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Abstract 
Scale-dependence of spatial relationship between vegetation and rainfall in 
Central Sulawesi has been modelled using Normalized Difference Vegetation 
Index (NDVI) and rainfall data from weather stations. The modelling based on 
application of two statistical approaches:  conventional ordinary least squares 
(OLS) regression, and geographically weighted regression (GWR). The analysis 
scales ranged from the entire study region to spatial unities with a size of 
750*750 m. The analysis revealed the presence of spatial non-stationarity for the 
NDVI-precipitation relationship. The results support the assumption that dealing 
with spatial non-stationarity and scaling down from regional to local modelling 
significantly improves the model’s accuracy and prediction power. The local 
approach also provides a better solution to the problem of spatially autocorrelated 
errors in spatial modelling.  
 
Keywords: geographically weighted regression, Normalized Difference 
Vegetation Index, modelling, climate, Sulawesi 
 
1. INTRODUCTION 
 
Studies on geographical patterns of vegetation have often been based upon 
relationships between characteristics of the vegetation activity such as biomass, 
vegetation cover fraction, leaf area index etc. versus a set of perceived 
explanatory variables. Commonly, these studies revealed a measure of any 
indicator for the vegetation activity against a set of environmental determinants, 
in the main including climatic factors such as precipitation, temperature or 
growing-degree days, evaporation, soil moisture or others. The Normalized 
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Difference Vegetation Index (NDVI) derived from multi-spectral satellite data is 
the most used surrogate of vegetation activity and vegetation characteristics in 
these studies (e.g. Richard and Poccard, 1998; Yang et al., 1998; Li et al., 2002; 
Wang et al., 2001; Ji and Petters, 2004). The NDVI is known to be highly 
correlated to green leaf density, absorbed fraction of photosynthetically active 
radiation (fAPAR) and above-ground biomass and can be viewed as a general 
proxy for photosynthetic capacity (Asrar et al., 1984; Sellers et al., 1997; Justice 
et al., 1985).  

 
One commonly noted feature is that the relationship between vegetation and its 
spatial predictors appears to vary as a function of geographical region and a 
number of the underlying environmental factors such as vegetation type, soil type 
and land use (Wang et al., 2001; Yang et al., 1997; Ji and Peters, 2004). 
Moreover, the NDVI-climate relationship is also not the same within one land-
cover type. There are many cases that show a non-stability of this relationship in 
space within the same land cover or vegetation type (Fotheringham et al., 1996; 
Foody, 2003; Foody, 2004; Wang et al., 2005; Propastin and Kappas, 2008). 
According to these studies, when modelling the spatial vegetation-climate 
relationship one should take into account that one has to deal with a 
phenomenon of non-stationarity of this relationship across space.  Non-
stationarity means that the relationship between variables under study varies 
from one location to another depending on physical factors of the environment 
which are spatially autocorrelated. Local regression techniques, such as 
geographically weighted regression (GWR) help to overcome the problem of non-
stationarity and calculate the regression model parameters varying in space 
(Fotheringham et al., 2002). Because of spatial non-stationarity, the parameters 
of the model describing the relationship may actually vary greatly in space 
producing a mosaic that reflects distribution of interaction between the response 
variable and the predictor factor. This mosaic, however, might demonstrate 
different patterns at each scale, because different results may be obtained from 
an analysis by varying its spatial resolution (Openshaw, 1984). Obviously, that 
the scale-dependent results may be expected with a change in the spatial 
resolution if a relationship is spatially non-stationary. Spatial variation in the 
relationship between variables both at and between spatial scales is reported in 
the recent literature for studies with spatially distributed environmental data. The 
study by Foody (2003 and 2004), Propastin and Kappas (2008) showed that the 
predictive power as well as the rank order of explanatory variables in spatial 
models between remotely sensed data and climatic parameters is a function of 
scale. 
 
Foody (2004) meant by the term “scale effect” the influence of scale on the 
outputs of a model (strength of the relationship, parameter values and direction, 
prediction accuracy, etc.) and suggested that the scale effect is a consequence of 
the relationship between the variables varying in space. Observations of scale-
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dependent results can indicate that the explanatory processes and variables 
operate at different spatial scales. Concerning the spatial distribution of 
vegetation, the scale effect may be used (1) to analyse variations of microclimate 
and their effect to vegetation, (2) to determine the minimal size of landscape units 
reacting to climate factors as a homogeny area, and (3) to find a model with the 
best prediction power.  

  
In this paper, we analyse scale-dependency of spatial relationships between 
NDVI and two climatic factors, - rainfall amounts and temperature, - in Central 
Sulawesi, Indonesia. The aim of the study was: (1) to show spatial variations in 
the relationship between variables both at and between different scales; (2) to 
determine the spatial scale at which the NDVI-precipitation modelling achieves 
the best prediction power and the best prediction accuracy. We tested seven 
different scales (ranging from the entire study area to local) using two regression 
techniques - the conventional global OLS regression, and a local regression 
based on geographically weighted regression (GWR). Certainly, most of the facts 
discussed in this paper are well known to experts working at the field of 
geostatistics and have been addressed in geostatistical methods for years.  
However, local regression models have not yet found a wide acceptance in the 
international literature on ecology and environmental analysis (for example, see 
the critical paper addressing local regression methods by Jetz et al., 2005). 
Therefore, the authors of this paper did not have as an objective to make 
innovations at the field of geostatistical techniques of data analysis. This paper 
should be rather considered as a contribution to the current discussion about 
local and global approaches to spatial data analysis in ecology and 
environmental science. The results produced in the study should be used in 
additional modelling the primary production and its dependence on the 
environmental factors in the Lore-Lindu National Park. 
 
2 MATERIALS AND METHODS 
 
2.1 Study area 
 
The analysis area is located in Central Sulawesi, Indonesia (Latitude 0°55’- 
01°54’ South, Longitude 119°40’- 120°29’ East) and comprises the region of the 
Lore-Lindu National Park together with the bordering areas (Figure 1). The area 
has a very complicated relief with elevations from zero in the north to more than 
2300 m above sea level in the middle part and is cut by four river valleys: the 
Palolo to the north, Napu to the east, Bada to the south and Kulawi to the west. 
The highest peaks are Mt. Nokilalaki (2355 m) and Mt. Rorekatimbu (2610 m).  

 
In terms of the climate type, the study area belongs to the belt of equatorial 
humid climate. The annual rainfall ranges from about 2000 mm in the north to 
more than 3000 mm in the south. It falls throughout the year and the heaviest 
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period is during the northern monsoon which lasts from November to April. There 
is no pronounced wet and dry season. The daytime temperature in lowland areas 
of the region ranges from 26-28°C throughout the year. However, due to the 
complex terrain and the diverse geomorphological setting the climate is 
characterised by large spatial variations. For instance, the main valley of the Palu 
River receives only 600-800 mm precipitation, while mountain slopes east and 
west of the valley may have up to 2500-3000 mm of annual precipitation. The 
spatial distribution of mean daily temperature is also depending strongly on 
elevation and falls in the mountainous areas to 15-16° C.  
 
Figure 1: Maps present the location of the study area in Sulawesi (left) and its relief 
(elevation above sea level in m). The white line on the right map shows the border 

of the Lore-Lindu National Park. 
 

 
 
The natural vegetation is generally classified into two major vegetation types 
based on altitudinal distribution with lowland rainforest below 1000 m and 
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mountain rainforest above 1000 m. Most areas of the river valleys are completely 
deforested and used for production of paddy rice; the most common upland 
cropping systems in the research area are maize and perennial agroforestry 
systems with cocoa and/or coffee (Whitten et al., 2002).  
 
2.2 NDVI dataset 
 
The most recent studies on spatial and temporal relationships between 
vegetation and climate at global or regional scales have been based on the using 
of the satellite derived Normalized Difference Vegetation Index (NDVI). The NDVI 
is established to be highly correlated to green-leaf density, absorbed fraction of 
photosynthetically active radiation and above-ground biomass and can be viewed 
as a major surrogate for vegetation activity (Tucker and Sellers, 1986). The 
vegetation absorbs a great part of incoming radiation in the red portion of the 
spectrum (R=380-730 nm) and reaches maximum reflectance in the near-infrared 
channel (NIR=730-1100 nm). The NDVI, defined as ratio (NIR-R)/(NIR+R), 
represents the absorption of photosynthetic active radiation and hence is a 
measurement of the photosynthetic capacity of the canopy. Negative NDVI 
values indicate non-vegetated areas such as snow, ice, and water. Positive NDVI 
values indicate green, vegetated surfaces, and higher values indicate increase in 
green vegetation.  

 
This study used NDVI data products with the spatial resolution of 250 m obtained 
from the Moderate Resolution Imaging Spectroradiometer (MODIS). The dataset 
covered a time period of four subsequent years from January 2002 to December 
2005 and was composed as maximum 16-day values (the entire data set 
comprised 93 16-day images). Although the use of maximum values significantly 
reduces noise due to atmospheric effects, particularly, amount of clouds in the 
dataset (Holben, 1986), the MODIS data over the study region comprised many 
areas whose NDVI values were contaminated by clouds. The removal of the 
remained clouds from the 16-day NDVI time series was achieved by using a 
filtering algorithm based on a weighted least-squares regression approach 
described by Savitzky and Golay (1964). This algorithm has been successfully 
used for Spot-VEGETATION data by Chen et al. (2004) and improved for MODIS 
data by Erasmi et al. (2006). From the filtered MODIS NDVI 16-day data sets, we 
computed a mean NDVI for the whole period.  
 
2.3 Climate dataset 
 
The climate data in the study consist of daily rainfall data and air temperature 
records collected from a number of automatic climate stations placed throughout 
the study area. The daily rainfall data were summed to monthly values, while the 
daily temperature data were averaged to mean monthly values, and gridded 
maps of precipitation amount and mean temperature for each month from 2002 to 
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2005 were obtained by interpolating data between the stations using kriging with 
external drift (Chiles and Delfiner, 1999). Elevation of the climate stations above 
sea level was used as external explanatory variable. After that, we calculated the 
average annual precipitation amount and mean annual temperature over the 
period of 2002-2005.    
 
2.4 Land cover  
 
The land cover data in the study area were taken from a digital land-cover map 
derived from Landsat ETM+ data by Erasmi et al. (2007). The map reveals 12 
land cover types in the study area which could be generalized to 5 mean land 
cover categories used as stratification units in this study: evergreen broadleaf 
forest, broadleaf cropland (cacao and coffee areas), irrigated cropland (rice 
areas), grassland and shrubland (Figure 2). Maize was included in the class of 
broadleaf cropland.  
 

Figure 2: Land use/land cover in the study area. 
 

 
 
 
2.5 Regression models 
 
Relationships between NDVI as dependent variable and precipitation and 
temperature as two predictor variables were modelled by using conventional 
ordinary least squares (OLS) and geographically weighted regression (GWR) 
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analysis. The first one was fitted to the whole study region (global OLS). The 
second one uses the location information for each observation and allows the 
model’s parameters to vary in space. The GWR was performed with 9 different 
kernel sizes (from 50*50 pixels to 5*5 pixels). The land area represented by each 
pixel was 62500 m² (0.625 ha). 

 
As OLS analysis has been well documented in a huge number of textbooks for 
statistics (for example, Norcliffe, 1981), we just briefly describe the theoretical 
background for the GWR method. A full description of the geographically 
weighted regression and its treatments is provided by Fotheringham et al. (2002) 
or Paez et al. (2002 a, 2002 b).  

  
The simple linear model, usually fitted by ordinary least squares methods (OLS), 
is: 

εβ ++= xay *      (1) 
 

where a is the intercept of the line on the y axis (where x = 0), β represents the 
slope coefficient for independent variable x, and ε is the deviation of the point 
from the regression line. Fitting the best-fit regression model incorporates the 
problem to find a and β so that the total error ∑ 2

iε is minimized.  
 
Before we continue, we should clarify the terminology that will be used. In this 
paper we mean by the term “regression parameters” only the coefficients for 
independent variables: the intercept of the regression line with the x-axis and its 
slope. By the term “data point” an individual data point with its quantities - value 
and location – used to fit a regression model is understood. In the case of using 
raster data, a data point is an individual pixel. The term “regression point” refers 
to an individual data point which is located in the centre of a mowing window 
(kernel) used for calibration of a local regression model (see Figure 2).       

 
In the OLS model, the two variables to be related to are y, the dependent variable 
(for this study - NDVI), and x, the independent variable (rainfall). The regression 
model parameters a and β derived by the above approach are assumed to be 
stationary over the analysis space (the whole study region or the geographical 
space occupied by a land-cover type). In other words, applying the conventional 
global regression model to study the relationships between vegetation distribution 
and its conditions and environmental parameters, our calculation is based on the 
assumption, that at each point of the study area this model is absolutely 
representative and the quantified relationship is constant.  

 
GWR is a local regression technique that allows the model parameters to vary 
across the space. As our introduction shows (Wang et al., 2001; Yang et al., 
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1997; Ji and Petters, 2004), in the case of land cover types with different 
response of vegetation to climate and a diverse orographic environment it is 
incorrect to hold that the same linear relationship is appropriate in all places. 
Although the local technique does not allow extrapolation beyond the region in 
which the model was established, it does allow the parameters to vary locally 
within the study area and may provide a more appropriate and accurate basis for 
descriptive and predictive purposes as it has already been shown for NDVI and 
climate predictors in studies by Foody (2003), Wang et al. (2005), and Propastin 
and Kappas (2008).  

 
The local estimation of the parameters with GWR is given by the equation (for 
two independent variables):  

 
  ενμβνμβνμβ ++++= nn xxy ),(.....),(),( 110   (2) 
 

This regression equation orders the regression parameters to be estimated at a 
location for which the spatial coordinates are provided by the variables μ  and ν . 
Parameters can also be estimated at locations where there are no data. 
 

Figure 3. Left: GWR with fixed spatial kernels. In this example, a region is 
described around a regression point (located in the centre of the mowing window) 
and all the data points within this region or this window are then used to calibrate 

the model. Right: A spatial kernel. The variable x represents a regression point, d is 
the distance between regression point i and data point j, 

ijw  is the weight of data 
point j at the regression i. (the graphs done by the authors). 
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The regression parameters may be thought of as a three-dimensional surface 
over the geographical area rather than a single, fixed real number obtained by 
the global OLS model. In this model, the regression and its parameters in each 
point of space is quantified separately and independently from other points. The 
regression model is calibrated on all data that are positioned within the region 
described around a regression point and the process is repeated for all 
regression points (Figure 3). The resulting estimates of the local parameters can 
then be mapped at the locations of the regression points to view possible non-
stationarity in the relationship being examined. The size of the moving window 
(kernel) is less than the region size and can be varied from one point to another 
depending on the density of observations at certain area. If the density of 
observations is greater, the size of the moving window can be diminished. On the 
contrary, in the sections where the density of observations is low, the mowing 
window can be enlarged.  

  
The parameters for GWR may be estimated by solving the matrix equation:  

           
 yWXXWX TT ),()),((),(ˆ 1 νμνμνμβ −=   (3) 

 
where β̂  are intercept and slope parameters in location (μ ,ν ) and ),( νμW is a 
weighting matrix whose diagonal elements represent the geographical weightings 
of observations around point i:  
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where inw  is the weight assigned to the observation at location n.  

 
Geographically weighted regression works in the way that each data point is 
weighted by its distance from the regression point. The closer is a data point to 
the regression point, the more weight it receives. This means that a data point 
closer to the regression point is more profound in the local regression than are 
data points located far away. Spatial weighting function can be calculated by 
different methods. For fixed kernel size, the weight of each point can be 
calculated by applying Gaussian function: 

 
2)]/(2/1exp[ bdw ijij −=     (5) 
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where ijd is the distance between regression point i and data point j, and b is 
referred to as a bandwidth. Gaussian weighting function is the most used one for 
application with the data with a regularly distribution in space, because it provides 
a continuous weighting function up to distance b from the regression point and 
then zero weights any data point beyond b. Raster data have a very regular 
distribution and can be analysed using fixed kernel size. In this case, Gaussian 
weighting function is the most appropriate one (Brunsdon et al., 1996; 
Fotheringham et al., 2002).    
 
2.6 Testing for spatial non-stationarity 
 
Of course, not all relationships exhibit spatial non-stationarity, and the 
parameters of interest do not vary geographically in all models to be computed 
and in all geographical regions to be analysed. We may propose that the model 
parameters should remain stationary in a great number of cases. Fotheringham 
et al. (2002) described two approaches to test significance of spatial variations in 
local parameters of a particular data set. The significance of variability in the local 
estimates can be examined adopting the Monte Carlo test or the Leung test 
(Brunsdon et al., 1996; Leung et al., 2000). These approaches work in the 
following simple way: a GWR estimate of the coefficient of interest is taken at 
each of the n data points and the variance or standard deviation of these 
estimates is computed. Under the null hypothesis that the model with globally 
fixed parameters holds, if there are no spatial variations in the parameter, then 
any permutation of the regression variables against their locations is equally likely 
and the distribution of the variance should be null. If standard deviation of a local 
regression estimate is larger then a certain threshold (usually± 1 standard 
deviation) assigned by the probability of observing variation in local parameter 
estimates from a stationary process, than this parameter should exhibit a 
significant degree of spatial non-stationarity. 
 
2.7 Scale issue in the GWR approach and its implications 
 
Estimated parameters in geographically weighted regression depend on the 
weighting function of the kernel selected. When the bandwidth b becomes larger, 
the model solution will be closer to that of global OLS one. Conversely, as the 
bandwidth decreases, the parameter estimates will increasingly depend on 
observations in close proximity to regression point i and have increased variance. 
The problem is therefore how to select an appropriate bandwidth. Obviously, the 
selection of an appropriate bandwidth for GWR refers to the problem what is the 
appropriate scale at which to analyse the data. The GWR approach enables a 
solution of this problem through a number of criteria that can be used for 
bandwidth selection.  
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The selection of bandwidth can be determined using the Akaike Information 
Criterion (AIC) (Hurvich et al., 1998). Minimising the AIC provides a trade-off 
between goodness-of-fit and degrees of freedom. The AIC is defined for GWR as 
the following (Fotheringham et al., 2002): 

 

   
⎭
⎬
⎫

⎩
⎨
⎧

−−
+

++=
)(2

)()2(log)ˆ(log2
Strn

StrnnnnAIC ee πσ    (6) 

 
Where n is the sample size, σ̂ is the estimated standard deviation of the error 
term, and tr(S) refers to the trace of the hat matrix which is a function of the 
bandwidth (Fotheringham et al., 2002). As a general rule, the lower the AIC, the 
closer is the approximation of the model to the reality. Thus, the best model and 
the most appropriate scale to analyse the data is the one with the smallest values 
of AIC. The criterion can also serve for indicating the goodness-of-fit of a 
particular model and assessment of its appropriation. In this study we computed 
the value of AIC and used it in a comparison of different models. This criterion will 
be also used to demonstrate a dependency of the model’s goodness-of-fit on the 
bandwidth. 
 
2.8 Uncertainty assessment  

 
Commonly, the results obtained from different models are compared by the 
amount of variance explained by the corresponding regression model. A general 
rule is that the higher is R², the deeper is the understanding of the variables 
responsible for the variation in the dependent variable. A goodness-of-fit of a 
regression model increases with the increase of R². However, using R² for 
interpreting the results of GWR does not make much sense, because it will 
automatically be very high when choosing a small enough band width. Only an R² 
adjusted for the degrees of freedom makes sense for inter-comparison of models 
with different band width. Therefore, the Akaike Information Criterion, AIC, 
(Equation 6), was used as the major guide to the prediction power of the models. 
Nonetheless, the values of R² and the adjusted R² have been computed in this 
work and were used for demonstration of the variation in the NDVI-climate 
relationship between different spatial scales.   

  
Regression residuals contain the very important information about the prediction 
correctness of a regression model. As the source data demonstrate a strong 
spatial autocorrelation, a regression modelling with these data is problematic and 
requires a careful treatment of this phenomenon. To consider the spatial 
autocorrelation in NDVI-rainfall analysis is of ecological significance can lead to 
nearby sites in space tending to have more similar values than would be 
expected by chance. Spatial autocorrelation of the source data makes an 
application of classical statistical tests like OLS regression for violating the 
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assumption of independently distributed errors problematic. In this case spatial 
distribution of the regression residuals serve as a significant indicator for the 
model’s uncertainty. An independent distribution of residuals over the analysis 
space is the sign for a non-problematic regression model. Spatial patterns of 
regression residuals containing positive autocorrelation indicate that a created 
model is problematic: the standard errors are underestimated and the correlation 
coefficient often indicates a significant relationship between variables when in 
fact there is none (Clifford et al., 1989). In this study, the Moran’s I coefficient was 
used as a measure of autocorrelation for the regression residuals. Under the null 
hypothesis of no spatial autocorrelation, Moran’s I has an expected value near 
zero, with positive and negative values indicating positive and negative 
autocorrelation, respectively. We computed and compared Moran’s I 
autocorrelation for residuals from each regression model, the lower the 
autocorrelation of the residuals, the better is the model.   

 
Table 1: Summary of the fitting characteristics for the regression models analysed 
in the study. The best-fitted model is the GWR one with a bandwidth of 1750 meter.  

 
Regression 
model 

R² Adjusted
R² 

RMSE AIC Moran’s I 
autocorrelation of 

residuals 
(distance, pixel/m) 

Global OLS 0.26 
 

      0.26 0.0667 
 

-12247.59 60 (15000) 

GWR with  
the bandwidth, 
b,  
(meter) 

25000
10000

6250 
4700 
2750 
1750 
1500
1000

750

 
 
 

0.51 
0.64 
0.68 
0.76 
0.82 
0.90 
0.94 
0.97 
0.98 

0.50
0.62
0.66
0.74
0.80
0.88
0.89
0.90
0.91

0.0563
0.0473

      
0.0421 
      
0.0386 
      
0.0301 

0.0210
0.0204
0.0161
0.0119

-14231.64
-15258.79
-16507.03
-17262.79
-19473.56
-21463.91
-21086.51
-19033.77

-5448.62

 
 
 

34 (8500) 
15 (3250) 
10 (2500) 
5 (1250) 
4 (1000) 

           3 (750) 
5 (1250) 
8 (2000) 
11(2750) 
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3. RESULTS AND DISCUSSION 
 
Conventional OLS model fitted to all vegetated pixels of the study area (study 
area scale) and GWR model with different bandwidth (from 25000 to 750 m) have 
been adapted to analyse NDVI relationship to the both explanatory climatic 
variables. Correlation analysis of NDVI with precipitation and temperature 
revealed that NDVI had significant correlation (p < 0.05) with the climatic 
parameters within all the models above, but the strength of this correlation, 
prediction power as well as prediction uncertainty of the models showed high 
variation between the modelling scales. Table 1 shows the derived characteristics 
for each model. The best model determined from our analysis was the GWR 
model which had a bandwidth of 7 pixels (1750 m). The worst model was the 
OLS regression fitted at the scale of the study area.  
 
3.1 Study area scale 
 
Table 2 shows the results of the multiple (multivariate) linear OLS model between 
NDVI, precipitation amounts and temperature comprising all vegetated pixels in 
the study area. The derived parameters of the model exhibited very high values 
of the T coefficient, but, they also have relatively high values of standard error. 
The Monte Carlo test revealed a presence of spatial non-stationarity in the OLS 
parameter estimates. The spatial variance in the regression parameter estimates 
was statistically significant at the level of p < 0.0001 for each of the parameters. 
 
The results of the global regression model suggest that across the study region 
NDVI is positively related to precipitation and temperature, but the huge amount 
of the variance in NDVI remains unexplained. This fact and the presence of non-
stationarity in the derived regression parameters means that the model does not 
adequately represent the real relationship between spatial patterns in vegetation 
and the climatic factors, and this may drive further work that aims to increase the 
understanding of the variables responsible for the variation in the dependent 
variable observed. One of the reasons for the confusion of the global OLS 
regression to model this relationship may be the wrong spatial scale used for the 
modelling. The fact that only a very low amount of variance was explained by the 
OLS model encouraged us to undertake additional investigations which aimed to 
increase the understanding of the relationship between the variables. The further 
analysis suggests a link between the strength of this relationship and the physical 
conditions of the underlying factors, particularly vegetation type and composition 
of vegetation communities. 
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Table 2. Results of the multiple global OLS model between NDVI, precipitation and 
temperature. The final column indicates the statistical significance of the spatial 
non-stationarity in the local parameter estimates derived from a Monte Carlo test. 

   
Parameter Estimate Standard error T-value Non-

stationarity, p 
<  

Intercept, 0β̂  0.39772 0.116822 34.03 0.0001 

Precipitation, 1̂β  0.00019 0.000048 41.07 0.0001 

Temperature, 2β̂  0.00564 0.003083 18.29 0.0001 

 
3.2 GWR model  
 
By accommodating spatial non-stationarity into the model, the GWR analysis 
allowed the parameters of the models to vary in space and showed considerably 
stronger relationships with NDVI than from the corresponding conventional global 
and stratified regression analysis. It was apparent, that the explanatory power of 
the models varied between model’s scales, with overall estimates of the adjusted 
R² varying from 0.50 to 0.91 depending on the used bandwidth. A plot of 
bandwidth against AIC (Table 1) suggests an optimal value for bandwidth of 1750 
meter. Even though supplementary decrease of the bandwidth can give a higher 
value of R² (the finest scale studied was 750 meter) and relatively smaller RMSE 
but it also results in a significant increase of the AIC value.  As the bandwidth 
gets smaller, the degrees of freedom in each local model calibration will decrease 
and will lead to unstable regression results. Therefore, very small kernel sizes 
introduced more bias in the model and are characterized by higher values of AIC 
and underestimated RMSE in comparison to the most appropriate bandwidth 
because they miss the true scale of spatial variation in the relationship.  

 
The local parameter estimates from the GWR model vary in magnitude and 
direction, their spatial pattern illustrate the geography of the relationships 
between NDVI and the climatic factors. Table 3 summarizes the descriptive 
statistics obtained for the parameter estimates of the GWR model obtained using 
a bandwidth of 1750 m. Thus, the intercept parameter 0β̂  has a median of 

0.6179 with a range of -2.4320 to 2.7463; the precipitation parameter 1̂β  has a 
median value of 0.0001 with a range from -0.0007 to 0.0018. The temperature 
parameter varied from -0.0822 to 0.0291 with a median of 0.0030. The GWR 
model exposed the presence of non-stationarity not only between different land-
cover categories but also within each of these categories. GWR works in the way 
that it blows out the arbitrary boundaries between the land-cover categories and 
represents the NDVI-climate relationship as a continuous geographical process. 
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However, GWR does not distract the general nature of this relationship, 
preserving the general differences in the vegetation response to precipitation 
between individual land-cover categories proved by the stratified OLS model. 

  
Figure 4 shows the scatter plot between measured NDVI and NDVI predicted 
using the GWR model with a bandwidth of 1750 m. The results indicate a major 
degree of spatial variation in the relationship between NDVI and the climatic 
factors in this region. There are many reasons for this, relating to variations in 
land cover, vegetation type and composition, terrain features as well as issues 
connected with the generation and accuracy of the data sets used. The GWR 
analysis proved that the local variation in this relationship would not be taken into 
account in an explanation model basing on a conventional, global, OLS 
regression analysis. Moreover, spatial variations in the amount of unexplained 
variance in NDVI, which were modelled with the GWR analyses, indicate that the 
model’s prediction power and accuracy are not constant across the study region 
and vary both between different land cover types and between localities. The 
global estimates of the regression parameters derived by all the global OLS 
models used in this study fail to represent the relationship between the analyzed 
variables at most of the space points and consequently has lesser descriptive 
and predictive power.  

 
When observing the distribution of the R² across the study region one can 
recognize the general pattern which agrees with the land-cover pattern. But in 
comparison to the stratified model the GWR model also exposes a mosaic of 
variance in R² within this general pattern scaling down to the individual locations. 
It means that the general nature of the relationship appears relatively stable 
according to the response of different vegetation types to rainfall. Nevertheless, 
the local variances in this response caused by the variance in underlying physical 
factors are also included in the model.   
 
Table 3. Descriptive statistics of the parameter estimates for the GWR model using 

a bandwidth of 1750 m. 
 

Parameter Minimum Lwr 
quantile 

Median  Upr 
quantile 

Maximum  

0β̂  -2.4320 0.0892 0.6179 0.8570 2.7463 

1̂β  -0.0007 0.0000 0.0001 0.0004 0.0018 

2β̂  -0.0822 -0.0030 0.0030 0.0064 0.0291 
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Figure 4: Scatter plot of measured NDVI versus NDVI predicted by (a) the OLS 
model; and (b) the GWR model with a bandwidth of 1750 m. 

 

 
   (a)     (b) 
 

 
3.3 Effect of scale variation on results of the GWR model 
 
In this work the effect of variation in spatial scale of the regression model’s 
prediction was explored by varying the bandwidth used in the GWR model. As 
the bandwidth declines, the analysis becomes increasingly local, revealing 
greater geographical detail. With a very small bandwidth (b = 750), the 
relationship between NDVI and precipitation was very strong, the value of the 
adjusted R² = 0.98. With an increasing of the bandwidth the spatial patterns in the 
local estimates of the model parameters became more generalized and the value 
of the estimated parameters tended towards the global model estimate (Figure 
5).  
 
Large windows improve the t-value of the model parameters (in sampling terms, 
increasing the size of the sample) by borrowing large amount of local information 
but at the expense of introducing bias because information is being borrowed 
from areas, further away, that may be different. Small windows reduce the risk of 
bias in the statistics but because little information is being borrowed the precision 
is not much improved. The effectiveness of local borrowing depends on the local 
homogeneity of the spatial data which depends on the size of spatial units in 
relation to the true scale of spatial variation. If adjacent areas are very different in 
nature then borrowing information locally may introduce bias that distorts the 
underlying patterns through inappropriate bandwidth. The GWR analysis showed 
that the most appropriate bandwidth is 1750 meter. This dimension may be 
considered to reflect the normal size of homogeny landscape units in the study 
region. The presence of the scale effect in the strength of the NDVI-precipitation 
relationship and the prediction uncertainty of the model indicates that non-
stationarity plays an important role in the ecological modelling and that the 
geography matters and location should be considered as a variable.  
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Figure 5. Spatial variation in the correlation coefficient between NDVI and the 

climatic predictors at five bandwidths: (a) b = 750 m, (b) b = 1750 m; (c) b = 2750 m; 
and (e) b = 6250 m. Spatial detail increases with a decrease in bandwidth, b. 

 

(a)   (b)  
 

(c)    (d)  
 
3.4 Autocorrelation of regression residuals 
 
For each regression model we calculated the Moran’s I autocorrelation of the 
residuals to examine the effect of calibrating the model between NDVI and 
precipitation at different spatial scales. As it has been proved, the local calibration 
solves much of the problems of spatially autocorrelated error terms included in 
the traditional global OLS model (Wang et al., 2005; Fotheringham et al., 2003). 
We were interested in the comparison of the results from the global and local 
models. Figure 6 shows the spatial autocorrelograms for the global OLS model 
residuals and the residuals from the GWR model. As expected, the error terms 
are most strongly autocorrelated for the global OLS model. The OLS model 
residuals had significant spatial autocorrelation up to circa 60 pixels. In 
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comparison, no significant positive spatial autocorrelation was found for the GWR 
model residuals at the distance more than 5 - 8 pixels. This suggests that the 
calibration of a local model reduces the problem of spatially autocorrelated error 
terms.  
 
4 CONCLUSIONS  
 
In this paper we revealed spatial variation in the spatial relationship between 
normalized difference vegetation index (NDVI) and rainfall in a sub-equatorial 
region of Central Sulawesi, Indonesia. The study investigated this variation both 
at and between spatial scales. The analysis based on the use of two different 
regression techniques: one is the global ordinary least squares regression, OLS, 
and the other is the geographically weighted regression, a relatively new local 
regression technique which allows the regression parameters and the strength of 
the relationship to vary over space. The analysis proved the presence of non-
stationarity in the NDVI-precipitation relationship both between the main land-
cover types and between locations. It means that the modelling of this 
relationship with the global or stratified OLS regression attains results with high 
amount of uncertainty. The variance in the relationship across the space of the 
study region is explained by the variance in the underlying environmental factors 
such as vegetation composition, soil type, hydrology, land use etc. caused by the 
diversity of terrain. That agrees with the results of recent studies on vegetation-
climate relationships from other regions (Yang et al, 1998; Ji & Petters, 2004).  
 

Figure 6. Moran’s I autocorrelation of regression residuals from the global OLS 
model (dashed line) and from the GWR model with a bandwidth of 1750 m (solid 

line). Obviously, that the residuals from the GWR model exhibit no significant 
autocorrelation at the distance more that 3-10 pixels, while the residuals from the 

OLS model are autocorrelated to a distance up to 60 pixels. 
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Spatial non-stationarity of the relationship between NDVI and precipitation 
contributes essentially to scale-dependency in the results of the analysis (Foody, 
2005). The GWR model enabled to use kernel bandwidth with different size (750 
- 25000 m) working like some sort of a spatial microscope and scaling the 
modelling relationship from sub-regional to local scale and helping to determine 
the most appropriate scale. The results have shown that the regression 
parameters, the predictive power as well as the rank of the explanatory variable 
in the model of vegetation patterns is considered to represent a function of spatial 
scale. The results suggest that the explanatory power of the analysis increased 
very significantly with a diminishing of the scale. The NDVI-precipitation 
modelling provides the most accurate prediction by the use of the GWR model 
with a bandwidth of 1750 m. This model explains about 90 % of all variance in 
NDVI over the study area. Further decreasing of the analysis scale results in 
enlarge of AIC of the model and Moran’s I autocorrelation of its residuals. We will 
not discuss here the question “why” the model works best at this scale. Certainly, 
there should be hints from the climate research that could explain the spatial 
scale of the relationship. These hints will be thoroughly addressed in a paper that 
is being prepared by the authors and will be submitted shortly.  
 
The results suggest that the calibration of local rather than global models reduces 
the problem of spatially autocorrelated errors. The residuals from the global OLS 
model clearly exhibited positive spatial autocorrelation up to approximately 60 
pixels. In comparison to that, the residuals from the GWR model showed positive 
autocorrelation at the distance at least 10 times shorter, suggesting the ability of 
GWR approach to deal with spatial non-stationary problems. The GWR provides 
a more directly interpretable solution to the problem of spatially autocorrelated 
errors in spatial modeling compared with the global forms of spatial regression 
modelling. In GWR, the spatial non-stationarity of the parameters is modelled 
directly, rather than allowing the non-stationarity to be reflected through the error 
terms in the global model. This agrees with the results that have been discussed 
by Fotheringham et al. (2002) and Wang et al. (2005). 
 
Our study proved the superiority of the local approach provided by GWR over the 
global OLS approach in analysing the relationship between patterns of NDVI and 
precipitation. This superiority is mainly due to the consideration of the spatial 
variation of the relationship over the study region. Global regression techniques 
like OLS may ignore local information and, therefore, indicate incorrectly that a 
large part of the variance in NDVI was unexplained. The non-stationary modelling 
based on the GWR approach has the potential for a more reliable prediction 
because the model is more aligned to local circumstances, although definitely a 
greater number of data is required to allow a reliable local fitting.  
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