 
extensions to these packages. We first 
made Gaussian fits of the pulse profiles 
as a comparison model using paas. Using 
pat, we next generated TOAs that were 
provided to the program TEMPO. This fit 
timing models to the TOA data, residuals 
were calculated, and lastly converted into 
ASCII output by print_resid. 

The next portion of the project 
involved calibrating the data and 
modifying the parameter files for the two 
pulsars using pac and pam respectively. 
We then ran psrflux to obtain the 
integrated flux density, analogous to the 
intensity of the source, with respect to 
frequency and time for each observation, 
which is also explained further in the 
analysis section. With all of the data 
processed, we wrote a variety of python 
scripts to analyze the data using the 
scipy/numpy packages and viewed with 
the matplotlib (pylab) package. The first 
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program developed was a graphical 
interface for comparing and correlating 
the timing residuals generated by 
TEMPO. The second was used to 
perform our analysis of each of the data 
cubes.

Timing Delay Analysis
First, we tried to determine the 

statistical correlation between the timing 
residuals of both observatories for each 
pulsar and frequency band. We would 
optimally expect a random scatter 
around the residuals. Any trends in the 
residuals in one set of observations 
would imply some sort of systematic 
effect, though similar trends in both 
might indicate external effects on the 
signal. Unfortunately, computing the 
cross correlation, explained below, 
yielded no discernable results.

Figure 5a: Possible correlation

Figure 5b: Systematic effect in one 
telescope

The process of correlation is often 
used in signal analysis to determine 
patterns within a signal or between 
signals. It involves taking one discrete 
signal and convolving it with itself or 
another, yielding the autocorrelation or 
cross correlation respectively. Figure 6 
demonstrates the process of convolution, 
in which one of the signals is shifted 
along the time axis and the overlap or 
area between each signal is calculated. At 
each time shift, or lag, this value is 
computed. The final result is normalized 
between -1 and 1. In autocorrelation, 
since the signal is being convolved with 
itself, at a time lag of zero, the entire 
signal will overlap itself and this value is 
entirely correlated. 

Just as a correlation can be 
computed in one dimension, it can also 
be computed in higher dimensions. This 
technique will be used in the next step of 
analysis but will be shown here in Figure 
7. In a data cube, the two axes on the 
bottom can be anything, with the z-axis 
representing some type of intensity. For 
each x lag and each y lag, the overlap is 
again computed over the entire domain 
of the signal. 
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Figure 6a: Example of autocorrelation. As 
one signal is passed over another, there is 
more overlap. In the case of a square 
pulse, the overlap increases linearly. The 
peak is shown at a time lag of zero, when 
the signal overlaps itself.

Figure 6b: As a square pulse is convolved 
at positive time lags, since it is a 
symmetric function, the correlation will 
also be symmetric.
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Figure 7a: Autocorrelation, computed in 
two dimensions. Thus, the signal is 
moved around in both the x

Figure 7b: The two signals have some 
overlap just as in the one
case. Instead of one axis lag, there are 
now two. These do not necessarily have 
to be in the same units.

The remainder of our analysis was 
done with the dynamic spectrum of 
pulsar, or its intensity with respect to 
both frequency of the light waves and 
time of observation. The frequency of a 
wave is how fast it cycles per unit time. 
One Hertz (Hz) is equal to one cycle per 
second. Two sample sine waves are 
shown in Figure 8. For any 

Figure 8: Two waves. Compared to the 
first, the second has a shorter wavelength 
(peak-to-peak distance) and a larger 

Figure 7a: Autocorrelation, computed in 
two dimensions. Thus, the signal is 
moved around in both the x- and y-axes. 

Figure 7b: The two signals have some 
overlap just as in the one-dimensional 
case. Instead of one axis lag, there are 
now two. These do not necessarily have 

The remainder of our analysis was 
done with the dynamic spectrum of a 
pulsar, or its intensity with respect to 
both frequency of the light waves and 
time of observation. The frequency of a 
wave is how fast it cycles per unit time. 
One Hertz (Hz) is equal to one cycle per 
second. Two sample sine waves are 

For any blah

Figure 8: Two waves. Compared to the 
first, the second has a shorter wavelength 

peak distance) and a larger 
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frequency since it cycles more quickly in 
the same amount of time.

wave, the amount of energy associated 
with it is proportional to the square of its 
height, or amplitude. Thus, the dynamic 
spectrum is a data cube representing the 
intensity of light waves of a given 
frequency observed at each time interval. 
Figure 9 shows a typical dynamic 
spectrum. Without the effects of 
lah

Figure 9: Dynamic spectrum for B1937+21 
at Arecibo in L band on Julian Day (JD) 
2454730. Darker indicates greater 
intensity. This is value is in calibrator 
units, where the approximate average 
intensity (flux) level of 10.0 mJy is equal 
to 22 calibrator units (1 Jy = 10
(m2*Hz)).

the ISM, this would appear roughly flat 
in nature but because of the scintillation 
effects, observed intensity shifts both in 
frequency and in time.

Frequency channels were clipped 
around the 1420 MHz area as hydrogen 
gives off strong radiation at this 
frequency. Channels ruined by radio 
frequency interference generated by 
humans were also clipped. Traditional 
analysis with the dynamic spectrum 
involves computing the autocorrelation 
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in two dimensions. At the 

Figure 10: ACF (left) for the same data set 
as Figure 9 and the profile at zero time 
lag (right). The halfwidth at 1/e is shown.

values of zero time lag for the ACF, th
scattering time delay is the halfwidth at 
1/e, which is a strong function of the 
strength of ISM scattering.

We used three other methods 
using the dynamic spectrum like the one 
shown in Figure 1 to determine the 
timing delay due to the ISM. Channels 
around the 1420 MHz hydrogen line, as 
well as channels ruined by radio 
frequency interference, were clipped in 
each method. The traditional method 
involves computing the autocorrelation 
(ACF) of the dynamic spectrum. At the 
values of zero time lag for the ACF,
scattering time delay is the halfwidth at 
1/e, which is a strong function of the 
strength of ISM scattering.

Our next method was to take the 
power (secondary) spectrum of the 
dynamic spectrum. This is performed by 
taking the square of the Fourier 
transform. A simple, one
Fourier transform takes a signal and 
determines the strength of different 
frequency waves throughout it. Figure 10 
shows two signals, one a simple sine 
wave, one a half-sinc wave. For the sine 
blah
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strength of ISM scattering.

We used three other methods 
using the dynamic spectrum like the one 
shown in Figure 1 to determine the 
timing delay due to the ISM. Channels 

nd the 1420 MHz hydrogen line, as 
well as channels ruined by radio 
frequency interference, were clipped in 
each method. The traditional method 
involves computing the autocorrelation 
(ACF) of the dynamic spectrum. At the 
values of zero time lag for the ACF, the 
scattering time delay is the halfwidth at 
1/e, which is a strong function of the 
strength of ISM scattering.

Our next method was to take the 
power (secondary) spectrum of the 
dynamic spectrum. This is performed by 
taking the square of the Fourier 

sform. A simple, one-dimensional 
Fourier transform takes a signal and 
determines the strength of different 
frequency waves throughout it. Figure 10 
shows two signals, one a simple sine 

sinc wave. For the sine 
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Figure 10: Sine wave (top left) with the 
square of the Fourier transform (bottom 
left). Half-sinc wave (top right) with its 
square Fourier transform (bottom right)

wave, since there is only one component 
frequency present, there is only power at 
this point in the frequency axis
actuality, this is the conjugate time axis, 
which is proportional to the frequency 
and the rate of sampling for a discrete 
sample.  For the half-sinc wave, smaller 
frequencies fit the curve better, with a 
clear peak. At larger frequencies, there is 
less power present. This is similar in 
nature to how convolution fits the 
curves, where different sinusoidal waves 
are analogously convolved with the 
signal. 

Figure 11: A noisy signal with an 
underlying sine component. Sinusoidal 
waves are fit to the curve as shown (left). 
The power associated with this wave is 
placed on the conjugate time axis (right). 
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There is some power associated with 
higher frequency waves, notably around 
2, 3, and 4.5 times the base frequency

The power spectrum is the 
squared, two-dimensional Fourier 
transform of the dynamic spectrum. A 
2D Hanning window was applied to the 
data to prevent edge effects present in 
Fourier transform computations. This 
smoothes the power spectrum so that the 
edges hit zero, changing the data cube 
into a weighted data two
sine wave for better fitting. Otherwise, in 
order to fit the edges of the cube, smaller 
and smaller frequencies would obtain 
power to fit it properly, creating unstable 
ringing.

In this two-dimensional case, the 
frequency axis transforms to a conjugate 
time axis and the time (observation) axis 
transforms to a conjugate frequency axis. 
This conjugate frequency axis is not the 
frequency of specific light waves but 
rather the rate of intensity changes over 
the course of an observation. The same 
applies to the conjugate time axis, which 
can be thought of as the time delay axis. 
Looking back at the dynamic spectrum 
(Figure 9), this tries to find the 
characteristic scales of the scintillation in 
both axes. Figure 12 shows the power 
spectrum. Note that power is 
concentrated close to around zero 
conjugate 

There is some power associated with 
higher frequency waves, notably around 
2, 3, and 4.5 times the base frequency

The power spectrum is the 
dimensional Fourier 

transform of the dynamic spectrum. A 
2D Hanning window was applied to the 
data to prevent edge effects present in 
Fourier transform computations. This 
smoothes the power spectrum so that the 
edges hit zero, changing the data cube 

weighted data two-dimensional 
sine wave for better fitting. Otherwise, in 
order to fit the edges of the cube, smaller 
and smaller frequencies would obtain 
power to fit it properly, creating unstable 

dimensional case, the 
s transforms to a conjugate 

time axis and the time (observation) axis 
transforms to a conjugate frequency axis. 
This conjugate frequency axis is not the 
frequency of specific light waves but 
rather the rate of intensity changes over 

ation. The same 
applies to the conjugate time axis, which 
can be thought of as the time delay axis. 
Looking back at the dynamic spectrum 
(Figure 9), this tries to find the 
characteristic scales of the scintillation in 
both axes. Figure 12 shows the power 
pectrum. Note that power is 

concentrated close to around zero 
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Figure 12: Secondary spectrum for the 
dynamic spectrum in Figure 9. Power is 
displayed logarithmically and is scaled to 
the highest point.

(labeled fringe) frequency. With better 
sampling resolution, parabolic arcs can 
be seen more clearly toward the edges of 
this structure, showing the relationship 
between time delay and frequency shift 
in the ISM. 

On the secondary spectrum, we 
calculated the noise levels by taking two 
boxes in the upper corners and 
subtracting the mean value to make this 
zero. We integrated the total power 
across each time delay, producing the 
projected secondary spectrum in Figure 
13. In the next step, weblah

Figure 13: Secondary spectrum (left) and 
its renormalized projection (right), the 
sum of the power for each time delay. 
Increasing delay is on the vertical axis 
with total power increasing to the right.

calculated the running first moment 
(cumulative delay), defined as

196
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On the secondary spectrum, we 
he noise levels by taking two 

boxes in the upper corners and 
subtracting the mean value to make this 
zero. We integrated the total power 
across each time delay, producing the 
projected secondary spectrum in Figure 

Secondary spectrum (left) and 
its renormalized projection (right), the 
sum of the power for each time delay. 
Increasing delay is on the vertical axis 
with total power increasing to the right.

calculated the running first moment 

by Hemberger and Stinebring (2008). 
This can be thought of as taking the 
amount of power up to each delay point 
in the projected secondary spectrum and 
accumulating it. As the time delay 
increases, the power goes down and thus 
less is accumulated at each subsequent 
point. Therefore, we reach an asymptotic 
limit, as blah

Figure 14: Cumulative Delay. 

shown in Figure 14. This limit estimates 
the scattering time delay. Fitting this 
curve produced undesired effects, so the 
asymptotic limit was calculat
running a window filter over the curve, 
averaging every five points together for a 
smoother fit, and then calculating the 
discrete derivative. As the slope 
approached zero within certain 
tolerances, the remaining points were 
averaged together to find
limit. 

Our final method involved taking 
one-dimensional Fourier transforms 
along each time slice of the dynamic 
spectrum. A similar procedure was 
performed to calculate the asymptote of 
the cumulative delay of each of the 
Fourier slices. Figure 15 shows this 
method. This produced curves that 
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showed variations on timescales we were 
hoping to relate to the timing residuals. 
Initial attempts to correlate the two did 
not provide any meaningful results. 
Unfortunately, we were unable to finish 
our analysis of this section.

Figure 15: 1D Fourier Slices (bottom) of 
the dynamic spectrum and the 
cumulative delays for each time slice 
(top). This shape did not seem to relate 
to the shape seen in the corresponding 
timing residuals. 

Results
Using both the values provided by 

the cumulative delays and the ACFs, we 
determined delays on the order of 1 
ns as shown in Figure 16 for two nights at 
blahbblahblahblahlah
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Figure 15: 1D Fourier Slices (bottom) of 
the dynamic spectrum and the 
cumulative delays for each time slice 
(top). This shape did not seem to relate 
to the shape seen in the corresponding 

h the values provided by 
the cumulative delays and the ACFs, we 
determined delays on the order of 1 - 100 
ns as shown in Figure 16 for two nights at 

Figure 16a: Scattering Time Delays for 
both pulsars at Arecibo Observatory. 
Large error on the one point at top on 
the left is attributed to bad radio 
frequency interference producing poor 
fits.

Arecibo. We have improved our noise 
estimations by about a factor of 10. We 
can see that we are severely limited by 
the amount of data we have
three nights of data, and only two fully 
analyzed, we cannot get a good estimate 
of any trend present. Lack of time forced 
us to pause our analysis of GBT 
observations and limit our attempts at 
the 1D Fourier slices method. 
the important steps we need to take next 
will be in determining the scaling factor 
between the scattering time delay and 
the physical delay error due to the ISM. 
Once this number is approximated, we 
can subtract this amount globally from 
pulsar timing measurements. We
that with longer observations and higher 
frequency resolutions (providing finer 
conjugate time resolution) we can 
determine finer structure due to the ISM 
and reduce our noise levels even further. 
After testing these numerical analysis 
techniques, we see that it is feasible to 
continue this line of research to better 
pulsar timing and provide an appropriate 
model that can be made to subtract this 

Figure 16a: Scattering Time Delays for 
both pulsars at Arecibo Observatory. 

error on the one point at top on 
the left is attributed to bad radio 
frequency interference producing poor 

Arecibo. We have improved our noise 
estimations by about a factor of 10. We 
can see that we are severely limited by 
the amount of data we have. With only 
three nights of data, and only two fully 
analyzed, we cannot get a good estimate 
of any trend present. Lack of time forced 
us to pause our analysis of GBT 
observations and limit our attempts at 
the 1D Fourier slices method. One of 

t steps we need to take next 
will be in determining the scaling factor 
between the scattering time delay and 
the physical delay error due to the ISM. 
Once this number is approximated, we 
can subtract this amount globally from 
pulsar timing measurements. We hope 
that with longer observations and higher 
frequency resolutions (providing finer 
conjugate time resolution) we can 
determine finer structure due to the ISM 
and reduce our noise levels even further. 
After testing these numerical analysis 

see that it is feasible to 
continue this line of research to better 
pulsar timing and provide an appropriate 
model that can be made to subtract this 
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noise and reduce timing residual levels 
needed to directly detecting gravitational 
wave radiation.  
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