A triangular element for numerical solutions of axisymmetric conduction problems in cylindrical coordinates

Prafulla Chandra Mahata

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Mechanical Engineering Commons

Department:

Recommended Citation

Mahata, Prafulla Chandra, "A triangular element for numerical solutions of axisymmetric conduction problems in cylindrical coordinates" (1971). Masters Theses. 5488.
https://scholarsmine.mst.edu/masters_theses/5488

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A TRIANGULAR ELEMENT FOR NUMERICAL SOLUTIONS OF AXISYMMETRIC CONDUCTION PROBLEMS IN CYLINDRICAL COORDINATES
by

PRAFULLA CHANDRA MAHATA, 1947-

A
THESIS

Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN MECHANICAL ENGINEERING

1971

ABSTRACT

The triangular element is one of the many suitable elements which are used in finite difference methods as applied to conduction heat transfer. Such elements find many applications in conduction problems in Cartesian coordinates. This work proposes a new triangular element for axisymmetric conduction problems in cylindrical coordinates. The validity and workability of the networks formed by the proposed triangular elements are strengthened by selected examples. The work is completed by the application of the triangular element to an industrial problem having irregular boundaries. The results are compared with the solution obtained by the finite element method.

ACKNOWLEDGEMENTS

The author wishes to extend sincere thanks and appreciation to his advisor, Dr. R.O. McNary, for the initial motivation and valuable suggestions, guidance and encouragement throughout the course of this thesis.

The author is grateful to Dr. R.L. Davis, Dr. H.D. Keith and Mr. K. Hambacker for providing the finite element solution in Chapter V, and to Dr. D.C. Look for his critical review of the work.

Thanks are due also to Mrs. Connie Hendrix for typing the thesis.

TABLE OF CONTENTS

Page

ABSTRACT ii
ACKNOWLEDGEMENTS iii
LIST OF ILLUSTRATIONS vi
LIST OF TABLES viii
LIST OF SYMBOLS ix
I. INTRODUCTION 1
II. DEVELOPMENT OF THE TRIANGULAR NETWORK 10
A. Geometric Factors for a Rectangular Element 10
B. Geometric Factors for a Triangular Element 12
III. VALIDITY OF THE TRIANGULAR NETWORK IN CYLINDRICAL COORDINATES 16
A. Parameters in the Geometric Factor 16
B. Deviation in the Geometric Factors for the Triangular Element 19
IV. COMPARISON OF SOLUTIONS USING THE PROPOSED TRIANGULAR ELEMENT WITH SOLUTIONS BY OTHER METHODS 33
A. An Infinitely Long Hollow Cylinder 33
i. Analytical Method 34
ii. Rectangular Network Method 36
iii. Triangular Network Method 38
B. A Circular Fin With Rectangular Profile 45
i. Analytical Method 45
ii. Rectangular Network Method 48
iii. Triangular Network Method 50

TABLE OF CONTENTS (Continued)

Page

$$
\text { C. A Solid Cylinder of Finite Length . . . } 56
$$

i. Analytical Method 57
ii. Rectangular Network Method 60
iii. Triangular Network Method 61
V. AN INDUSTRIAL APPLICATION 66
VI. CONCLUSION 76

BIBLIOGRAPHY 78
VITA . 79
APPENDICES . 80
A. LENGTHS OF PERPENDICULAR BISECTORS OF A TRIANGULAR ELEMENT IN CYLINDRICAL COORDINATE SYSTEM 80
B. AN ALGEBRAIC APPROACH TO RELATE THE THERMAL CONDUCTANCES OF RECTANGULAR AND TRIANGULAR ELEMENTS IN CYLINDRICAL COORDINATES

LIST OF ILLUSTRATIONS

Rectangular Network Element3A Portion of a Rectangular Network in a Two Dimensional Rectangular Coordinate System3

A Portion of a Triangular Network in a Two Dimensional Rectangular Coordinate System3

Equivalence of Rectangular and Triangular Networks in Two Dimensional Rectangular Coordinates5

One Quarter View of the Rectangular and Triangular Elements11

A Section of the Rectangular and Triangular Elements11

7 Rectangular and Triangular Elements in Cylindrical Coordinates 18

Comparison of Deviations in the Geometric Factors of the Three Cases for Triangular Elements27

9 Comparison of Deviations in Geometric Factors for Rectangular and Triangular Elements32

Rectangular and Triangular Networks
With Three Nodes for an Annular Ring 34Rectangular and Triangular NetworksWith Two Nodes41
13 Deviation in Heat Transfer Rates for
Rectangular and Triangular Networks 43
14 Rectangular and Triangular Networks in a Circular Fin 46

LIST OF ILLUSTRATIONS (Continued)

Figure Page
15 Temperature Distribution in a Circular Fin by Three Methods 5516 Comparison of Deviations in Heat TransferRates for Rectangular and TriangularNetwork Methods55
17
Rectangular and Triangular Networks ina Finite Solid Circular Cylinder58
Temperature Distribution in a SolidCylinder of Finite Length by Three Methods . 65
19 Deviations in the Dimensionless Temperatures by Two Methods for a Solid Cylinder ofFinite Length 65
Section of the Bottom of a Reaction Vessel. 67
Al A Triangular Element in Two Dimensional Cylindrical Coordinates80
Bl A Sectional View of the Rectangular and Triangular Elements 84

LIST OF TABLES

Table		Page
I	Percentage Deviations in Resultant Geometric Factors for Triangular Elements	25
II	Percentage Deviations in Geometric Factors for Rectangular and Triangular Elements.	31
III	Temperatures and Heat Transfer Rates for an Infinitely Long Hollow Cylinder Using Three Methods of Solution	42
IV	Temperatures and Heat Transfer Rates for a Circular Fin by Three Methods of Solution .	54
V	Temperatures and Heat Transfer Rates for a Solid Cylinder by Three Methods of Solution	64
VI	Comparison of the Finite Difference and Finite Element Methods	72

LIST OF SYMBOLS

Q	heat transfer rate
k	conductivity
A	area of heat transfer
T	temperature
n	direction
S	geometric factor
K	thermal conductance
x, y	rectangular coordinates
r,z	cylindrical coordinates
\triangle	increment
a, b, c, d, e, g, h, L	lengths
ε	percentage deviation
i	index of irregularity for one triangle
I	index of irregularity for a group of triangles
am	arithmetic mean
1 m	logarithmic mean
r^{*}, z^{*}	dimensionless coordinates
d^{*}, ${ }^{*}$, L*	dimensionless lengths
Q*	dimensionless heat transfer rate
T*	dimensionless temperature
h	convective heat transfer coefficient
$\lambda *$	dimensionless eigenvalue
\bar{r}, \emptyset	spherical coordinates
δ	percentage difference

I. INTRODUCTION

In many situations mathematical techniques are adequate to obtain analytical solutions of the problems encountered in many fields of Science and Engineering. However, in attacking irregular and complicated bodies, the mathematics may become extremely tedious. Cases are not rare wherein analytical solutions are impossible with the application of existing techniques. In such cases numerical methods are used successfully. Digital computers have added extra advantage and feasibility to the numerical methods in recent years. These methods have wide applicibility in the field of heat transfer by conduction in the calculation of the temperature distribution and heat transfer rates. Elements of several shapes such as rectangular, triangular, hexagonal and polar are commonly used in numerical methods. The present interest is in triangular elements which have the advantage of fitting into irregular geometries.

Elements are employed to give a finite difference form to the Fourier law of heat conduction which is stated as

$$
\begin{equation*}
Q=-k A \frac{\partial T}{\partial n} \tag{1}
\end{equation*}
$$

where Q, k, A, T and n are the heat transfer rate, conductivity, area of heat transfer, temperature and direction
of heat transfer, respectively. Using the rectangular element (Fig. 1) for preliminary illustration, the finite difference form of Eq. (1) is given by

$$
\begin{equation*}
Q=-k A \Delta T / \Delta n, \tag{2}
\end{equation*}
$$

where ΔT and Δn are incremental quantities. Related to the finite difference form of the law of conduction heat transfer are the geometric factors and the thermal conductance K of the element, which are defined by [1]

$$
\begin{equation*}
\mathrm{S}=\mathrm{A} / \Delta \mathrm{n}, \quad \mathrm{~K}=\mathrm{kA} / \Delta \mathrm{n}, \tag{3}
\end{equation*}
$$

respectively. Introducing Eqs. (3) into Eq. (2), results in

$$
\begin{equation*}
Q=-K \Delta T \tag{4}
\end{equation*}
$$

Recognizing Q as the current, $1 / K$ as the resistance and ΔT as the potential difference, Eq. (4) is analogous to Ohm's law in electrical technology. This analogy leads to the possible network representation of any physical problem in conduction heat transfer. A network is defined to consist of heat conducting rods which represent the elements and which are connected to each other in a particular way depending on the type of the elements. The junctions are called nodes of the network. Before introducing the actual subject matter of the present work, some common types of networks and related facts are

Fig. 1. Rectangular Network Element

Fig. 2. A Portion of a Rectangular Network in a Two Dimensional
Rectangular
Coordinate System

Fig. 3. A Portion of a Triangular Network in a Two Dimensional Rectangular Coordinate System
discussed to serve as ground work.
A. Common Networks

In two dimensional Cartesian coordinates the commonly used networks are rectangular (Fig. 2), triangular (Fig. 3), hexagonal, polar, etc.

It is known that the rectangular network solutions approach the analytical results, as the dimensions of the biggest element in the network approach zero $(\Delta x \rightarrow 0$, $\Delta y \rightarrow 0)$. The triangular network involves multiple directions and variable areas of heat transfer (Fig. 3). It may be difficult to prove by the direct method of letting the elemental dimension approach zero that the triangular network solutions approach the analytical results. However, the validity of the triangular network has been established by Dusinberre[1] with the aid of an indirect method. A brief outline of this method is given here to link the present work with Dusinberre's. Dusinberre's analysis established the equivalence of rectangular and triangular networks in two dimensional rectangular coordinates by showing the equality of the thermal conductances of the elements of the two networks. Consequently, the validity of the triangular network has been proved.

The element AXYZ (Fig. 4) of a rectangular network in two dimensional rectangular coordinates is composed of the

Fig. 4. Equivalence of Rectangular and Triangular Networks in Two Dimensional Rectangular Coordinates
elements $A B C, A X B, B Y C$ and $C Z A$ of a triangular network. The two main features are that

1. the angle H is arbitrary and
2. none of the triangular elements has obtuse angles so that the point of intersection of the perpendicular bisectors remains inside the element.

The geometric factor and the thermal conductance of the rectangular element $A X Y Z$, which has unit depth, are given by

$$
\begin{equation*}
\mathrm{S}_{\mathrm{M}-\mathrm{N}}=\mathrm{e} / \mathrm{d}, \quad \mathrm{~K}_{\mathrm{M}-\mathrm{N}}=\mathrm{k} \mathrm{e} / \mathrm{d} \tag{5}
\end{equation*}
$$

The subscripts $M-N$ imply from node M to node N; but to be physically consistent, it is necessary that $S_{M-N}=S_{N-M}$ and $K_{M-N}=K_{N-M}$. Dusinberre has defined the geometric factors of a triangular element (Fig. 4) as

$$
\begin{equation*}
S_{A-B}=O R / A B, S_{B-C}=O P / B C, S_{C-A}=O Q / C A, \tag{6}
\end{equation*}
$$

which can be rephrased as

$$
\begin{gather*}
S_{A-B}=(\operatorname{COT} C) / 2, S_{B-C}=(\operatorname{COT} A) / 2, \tag{7}\\
S_{C-A}=(\operatorname{COT} B) / 2
\end{gather*}
$$

In a similar manner, the geometric factors pertaining to the other elements in Fig. 4 are

$$
\begin{gather*}
S_{A-X}=(\operatorname{COT} D) / 2, S_{C-Y}=(\operatorname{COT} F) / 2 \\
S_{C-Z}=(\operatorname{COT} G) / 2 \tag{8}
\end{gather*}
$$

By the electrical network analogy the total thermal conductance K_{T} of all the triangular elements in Fig. 4 is the resultant of the thermal conductances of the representative heat conducting rods $Z C, A C, C Y, C B, A B$, AX and is given by

$$
\begin{align*}
K_{T}= & 1 /\left[1 /\left(k S_{C-A}+k S_{C-Z}\right)+1 /\left(k S_{B-C}+k S_{C-Y}\right)\right] \\
& +k S_{A-B}+k S_{A-X} \tag{9}
\end{align*}
$$

which simplifies to

$$
\begin{align*}
K_{T}= & (k / 2)[(\operatorname{COT} A+\operatorname{COT} F)(\operatorname{COT} B+\operatorname{COT} G) /(\operatorname{COT} A \\
& +\operatorname{CoT} F+\operatorname{CoT} B+\operatorname{COT} G)+\operatorname{COT} C+\operatorname{COT} D] \tag{10}
\end{align*}
$$

Further simplification with the aid of trigonometric relations results in [l]

$$
\begin{equation*}
\mathrm{K}_{\mathrm{T}}=\mathrm{ke} \mathrm{e} / \mathrm{d} \tag{ll}
\end{equation*}
$$

Comparison of Eqs. (5) and (11) shows that

$$
\begin{equation*}
\mathrm{K}_{\mathrm{M}-\mathrm{N}}=\mathrm{K}_{\mathrm{T}}, \tag{12}
\end{equation*}
$$

which proves that the triangular elements are equivalent to the rectangular element for arbitrarily chosen direction
of heat transfer (angle H being arbitrary) and with suitably defined geometric factors for the triangular elements.

The triangular network discussed so far is in two dimensional rectangular coordinates and thus it is applicable to plane bodies only. This limitation points out the need for a triangular network in two dimensional cylindrical coordinates (r, z), which can handle irregular axisymmetric bodies. Unfortunately, the work of Dusinberre in the rectangular coordinate system has not been extended to the cylindrical coordinate system.

Reid [2] determined analytically the steady state temperature distribution for the special case of a 30-degree right triangle with temperatures specified on the boundary. The solution is in two dimensional rectangular coordinates. The method is so involved that the author says, "To fully appreciate the difficulty involved, one should try to solve some other case such as a 3l-degree right triangle."

Lancoz [3] and Garabedian [4] indicate that for irregular boundaries, the boundary value problem of even simple differential operators become practically unmanageable if the aim is to arrive at an analytical solution. The triangle in general form is an example of a region for which an explicit solution to the Dirichlet problem in closed form is presently unknown.

It appears that little work has been done on the triangular element in cylindrical coordinates. The present work provides a convenient and feasible definition of the geometric factors for the triangular network in two dimensional cylindrical coordinates (r,z). The validity of the network is established by proving that its accuracy is comparable to the rectangular network in cylindrical coordinates and that the accuracy improves as the size of the elements is decreased. Three examples further strengthen the reliability and the workability of such triangular networks. Another example of industrial interest is chosen to highlight all the major aspects of the application of the triangular network in two dimensional cylindrical coordinates.

II. DEVELOPMENT OF THE TRIANGULAR NETWORK

To develop the triangular network in two dimensional cylindrical coordinates (r, z), the prime task is to define the geometric factors of the triangular element in a suitable way. Three feasible definitions are given in this chapter and analysis using these definitions are considered. Before considering the triangular element, two alternate ways of defining geometric factors for a rectangular element in two dimensional cylindrical coordinates are discussed because of their use in succeeding chapters.
A. Geometric Factors for a Rectangular Element

The rectangular element with section AXYZ (Fig. 5), as shown in two dimensional cylindrical coordinates, forms a complete ring around the z-axis. Any radial plane intersecting the element forms a rectangular cross section.

On the basis of the arithmetic mean area, the geometric factor S_{R} of the rectangular element with section AXYZ (Fig.6) is defined as

$$
\begin{equation*}
S_{R}=\pi e\left(r_{i}+r_{0}\right) /\left(r_{0}-r_{i}\right) \tag{13}
\end{equation*}
$$

where r_{i}, r_{0} and e are the internal and the external radii and the length of the element, respectively.

Fig. 5. One Quarter View of the Rectangular and Triangular Elements

Fig. 6. A Section of the Rectangular and Triangular Elements

Introducing

$$
\begin{equation*}
d=r_{o}-r_{i} \tag{14}
\end{equation*}
$$

in Eq. (13), yields

$$
\begin{equation*}
S_{R}=\pi e\left(2 r_{i}+d\right) / d \tag{15}
\end{equation*}
$$

On the basis of the logarithmic mean area, the geometric factor S_{R} of the rectangular element is defined as [5]

$$
\begin{equation*}
S_{R}=2 \pi e / \ln \left(r_{o} / r_{i}\right) \tag{16}
\end{equation*}
$$

B. Geometric Factors for a Triangular Element

$$
\text { The triangular element with section } A B C \text { (Fig.5) }
$$

is a ring around the z-axis and results in a triangular cross section with the intersection of any radial plane. The perpendicular bisectors $O P, O Q$ and $O R$ intersect at a common point O inside the element as shown in Fig. 6. The geometric factors for triangular element $A B C$ can be written in a manner similar to Eqs. (6) as

$$
\begin{align*}
& S_{A-B}=\text { (Area of surface of revolution by } O R \text {) } / A B, \\
& S_{B-C}=\text { (Area of surface of revolution by } O P \text {) } / B C, \tag{17}\\
& S_{C-A}=\text { (Area of surface of revolution by } O Q \text {) } / C A .
\end{align*}
$$

The areas of surfaces of revolutions by $O R, O P$ and $O Q$ are considered in three different possible ways, which give rise to three possible definitions for the geometric factors.

Case 1: Areas Based on Mid-Radii of Perpendicular Bisectors

In this case the areas across $O R, O P$ and $O Q$ are the exact areas of the cylindrical surfaces containing OR, $O P$ and $O Q$. So Eqs. (17) give

$$
\begin{gather*}
S_{A-B}=2 \pi\left[\left(r_{O}+r_{R}\right) /(2 A B)\right] O R, S_{B-C}=2 \pi\left[\left(r_{O}+r_{P}\right) /(2 B C)\right] O P, \\
S_{C-A}=2 \pi\left[\left(r_{O}+r_{Q}\right) /(2 C A)\right] O Q, \tag{18}
\end{gather*}
$$

where the subscript of the radius r implies radius to that point.

Case 2: Areas Based on Common Radius of Perpendicular Bisectors

In this case the areas of heat transfer are based on the radius corresponding to the common point O of the perpendicular bisectors. The geometric factors for the triangular elements are then obtained from Eqs. (17) as

$$
\begin{gather*}
S_{A-B}=2 \pi\left(r_{0} / A B\right) O R, S_{B-C}=2 \pi\left(r_{O} / B C\right) O P, \\
S_{C-A}=2 \pi\left(r_{O} / C A\right) O Q . \tag{19}
\end{gather*}
$$

Case 3: Areas Based on Mid-Radii of Conducting Rods

Considering the areas across the perpendicular bisectors based on the mid-radius of each side, the geometric factors for the triangular element are obtained from Eq. (17) as

$$
\begin{equation*}
S_{A-B}=2 \pi\left(r_{R} / A B\right) O R, S_{B-C}=2 \pi\left(r_{P} / B C\right) O P, S_{C-A}=2 \pi\left(r_{Q} / C A\right) O Q \tag{20}
\end{equation*}
$$

It is noted that although the exact area is employed in case l, the definition of the geometric factors are not unique. Thus it is required to consider the equivalence of the rectangular and the triangular elements in a two dimensional cylindrical coordinate system, as is exhibited in the case of the rectangular coordinate system in Eq. (l2). Using the definitions of the geometric factors in case l, an analysis of the equivalence of the rectangular and the triangular elements is given in Appendix B. The results of the analysis show that the exact equivalence does not exist in the cylindrical coordinate system. Any possibility of equivalence, considering case 2 and case 3 , is discussed later. However, the exact equivalence of the two networks is not required. For example, the network of rectangular elements based on two different definitions of the geometric factors,
the arithmetic mean area and the \log mean area, are non-equivalent. However, they are both used for general engineering practice.

The immediate task is then to analyze the deviations in the three definitions of the geometric factor for the triangular element as compared to the geometric factor for the rectangular element based on either the arithmetic mean area or the logarithmic mean area.

III. VALIDITY OF THE TRIANGULAR NETWORK IN CYLINDRICAL COORDINATES

The geometric factors and hence the thermal conductances are the basic parameters which govern the temperature distribution and the heat transfer rates obtained by the finite difference method. Thus any inaccuracy associated with the geometric factor causes errors in the temperature distribution and heat transfer rates. In this chapter the deviation in the geometric factor for the triangular element with respect to the geometric factor for the rectangular element is analyzed for all the cases (cases 1,2 and 3). The geometric factor for the rectangular element based on the arithmetic mean area is taken as the basis of comparison for convenience. However, a simple relation can be used to alter the basis for comparison. In order to consider the geometric factor for a triangular element, it is essential to specify the shape of the element. This shape is a major factor in the possible variation of the geometric factor.
A. Parameters in the Geometric Factor

Fig. 7 illustrates a rectangular element with section AXYZ in cylindrical coordinates, which is composed of triangular elements with sections $A B C, A X B, B Y C$ and CZA.

The perpendicular bisectors and the necessary dimensions are shown in the figure. The shape and location of the triangular element can be completely specified by the parameters r_{i}, d, e, g and h. Dividing these by r_{i}, the dimensionless parameters are obtained as

$$
\begin{gather*}
r_{i}^{*}=r_{i} / r_{i}=1, \quad d^{*}=d / r_{i}, e^{*}=e / r_{i} \\
g^{*}=g / r_{i}, h^{*}=h / r_{i} . \tag{21}
\end{gather*}
$$

The dimensionless parameter d^{*} is taken as the measure of the size of the rectangular element and representative of the size of the triangular elements. However, the shapes of the triangular elements are dictated by all the four parameters d^{*}, e^{*}, g^{*} and h^{*}. A single index is introduced here to represent all possible shapes of the triangular element and to give an indication of the irregularity. Such an index of a triangle can be defined as the sum of the absolute values of the three differences of the angles in that triangle. Thus the value of the index i ranges from 0 to π as the irregularity of a triangle increases with the restriction of no obtuse angles. Another index I for a group of triangles may be defined as the sum of the individual indices of all the triangles in that group. The expression for I is given by

Fig. 7. Rectangular and Triangular Elements in Cylindrical Coordinates

$$
\begin{align*}
I= & |\angle A-\angle B|+|\angle B-\angle C|+|\angle C-\angle A| \\
& +|\angle H-\pi / 2|+|\pi / 2-\angle D|+|\angle D-\angle H| \\
& +|\angle F-\pi / 2|+\left|\pi / 2-\angle K_{1}\right|+\left|\angle K_{1}-\angle F\right| \\
& +|\angle E-\pi / 2|+|\pi / 2-\angle G|+|\angle G-\angle E| \tag{22}
\end{align*}
$$

Some of the quantities used in the definitions of the geometric factors for the triangular element are expressed here in dimensionless form in terms of the four
dimensionless independent parameters $d^{*}, e^{*}, ~ g *$ and $h *$ as follows:

$$
\begin{align*}
& \angle F=\operatorname{arc} \tan \left[\left(d^{*}-g^{*}\right) /\left(e^{*}-h^{*}\right)\right], \\
& \underline{K}_{1}=\pi / 2-\underline{F}, \quad \angle G=\arctan (g * / e *) \text {, } \\
& \angle \mathrm{E}=\pi / 2-\underline{\mathrm{G}}, \quad \underline{\mathrm{H}}=\arctan (\mathrm{h} * / \mathrm{d} *) \text {, } \\
& \angle D=\pi / 2-\angle H, \quad \angle A=\pi / 2-(\angle H+\angle G), \\
& b^{*}=g * / \sin G, \quad C^{*}=h * / \sin H \text {, } \\
& a^{*}=\left(b *^{2}+c^{*^{2}}-2 b * c^{*} \cos A\right)^{1 / 2}, \\
& \underline{B}=\operatorname{arc} \sin \left(b^{*} \sin A / a *\right), \quad \angle C=\arcsin \left(C^{*} \sin A / a *\right) \text {, } \\
& \mathrm{OR}^{*}=\left(\mathrm{c}^{*} / 2\right) \cot \mathrm{C}, \mathrm{OP} *=\left(\mathrm{a}^{*} / 2\right) \cot \mathrm{A}, \mathrm{OQ}^{*}=\left(\mathrm{b}^{*} / 2\right) \cot \mathrm{B} \text {, } \\
& r_{O}^{*}=r_{i}^{*}+\left(C^{*} / 2\right) \sin (C-H) / \sin C \text {, } \\
& r_{R}{ }^{*}=r_{i}{ }^{*}+d^{*} / 2, \quad r_{P}{ }^{*}=r_{i}{ }^{*}+d^{*} / 2+g^{*} / 2 \text {, } \\
& r_{Q}{ }^{*}=r_{i}{ }^{*}+g^{*} / 2 . \tag{23}
\end{align*}
$$

The geometric factor S_{R} for the rectangular element with section AXYZ based on the arithmetic mean area method, as given in Eq. (15), can be expressed in dimensionless form as

$$
\begin{equation*}
S_{R}^{*}=\pi e^{*}\left(2 r_{i}^{*}+d *\right) / d * \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{R}^{*}=S_{R} / r_{i} \tag{25}
\end{equation*}
$$

B. Deviation in the Geometric Factors for the Triangular Element

In this section a comparison is made between the geometric factors for the triangular element and the geometric factor for the rectangular element defined on the basis of the arithmetic mean area. The three cases for the definition of the geometric factors, as discussed in the last chapter, will now be considered.

Case 1: Areas Based on Mid-Radii of Perpendicular Bisectors

In this case the geometric factors for the triangular element with section $A B C$ obtained from Eqs.(18) with the aid of the trigonometric relations in Appendix B can be written in dimensionless forms as

$$
\begin{align*}
& S_{A-B}^{*}=\pi(\operatorname{COT} C)\left(r_{O}^{*}+r_{R}^{*}\right) / 2, \\
& S_{B-C}^{*}=\pi(\operatorname{COT} A)\left(r_{O}^{*}+r_{P}^{*}\right) / 2, \\
& S_{C-A}^{*}=\pi(\operatorname{COT} B)\left(r_{O}^{*}+r_{Q}^{*}\right) / 2 . \tag{26}
\end{align*}
$$

The dimensionless expressions for the necessary geometric factors for the other triangular elements in Fig. 7 are

$$
\begin{gather*}
S_{A-X}^{*}=\pi(\operatorname{COT} D) r_{R}^{*}, \quad S_{C-}^{*}-Y=\pi(\operatorname{COT} F) r_{P}^{*} \\
S_{C-Z}=\pi(\operatorname{COT} G) r_{Q} * \tag{27}
\end{gather*}
$$

The dimensionless resultant thermal conductance of the triangular elements is obtained from Eq. (9) as

$$
\begin{gather*}
K_{T}^{*}=k *\left[\left(S_{C-A}^{*}+S_{C-Z}^{*}\right)\left(S_{B-C}^{*}+S_{C-Y}^{*}\right) /\left(S_{C-A}^{*}+S_{C-Z}^{*}+\right.\right. \\
\left.\left.S_{B-C}^{*}+S_{C-Y}^{*}\right)+S_{A-B}^{*}+S_{A-X}^{*}\right], \tag{28}
\end{gather*}
$$

where

$$
\begin{align*}
& \mathrm{K}_{\mathrm{T}}^{*}=\mathrm{K}_{\mathrm{T}} /\left(\mathrm{k}_{\mathrm{o}} \mathrm{r}_{\mathrm{i}}\right), \\
& \mathrm{k}^{*}=\mathrm{k} / \mathrm{k}_{\mathrm{o}} . \tag{29}
\end{align*}
$$

Symbol k_{o} denotes any reference thermal conductivity. The dimensionless resultant geometric factor obtained from Eq. (28) is

$$
\begin{gather*}
S_{T}^{*}=\left(S_{C-A}^{*}+S_{C}^{*}-Z\right)\left(S_{B}^{*}-C+S_{C-Y}^{*}\right) /\left(S_{C}^{*}-A+S_{C-Z}^{*}+\right. \\
\left.S_{B-C}^{*}+S_{C-Y}^{*}\right)+S_{A-B}^{*}+S_{A}^{*}-X . \tag{30}
\end{gather*}
$$

The percentage deviation $\varepsilon_{t l}$ in the dimensionless resultant geometric factor for the triangular elements is

$$
\begin{equation*}
\varepsilon_{t l}=\left[\left(S_{T}^{*}-S_{R}^{*}\right) / S_{R}^{\star}\right] 100, \tag{31}
\end{equation*}
$$

where S_{R}^{*} and S_{T}^{*} are given by Eqs. (24) and (30), respectively. It is noted that the individual dimensionless geometric factors and hence the dimensionless resultant geometric factor can be expressed solely in terms of d^{*}, e^{*}, g^{*} and h^{*} by the use of Eqs. (23).

Case 2: Area Based on Common Radius of the Perpendicular Bisectors

With reference to Eq. (19) and in a manner similar to case l, the dimensionless form of the geometric factors are

$$
\begin{array}{ll}
S_{A-B}^{*}=\pi(\operatorname{COT} C) r_{O}^{*}, & S_{A-X}^{*}=\pi(\operatorname{COT} D) r_{R}^{*}, \\
S_{B-C}^{*}=\pi(\operatorname{COT} A) r_{O}^{*}, & S_{C-Y}^{*}=\pi(\operatorname{COT} F) r_{P}^{*}, \\
S_{C-A}^{*}=\pi(\operatorname{COT} B) r_{O}^{*}, & S_{C-Z}^{*}=\pi(\operatorname{COT} G) r_{Q}^{*} .
\end{array}
$$

The dimensionless resultant geometric factor is given by Eq. (30) with the values of the individual dimensionless geometric factors from Eqs. (32). The percentage deviation $\varepsilon_{t 2}$ is expressed in the same way as in case 1.

Case 3: Areas Based on the Mid-Radii of the Conducting Rods

In a manner similar to the last two cases, the dimensionless forms of the geometric factors, as obtained from Eq. (20), are

$$
\begin{array}{ll}
S_{A-B}^{*}=\pi(\operatorname{COT} C) r_{R}^{*}, & S_{A}^{*}-X=\pi(\operatorname{COT} D) r_{R}{ }^{*}, \\
S_{B-C}^{*}=\pi(\operatorname{COT} A) r_{P}^{*}, & S_{C-Y}^{*}=\pi(\operatorname{COT} F) r_{P}{ }^{*}, \tag{33}\\
S_{C-A}^{*}=\pi(\operatorname{COT} B) r_{Q}{ }^{*}, & S_{C-Z}^{*}=\pi(\operatorname{COT} G) r_{Q}{ }^{*} .
\end{array}
$$

Eq. (30) with the aid of Eqs. (33) gives the dimensionless resultant geometric factor. The percentage deviation $\varepsilon_{t 3}$ is again defined in the same manner as in the last two cases.

The following method was employed in order to compute the percentage deviations in the three cases for various shapes of the triangular elements.
a. Ten suitable values (0.04, 0.08,..., 0.40) of d^{*} were chosen to represent the size of the triangular elements.
b. For each value of $d *$, ten suitable values (0.04, $0.08, \ldots, 0.40)$ of e^{*} were used. These values alter the shape of the rectangular and the triangular elements.
c. For every value of e^{*}, nine values of g^{*} were taken at intervals of one-tenth of d^{*}. For each value of g* nine values of $h *$ were also considered at an interval of one-tenth of e^{*}.

The total number of shapes considered by the above method is 8100. The shapes having obtuse angle were omitted for the reason previously stated. Table I lists the results of the computation giving the percentage deviations in all the three cases corresponding to a few particular shapes of the triangular elements. From the results of all possible shapes under study, it is observed that the case 3 gives the least percentage deviation for most of the considered shapes of the triangular elements. The list in Table I includes only those sets which have

Table I. Percentage Deviations in Resultant Geometric Factors for Triangular Elements

d*	e*	g*	h*	I	$\varepsilon_{t 1}$	$\varepsilon_{\text {t2 }}$	${ }^{\varepsilon}$ t3
0.04	0.04	0.004	0.004	9.999	-0.046	-0.090	$\underline{-0.002}$
	0.04	0.020	0.008	7.585	-0.083	-0.160	-0.006
	0.12	0.004	0.108	11.082	-0.398	-0.794	-0.002
	0.04	0.016	0.004	8.709	-0.049	-0.092	$\underline{-0.006}$
0.08	0.08	0.008	0.016	9.530	-0.160	-0.313	$\underline{-0.007}$
	0.08	0.040	0.016	7.585	-0.170	-0.320	-0.022
	0.24	0.008	0.216	11.082	-0.781	-1.558	-0.007
	0.04	0.024	0.004	10.081	-0.038	-0.051	-0.029
0.12	0.08	0.108	0.024	9.566	-0.142	-0.271	$\underline{-0.014}$
	0.12	0.060	0.024	7.585	-0.262	-0.479	-0.048
	0.04	0.012	0.004	11.146	-0.030	-0.036	-0.027
	0.08	0.060	0.008	8.960	-0.097	-0.137	-0.062
0.16	0.16	0.144	0.144	9.317	-0.175	-0.334	$\underline{-0.024}$
	0.16	0.080	0.032	7.585	-0.358	-0.637	-0.082
	0.40	0.064	0.360	10.847	-1.064	-2.085	-0.067
	0.08	0.048	0.008	10.081	-0.105	-0.113	-0.109
0.20	0.12	0.180	0.048	9.602	-0.219	-0.405	$\underline{-0.036}$
	0.16	0.120	0.016	7.570	-0.225	-0.326	-0.131
	0.08	0.020	0.032	10.889	-0.128	-0.198	-0.063
	0.12	0.100	0.036	9.417	-0.271	-0.388	$\underline{-0.175}$
0.24	0.24	0.216	0.024	9.182	-0.284	-0.521	-0.048
	0.24	0.120	0.048	7.585	-0.558	-0.950	-0.171
	0.08	0.024	0.008	11.146	-0.087	-0.083	-0.102
	0.12	0.072	0.012	10.081	-0.194	-0.184	-0.231

Table I (continued)

d^{*}	e*	G*	h*	I	$\varepsilon_{t l}$	$\varepsilon_{\text {t2 }}$	$\varepsilon_{t 3}$
0.28	0.28	0.252	0.028	9.181	-0.332	-0.603	-0.062
	0.28	0.140	0.056	7.585	-0.661	-1.105	-0.224
	0.12	0.028	0.060	10.787	-0.215	-0.326	-0.112
	0.16	0.140	0.016	9.263	-0.287	-0.277	-0.332
0.32	0.24	0.288	0.048	9.425	-0.374	-0.671	-0.079
	0.28	0.160	0.028	7.337	-0.469	-0.640	-0.308
	0.12	0.032	0.036	10.983	-0.199	-0.256	-0.158
	0.16	0.096	0.016	10.081	-0.301	-0.261	-0.389
0.36	0.28	0.324	0.056	9.387	-0.446	-0.799	-0.094
	0.32	0.180	0.032	7.368	-0.553	-0.745	-0.374
	0.12	0.036	0.012	11.146	-0.163	-0.137	-0.216
	0.20	0.180	0.020	9.320	-0.412	-0.358	$\underline{-0.525}$
0.40	0.40	0.360	0.040	9.181	-0.475	-0.840	$\underline{-0.111}$
	0.36	0.200	0.036	7.392	-0.640	-0.852	-0.444
	0.16	0.040	0.064	10.889	-0.303	-0.401	-0.225
	0.24	0.200	0.072	9.417	-0.648	-0.779	$\underline{-0.588}$

the minimum and the maximum percentage deviations in the preferred case 3 and the minimum and the maximum values of the index I. All the extreme values are underlined. The percentage deviations in the numerous other shapes are not listed mainly due to the unpredictable nature of the percentage deviations in terms of the index I and because of space limitations. However, Fig. 8 is used to represent all the results of the computation in the form of regions of percentage deviations corresponding to the representative size $d *$ of the triangular element.

The results in Table I and Fig. 8 indicate the following:

1. The resultant geometric factor for the triangular elements approaches the geometric factor for the rectangular element as the size of the elements of the network decreases. This establishes the validity of the triangular network.
2. There is no preferred shape of the triangular elements.
3. The geometric factors formulated in the case 3 yield better results. It is noted that case 1 based on exact areas does not give the most accurate results. Thus case 3 is preferred

Fig. 8. Comparison of Deviations in The Geometric Factors of the Three Cases for Triangular Elements
for further use in triangular networks. Case 3 gives a rapid decrease in the percentage deviations in the resultant geometric factor with a decrease in d^{*}. This is evident in Fig. 8. Also this formulation of the geometric factors is the simplest among the three cases under consideration.

The percentage deviation in the resultant geometric factor for the triangular elements (considering case 3) with respect to the geometric factor for the rectangular element based on the logarithmic mean area will now be analyzed for comparison. This analysis was done indirectly by the following methods.

From Eq. (15) the dimensionless geometric factor $S_{R_{a m}^{*}}^{*}$ for the rectangular element based on the arithmetic mean area is given by

$$
\begin{equation*}
\mathrm{S}_{\mathrm{R}}^{\mathrm{A}}=\pi e^{*}\left(2 r_{i}^{*}+\mathrm{d}^{*}\right) / d^{*} \tag{34}
\end{equation*}
$$

and from Eq. (16) the dimensionless geometric factor $\mathrm{S}_{\mathrm{R}}^{\mathrm{Im}}$ based on the logarithmic mean area is

$$
\begin{equation*}
\mathrm{S}_{\mathrm{R}_{\operatorname{lm}}^{*}}=2 \pi \mathrm{e}^{*} / \ln \left[\left(\mathrm{r}_{\dot{i}}^{*}+\mathrm{d}^{*}\right) / \mathrm{r}_{\mathrm{i}}^{*}\right] \tag{35}
\end{equation*}
$$

The percentage deviation ε am in the geometric factor based on the arithmetic mean area with respect to that based on the logarithmic mean area is given by

$$
\begin{equation*}
\varepsilon_{a m}=\left[\left(S_{R_{a m}^{*}}^{*}-S_{R_{l m}^{*}}^{*}\right) / S_{R_{l m}^{*}}^{*}\right] 100 \tag{36}
\end{equation*}
$$

which, combined with Eqs. (34) and (35), reduces to

$$
\begin{equation*}
\varepsilon_{\mathrm{am}}=\left[\left(1 / 2+1 / d^{*}\right) \ln (1+d *)-1\right] 100 . \tag{37}
\end{equation*}
$$

The case 3 version of Eq. (3l) gives the percentage deviation $\varepsilon_{t 3}$ in the dimensionless resultant geometric factor for the triangular elements with respect to the geometric factor for the rectangular element based on the arithmetic mean area. The rearranged form of the above mentioned equation is

$$
\begin{equation*}
\varepsilon_{t 3} / 100=S_{\mathrm{T}}^{*} / \mathrm{S}_{\mathrm{R}}^{*}{ }_{\mathrm{am}}-1 \tag{38}
\end{equation*}
$$

Eq. (36) is rephrased as

$$
\begin{equation*}
\varepsilon_{a m} / 100=S_{R_{a m}^{*}}^{*} / S_{R_{l m}^{*}}^{*}-1 \tag{39}
\end{equation*}
$$

The percentage deviation ε_{t} in the resultant geometric factor for the triangular elements (considering case 3) with respect to the geometric factor for the rectangular element using the logarithmic mean area method is given by

$$
\begin{equation*}
\varepsilon_{t}=\left[\left(S_{T}^{*}-S_{R_{l m}^{*}}^{*}\right) / S_{R_{l m}^{*}}^{*}\right] 100 \tag{40}
\end{equation*}
$$

which is rearranged as

$$
\begin{equation*}
\varepsilon_{t}=\left[S_{T}^{*} / S_{R_{1 \mathrm{~m}}^{*}}^{*}-1\right] 100 \tag{41}
\end{equation*}
$$

Eqs. (38) and (39) jointly give

$$
\begin{equation*}
\mathrm{S}_{\mathrm{T}}^{\star} / \mathrm{S}_{\mathrm{R}}^{\mathrm{lm}} \text { }=\left(\varepsilon_{\mathrm{t} 3} / 100+1\right)\left(\varepsilon_{\mathrm{am}} / 100+1\right) \tag{42}
\end{equation*}
$$

which, when introduced into Eq. (41), yields

$$
\begin{equation*}
\varepsilon_{t}=\varepsilon_{t 3}+\varepsilon_{a m} . \tag{43}
\end{equation*}
$$

Using Table I, the minimum and the maximum values of ε_{t} were computed and result listed in Table II. Fig. 9 shows the variations of ε am and ε_{t} versus the element size d*. It illustrates the following important facts.

1. ε_{t} is smaller than $\varepsilon_{a m}$ everywhere within the range of $d *$ under consideration and for all of the 8100 shapes. Corresponding to $d^{*}=0.40$, the maximum values of $\varepsilon_{a m}$ and ε_{t} are 0.942 and 0.831 percent, respectively. As these deviations are comparable, the workability of the triangular network using formulations of case 3 may be assumed.
2. Both the minimum and the maximum values of ε_{t} decrease rapidly with a decrease in the size (d*) of the element. This indicates that the deviation approaches zero as the element size decreases.

Table II. Percentage Deviations in Geometric Factors for Rectangular and Triangular Elements

	d*	$\varepsilon_{a m}$	ε_{t}	
	minimum	maximum		
0.04	0.013	0.007	0.011	
0.08	0.049	0.020	0.042	
0.12	0.107	0.045	0.093	
0.16	0.183	0.074	0.159	
0.20	0.277	0.102	0.241	
0.24	0.385	0.154	0.337	
0.28	0.507	0.175	0.445	
0.32	0.642	0.253	0.563	
0.36	0.787	0.942	0.364	

Fig. 9. Comparison of Deviations in Geometric Factors for Rectangular and Triangular Elements

IV . COMPARISON OF SOLUTIONS USING THE PROPOSED TRIANGULAR ELEMENT WITH SOLUTIONS BY OTHER METHODS

Since case 3 is the preferred formulation, henceforth all the triangular networks are based on that formulation. Three examples have been selected to illustrate the workability of the triangular network by comparison with the rectangular network (arithmetic mean area method) and with analytical methods. An equal number of nodes are employed wherever possible in both the rectangular and the triangular network methods to obtain fair comparison. For convenience in the analysis, steady state conduction problems with constant thermal conductivity for the case of no heat sources or sinks will be considered. These complicating factors may be treated by the usual methods.

The first example in the series will now be illustrated using the three different methods.
A. An Infinitely Long Hollow Cylinder

Fig. 10 shows a cross section of an annular ring which is a part of an infinitely long hollow cylinder. This will be treated as a one dimensional problem. Using the constants T_{i} and T_{o} as the inside and the outside temperatures, the purpose now is to find the

Fig. 10. Rectangular and Triangular Networks with Three Nodes for an Annular Ring
temperature distribution and the heat transfer rate by the analytical method, by the rectangular network method and by the triangular network method.

i. Analytical Method

The differential equation governing the heat conduction is given by

$$
\begin{equation*}
\frac{d}{d r}\left(r \frac{d T}{d r}\right)=0 \tag{44}
\end{equation*}
$$

where the subscript a denotes the analytical method. The boundary conditions are

$$
\begin{equation*}
T_{a}\left(r_{i}\right)=T_{i}, \quad T_{a}\left(r_{0}\right)=T_{0} \tag{45}
\end{equation*}
$$

The dimensionless temperature T_{a}^{*} and heat transfer rate Q*a per unit length are given as

$$
\begin{align*}
& T_{a}^{*}=1-\ln r^{*} / \ln r_{o}^{*} \tag{46}\\
& Q_{a}^{*}=\left(T_{i}^{*}-T_{o}^{*}\right) /\left[(1 / 2 \pi) \ln \left(1+d^{*}\right)\right] \tag{47}
\end{align*}
$$

where the dimensionless quantities are defined by

$$
\begin{align*}
& T_{a}^{*}=\left(T_{a}-T_{o}\right) /\left(T_{i}-T_{o}\right), \quad T_{i}^{*}=\left(T_{i}-T_{o}\right) /\left(T_{i}-T_{o}\right) \\
& T_{o}^{*}=\left(T_{o}-T_{o}\right) /\left(T_{i}-T_{o}\right) \\
& Q_{a}^{*}=Q_{a} /\left[r_{i} k e *\left(T_{i}-T_{o}\right)\right] \tag{48}\\
& r^{*}=r / r_{i}, \quad r_{o}^{*}=r_{o} / r_{i} \\
& d^{*}=\left[\left(r_{o}-r_{i}\right) / 2\right] / r_{i} \\
& e^{*}=\sqrt{3} d^{*} / 2
\end{align*}
$$

Noting that $r_{0}^{*}=1+2 d^{*}, T_{i}^{*}=1$ and $T_{o}^{*}=0$, the dimensionless temperatures $T_{a 1}^{*}$, $T_{a 2}^{*}$, etc., and the heat transfer rate per unit length are computed from Eqs.(46)
and (47) corresponding to the values of d^{*} and r^{*}. The results are given in Table III,page 42.
ii. Rectangular Network Method

A rectangular network is formed for the annular ring as shown in Fig. 10 and an energy balance is performed at each of the three nodes to obtain

$$
\begin{align*}
& \mathrm{K}_{\mathrm{X}-1}\left(\mathrm{~T}_{\dot{1}}^{*}-\mathrm{T}_{1}^{*}\right)+\mathrm{K}_{2-1}\left(\mathrm{~T}_{2}^{*}-\mathrm{T}_{1}^{*}\right)=0, \\
& \mathrm{~K}_{1-2}\left(\mathrm{~T}_{1}^{*}-\mathrm{T}_{2}^{*}\right)+\mathrm{K}_{3-2}\left(\mathrm{~T}_{3}^{*}-\mathrm{T}_{2}^{*}\right)=0, \tag{49}\\
& \mathrm{~K}_{2-3}\left(\mathrm{~T}_{2}^{*}-\mathrm{T}_{3}^{*}\right)+\mathrm{K}_{\mathrm{Y}-3}\left(\mathrm{~T}_{0}^{*}-\mathrm{T}_{3}^{*}\right)=0 .
\end{align*}
$$

The thermal conductances for the rectangular elements by the arithmetic mean area method are

$$
\begin{align*}
& \mathrm{K}_{\mathrm{X}-1}=\mathrm{k} 2 \pi \mathrm{e}\left(\mathrm{r}_{\mathrm{i}}+\mathrm{d} / 4\right) /(\mathrm{d} / 2), \\
& \mathrm{K}_{\mathrm{l-2}}=\mathrm{k} 2 \pi \mathrm{e}\left(\mathrm{r}_{\mathrm{i}}+3 \mathrm{~d} / 4\right) /(\mathrm{d} / 2), \tag{50}\\
& \mathrm{K}_{2-3}=\mathrm{k} 2 \pi e\left(\mathrm{r}_{1}+5 \mathrm{~d} / 4\right) /(\mathrm{d} / 2), \\
& \mathrm{K}_{3-Y}=\mathrm{k} 2 \pi e\left(\mathrm{r}_{\mathrm{i}}+7 \mathrm{~d} / 4\right) /(\mathrm{d} / 2) .
\end{align*}
$$

Inserting the values of the thermal conductances from Eqs. (50) in Eqs. (49), solving for the dimensionless temperatures and dividing numerator and denominator by r_{i}, yield

$$
\begin{align*}
& T_{1}^{*}=\left[\left(1+d^{*} / 4\right) T_{i}^{*}+\left(1+3 d^{*} / 4\right) T_{2}^{*}\right] /\left(2+d^{*}\right), \\
& T_{2}^{*}=\left[\left(1+3 d^{*} / 4\right) T_{1}^{*}+\left(1+5 d^{*} / 4\right) T_{3}^{*}\right] /\left(2+2 d^{*}\right), \tag{51}\\
& T_{3}^{*}=\left[(1+5 d * / 4) T_{2}^{*}+\left(1+7 d^{*} / 4\right) T_{0}^{*}\right] /\left(2+3 d^{*}\right) .
\end{align*}
$$

The above set of equations was solved for the dimensionless temperatures using the Gauss-Seidel iterative method [6] with suitable values of d^{*}. The iteration process was terminated when the maximum difference in the values of any of the unknown temperatures, obtained by the successive iterations, was 0.5×10^{-6}. The heat transfer rate in per unit length at the interior surface can be expressed as

$$
\begin{equation*}
Q=K_{X-1}\left(T_{i}-T_{1}\right) / e . \tag{52}
\end{equation*}
$$

Introducing K_{X-1} from Eqs. (50) in Eq. (52) and nondimensionalizing, yields

$$
\begin{equation*}
Q^{*}=2 \pi\left[\left(1+d^{*} / 4\right) /\left(d^{*} / 2\right)\right]\left(T_{i}^{*}-T_{1}^{*}\right) . \tag{53}
\end{equation*}
$$

In a similar manner the expression for heat transfer rate at the outer surface can be obtained. The percentage deviation ε_{1} in the temperature at node 1 with respect to the analytical case based on the maximum temperature range is given in dimensionless form as

$$
\begin{equation*}
\varepsilon_{1}=\left(T_{1}^{*}-T_{a 1}^{*}\right) 100 \tag{54}
\end{equation*}
$$

Similar expressions are used to find ε_{2} and ε_{3} corresponding to node 2 and node 3 , respectively. The percentage deviation ε_{q} in the heat transfer rates with respect to the analytical method takes the dimensionless form

$$
\begin{equation*}
\left.\varepsilon_{q}=\left[Q^{*}-Q_{\mathrm{a}}^{*}\right) / \mathrm{Q}_{\mathrm{a}}^{*}\right] 100 \tag{55}
\end{equation*}
$$

The nodal dimensionless temperatures with the corresponding percentage deviations and the heat transfer rates with the corresponding percentage deviations are listed in Table III.
iii. Triangular Network Method

A triangular network is shown in Fig. lo. For convenience in analysis, as many regular triangular elements as possible are used. The nodes are located at the same radial positions as in the rectangular network. An energy balance at each node in terms of the dimensionless temperatures is performed to obtain

$$
\begin{align*}
& K_{P-1}\left(T_{i}^{*}-T_{1}^{*}\right)+K_{Q-1}\left(T_{i}^{*}-T_{1}^{*}\right)+K_{2-1}\left(T_{2}^{*}-T_{1}^{*}\right)+K_{3-1} \\
& \left(T_{3}^{*}-T_{1}^{*}\right)=0, \\
& K_{1-2}\left(T_{1}^{*}-T_{2}^{*}\right)+K_{Q-2}\left(T_{i}^{*}-T_{2}^{*}\right)+K_{R-2}\left(T_{0}^{*}-T_{2}^{*}\right)+ \tag{56}\\
& K_{3-2}\left(T_{3}^{*}-T_{2}^{*}\right)=0, \\
& K_{1-3}\left(T_{1}^{*}-T_{3}^{*}\right)+K_{2-3}\left(T_{2}^{*}-T_{3}^{*}\right)+K_{R-3}\left(T_{0}^{*}-T_{3}^{*}\right)+ \\
& K_{S-3}\left(T_{o}^{*}-T_{3}^{*}\right)=0,
\end{align*}
$$

where the thermal conductances are given by

$$
\begin{align*}
& K_{P-1}=k 2 \pi\left(r_{i}+d / 4\right)(e / 2) /(d / 2), \\
& K_{Q-1}=k 2 \pi\left(r_{i}+d / 4\right)(e / 3) / d, \quad k_{2-1}=k 2 \pi\left(r_{i}+3 d / 4\right)(2 e / 3) / d, \\
& k_{3-1}=k 2 \pi\left(r_{i}+d\right)(e / 3) / d, \quad K_{Q-2}=k 2 \pi\left(r_{i}+d / 2\right)(e / 3) / d, \\
& K_{R-2}=k 2 \pi\left(r_{i}+3 d / 2\right)(e / 3) / d, K_{3-2}=k 2 \pi\left(r_{i}+5 d / 4\right)(2 e / 3) / d, \\
& K_{R-3}=k 2 \pi\left(r_{i}+7 d / 4\right)(e / 3) / d, K_{S-3}=k 2 \pi\left(r_{i}+7 d / 4\right)(e / 2) /(d / 2) . \tag{57}
\end{align*}
$$

Introducing the values of the thermal conductances into Eqs. (56) and solving for the dimensionless nodal temperatures, yield

$$
\begin{align*}
T_{1}^{*}= & {\left[3\left(1+d^{*} / 4\right) T_{i}^{*}+\left(1+d^{*} / 4\right) T_{i}^{*}+2\left(1+3 d^{*} / 4\right) T_{2}^{*}\right.} \\
& \left.+\left(1+d^{*}\right) T_{3}^{*}\right] /\left(7+7 d^{*} / 2\right), \\
T_{2}^{*}= & {\left[2\left(1+3 d^{*} / 4\right) T_{1}^{*}+\left(1+d^{*} / 2\right) T_{i}^{*}+\left(1+3 d^{*} / 2\right) T_{0}^{*}\right.} \\
& \left.+2\left(1+5 d^{*} / 4\right) T_{3}^{*}\right] /\left(6+6 d^{*}\right), \\
T_{3}^{*}= & {\left[\left(1+d^{*}\right) T_{1}^{*}+2\left(1+5 d^{*} / 4\right) T_{2}^{*}+\left(1+7 d^{*} / 4\right) T_{0}^{*}\right.} \\
& \left.+3\left(1+7 d^{*} / 4\right) T_{0}^{*}\right] /\left(7+21 d^{*} / 2\right) . \tag{57a}
\end{align*}
$$

In a manner similar to the rectangular network method, these equations are solved for the dimensionless temperatures.

The heat transfer rate in per unit length Q is given by

$$
\begin{equation*}
Q=\left[K_{p-1}\left(T_{i}-T_{1}\right)+K_{Q-1}\left(T_{i}-T_{1}\right)+K_{Q-2}\left(T_{i}-T_{2}\right)\right] / e \tag{58}
\end{equation*}
$$

which, when simplified and nondimensionalized with the values of the thermal conductances from Eqs. (57), reduces to

$$
\begin{align*}
Q^{*}= & (\pi \sqrt{3})\left[3\left(1+d^{*} / 4\right)\left(T_{i}^{*}-T_{1}^{*}\right)+(1+d * / 4)\left(T_{i}^{*}-T_{1}^{*}\right)\right. \\
& \left.+(1+d * / 2)\left(T_{0}^{*}-T_{2}^{*}\right)\right] . \tag{59}
\end{align*}
$$

Similarly the dimensionless heat transfer rate out per unit length is obtained. The percentage deviations in the dimensionless temperatures and the heat transfer rates compared to the analytical case are calculated as in the last case and are compiled in Table III.

In addition, for the same ratio r_{o} / r_{i} this example was solved using one node and two nodes in a manner similar to the method just outlined for three nodes. Figs. 11 and 12 illustrate the networks which were used. The results are also in Table III. The graphs of ε_{q} versus the size of the element for the rectangular method and for the triangular method with one, two and three nodes are shown in Fig. 13. From Table III and Fig. 13 the following conclusions can be made.

Table III. Temparatures and Heat Transfer Rates for an Infinitely Long Hollow Cylinder Using Three Methods of Solution
$r_{o} / r_{i}=1.36$

$\begin{gathered} \mathrm{d} * \\ (\mathrm{~N}) \end{gathered}$	Methods	$\mathrm{T}_{1}{ }^{*}$	$\mathrm{T}_{2}{ }^{\text {* }}$	T_{3} *	Q*		ε_{1}	ε_{2}	ε_{3}	ε_{q}	
					in	out				in	out
$\left\lvert\, \begin{aligned} & 0.36 \\ & (1) \end{aligned}\right.$	Analytical	. 46172			20.43414						
	Rectangular	. 46186			20.47507	20.47505	0.014			. 200	. 200
	Triangular	. 46186			20.51501	20.51500	0.014			. 396	. 396
$\begin{aligned} & 0.24 \\ & (2) \end{aligned}$	Analytical	. 63143	. 30043		20.43414						
	Rectangular	. 63150	. 30047		20.45242	20.45235	0.007	0.005		. 089	. 089
	Triangular	.63133	. 30068		20.47623	20.47620	-0.010	0.026		. 206	. 206
$\begin{aligned} & 0.18 \\ & (3) \end{aligned}$	Analytical	. 71974	. 46172	. 22267	20.43414						
	Rectangular	. 71976	. 46175	. 22269	20.44455	20.44431	0.002	0.003	. 002	. 051	. 051
	Triangular	. 71968	. 46180	. 22279	20.45963	20.45950	-0.006	0.008	. 012	. 125	. 125

N: Number of Nodes

Fig. 13. Deviation in Heat Transfer Rates for Rectangular and Triangular Networks

1. The temperatures obtained by the rectangular and the triangular networks have comparable percentage deviations for every size of element under consideration. For example, corresponding to $d^{*}=0.24$ values of ε_{1} are 0.007 and -0.010 for the rectangular and triangular networks, respectively. These deviations are well within the requirements of general engineering accuracy.
2. The percentage deviation ε_{q} for the triangular element has a maximum value of 0.396 compared to 0.200 for the rectangular element, corresponding to $d *=0.36$. The value of ε_{q} for the triangular element is within general engineering accuracy, although it is almost double the value for the rectangular element. The trend of the graphs indicate that the triangular network gives a more rapid decrease in ε_{q} with a decrease in the element size as compared to the rectangular network. This trend further indicates the validity of the triangular element, because the error diminishes as the network becomes finer.

The second example is subject to convective boundary conditions.
B. A Circular Fin with Rectangular Profile

Fig. 14 illustrates the geometry of the fin under consideration. The results of the triangular network will again be compared with those of a rectangular network and with the analytical method. The fin is assumed to have an insulated end, base temperature and the ambient temperatures of T_{i} and T_{f}, respectively, and a constant convective heat transfer coefficient h from the surface of the fin. The problem is analyzed in one dimension.
i. Analytical Method

The differential equation governing the heat conduction in the fin is [7]

$$
\begin{equation*}
\frac{d}{d r}\left[k A(r) \frac{d T}{d r}\right]=\frac{d A_{S}}{d r} h\left(T-T_{f}\right), \tag{60}
\end{equation*}
$$

where the area for conduction $A(r)$ and the differential area $d A_{s}$ for convection are

$$
\begin{equation*}
A(r)=2 \pi r e \text { and } d A_{S}=2(2 \pi r d r) \tag{61}
\end{equation*}
$$

Introducing the dimensionless temperature T * and radius r* as

$$
\begin{equation*}
T^{*}=\left(T-T_{f}\right) /\left(T_{i}-T_{f}\right) \text { and } r^{*}=r / r_{i} \tag{62}
\end{equation*}
$$

Fig. 14. Rectangular and Triangular
Networks in a Circular Fin

Eq. (60) becomes

$$
\begin{equation*}
r^{*} 2 \frac{d^{2} T^{*}}{d r *^{2}}+r * \frac{d T^{*}}{d r^{*}}-m *^{2} r *^{2} T *=0 \tag{63}
\end{equation*}
$$

where

$$
\begin{equation*}
m^{*^{2}}=[2 h /(k e)] r_{i}^{2} \tag{64}
\end{equation*}
$$

Eq. (63) is a Bessel's equation of order zero. Its solution [5] with the associated boundary conditions $T *\left(r_{i} *\right)=T_{i} *, \frac{d T *\left(r_{0}{ }^{*}\right)}{d r^{*}}=0$,
is

$$
\begin{align*}
T *= & T_{i} *\left[I_{0}(m * r *) K_{1}\left(m * r_{0} *\right)+K_{0}\left(m * r^{*}\right) I_{1}\left(m * r_{0} *\right)\right] \\
& /\left[I_{0}\left(m * r_{i} *\right) K_{1}\left(m * r_{0} *\right)+K_{0}\left(m * r_{i}^{*}\right) I_{1}\left(m * r_{0} *\right)\right] \tag{66}
\end{align*}
$$

where I_{0}, I_{1} and K_{0}, K_{1} are modified Bessel's functions of first and second kind of order zero and one, respectively. The dimensionless temperatures $T a_{1}{ }^{*}, T{ }_{a_{2}}^{*}$ and $T{ }_{3}^{*}$ (subscript a is for analytical case) corresponding to the dimensionless radii $r_{1} *, r_{2} *$ and $r_{3} *$ can now be obtained. The heat transfer rate Q_{a} * (i.e. heat lost by the fin) through the base of the fin is

$$
\begin{align*}
Q_{a}^{*}= & 2 \pi e * m * T_{i} *\left[K_{1}\left(m * r_{i} *\right) I_{1}\left(m * r_{0} *\right)-I_{1}\left(m * r_{i} *\right)\right. \\
& \left.K_{1}\left(m * r_{0} *\right)\right] /\left[I_{0}\left(m * r_{i} *\right) K_{1}\left(m * r_{0} *\right)+K_{0}\left(m * r_{i} *\right)\right. \\
& \left.I_{1}\left(m * r_{0} *\right)\right] \tag{67}
\end{align*}
$$

where the dimensionless expressions for Q_{a} * and e^{*} are

$$
\begin{align*}
Q_{a} * & =Q_{a} /\left[k r_{i}\left(T_{i}-T_{f}\right)\right] \tag{68a}\\
e^{*} & =e / r_{i} \tag{68b}
\end{align*}
$$

The temperatures and the heat transfer rates are given in Table IV for three values of m * for a fin of a fixed geometry.
ii. Rectangular Network Method

The network for this method is also shown in Fig. 14. To find the nodal temperatures, an energy balance at each node is performed using the dimensionless temperatures, as defined in Eq. (62). The result is

$$
\begin{aligned}
& K_{X-1}\left(T_{i}{ }^{*-T_{1}}{ }^{*}\right)+K_{2-1}\left(T_{2} *-T_{1} *\right)+2 h\left[2 \pi\left(r_{i}+d / 2\right)(d / 2)\right] \\
& \left(T_{f}^{*-T}{ }_{I} *\right)=0 \text {, } \\
& \mathrm{K}_{1-2}\left(\mathrm{~T}_{1}{ }^{*-\mathrm{T}_{2}}{ }^{*}\right)+\mathrm{K}_{3-2}\left(\mathrm{~T}_{3} *-\mathrm{T}_{2} *\right)+2 \mathrm{~h}\left[2 \pi\left(\mathrm{r}_{\mathrm{i}}+\mathrm{d}\right)(\mathrm{d} / 2)\right]\left(\mathrm{T}_{\mathrm{f}}^{*}-\mathrm{T}_{2}^{*}\right)=0,
\end{aligned}
$$

The thermal conductance $\mathrm{K}_{\mathrm{X}-1}$ is

$$
\begin{equation*}
K_{X-1}=k\left[2 \pi\left(r_{i}+d / 4\right) e /(d / 2)\right] \tag{70}
\end{equation*}
$$

where $d=2 e / \sqrt{3}$. The other thermal conductances are obtained in like manner and are inserted into Eqs.(69) to yield expressions for the dimensionless temperatures. The result is

$$
\begin{align*}
\mathrm{T}_{1} *= & {\left[2\left(1 / \mathrm{d}^{*}+1 / 4\right) \mathrm{T}_{\mathrm{i}} *+2(1 / \mathrm{d} *+3 / 4) \mathrm{T}_{2}{ }^{*}+\mathrm{m}^{*}(1+\mathrm{d} * / 2)\right.} \\
& \left.(\mathrm{d} * / 2) \mathrm{T}_{\mathrm{f}} *\right] /\left[2\left(1 / \mathrm{d}^{*}+1 / 4\right)+2(1 / \mathrm{d} *+3 / 4)+\mathrm{m}^{2}(1+\mathrm{d} * / 2)\right. \\
& (\mathrm{d} * / 2)], \\
\mathrm{T}_{2} *= & {\left[2\left(1 / \mathrm{d}^{*}+3 / 4\right) \mathrm{T}_{1} *+2\left(1 / \mathrm{d}^{*}+5 / 4\right) \mathrm{T}_{3} *+\mathrm{m}^{2}(1+\mathrm{d} *)(\mathrm{d} * / 2)\right.} \\
& \left.\mathrm{T}_{\mathrm{f}} *\right] /\left[2\left(1 / \mathrm{d}^{*}+3 / 4\right)+2\left(1 / \mathrm{d}^{*}+5 / 4\right)+\mathrm{m}^{2}\left(1+\mathrm{d}^{*}\right)(\mathrm{d} * / 2)\right], \\
\mathrm{T}_{3}^{*}= & {\left[2\left(1 / \mathrm{d}^{*}+5 / 4\right) \mathrm{T}_{2}^{\left.*+\mathrm{m}^{2}(1+11 \mathrm{~d} * / 8)(\mathrm{d} * / 4) \mathrm{T}_{\mathrm{f}}^{*}\right] /}\right.} \\
& {\left[2\left(1 / \mathrm{d}^{*}+5 / 4\right)+\mathrm{m}^{2}(1+11 \mathrm{~d} * / 8)(\mathrm{d} * / 4)\right], } \tag{71}
\end{align*}
$$

where $d *=d / r_{i}$.
The above equations are solved for the dimensionless temperatures. The heat transfer rate in at the base is written as

$$
\begin{equation*}
Q=K_{X-1}\left(T_{i}-T_{1}\right)+2 h\left[2 \pi\left(r_{i}+d / 8\right)(d / 4)\right]\left(T_{i}-T_{f}\right) \tag{72}
\end{equation*}
$$

which, when simplified and nondimensionalized with the aid of Eq. (70), reduces to

$$
\begin{align*}
Q^{*}= & 2 \pi e^{*}\left[2(1 / d *+1 / 4)\left(T_{i}^{*-T_{1}}{ }^{*}\right)+\mathrm{m}^{2}\left(1+\mathrm{d}^{*} / 8\right)(\mathrm{d} * / 4)\right. \\
& \left.\left(\mathrm{T}_{i}{ }^{*-T_{f}}{ }_{\mathrm{f}}\right)\right] \tag{73}
\end{align*}
$$

where Q^{*} is defined in Eq. (68a). The dimensionless heat loss by convection Q^{*} is similarly found to have the expression

$$
\begin{align*}
Q^{*}= & 2 \pi e^{*} \mathrm{~m}^{2}\left[(1+\mathrm{d} / / 8)(\mathrm{d} * / 4)\left(\mathrm{T}_{\mathrm{i}}^{*}-\mathrm{T}_{\mathrm{f}} *\right)+(1+\mathrm{d} * / 2)(\mathrm{d} * / 2)\right. \\
& \left(\mathrm{T}_{1}{ }^{*}-\mathrm{T}_{\mathrm{f}} *\right)+\left(1+\mathrm{d}^{*}\right)(\mathrm{d} * / 2)\left(\mathrm{T}_{2} *-\mathrm{T}_{\mathrm{f}} *\right)+(1+11 \mathrm{~d} * / 8) \\
& \left.(\mathrm{d} * / 4)\left(\mathrm{T}_{3} *-\mathrm{T}_{\mathrm{f}} *\right)\right] . \tag{74}
\end{align*}
$$

Eqs. (73) and (74) will give the same value of Q^{*}. The percentage deviations $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} in the dimensionless temperatures are obtained from Eq. (54). The percentage deviations ε_{q} in the dimensionless heat transfer rates are obtained by using Eqs. (55), (73),(74), and are compiled in Table IV.
iii. Triangular Network Method

Fig. 13 illustrates the triangular network used. The nodes are positioned at the same radius as in the rectangular network method for direct comparison of temperatures. Regular triangular elements are selected so that the conductances can be computed with ease. The representative element size d is taken as

$$
\begin{equation*}
\mathrm{d}=2 \mathrm{e} / \sqrt{3} . \tag{75}
\end{equation*}
$$

Performing an energy balance at each node in terms of the dimensionless temperatures gives

$$
\begin{align*}
& \mathrm{K}_{\mathrm{P}-1}\left(\mathrm{~T}_{\mathrm{i}}{ }^{*-\mathrm{T}_{1}}{ }^{*}\right)+\mathrm{K}_{\mathrm{Q}-1}\left(\mathrm{~T}_{\mathrm{i}}{ }^{\left.*-\mathrm{T}_{1} *\right)+\mathrm{K}_{2-1}\left(\mathrm{~T}_{2}{ }^{*}-\mathrm{T}_{1}{ }^{*}\right)+\mathrm{K}_{3-1}\left(\mathrm{~T}_{3}^{*}-\mathrm{T}_{1}^{*}\right)}\right. \\
& +h\left[2 \pi\left(r_{i}+d / 2\right)(3 d / 4)\right]\left(T_{f}^{*}-T_{1} *\right)=0, \\
& \mathrm{~K}_{1-2}\left(\mathrm{~T}_{1} *-\mathrm{T}_{2} *\right)+\mathrm{K}_{\mathrm{Q}-2}\left(\mathrm{~T}_{i}^{*} \mathrm{~T}_{2} *\right)+\mathrm{K}_{3^{\prime}-2}\left(\mathrm{~T}_{3}{ }^{*}-\mathrm{T}_{2} *\right)+\mathrm{K}_{3-2}\left(\mathrm{~T}_{3}^{*}-\mathrm{T}_{2}^{*}\right) \\
& +h\left[2 \pi\left(r_{i}+d\right)(3 d / 4)\right]\left(T_{f}^{*}-T_{2} *\right)=0, \\
& \mathrm{~K}_{1-3}\left(\mathrm{~T}_{1} *-\mathrm{T}_{3} *\right)+\mathrm{K}_{2-3}\left(\mathrm{~T}_{2} *-\mathrm{T}_{3} *\right)+\mathrm{K}_{2-3^{1}}\left(\mathrm{~T}_{2} *-\mathrm{T}_{3} *\right)+\mathrm{h}\left[2 \pi \left(\mathrm{r}_{\mathrm{i}}+\right.\right. \\
& \left.5 d / 4)(d / 2)+2 \pi\left(r_{i}+l l d / 8\right)(d / 4)\right]\left(T_{f}^{*}-T_{3} *\right)=0 . \tag{76}
\end{align*}
$$

The thermal conductances are

$$
\begin{align*}
& K_{P-1}=k\left[2 \pi\left(r_{i}+d / 4\right)(e / 2) /(d / 2)\right] \\
& K_{Q-1}=k\left[2 \pi\left(r_{i}+d / 4\right)(e / 3) / d\right] \\
& K_{2-1}=k\left[2 \pi\left(r_{i}+3 d / 4\right)(2 e / 3) / d\right] \tag{77}
\end{align*}
$$

Introducing the expressions for all the conductances into Eqs. (76) and solving the resulting equations yields the expressions

$$
\begin{aligned}
\mathrm{T}_{1} *= & {\left[2(1 / \mathrm{d} *+1 / 4) \mathrm{T}_{\mathrm{i}}^{*}+(2 / 3)(1 / \mathrm{d} *+1 / 4) \mathrm{T}_{i}{ }^{*}+(4 / 3)(1 / \mathrm{d} *\right.} \\
& \left.+3 / 4) \mathrm{~T}_{2} *+(2 / 3)(1 / \mathrm{d} *+1) \mathrm{T}_{3}{ }^{*}+\mathrm{m}^{2}\left(1+\mathrm{d}^{*} / 2\right)(3 \mathrm{~d} * / 4) \mathrm{T}_{\mathrm{f}}^{*}\right] \\
& /[2(1 / \mathrm{d} *+1 / 4)+(2 / 3)(1 / \mathrm{d} *+1 / 4)+(4 / 3)(1 / \mathrm{d} *+3 / 4) \\
& \left.+\mathrm{m}^{2}(1+\mathrm{d} * / 2)(3 \mathrm{~d} * / 4)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{2}^{*}=\left[(4 / 3)\left(1 / \mathrm{d}^{*}+3 / 4\right) \mathrm{T}_{1}{ }^{*}+(2 / 3)\left(1 / \mathrm{d}^{*}+1 / 2\right) \mathrm{T}_{\mathrm{i}}{ }^{*}+2\left(1 / \mathrm{d}^{*}\right.\right. \\
& +5 / 4) \mathrm{T}_{3} *+(2 / 3)(1 / \mathrm{d} *+5 / 4) \mathrm{T}_{3} *+\mathrm{m}^{2}\left(1+\mathrm{d}^{*}\right)(3 \mathrm{~d} * / 4) \\
& \left.T_{f} *\right] /\left[(4 / 3)\left(1 / d^{*}+3 / 4\right)+(2 / 3)\left(1 / d^{*}+1 / 2\right)+\right. \\
& \left.2(1 / d *+5 / 4)+(2 / 3)(1 / d *+5 / 4)+m *^{2}(1+d *)(3 d * / 4)\right] \text {, } \\
& \mathrm{T}_{3}{ }^{*}=\left[(2 / 3)(1 / \mathrm{d} *+1) \mathrm{T}_{1}{ }^{*}+(2 / 3)(1 / \mathrm{d} *+5 / 4) \mathrm{T}_{2}{ }^{*}+2\left(1 / \mathrm{d}^{*}+\right.\right. \\
& 5 / 4) \mathrm{T}_{2}{ }^{*+\mathrm{m}^{2}((1+5 \mathrm{~d} * / 4)(\mathrm{d} * / 2)+(1+1 l \mathrm{~d} * / 8)(\mathrm{d} * / 4))} \\
& \left.T_{f}{ }^{*}\right] /\left[(2 / 3)(1 / d *+1)+(2 / 3)\left(1 / d^{*}+5 / 4\right)+2(1 / d *+\right. \\
& \left.5 / 4)+\mathrm{m}^{2}((1+5 d * / 4)(d * / 2)+(1+11 d * / 8)(d * / 4))\right] \text {. }
\end{aligned}
$$

Assigning values to $d *$ and $m *$, the above equations were solved for the dimensionless nodal temperatures. The heat transfer rate in at the base is given by

$$
\begin{gather*}
Q=K_{P-1}\left(T_{i}-T_{1}\right)+K_{Q-1}\left(T_{i}-T_{1}\right)+K_{Q-2}\left(T_{i}-T_{2}\right)+h\left[2 \pi\left(r_{i}+d / 8\right)\right. \\
\left.(d / 4)+2 \pi\left(r_{i}+d / 4\right)(d / 2)\right]\left(T_{i}-T_{f}\right) . \tag{79}
\end{gather*}
$$

The expressions for thermal conductances are used from Eqs.(77) and the definition of Q^{*} is introduced, giving

$$
\begin{align*}
Q^{*}= & \pi e^{*}\left[2\left(1 / \mathrm{d}^{*}+1 / 4\right)\left(\mathrm{T}_{\mathrm{i}}^{*-\mathrm{T}_{1}}{ }^{*}\right)+(2 / 3)(1 / \mathrm{d} *+1 / 4)\left(\mathrm{T}_{\dot{i}}^{*}-\mathrm{T}_{1}^{*}\right)\right. \\
& +(2 / 3)\left(1 / \mathrm{d}^{*}+1 / 2\right)\left(\mathrm{T}_{\mathrm{i}}^{\left.*-\mathrm{T}_{2} *\right)+\mathrm{m}^{2}\left((1+\mathrm{d} * / 8)\left(\mathrm{d}^{*} / 4\right)\right.}\right. \\
& \left.\left.+\left(1+\mathrm{d}^{*} / 4\right)(\mathrm{d} * / 2)\right)\left(\mathrm{T}_{\mathrm{i}}^{*} \mathrm{~T}_{\mathrm{f}}^{*}\right)\right] . \tag{80}
\end{align*}
$$

In a similar manner, the dimensionless heat loss by convection Q^{*} is found to have the expression

$$
\begin{align*}
Q^{*}= & \pi e^{*} \mathrm{~m}^{2}\left[(1+\mathrm{d} * / 8)(\mathrm{d} * / 4)\left(\mathrm{T}_{\mathrm{i}}^{*}-\mathrm{T}_{\mathrm{f}}^{*}\right)+(1+\mathrm{d} * / 4)(\mathrm{d} * / 2)\right. \\
& \left(\mathrm{T}_{\mathrm{i}}^{\left.*-T_{f} *\right)+\left(1+\mathrm{C}^{*} / 2\right)(3 \mathrm{~d} * / 4)\left(\mathrm{T}_{1} *-\mathrm{T}_{\mathrm{f}} *\right)+\left(1+\mathrm{d}^{*}\right)}\right. \\
& (3 \mathrm{~d} * / 4)\left(\mathrm{T}_{2} *-\mathrm{T}_{\mathrm{f}} *\right)+(1+5 \mathrm{~d} * / 4)(\mathrm{d} * / 2)\left(\mathrm{T}_{3} *-\mathrm{T}_{\mathrm{f}} *\right)+ \\
& \left.\left(1+11 \mathrm{~d}^{*} / 8\right)(\mathrm{d} * / 4)\left(\mathrm{T}_{3} *-\mathrm{T}_{\mathrm{f}}\right)\right] . \tag{81}
\end{align*}
$$

The percentage deviations $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ in the dimensionless temperatures are evaluated using relations similar to Eq. (54). The percentage deviations ε_{q} in the dimensionless heat transfer rates are obtained by Eq. (55). These results are listed in Table IV.

The following conclusions can be drawn from the results:

1. The graph in Fig. 15 shows that the temperatures, obtained by the rectangular and triangular network methods, are very close. For example when $d *=0.4$ and $m *=1.5$, the dimensionless temperatures T_{2} * having maximum deviation are 0.69635 and 0.70533 for the rectangular and triangular networks,respectively.
2. It is observed in Fig. 16 that the percentage deviation in the heat transfer rate for the triangular network method is 0.333% for $\mathrm{m}^{*}=0.5$.

Table IV. Temperatures and Heat Transfer Rates for a Circular Fin by Three Methods of Solution
$\mathrm{d}^{*}=0.4$

m*	Methods	T_{1} *	T_{2} *	T_{3} *	Q*		${ }^{\varepsilon} 1$	ε_{2}	ε_{3}	ε_{q}	
					in	loss				in	loss
0.5	Analytical	. 97071	. 95446	. 94968	. 40905						
	Rectangular	. 97057	. 95463	. 94972	. 40946	. 40943	-. 014	. 017	. 004	. 099	0.093
	Triangular	. 97172	. 95575	. 95001	. 41041	. 41041	. 101	. 129	. 033	. 333	. 333
1.0	Analytical	. 89428	. 83816	. 82092	1.47795						
	Rectangular	. 89504	. 83928	. 82228	1.48500	1.48498	. 076	. 112	. 136	. 478	. 477
	Triangular	. 89909	. 84361	. 82371	1.49941	1.49940	. 481	. 545	. 279	1.453	1.453
1.5	Analytical	. 79759	. 69360	. 66218	2.88132						
	Rectangular	. 79954	. 69635	. 66541	2.91391	2.91389	. 195	. 275	. 323	1.131	1.130
	Triangular	. 80694	. 70533	. 66902	2.97788	2.97788	. 935	1.173	. 684	3.351	3.351

Fig. 15. Temperature Distribution in a Circular Fin by Three Methods

Fig. 16. Comparison of Deviation in Heat Transfer Rates for Rectangular and Triangular Network Methods

However, for higher values of m * the temperature gradient at the base of the fin is large and this introduces more error in both the rectangular and the triangular network methods. The percentage deviation in the triangular network method can be maintained within required workable limits although it is found to be almost three times that of the rectangular network method.

Thus far only one dimensional examples have been discussed. A two dimensional problem will now be analyzed.
C. A Solid Cylinder of Finite Length

In the last two examples, the triangular network forces the heat transfer to take place in an unnatural direction. This may be responsible for the superior accuracy of the rectangular network method in examples A and B. Thus to investigate the suitability of the triangular network in a two dimensional example is the purpose of this discussion.

The assumptions, stated earlier, are employed for this example. The following dimensions are selected for convenience.

$$
\begin{equation*}
d=r_{o} / 3, \quad e=\sqrt{3} d / 2, \quad L=4 e \tag{82}
\end{equation*}
$$

The cylindrical surface and one of the faces are maintained at a constant temperature T_{0}. The second face has the impressed axisymmetric temperature distribution $f(r)$ as shown in Fig. 17. A suitable expression for $\mathrm{f}(r)$ will be chosen later.
i. Analytical Method

The differential equation governing the heat conduction in the solid finite cylinder is [7]

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial z^{2}}=0 \tag{83}
\end{equation*}
$$

The boundary conditions are

$$
\begin{align*}
& T(r, 0)=T_{0}, T(r, L)=f(r), T\left(r_{0}, z\right)=T_{O^{\prime}} \\
& T(r, z) \text { is finite. } \tag{84}
\end{align*}
$$

The temperature T_{o} is constant. The dimensionless quantities

$$
\begin{gather*}
T^{*}=\left(T-T_{0}\right) /\left(T_{r e f}-T_{0}\right), r^{*}=r / r_{0}, z^{*}=z / L \text { and } \\
P^{*}=r_{0} / L, \tag{85}
\end{gather*}
$$

are introduced where $T_{r e f}$ is the value of $f(0)$. Separation of variables was used to solve this boundary value problem. The result is

$$
\begin{equation*}
T *\left(r^{*}, z^{*}\right)=J_{0}\left(\lambda_{1} * r^{*}\right) \sinh \left(P * \lambda_{1} * z *\right) / \sinh \left(P * \lambda_{1}{ }^{*} L^{*}\right), \tag{86}
\end{equation*}
$$

Fig. 17. Rectangular and Triangular Networks in a Finite Solid Circular Cylinder
if $f(r)$ is taken as

$$
\begin{equation*}
f(r)=\left(T_{r e f}-T_{0}\right) J_{0}\left(\lambda_{I}{ }^{*} r^{*}\right)+T_{0} \tag{87}
\end{equation*}
$$

The symbol $\lambda_{1}{ }^{*}$ is the first eigenvalue of the characteristic equation

$$
\begin{equation*}
J_{0}\left(\lambda_{n} * L^{*}\right)=0, \tag{88}
\end{equation*}
$$

and J_{0} is the Bessel's function of the first kind of order zero. The dimensionless temperatures are evaluated by Eq. (86) with suitable values of r^{*} and z^{*} and are denoted by T_{a} *. The heat transfer rate in Q_{a} through the top face of the cylinder $(z=L)$ is given by

$$
\begin{equation*}
Q_{a}=k \int_{0}^{r_{0}} \frac{\partial T}{\partial z} \cdot 2 \pi r d r \tag{89}
\end{equation*}
$$

which has the dimensionless form

$$
\begin{equation*}
Q_{a}^{*}=\left(2 \pi r_{0}^{2} / L\right) \int_{0}^{1} \frac{\partial T^{*}}{\partial z^{*}} r^{*} d r^{*}, \tag{90}
\end{equation*}
$$

where $Q_{a}{ }^{*}$ is

$$
\begin{equation*}
Q_{a}^{*}=Q_{a} /\left[\operatorname{ke}\left(T_{r e f} \mathrm{r}_{0}\right)\right] . \tag{91}
\end{equation*}
$$

Substituting $\frac{\partial T{ }^{*}}{\partial z^{*}}$, obtained from Eq. (86), into Eq. (90) and integrating, yields

$$
\begin{equation*}
Q_{a}^{*}=8 \pi J_{1}\left(\lambda_{1} *\right) \cosh \left(P * \lambda_{1} *\right) / \sinh \left(P * \lambda_{1} *\right) . \tag{92}
\end{equation*}
$$

The values of $\lambda_{1} *$ and $J_{1}\left(\lambda_{1} *\right)$ are available in standard tables of Bessel's functions.
ii. Rectangular Network Method

The network for this method is shown in Fig. 17. An energy balance is again performed at each node and the conductances are expressed in terms of d and e. When the values of the conductances are introduced into the set of energy balance equations, the result in terms of the dimensionless temperatures is

$$
\begin{align*}
& \mathrm{T}_{1} *=\left(\mathrm{T}_{\mathrm{A}}^{*}+3 \mathrm{~T}_{2}^{*}+\mathrm{T}_{4}^{*}\right) / 5, \quad \mathrm{~T}_{2} *=\left(8 \mathrm{~T}_{\mathrm{B}}^{*}+9 \mathrm{~T}_{3}^{*}+8 \mathrm{~T}_{5}^{*}+3 \mathrm{~T}_{1}^{*}\right) / 28, \\
& \mathrm{~T}_{3}{ }^{*}=\left(16 \mathrm{~T}_{\mathrm{C}}{ }^{*}+15 \mathrm{~T}_{\mathrm{o}}{ }^{*}+16 \mathrm{~T}_{6}{ }^{*}+9 \mathrm{~T}_{2}{ }^{*}\right) / 56, \mathrm{~T}_{4}{ }^{*}=\left(\mathrm{T}_{1}^{*}+3 \mathrm{~T}_{5}^{*}+\mathrm{T}_{7}^{*}\right) / 5, \\
& \mathrm{~T}_{5}{ }^{*}=\left(8 \mathrm{~T}_{2}^{*}+9 \mathrm{~T}_{6}^{*}+8 \mathrm{~T}_{8}^{*}+3 \mathrm{~T}_{4}^{*}\right) / 28, \mathrm{~T}_{6}^{*}=\left(16 \mathrm{~T}_{3}^{*}+15 \mathrm{~T}_{0}^{*}+16 \mathrm{~T}_{9}^{*}+9 \mathrm{~T}_{5}^{*}\right) / 56, \\
& \mathrm{~T}_{7}^{*}=\left(\mathrm{T}_{4}^{\star}+3 \mathrm{~T}_{8}^{\star}+\mathrm{T}_{\mathrm{O}}^{*}\right) / 5, \quad \mathrm{~T}_{8}^{*}=\left(8 \mathrm{~T}_{5}^{\star}+9 \mathrm{~T}_{9}^{\star}+8 \mathrm{~T}_{0}^{\star}+3 \mathrm{~T}_{7}^{\star}\right) / 28, \\
& \mathrm{~T}_{9}^{*}=\left(16 \mathrm{~T}_{6}^{*}+15 \mathrm{~T}_{0}^{*}+16 \mathrm{~T}_{0}^{*}+9 \mathrm{~T}_{8}^{*}\right) / 56 . \tag{93}
\end{align*}
$$

These equations are solved for the dimensionless temperature where $T_{A} *, T_{B}{ }^{*}, T_{C} *$ and T_{o} * are defined by Eqs. (87) and (85). The dimensionless heat transfer rate Q^{*} across the section $I-I$ (Fig. 17) is found in a manner similar to the last two examples. The expression is

$$
\begin{equation*}
Q^{*}=(\pi / 6)\left[2\left(T_{A}^{*}-T_{1}{ }^{*}\right)+16\left(T_{B}^{*}-T_{2}^{*}\right)+32\left(T_{C}^{*-T_{3}}{ }^{*}\right)+15\left(T_{C}^{*}-T_{0}^{*}\right)\right] \tag{94a}
\end{equation*}
$$

Similarly, the dimensionless heat transfer rate across the section $J-J$ is found to be

The dimensionless heat transfer rate is defined in a manner similar to Eq. (91). The percentage deviations ε in the dimensionless temperatures are obtained by using expressions similar to Eq. (54). The percentage deviations ε_{q} in the dimensionless heat transfer rates are evaluated by using Eq. (55). The results of the computation are given in Table V.

iii. Triangular Network Method

The network, as shown in Fig. 17, is constructed such that the total number of nodes is 10 , compared to 9 in the rectangular network. All the nodes except the nodes 45, 55 and 65 are positioned in identical locations for direct comparison of the temperatures with the rectangular network method. The thermal conductances are again easily expressed in terms of d and e. The simplification of the non-dimensional form of the set of energy balance equations results in

$$
\begin{aligned}
& \mathrm{T}_{1} *=\left(\mathrm{T}_{\mathrm{A}}{ }^{*}+2 \mathrm{~T}_{\mathrm{B}}{ }^{*}+8 \mathrm{~T}_{2}{ }^{*}+2 \mathrm{~T}_{45}{ }^{*}+\mathrm{T}_{4}\right) / 14 \text {, } \\
& \mathrm{T}_{2}{ }^{*}=\left(2 \mathrm{~T}_{1}{ }^{*}+3 \mathrm{~T}_{\mathrm{B}}{ }^{*+5 \mathrm{~T}_{\mathrm{C}}}{ }^{*+6 \mathrm{~T}_{3}}{ }^{\left.*+5 \mathrm{~T}_{55}{ }^{*+3 \mathrm{~T}_{45}}{ }^{*}\right) / 24, ~}\right. \\
& \mathrm{T}_{3}{ }^{*}=\left(6 \mathrm{~T}_{2}{ }^{*}+7 \mathrm{~T}_{\mathrm{C}}{ }^{*}+9 \mathrm{~T}_{\mathrm{D}}{ }^{*}+10 \mathrm{~T}_{\mathrm{O}}{ }^{*}+9 \mathrm{~T}_{65}{ }^{*}+7 \mathrm{~T}_{55}{ }^{*}\right) / 48, \\
& \mathrm{~T}_{4}{ }^{*}=\left(\mathrm{T}_{1}{ }^{*}+\mathrm{ll}^{2} \mathrm{~T}_{4}{ }^{*}+\mathrm{T}_{7}{ }^{*}\right) / 14, \\
& \mathrm{~T}_{45}{ }^{*}=\left(6 \mathrm{~T}_{4}{ }^{*+\mathrm{T}_{1}}{ }^{*}+6 \mathrm{~T}_{2}{ }^{*}+8 \mathrm{~T}_{55}{ }^{*}+6 \mathrm{~T}_{8}{ }^{*+\mathrm{T}_{7}}{ }^{*}\right) / 28, \\
& \mathrm{~T}_{55}{ }^{*}=\left(4 \mathrm{~T}_{45}{ }^{*}+5 \mathrm{~T}_{2}{ }^{*}+7 \mathrm{~T}_{3}{ }^{*}+8 \mathrm{~T}_{65}{ }^{*}+7 \mathrm{~T}_{9}{ }^{\left.*+5 \mathrm{~T}_{8} *\right) / 36, ~}\right. \\
& \mathrm{T}_{65}{ }^{*}=\left(16 \mathrm{~T}_{55}{ }^{*}+18 \mathrm{~T}_{3}{ }^{\left.*+11 \mathrm{~T}_{0} *+66 \mathrm{~T}_{0} *+11 \mathrm{~T}_{0} *+18 \mathrm{~T}_{9} *\right) / 140, ~}\right. \\
& \mathrm{T}_{7} *=\left(\mathrm{T}_{4}{ }^{*}+2 \mathrm{~T}_{45}{ }^{*}+8 \mathrm{~T}_{8}{ }^{*}+2 \mathrm{~T}_{0}{ }^{*}+\mathrm{T}_{\mathrm{O}}{ }^{*}\right) / 14, \\
& \mathrm{~T}_{8} *=\left(2 \mathrm{~T}_{7}{ }^{*+3 \mathrm{~T}_{45}}{ }^{*}+5 \mathrm{~T}_{55}{ }^{*+6 \mathrm{~T}_{9}}{ }^{*}+5 \mathrm{~T}_{0} *+3 \mathrm{~T}_{\mathrm{O}} *\right) / 24,
\end{aligned}
$$

where $T_{A}{ }^{*}, T_{B}{ }^{*}, T_{C}{ }^{*}, T_{D}{ }^{*}$ and $T_{O}{ }^{*}$ are defined by Eqs. (87) and (85) The above equations were solved for the nodal temperatures. The dimensionless heat transfer rate Q^{*} across the section $I-I(F i g .17)$ is given by

$$
\begin{align*}
& \mathrm{Q}^{*}=(\pi / 12)\left[\left(\mathrm{T}_{\mathrm{A}}{ }^{*}-\mathrm{T}_{1}{ }^{*}\right)+2\left(\mathrm{~T}_{\mathrm{B}}{ }^{*}-\mathrm{T}_{1}{ }^{*}\right)+12\left(\mathrm{~T}_{\mathrm{B}}{ }^{*}-\mathrm{T}_{2}{ }^{*}\right)+20\right. \\
& \left(T_{C} *-T_{2} *\right)+28\left(T_{C}^{*}-T_{3} *\right)+36\left(T_{D}^{*}-T_{3} *\right)+88\left(T_{D}^{*}-T_{O} *\right) . \tag{96a}
\end{align*}
$$

Similarly, the expression for the dimensionless heat transfer rate Q^{*} across the section $J-J$ is found to be

The percentage deviations in the dimensionless temperatures and in the heat transfer rates in Eqs. (96a) and (96b) are evaluated in a manner similar to the rectangular network method. The results are given in Table V. Figs.l8 and 19 illustrate the temperature distribution and the percentage deviations in the temperatures which result from the calculations.

The following conclusions can be drawn from this example.

1. The percentage deviations in the dimensionless temperatures obtained by the triangular network method are smaller than those obtained by the rectangular network method. The maximum percentage deviation ε is -0.344% for the triangular network as compared to 1.422% for the rectangular network method.
2. Table V gives the percentage deviation in the heat transfer rate as 3.210% for the triangular network method, whereas for the rectangular method the figure is -0.899%. They are comparable values.

Table V. Temperatures and Heat Transfer Rates for a Solid Cylinder by Three Methods of Solution

Node No.	Position		Analytical Rectangular Triangular				
	r *	z*	Ta*	T*	ε	T*	ε
1	0	3/4	0.49360	0.50782	1.422	0.49541	0.181
2	2/6	3/4	0.41742	0.43037	1.295	0.41737	-0.005
3	4/6	3/4	0.22385	0.23101	0.716	0.22411	0.026
4	0	2/4	0.23483	0.24797	1.314	0.23238	-0.245
45	1/6	$2 / 4$	0.22548			0.22204	-0.344
5	2/6	2/4	0.19859	0.21033	1.174		
55	3/6	$2 / 4$	0.15731			0.15706	-0.025
6	4/6	2/4	0.10650	0.11297	0.647		
65	5/6	2/4	0.05204			0.05224	0.020
7	0	1/4	0.09387	0.10103	0.716	0.09340	-0.047
8	2/6	1/4	0.07938	0.08572	0.634	0.07890	-0.048
9	4/6	1/4	0.04257	0.04605	0.348	0.04256	-0.001
Sections			Qa*	Q*	ε_{q}	Q*	ε_{q}
$\begin{aligned} & I-I \\ & J-J \end{aligned}$			$\begin{array}{rllll} 11.38635 & 11.28405-0.898 & 11.75191 & 3.211 \\ & 11.28394-0.899 & 11.75189 & 3.210 \end{array}$				

Fig. 18. Temperature Distribution in a Solid Cylinder of Finite Length by Three Methods

Fig. 19. Deviations in the Dimensionless Temperatures by Two Methods for a Solid Cylinder of Finite Length

V. AN INDUSTRIAL APPLICATION

The previous chapters show that the triangular network with the proposed triangular element gives results which are comparable to that of the rectangular network. Many other favorable aspects of the triangular network are of vital importance in practical problems. Some of these are

1. The triangular network fits an irregular axisymmetric geometry with ease.
2. It can be used to connect a fine network with a fine or a coarse network, regardless of the types of element employed. For example, a fine network of rectangular elements can be connected with a fine or a coarse network consisting of polar elements by using the triangular element.

The application which follows highlights the useful features of the proposed triangular element. This problem was previously solved employing the finite element method[8].

A tall cylindrical reaction vessel with a hemispherical bottom, erected by a weld joint on a cylindrical skirt, is shown in Fig. 20. The skirt and the vessel are insulated and the temperature on the inner side of the vessel is 650 F . The ambient temperature outside the vessel is $0^{\circ} \mathrm{F}$. The conductivity of the vessel, the skirt

Fig. 20. Section of the Bottom of a
and the weld is $.043 \mathrm{Btu} / \mathrm{min} . i n$. . F. The bottom of the reaction vessel, specially in the vicinity of the weld joint, must be tested for thermal stress. The temperature distribution is required for this reason. The previous solution used the finite element method to find the temperatures at 703 nodal points, which were distributed over the bottom of the reaction vessel in such a way that the regions of stress concentration had nodal points closer to each other. The number of elements was 6l7, and included rectangular, triangular, polar and other general shapes. The details of the finite element method are not of interest here.

For the present purpose of illustrating the application of the proposed triangular element, a portion of the hemispherical bottom is chosen for convenience. The weld joint is suitable for highlighting the two main advantages of the triangular network. The enlarged view of the weld joint in Fig. 21 shows the positioning of triangular elements along the irregular boundary on the outerside. One row of polar elements on the innerside are matched with the rectangular elements by the use of triangular elements. For comparison with the finite element method, all the nodal points except node 176 are positioned in identical locations. Nodal points 165 and 174 are omitted by the introduction of the new node 176 at a central position.

Fig. 21. Use of the Triangular Network in an Irregular Weld Joint

With the network so constructed, the example was solved to find the nodal temperatures. The results of the finite element method are used as boundary conditions in the present analysis. An energy balance was performed at each of the 14 nodes in the region of interest. Although the process is tedious, the principle is the same as the last three examples. The thermal conductances are the basic quantities involved in the energy balance equations. Of the 45 different thermal conductances that are required, only 8 distinct expressions exist. These 8 representative expressions are

1. $\mathrm{K}_{173-176}=\pi \mathrm{k}\left[\left(\mathrm{r}_{173}+\mathrm{r}_{176}\right) / \mathrm{d}_{173-176}\right]\left(\mathrm{p}_{173-176}^{1}+\right.$

$$
\left.p_{173-176}^{5}\right)
$$

2. $K_{164-173}=\pi k\left[\left(r_{164}+r_{173}\right) / d_{164-173}\right]\left(p_{164-173}^{1}+\right.$

$$
\Delta \bar{r} / 2)
$$

3. $K_{172-173}=\pi k\left[\left(r_{172}+r_{173}\right) / d_{172-173}\right]\left(\bar{r}_{m} \Delta \varnothing\right)$,
4. $K_{187-188}=\pi k\left[\left(r_{187}+r_{188}\right) / d_{187-188}\right]\left(p_{187-188}^{6}+\right.$

$$
\mathrm{d}_{187-198^{/ 2)}}
$$

5. $K_{198-199}=\pi k\left[\left(r_{198}+r_{199}\right) / d_{198-199}\right]\left[\left(d_{187-198}+\right.\right.$

$$
\mathrm{d}_{\left.212-198^{\prime} / 2\right]},
$$

6.

$$
\mathrm{K}_{225-236}=\pi \mathrm{k}\left[\left(\mathrm{r}_{225}+\mathrm{r}_{236}\right) / \mathrm{d}_{225-236}\right](\Delta \bar{r} / 2)
$$

7. $K_{225-237}=\pi k\left[\left(r_{225}+r_{237}\right) / d_{225-237}\right]\left(d_{225-226} / 2\right)$,
8. $\mathrm{K}_{166-175}=\pi k\left[\left(\mathrm{r}_{166}+\mathrm{r}_{175}\right) / \mathrm{d}_{166-175}\right]\left(\mathrm{p}_{166-175}^{3}\right)$.

In these equations, d_{m-n} is the distance between the nodes m and n, p_{m-n}^{i} is the length of the perpendicular bisector of the side $m-n$ of the triangular element i, $\Delta \bar{r}$ is the size of the polar elements in terms of the difference of the spherical radii of the two faces of the element, \bar{r}_{m} is the mean spherical radius of the polar elements and $\Delta \emptyset$ is the angular increment of each of the polar elements. The energy balance equations were solved for the 14 nodal temperatures. Denoting the temperatures obtained by finite element method by $T_{f e}$, the percentage difference in T and $T_{f e}$ is expressed as

$$
\begin{equation*}
\delta=\left[\left(T-T_{f e}\right) /\left(T_{\max }-T_{\min }\right)\right] 100 \tag{98}
\end{equation*}
$$

where the maximum and the minimum temperatures $T_{\text {max }}$ and Tmin' respectively, in the region of present interest are

$$
\begin{equation*}
\mathrm{T}_{\max }=645.905, \quad \mathrm{~T}_{\min }=638.247 \tag{99}
\end{equation*}
$$

Table VI lists the results of the finite element method and the temperatures from the present analysis. The last column gives δ.

Table VI. Comparison of the Finite Difference and Finite Element Methods

Node Nos.	$\stackrel{r}{\text { inch }}$	$\stackrel{2}{\text { inch }}$	$\begin{aligned} & \bar{r} \\ & \text { inch } \end{aligned}$	$\emptyset_{\text {radian }}$	```Finite Element T fe Degree F```	Finite Difference T Degree F	Percent Difference δ
163	29.2399	6.28002	29.90668	1.35923	645.905		
164	29.3927	6.31283	30.06297	1.35923	645.324		
166	29.6497	6.31283	- -	- -	644.855		
172	29.2136	6.40155	29.90674	1.35508	645.549		
173	29.3662	6.43499	30.06296	1.35508	644.824	644.826	0.022
176	29.5196	6.43499	- -	- -	- -	644.366	- -
175	29.6730	6.43499	- -	- -	644.021		
185	29.1867	6.52296	29.90672	1.35092	645.218		
186	29.3392	6.55704	30.06299	1.35092	644.312	644.320	0.105
187	29.4187	6.55704	- -	- -	643.967	643.965	-0.022
188	29.5864	6.55704	- -	- -	643.360	643.361	0.006
189	29.6954	6.55704	- -	-	643.074		

Table VI (Continued)

Node Nos.	$\stackrel{r}{\text { inch }}$	$\begin{aligned} & \mathrm{z} \\ & \text { inch } \end{aligned}$	$\begin{aligned} & \overline{\mathrm{r}} \\ & \text { inch } \end{aligned}$	$\begin{aligned} & \varnothing \\ & \text { radian } \end{aligned}$	$\begin{gathered} \mathrm{T}_{\text {fe }} \\ \text { degree } \mathrm{F} \end{gathered}$	degree F	δ
196	29.1593	6.64426	29.90669	1.34676	644.947		
197	29.3117	6.67897	30.06300	1.34676	643.795	643.813	0.230
198	29.4187	6.67897	- -	- -	643.159	643.161	0.032
199	29.5864	6.67897	- -	- -	642.419	642.423	0.048
200	29.7450	6.67897	- -	- -	641.952		
210	29.1314	6.76544	29.90666	1.34260	644.821		
211	29.2836	6.80079	30.06293	1.34260	643.290	643.324	0.443
212	29.4187	6.80079	- -	- -	642.159	642.179	0.261
213	29.5864	6.80079	- -	- -	641.313	641.351	0.491
214	29.7500	6.80079	- -	- -	640.985		
224	29.1031	6.88651	29.90675	1.33844	645.074		
225	29.2551	6.92249	30.06294	1.33844	642.851	642.904	0.689

Table VI (Continued)

Node Nos.	r inch	Z inch	\bar{r} inch	\neq radian	$T_{f e}$ Degree F	T Degree F	δ
226	29.4187	6.92249	--	--	640.734	640.886	1.983
227	29.5864	6.92249	--	--	639.995	640.040	0.580
228	29.7500	6.92249	--	--	639.735		
235	29.0742	7.00746	29.90674	1.33429	645.642		
236	29.2261	7.04407	30.06299	1.33429	645.115		
237	29.2551	7.04407	--	--	639.487		
238	29.4187	7.04407	--	--	638.991		
239	29.5864	7.04407	--	--	638.447		
240	29.7500	7.04407	--	--	638.247		

It is observed that the results, obtained by using the proposed triangular element together with the rectangular and polar networks, are very close to those obtained by the finite element method. The percentage difference ranges from 0.006\% to 1.983%.

VI. CONCLUSION

A study of the three feasible definitions for the geometric factors of the proposed triangular element indicates that the formulation based on the mid-radius of each side of the triangle (case 3) is the preferred definition. This formulation yields a resultant thermal conductance which best agrees with the thermal conductances for a rectangular element.

The geometric factor for the triangular elements in two dimensional cylindrical coordinates approaches that for the rectangular element as the size of the elements are decreased. This establishes the validity of the triangular elements and hence the triangular network. The triangular elements yield a resultant geometric factor which closely agrees with the geometric factor for the rectangular element based on the logarithmic mean area. The percentage deviation between the resultant geometric factor for the triangular elements and the geometric factor for rectangular element based on the logarithmic mean area is less than the percentage deviation between the geometric factor for the rectangular element based on the arithmetic mean area and the geometric factor based on the logarithmic mean area. This conclusion is true regardless of the shape of the
triangular elements. This indicates the workability of the triangular network using the proposed triangular element.

The results from the examples in Chapter IV indicate that the triangular network gives temperature distributions and heat transfer rates which approach the analytical results as the size of the elements are decreased.

The temperature distribution obtained by using the triangular element in an industrial problem agrees well with the previously obtained results by the finite element method. The percentage difference in temperatures ranges from 0.006 to 1.983 . These values may be considered within workable limits for general engineering practice.

Over and above the favorable accuracy associated with the proposed triangular element, its advantages in conforming to irregular boundaries, in connecting networks of different elements and in connecting fine and coarse networks are of practical importance.

The results of this investigation indicate that the proposed triangular element may be employed with confidence in the numerical solution of axisymmetric conduction problems in cylindrical coordinates.

BIBLIOGRAPHY

1. G.M. Dusinberre, Heat Transfer Calculations by Finite Differences, International Textbook Company, Scranton, 1961.
2. Walter P. Reid, "Steady State Temperature in a Triangle", Transactions of ASME Journal of Heat Transfer, August 1968 , 365-366.
3. C. Lancoz, Linear Differential Operators, D. Van Nostrand Company, New York, 1961.
4. P.R. Garabedian, Partial Differential Equations, Wiley, New York, 1964.
5. E.R.G. Eckert and R.M. Drake, Heat and Mass Transfer, McGraw-Hill Book Company, Inc., New York, 1959.
6. T.R. McCalla, Introduction to Numerical Methods and Fortran Programming, John Wiley and Sons, Inc., New York, 1966.
7. V.S. Arpaci, Conduction Heat Transfer, Addison Wesley Publishing Company, Massachusetts, 1966.
8. R.L. Davis, H.D. Keith, K. Hambacker, Department of Engineering Mechanics, University of MissouriRolla, Personal Correspondence. April, 1971.

VITA

The author, Prafulla Chandra Mahata, was born on May 19,1947 in Purulia, India. After his primary and higher secondary education in Purulia, India, he attended the Indian Institute of Technology, Kharagpur, India and received a Bachelor's degree in Mechanical Engineering with first class honors in June, 1969. He was a recipient of National Scholarship throughout his undergraduate studies.

He has been enrolled in the graduate school of the University of Missouri-Rolla, U.S.A. since January, 1970.

The author is a member of the National Honor Society of Phi Kappa Phi, U.S.A. and is a student member of A.S.M.E.

APPENDIX A

LENGTHS OF PERPENDICULAR BISECTORS OF A
TRIANGULAR ELEMENT IN CYLINDRICAL COORDINATE SYSTEM

The lengths of the perpendicular bisectors of a triangular element must be known to use the triangular network method in two dimensional (r, z) cylindrical coordinates to solve problems of conduction. In this appendix expressions for the lengths of the perpendicular bisectors are derived in terms of the coordinates of the vertices of the triangular element.

Fig. Al. A Triangular Element in Two Dimensional Cylindrical Coordinates

Triangular element with section $A B C$ in the two dimensional cylindrical coordinate system (Fig.Al) has vertices
at $\left(r_{1}, z_{1}\right),\left(r_{2}, z_{2}\right)$ and $\left(r_{3}, z_{3}\right)$, respectively. $O R, O P$ and $O Q$ are the perpendicular bisectors. The coordinates of the mid points R, P and Q are

$$
\left[\left(r_{1}+r_{2}\right) / 2,\left(z_{1}+z_{2}\right) / 2\right],\left[\left(r_{2}+r_{3}\right) / 2,\left(z_{2}+z_{3}\right) / 2\right]
$$

and $\left[\left(r_{3}+r_{1}\right) / 2,\left(z_{3}+z_{1}\right) / 2\right]$, respectively. The equations of the lines $O R, O P$ and $O Q$, passing through the mid points of and perpendicular to $A B, B C$ and $C A$ are

$$
\begin{aligned}
& z=\left[-\left(r_{1}-r_{2}\right) /\left(z_{1}-z_{2}\right) r+\left[\left(r_{1}{ }^{2}+z_{1}{ }^{2}\right)-\left(r_{2}^{2}+z_{2}^{2}\right)\right] /\left[2\left(z_{1}-z_{2}\right)\right]\right. \\
& z=\left[-\left(r_{2}-r_{3}\right) /\left(z_{2}-z_{3}\right)\right] r+\left[\left(r_{2}^{2}+z_{2}^{2}\right)-\left(r_{3}^{2}+z_{3}^{2}\right)\right] /\left[2\left(z_{2}-z_{3}\right)\right] \\
& z=\left[-\left(r_{3}-r_{1}\right) /\left(z_{3}-z_{1}\right)\right] r+\left[\left(r_{3}^{2}+z_{3}^{2}\right)-\left(r_{1}^{2}+z_{1}^{2}\right)\right] /\left[2\left(z_{3}-z_{1}\right)\right]
\end{aligned}
$$

The central point O is the point of intersection of the three perpendicular bisectors and its coordinates (r_{0}, z_{0}) are given by

$$
\begin{aligned}
r_{O}= & {\left[z_{1}\left(\left(r_{2}^{2}+z_{2}^{2}\right)-\left(r_{3}^{2}+z_{3}^{2}\right)\right)+z_{2}\left(\left(r_{3}^{2}+z_{3}^{2}\right)-\left(r_{1}^{2}-z_{1}^{2}\right)\right)\right.} \\
& \left.+z_{3}\left(\left(r_{1}^{2}+z_{1}^{2}\right)-\left(r_{2}^{2}+z_{2}^{2}\right)\right)\right] /\left[2 \left(z_{1}\left(r_{2}-r_{3}\right)\right.\right. \\
& \left.+z_{2}\left(r_{3}-r_{1}\right)+z_{3}\left(r_{1}-r_{2}\right)\right] \\
z_{0}= & {\left[-\left(r_{1}-r_{2}\right) /\left(z_{1}-z_{2}\right)\right] r_{0}+\left[\left(r_{1}^{2}+z_{1}^{2}\right)-\left(r_{2}^{2}+z_{2}^{2}\right)\right] / } \\
& {\left[2\left(z_{1}-z_{2}\right)\right] }
\end{aligned}
$$

$$
\begin{align*}
\text { when } z_{1} \neq & z_{2} \cdot \text { If } z_{2} \neq z_{3} \\
z_{0}= & {\left[-\left(r_{2}-r_{3}\right) /\left(z_{2}-z_{3}\right)\right] r_{O}+\left[\left(r_{2}^{2}+z_{2}^{2}\right)-\left(r_{3}^{2}+z_{3}^{2}\right)\right] / } \\
& {\left[2\left(z_{2}-z_{3}\right)\right] } \tag{A-2}
\end{align*}
$$

The lengths of the perpendicular bisectors are given by

$$
\mathrm{OR}=\left[\left(\mathrm{r}_{\mathrm{O}}-\left(\mathrm{r}_{1}+r_{2}\right) / 2\right)^{2}+\left(z_{\mathrm{O}}-\left(\mathrm{z}_{1}+z_{2}\right) / 2\right)^{2}\right]^{1 / 2}
$$

$$
O P=\left[\left(r_{0}-\left(r_{2}+r_{3}\right) / 2\right)^{2}+\left(z_{0^{-}}\left(z_{2}+z_{3}\right) / 2\right)^{2}\right]^{1 / 2}
$$

$$
O Q=\left[\left(r_{O}-\left(r_{3}+r_{1}\right) / 2\right)^{2}+\left(z_{0}-\left(z_{3}+z_{1}\right) / 2\right)^{2}\right]^{1 / 2}
$$

APPENDIX B

AN ALGEBRAIC APPROACH TO RELATE THE THERMAL CONDUCTANCES OF RECTANGULAR AND TRIANGULAR ELEMENTS IN CYIINDRICAI COORDINATES

Here an algebraic analysis is performed to investigate the possible equivalence of the rectangular (based on arithmetic mean area) and triangular (case l - with exact area) elements in cylindrical coordinates. The line of attack resembles Dusinberre's approach in the two dimensional rectangular coordinates. The results show that the exact equivalence of the rectangular and the triangular elements in the cylindrical coordinates does not exist. The numerical approach in Chapter III supports this conclusion. However, it is difficult to eliminate the possibility of equivalence. With a carefully chosen definition of thermal conductivity for the triangular elements, it may be possible to establish the proposed equivalence.

In Fig. Bl, the rectangular element with section AXYZ is composed of the triangular elements with sections $A B C, A X B, B Y C$ and CZA. The perpendicular bisectors have mid-points N, L and M. The angle H made by the side $A B$ with the assumed direction of heat transfer is arbitrary. The expressions for the geometric factors and hence for the thermal conductances for both the rectangular and the triangular elements will now be found.

Fig. Bl. A Sectional View of the Rectangular and Triangular Elements

It is expected that the geometric factor S_{R} for the rectangular element, defined on the basis of arithmetic mean area, has a greater possibility of yielding the proposed equivalence than that, defined on the basis of logarithmic mean area. The expression for S_{R} is

$$
\begin{equation*}
S_{R}=\left[2 \pi\left(\left(r_{i}+r_{0}\right) / 2\right) e\right]\left(r_{o}-r_{i}\right) \tag{B-1}
\end{equation*}
$$

Introducing $d=r_{o}-r_{i}$ in Eq. ($B-1$), the geometric factor and the thermal conductance can be written as

$$
\begin{equation*}
S_{R}=\pi e\left(2 r_{i}+d\right) / d, \quad K_{R}=\pi k e\left(2 r_{i}+d\right) / d, \tag{B-2}
\end{equation*}
$$

where k is conductivity. For the triangular elements, the geometric factors are defined on the basis of midradii of the perpendicular bisectors. The geometric factors are then

$$
\begin{align*}
& S_{A-B}=2 \pi\left[\left(r_{O}+r_{R}\right) / 2\right] O R / A B, S_{B-C}=2 \pi\left[\left(r_{O}+r_{P}\right) / 2\right] O P / B C, \\
& S_{C-A}=2 \pi\left[\left(r_{O}+r_{Q}\right) / 2\right] O Q / C A, S_{A-X}=2 \pi r_{R} \cdot R U / A X, \\
& S_{C-Y}=2 \pi r_{P} \cdot P V / C Y, \quad S_{C-Z}=2 \pi r_{Q} \cdot Q W / C Z . \tag{B-3}
\end{align*}
$$

The triangular elements with sections ABC, AXB, BYC and CZA are completely defined by the parameters r_{i}, d, e, g and h. Hence all pertinent dimensions and angles can be expressed in terms of these five independent parameters. It can be shown from geometry that

$$
\begin{equation*}
\angle A=\angle B O P, \quad \angle B=\angle C O Q, \quad \angle C=\angle A O R, \quad \text { etc. }, \tag{B-4}
\end{equation*}
$$

which leads to the trigonometric relations

$$
\begin{align*}
\operatorname{COT} \mathrm{C} & =\mathrm{OR} /(\mathrm{AB} / 2), \operatorname{COT} \mathrm{A}=\mathrm{OP} /(\mathrm{BC} / 2), \\
\operatorname{COT} \mathrm{B} & =\mathrm{OQ} /(\mathrm{CA} / 2), \operatorname{COT} \mathrm{D}=\mathrm{RU} /(\mathrm{AX} / 2), \tag{B-5}\\
\operatorname{COT} \mathrm{F} & =\mathrm{PV} /(\mathrm{CY} / 2), \operatorname{COT} \mathrm{G}=\mathrm{QW} /(\mathrm{CZ} / 2), \\
r_{O} & =r_{i}+O A \cos (\pi / 2-\mathrm{C}+\mathrm{H}), \tag{B-6}
\end{align*}
$$

where

$$
\begin{equation*}
O A=c /(2 \sin C) \tag{B-7}
\end{equation*}
$$

Eq. (B-6) simplifies to

$$
\begin{equation*}
r_{O}=r_{i}+(h / 2)(\operatorname{COT} H-\operatorname{COT} C) \tag{B-8}
\end{equation*}
$$

The radii of the points R, P and Q are

$$
r_{R}=r_{i}+d / 2, \quad r_{P}=r_{i}+d / 2+g / 2, \quad r_{Q}=r_{i}+g / 2 . \quad(B-9)
$$

When Eqs. $(B-5),(B-8)$ and ($B-9)$ are introduced into Eqs. (B-3), the geometric factors can be expressed as

$$
\begin{align*}
& S_{A-B}=\pi \operatorname{COT} C\left[r_{i}+d / 4+(h / 4)(\operatorname{COT} H-\operatorname{COT} C)\right], \\
& S_{B-C}=\pi \operatorname{COT} A\left[r_{i}+d / 4+g / 4+(h / 4)(\operatorname{COT} H-\operatorname{COT} C)\right], \\
& S_{C-A}=\pi \operatorname{COT} B\left[r_{i}+g / 4+(h / 4)(\operatorname{COT} H-\operatorname{COT} C)\right], \\
& S_{A-X}=\pi \operatorname{COT} D\left[r_{i}+d / 2\right], \quad S_{C-Y}=\pi \operatorname{COT}\left[\left[r_{i}+d / 2+g / 2\right],\right. \\
& S_{C-Z}=\pi \operatorname{COT} G\left[r_{i}+g / 2\right) . \tag{B-10}
\end{align*}
$$

The cotangents in the above equations may be expressed in terms of d, e, g and h by using the trigonometric relations [1],

```
COT A COT B + COT B COT C + COT C COT A = l,
COT K}\mp@subsup{K}{1}{}\operatorname{COT C + COT C COT E + COT E COT K K = l,
COT F COT B + COT B COT D + COT D COT F = l,
COT G + COT A + COT H = COT G COT A COT H.
```

Representing the cotangents of the angles by the angles for simplicity, the Eqs. (B-10) can be rewritten as

$$
\begin{aligned}
& A \cdot B+B \cdot C+C \cdot A=1, K_{1} \cdot C+C \cdot E+E \cdot K_{1}=1, \\
& F \cdot B+B \cdot D+D \cdot F=1, G+A+H=G A H .
\end{aligned}
$$

With the relations

$$
\begin{equation*}
D=1 / H, F=1 / K_{1}, \tag{B-12}
\end{equation*}
$$

the expressions for A, B and C are obtained from Eqs. ($\mathrm{B}-11$) as

$$
\begin{gather*}
A=(G+H) /(G H-1), B=\left(H K_{1}-1\right) /\left(H+K_{1}\right), \\
C=\left(1-E K_{1}\right) /\left(K_{1}+E\right) . \tag{B-13}
\end{gather*}
$$

Using the trigonometric relations

$$
\begin{align*}
& \operatorname{COT} D=h / d, \cot E=g / e, \quad \cot F=(e-h) /(d-g) \\
& \cot G=e / g, \quad \cot H=d / h, \quad \cot K_{1}=(d-g) /(e-h) \tag{B-14}
\end{align*}
$$

the Eqs. ($B-13$) become

$$
\begin{aligned}
\operatorname{CoT} A= & (d g+e h) /(d e-g h), \operatorname{CoT} B=\left(d^{2}+h^{2}-d g-e h\right) / \\
& (d e-g h) \\
\operatorname{Cot} C= & \left(e^{2}+g^{2}-d g-e h\right) /(d e-g h)
\end{aligned}
$$

Inserting the values of the cotangents from Eqs. (B-14) and ($B-15$) into Eqs. ($B-10)$, all the geometric factors are expressed in terms of r_{i}, d, e, g and h as

$$
\begin{aligned}
S_{A-B}= & \pi\left[\left(e^{2}+g^{2}-d g-e h\right) /(d e-g h)\right]\left[r_{i}+d / 4+(h / 4)\right. \\
& \left.\left(\left(e\left(d^{2}+h^{2}\right)-h\left(e^{2}+g^{2}\right)\right) /(h(d e-g h))\right)\right],
\end{aligned}
$$

$$
\begin{align*}
S_{B-C}= & \pi[(d g+e h) /(d e-g h)]\left[r_{i}+d / 4+g / 4+(h / 4)\right. \\
& \left.\left(\left(e\left(d^{2}+h^{2}\right)-h\left(e^{2}+g^{2}\right)\right) /(h(d e-g h))\right)\right], \\
& \\
& \left.\left(\left(e\left(d^{2}+h^{2}\right)-h\left(e^{2}+g^{2}\right)\right) /(h(d e-g h))\right)\right] \\
S_{C-A}= & \pi\left[\left(d^{2}+h^{2}-d g-e h\right) /(d e-g h)\right]\left[r_{i}+g / 4+(h / 4)\right. \\
S_{A-X}= & \pi[h / d]\left[r_{i}+d / 2\right], \\
S_{C-Y}= & \pi[(e-h) /(d-g)]\left[r_{i}+d / 2+g / 2\right], \tag{B-16}\\
S_{C-Z}= & \pi[e / g]\left[r_{i}+g / 2\right] .
\end{align*}
$$

The resultant conductance K_{T} of the triangular elements in the direction of heat transfer can be obtained by the electrical analogy as

$$
\begin{align*}
K_{T}= & k\left[\left(S_{C-A}+S_{C-Z}\right)\left(S_{B-C}+S_{C-Y}\right) /\left(S_{C-A}+S_{C-Z}+S_{B-C}\right.\right. \\
& \left.\left.S_{C-Y}\right)+S_{A-B}+S_{A-X}\right] . \tag{B-17}
\end{align*}
$$

The individual geometric factors, obtained from Eqs. ($B-16$) were substituted in Eq. $(B-17)$ to get K_{T} in terms of r_{i}, d, e, g and h. The expression for K_{T} was then simplified. This simplification showed that the exact equivalence did not exist.

