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HOT-FILM ANEMOMETRY IN AIR-WATER FLOW

J.M. DELHAYE and J.P. GALAUP*
Centre d'Etudes Nucleaires de Grenoble 
Service des Transferts Thermiques 
B.P. 85, 38041 GRENOBLE (France)

ABSTRACT

The paper presents local measurements of void 
fraction and liquid velocity in a steady-state air- 
water bubbly flow at atmospheric pressure. Use is 
made of a constant temperature anemometer and of a 
conical hot-film probe.

The signal is processed with a multi-channel 
analyzer. Void fraction and liquid velocities are 
determined from the amplitude histogram of the signal.

The integrated void fraction over a diameter is 
compared with the average void fraction along the 
same diameter obtained with a y-ray absorption method.

The liquid volumetric flow-rate is calculated 
from the void fraction and liquid velocity profiles 
and compared with the indication given by a turbine 
flowmeter.

INTRODUCTION

Two-phase flow instrumentation is of the utmost 
importance to back up the theoretical investigations 
which have been carried out for nuclear or chemical 
engineering purposes (Delhaye and Jones, 1975). 
Technically sound measurement techniques are needed 
to provide information on the local structure of two- 
phase flows characterized by the flow pattern, the 
specific area and the bubble or droplet diameter 
probability function.
A fairly accurate knowledge of void fraction, velocity 
and temperature profiles is also required for checking 
different hypotheses usually appearing in the liter
ature. ,

In this paper, local measurements provided by a 
conical hot-film probe are compared to overall meas
urements for three different flow patterns : bubbly, 
transition and slug flow.
1. The local void fraction a(x) is determined along 
a diameter D of a vertical pipe where an air-water 
mixture is flowing upward. The results^ are compared 
with the time-averaged void fraction Rq measured 
along the same diameter with a y-ray absorption 
method (Fig. I). The following identity must be satis- 
fied :

Rg - ^ / a(x) dx (I)
^ 0

2. On the other hand, the hot-Hlm probe enables the 
liquid time-averaged velocity v^ to be measured. A 
supplementary comparison is introduced with the liquid 
volumetric flow rate measured with a turbine flow
meter .
* Present address: Laboratoire de Spectrometrie 

Physique, B.P. 53, 3841 GRENOBLE (France)

In effect, assuming the flow to be axisymmetric, the 
following identity must be satisfied :

fD/2
Ql = i (1 - oOv^ 2ttt dr (2)

PREVIOUS WORK ON HOT-FILM ANEMOMETRY IN TWO-PHASE 
FLOW

Measurements in Two-Component Two-Phase Flow without 
Phase Change

Liquid Droplets in a Gas Flow. Hot-wire anemome- 
try has been used for measuring the concentration 
flux and the diameter histogram of liquid particles 
moving in a gas stream. Goldschmidt and Eskinazi 
(1964,1966) measured the arrival frequency of liquid 
droplets, 1.6 to 3.3 ym in diameter, with a constant 
temperature anemometer and a cylindrical probe, 4.5 
ym in diameter. When the impaction frequency of the 
droplets is different from the energetic frequency 
range of the turbulent gas stream, the signal fluctua
tions due to impacts can be distinguished from the 
fluctuations due to turbulence.
Ginsberg (1971) used the same technique to study 
liquid droplet transport in turbulent pipe flow. Gold
schmidt (1965) determined that the measured impaction 
rate is lower than the true value but proportional, 
and should thus be calibrated against another techni
que .

In determining droplet diameter histograms, Gold
schmidt and Householder (1968,1969) theoretically 
found a linear relationship between particle diameter 
and cooling signal peak value which was verified expe
rimentally for droplet diameters lower than 200 ym. 
Bragg and Tevaarwerk (1971), however, contradicted 
these results and concluded that the hot wire was 
unsuitable for this purpose. This conflict has yet to 
be resolved.

Time-averaged gas velocities as well as gas tur
bulent intensities were measured by Hetsroni et al. 
(1969). —

Despite several difficulties arising in droplet 
granulometry determination, the hot wire has success
fully been employed for studying the turbulent dif
fusion of small particles suspended in turbulent jets 
by Goldschmidt and his collaborators (1972).

Air-water Flows. Following the studies done by 
Goldschmidt in aerosols and by Hsu and his colleagues 
(1963) in steam-water flow, and the preliminary work 
of Jones (1966), a thorough investigation of the hot- 
film anemometry technique in two-phase flow was car
ried out by Delhaye (1968, 1969) who used a conical 
constant temperature hot-film probe which has three 
major advantages over the cylindrical hot-film sensor: 
dust does not attach to the tip, bubble trajectories 
are less disturbed, and the relatively passive geo
metry is less susceptible to flow damage at high velo
cities. The maximum overheat resistance ratio sugges
ted by Delhaye to avoid degassing on the sensor was 
1.05, which corresponded to a difference of 17°C bet
ween the probe temperature and the ambient temperature, 
significantly below saturation temperature.

Chuang and Goldschmidt (1969) employed the hot
wire as a bubble size sampler by theoretically inves
tigating the nature of the signal due to the traverse 
of an air bubble past the sensor. The peculiarities 
of the conical probe signal were examined in detail by 
Delhaye (1968, 1969). It is evident that if the liquid
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and gas signals could be separated, the turbulent 
structure of the liquid phase could be obtained. 
Delhaye did this to a certain extent when he obtained 
the amplitude probability density function of 
the output signal u(t), as shown in Fig. 2. To a 
first approximation, the local void fractions were 
calculated as the ratio of the hatched area to the 
total area which then compared favorably with radia
tion absorption methods (y-rays). The liquid time- 
averaged velocity and the liquid turbulent intensity 
are calculated with the nonhatched area of the ampli
tude histogram (Fig. 2) and the calibration curve 
of the probe immersed in the liquid. The same method 
has extensively been used by Serizawa (1974) for 
measuring the turbulent characteristics and local 
parameters of air-water two-phase flow in pipes.

A different processing method was proposed by 
Resch al^ (1972, 1974) in a study of bubble two- 
phase flow in hydraulic jumps. The nonlinearized 
analog signal from the anemometer (Fig. 3) is digi
tally analysed. A change of phase is recognized when 
the amplitude between two successive extremes of the 
signal is higher than a fluctuation threshold level 
Au. In this way the liquid mean velocities and 
turbulence levels were obtained along with bubble 
size histograms. Au was chosen to be in a plateau 
region of A u  versus measured void fraction.

Jones (1973,1975) used a 50 ym cylindrical hot- 
film probe and a discriminator applied to the raw 
anemometer signal to obtain a binary signal but found 
the cutoff level needed to be adjusted depending on 
the local velocity to a point just below the minimum 
value for a liquid. Even though the threshold value 
was set at every point in the traverse, errors in 
averaged void fraction were encountered when cali
brated against an x-ray measurement. These errors 
were found to be dependent on the liquid volume flux 
and the mean void fraction.

By counting the number of times the output of 
the discriminator changed from one level to another, 
Jones (1973) also obtained local values for interface 
passage frequency. He also measured the liquid volume 
flux directly by time averaging the linearized signal 
equal to the liquid velocity when the sensor was in 
liquid, and zero when the sensor was in gas. Liquid 
velocity was obtained by pointwise division of the 
measured liquid flux by the measured void fraction.

Serizawa (1974) used a conical probe similar to 
that of Delhaye (1968, 1969). In bubbly and slug flow 
in air-water mixtures he used multichannel analysis 
techniques to obtain the frequency spectrum of the 
velocity signal including fluctuations up to 2 m/s.

Measurements in One-Component Two-Phase Flow with 
Phase Change

Steam-Water Flow. The earliest paper on hot-wire 
anenometry in two-phase flow seems to have been pu
blished by Katarzhis et al. (1955). This preliminary 
and crude approach was followed by the work of Hsu, 
Simon, and Graham (1963). These authors, by comparing 
the signal with high-speed movies concluded that hot
wire anenometry was a potential tool for studying the 
local structure of two-phase flow, in particular for 
determining the flow pattern and for measuring the 
local void fraction. Hsu, Simon and Graham specified 
that in a steam-water flow the only reference tempe
rature is the saturation temperature. If water velo
city measurements are carried out, the probe tempera
ture must not exceed saturation temperature by more 
than about 5°C to avoid nucleate boiling on the sen
sor. Conversely, if only a high sensitivity to phase

change is looked for, then the superheat should range 
between 5°C and 55°C causing nucleate boiling to 
occur on the probe.

Freon-Freon Vapor Flow. The low electrical con
ductivity of freons enables bare wires to be used 
instead of hot-film probes. Shiralkar (1970) used a 
5 ym, boiling tungsten wire with a very short active 
length (0.125 mm) so that the whole active zone would 
generally be inside a bubble or droplet. Low void 
fraction was determined by an amplitude discriminator 
with an adjustable threshold set just under the 
liquid level whereas for high void fraction (0 .8), it 
was set just above the vapor level. For void fractions 
ranging from 0.3 to 0.8 the threshold was set half-way 
between the liquid and vapor levels. The method was 
subsequently applied by Dix (1971) and Shiralkar and 
Lahey (1972).

EXPERIMENTAL SET-UP (Galaup, 1975)

Air-Water Loop

An air-water mixture is flowing upward in a 
vertical pipe of circular cross-section, 42 mm in dia
meter. Air is injected at the bottom of the pipe 
through 0.5 mm holes drilled in the pipe wall. Measu
rements were carried out at 30 diameters downstream 
of the air injection zone.

The air-water mixture temperature was measured 
with a chromel-alumel thermocouple, the cold junction 
of which was maintained at 0 ± 0,02°C by means of an 
automatic temperature controller.

Water volumetric flowrates Ql were measured with 
a turbine flowmeter with a total relative accuracy 
of about 10“2.

Air volumetric flowrates Qq were measured with a 
rotameter associated with a thermometer and a Bourdon 
manometer.

Overall Void Fraction Measurement

The void fraction over a diameter Rg is measured 
using a y-ray absorption technique. The y-ray emit
ter is an Americium 241 source whose contained acti
vity is about 40 GBq. This value does not take into 
account either the source self-absorption or the 
absorption due to protection claddings. The energy 
peak is at 60 keV ensuring a good contrast between 
air and water.

The absorbed y-ray intensity is measured with a 
Nal scintillator, a photomultiplier and a counting 
assembly. Collimators, 2 mm in diameter, provide a 
narrow y-ray beam in order to avoid any bias due to 
the void distribution across the beam.
The overall void fraction is given by the following 
formula :

r = Log U/I t ) m
G Log (IG/lL> (3>

where :
I : emergent y-ray beam intensity with the air-water

mixture flowing in the pipe.
1g : emergent y-ray beam intensity with air alone 

flowing in the pipe.
II : emergent y-ray beam intensity with water alone

flowing in the pipe.

The validity and accuracy of Eq. (3) are discussed at 
length in Galaup (1975).
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Hot Film Probe Calibration

A conical hot-film probe (DISA 55 R 42) was 
energized by a constant temperature anenometer (DISA 
55 M). The calibration of the probes was carried out 
in a rotating tank. The overheat ratio was fixed at 
1.05.

SIGNAL PROCESSING

The output signal of the constant temperature 
anenometer is depicted in Fig. 4. Delhaye (1969) 
thoroughly investigated the use of a hot-film conical 
probe in air-water flow. High-speed movies enabled 
the interaction between the probe and a bubble to be 
visualized while simultaneously recording the aneno
meter output signal. The main results are summarized 
in Fig. 4.

Before a bubble is pierced by the probe the 
signal amplitude increases due to the slip velocity 
of the bubble with respect to the surrounding liquid.

The most important feature to be drawn from 
Fig. 4 is the nonsuitability of a threshold discri
minator to measure the local void fraction.
Actually, Fig. 4 shows that the bubble residence time 
Tq is given by :

tG = CF “ fcB

whereas a threshold discriminator would give :

tG (S) < t£ - tc < tg (5)

Delhaye (1969) proposed that measurements of local 
void fractions and local liquid velocities be made 
by means of the signal amplitude probability density 
function.

Local Void Fraction Measurements

The histogram of the signal amplitude (Fig. 5) 
shows two peaks separated by a plateau.

According to Delhaye's method, the following 
values of the amplitude are recorded : 
ui and u$ : histogram extreme amplitudes,
U3 and ui» : plateau extreme amplitudes,
U2 : amplitude of the intersection point of

the histogram with the extrapolated 
plateau.

where P is the height of the plateau defined by :
r  ui.p = u; - u3 J p(u) du (8)-'us

Local Liquid Velocity Measurements

The time-averaged local liquid velocity is

where v^(u) is obtained from the probe calibration 
curve.

RESULTS

The output signal of the anenometer was processed 
by a multichannel analyzer with a 256 channel format. 
The sampling period was chosen equal to 500 ys accor
ding to the contraints imposed by the signal power 
spectral density and by the Shannon theorem. The sto
rage time was 60 s, a value selected to obtain a 
time-independent local void fraction.

Local Void Fraction Data

Most histograms did not show a well defined pla
teau (Fig.6). In a first attempt, the height P of the 
plateau was determined with the following formula :

p ■ ».' u, i !  p<ui> (io>U 3

where U3 is selected visually.

The local void fraction is then calculated by :

i t  p <u i )
ui

If Sq denotes the cross-hatched area, the local void 
fraction is given by :

SG I - (6)SG + SL ' Sg + Sl

Calling p(u) the probability density function, we get:
i
p(u) du - P(u3 - U2)r .

a - 1 -

r
(7)

us
p(u) du 

ui

Local void fractions calculated with_Eq. (11) under
estimated the overall void fraction Rq measured by 
the y - r a y absorption method. The calculated {of were 
^systematically 0.05 to 0.06 lower than the measured
Rg -
Hence a new choice for the height of the plateau :

P2 - p(u3) (12) -
In this case the local void fraction is given by :

02 ■ 1 —
jp(«i) - p(ui)j

lV i>ui

03)
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Local void fraction profiles are given in Fig. 7 
to 9. A comparison between {a} and Rq is given in 
Fig. 10. The determination of P by means of Eq.(12) 
seems to be correct except at low velocities where 
higher values of P are necessary.

Herringe and Davis (1974) carried out similar 
experiments with conical and cylindrical probes.
They proposed a splitting of the histogram according 
to the tangent AT (Fig. 6). Although their results 
were not compared with overall void fraction measu
rements, it seems that their local void fraction data 
must be seriously underestimated.

Local Liquid Velocity Data

The time—averaged local liquid velocity is 
calculated with the following equation :

Z Z  v l (u £) |p(ui) - pj

" ' ‘ S M

(14)

where P is given by Eq. (12)

CONCLUSIONS AND FUTURE WORK

Hot-film anemometry has been proved a valuable 
measurement technique in two-component two-phase flow. 
Local void fractions were measured and successfully 
compared with overall void fraction data. Comparisons 
with other local probes were also reported by Galaup 
(1975). The shape of the amplitude histogram has been 
shown to be a function of the probe type and no uni
versal recommendation can be made for a proper divi
sion of the histogram between a liquid part and a gas 
part. Cross-checking with an overall method must be 
used in each case. Time-averaged local liquid velo
cities were also measured and compared fairly well 
with the liquid volumetric flow-rate.

Improvements in the method could be achieved 
by using smaller probes and by integrating the profi
les over the whole cross section to get rid of any 
non-symmetric effects within the flow.
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Figure 2
Typical amplitude histogram of anemometer signal. 

Delhaye (1968, 1969)

Figure 3
Signal analysis method of Resch et al. (1972, 1974).
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Local void fraction profiles. Galaup (I975)(x=air mass

Figure 4
Passage of a single air bubble past a conical probe. 

Delhaye (1969)
- -  +■---+ - bubbles

quality)
Ql /A (m/s) 

1.01
10wx 
1.0 0.05• • 1.01 3.1 0.18

- - o--- o - ft 1.01 4.A 0.27
— e---- transition I.01 6.0 0.36
— a -  a slugs 1.01 8.0 0. AO

Figure 5
Typical amplitude histogram. Delhaye (1969)

Figure 8

Figure 6
Typical amplitude histogram. Galaup (1975)

quality)
QL/A(m/s) lO" x *c M

- r - bubbles 1.50 0.7 0.05 0.03
- v- M 1.50 2.1 0.13 0. 1 1
- • a- • • 1.50 3.0 0.19 0.17
- v- M 1.50 A. 1 0.28 0.28
--Or- transition (.50 5.4 0.35 0.37

88



Local void fraction profiles. Galaup (1975)(x= air 
__ mass quality) __

•+■— f- bubbles
Ol /a  (m/s) 

2.01
10-x
0.5

*g0.035
M

0.04
—0— 0 — " 2.01 1.6 0. 10 0. 10

2.01 3.0 0.22 0.21
•A- A— 2.01 4.0 0.26 0.28

- -A---A- • vq (double optical probe)
- q -- q - Vg (double resistive probe)

Galaup (1975) 
Ql/A (m/s)

+ 1.01
O 1 .so
V 2.01

Velocity profiles in a transition flow 
Galaup (J_975)

QL - 2.08 10-* m* /a ; Qc - 0.71 I0_J m J/s
— q ----0 -- vL (anemometer probe)
--6--- -A- - - vc (double optical probe)

Q -  ~0 • vc (double resistive probe)
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__ Galaup 0975)
Ql - 2.78 ICT3 m3/s ; QG = 0.71 10"3 m 3/s
-- (j--- o---  VL (anemometer probe)
—  A----A  v q (double optical probe)
— □---G—  vG (double resistive probe)

DISCUSSION

V. Goldschmidt, Purdue University: The type of re

sponse of the hot film , or hot wire to these bubbles 

w ill depend greatly upon the relative size of the 

bubbles and the sensor. For small enough bubbles 

the traverse time and signal magnitude might suffice  

to measure the size. I get the feeling your bubbles 

were re latively  large. Approximately what size were 
they?

Delhaye: I think the response time depends not only 

upon the diameters of the bubble but also on the vel

ocity of the bubble. The bubble diameters were 

larger than 1 mm. And the velocity was not too high, 

from 50 cm/s to 3 m/s. So we d idn 't have too much 

trouble with the hydrodynamic response time of the 
bubbles.

T. Hanratty, University of I l l in o is :  I was wondering 

i f  you'd like to apply th is very nice technique to 

measure droplet and droplet diameter in a ir  mist flow 

rather than bubbly flow in liquids.

Delhaye: We did not use our technique in air-water 

droplet flow. Some earlier measurements of this type 

were carried out by Professor Goldschmidt of Purdue 

University. The subject is of the utmost importance 

especially in steam-water flow. In some studies con

nected to the Emergency Core Cooling System of nu

clear reactors we must measure: the size of droplets, 

the velocities of the droplets and of the steam, and 

the temperatures (with radiation effects). Studies 

concerning this problem are currently under progress 

in our laboratory.

Gary Corpron, The Foxboro Company: Is  there a refer

ence describing the optical probe you mentioned?

Delhaye: The optical probe technique is  thoroughly 

described in the thesis of Dr. J. P. Galaup. The 

reference is Galaup, J. P., 1975, Contribution a '1' 

Etude des Methodes de Mesure en Ecoulements Diphasi- 

ques, These de docteur-ingenieur Universite" Scienti- 

fique et Me'dicale de Grenoble, In stitu t National 

Polytechnique de Grenoble. A survey of the technique 

is  given (in English) in the following paper: Delhaye, 

J. M. and Jones, 0. C., Jr., 1975, Measurement Tech

niques for Transient and S ta tistica l Studies of Two- 

Phase, Gas Liquid Flows, ASME 75.HT.10.

Lars Lading, Danish Atomic Energy Commission: I may 

add that I gave a paper here two years ago where we 

described an optical method for measuring the droplet 

size and velocities. It  seems to be possible.
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