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ABSTRACT 

 Lost circulation (LOC) problems increase costs of drilling significantly. It is not 

only the cost of the drilling fluid that is lost into the formation but also the costs of 

subsequent problems that can be higher than the cost of the drilling fluids. LOC also 

possibly leads to a serious risk of blowout incident. 

 Lost circulation materials (LCM) are regularly added to the drilling fluids with an 

expectation of plugging the flow path. Due to the difficulties of testing and monitoring 

LCM sealing processes in the field, LCM evaluation in the laboratory is often used to prove 

and assure successful treatment. Investigating LCM behavior and the causation of 

obtaining different results would expand the reliability of the laboratory evaluation 

methods.  

 In this study, a steel cylindrical cell was used to simulate downhole high-pressure 

conditions. Steel discs with precisely sized slots (simulating wellbore fractures) were used 

to study the effect of testing conditions on the particulate LCM sealing performance. 

Results show that the fracture wall angles, the disc thickness, the base fluids, the drilling 

fluid density, the particle size of weighting materials related to the LCM grain sizes, and 

the dynamic aging conditions all affect the testing results significantly. LCM that 

performed well in the slow injection rate tests also exhibited sealing behavior effectively 

in the instantaneous flow conditions. The experiments provided an understanding of the 

fracture sealing mechanism to be applied in improving the laboratory evaluation methods 

and field treatment design. This knowledge is useful for both the preventive and corrective 

LOC mitigating approaches.  
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1. INTRODUCTION 

1.1 THE LOST CIRCULATION PROBLEM 

Lost Circulation (LOC) is defined as the loss of drilling fluids into rock formation 

voids during well drilling or completion (Howard and Scott 1951). It has been 

experienced since the early days of rotary drilling (Gockel et al. 1987) and is one of the 

most difficult problems in drilling. The cost of the problem was approximated to be 

US$800 million per year. Of the total cost, the LOC curing product was as much as 

US$200 million per year (Ivan et al. 2003). An SPE workshop on lost circulation in 

Dubai, UAE (2014) provided the amount of drilling fluid lost into the formation 

estimated to be 1.8 million barrels in one year (Alsaba et al. 2014a). If one well consumes 

3,000 bbl of drilling fluid in the overall drilling operation, the lost volume could be used 

for drilling as many as 600 wells only in one year. These numbers confirm that LOC is 

an important problem in the petroleum industry. 

Drilling fluid provides essential functions supporting the drilling operation 

(Bourgoyne et al. 1986); for example, it removes the rock cuttings from underneath the 

drill bit and transports the cuttings out of the hole, supports the newly drilled borehole 

keeping it stable until the casing is set and cemented in place, and cools and lubricates 

the drill bit and the drill string to prolong the equipment life. Having an insufficient 

amount of the drilling fluid in the active system allows more serious subsequent problems 

to occur. For instance, formation damage decreasing the well’s productivity, the loss of 

downhole tools and bottomhole assembly in pipe sticking incidents (Ghalambor et al. 

2014; Howard and Scott 1951), loss of the well section or  complete loss of the entire 

well (Deeg 2004; Alsaba et al. 2014a; Vajargah and Van Oort 2016). Every introduced 

problem always involves delays of the drilling process known as the non-productive time 

(NPT). Cost from NPT is often 10% to 20% of the drilling budget (Baggini Almagro et 

al. 2014). Mixing, transporting and reconditioning the drilling fluid and additives are also 

time-consuming and tend to slow down the overall processes. 

In addition to the loss of the expenses, LOC creates a serious risk to the lives of 

the rig crew due to an increase chance of blowouts. One vital function of drilling fluids 

is to provide a hydrostatic pressure sufficient to hold back the formation pore pressure, 
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preventing the flow of undesired formation fluids into the well (Bourgoyne et al. 1986). 

Trying to control the formation pressure might encourage LOC and worsen the situation.  

Under the current oil economy, most high-investment projects might be deferred, 

but oil demand in the future will essentially force the industry to drill into LOC 

problematic zones. The LOC problems will challenge and threaten the modern drilling 

industry no matter how much technology is improved. There is no question that LOC 

problem mitigation is important to be studied. 

 

1.2 EVALUATION AND MITIGATION 

Lost circulation materials (LCM) are substances added to drilling fluids to 

increase the maximum particle size presented in the mixture, in order to plug or seal the 

formation openings, to slow down and finally stopping the flow (White 1956). Routinely, 

LCM are added to drilling fluids. It may be dispersed in the active system or mixed in a 

high concentration placed against the losing zones referred as LCM pills (Kefi et al. 2010; 

Baggini Almagro et al. 2014). Recently, LCM was classified into seven main categories 

(Alsaba et al., 2014a). This dissertation focuses on only the widely used conventional 

granular LCM. 

The loss of fluid through subsurface fractures is one of the loss mechanisms, 

either lost through natural fractures or induced fractures (Canson 1985; Ghalambor et al. 

2014; Kumar and Savari 2011; Savari and Whitfill 2016). It usually consumes a relatively 

high rate of flow through the long propagating and complicated network of fractures.  

The rock matrix can be permeable or impermeable. The difference is that the fluid 

can flow through both the fracture channels and the rock pores in the case of fractured 

permeable formations, but can only flow through the fracture system in impermeable 

formations. Sealing fractures in impermeable rock was found to be harder to cure 

compared to permeable rock (Onyla 1994;  Sanders et al. 2008). In permeable formations, 

some drilling fluid will be filtered through the porous fracture wall, leaving behind the 

solid particles accumulated in the channel which tend to restrict the flow as screenout 

(Alberty and McLean 2001; van Oort, et al. 2011). These particles help develop a 

bridging structure inside the flow channel and plug the flow, making it easier to form a 

seal in fractured porous rock. The sealing mechanism will be reviewed in Section 2. 
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Comprehensive studies have verified LCM sealing ability and the treatment 

effectiveness in simulated fracture slots. Different experimental setups have been used to 

evaluate LCM formulation and performance (White 1956;  Hettema et al. 2007; Whitfill 

and Miller 2008;  Wang and Soliman 2009; Sanders et al. 2010; Alsaba et al. 2014a). 

Most of the experiments investigated the effect of LCM physical properties on sealing 

performance (Scott and Lummus 1955; Loeppke et al. 1990; Hettema et al., 2007; Alsaba 

et al. 2014b, 2014c). After the laboratory testing, results were applied for LCM selection 

and some field experiments were conducted (Fuh et al. 2007; Savari and Whitfill 2016). 

Logically, the apparatuses used in those experiments were designed to meet some 

specific downhole conditions; however, few studies have been performed to investigate 

the change of the results if the testing environment was changed.  

The majority of the experiments were performed using single or mixed granular 

materials, such as ground marble or sized calcium carbonate, graphite and walnut shell. 

Some studies used fibrous materials to form bridging structures (Canson 1985; Kefi et 

al., 2010; Baggini Almagro et al. 2014; Xu et al. 2014). Special and unconventional LCM 

included long-chain fiber and crosslink polymer (Growcock et al. 2009; Kumar et al. 

2011), thermoset rubber and expanded aggregate (Loeppke et al. 1990), or foam wedge 

combined with particulate LCM (Alsaba et al. 2014c). The application of nanoparticle 

technology improving fracture gradient (Contreras et al. 2014; Cedola et al. 2016) was 

also conducted in the experiments. This study focused on the blending of widely used 

granular materials: nutshell, cellulosic fiber, graphite, and sized (sorted) calcium 

carbonate. Their sealing performance was evaluated using different testing apparatus and 

environments, and the difference of the evaluation results was observed and compared.  
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2. LITERATURE REVIEW 

2.1 LOST CIRCULATION OCCURRENCE 

Like every flow that needs pressure differential, LOC can occur when the 

wellbore pressure is higher than the penetrated formation’s pressure (Gockel et al. 1987). 

The formations that receive the fluids from the wellbore can be divided into four 

categories; porous, cavernous, naturally fractured and induced fractured formations 

(Howard and Scott 1951). The categorized formation openings have different flow path 

geometry which required different curing mechanism of LOC (Ghalambor et al. 2014). 

These types of loss mechanisms need to be understood to evaluate how drilling fluids 

flow into the formation and how to handle it.  

In porous rocks, filtration loss generally occurs during the development of a 

protective membrane forming against the newly drilled formation, while the drilling fluid 

pressure is higher than the formation pore pressure. Relatively clear drilling fluid filtrate 

is filtered out by the porous rock leaving behind the solid phase, forming a thin sealing 

skin of the filter cake on the wellbore. Once the filter cake is fully developed, ideally it 

has a very low permeability which will temporarily secure the wellbore’s stability 

(Opedal et al. 2013; Alsaba et al., 2014a) until the well is cased with steel pipes and 

cemented to the rock formation (Bourgoyne et al. 1986). 

American Petroleum Institute (API) has a standardized test to determine the 

filtration properties of drilling fluid using standard filter paper called “the API filter 

press”  (Bourgoyne et al. 1986). The flow of filtrate is measured and recorded with time 

with a measurement of the thickness of the filter cake at the end of the test. The volume 

of filtrate, the relationship of filtrate volume with time, and the filter cake thickness 

indicate how the drilling performed in terms of filtration properties. A testing apparatus 

for high pressure-high temperature drilling operation is also available.  

Bourgoyne et al. (1986) presented that at any time during the filtration process, 

Darcy’s law can be applied to the process. The rate of filtration is given by 

 

𝑑 𝑉𝑓

𝑑𝑡
 =  

𝑘 𝐴 ∆𝑝

𝜇 ℎ𝑓𝑐
 (1) 
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where  

 
𝑑 𝑉𝑓

𝑑𝑡
  = the filtration rate, cm3 / s, 

 𝑘       = the permeability of the filter cake, darcies, 

 𝐴       = the area of the paper (cross-sectional area of the flow), cm2, 

∆𝑝      = the pressure drop across the filter cake, atm,  

𝜇        = the fluid viscosity, cp, and 

ℎ𝑓𝑐    = the thickness of the filter cake, cm. 

 

The solids volume in the drilling fluid that has been filtered is equal to the volume 

of solids deposited in the filter cake, 

 

𝑓𝑠 𝑉𝑑𝑓 =  𝑓𝑠𝑐  ℎ𝑓𝑐 𝐴.                                                     (2) 

 

𝑓𝑠 is the volume fraction of solids in the drilling fluid, 𝑉𝑑𝑓 is the volume of the filtered 

drilling fluid, cm3, 𝑓𝑠𝑐 is the volume fraction of solids in the filter cake. Equation 2 can 

also be written as: 

 

𝑓𝑠 (ℎ𝑓𝑐  𝐴 + 𝑉𝑓)  =  𝑓𝑠𝑐  ℎ𝑓𝑐 𝐴                                          (3) 

 

Therefore, 

 

ℎ𝑓𝑐  =  
𝑓𝑠 𝑉𝑓

𝐴(𝑓𝑠𝑐 − 𝑓𝑠)
 =  

𝑉𝑓

𝐴 (
𝑓𝑠𝑐

𝑓𝑠
) − 1

 

  

Inserting this expression for ℎ𝑓𝑐 into Eq. 1, integrating and rearranging yields 

 

𝑉𝑓 = √2 𝑘 ∆𝑝 (
𝑓𝑠𝑐

𝑓𝑠
 −  1)  𝐴 

√𝑡

√𝜇
 

 

(4) 

(5) . 

. 

. 
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When the parameters on the right-hand side other than √𝑡 are held constant, 

plotting of  𝑉𝑓 with √𝑡  results in a straight-line relationship as shown in Figure 2.1. A 

spurt loss can be determined from the y-intercept. Ideally, the spurt loss is the volume of 

filtrate flow through the filter at time zero, before the filter cake structure can form any 

flow resistance on the surface. 

 

 

Figure 2.1. The plot of filtrate vs. time yields a straight line. 

 

In the filtration process, the filter cake is still porous and wet, some small amount 

of the fluid phase is trapped inside the tiny pore spaces. Assuming no air is allowed in 

the system, the volume of filtered solid plus the trapped liquid volume equals the filter 

cake volume. The volume of filtered drilling fluid is the combined volume of filter cake 

and filtrate. Volume and mass conservation can be applied to any filtration process, 

including the screening of LCM. This idea can be applied to understand the LCM sealing 

process where the solid phase is separated from the liquid phase. The liquid-solid 

separation from the mixture during the seal forming follows the same concept. If a solid 

structure is forming in the fracture, the volume fraction of liquid needs some space to 

occupy. The more volume of the solid structure, the more volume of liquid is needed to 

flow away from the structure. This process is sometimes referred in the industry as 

“defluidization” (Kaageson-Loe et al. 2009; Sanders et al. 2010). 
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Since the filter cake formation is essential for the drilling process and the drilling 

fluid is not significantly consumed during the filter cake formation, the drilling fluid lost 

during filter cake formation is not considered as an LOC problem (Howard and Scott 

1951); however, the concept of filtration loss helps understand how solids in the fluid 

mixture develop the bridging and sealing structures.  

Even though a well drilled with an overbalance condition between the wellbore 

pressure and the formation pressure is going to lose the drilling fluid through the same 

mechanism as the filtration, the flowing mechanism of LOC must occur at a larger scale 

compared to filter cake forming process. Typically, loss in a porous formation happens 

when the permeability exceeds 100 darcys, where the intergranular pore sizes are 

sufficient size (Howard and Scott 1951). In this case, the whole drilling fluid mixture, 

both liquid and solid phases, can be forced to flow into the rock pore at any pressure 

higher than the formation pressure without forming a filter cake (Canson 1985). The non-

development of filtration can be eliminated if the pore spaces are plugged by LCM 

(Chaney 1949).  

Decreasing the flow area so the filtration control can take place, as in the trouble-

free porous formations, seems to be the fundamental concept of the LOC mitigation 

mechanism in any type of formation. The difference is the variation of the opening area 

geometry and size that needs to be plugged before the filtration control process can 

perform a good seal. 

In a cavern or vugular formation, the opening pattern is not consistent and is 

usually larger in size compared to the intergranular pores of a porous formation. The 

reduced flow restriction allows the fluid to flow out of the well at a much higher rate. 

The fluid can flow suddenly and severely after the drill bit penetrates and drops through 

the lost zone, even if only a few inches (Howard and Scott 1951). Since the openings are 

so large, special treatment such as cement gunk or a thickened polymer is required 

(Canson 1985; Loeppke et al. 1990; Scott and Lummus 1955). Cavity formation solving 

have been published by many researchers; however, the vugular LOC mechanism is not 

included in this dissertation. The main idea obtained after reviewing this problem is that 

the plugging procedure in any formation is to seal off the opening areas. They may be 
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sealed by chemical processes (cement or polymers), or by physical processes as the filter 

cake development. 

In the case of drilling-induced fracture, the wellbore pressure can hydraulically 

fracture the formation if the pressure is sufficiently high. Theoretically, under the stress 

concentration around the wellbore, the intact rock fails when and where the wellbore 

pressure exceeding the tensile strength of the rock considering its confining stress 

(Canson 1985). Because the tensile strength of the rock is relatively low, the wellbore 

can fracture when the wellbore pressure slightly exceeds the least principle stress 

(Zoback 2007). Induced fracturing can happen in any type of rock but expectedly occurs 

in weak plane rock like a shale formation (Howard and Scott 1951). 

Figure 2.2 shows how drilling induced fractures occur on the wellbore wall. In 

this example, the plane of the fracture is perpendicular to the direction of the minimum 

horizontal stress (𝜎ℎ), while the fracture propagates in the direction of the maximum 

horizontal stress (𝜎𝐻) (the broken arrow). The magnitude of the stress shown in the figure 

varied from compression (cross-sectional view of the well) to tension (across the fracture 

plane).  

 

 

Figure 2.2. The numerical study presents fracture plane induced by the wellbore 

pressure propagating in the direction of the maximum principal stress (Salehi and 

Nygaard 2011). 

 

Fracture Plane 

 

Wellbore 
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The fracturing pressure might be only the hydrostatic pressure governed by the 

drilling fluid density or combined with an additional surging pressure resulting from a 

sudden drop of the drill stem into the hole or the frictional pressure while circulating. The 

excessive drilling fluid density can be the result of an inaccurate operating window 

prediction, while the surging pressure is caused by inappropriate drilling practice 

(Ghalambor et al. 2014). After the fracture initiation, the propagation requires less 

wellbore pressure. The propagating pressure decreases dramatically with the increasing 

of the distance from the fracture mouth to the tip (Zoback 2007).  

 A problematic situation occurs when the induced fractures propagate out through 

a network of flow paths. The intersection of the passages provides an open flow system 

for drilling fluids to flow out of the well at a higher rate. Even without the induced 

fracture, the drilled well penetrates through a network of the natural fracture system, a 

sufficiently high wellbore pressure can suddenly drive the fluid into the formation 

causing severe loss (Canson 1985). 

Zoback (2007) presented that over geologic time, the fracture systems were 

formed and developed by the tectonic activities of the earth crust. The fracture 

orientations between the older and the newer developed fracture systems tend to be 

complicated from the changing of the stress fields with time. The fractures did not occur 

only in Mode I (tensile failure opening mode) as in induced fracture (hydraulic 

fracturing), but also occur in Mode II and III (shear failure, sliding in the parallel or 

perpendicular direction to the fracture channels). In the subsurface formation, the shear 

mode fracture happened on a larger scale, combining to become the minor and major 

faulting systems. These faults can be more permeable compared to Mode I fractures. 

Other than being induced during the drilling operation, mode I fracture can happen 

naturally. The opening fracture might close after the fracture pressure is equilibrated, 

while Mode II and III fractures are more active with high permeability. It is known that 

drilling through an active fault zone, containing Mode II or Mode III fracture, is 

considered the risky with the high possibility of pipe sticking and severe LOC incidents. 

The LOC can simply occur after the wellbore penetrates through these faults, or a fracture 

network connecting to the faults; or after the wellbore pressure creates the induced 

fractures propagating through the fractures and faults zones.   
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Loss mechanism in induced fractures and natural fractures are similar in terms of 

the flow channels shape.  Both contained long openings with a narrow width between the 

fracture walls. Mitigating LOC in the fractured formations needs LOC particles to plug 

the flow area between the fracture walls, the same as plugging the pore throat in the case 

of porous formations. Flowing of drilling fluids through fractures is reviewed in the 

following section. 

 

2.2 FLUID FLOW THROUGH FRACTURES 

The fracture openings on the wellbore wall provide the entrances for the drilling 

fluids to enter the formation around the borehole. The flow of drilling fluid through the 

fractures cannot be considered as an inviscid flow because the viscosity of the flow is 

important (Potter and Wiggert 1997). Flow regime of a fluid can be classified as a laminar 

flow or a turbulent flow. Combining three flow parameters in a single dimensionless 

parameter named Reynolds Number (Re) is a convenient way to identify the flow regime. 

Reynolds Number (𝑅𝑒) definition is given by  

 

𝑅𝑒 =  
𝜌 ⊽ 𝑏

𝜇
 

 

where 𝜌 is the fluid density, ⊽ is the averaged flow velocity, 𝑏 is the characteristic length 

(in this case, the fracture aperture), and 𝜇 is the fluid viscosity (Potter and Wigger 1997).  

The Reynolds Number, both for Oil Base Fluid (OBF) and Water Base Fluid 

(WBF), is not a constant parameter. The drilling fluid is a Pseudo-plastic fluid, where the 

viscosity tends to decrease as the shear rate increases. The density can be considered 

constant assuming the drilling fluid is an incompressible fluid. The flow velocity can 

change as the flow area controlling by the characteristic length changes. At any point of 

interest along a flow path, the flow is starting to change from a laminar flow to a 

transitional state between laminar and turbulent flow (transition flow) if Reynolds 

Number changes to be higher than 2100. The flow becomes a turbulent flow when 

Reynolds Number reaches 4000 and beyond. With different flow parameters, the flow 

(6) 
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can have different flow regimes along the flow path even though the flow rate is kept 

constant  (Bourgoyne et al. 1986).  

For a flow in fracture of a constant density fluid with a fixed flow rate, the 

Reynolds Number is directly proportional to the fracture width, where a smaller fracture 

width gives a smaller Reynolds Number. However, the narrower openings will have 

smaller flow area which increases the flow velocity and decreases the viscosity. This 

dominates the change of the Reynold Number to be increasing instead of decreasing as 

the fracture width decreases. Interestingly, at a high flow rate in LOC incident, it is likely 

that the Reynolds Number will fall into a turbulent range. The cross-sectional geometry 

(and area) of the flow area strongly affects the flow behavior of the fluids. At the same 

time, the cross-sectional flow area is also the target space for LCM particles to occupy in 

the sealing processes.  

The fundamental of fluid mechanics (Potter and Wiggert 1997) offers an open 

flow approximation between two parallel horizontal plates derived from an elemental 

approach or the Navier-Stokes equation. Under a steady state, laminar flow with a very 

long open channel, a flow rate per unit width of an incompressible fluid 𝑄 is given by 

 

𝑄 =
[𝑏]3

12𝜇
∇𝑃 

 

where ∇𝑃 is the pressure gradient, usually assumed to be one dimensional flow in a long 

breadth or channel length. Equation 7 can be used widely in fluid mechanics calculation 

where the two planes are opened with no flow restriction. In LOC application, it is more 

applicable to the naturally occurring opened fractures than the drilling induced fractures. 

Zoback (2007) introduced an analytical approximation in the case of the fluid 

flow through an elliptical cross-sectional area fracture under the confining stress acting 

on the fracture planes, the maximum fracture width (𝑏𝑚𝑎𝑥 ) is given by 

 

𝑏𝑚𝑎𝑥 =
2(𝑃𝑓 − 𝑆3)𝐿(1 − 𝜐2)

𝐸
 

(8) 

(7) 
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where 𝑃𝑓 is the fluid pressure inside the fracture, 𝑆3 is the least principle stress, 𝐿 is the 

flow channel length or breadth, υ is Poisson’s ratio, E is Young’s modulus.  

The flow rate (𝑄)  is then given by 

 

𝑄 =
𝜋

8𝜇
[
𝑏𝑚𝑎𝑥

2
]

3

∇𝑃 

 

which yields 

 

𝑄 =
𝜋

8𝜇
[
𝐿(1 − 𝜐2)(𝑃𝑓 − 𝑆3)

𝐸
]

3

∇𝑃 

 

Equations 8, 9 and 10 can be used to find the maximum fracture width related to 

flow rate when other parameters are known or assumed. Many assumptions have been 

made along the derivation and may not meet the real physical flow phenomena of the 

drilling fluids.  

 Rahimi et al. (2016) summarized many other flow-in-fracture models analytically 

developed for the fracture width determination when the other parameters such as the 

least principal stress, wellbore or fracture pressure, pore pressure, and rock mechanical 

properties are known. The models were created with different assumptions and input 

parameters that can be used in LCM analysis for fracture sealing (Hillerborg et al. 1976; 

Carbonell and Detournay 1995; Alberty and McLean 2004; Wang et al. 2008; Morita and 

Fuh 2012). Different forms of relationships and parameters yield different results among 

those models. The simplification of the models causes most of the results to be 

significantly different from their hydraulic fracturing experiment results.  

Ghalambor et al. (2014) introduced a fluid flow model of natural fractures using 

lubrication theory. The fundamental equation was given by 

 

𝜕 (𝑤𝑣̅)

𝜕𝑟
+  

1

𝑟
𝑤𝑣̅ +  

𝜕𝑤

𝜕𝑡
= 0 

 

(10) . 

(9) 

(11) 
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where 
𝜕𝑤

𝜕𝑡
 is the time rate of change of the fracture width, 𝑣̅ is the averaged fluid velocity, 

and r is the coordinate position in the flow direction. 

 The fluid flow velocity and the fracture width can be changed with the specified 

condition. The fracture width may be kept constant or changed using an appropriate 

constitutive law. The drilling fluid rheology was also considered using Bingham-Plastic, 

Power law or Yield Power law to take care of the change in viscosity respect to the shear 

rate and shear stress of the non-Newtonian drilling fluids. With the yield power law 

rheological model, the fluid velocity in terms of pressure drop is given by 

 

𝑣̅ =  (
𝑚

2𝑚 + 1
) (

𝑤
𝑚+1

𝑚

2
𝑚+1

𝑚 𝑘
1
𝑚

) (−
𝑑𝑃

𝑑𝑟
− (

2𝑚 + 1

𝑚 + 1
) (

2𝜏𝑦

𝑤
))

1
𝑚

 

 

where 
𝑑𝑃

𝑑𝑟
 is the pressure drop respect to the position in the flow direction,  𝑚 is the flow 

behavior index,  𝑘 is the consistency index, and 𝜏𝑦 is the yield stress. Substituting 

Equation 12 into Equation 11 and applying the proper deformation law yields 

 

(
𝑚

2𝑚 + 1
) (

1

2
𝑚+1

𝑚 𝑘
1
𝑚

)
𝜕

𝜕𝑟
(𝑤

2𝑚+1
𝑚 (−

𝑑𝑝

𝑑𝑟
− (

2𝑚 + 1

𝑚 + 1
) (

2𝜏𝑦

𝑤
))

1
𝑚

) 

+ (
𝑚

2𝑚 + 1
) (

1

2
𝑚+1

𝑚 𝑘
1
𝑚

)
1

𝑟
𝑤

2𝑚+1
𝑚 (−

𝑑𝑝

𝑑𝑟
− (

2𝑚 + 1

𝑚 + 1
) (

2𝜏𝑦

𝑤
))

1
𝑚

+
𝜕𝑤

𝜕𝑡
= 0 

 

The partial differential equation above must be solved numerically, based on a 

group of complex variables. The solution suggests that the LOC can stop after a flow 

period due to frictional losses in the fractures, where an ultimate cumulative lost volume 

with the LOC time relationship can be determined if the fracture width is known, and 

vice-versa.  

(12) 

(13) 
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This model gives a quantitative idea of how significantly the fracture width 

affects the lost volume if the drilling fluid is infinitely available and the problem is 

ignored without mitigating the loss. Ghalambor et al. (2014) also provided an example 

of a drilling fluid loss through a fractured formation. A volume of 20,000 bbl of drilling 

fluid can flow through a 2000-microns width fracture under a differential pressure of 300 

psi before the flow stop. Even though the drilling fluid available in the well site should 

not be as high as the mentioned volume, but the model’s result gives a quantitative idea 

how severe the LOC can possibly be in fractured formations.  

The difference between flow model equations implies that they were developed 

from different assumptions or laws, and the calculated results often do not agree with the 

others. Some models may not be realistic due to the assumptions and simplifications of 

the physical problems, while the more the realistic models are more complicated and 

difficult to obtain the parameters required to solve the model. The accuracy of the results 

is also questionable.  

In LCM treatment design, the fracture width is an important parameter because it 

indicates the size of granular materials to be used both in corrective and preventive 

approach (Whithfill and Miller 2008). Field cases reporting flow rates may give a clearer 

picture about the LOC by knowing the loss severity and using history matching to obtain 

thickness (fracture length) and other parameter approximations (Ghalambor et al. 2014).  

The rate of LOC varies significantly. Losses can be classified into seepage losses 

(1-10 bbl/hr), partial losses (10 to 500 bbl/hr), and severe losses (over 500 bbl/hr) 

(Nayberg 1986). Total loss occurs when the flow rate of the drilling fluid entering the 

formation exceeds the rig pumping capacity (Baggini Almagro et al. 2014). With this 

rate, all drilling fluid in the active system can be spent out in less than two hours, for 

example; a circulating rate of 420 gal/min or 10 bbl/min can empty the rig tanks with 900 

bbl drilling fluid within 90 mins.  

As reviewed above, the loss rate depends strongly on the fracture width, but the 

length of the channel on the wellbore is also important in terms of the total flow area of 

the incident. Understanding the effect of the fracture width and the fracture width 

approximation from flow rate should be useful and provide some ideas for the testing 

apparatus development.  
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Flow models were developed only for drilling fluid flow without LCM mixed 

with the fluid which will affect the flow behavior significantly. Moreover, during the seal 

structure development, the decreasing the flow area with time should occur as LCM 

sealing structure develops in the space between the fracture walls. The study in this area 

should expect complicated unsteady flow with time, the rate of change of the flow 

velocity, flow area, and the fluid viscosity. 

 

2.3 TYPE AND USAGE OF SEALING MATERIALS  

Various LCM types and formulations have been developed and used since the 

early days of rotary drilling. One of the US patents issued at the very beginning of rotary 

drilling method was to M T. Chapman (1890) describing the use of LCM in circulating 

fluid (White 1956). Since then, the application of LCM has been studied, revised and 

improved continuously (Robinson 1940).  

Recently, LCM are classified in seven categories based on their appearance and 

application (Alsaba et al. 2014a). They are granular, flaky, fibrous, granular-flaky-

fibrous combinations, acid/water soluble, high fluid loss squeeze, swellable/hydratable 

combinations, and nanoparticles (Alsaba et al. 2014a). However, granulate LCM is the 

type of material normally added to the drilling fluids. The LCM particles will bridge 

across opening areas so filter cake can be built and proper circulation is regained 

(Bourgoyne et al. 1986). Granular materials can form seals at the porous formation face 

or within the fracture to prevent the losses into the formation (Howard and Scott 1951, 

Nayberg 1986). The Materials with high crushing resistance (graphite) were found to be 

suitable for fracture sealing and wellbore strengthening applications where higher stress 

acts on the particles (Whitfill 2008; Kumar and Savari 2011).  

Field observations and measurements can identify the type of formation where 

the loss occurs (Howard and Scott 1951). The mud logging unit continuously monitors 

the drilling fluid level in the rig tanks and alarms as soon as the drilling fluid level in the 

system drops down to a preset value. Cutting analysis gives the information of the 

penetrated formations. Wireline logs such as temperature logs and gamma ray logs are 

used to locate the lost zones if the drill string is pulled out of the hole (Canson 1985).  If 

the drilling operation is in progress, the state-of-the-art measurement while drilling 
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(MWD) tool is available to measure downhole parameters that are used to detect and 

monitor the loss zones effectively. If the interval depth of the loss zones and the rate of 

LOC with time are known, fracture width estimation can be performed accurately in a 

short time.  

The treatment applied after LOC detection is classified as a corrective approach. 

In some cases, if the loss is likely to happen in a known formation, the treatment might 

be done before the LOC incident happens to prevent it. This is referred as the preventive 

approach (Kumar and Savari 2011). Mixing LCM as a preventive treatment allows the 

LCM to cure LOC at an early time of the incident (Howard and Scott 1951).  

The use of LCM to plug the fracture and widen the operating window increass 

the fracture gradient. This practice permits higher wellbore pressure known as the 

wellbore strengthening concept and has been studied broadly. Unfortunately, the 

strengthening mechanism is a subject of disagreement between groups of researchers. 

Alberty and McLean (2004) suggested that LCM props at the fracture entrance could 

increase the hoop stress around the wellbore.  Dupriest (2005) believed that the fracture 

gradient of the formation would be increased by increasing the fracture closure stress 

(FCS), the normal stress on the fracture plane keeping the fracture face contacted. FCS 

increases by the use of LCM to keep the fracture wider and seal the fracture tip.  Aadnoy 

and Belayneh (2004) introduced the elastic-plastic fracture model, where the fracture 

gradient could be increased more than the original hoop stress by the fracture healing 

effect of the filter cake plastic deformation at the fracture entrance. Van Oort et al. (2011) 

explained that the tip isolation by LCM could increase the fracture propagation pressure.   

Salehi and Nygaard (2012) presented the results obtained from a three-

dimensional finite-element model simulating the fracture initiation, propagation and 

sealing in the near wellbore region. His results showed that using LCM in wellbore 

strengthening approach could not enhance the hoop stresses to be higher than the intact 

(originally before strengthened) wellbore strength.  

 From previous studies stated above, the theory of wellbore strengthening is not 

clear and different from researcher to researcher; however, all of them agree that LCM 

treatment is the primary tool for plugging or sealing the fracture, providing the increased 

fracture propagating pressure (Mortadha 2016). Understanding the LCM placement and 
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sealing application is useful for both the healing or corrective approach and the 

strengthening or preventive approach. 

From a known fracture width, different LCM size selection for LOC curing was 

recommended by researchers. The size solutions were usually given in the form of the 

particle size distribution (PSD) with respect to fracture width.  

White (1956) presented that a mixture of the normal solid component of drilling 

fluids with LCM is adequate for sealing porous formations until the pore or crack size 

exceeds approximately three times the diameter of the largest particle present. The size 

of the LCM is limited by the mud pump. A few different rules developed specifically for 

plugging pore throats in porous rock have slightly different definitions about the PSD of 

LCM and the pore sizes.  

Abrams (1977) suggested that the median particle size of the bridging particles 

should be equal to or slightly greater than one-third the median pore size of the formation, 

while the bridging size solids must be five percent or more by volume of the solid in the 

LCM treated drilling fluid. In a different way, Hands et al. (1998) proposed that the 

bridging properties of the fluid must be selected so the D90 (90% of the particles are 

smaller than the size) is equal to the pore size of the rock.  

Dick et al. (2000) introduced the Ideal Packing Theory, applied previously in the 

painting industry, to be used for LCM application. The theory stated that the ideal 

packing occurs when the percent of cumulative volume vs. the square root of the particle 

diameter forms a straight-line relationship. Following the theory, the particles can obtain 

an ideal packed seal structure with the least possible porosity. Vickers et al. (2006) 

presented a more detailed bridging theory by adding the target fractions where D90 is 

equal to the largest pore throat, D75 is less than two-third of the largest pore throat, D50 

is about one-third of the mean pore throat, D25 is one-seventh of the mean pore throat, 

and D10 is larger than the smallest pore throat. The volume percentage of each range of 

LCM grain sizes were developed. 

Later, the bridging theory specifically for fracture sealing was presented. Whitfill 

(2008) recommended that for fracture bridging, the D50 size should be equal to the 

fracture width. This bridging idea implies that there must be particles larger in size, 

approximately 50% of the fracture width available for the bridging mechanism. 
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Mortadha et al. (2014c, 2016) observed LCM seals removed from the plugs 

formed in fracture discs. Digital microscope and electron scanning microscope images 

revealed that using LCM formulations with a wide range of PSD resulted in less seal pore 

space and higher seal integrity compared to a narrow range of particle sizes; the results 

agreed with the ideal packing theory. It was also found that the D90 value should be 

slightly larger than the expected fracture width to get the highest sealing efficiency, in 

contrast with the formerly investigated bridging idea. From the D90 rule, Mortadha et al. 

(2014c) concluded that conventional granular LCM has the capability to seal the fracture 

up to 2000 microns corresponding to the LCM sizes, and the attempt to use larger particle 

size to cover wider fracture width is limited by the risk of plugging downhole tools during 

the pill placement using the drill string. 

The latest bridging theory of Alsaba et al. (2016) was developed from more than 

a hundred tests using a high-pressure test cell with steel slotted discs. Their experiment 

indicated to get an effective fracture sealing, D50 and D90 values should be equal to or 

greater than 3/10 and 6/5 the fracture width, respectively. This theory was then used for 

LCM selection in this experiment with confidence that the selected LCM would form a 

seal effectively, while only the effect of testing conditions on sealing performance could 

be concentrated. 

 

2.4 TESTING APPARATUS PREVIOUSLY USED 

The apparatuses previously used simulated a certain formation type of interest. 

The simulated fractures can be constructed from permeable materials to study LOC in a 

permeable formation (Hettama et al. 2007), or impermeable material such as steel or 

aluminum alloy to study LOC in an impermeable formation (Alsaba et al. 2014b, 2014c, 

Loeppke et al. 1990, Scott and Lummus 1955).  

The testing method forced the drilling fluid treated with LCM sample through the 

simulated fracture, while parameters were recorded and the seal forming was observed 

at the end of the experiment. Table 2.1 lists the apparatus used in previous studies related 

to sealing performance evaluation.  

The injection process falls into two categories, a constant injecting pressure with 

the fluid loss volume as the evaluation, or a constant injecting flow rate recording the 
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maximum sealing pressure (Howard and Scott 1951, Nayberg 1986, Loeppke et al., 1990, 

Kageson-Loe et al. 2009, Kefi et al. 2010, van Oort 2011, Alsaba et al. 2014).  

 

Table 2.1 Testing apparatus used in previous studies.  

Publication 
Measured 

Values 

Max. 

Press. 

(psi) 

Temp. 

˚F 

Simulated 

Fracture 

Fracture Width 

(mm) 

Howard and 

Scott (1951) 
Fluid loss 1,000 N/A 

Cast cement in 

steel pipe  
12.7 mm 

Kelsey 1981, 

Hinkebein et al. 

1983 

Sealing 

efficiency 
1,000 300  

API slots, 

tapered slots 

1 - 5 mm 

(straight) 

2 – 12.7 (tapered) 

Van Oort 

(2011) 

Sealing 

pressure 

and fluid 

loss 

1,250  N/A 

Uneven 

aluminum 

platens   

0.3 – 1.0 mm (two 

circular plates) 

Savari et al. 

2011 (PPA) 

Filtration/ 

bridging  

4,000-

5,000 
500  

API slot, 

tapered slots 

 2 mm (tapered) 

5 mm (straight) 

Mostafavi et al. 

2011 

Sealing 

pressure 
8,700 N/A 

Fabricated 

steel fractures 

0.3, 0.5 and 0.7 

mm 

Alsaba et al. 

(2014a) 

Sealing 

pressure 

(and fluid 

losses) 

10,000  180 Steel slot discs 
1–10 mm 

(tapered / straight) 

 

 

The constant pressure injection method intends to simulate a constant bottomhole 

pressure during an LOC treatment to observe how successfully and effectively the seals 

are formed. Fluid loss is used as the performance indicator where the smaller volume of 

fluid loss is considered a success in terms of sealing effectiveness. 

The constant injecting flow rate method monitors both the buildup pressure to 

measure the seal integrity obtained from a specific LCM blending, as well as the fluid 

loss volume indicating the seal forming efficiency.  

Hinkebein et al. (1983) presented a publication that was the only LCM aging test 

found in the technical paper database. They used the modified API slot tester as listed in 

Table 2.1 to conduct both the experiment measuring the sealing ability of LCM under the 
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room temperature and the higher temperature aging test. In the aging test, they used eight 

aging test cells and a rolling oven. The drilling fluid was a 5% to 8% Wyoming Bentonite 

with a density of 8.8 ppg. Five single LCM formulations available at that time with no 

detailed LCM specification (cottonseed hull; Kwik-Seal or fibers, flakes, and granular 

particles mixed; Ruf-Plug or ground corn cops; ground battery casing; and ground battery 

casing with Micatex) were used in the aging tests. The temperature selected were 250 

and 400 °F with four-hours aging time in the rolling oven. The results showed that the 

cottonseed hulls formulation was adversely affected by the aging temperature at 250 °F, 

while the Ruf-Plug totally failed to seal at the 400 °F aging temperature. 

 

2.5 LITERATURE REVIEW DISCUSSION 

The literature review provided the occurrence and significance of the LOC 

problems, where all the attempts in the past have been made to overcome, mitigate and 

limit the consequential difficulties using LCM to control losses of drilling fluid into the 

formations. The design and application in the field essentially rely on laboratory testing 

and evaluation as the main suggestive approach. 

The physical properties of the LCM were widely used as the key parameters 

needed to get the treatment effectiveness, while the testing condition that should 

significantly affect the testing results has been overlooked. The LCM aging experiment 

was conducted using old types of LCM that are not available at the present time.  

If the effect of testing conditions can be found, it can be merged with the previous 

findings and applied to the laboratory evaluation improvement and the field treatment. 

The apparatuses can be modified or adjusted to get a more accurate simulation to the 

actual phenomenon. The treatment design and testing will increase the evaluation 

reliability and design confidence. The finding can be used to predict the treatment 

performance if the downhole conditions are varied from the expected condition as tested 

in the laboratory. The obtained information will be useful for further studies in this area. 

For field applications, if possible, the parameters known to provide positive 

results in the laboratory might be applied to the field treatment to improve the LCM 

sealing ability and integrity. Improving the operational environment to be a better 
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permissive condition should increase the treatment effectiveness and the chance of 

success. 

Furthermore, during the test, LCM behavior could be monitored along with the 

indicative parameters to gain the understanding of the fracture plugging and sealing 

processes. The knowledge can be applied to LCM selection and the treatment design to 

obtain the more effective LOC mitigation in impermeable rock fractures.   

 

2.6 OBJECTIVE  

This dissertation objective is to quantify how significant the indicative parameters 

used in LCM evaluation change as the results of varying the testing conditions, other than 

the LCM physical properties, that are known to govern the sealing capability. This overall 

objective will be addressed by studying the following questions. 

a) If the injection flow rate is changed from a continuous slow rate to a sudden 

high rate, will the seal forming ability be disrupted, and will the sealing mechanism 

change? 

b) What is the effect on seal integrity if the testing conditions related to the 

fracture simulated disc parameters (wall angles and thickness) are changed? 

c) What is the effect on seal capability if the testing environment related to the 

base fluids, drilling fluid density, type of weighting materials, the availability of fine 

weighting particles, and the dynamic aging condition of higher pressure and temperature 

are changed? 

d) When combining the fracture width, LCM properties and other testing 

conditions that are known, what is the relationship between those parameters and sealing 

pressure, i.e., can sealing integrity be estimated from those parameters?  

e) If the testing apparatus moves a step closer to the actual dynamic downhole 

condition, what is the effect of dynamic circulating conditions on the sealing ability of 

LCM?  
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To reach the objective, the experiment was broken down into five tasks.  

1) Modify loss circulation apparatus to test how sudden flow affects the 

LCM sealing ability. 

2) Evaluate the effects of variation of simulated fracture slots i.e., wall 

angles, and simulated fracture slot thickness. 

3) Evaluate the effects of changing base fluids, type of weighting 

materials used in base fluids, PSD of weighting agent, and aging condition of the 

LCM-treated drilling fluids affect the sealing capability. 

4) Create a statistical model that can predict LCM sealing pressure based 

on the experimental results.  

5) Conduct a set of experiments in a dynamic test cell to observe how 

circulating conditions affect the sealing ability of LCM. 

The first paper “Testing Conditions Make a Difference While Testing LCM” 

addressed the first and the second tasks. The second paper “Effect of Testing Conditions 

on the Performance of Lost Circulation Materials: Understandable Sealing Mechanism” 

addresses the third task. The third paper “Pressure Prediction Model for Lost Circulation 

Treatments Based on Experimental Investigation” addressed the fourth task. The fifth 

task has been addressed in the fourth paper “Effect of Experimental setup on Lost 

Circulation Materials Evaluation Results”.
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PAPER  

I. TESTING CONDITIONS MAKE A DIFFERENCE WHEN TESTING LCM 

ABSTRACT 

Laboratory studies have been used extensively to evaluate loss circulation 

materials (LCM) treatments to solve or prevent lost circulation problems in fractured 

formations. Experiments with slotted disks simulating fractures have been performed 

with the amount of fluid loss and sealing pressure used as evaluation criteria. This study 

presents the investigation of LCM behavior with different slot designs and fluid flow 

patterns for water-based and oil-based drilling fluids. Experiments on tapered-slot discs 

that simulate fractures with different fracture wall angles and fracture lengths were 

conducted at high pressure. A bladder-type accumulator was added to the system to 

provide an instantaneous flow condition. Results showed that increasing the wall angle 

tended to decrease sealing efficiency. Increasing the fracture length (disc thickness) in 

tapered discs resulted in higher sealing pressure. In the instantaneous flow tests, LCM 

formulations used to perform a strong seal in HPA tests also sealed the slot under the 

sudden flow condition with a similar bridging and sealing profile. This set of experiments 

shows that the experimental setup can change the results, so caution should be taken 

when quantitatively comparing LCM tests on slot disks from different experimental 

setups. 

 

1. INTRODUCTION 

Lost circulation is defined as the loss of drilling fluid to formation void during 

drilling or completion (Howard & Scott, 1951). The drilling industry tries to solve fluid 

loss problems by adding lost circulation materials (LCM) to the drilling fluids to form a 

plug or seal in the open area to stop the flow. The cause of losses can be divided into four 

categories: highly permeable unconsolidated sand or gravels, cavity or cavernous, 

naturally fractured, and induced fractured formation (Howard & Scott, 1951). The rate 

of losses can be divided into seepage losses (1-10 bbl/hr), partial losses (10 to 500 bbl/hr), 

and severe losses (over 500 bbl/hr) which are controlled by the loss mechanisms 

(Nayberg, 1986). In wider fractures, the flow rate of the drilling fluid entering the 
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formation may exceed the rig pumping capacity because the area of the openings is 

sufficiently large and a high differential pressure is exerted by the drilling fluid column. 

In this case, special treatment is typically required (Canson, 1985).  

Laboratory experiments have been conducted to investigate the lost circulation 

curing. Blends of selected LCM have been tested using different experimental setups to 

evaluate sealing performance. In the case of investigating LCM for losses into 

impermeable fractured formations, researchers use impermeable materials such as steel 

or aluminum alloy to construct the simulated fracture opening (Scott & Lummus, 1955; 

White, 1956; Loeppke et al., 1990; Hettama et al., 2007; Kageson-Loe et al., 2009; 

Kumar et al., 2011; Alsaba et al., 2014b, 2014c). A number of physical properties were 

studied for LCM treatment design, such as LCM type and formulations (Alsaba et al., 

2014b, 2014c), LCM particles sizes (Alsaba et al., 2016; Kageson-Loe et al., 2009), 

shape, concentration, size distribution (PSD) respected to fracture width (Alsaba et al., 

2016; Hettama et al., 2007; White, 1956), treatment concentration (Alsaba et al., 2014b), 

swelling and deformability under higher temperature (Alsaba et al., 2014a), density and 

mechanical properties (such as compressive strength, Young’s Modulus, Poisson’s ratio, 

and hardness) (Loeppke et al., 1990), and resiliency as deformable or flexible materials 

(Mostafavi et al., 2011; Xu et al., 2014). Most researchers used single or mixed granular 

materials such as ground marble or sized calcium carbonate (SCC), graphite (G), and 

walnut shells (NS). Some studies used fibrous materials to form a fiber network in the 

fractures (Baggini Almagro et al., 2014; Canson, 1985; Kefi et al., 2010; Xu et al., 2014). 

Typically, an injection rate of 10 – 25 ml/min was used (Alsaba et al., 2014b, 2014c; 

Mark et al., 2008; Mostafavi et al., 2011).  

The objective of this paper is to address how the testing conditions affect the 

experimental LCM performance. To reach this objective, a specifically designed particle 

plugging apparatus was used (Alsaba et al., 2014b, 2014c). Inside the cylindrical testing 

cell, the simulated fracture disc can be replaced to observe different results corresponding 

to the difference of fracture wall angle and disc thickness. Lastly, different driving 

differential pressures were set to study the effect of high flow conditions. The geometry 

and LCM distribution of the formed seals were also observed to better understand LCM 

behavior and sealing mechanisms that affect the testing results. This study used stainless 
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steel discs to simulate fractures for lost circulation treatment in fractured impermeable 

formation. 

 

2. EXPERIMENTAL SETUP 

2.1 TESTING APPARATUS 

The purpose of the experiment is to investigate the behavior of selected LCM 

formulations forming the seal on simulated fracture discs under different test conditions 

including wall angle, disc thicknesses, and flow conditions. Two slightly different 

experimental setups were used along with a set of stainless steel simulated fracture discs.  

Figure 1 shows a schematic diagram of the HPA (Alsaba et al., 2014a).  

 

 

 

Figure. 1. Schematics of the HPA apparatus. The syringe pumps water to pressurize the 

accumulator filled with drilling fluid without LCM. The test cell contains drilling fluid 

with LCM. The broken line was used for the second set of experiments where 

installation of the nitrogen gas accumulator to the injection line (7) provides pneumatic 

spring action driving the drilling fluid sample through the slot. The wall angle (α) is 

also displayed in the figure.    
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A slotted disc (5) is placed inside the testing cell on a spacer cylinder. The spacer 

provides a room for fluid LCM that passes through the slot during the test to prevent 

plugging or restriction of flow at the cell outlet. Above the slotted disc is drilling fluid 

filled with LCM. During the test, the cell cap (4) was closed, and drilling fluid from the 

plastic accumulator (6) was filled in the injecting line (3) and into the steel accumulator 

(2). The pressure buildup was created in two different ways. A syringe pump (1) could 

provide a continuous flow of water to displace drilling fluid from the steel accumulator 

to flow into the testing cell at 25 ml/min flow rate. In the instantaneous flow test, the 

bladder-type accumulator (7) connected to the discharge line of the syringe pump could 

also provide a sudden flow to form the pneumatic spring action of the compressed 

nitrogen gas in the bladder. The bladder was precharged with nitrogen gas at 33% or 66% 

of the targeted test pressure. Four differential pressures could be set from two different 

precharged pressures. A pre-charged pressure of 100 psi was set for 150 and 300 psi 

differential pressures, and a precharged pressure of 200 psi was set for 300 and 600 psi 

differential pressures.  

A system flow test was run to estimate the possible flow rate without the presence 

of LCM in the system. The plain drilling fluid was forced to suddenly flow through the 

7°-disc slot without LCM treatment. The test gave an average flow rate of 1.6 gpm (100 

ml/sec) through the 2000 x 5000 microns opening tip. This flow rate is comparable to a 

lost circulation rate of 190 gpm (270 bbl/hr) flowing out of a well with a 20-foot-long 

fracture (2000-micron fracture width) along the borehole wall.  

 

2.2 LOST CIRCULATION MATERIALS 

For the tests, a formulation of graphite (G), sized calcium carbonate (SCC), and 

nutshell (NS) blends were used per recommended formulations from a previous study 

(Alsaba et al., 2014c). Table 1 shows the LCM formulations identified by the type of 

LCM with the fraction of particle size blend.  

The formulations were also used in sealing with disc thickness variation and 

sealing with instantaneous flow conditions. Two types of drilling fluids were used. An 

8.6 lb/gal density, simple 7% bentonite (by weight) water-based fluid (WBF), raised up 

to 11 lb/gal using barite; and an environmental-friendly oil-based drilling fluid (OBF), 
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11 ppg (ready-mixed), which was obtained from an oil company; were used. For the 

WBF, the tests were run three times to evaluate the repeatability of the tests. 

Table 1. LCM formulation used for all the tests in this paper. 

Formulation and 

type 
D50 

% by 

weight 

After Blended PSD 

D10 D25 D50 D75 D90 

NS 50 

ppb 

Coarse 

NS 
2300 34 

180 400 1000 1600 2400 Medium 

NS 
1450 33 

Fine NS 620 33 

G & 

SCC 

105 ppb 

Coarse 

SCC 
2500 33 

170 650 1300 1900 2600 
Medium 

SCC 
1400 33 

Fine G 

& SCC 
500-600 34 

G &NS 

40 ppb 

Coarse 

G 
1000 15 

80 180 580 1400 2000 

Medium 

G 
400 15 

Fine G 100 10 

Very 

fine G 
50 10 

Coarse 

NS 
2300 17 

Medium 

NS 
1450 17 

Fine NS 620 16 

 

 

2.3 SLOT DISCS 

A set of simulated fracture discs with different slot wall angles varied from 0 

(straight slot), 7°, 9°, and 13° with the same thickness of 6.35 mm was manufactured 

(Table 2). The cross-sectional diagram of a tapered disc providing a slot wall angle 

measurement (α) is shown in Figure 1.  

Two simulated fracture discs with 0° and 9° slot wall angles (25.4 mm thick) were 

also produced to investigate the variation of disc thickness. In the variation of wall angle 

and disc thickness experiments, the fracture outlet width was set to be constant at 2000 

microns, but for the rapid flow tests, both 1500 and 2000-microns slot width were used 

corresponding with specified LCM formulations and concentrations. The first four discs 

in Table 2 were used in the wall angle experiment. The discs vary in wall angle while the 

tip width was kept constant at 2000 microns. 
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Table 2. Name and dimension of the discs used in the effect of wall angle experiment.  

Disc code 

Slot 

entrance 

width 

(mm) 

Wall   

angle 

(degree) 

SS2-R 2.0 0 

TS2-R7 3.5 7 

TS2-R9 4.0 9 

TS2-R13 5.0 13 

TS15-R7 3.0 7 

SS2-T 2.0 0 

SS2-T9 10.0 9 

*All discs are 63.5 mm diameter, slot outlet width 2000 microns, slot length 50 mm and disc thickness 

6.35 mm, except the tip of TS 15-R7 is 1500 microns and the thickness of SS2-T and SS2-T9 is 25.4 mm 

 

3. TESTING METHODOLOGY 

Figure 2 shows an example of a plot of the injecting pressures vs. time of an HPA 

test at 25 ml/min. When starting the pump, the pressure increased to 50 psi due to the 

frictional losses in the system. Fluid losses from the drilling fluid sample containing LCM 

particles started to flow out of the cell’s outlet, first at the injecting rate and decreasing 

as the seal was formed. Pressure increased when the LCM started to form a seal bridge 

across the slot.  In this paper, bridging is defined as the first group of particles that were 

successfully set at rest in-between the opening area of the slot and performed a strong 

foundation for the other particles to develop a complete seal.  

After the seal formed and pressure was rising, the seal was broken partially at a 

weak point, and the pressure dropped down. At this moment, some fluid loss could be 

observed at the outlet. The bridge redeveloped quickly, where pressure rebounded 

sharply. The seal was broken and reestablished many times as a cyclical process. 

Normally, higher peak pressures were detected while the injection continued. The 

pressure was built up until it reached a maximum pressure (the circled peak point on 

Figure 2). After that, the seal might develop with lower sealing pressures or might not be 

able to reform anymore due to insufficient LCM concentration left in the cell. In this 

case, the test was stopped when no seal or only weak seals were observed. If the pressure 

went above 3,000 psi (rarely happened in 0° and 7° slot discs), the test was also stopped 
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due to test limitations. After the testing, the seal was visually observed under a 

microscope and photographed.  

 

 

Figure. 2. A plot of injecting pressure over time obtained from an HPA test. The peak 

pressure circled in the figure is the maximum sealing pressure, denoted as the sealing 

pressure. 

 

4. TESTING RESULTS 

A total of 80 tests were performed. Table 3 and Table 4 list the results of the 25 

ml/min (HPA) tests and the instantaneous flow tests, respectively. 

Figure 3 displays the plot of the sealing pressure vs. the wall angles. The graph 

shows a negative trend between them with a correlation coefficient (r2) of 0.84.  

 

 

Figure. 3. The plot between maximum sealing pressure vs. time obtained from the 0°, 

7°, 9° and 13° wall angle tests.  
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Table 3. Testing results from the sealing under wall angle and thickness variation tests. 

Based 

Fluids 

LCM blend 

and 

concentration 

Discs 

code 

Disc 

thickness 

Wall 

angle 

(deg.) 

Sealing 

pressure 

(psi) 

Avg. fluid 

loss 

(ml/cycle) 

WBF 

NS 50 ppb 

SS2-R 

6.35 

0 

3,285 6.9 

3,126 15 

2,844 8.1 

TS2-R7 7 

1,847 7.6 

1,696 7.5 

1,661 8.2 

TS2-R9 9 

1,735 8.6 

1,383 9.2 

2,017 8.8 

TS2-R13 13 

1,753 6.1 

950 14 

749 11 

SS2-T 

25.4 

0 

3,278 6.3 

3,233 7.3 

3,097 4.1 

TS2-T9 9 

1,945 7.1 

2,747 6.9 

2,334 6.5 

1,707 6.2 

G & SCC 

105 ppb 

SS2-R 

6.35 

0 

3,128 6.2 

3,147 5 

2,541 7.1 

TS2-R7 7 

1,606 7 

1,603 5.3 

3,122 4.2 

TS2-R9 9 

1,293 6.8 

1,423 8.9 

1,968 5 

TS2-R13 13 

936 14.3 

1,634 6.5 

1,554 6.3 

SS2-T 

25.4 

0 

1,923 4.8 

2,107 6 

1,560 4.7 

TS2-T9 9 

2,487 6.8 

2,496 8 

3,123 15 

OBF 
G & SCC 

105 ppb 

SS2 

6.35 

0 3,216 4.2 

TS2-R7 7 3,100 12 

TS2-R9 9 2,148 8.3 

TS2-R13 13 1,300 13.8 

SS2-T 
25.4 

0 3,156 8.6 

TS2-T9 9 3,263 19 
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Table 4. Testing results from the instantaneous flow tests. 

LCM Blend and 

concentration 
Discs code 

Differential pressure: Pre-

charge pressure (psi) 

Sealing 

time 

(s) 

Stabilized 

pressure 

(psi) 

Fluid 

Loss 

(ml) 

NS 50 ppb TS2 R7 

100 : 150 

5.0 141 137 

1.0 147 35 

2.5 143 100 

2.5 144 85 

100 : 300 

2.5 261 175 

4.5 245 275 

3.5 248 250 

200 : 300 

2.0 287 120 

1.0 292 75 

1.3 290 90 

200 : 600 

1.5 547 110 

1.0 562 75 

1.3 554 105 

G&NS 40 ppb TS15 R7 

100 : 150 

4.5 141 170 

2.5 145 85 

3.5 141 115 

100 : 300 

2.5 264 175 

1.5 277 110 

1.0 282 70 

200 : 300 

3.3 272 260 

2.8 272 225 

2.0 281 150 

200 : 600 

1.0 566 70 

2.5 502 225 

1.5 548 130 

G & SCC 105 ppb TS2 R7 

100 : 150 

2.0 141 135 

2.0 141 130 

1.5 146 40 

100 : 300 

1.5 274 125 

5.5 248 260 

2.5 265 150 

200 : 300 

2.0 280 165 

1.0 291 75 

2.3 279 180 

200 : 600 

2.5 545 102 

1.0 555 95 

1.0 575 50 
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The scatter points in Figure 3 have a considerably high distribution within each 

group and overlap between adjacent groups. To evaluate the statistically significant 

difference of sealing pressure resulting from the wall angle variation, the authors applied 

the analysis of variance (ANOVA) using the Tukey-Kramer honest significant difference 

(Tukey HSD) method (Sall et al., 2001). The results revealed that the sealing pressures 

were significantly different between the pairs of 0°–7° and 7°–13° (p = 0.004 and 0.01, 

respectively), but not significantly different between 7°–9° and 9°–13° (p = 0.41 and 

0.29, respectively). The overlapping difference of means between the 7°–9° and 9°–13° 

was suspected to not be significant because of the small difference of the wall angles 

between them (i.e., 2° and 4°).  

Assuming that the correlation in Figure 3 is true, the straight line equation was 

used to calculate the sealing pressures in the case that the wall angles were varied with 

1° increment. A Tukey HSD statistical analysis performed with the calculated results 

suggested that the sealing pressure would be significantly different between any pair of 

the discs with a wall angle difference of at least 5° between them. The results were also 

separately analyzed within the group of based fluids and LCM formulations obtaining 

slightly different straightt lines of the sealing pressure-wall angle relationship. 

Two points of 7° angle results (broken circle) were found to have higher values 

deviated from the rest of the results in the same group. These results will be discussed in 

the Discussion section. Table 3 contains the detailed results of the 28 tests of wall angle 

variation. With a focus on the effect of disc thickness on the sealing pressure, a Tukey 

HSD statistic test showed that the sealing pressures had a positive correlation with the 

disc thickness among the 9° tapered slot discs (p = 0.02). The sealing pressures were not 

statistically significant between the different thicknesses of 0° slot discs.  

Figure 4 shows the effect of disc thickness on sealing pressure testing in 9°, 

tapered slot discs (the results in detail can be found in Table 3). The 25.4 mm-thick disc 

had higher sealing pressure than the 6.35 mm-thick disc for all the LCM formulation and 

base fluids.  

The instantaneous flow tests resulted in effective sealing in all 37 tests. The LCM 

provided effective seals with stabilized pressures dropped down from the preset 

differential pressures varying from 3% to 16% with the flow time ranging from 1 to 5.5 
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seconds. Fluid losses collected from the tests varied from 35 to 275 ml. The results 

validate the results obtained previously from the HPA tests in terms of LCM sealing 

ability (Mortadha et al., 2014b, 2014c). Table 9 contains the results of the instantaneous 

flow condition tests.  

 

 

Figure. 4. Sealing pressure in tapered discs with 6.35 and 25.4 mm thickness. 

 

Figure 5 shows a scatterplot of the fluid losses volume corresponding to the four 

flow conditions. The Tukey HSD method showed that the fluid loss significantly 

increased with the differential pressure in the case of 100 psi precharged pressure (p = 

0.046), but not significantly decreased in the case of 200 psi precharged pressure (p = 

0.43).  

 

 

Figure. 5. The plot displays fluid losses obtained from the instantaneous flow tests. 
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5. DISCUSSIONS 

Figure 3–5 in the Results section confirm that significantly different results could 

be obtained from the different testing conditions designed and used among researchers, 

but before discussing further on the results of the experiment, the sealing mechanism 

must first be presented. Diagrams, graphs, and pictures taken from the experiments will 

be presented in the following discussions. 

 

5.1 IMPLICATIONS FROM THE EXPERIMENT 

Figure 6 a) through d) shows the seals on a straight slot disc (with 0° wall angle) 

compared to a 7° tapered slot disc. The seal on the straight slot could withstand injecting 

pressure higher than 2,500 up to 3,000 psi, while the seal on the tapered slot mostly failed 

to reform a seal at a pressure below 2,000 psi (Figure 3). Looking from the upstream of 

the flow direction, the seal on the straight slot in Figure 6 a) formed a better mound shape 

compared to the seal on a tapered slot in Figure 6 b); the seal on the tapered slot disc had 

indications of breaking and failed to rebuild. Both discs had LCM particles accumulated 

and formed mound shape seals covering the slot aperture and the adjacent area.  

Observing the slots from the tip side, one can find that the straight slot as shown 

in Figure 6 c) is empty, while the tapered slot in Figure 6 d) is filled with particles down 

to the tip. In the straight slot disc, the coarse LCM particles larger than the slot width 

(2000 microns) will not pass through the slot entrance, but instead have to bridge at the 

entrance of the slot. In the tapered slot disc with 2000 microns width at the tip with a 

wider width at the entrance, the coarse particles can pass the entrance and set inside the 

slot where their sizes fit with the space available between the walls [Figure 6 d), f), and 

g)]. For both types of disc, smaller particles transported through the fracture will fail to 

establish a bridging structure due to the insufficient sizes. However, those small particles 

that pass in after the bridging process will occupy the intergranular spaces to complete 

the seal structure. The difference in the bridging mechanism of coarse particles provides 

different sealing integrity between the straight slot discs and the tapered slot discs. 

Figure 6 f) and g) show a close view of the coarse particles set inside two tapered 

slot discs from two tests of NS and SCC formulations. The coarse particles arranged 
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themselves successfully as the first barrier inside the slot, being forced to move down to 

the tip. In Figure 6 f) and 6 g), some particles are about to leave the slot tip.  

 

Figure. 6.  Seals from the straight slot and tapered slot. a) A seal formed across straight 

slot (SS2-R) in a mound shape. b) A seal form on a tapered slot (TS2-R7) also formed 

in a mound shape with a damaged point in the middle of the seal. c) LCM particles seal 

on the straight slot stay only on the slot mouth; they cannot be observed from the tip 

side. d) Coarse LCM particles settle in the tapered slot (TS2-R7) down to the tip. e) The 

seal removed from the straight slot reveals no coarse LCM particle passed through the 

slot entrance (it lost some particles sticking right at the slot mouth). f) and g) Coarse 

particles settle in the slot from using NS 50 ppb in WBF, and G & SCC 105 ppb in 

OBF, correspondingly (photos were taken from the fracture tips). 
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The coarse particles bridged the slot mostly in single particle row and aligned 

their long edge parallel to the long edge of the slot [Figure 6 f) and g)]. This behavior 

might be explained by their behavior during transportation. When packed into the tapered 

slot, the coarse particles were forced to rearrange their orientation to be more in line with 

the confining wall. This alignment condition caused them to require less deformation to 

be able to pass through the tip, correspondingly weaker in terms of load bearing capacity 

compared to the particles aligned in other directions, especially when the long side set 

perpendicular to the slot’s long edge. 

The bridging mechanism of the straight slot promotes consistently higher sealing 

integrity compared to tapered slot discs (Figure 3 in the Results section). The particles 

set at the entrance of the straight slot have arbitrary orientations and created stronger 

bridging because they need more stress to create enough deformation to fail. Some tests 

of the 0° slot discs might be able to withstand higher than 3,000 psi, but the tests were 

stopped at this point to prevent slotted disc damage.  

A pair of the recorded pressures higher than 3,000 psi in two of the 7° disc tests 

shown in Figure 3 (inside broken circle, one from WBF and one from OBF) resulted from 

different sealing structures. Observation during disc removal indicated a thicker mound 

shape of the seal body on the disc. Instead of the bridging structure set between the 

tapered walls failing at a lower pressure, the bridging structures occupied more space in 

the slot and up on the slot entrance. This rare seal formation might be the reason why 

those two tests resulted in abnormally high sealing pressures compared to the results in 

the same wall angle. 

Behind the bridging structure, more particles are needed for a complete seal 

development. Figure 7 shows two dried seals removed from the slot entrance area of 6.35 

mm thick discs. Figure 7 a), c), and e) were taken from the seal on a 2000-microns straight 

slot (0°) disc, while Figure 7 b), d), and f) were taken from the seal on 2000-microns (7°) 

tapered slot discs. Note that some part of the seal from the tapered slot disc is missing 

because the particles set inside the slot were stuck tightly to the slot walls and broken off 

during the seal removal process.  
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Figure. 7. Seals formed on a straight slot (G&SCC 105 ppb formulation). a) top view, 

c) side view and e) cross-sectional view; compare to tapered slot b) top view, d) side 

view and f) cross-sectional view. Broken lines indicate slot opening area. Note that in 

Figure 7 d) and f), the sealing structure inside the tapered slot was broken off during 

seal removal. 

a) b) 

c) d) 

e) f) 
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These figures present how the LCM particles distribute themselves in the seals 

behind the bridging. The lighter color shows the compact area of a porous material 

forming up, which is mainly composed of larger size particles of SCC and small black 

spots of G particles in this case. The brown color areas consisted of the finer particles 

and bentonite, which packed in and filtered the fluid trying to pass through. Mostly fine 

particles played an important role in this layer. As shown in Figure 7 a) through 7 f), the 

mound shape seals developed in the straight slot and tapered slot are very similar in terms 

of the structure. The difference in sealing pressure between the straight slot and the 

tapered slot discs should be the result of the different bridging structure. 

Figure 8 shows the concept of a bridge forming mechanism by a single particle 

and double particles on a straight slot entrance (Loeppke et al., 1990).  The study 

presented the bridging mechanisms of coarse LCM particles settled at the fracture 

entrance. It also presented that if the fracture width increases from the pressure variation, 

the particles may move in and bridge in-between the fracture walls. Bridging can also 

form by single or multiple particles. All the observations carefully performed in these 

straight slot experiments [as shown in Figure 6 c)] agree with the concept of the bridging 

mechanism in Figure 8.  

 

 

Figure. 8. Bridging mechanism of LCM in straight slots at the slot entrance. a) Single 

particle bridging or b) double particles bridging (modified from Loeppke et al., 1990).  

 

The bridging structure is found to be very important in the sealing mechanism. 

Under equilibrium conditions where the bridging structure is set inside the slot as shown 
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in Figure 6 f) and 6 g), the overlying finer particles cannot move through the slot if the 

bridging structure provided an effectively strong foundation. 

At any time where the sealing structure remains at rest, the system of forces and 

moments must satisfy the equilibrium condition or else the system will not remain static. 

The summation of external forces in a three-dimensional coordinate system must be zero 

(Bedford & Fowler, 1998). This concept should be true for the entire sealing structure, a 

seal element, or a particle of interest, especially while the seal is under a stable sealing 

pressure.  

While considering the seal as a granular system, the load acting across the slot 

opening area will be transferred nonuniformly via the chain-like structure connected by 

the contact points between the neighbor particles and the confining wall (Mehta, 2007). 

If the pressure downstream of the slot is negligibly small, the bodies that will equilibrate 

the system of the forces and moments are the slot walls where the entire load is supported. 

The lateral component of the forces will be distributed to the slot walls, while the axial 

component (parallel to the flow direction) will be transferred to the bridging structure. 

This component is the only one system of forces acts on the bridging particles and causes 

the seal failure. The bridging structure starts to carry a load immediately at the start of 

the bridging process, holding the structure against the flow. 

The force transmitted at the points of contact are composed of normal forces and 

frictional (tangential) forces (Johnson, 1985). These forces support the particles to remain 

at rest. Regardless of a single or multiple particle types of the bridging mechanism, the 

balance of forces and moments will not let the bridging particles move until the load 

acting on the particles goes beyond the force holding the particles in place. The particle 

must withstand the distributed and localized stresses or they fail and move. Local 

deformation must not be so significant that it will affect the balance of forces and 

moments. Otherwise, the bridging particles will move (translate, rotate, or both) along 

the slot through the tip, and the sealing structure at that point will fail until the bridging 

structure can reform. 

As shown in Figure 6, 7, and 8, a better bridging mechanism in straight slot disc 

is the main reason for receiving higher sealing pressure compared to tapered slot discs. 

Under flexural loading conditions, single or multiple particles set on the slot entrance 
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interlocking with the adjacent contacting particles use the slot entrance corners as the 

anchors for the bridge. Deformation of the bridging particles will increase the contact 

area, increasing stability and friction at the anchoring points and improve the overall seal 

integrity. The seal will fail if the bridging structure at the entrance is broken.  

For particles set inside the tapered slots, no anchorage is available inside the slot. 

The flat walls essentially provide a weaker frictional support holding the particle in place 

compared to the anchor points. Under compression, the small contact areas will result in 

high local stress concentration at the contact points. The particles could be locally 

deformed or fail at the contact areas depending on the strength of the materials. The 

deformation or failure decreases the particle size needed to match the slot width. The 

bridging particles may lose the frictional support forces when they are locally damaged 

and shear through the tip [Figure 6 f) and 6 g)], or be broken apart due to the compressive 

or flexural stress within the structure.  

Figure 9 illustrates how changing the wall angle affects the sealing integrity. First, 

increasing the wall angle increases the load acting area inside the slot, which transfers 

higher forces to the bridging particles. The sealing structure carries a higher load at the 

same differential pressure. Second, the distance between the slot walls increases with the 

wall angles. Increasing the space allows the coarse particles to bridge closer to the tip of 

the slot and increases the possibility to be pushed through the tip. These are the two main 

reasons for the negative relationship between the sealing pressure and wall angles shown  

 

 

Figure. 9. Possible changing in load magnitudes and orientations acts on the same front 

line of the bridging particles in different wall angle. a) 7°, b) 9°, c) 13°. In more 

inclined wall angle, the slot allows the coarse particles to set near the slot tip, causing 

the bridging particle more likely to be more easily sheared out through the tip. 

a) b) c) 
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in Figure 3. According to the experiment, the particles supporting the seal in the slot with 

higher wall angle would fail at a lower pressure. 

Based on the observation on the seals removed from the straight slot tests, the 

sealing profile indicated that if LOC problems occur in parallel plane fractures cured by 

using LCM with coarse particles larger than the fracture entrance, the bridging process 

is essentially formed at the fracture entrance on the borehole wall. Even though this kind 

of seal performs a strong barrier capable of holding back a high pressure, the bridging set 

at the fracture entrance might not be preferable compared to the bridging inside the 

fracture. The seal on the fracture entrance could be removed out by the drill string or 

downhole tools. It would be hard to reinitiate the bridging without the coarse particles 

available in the system. In the case of tapered fractures, some of the bridging structure 

occupied inside the fracture will remain in place even though the outer part of the (mound 

shape) seal may be removed. The seal should be able to reform itself because fine 

particles are usually available in the drilling fluids. Reforming of the seal from a bridging 

structure is easier than starting over in the open fractures.  

Figure 10 a) and c) show how NS forms a seal on a 6.35 mm-thick disc while 

Figure 10 b) and d) show a seal on a 25.4 mm-thick disc. Both discs have a wall angle of 

9° and tips of 2000 microns. The LCM filled up from the slot tip and formed a mound on 

the 6.35 mm-thick disc while it stayed only inside the slot of the 25.4 mm-thick disc.  

The reason for the different sealing profiles is that the space available inside the 

two types of discs are different. The thinner discs have insufficient space to allow the 

LCM to develop a strong seal by staying inside the slots compared to the thicker one. 

After the coarse particles bridge the open area and some finer particles are transported in 

to fill in the void spaces during the seal development, the thin discs are filled with LCM 

before a strong seal is completely developed. In other words, the seals are still permeable 

while the spaces inside the slots are running out. As injection continues, smaller and finer 

particles will accumulate until a complete seal is developed. This process creates the 

mound shape seals on the surface of the 6.35 mm-thick discs. 

Figure 10 e) and f) show the LCM placement profile obtained from a test in the 

25.4 mm-thick disc. These figures might be used to explain why 25.4 mm-thick discs 

perform better than 6.35 mm thick discs (Figure 4). The seal of the 25.4 mm-thick disc 
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formed completely inside the fracture with a thicker wedge or trapezoidal cross-sectional 

shape. Because there is more depth for the force chain development, the seal can transfer 

the load to the slot wall more effectively along the deep seal profile, resulting in less load 

acting on the bridging structure compared to the seal in 6.35 mm-thick discs. The 

difference in sealing mechanism provides the difference in sealing pressure between the 

thin discs and the thick discs. The layers of the coarse, medium and fine particles appear 

in Figure 10 e) and 10 f). The particle arrangement in this study is similar to the fracture 

plugging idea of Kageson-Loe et al. (2009), even though the article presented the sealing 

of fractures in permeable formations. 

 

 

 

Figure. 10. Comparison of seals on 6.35 mm and 25.4 mm thick discs. a) Seal on a 6.35 

mm thick disc, b) Seal developed in a 25.4 mm thick disc formed a wedge shape inside 

the slot. c) Coarse particles remained at the end of the tip in 6.35 mm thick disc, and d) 

25.4 mm thick disc. e) Close cross-sectional view of the wedge shape seal shows the 

grains sequence along the flow direction (broken line). f) Side (inclined) view of the 

same piece as e) shows the three regions of LCM settlement with respect to the flow 

direction (broken line), I-the bridging structure, II-filling medium particles and III 

sealing-off with fine particles and the filter cake.  

10 mm 10 mm 

2 mm 

2 mm 

2 mm 2 mm 

Coarse 

Medium 

Fine 

I 

II 

III 



 

 

43 

From the results of the instantaneous flow tests, LCM sealing behavior can be 

linked to the sealing mechanism in the tests with the 25 ml/min injection rate. Figure 11 

a) shows plots of pressure behavior attained from three successfully sealed tests under 

instantaneous flow conditions. A fail test plot also is presented at the bottom of the graph 

in Figure 11 a). It was additionally run using a formulation with an insufficient PSD in 

respect to the fracture width to verify the sealing inability under the rapid flow condition. 

The flow did not stop from seal development in the fracture, but instead from the 

insufficient supply of the injecting fluid. The failed test resulted in a lower pressure curve 

compare to the successful ones.  

 

 

Figure. 11. Comparison of the plot from the instantaneous flow tests and a slow 

injection test. a) The plot shows three regions of monitored pressures from three 

instantaneous flow tests. The bottom broken line is an intentionally failed test where the 

flow stops due to an insufficient amount of drilling fluid. b) The pressure plot obtained 

from one of the slow injection tests can also be divided into the first two regions of seal 

forming. 
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Conceptually, the three (successful tests) pressure curves in Figure 11 a) can be 

divided into three different regions demonstrating the sealing mechanism. The first 

region (i) displays rapid decreasing of the upstream pressure, indicating the sample 

(drilling fluid and LCM mixture) suddenly flows through the slot at a high flow rate. At 

this point, some coarse particles are moving into the bridging positions, but not affect the 

flow rate. The second region (ii) is where the pressure curves suddenly buildup, 

representing a rapid flow restriction, the reduction of the flow area, due to the bridging 

structure formation. The smaller particles following the coarse particles also promptly 

accumulate on the seal. The third region (iii) is where the pressure slowly increases until 

it reaches a stabilized (equilibrated) pressure. It is a complete-compaction region where 

fine particles seal off the tiny pore spaces. These graph regions provide the link to the 

procedure of sealing mechanism.  

The same process also can be observed from the HPA tests shown in Figure 11 

b) where Region (i) and (ii) are denoted as A and B area, respectively. The difference is 

that HPA tests are conducted at a much slower pace and no stabilized pressure can be 

established because the continuous injection will bring the pressure up until the seal is 

broken. As a result of injecting pressure fluctuation, Region (iii) cannot be seen in Figure 

11 b). These chronological processes represent the nature of the sealing mechanism.  

Figure 12 shows a seal removed from a wall angle test terminated at 

approximately 3,000 psi sealing pressure. Close observation reveals that it consists of 

three layers. These layers formed correspondingly to the same sealing procedure as 

obtained from the pressure response analysis in Figure 11 a).  

The coarse particles (some are missing due to being stuck in the slot while 

removing process) developed a bridging structure, as shown in Region I. As these 

particles bridged on the seal, they decreased the permeability of the slot significantly, 

from flow through the open channel to flow through porous media. Following the 

bridging process, smaller particles as shown in Region II would be transported in by the 

flow stream filling the void spaces, which were the flow paths. Note that bentonite was 

washed away by clean drilling fluid filtrate, resulting in a lighter color in Region I and 

II, and revealing clear black spots of graphite particles. This observation shows that the 
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structure behaves like a porous media where filter cake could develop on its surface. The 

three regions can be seen clearly in Figure 7 e), 7 f) and Figure 10 e), 10 f). 

 

 

Figure. 12.  A cross-section view of a seal. Region-I (coarse particles), Region-II 

(smaller particles), and Region-III (much finer particles) arranged themselves as a 

strong seal. The broken arrow displays the flow direction.  

 

In Region III, finer particles arbitrarily mixed with coarser particles accumulated 

on the seal. This region reduces the rate of fluid flow until the thin filter cake formed at 

the outer of the area boundary. This step is connected to the third region of the pressure 

response curve [Figure 11 a)]. In this HPA test, the pump was shut down at about 3,000 

psi; the slot was sealed off, and the pressure was stabilized similar to the stabilized 

pressure in the instantaneous flow tests. 

The discussion above supports the chronological forming idea of sealing 

mechanism on the fracture mouth or inside the slot. The presence of the LCM particles’ 

settling sequence combined with pressure behavior reveals the sealing process, which 

can be divided into three phases: bridging, filling, and sealing. This idea agrees with a 

previous study stating that “large grains of LCM plug the throat and smaller grains fill 

the gaps” (Mostafavi et al., 2011). In this study, the particles arrangement with time was 

additionally presented with the fact that the fine particles not only fill the gaps between 

larger particles but also shut off the communication between fluids of both sides of the 

seal by making it impermeable. 
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5.2 SEALING MECHANISM APPLIED TO LCM TREATMENT 

Sealing in severe lost circulation must start with a bridging process, as this step 

will change the situation from high flow rate out through opening channel of fracture, 

reducing to a slower seepage flow through a strip of human-made porous media. In this 

phase, the sufficiently strong flow with high energy transports coarse particles into the 

slot. Particles slightly larger than the fracture width will stop at the set points where the 

sizes of particles agree or match with fracture width (Alsaba et al., 2016).  

After the bridging structure develops, filling the void space can occur under a 

slower flow condition. Governed and directed by the stream of flow, smaller particles 

follow the flow path towards the pore spaces. The small particles settle into the pore 

space instead of being transported freely through the slot. The small particles will 

decrease the seal permeability to a small value. The pressure drop across the seal will be 

higher as the flow area decreases significantly. Only tiny pore throats are left after this 

process. 

The last step in the sealing mechanism is to seal off the tiny pores. Fine to very 

fine solid particles will develop a very low permeability filter cake. The fracture will be 

completely sealed and the structure will stay in equilibrium if the pressure stays stable 

below the sealing integrity.  

This experiment started with knowing the slot width beforehand. The LCM 

formulation was effectively selected to ensure that the coarse particles will seal the slot 

opening because the sizes of the coarse particles are bigger than the slot entrance or the 

tip width. These tests confirm that knowing the fracture width is very important in terms 

of LCM selection and design that can lead to success in the laboratory and field 

applications.  

In instantaneous flow experiments, the LCM forms a seal as a response to the 

driving differential pressure. Once the seal forms, a stabilized pressure develops similarly 

to the sealing under a constant bottomhole condition. The difference is that the stabilized 

pressure is slightly lower than the preset differential pressure due to energy lost during 

seal forming. During the tests, one test for each flow condition was randomly run to 

confirm the seal integrity. By closing the gas accumulator valve and using a syringe pump 

to inject drilling fluid into the system, the pressure response could be recorded with time. 
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All results from the tests proved that the seals were strong enough to withstand injecting 

pressure higher than the preset differential pressures. 

Figure 13 shows the pressure response of a seal integrity test performed after 

sustaining a stabilized pressure from an instantaneous flow test. The bladder accumulator 

valve was closed, and the syringe pump injected the mud at 25 ml/min flow rate. The 

pressure built up and dropped with time similarly to the results from HPA tests in Figure 

2, i.e., build up and break down in a cyclical behavior with higher peak pressures. This 

behavior shows that LCM can form a strong seal with the seal integrity higher than the 

driving differential pressure. The seals should be able to reform and adjust themselves 

under the pressure fluctuation with a relatively constant fracture width fracture, as long 

as the LCM with proper concentration and size distribution is still available in the system. 

However, further study is required for the case that the fracture width is changing with 

the bottomhole pressure. 

 

 

Figure. 13. The plot shows the instantaneous flow test (small broken circle) and the 

response pressure from a seal integrity test (big broken circle) after the pressure 

stabilized. Injection resulted in pressure built up similar to the graph in Figure 2. 

 

The results of instantaneous flow tests presented in Figure 5 show that trends of 

the fluid loss volume varied with the differential pressure under different precharge 

pressure. The different initial flow velocity, the change in driving pressure, and the flow 

velocity with time from the gas expansion strongly affect the amount of fluid spent during 
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the seal formation. Further study is required to understand the behavior of LCM under 

these flow conditions compares to the actual subsurface flow.    

 

6. CONCLUSIONS 

- Different wall angle testing discs result in different measured sealing integrity. 

Increasing the wall angle tends to decrease the maximum sealing pressure. From this 

study, the sealing pressure can be significantly different if the wall angle was varied by 

5° or more. 

- No correlation was found between the averaged fluid loss per cycle of seal 

initiation and the wall angle or thickness variation. 

- Increasing disc thickness in 9° tapered slot discs from 6.35 mm to 25.4 mm 

resulted in higher sealing pressure due to the improvement of the bridging structure 

formed inside the slot. 

- Shape and dimensions of the tapered slot discs strongly affect the seal integrity. 

This observation implies that the same effects could also happen with the fractures under 

the actual subsurface conditions, likely much-complicated environment.  

- LCM formulations used to perform a strong seal in HPA tests also sealed the 

fracture effectively under the instantaneous flow condition. The results confirm the HPA 

approach measuring the maximum sealing pressure for LCM evaluation. 

- The pressure behavior with time and the arrangement of LCM particles in the 

seal help understand how LCM works during seal development. Observation shows that 

the seals consist of three layers performing different tasks in the sealing mechanism. 

- The experimental setup can change the results of the experiment, so caution 

should be taken when quantitatively comparing LCM tests on slot disks from different 

experiment setups.  
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II. EFFECT OF TESTING CONDITIONS ON THE PERFORMANCE OF 

LOST CIRCULATION MATERIAL: UNDERSTANDABLE SEALING 

MECHANISM 

ABSTRACT 

Lost circulation materials (LCM) are added to drilling fluids to mitigate or 

prevent lost circulation (LOC) problems. Designing the fluid requires a good 

understanding of sealing mechanisms and all the parameters affecting the sealing 

performance. Laboratory testing apparatuses are the key concept for LCM evaluation 

ensuring that the field applications will succeed.  

The high-pressure cylindrical test cell containing simulated fracture discs is an 

effective tool among the broadly-designed apparatuses. A variety of LCM physical 

properties has been studied to develop effective LCM formulations for overcoming the 

problems. Recently, the testing conditions such as the slot wall angles, the fracture disc 

thickness have significant effects on the evaluation results. However, the effect of the 

base fluids, fluid density, types of weighting materials and aging conditions on the 

sealing ability have not been truly addressed.  

In this study, two different base fluids, water-based fluids and oil-based fluid were 

used to compare the base-fluid effect. Drilling fluid density was raised up using barite 

and/or hematite to investigate the effect of weight agents. Barite was sieved and tested to 

study the effect of fine particles on the sealing. Finally, the dynamic aging tests were 

conducted in LCM-treated WBF using two temperature levels (200 °F and 400 °F) and 

two aging periods (24 and 72 hours).  

   The results showed that the effect of base fluids on sealing performance depended 

on LCM properties providing the complex interaction between the solid particles and the 

fluids. Adding weighting agents tended to improve the seal integrity. Adding proper size 

of fine particles improved the sealing performance of the used formulations. Aging 

conditions affected LCM properties depending on the thermal stability of the materials. 
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1. BACKGROUND 

Lost circulation (LOC) is a challenge for many drilling operators. It significantly 

increases drilling expenses due to the loss of massive amounts drilling fluids and 

potentially loses expensive downhole equipment or even the entire well section (Howard 

and Scott 1951; Clapper et al. 2011; Almagro et al. 2014; Alsaba et al. 2014a; Ghalambor 

et al. 2014). The problem also consumes some valuable time spent for regaining the 

circulating system and solving subsequence problems known as the nonproductive time 

(NPT) (Salehi et al. 2012; Almagro et al. 2014; Feng et al. 2016). The serious concern is 

that LOC can lead to a well control issue, which can potentially lead to a life-threatening 

blowout accident (Horn 1950; Kaageson-Loe et al. 2009). 

The industry usually performs operations classified as either preventive or 

corrective approach to eliminate LOC problem (Whitfill and Miller 2008; Kumar and 

Savari 2011; Ghalambor et al. 2014; Feng et al. 2016). The differences between the 

approaches are the treatments taken before the main problem occurs as prevention, or 

after the serious LOC detection as the loss mitigation. Regardless the method of solving, 

lost circulation materials (LCM) blended with drilling fluids is a common solution for 

the problems (Robinson 1940; White 1956; Canson 1985; Bourgoyne et al. 1986; Fuh et 

al. 1992; Alsaba et al. 2014a). The materials might be dispersed in the active system or 

placed as a concentrated mixture against the loss zones (Clapper et al. 2011; Almagro et 

al. 2014). Proper selection and design process of the LCM treatment is vital to the success 

of the problem-solving processes.  

Laboratory studies were continuously and comprehensively run to understand 

how LCM works, how to evaluate the performance, and how to improve the sealing 

ability in the field application (Scott and Lummus 1955; Abrams 1977; Nayberg 1986; 

Dick et al. 2000; Hettema et al. 2007; Kaageson-Loe et al. 2009; Kefi et al. 2010; Clapper 

et al. 2011; Alsaba et al. 2014b; 2014c; 2016). The knowledge of the sealing behavior, 

capability and limitation help select and design for the proper LCM raw materials, 

blending, and treatment processes to be applied in the field operations. The testing results 

also gain confidence that the sealing would successfully seal at the loss spots as in the 

test cells. 
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As the laboratory studies were conducted to overcome LOC problems, testing 

apparatuses with similar sealing surroundings as in the loss formations were developed 

to simulate the environment so that the tests represented the actual sealing process as 

close as possible. To search for the desirable materials and formulations, various LCM 

types with different physical properties and blending were tested in the developed 

apparatuses depending on the objective of the investigations (Alsaba et al. 2014b, 2014c; 

Hettama et al. 2007; Loeppke et al. 1990; Scott and Lummus 1955). 

Focusing on fracture sealing in the impermeable rock matrix, Alsaba et al. (2014c, 

2016) presented the effects of LCM type, shape, concentration, particle size distribution 

(PSD), and temperature on the seal integrity with respect to differential pressure at 

different fracture widths. It was found that LCM can effectively seal the fractures if the 

D90 value is equal to or slightly larger than the anticipated fracture width; however, the 

size of conventional LCM particles is limited by the risk of plugging the downhole tools. 

The irregular shapes of LCM particles with the ability to deform of LCM particles under 

pressure promoted the sealing integrity. Increasing of the treatment concentration was 

found to improve the sealing ability within an optimum range, while the broad-range 

sorting of PSD was needed for a good sealing performance. The effect of fracture width 

was found to agree with the D90 requirement, and LCM swelling property under higher 

temperature improved the sealing ability in an LCM formulation. 

Jeennakorn et al. (2017) conducted further laboratory investigation on the effect 

of changing the slot wall angle, the disc thickness, and the instantaneous flow condition 

on the sealing efficiency. The experiment showed that increasing the slot wall angle 

tended to decrease the sealing pressure. Increasing simulated disc thickness in taper slot 

discs improved the sealing pressure. The study provided some ideas about the effect of 

testing conditions that change the testing results and should be considered in LCM 

sealing evaluation. Observation during the experiment provided more understanding 

about the bridging and sealing mechanism.  

The objective of this study, as a continuous work, is to investigate the effect of 

the missing testing conditions: the effect of the base fluids, drilling fluid density, weight 

material types, PSD of weighting materials, and the dynamic aging condition. The 
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experiment was continuously run using the high-pressure LCM tester as an evaluation 

method (Alsaba et al. 2014 b, 2016).   

 

2. EXPERIMENTAL METHODOLOGY 

2.1 TESTING APPARATUS 

The experiment was conducted using the high-pressure LCM tester (Figure, 1) in 

conjunction with tapered slots that simulate different fracture width ranging from 1000 

to 2000 microns (Table 1). The apparatus consisted of four main components: a plastic 

accumulator used to transfer the drilling fluids to the metal accumulator, a metal 

accumulator used to inject the drilling fluids into the cell, the testing cell that can be 

pressurized up to 10,000 psi, and a high-pressure syringe pump.   

 

 

Figure, 1. High-pressure LCM testing apparatus (Alsaba et al. 2014b). 

 

Table 1. Tapered slots specifications.  

Disc Code 
Diameter 

(inches) 

Thicknes

s 

(inches) 

Slot 

Aperture 

(microns) 

Slot Tip 

(microns

) 

TS1-R7 2.5 0.25 2500 1000 

TS15 R-7 2.5 0.25 3000 1500 

TS2-R7 2.5 0.25 3500 2000 
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Fluids containing LCM treatment are forced to pass through the known fracture 

width by injecting fluids at a flow rate of 25 ml/min using the attached IscoTM pump. 

Injection continues through the initiation of the seal until a rapid increase in the pressure 

is observed, which indicates fracture sealing. Once the fracture is sealed, fluids are further 

pressurized until a significant drop in the pressure is observed due to breaking or leakage 

of the formed seal. Figure, 2 shows an example of the plot of pressure with time; the 

maximum sealing pressure is the parameter of interest.    

 

 

Figure, 2. Pressure vs. time plot obtained from a test using 30 ppb G & SCC mixed 

with 14.5 ppg OBF using 1000 microns fracture width. The maximum pressure would 

be recorded as the sealing pressure. 

  

2.2 DRILLING FLUID AND ADDITIVES 

Two types of drilling fluids were used in this experiment: water base fluid (WBF) 

and oil base fluid (OBF). The WBF consists of 7% (by weight) bentonite in 93% fresh 

water, 8.6 ppg. The WBF might be weighted up with barite or hematite to get a required 

density of the testing program before mixing with a specific LCM formulation and 

concentration.   

The OBF was a ready-mixed environmental-friendly drilling fluid supplied by an 

oil company with a density of 11 ppg. It is known that the original OBF was mixed and 

contained some amount of barite. To get a lower desired density, the 11 ppg OBF was 

diluted by adding the based oil (6.3 ppg). To get a higher density, as in the case of WBF, 

the 11 ppg OBF would also be weighted using barite or hematite.  
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In this experiment, the effect of base fluid was investigated using two sets of 

testing where the drilling fluid density for each pair of base fluid was kept constant. The 

first set of tests using the 7% bentonite WBF and the diluted OBF at a density of 8.6 ppg 

was tested to compare the results. Some of the available testing results from the previous 

study using WBF (Alsaba et al. 2014a, 2014b) were brought in for the comparison. In 

the second set, OBF at the original density of 11 ppg and the WBF raised up to 11 ppg 

using barite were used. Both sets of 8.6 ppg and 11 ppg drilling fluids were treated with 

three different formulations of LCM before being tested in the HPA. The sealing 

pressures were then used as an indicative variable to study the effect of base fluid on 

LCM slot sealing performance. 

For the effect of drilling fluid density on the sealing pressure, the drilling fluid 

densities for both WBF and OBF were adjusted to be six different densities varying from 

8.6 ppg to 16.5 ppg. The WBF was simply weighted up from 8.6 ppg using barite, while 

the OBF was either diluted with the base oil or barite was added to get the desired 

densities. The blending of graphite and sized calcium carbonated (G & SCC) with a 

concentration of 30 ppb was used for each sample treatment before being tested in the 

HPA. The difference in the sealing pressure would indicate the effect of increasing the 

drilling fluid density on LCM treatment effectiveness.  

To study the effect of using different weighting materials, hematite was 

introduced into the experiment. Along with barite, hematite was added to the density of 

OBF (11 ppg) or WBF (8.6 ppg) samples to get a density of 12.5, 14.5, and 16.5 ppg. 

Then, the drilling fluid samples were treated with 30 ppg G & SCC blend and tested in 

the HPA. Comparing the same base fluid and density, the effect on sealing ability of 

different weighting material can be observed. 

When sieving the barite and hematite, the results were slightly different from 

what was stated in API specification due to the very fine particles tended to stick with 

the coarse particles; however, the results presented that hematite contained much finer 

particle compared to barite. The used weighting materials both came from a reliable 

manufacturer and met API specification, so it was used for the analysis instead of the 

sieving results.    
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By API Specification 13A – 8.1.2 to 8.1.2, drilling grade hematite produced from 

ground hematite ores will have residue particle sizes greater than 45 microns at a 

maximum mass fraction of 15% (and greater than 75 microns no more than 1.5% mass 

fraction), while the particles smaller than 6 microns will have a maximum mass fraction 

of 15%. This information implies that at least 70 % mass fraction of the hematite particles 

are between 6 to 45 microns. One of the previous studies showed that decreasing the 

particle sizes improves the weighting materials’ suspending properties (Xiao et al. 2013). 

Hematite particles need to be ground finer to get higher surface area per volume (or mass) 

for easier suspension in the drilling fluids and prevention of sagging problems during 

circulation. 

The effect of fine particles of weighting materials on the sealing ability was 

validated through an investigation. The 11 ppg OBF used some sieved barite with 

different ranges of particle size were tested after mixing with LCM. In this paper, both 

the LCM and the weighting agent underwent PSD analysis. API Specification 13A – 

7.1.1 states that the standard drilling grade barite products should have residue particles 

greater than 75 microns at a maximum mass fraction of 3% and particle sizes less than 6 

microns at a maximum mass fraction of 30%. Barite particles ranged from 6 to 75 

microns can be approximately 67% mass fraction (or more). 

To get the different grade of barite to be mixed with the drilling fluids, the barite 

was sieved to get three ranges of particle size: course (C), medium (M), and fine (F). The 

C particles were larger than 90 microns (remaining on sieve #170). The M particles were 

equal to or smaller than 90 microns but larger than 50 microns (passing through sieve 

#170 but remaining on sieve #270). The F particles were 50 microns or finer (passing 

through sieve #270). Compared to the specification of hematite above, F barite particles 

(50 microns or finer) are very close in size compared to many of the hematite particles 

(45 microns or finer). Even though using this separating method could not ensure that 

smaller particles will not remain with the larger one, the fineness grade of the particles 

in this experiment was efficiently controlled for the smaller sizes, especially in the F 

sample. 

The result of using the ordinary (no sieve) barite would be available from the 

effect of density tests; three samples of 12.5 ppg OBF were additionally prepared. They 
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were weighted up to be 12.5 ppg by adding each range of sieved barite, C, M, or F, 

respectively. The 12.5 ppg fluid samples were treated with G & SCC at 30 ppb 

concentration before being tested in the HPA. The effect of weight agent particle sizes 

was then achieved by comparing the four sealing pressure results. 

Aging tests using aging cells heated in a roller oven were performed to inspect 

the effect of aging conditions on LCM sealing performance. WBF treated with three 

different LCM formulations was load into the aging cells and placed in the hot rolling 

oven at a predetermined temperature. After reaching the aging time, the sample was left 

to cool down to room temperature before testing in the HPA to get the sealing pressure 

as a performance indicator. The tests were run following the procedure provided in the 

manufacturer’s aging cell instruction manual (OFITE 2013).  

 

2.3 LCM FORMULATIONS 

Table 2 shows the formulations in ppb used in this paper. Seven formulations of 

LCM were used in this experiment. The blending concentration is shown in pound per 

barrel (ppb). The specification of each ingredient is indicated by the D50 values as 

obtained from the materials data sheet provided by the manufacturers.  

Table 3 presents the PSD regarding D10, D25, D50, D75, and D90 of the LCM 

formulation after blending the entire ingredient as indicated in Table 2 and conducting 

the sieve PSD analysis. A previous study (Alsaba et al. 2016) proposed that the PSD of 

the LCM blend affects the formulation sealing ability significantly and is one of the 

reasons why one LCM formulation gives a different sealing pressure compared to the 

others. However, the comparison between each formulation is not the objective of this 

paper. 

 

Table 2. LCM Treatment formulations. 

Type and D50 

(microns) 

LCM Blend 

G & 

SCC#1 

G & 

SCC#2 

G & 

SCC#3 

G & 

SCC#4 
G & NS 

G, SCC 

& CF 
NS 

Graphite (G)        

50 3 - - - 2 2 - 

100 3 - - - 2 2 - 

400 4.5 35 - - 3 3 - 

1000 4.5 - - - 3 3 - 
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Table 2. LCM Treatment formulations. (continued) 

Type and D50 

(microns) 

LCM Blend 

G & 

SCC#1 

G & 

SCC#2 

G & 

SCC#3 

G & 

SCC#4 
G & NS 

G, SCC 

& CF 
NS 

Sized calcium 

carbonate (SCC)        
5 1 - - - - 2.4 - 

25 1 - - - - 2.4 - 

40 - 35 - - - - - 

50 2 - - - - 5.2 - 

400 3 - - - - 8.4 - 

600 4 - - - - 10.8 - 

1200 4 - - - - 10.8 - 

1400 - 35 70 35 - - - 

2400 - - - 35 - - - 

Nut Shells (NS)   
     

620 - - - - 3.3 - 16.6 

1450 - - - - 3.3 - 16.6 

2300 - - - - 3.4 - 16.8 

Fine G & SCC 

Blend         
500 - - 35 35 - - - 

Cellulosic Fiber 

(CF)        
312 - - - - - 2.5 - 

1060 - - - - - 2.5 - 

 

Table 3. LCM particle size distribution obtained from blending the formulations in 

Table 2. 

LCM Blend 
Concentration  

(ppb) 

PSD (microns) 

D10 D25 D50 D75 D90 

G & SCC # 1 30  78 100 460 900 1300 

G & SCC # 2 105 65 90 420 1100 1400 

G & SCC # 3 105 90 400 700 1200 1400 

G & SCC # 4 105 170 650 1300 1900 2600 

G & NS 20 65 180 500 1300 1900 

G, SCC & CF 55 55 100 450 850 1200 

NS 50 180 400 1000 1600 2400 

 

 

3. RESULTS AND DISCUSSIONS 

Table 4 shows a summary of the testing results both from the previous studies 

(Alsaba et al. 2014a, 2014b) and this study. The information will be used to compare 

between different testing conditions discussed below. 
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Table 4. Summary of the results from previous studies (Alsaba et al. 2014a, 2014b) and 

this study. 

LCM Blend 
Total LCM 

(ppb) 
Base Fluid Disc Code 

Weighting 

Material 

Base Fluid 

Density 

(ppg) 

Sealing 

Pressure 

(psi) 

G & NS 20 WBM TS1-R7 N/A 8.6 2,372 

G, SCC & CF 55 WBM TS1-R7 N/A 8.6 1,011 

G & SCC # 1 30  WBM TS1-R7 N/A 8.6 487 

G & SCC # 2 105 WBM TS1-R7 Barite 11 2,050 

G & SCC # 3 105 WBM TS1-R7 Barite 11 2,859 

G & SCC # 4 105 WBM TS15-R7 Barite 11 2,571 

G & NS 20 OBM TS1-R7 N/A 8.6 2,398 

G, SCC & CF 55 OBM TS1-R7 Barite 8.6 1,505 

G & SCC # 1 30 OBM TS1-R7 Barite 8.6 737 

G & SCC # 2 105 OBM TS1-R7 Barite 11 1,569 

G & SCC # 3 105 OBM TS1-R7 Barite 11 1,489 

G & SCC # 4 105 OBM TS15-R7 Barite 11 1,708 

G & SCC # 1 30 

WBM 

TS1-R7 Barite 9.5 1,205 

TS1-R7 Barite 11 901 

TS1-R7 Barite 12.5 912 

TS1-R7 Barite 14.5 1,037 

TS1-R7 Barite 16.5 1,344 

OBM 

TS1-R7 Barite 9.5 1,049 

TS1-R7 Barite 11 1,050 

TS1-R7 Barite 12.5 1,191 

TS1-R7 Barite 14.5 1,214 

TS1-R7 Barite 16.5 1,238 

G & SCC # 1 30 

WBM TS1-R7 
Barite + 

Hematite 

12.5 1,507 

14.5 1,334 

16.5 1,842 

OBM TS1-R7 
Barite + 

Hematite 

12.5 1,269 

14.5 1,305 

16.5 1,283 

G & SCC # 1 30 

OBM TS1-R7 Barite (C) 12.5 1,073 

OBM TS1-R7 Barite (M) 12.5 1,134 

OBM TS1-R7 Barite (F) 12.5 1,249 

* The results from the previous study (Alsaba et al. 2014a, 2014b) were italicized. 
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Table 5 shows the results both in WBF from the aging condition tests. Data sets 

from Table 4 and Table 5 will be used for the analysis and discussion of this paper.  

 

 

Table 5. Aging condition testing results. 

 

Aging Condition 
LCM formulation and 

Concentration 

Disc 

Code 
Density (ppg) Sealing Pressure (psi) 

No aging 

NS, 50 ppb TS2 R7 

8.6 

755 

G & NS, 40 ppb TS15 R7 1,713 

G, SCC & CF, 55 ppb TS1 R7 1,011 

G & SCC#4, 105 ppb TS2 R7 11 1,606 

24 hrs @ 200 · F 

NS, 50 ppb TS2 R7 8.6 

1,713 

750 

638 

G & NS, 40 ppb TS15 R7 8.6 

676 

988 

1,474 

682 

G, SCC & CF, 55 ppb TS1 R7 8.6 

1,427 

1,979 

614 

G & SCC#4, 105 ppb TS2 R7 11 
1,879 

1,242 

72 hrs @ 200 · F 

NS, 50 ppb TS2 R7 8.6 
3,021 

1,167 

G & NS, 40 ppb TS15 R7 8.6 

421 

1,425 

470 

G, SCC & CF, 55 ppb TS1 R7 8.6 
1,544 

1,593 

24 hrs @ 400 · F 

NS, 50 ppb TS2 R7 8.6 
196 

136 

G & NS, 40 ppb TS15 R7 8.6 
99 

106 

G, SCC & CF, 55 ppb TS1 R7 8.6 
1,124 

820 

G & SCC#4, 105 ppb TS2 R7 11 
994 

1,105 

72 hrs @ 400 · F 

NS, 50 ppb TS2 R7 
8.6 

161 

G & NS, 40 ppb TS15 R7 104 

G, SCC & CF, 55 ppb TS1 R7 8.6 
111 

42 

G & SCC#4, 105 ppb TS2 R7 11 
3,067 

1,790 
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3.1 THE EFFECT OF THE BASE FLUIDS 

Figure 3 shows a comparison between each pair of base fluids with the same 

density treated with the same LCM formulations. Three pairs of the 8.6 ppg samples are 

shown on the left-hand side, while three pairs of the 11 ppg samples are shown on the 

right. All blends were tested using a slot width of 1000-microns (TS1-R7) except the last 

pairs on the right which were tested with a slot width of 1500 microns (TS15-R7). Results 

show that different types of base fluids (WBF and OBF) provided different sealing 

pressures even though they have the same density. Different LCM formulations and 

concentrations also have different sensitivity to the base fluids.  

 

 

Figure, 3. Base fluid effects on sealing pressure for each LCM formulation. The three 

pairs of WBF and OBF on the left were the results from 20, 55, and 30 ppb varied 

concentration, while the three pairs on the right were 105 ppb.  

 

The first group on the left-hand side shows the results of the three formulations: 

G & NS; G, SCC & CF; and G & SCC#1 with a concentration of 20, 55, and 30 ppb, 

respectively. With the density of 8.6 ppg and considerably lower LCM treatment 

concentrations, OBF performed better than WBF. The sealing pressure in the G, SCC & 

CF and (G & SCC#1) formulations increased by approximately 50% when used in OBF 

compared to WBF.  

Normally, OBF has a better lubricating property compared to WBF (Bourgoyne 

et al. 1986). This property can reduce friction between solid contact points and decrease 

the seal integrity. On the other hand, with the same drilling fluid density, OBF tends to 
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have more solid weight fraction (and volume fraction) than WBF because it contains less 

density base fluid. Potentially, the presence of barite particles remaining in the diluted 

OBF promoted the LCM sealing performance, forming a stronger solid seal and 

overcoming the lubricating effect. The simple 7% bentonite WBF containing only 

bentonite particles and water, with the same LCM treatment with OBF, could not perform 

as well as the OBF. At this point, the difference in lubricating property and solid volume 

fraction between WBF and OBF were believed to be the main factors affecting the sealing 

efficiency of both base fluids. The effect of the weighting material particles on the used 

LCM sealing ability will be evaluated in the following sections when the comparisons 

were done between the same base fluid. 

The G & NS formulation also sealed better in OBF but had a less increasing 

sealing pressure between the pair. This formulation was less affected by the base fluids 

under the testing condition. Considering the PSD of LCM formulations shown in Table 

3, the D90 value of the G & NS formulation is 1900 microns, which is much larger than 

the tested slot width (1000 microns). While the (G, SCC, & CF) and (G & SCC#1) 

formulations have D90 of 1200 and 1300 microns, respectively (Table 3), the D90 sizes 

are just slightly larger than the tested slot width (1000 microns). The significantly larger 

size of the bridging particles of NS compared to the slot width might reduce the effect of 

the base fluids in the G & NS case.  

  The second group on the right-hand side of Figure 3 shows the effect of base 

fluids in a different way (i.e., WBF performed better than OBF). The performance of the 

other three different LCM formulations; G & SCC#2, G & SCC#3, and G & SCC# 4; 

increased by 30%, 92%, and 50% when they were used in WBF compared to the OBF. 

One different between the two groups of results is that in the second group, higher density 

(11 ppg) drilling fluid samples were treated with a much higher LCM concentration (105 

ppb) compared to the first group (8.6 ppg drilling fluid with 20 to 55 ppb of LCM). It is 

believed that the higher concentration of the LCM, the higher concentration of barite, 

and the lubricating property of OBF supported the LCM performance better in WBF 

environment than in OBF environment. The results presented here provide strong 

evidence that base fluids do affect the LCM sealing performance.  However, its overall 

effect seems to depend on the type of LCM and should be an area of future investigation. 
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3.2 THE EFFECT OF DENSITY 

Figure 4 shows the sealing pressure from 12 HPA tests over the 1000-micron slot 

disc after the drilling fluid samples were treated with G & SCC#1 at a concentration of 

30 ppb. The densities of WBF and OBF were adjusted using barite to be six different 

densities varying from 8.6 ppg to 16.5 ppg.  

 

 

Figure, 4. Effect of increasing the drilling fluid density on the sealing pressure. 

 

The sealing pressure in OBF was increased by approximately 68% from 737 psi 

to 1,238 psi when the fluid density was increased from 8.6 ppg to 16.5 ppg. A higher 

increase of the sealing pressure, 175% increase from 487 to 1,344 psi, was observed for 

the same formulation in WBF when the fluid was weighted from 8.6 ppg to 16.5 ppg.  

Since the only variable that was changed with the fluid density is the increasing 

of the barite particles within the mixture, it is believed that barite particles affect the 

sealing integrity. If the sealing mechanism arranged the particles inside the simulated 

fractures from coarse particles (as the bridging structure), fine particles (as filling 

material), and the very fine particles (both as filling and seal-off the permeability of the 

seal), the difference in seal integrity could be explained.  

Applying basic engineering mechanics to the seal element, at the instant when the 

seal was completely developed and remained in equilibrium, the sum of external forces 

acting on the seal element in any direction must be zero (Bedford and Fowler 1998). The 

pressure forces acted within the slot opening area performed by the fluid differential 
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pressure (injecting pressure) was supported back by the slot wall in the form of reaction 

forces. The load was transferred down the seal from finer grains to the larger particles 

until it reached the coarsest bridging particles in the slot where no particles set beyond 

that barrier (Jeennakorn et al. 2017). When the particles remained in equilibrium, the 

balance of forces would not allow any particle to move but to stay at rest. Under loading 

condition, the particles deformed locally at the contact points due to the stress indentation 

(an elastic or elastic-plastic type of deformation–depending on the material properties) 

(Fischer-Cripps 2000). If the load acting on the bridging particles did not exceed the 

strength of the particles and the sizes of the particles under the local deformation were 

still greater than the slot space, no part of the seal would fail. On the other hand, if a 

bridging particle failed or if the local deformation reduced the size of the particle to be 

less than the gap between the slot walls, the particle would slip deeper into the slot and 

finally pushed through the slot. The seal would then suddenly fail because smaller 

particles accompanying the base fluid can move or flow through the suddenly available 

flow path. The failure condition would go on until the bridging structure was reformed 

by other coarse particles and the seal was in equilibrium again. The bridging structure 

(coarse particles) acted as the foundation or backbone of the seal, played an important 

role in the seal integrity.  

The forces in the granular system normally distribute in the form of the “force 

chains” (Mehta 2007), which is heterogeneous due to different grain sizes and arbitrarily 

set structure and void spaces. The nonuniform stress distribution weakens the seal 

structure because it creates the weak point (i.e., the point with a higher local stress that 

would cause failure while the other points can or try to stay in equilibrium). In this 

situation, the forces are more difficult to balance. Particles tend to move, and the seal 

would fail easier. The fine barite particles help occupy the remaining pore space of the 

seal, either between the solid particles or against the solid particles and the wall. They 

turn the granule-packed seal into a more homogeneous wedge-shaped object, increase 

the overall strength of the seal by increasing the contact points within the granular system 

and improve the forces-distribution to be more uniform. Increasing the number of contact 

points and the contact areas also reduces the local stress concentration within the bridging 

particles, which decreases the chance of the particles to be locally deformed. 
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Since forces transmitted at the points of contact are composed of normal forces 

and frictional (tangential) forces (Johnson 1985), the slot walls support the seal element 

by both the normal component and the friction component. While the coarse particles set 

in place as the first barrier, the normal and frictional forces control the equilibrium of the 

seal. As discussed above, better force distribution improves both the normal and friction 

force distribution to be more uniformed within the seal element. Improving the normal 

force distribution to the walls also improves the friction, and the better the friction, the 

higher the seal element can withstand the overall load. Overall, the load can be transferred 

more uniformly toward the slot walls and better shared among the particles, resulting in 

higher seal integrity. The barite particles may also improve the friction coefficient 

between the contact particles, which can improve the magnitude of the frictional force 

holding the seal in place as in the case of hematite, which will be discussed later.  

From the flattened increasing of sealing pressure in 12.5 – 16.5 ppg (Figure 4), 

appears that there might be an optimum point where the proper size distributed particles 

in the system are just right to fill the pore spaces. The LCM performance will not improve 

beyond that point.  

 

3.3 THE EFFECT OF WEIGHTING MATERIALS: BARITE VS. 

HEMATITE 

From the result of the effect of density tests, some experiments were continued to 

investigate the effect of changing the weighting material types on the sealing ability. The 

same G & SCC#1 blended at 30 ppb was used to treat the drilling fluid samples. The 11 

ppg OBF (with some amount of barite) and the 8.6 ppg WBF was weighted with hematite 

to get the desired densities of 12.5, 14.5, and 16.5 ppg.  

Figure 5 compares the results from using hematite as a weighting agent with the 

previous results of using barite. The results confirm that in the range of density from 12.5 

to 16.5 ppg, increasing the density slightly improved the sealing pressure for both WBF 

and OBF. In OBF, adding hematite into barite-weighted samples resulted in a slight 

increase of the sealing pressures (broken arrows), but in WBF, using only hematite 

improved the sealing ability of the LCM treatment significantly (solid arrows).  
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Figure, 5. The effect of weighting materials between barite and hematite. In WBF, the 

weighting agent was used only barite or hematite, but in OBF, the 11 ppg barite-treated 

drilling fluid’s density was increased to the target density using barite or hematite. 

 

Like the case of adding barite, the finer hematite particles of hematite could better 

fill in the pore spaces of the particulate system, providing a stronger seal barrier against 

the slot walls. Another reason that can explain the sealing pressure improvement using 

hematite comes from the previous study that states the hematite particles are more 

abrasive than the barite particles (Tehrani et al. 2014). It is then believed that the hematite 

particles not only increase the contact points and contact areas, but also improve the 

frictional force component (friction coefficient) to be higher than using barite, and helps 

further increase the sealing ability of the LCM. Note that OBF contained some amount 

of barite from the originally supplied drilling fluid. A Smaller amount of hematite was 

added to increase the OBF 11-ppg density to the desired densities compared to WBF, 

where only hematite was added to the 8.6-ppg (7% by weight) bentonite drilling fluid. 

This might be the reason why the sealing ability improved less in OBF compared to WBF. 

Figure 6 shows the sealing pressure obtained from the test using different sizes 

of sieved barite to increase the WBF density from 8.6 ppg to 12.5 ppg before applying G 

& SCC#1 treatment at 30 ppb. Compared to the regular barite (no sieve), the fluid sample 

with fine barite (F) gave a better sealing pressure, while the medium (M) and coarse 

particles (C) decreased the sealing performance. 
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Figure, 6. Effect of adding three ranges of sieved barite particles on the sealing 

pressures of 12.5 ppg OBF treated with G & SCC#1 at 30 ppb. Variation of barite 

particle sizes causes the sealing pressures to be varied from 1,073 psi to 1,249 psi. 

 

Using F barite brought the sealing pressure up from the case of non-sieve barite 

(1,191 psi) to a higher pressure (1,249 psi); it is closer and comparable to the result of 

the 11-ppg OBM adding hematite (1,269 psi) under the same condition. The size of F 

barite particles is 50 microns or less, while the size of hematite particles is 45 microns or 

less for 70% or more by weight. Considering the PSD of the used LCM formulation (G 

& SCC#1), it is noticeable that this formulation had a D10 value of 78 microns. It was 

likely that both barite and hematite particles fulfilled the gap-filling requirement of the 

sealing system, where the improvement was found to be smaller in OBF. However, the 

results confirmed the idea that weight agent particle size affects the seal integrity. 

  

3.4 THE EFFECT OF DYNAMIC AGING CONDITIONS 

This experiment was set up to investigate the effect of aging conditions on LCM 

performance. Using OFITE aging cells and a rolling oven, two temperature levels were 

selected to be used. First, a high temperature of 400 °F was used in the tests to evaluate 

temperature degradation of LCMs. Secondly, 200 °F was used to achieve a normal 

temperature condition in drilling. Two aging times, 24 and 72 hours, were selected to be 

run as a primary laboratory investigation. 
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After aging, the drilling fluid samples were moved from the oven and let cool to 

room temperature before being tested in HPA. Figure 7 shows the measured sealing 

pressure of the drilling fluid sample after a specific aging condition compared to non-

aged results from previous tests. 

In high temperature with aging conditions at 400 °F (Figure 7), the NS blend and 

G & NS blends failed to develop strong seal after applying 400 °F aging condition for 24 

hours, but the G, SCC, & CF formulation still had the ability to seal after 24 hours, then 

failed in a 72-hour test. The 400 °F aging condition does not affect the sealing ability of 

the G & SCC#4 formulation for at least 72 hours of the aging test. The thermal stability 

of the LCM particles controls how LCM performs in the aging tests.  

Figure 7 also shows the results of the lower temperature aging condition at 200 

°F for 24 hours and 72 hours of aging time. The NS formulation tends to increase sealing 

efficiency with aging time. This result confirms the previous study on the effect of 

temperature on LCM sealing efficiency (Alsaba et al. 2014c). 

 

 
 

Figure, 7. Sealing pressure of the drilling fluids treated with different LCM after 

subjected to different aging conditions. 

 

Inversely, the G & NS blend (which has 50% weight of G) tends to decrease 

sealing ability with the aging time. While the NS improved the sealing pressure, the G 

strongly decreased the sealing ability of the mixture. The previous study about LCM 

shear degradation presented the idea about the decreasing in size of LCM particles under 
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the dynamic flow of drilling fluids (Valsecchi 2014). The degree of degradation of LCM 

depends on the density of the particles, the density of drilling fluids, the size of particles, 

and the fluid viscosity. It was possible that some of the G particles decreased their sizes 

under the rolling conditions, resulting in lower sealing efficiency. Further study is needed 

to understand the behavior of G under this aging conditions. 

The G, SCC & CF blend contained only 18% weight of G, so it was not affected 

much by the aging conditions, but still gave the same trend as NS, where sealing pressure 

increased with time of aging. Obviously, CF (9% weight) should have the same swelling 

property as NS that improves sealing pressure under higher temperature. From this 

experiment, the G & SCC #4 formulation was not affected by the aging condition in terms 

of sealing efficiency. The formulation contains less than 30% G, which still showed a 

good sealing integrity under a 72-hours of aging time.  

 

4. CONCLUSIONS 

- Different LCM formulations respond differently to the different testing 

conditions depending on the physical properties of the individual ingredient and the effect 

of the testing conditions on them. 

- LCM behaves and performs differently in different base fluids.  

- The interactions between fluid and solid grains under dynamic conditions and 

the static of formed seal with complex interactions between the solid grains need further 

study. 

- Increasing the drilling fluid density before applying any LCM treatment tends 

to increase the seal integrity, interrelating with the added solid particles.  

- Increasing the weighting material particles helps improve the sealing ability of 

the seal. It is believed that the proper range of particle sizes occupy the seal pore space, 

increase the number of contact points and contact areas, and result in more effective load 

distribution within the seal structure and against the slot walls. 

- For each type of weighting material, adding a proper range of particle sizes can 

fulfill the insufficient particle sizes in the LCM formulation, promoting the sealing ability 

of the mixture. 

- Increasing drilling fluids’ density using hematite improves LCM performance 
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better than using barite alone. It is believed that the proper size of fine particles, combined 

with the grain abrasiveness, improve the seal strength and the frictional forces supporting 

the seal structure. 

-  The PSD of the mixture is the final PSD that affects the sealing ability, not only 

the PSD of the LCM alone. 

- The aging condition affects the performance of LCM differently. It might 

promote or reduce the sealing pressure at a practical temperature (200 °F) depending on 

the LCM thermal properties. 

- Some formulations failed to perform a strong seal at a higher temperature (400 

°F) especially the ingredients made from natural plant products. 

- The sealing ability of the formulation containing G & SCC was not affected by 

aging conditions for up to at least 72 hours due to the temperature stability of the 

materials. 
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III. SEALING PRESSURE PREDICTION MODEL FOR LOST 

CIRCULATION TREATMENTS BASED ON EXPERIMENTAL 

INVESTIGATIONS 

ABSTRACT 

Lost circulation events are one of the major contributors towards drilling-related 

non-productive time (NPT). Lost circulation materials (LCMs) are often applied as a 

remedial action to alleviate drilling fluid losses into fractured formations. In normal 

overbalanced drilling operations and when designing lost circulation treatments, it is 

important that the formed seal within the fractures maintain at least the minimum 

overbalance pressure without breaking. Predicting the sealing pressure of LCMs 

treatments, which is defined as the maximum pressure at which the formed seal breaks 

and fluid losses resumes, is crucial for an effective fracture sealing. This paper presents 

a linear model for sealing pressure prediction.  

A statistical analysis was conducted on a data set, which was developed from a 

previous experimental investigation, to understand the relationship between different 

parameters and the sealing pressure of LCM treatments. The investigated parameters 

include fracture width, fluid density, LCM type/blend, base fluid, and particle size 

distribution (PSD).  

The statistical analysis showed that the sealing pressure is highly dependent on 

the fracture width, fluid density, and PSD. A predictive linear fit model, which could be 

used as a useful tool to design LCM treatment prior to field application, was developed. 

The developed model correlated well with the collected data and resulted in an overall 

model accuracy of 80%.  

Knowing the dominant parameters affecting the sealing pressure will help in 

designing LCM treatments that are capable of sealing expected fracture widths as well as 

maintaining high differential pressures and thus, effectively mitigating fluid losses as 

soon as they occur. 
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1. INTRODUCTION 

Lost circulation events are considered to be one of the challenging problems to 

be prevented or mitigated where approximately 1.8 million bbls of drilling fluids are lost 

per year (Marinescu, 2014). This number explains the operational challenges caused by 

lost circulation. In addition, lost circulation events could delay further drilling and thus 

contributing towards increased cost of drilling operations as a result of non-productive 

time (NPT).  

Proper remedial actions, as per a pre-designed contingency plan or decision trees 

(Savari and Whitfill, 2016), are often taken to mitigate or stop the losses once they occur 

depending on the loss severity. However, these contingencies plans neglect the need for 

the experimental evaluation of the most effective LCM blend on the rig site (Savari and 

Whitfill, 2016).  

To verify the effectiveness of designed treatments, laboratory evaluation is a 

crucial step prior to field application. Different testing methods are used to evaluate the 

performance of LCM treatments, based on the fluid loss volume at a constant pressure, 

such as the particle plugging apparatus (PPA) or the high-pressure-high-temperature 

(HPHT) fluid loss in conjunction with slotted/tapered discs or ceramic discs (Whitfill 

2008; Kumar et al. 2011; Kumar and Savari 2011).  

Other testing equipment has been developed to evaluate the sealing efficiency of 

LCM treatments in sealing permeable/impermeable fractured formations (Hettema et al. 

2007; Sanders et al. 2008; Van Oort et al. 2009; Kaageson-Loe et al. 2009). Both particle 

size distribution (PSD) and total LCM concentration were found to have a significant 

effect on the sealing efficiency. It was also concluded that the fluid loss volume is not a 

good parameter to measure the sealing efficiency of LCM treatments. 

PSD is often used as the designing parameter for LCM treatments where different 

models such as Abrams median particle-size rule (Abrams, 1977), ideal packing theory 

(IPT) (Andreasen and Anderson, 1930), and Vickers method (Vickers et al. 2006) are 

used to optimize PSD.  

The effect of other LCM properties such as crushing resistance, resiliency, and 

aspect ratio on the overall performance of LCM blends were evaluated by Kumar et al. 
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(2010). It was concluded that higher crushing resistance and resiliency are desirable for 

both controlling fluid losses and wellbore strengthening applications.   

In normal overbalanced drilling operations (i.e. drilling fluid pressure higher than 

formation pressure), a minimum static overbalance pressure of 150-300 psi is required to 

prevent formation fluid influx (Jahn et al. 2008; Rehm et al. 2012; The Drilling Manual, 

2015). Therefore, when designing LCM treatments, it is important to ensure that the 

selected LCM blend is able to seal fractures effectively and stop losses. In addition, the 

formed seal within the fracture should withstand at least the minimum overbalance 

pressure without failing. 

The main objective of this paper is to introduce the sealing pressure prediction 

model, which was developed based on a large data collected from experimental 

evaluation of different LCM blends used to seal different fracture widths at different fluid 

types and densities. The model can be used as a tool to evaluate the performance of the 

selected LCM treatment from the contingency plan without the need for extra 

experimental evaluation. 

 

2. PREVIOUS EXPERIMENTAL INVESTIGATION 

The sealing pressure of LCM treatments was previously (Alsaba, 2015) measured 

using a high-pressure LCM testing apparatus. The sealing pressure is defined here as the 

maximum pressure at which the formed seal breaks and fluid loss resumes. Figure 1 

shows a schematic of the experimental setup, where a plastic accumulator (1) used to 

transfer the drilling fluids to the metal accumulator (2) prior to pressurizing the fluids 

containing LCM treatments inside the testing cell (3) through the tapered discs (4) using 

an IscoTM pump (DX100) (5) to provide injection pressure, which was connected to a 

computer to record pressure vs. time.  

The effects of varying LCM type, formulation, concentration, fracture width, 

particle size distribution, base fluid, and density were studied with respect to differential 

pressure. The main objectives were to establish a better understanding of how these 

parameters could affect the sealing efficiency (in terms of pressure) of LCMs and identify 

their limitations in sealing fractures.  
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Figure' 1. Schematic of the High-Pressure Testing Apparatus. 

 

High-pressure tests were conducted on different LCM treatment formulations 

containing conventional LCMs such as graphite (G), sized calcium carbonate (SCC), nut 

shells (NS), and cellulosic fiber (CF) (Detailed formulation can be found in Alsaba, 2015) 

to evaluate their sealing efficiency at different fracture width varying between 1000 – 

3000 microns. The LCM treatments were tested in both water-based mud (WBM) and 

oil-based mud (OBM) at different fluid densities ranging between 8.6 lb/gal and up to 

16.5 lb/gal. The concentrations and the PSD of the LCM blends, which was measured 

using dry sieve analysis, used in this study are shown in Table 1. 

 

3. STATISTICAL METHODS 

Statistical analysis of the LCM sealing pressure results for 75 high-pressure tests 

was performed to define the parameters with the highest effect on the sealing pressure. 

A statistical analysis was conducted using JMPTM statistical analysis software to 

understand the relationship between the different investigated parameters such as fracture 

width, LCM type/blend, base fluid, and PSD on the performance of LCM in terms of the 

sealing pressure.  

(4) 

(2) 

(5) (3) 

(1) 

(4) 



 

 

79 

First, a regression analysis was conducted by performing a multiple linear 

regression analysis to model a relationship between 9 explanatory variables and the 

sealing pressure response. The 9 variables used are fracture width, LCM type/blend, base 

fluid, fluid density, and the five D-values obtained from PSD analysis; D10, D25, D50, 

D75, and D90. 

 

Table 1. Summary of the Particle Size Distribution Analysis for the Different 

LCM Blends. 

LCM Blend 

Total 

Conc. 

(ppb) 

Particle Size Distribution (microns) 

D10 D25 D50 D75 D90 

G # 1 15 60 85 320 800 1300 

G # 1 50 60 95 340 800 1300 

NS # 1 15 180 400 1000 1600 2000 

NS # 1 50 180 400 1000 1600 2400 

SCC # 3 50 250 360 680 950 1200 

CF # 1 15 90 140 220 700 1400 

CF # 1 50 90 150 220 800 1400 

G & SCC # 1 30 80 100 460 900 1300 

G & SCC # 1 80 80 120 480 900 1300 

G & SCC # 3 105 65 90 420 1100 1400 

G & SCC # 4 105 60 150 500 700 900 

G & SCC # 5 105 90 400 700 1200 1400 

G & SCC # 6 105 100 500 900 1250 1400 

G & SCC # 7 105 170 650 1300 1900 2600 

G & SCC # 8 105 100 250 1000 1800 2400 

G & SCC # 9 105 300 800 1400 1800 2200 

G & NS # 1 20 65 180 500 1300 1900 

G & NS # 1 40 80 180 580 1400 2000 
 

 

   

The probability test (F-test) was performed to test the influence of each parameter 

on sealing pressure. The F-test provides a P-value, where the P-value is basically a 

statistical probability that the predicted value (in this case the F-value) is similar or very 
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different from the measured value, assuming a true null hypothesis (H0) that proposes no 

influence of a specific variable on the sealing pressure (Montgomery, 2001).  With a 

confidence interval of 95% and type I error (α) of 0.05, P-values less than 0.05 suggests 

rejecting the null hypothesis (H0) and accepting an alternative hypothesis (H1).  

The alternative hypothesis suggests that the sealing pressure is influenced by a 

specific variable. The F-test is calculated based on the variance of the data as: 

 

𝐹 =
𝑆1

2

𝑆2
2                    (1) 

 

where 𝑆1
2 is the variance of the first sample and 𝑆2

2 is the variance of the second sample. 

The variance can be defined as the average squared difference from the mean. 

Leverage plots for the general linear hypothesis, introduced by Sall (1990), were 

plotted for each of the 9 variables (predictors) to show their contribution to the predicted 

sealing pressure. The Effect Leverage plot is used to characterize the hypothesis by 

plotting points where the distance between each point to the fit line shows the 

unconstrained residual while the distance to the x-axis shows the constrained residual by 

the hypothesis. The constrained sealing pressure for each parameter under the hypothesis 

can be written as:  

 

𝑏0 = 𝑏 − (𝑋′𝑋)−1𝐿′𝜆                  (2)  

 

where b is the least square, (𝑋′𝑋) is the inverse matrix (the transpose of the matrix data 

being D-values and other parameter, used to enforce orthogonality), and λ is the 

Lagrangian multiplier for the hypothesis constraint (L). The residual constrained by the 

hypothesis (r0) is:  

 

𝑟0 = 𝑟 + 𝑋(𝑋′𝑋)−1𝐿′𝜆                        (3) 
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where the Lagrangian multiplier is defined as:  

 

𝜆 = (𝐿(𝑋′𝑋)−1𝐿′)−1𝐿𝑏.                      (4) 

 

The residuals unconstrained by the hypothesis (r) are the least squares residuals 

defined as:  

 

𝑟 = 𝑦́ − 𝑋𝑏.                        (5) 

 

The Leverage plot is constructed by plotting vx on the x-axis (Eq. 6) versus vy on 

the y-axis (Eq. 7). vx values represent the difference in the residuals caused by the 

hypothesis, which is the distance from the model fit line to the x-axis while vy values are 

vx plus the unconstrained residuals.  

 

𝑣𝑥 = 𝑋(𝑋′𝑋)−1𝐿′𝜆.            (6) 

 

𝑣𝑦 = 𝑟 +  𝑣𝑥.              (7) 

 

The sealing pressure residuals are regressed on all predictors except for the 

variable of interest while the x-residuals (variable of interest) are regressed on all other 

predictors in the model. The mean of the sealing pressure, without the effect of the 

variable of interest, is plotted as well as a least square fit line and confidence interval for 

easier interpretation of the results. The upper and lower confidence interval could be 

plotted using Eq. 8 and Eq. 9, respectively. The least squares fit line slope is a measure 

of how the tested variable affects the sealing pressure i.e. a non-zero slope implies that 

the tested variable will affect the sealing pressure (Sall, 1990). When x = [1 x] is the 2-

vector of regressors, 

 

𝑈𝑝𝑝𝑒𝑟 (𝑥) =  𝑥𝑏 +  𝑡𝛼/2𝑠√𝑥(𝑋′𝑋)−1𝑥′                         (8) 

 

𝐿𝑜𝑤𝑒𝑟 (𝑥) =  𝑥𝑏 −  𝑡𝛼/2𝑠√𝑥(𝑋′𝑋)−1𝑥′  .                        (9) 
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4. STATISTICAL ANALYSIS RESULTS 

Figures 2 to 10 show the Effect Leverage plots for each parameter with the 

resulting P value. The blue dashed line represents the mean sealing pressure, the solid 

red line represents the fitted model, and the dashed red line represents the confidence 

interval (5% confidence level). If the mean sealing pressure is inside the confidence 

interval envelope the parameter does not have any significant effect on sealing pressure. 

If the confidence interval crosses the mean pressure at a high angle, it has a significant 

contribution to sealing pressure.  

Figure 2 shows the effect of fracture width in the sealing pressure. The effect of 

fracture width is very significant since the confidence interval curves crossed the mean 

pressure with a high slope. The P-value of 0.0003 also indicates that the fracture width 

influenced the predicted sealing pressure. The effect of fluid density (Figure 3) was also 

pronounced since confidence curve crossed the horizontal line with a P-value that is less 

than 0.05 suggesting a good correlation. 

 

 

Figure' 2. Leverage Plot Showing the Effect of Fracture Width on Sealing Pressure. 
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Figure' 3. Leverage Plot Showing the Effect of Density on Sealing Pressure. 

 

The effect of D90 was the third significant parameter to affect the prediction of 

sealing pressure. The Effect of D90 can be clearly seen (Figure 4) with a P-value that is 

slightly larger than 0.05. The variation in LCM blends showed also a clear effect with P-

value 0.1147 (Figure 5). 

 

 

Figure' 4. Leverage Plot Showing the Effect of D90 on Sealing Pressure. 
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Figure' 5. Leverage Plot Showing the Effect of LCM Blend on Sealing Pressure. 

 

The Effect Leverage plots (Figures 6 – 10) for D75, base fluid, D25, D50, and 

D10, respectively shows less effect on the sealing pressure with P-values ranging 

between 0.2863 and 0.9817. However, the less significance of these parameters might be 

due to the outliers in the analyzed data set.  

 

 

Figure' 6. Leverage Plot Showing the Effect of D75 on Sealing Pressure. 
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Figure' 7. Leverage Plot Showing the Effect of Base Fluid on Sealing Pressure. 

 

The predictive linear fit model shown in Figure 11 shows a good correlation with 

an R2 of 80% and a P-value less than 0.05. The residual plot (Figure 12) showed the data 

being randomly distributed around the x-axis, verifying that a linear model was 

appropriate for the collected data. Table 2 summarizes the P-values for the different 

variables as well as the model fit R2.  

 

 

Figure' 8. Leverage Plot Showing the Effect of D25 on Sealing Pressure. 
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Figure' 9. Leverage Plot Showing the Effect of D50 on Sealing Pressure. 

 

From the statistical analysis, it can be seen that the sealing pressure was highly 

dependent on the different parameters in the following order: fracture width, fluid 

density, D90, LCM blend/type, D75, base fluid, D25, D50, and D10. Out of these 

parameters, the fracture width cannot be controlled and the fluid density should be 

designed based the mud weight window.  

 

 

Figure' 10. Leverage Plot Showing the Effect of D10 on Sealing Pressure. 
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Figure' 11. Leverage Plot Showing the Actual Sealing Pressure versus the Predicted 

Sealing Pressure using the fit model. 

 

 

Figure' 12. Residual Plot of Sealing Pressure versus the Predicted Sealing Pressure. 
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Table 2. Effect of Different Parameters on the Sealing Pressure and Model Fit. 

Parameter Unit P-Values 

Fracture Width (microns) 0.00028 

Density (lb/gal) 0.00267 

D90 (microns) 0.05957 

LCM Blend N/A 0.11473 

D75 (microns) 0.28628 

Base Fluid (WBM/OBM) 0.30786 

D25 (microns) 0.60427 

D50 (microns) 0.75352 

D10 (microns) 0.98169 

Model Fit 

R2 0.8 

 

 

 

 

5. SEALING PRESSURE PREDICTION MODEL 

Based on the multiple linear regression analysis, which was used to model the 

relationship between the different parameters and the sealing pressure, a predictive linear 

fit model to predict the sealing pressure was developed (Eq. 10). 

 

𝑆𝑒𝑎𝑙𝑖𝑛𝑔 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑝𝑠𝑖) =  𝐴1 + 𝐹𝑙𝑢𝑖𝑑𝐶𝑜𝑒𝑓𝑓.  + (𝐴2 𝜌𝐹𝑙𝑢𝑖𝑑  ) + 𝐿𝐶𝑀𝐶𝑜𝑒𝑓𝑓.  + (𝐴3  × 𝐹𝑤  ) 

+(𝐴4 𝐷10) + (𝐴5 𝐷25) + (𝐴6 𝐷50) + (𝐴7 𝐷75) + (𝐴8 𝐷90) 

                                                                                                                                                                   

where the constants A1 through A8 are as follows: 

 

A1 =  - 12006.89 A2 =  122.4        A3 =   - 0.9    A4 =  - 1.85  

 A5 =  8.93   A6 =  -7.28         A7 =   9.69  A8 =     2.45 

 

and ρFluid = fluid density in (lb/gal), Fw = fracture width in (microns), D10, D25, D50, 

D75, and D90 are the particle size distribution in (microns).  

(10) 
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The other coefficient for the type of fluid and the LCM blend are tabulated in 

Table 3 below.  

 

Table 3. Empirical Coefficients for the Fluid Type and the Different LCM Blends. 

Fluid Coefficient 

OBM -87.5 

WBM 87.5 

LCM Blends Coefficient  

CF # 1 2881.496 

G # 1 2995.117 

G, SCC, & CF # 1 4251.583 

NS # 1 -3153.86 

SCC # 3 2418.024 

G & SCC # 1 3207.762 

G & SCC # 3 1298.886 

G & SCC # 4 5353.874 

G & SCC # 5 364.3878 

G & SCC # 6 -1011.73 

G & SCC # 7 -6158.57 

G & SCC # 8 -4532.94 

G & SCC # 9 -5785.11 

 

 

6. CONCLUSIONS 

- A better understanding of the reasons behind the variation in LCM performance 

by means of experimental results and statistical methods was achieved. 

- The statistical analysis showed that the sealing pressure is highly dependent on 

the fracture width, fluid density, and PSD.  

- Parameters with the most significant influence on sealing pressure are fracture 

width, fluid density, D90, LCM blend/type, D75, base fluid, D25, D50, and D10 

respectively.  
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- A predictive linear fit model, which could be used as a useful tool to design 

LCM treatment prior to field application, was developed using the parameters with 

significant influence on sealing pressure.  

- The developed model correlated well with the collected data and resulted in an 

overall model accuracy of 80%. 

- The knowledge of the dominant parameters affecting the sealing pressure will 

ensure designing LCM blends that are capable of sealing expected fracture widths that 

can maintain high differential pressures. 

- Predicting the sealing pressure of LCM blends in advance will help in mitigating 

fluid losses as soon as they occur without further extensive laboratory evaluations.  
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NOMENCLATURE 

NPT None-productive time 

LCM  Lost circulation material  

PSD Particle size distribution 

PPA Particle plugging apparatus  

HPHT High pressure high temperature 

IPT Ideal packing theory  

WBM Water-based mud 

OBM Oil-based mud 

G Graphite  

SCC Sized calcium carbonate 

NS Nutshells 

CF Cellulosic fiber  

Conc. Concentration in lb/bbl 
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IV. EFFECT OF EXPERIMENTAL SETUP ON LOST CIRCULATION 

MATERIALS EVALUATION RESULTS 

ABSTRACT 

Laboratory experiments with slotted disks simulating fractures have been used 

extensively to evaluate loss circulation materials. The amount of fluid loss and sealing 

pressure have been used as evaluation criteria. The question that remains is how valuable 

are these tests for use in real life conditions in the wellbore when flow conditions and 

particle settling will be different from the laboratory tests. To address this question, a 

water-based mud with added loss circulation materials (LCM) were tested with four 

different experimental setups. For the two first experiments, the slotted disk was placed 

at a bottom of a cell, filled with a drilling fluid with LCM added, and the flow rate was 

either a constant flow rate of 25 ml/min or instantaneous pressure build up from a bladder 

accumulator. For the other two experiments, the slotted disk was placed upward in a 

cylinder, filled with drilling fluid with LCM additives, and a flow rate of 25 ml/min were 

used. When necessary, a paddle stired the drilling fluid to ensure a homogenous fluid. 

The results showed the experiments with the same flow rate of 25 ml/min gave 

comparable results. However, changing the flow rate from 25 ml/min to 6,000 ml/min 

flow rate did change the seal forming results. The effect from running the experiments 

with the slotted disk placed downwards or upwards did not have a significant effect on 

the sealing pressure. When stirring the sample, a higher fluid loss was required before 

the sample sealed and the maximum seal pressure was lowered. Therefore, caution should 

be taken when quantitatively comparing LCM tests on slot disks from different 

experimental setups with different flow conditions. 

 

1. INTRODUCTION 

Lost circulation is defined as the loss of drilling fluid in the wellbore to the 

formation, during drilling or completion, occurring when encountering highly permeable 

unconsolidated sand or gravels, cavity or cavernous, natural fracture, and induced 

fractured formations (Howard & Scott, 1951). The severity of the of losses can be divided 

as seepage losses (1-10 bbl/hr), partial losses (10 to 500 bbl/hr), and severe losses (over 
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500 bbl/hr) (Nayberg, 1986). To prevent loss circulation, loss circulation materials 

(LCM) are added to the drilling fluid. A comprehensive review of LCM types and their 

usage can be found in Alsaba et al (2014a).  To investigate the effectiveness of the LCM 

laboratory experiments are conducted (Scott & Lummus, 1955; White, 1956; Loeppke et 

al., 1990; Hettama et al., 2007; Kageson-Loe et al., 2009; Kumar et al., 2011a, 2011b; 

Alsaba et al., 2014b, 2014c, 2016; Mostafavi et al., 2011; Xu et al., 2014; Baggini 

Almagro et al., 2014; Canson, 1895; Kefi et al., 2010).  

The objective of this paper is to address how changing the experimental setup and 

flow conditions affect the experimental LCM performance, using steel slots to simulate 

fractures for lost circulation treatment in fractured impermeable formations. 

 

2. EXPERIMENTAL SETUP 

To study the effect of changing of setup and flowing conditions on LCM 

performance, the testing apparatuses were set up to meet the objectives. The variation 

included a slow (25 ml/min) and instantaneously high injection flow rate with the slotted 

disc placing at downward of the testing cell; and a slow injection rate (25 ml/min) with 

the disc placing at the top of the cell, with and without stirring conditions. Four different 

experimental setups were used along with a 2000-microns-width stainless steel, 

simulated fracture discs.  

The first and second set of experiments were run using the first setup. Figure 1 is 

the schematic of the first apparatus showing the disc placed downward of the cell. The 

tests can be run with or without the bladder accumulator.  

In the first set of tests (Condition#1), the experiments were run using a continuous 

flow at 25 ml/min flow rate. A syringe pump (1) provided a continuous flow of water to 

displace drilling fluid from the steel accumulator (2) to flow along the injecting line (3) 

into the testing cell (4). A slotted disc (5) was placed inside the testing cell on a spacer 

cylinder. The spacer provided a room for fluid and LCM that passes through the slot 

during the test to prevent plugging or restriction of flow at the cell outlet. The fluid 

sample (drilling fluid treated with LCM) placed in the space above the slotted disc was 

forced to flow through the slotted disc. 
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Figure 1. Schematic of the first testing apparatus (Modified from Alsaba et al. 2016).  

 

The injecting pressure built up in the injecting line after seal development on the 

discs was automatically detected by the syringe pump pressure transducer. The sealing 

pressure and the fluid losses collected at the cell outlet were recorded and used as the 

performance indicator. The plastic accumulator (6) was used to supply the drilling fluid 

to the steel accumulator when it was empty by manipulating the valves in the system. 

The second set of tests (Condition#2) were the instantaneous flow test, where the 

bladder-type accumulator (7) was installed. The nitrogen gas inside the bladder provided 

an instantaneous flow from the pneumatic spring action of the gas expansion. The flow 

was found to have a rate of 6,000 ml/min, comparable to a lost circulation rate of 190 

gpm (270 bbl/hr) from a well with a 20-foot-long fracture (2000-micron fracture width) 

on the borehole wall (Jeennakorn et al. 2017).   

The third (Condition#3) and the fourth set of tests (Condition#4) were run with 

the second set of apparatuses. The test system was a modified fluid loss tester cell where 

the stainless-steel cell was enclosed in a chamber which could provide an elevated 

temperature (elevated temperature was not used for these experiments). The schematic 

of the setup used for the third and fourth set of experiments is shown in Figure 2a with a 

picture of the system in Figure 2b. 
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A piston pump (1) provided a continuous flow of water (25 ml/min) to displace 

drilling fluid from the steel accumulator (2) to flow along the injecting line (3) into the 

bottom of the testing cell inside the chamber (4). The same slotted disc (Figure 1) was 

placed inside the top part of the testing cell with spacer cylinder (5). The fluid treated 

with LCM was forced to flow through the slot (from bottom to the top, upside down with 

the first apparatus).  

 

 

 

Figure 2. Schematics of the second apparatus. a) Schematics of The Dynamic Fluid 

Loss & Seal Efficiency Tester. b) Picture of the system. 

 

As same as the first set up, the injecting pressure was recorded by the pressure 

transducer, where the fluid losses could be collected at the outlet. The plastic accumulator 

a) 

(1) 

(2) 

(3) 
(4) 

(5) (6) (7) 

b) 

(1) 
(2) (3) 

(4) 

(5) 

(6) 

(7) 
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(6) was used to supply the drilling fluid to the steel accumulator when it was empty. The 

bladder accumulator (7) was also installed in the system, but not used in this experiment.  

The testing cell was equipped with a rotating paddle, installed in the test chamber 

(Figure 3a). The paddle was driven by a flexible shaft, providing the rotating torque from 

an electric motor in the panel box. The paddle was not used for the third set of tests but 

used to perform a circulating condition inside the cell for the fourth testing condition. 

Originally, the testing cell was designed to be used in the downhole environment 

fluid loss tests. Modifications were made to build a room for the installation of the 

fracture disc with a cylinder spacer, on the top part of the cell (when the test cell was 

installed in the test chamber in Figure 2) as shown in figure 3b.  

 

 

 

Figure 3. The testing cell of the second apparatus. a) The original from the 

manufacturer, and b)the modified cell for fracture disc sealing tests. 

 

The tests in the thirds set were run under the same procedure with the first set of 

experiment, except the disc position was changed from the bottom part of the cell (facing 

up) to be installed at the top part of the cell (facing down). The fourth set of experiments 

were run the same as the third set, but the paddle was rotated at 150 rpm during the tests. 

The mixture of drilling fluid and LCM inside the cell was stirred continuously to 

investigate the dynamic condition on LCM performance. The sealing pressure and the 

fluid loss volume were also used as the evaluating parameters.  

a) 

b) 
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For all the four set of tests, a blending of graphite (G) and sized calcium carbonate 

(SCC) was used at a concentration of 105 ppb (Alsaba et al., 2014b). Table 1 shows the 

LCM formulations by the type of LCM with the concentration of the products with 

particle size distribution as indicated by the manufacturer.  

 

Table 1. LCM formulation used in the tests. 

Type of LCM D50 (microns) Concentration (ppb) 

Sized calcium carbonate 

(SCC) 

1400 35 

2400 35 

Fine G & SCC Blend  500 36 

 

 

Table 2 shows the particle size distribution of the LCM after dry blending as the 

formulation in Table 1. 

 

Table 2. PSD of used LCM using sieve analysis method. 

PSD of G & SCC after blending 

D10 D25 D50 D75 D90 

170 650 1300 1900 2600 

 

The drilling fluid used as the base fluid and injecting fluid was a simple 7% 

bentonite (by weight) water-based fluid, 8.6 ppg. It was used for the test conditions #2 to 

#4. The test condition #1 was previously conducted using 11 ppg which is basically the 

7% bentonite drilling fluid with some barite as a weighting agent. Previous investigation 

(Jeennakorn et al. 2017) presented that the base fluid density has a positive effect on the 

sealing pressure in 1000 microns slotted disc, so the data was used carefully with the 

density effect in mind. 

 The same tapered fracture disc was used throughout the four test conditions. 

Table 3 shows the disc dimensions used for the four tests, installed in the first apparatus 
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or second apparatus to perform the simulated fracture where the LCM particles bridged 

and sealed the flow channel. The schematics of the used fracture simulated disc can also 

be found in Figure 1. 

 

Table 3. Fracture disc dimensions. 

Dimensions Measured 

Slot entrance width (mm) 3.5 

Wall   angle (degree) 7 

Diameter (mm) 63.5 

Slot tip width (mm) 2 

Slot tip length (mm) 50 

Disc thickness (mm) 6.35 

  

  

3. TESTING METHODOLOGY 

The first testing condition was done using the syringe pump for the energy of the 

flow (Figure 1). The pressure recorded with time was recorded to get an indicative 

parameter, the maximum sealing pressure. 

Figure 4 shows a plot of the injecting pressures and time typically obtained from 

the first testing condition.  

 

Figure 4. A plot of injecting pressure over time from a test showing the peak pressure 

(circled), recorded as the maximum sealing pressure. 
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After starting the pump, the pressure increased to 50 psi due to the static frictional 

effect. Fluid losses from the drilling fluid sample containing LCM particles started to 

flow out of the cell’s outlet, first at the injecting rate, and decrease as the seal was formed. 

Pressure increased when the LCM started to form a seal bridge across the slot.  After the 

seal formed, the pressure built up until the seal was broken. The bridge redeveloped 

quickly, where pressure rebounded up sharply. The seal was broken and reestablished 

many times. When the seal failed to develop or developed with very low sealing 

pressures, the test was stopped. If the pressure went above 3,000 psi, the test was also 

stopped to prevent the disc damage. From the test results, as shown in Figure 4, the 

sealing and breaking cycles were counted from every pressure differences of 100 psi 

between the peak and the bottom of the curve. The total fluid loss was divided by the 

number of cycles to obtain the fluid loss per cycle for the results analysis.  

The second testing condition was performed using the same setup as the first one, 

except that the bladder accumulator was installed in the system. The nitrogen gas was 

precharged in the bladder with a pressure of 100 or 200 psi before water (as a hydraulic 

fluid) was injected in the accumulator to get a testing differential pressure varied from 

150, 300 or 600 psi, respectively. Instead of using the syringe pump as an injecting tool, 

the fluid inside the bladder accumulator was allowed to suddenly flow and inject the 

drilling fluid in the steel accumulator to flow into the testing cell instead. The pressure 

of the system will drop sharply, then the rate of decreasing with respect to the time was 

reduced significantly, indicating the development of the seal. The pressure transducer 

monitored the pressure with time to be used for the analysis. Fluid loss volume was 

recorded after the pressure was stabilized. Figure 5 shows a plot of the monitored 

pressure over the testing time. The graph shows multiple forming of the seal comparable 

as the forming-breaking cycle as in the first testing condition but under the pressure lower 

than the differential pressures.  

The third testing condition was run using the second setup as shown in Figure 2. 

The drilling fluid was injected at 25 ml/min and all the testing methodology and the data 

gathering were the same as the tests conducted in the first testing condition. The 

differences from the first testing condition were that the disc was placed at the top of the 



 

 

101 

cell, facing down, and the drilling fluid with LCM was placed below the disc and injected 

from downward. 

 

Figure 5. The plot of monitored pressure over time obtained from three tests of the 

second testing condition. 

 

 

For the fourth condition experiment, the experiments were run as same as the 

third testing condition, except that the rotating paddle was turn on to provide a dynamic 

condition within the testing cell.  

The sealing pressure (condition 1, 3, and 4) and the averaged fluid loss per cycle 

were used to compare the results among the four testing conditions as shown below.   

 

4. TESTING RESULTS 

Table 4 shows the results of the first testing condition. From the table, the 

obtained maximum sealing pressures indicated that strong seals were developed on the 

discs. The last test shows a very high sealing performance which randomly happened in 

the test and may be considered as an outlier; however, the other two results are consistent 

and show the comparable strength of the formed seals.  

Table 5 provides the results from the second condition (instantaneous) flow test. 

The fluid loss spent during the seal development shown in Table 4 is higher compared to 

the fluid loss per cycle as obtained from the other tests. This is because the instantaneous 

flow tests had a much higher flow rate compared to the slow flow rate tests. 
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Table 4. Testing results from the first, third, and fourth testing conditions. 

Testing conditions 

Sealing 

pressure 

(psi) 

Initial fluid loss 

before seal 

forming (ml) 

Avg. fluid 

loss 

(ml/cycle) 

Static condition, disc 

placed at bottom 

1,606 31 7 

1,603 48 5.3 

3,122 26 4.2 

Static condition, disc 

placed on top  

3018 14 150 

3076 36 15 

3047 42 25 

Dynamic condition, 

top placed on top 

911 150 300 

1271 75 33 

341 137 150 

 

 

Table 5. The results from the second testing conditions. 

Differential pressure: 

precharge pressure 

(psi) 

Stabilized 

pressure 

(psi) 

Spending 

sealing time 

(s) 

Fluid 

loss 

(ml) 

100 : 150 

141 2.0 135 

141 2.0 130 

146 1.5 40 

100 : 300 

274 1.5 125 

248 5.5 260 

265 2.5 150 

200 : 300 

280 2.0 165 

291 1.0 75 

279 2.3 180 

200 : 600 

545 3 102 

555 1 95 

575 1 50 

 

 

Figure 6 shows the averaged sealing pressure obtained from the Condition#1 

(static fluid condition with disc at the bottom of the cell), Condition #2 (static fluid 

condition with disc at the top of the cell), and Condition #4 (dynamic fluid condition with 

disc on the top of the cell), respectively. 
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Figure 6. Graph comparing the averaged sealing pressure from condition#1, 

condition#3, and condition#4. 
 

 

Figure 7. Graph comparing the averaged initial fluid loss from condition#1, 

condition#3, and condition#4. 

 
 

 

Figure 8. Graph comparing the averaged fluid loss per cycle (seal formed and breaking) 

from condition#1, condition#3, and condition#4. 
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5. DISCUSSION 

From the results, the fluid under static and dynamic shear condition significantly 

affected the sealing ability, the initial fluid loss, and the fluid loss per cycle of the used 

LCM. The results from the static condition test with the disc at the bottom of the cell 

(Condition #1) seems to agree with the static condition with the disc on the top of the cell 

(Condition #2), even though the based fluid density was different between them. 

In Figure 6, the sealing pressure was higher when the tests were done in static 

fluid conditions (Condition #3) but yielded a low sealing pressure when the test was done 

under the dynamic shear condition (Condition #4). In Figure 7, the initial fluid loss 

volume, the fluid loss volume that was spent before the sealing pressure buildup 

occurred, was lower when the tests were run under the static condition with the disc on 

the top of the cell (Condition #3), but it required much higher volume of fluid loss in the 

dynamic shearing condition and the same disc position (Condition #4). The fluid loss per 

cycle of the static fluid condition with the disc on the top of the cell in Figure 8 (Condition 

#3) was also found to be smaller compared to fluid loss per cycle in the dynamic shear 

condition (Condition #4) even though they had the same disc position at the top of the 

cell, thus confirms the fluid loss consumption of the dynamic shear condition.  

These results indicated that the fluid transported LCM particle better under a 

static fluid condition, compared to a dynamic shearing condition. The fluid loss per cycle 

is very high compared to the total fluid loss used in the instantaneous flow tests as 

presented in Table 5.  

The initial fluid loss, the fluid loss per cycle, and the total fluid loss obtained from 

these tests confirmed that the drilling fluids required for LCM transportation to form the 

seal or fix the broken seal varied with the fluid flow condition and shearing condition in 

the laboratory. It tends to require more fluid loss per cycle when the mixture flow in the 

opposite direction the gravity, under the higher fluid flow rate, and dynamic shear 

conditions.  

All of these conditions tested in the laboratory can also occur in the field 

treatment. The difference of the conditions can cause the indicative parameters to be 

significantly different from the laboratory evaluation run before the field application. The 

treatment results can also be significantly different from field to field. 
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6. CONCLUSIONS 

- Testing disc position and the flow direction, testing flow characteristics, and the 

fluid shearing condition affected the testing results significantly. 

- Shearing condition of the fluid in the tested cell strongly decreased the sealing 

integrity, increased the initial fluid loss during the seal forming and the seal 

redevelopment.  

- Overall, fluid losses obtained from static fluid tests (disc on bottom) were 

significantly small compared to the static fluid tests (disc placed on top) and the dynamic 

fluid condition.  

- Experimental setup strongly affects results. Care must be taken when compare 

the results from different testing setup and the application from laboratory evaluation to 

the field treatment.  

- Similarly, the actual treatment in the field with different operating environment 

compared to the pilot testing in the laboratory can be significantly different from the 

laboratory results. 

 

NOMENCLATURE 

LCM   Lost circulation material  

WBF Water-based fluid 

G Graphite  

SCC Sized calcium carbonate 

ppb Concentration in lb/bbl 
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SECTION 

3. DISCUSSION AND CONCLUSIONS 

3.1 DISCUSSION 

1) The significantly different results among the different apparatuses, the 

simulated discs, the test flow rate, and the surrounding conditions show that the 

parameters strongly affect the LCM evaluation. Therefore, the results from laboratories 

must be used with care and cannot be quantitatively compared between experiment to 

experiment if the testing conditions and surroundings are different between apparatus.  

2) The fracture discs in this study can be considered unrealistic from their 

simplification compared to the rock fractures. Many points of the simulated fracture did 

not ideally represent the actual fracture and may be improved in the future studies 

depending on the researchers’ consideration. The parameters that the author would like 

to discuss are the fracture length in the flow direction, the material used in the discs 

manufacturing, the fracture surface roughness, the disc positioning, and the pressure 

controlled fracture width. 

 2.1) The fracture dimension in the fracture propagating direction (in this case, the 

disc thickness) is relatively small compared to the distance that real fractures propagate. 

The real fracture can extend away from the wellbore to reach the natural fracture 

networks. In this experiment, the space available inside the test cell limited the thickness 

of the discs, where the length of fracture in the fluid flow direction for the thin and thick 

discs were set to be only 6.35 and 24.5 mm, respectively. This distance is sufficient only 

for the investigation of the fracture sealing at or close to the fracture entrance because 

there is no space for LCM to form seal deeper into the fracture. To study the LCM sealing 

performance at a longer distance from the fracture entrance, an apparatus modification is 

required. The seal development may differ from this set of experiments.  

 2.2) Deformable material with mechanical properties close to the rock formation 

may be used to manufacture the simulated discs. The experiment using solid fracture 

discs seemed to have a constant fracture aperture during the tests. It may be questionable 

about the effect of the steel physical properties that are different compared to the rock 

formation. With this idea, using the materials having similar physical properties 
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compared to the actual rock to construct the simulated fracture should yield more realistic 

results in the future study. 

2.3) The fracture roughness is another interesting factor that may be introduced 

to the future studies. The relatively smooth surface of the slotted steel discs, cut by a 

water jet machine, were used in this study. It is expected that surface roughness also has 

the significant effects on the LCM sealing behavior and performance. The rough surface 

increases the frictional force component supporting the seal structure, and possibly act as 

the particle anchorage points. The rough surface may also change the contact areas 

between the particles and the fracture walls, increases or decreases the local stress 

concentration on the particles, which may change the bridging particles mode of failure 

from shear mode to compression or flexural mode. It is a good idea to construct the discs 

with surface machining to imitate the real formation as similar as possible.  

2.4) Placing the fracture simulated disc on the top or bottom of the cell, facing 

the fracture entrance to the flow-in direction has been tested in this study. In the future 

study, placing the disc horizontally, perpendicular to the flow direction and the 

gravitational field might be a more permissive way to fully understand the sealing 

processes. 

2.5) In many models explaining the fluid flows in fractures, the fracture width is 

a function of the wellbore pressure, i.e., non-linearly proportional to the wellbore 

pressure. Even though it not currently possible to construct the apparatus that has an 

exactly true relationship between the wellbore (injecting) pressure and the fracture width, 

it is a good idea to investigate the LCM sealing ability in a pressure controlled fracture, 

where the width and fracture angle can vary with the wellbore pressure. The apparatus 

will simulate the situation when the developed seal element is subjected to the wellbore 

pressure fluctuation which in turns affect the fracture width and the angle of the fracture 

planes. The results will gain confidence on LCM sealing success if such condition 

happened downhole. 

3) The slow injection rate testing method has both advantages and disadvantages. 

In this form of LCM tests, the maximum sealing pressure indicating the highest 

differential pressure that the seal can withstand and the fluid loss are obtained. They are 

essential measurable parameters that can be used in the LCM testing as comparing 
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criteria. Better LCM blend should have a high seal integrity, at least higher than the 

expected differential pressure the seal has to hold back. The formulation with smaller 

fluid loss means the sealing effectiveness both during the seal formation and the service 

time. The disadvantage is that the testing condition may not simulate the operational 

conditions accurately if the loss flow rate is not a constant parameter and the flowing 

pressure (differential pressure) does not start from a close-to-zero pressure.  

4) The instantaneous flow testing method can provide some other useful 

information.  

4.1) Even though during the LOC curing, the loss rate will be kept as low as 

possible and sometimes the hesitating injection technique (inject-stop and observe 

cycles) may be used, the instantaneous flow tests replicates the flow process better when 

the flowing pressure does not start from zero. Moreover, it can simulate a sudden flow 

occurred from either an induced fracture initiation and propagation to a natural flow 

network or an immediate opening of a natural fracture when LCM is available inside the 

wellbore.  

4.2) With a preset differential pressure, the instantaneous flow setup was not 

designed to measure the possible maximum sealing pressure of any LCM formulation at 

such flow rate, but the purpose is to test whether the LCM can form a seal against the 

fast flow that withstands the driving differential pressure (in this experiment, 300 and 

600 psi). If the sealing capability at a higher differential pressure is required, a higher 

differential pressure can be preset respect to the apparatus pressure capacity.  

4.3) The pressure drop from the nitrogen gas expansion, the difference between 

the differential pressure and the stabilized pressure after the seal forming, can be reduced 

to a negligible value by using a large unit of bladder accumulators. A small fraction of 

the fluid loss volume compared to the energized fluid in the accumulator can create a 

flow with a very small pressure drop that can be more realistic bottomhole pressure. This 

experiment was conducted with a limited volume of the bladder accumulator, but it may 

be better if this limitation can be eliminated in the future studies. 

4.4) The changing of the fluid loss rate over time can be used for tracking and 

explaining the sealing steps: the bridging, filling, and sealing-off. The rate of fluid loss 

may be monitored by a direct measurement of the fluid loss at the outlet, or it can be 
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calculated using the accumulator pressure over time or an indirect calculation of the gas 

expansion volume from the pressure-volume relationship. Unfortunately, the tools to 

obtain the fluid loss rate over time was not available, and the pressure transducer had an 

insufficient frequency response (not enough data points per second) to clearly detect the 

pressure changing in the quick sealing processes occurring within only a few seconds. 

This may be improved in the future work to confirm the chronological sealing processes 

in the instantaneous flow.  

5) PSD of the solid particles against the fracture zones. 

5.1) Before knowing the effect of the weighting materials, the previous study 

considered PSD of the LCM alone as the parameter affecting the sealing ability of a 

specific LCM formulation without taking other solid particles in the drilling fluid into 

account. From the effect of weighting materials tests, it suggested that the weighting 

materials particles strongly affect the sealing ability of the LCM while they 

collaboratively contribute together in the sealing process. This implies that any solid 

particles available in the drilling fluid, both WBF and OBF, can also affect the sealing 

process of LCM. 

5.2) In the actual LOC situation, it may not practical to mix a new drilling fluid 

to be used for the LOC treatment (as being used in this experiment). The drilling fluid 

generally available in an active circulating system is usually contaminated by the drilled 

solid particles which cannot be absolutely eliminated by the solid control system. Some 

of the drilled solids are always left in the active tanks and recirculated back downhole 

blending with the newly drilled solid particles. The future experiment may be conducted 

while some types of drilled solids (from different formation types) disperse in the drilling 

fluid to observe the effect of those drilled solid particles.  

5.3) The practical solid PSD affecting sealing process should be the actual PSD 

of the drilling fluid and LCM mixture available before the fracture zone. It is questionable 

that the placement processes transporting the mixture from the mixing tank through the 

pumps and drill string will cause a non-uniform particles distribution (segregation) in the 

mixture or not. Different slip velocity of different size (and density) particles subjected 

to the various fluid velocity profile may cause the PSD of solid particles in the mixture 
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deviating from the PSD of the mixture used in the laboratories or mixed in the drilling 

fluids. 

6) The preferred sealing profile: completely set in-between the fracture walls. 

 6.1) Typically, after the LOC treatment, various drilling operations have to be 

conducted to finish the well sections. The drill stem must be tripped in and out of the 

well several times to reach the target depth. These drill string movements can potentially 

destroy the seal element on the wellbore wall surface.  

6.2) Also, during the casing running, the casing collars, casing centralizers and 

wall scratcher (usually applies to the wellbore wall to remove the filter cake in the 

purpose of a better bond of cement between the steel casing and the formation) are going 

to cut or wipe off some part of the seal element on the fracture entrance. These seal 

disturbing processes can potentially reactivate the LOC problems.  

6.3) Thus, the sealing profile with all the sealing element completely set inside 

the fracture is more desirable than the seal setting at the fracture entrance as a cross-

sectional mound shape. In parallel or nearly parallel fracture planes (according to the 

observation made in these experiments) conventional granular LCM may not be capable 

of creating the appropriate sealing profile inside the fractures.  

6.4) The preferred sealing profile can be applied by using the expandable 

(granular) materials in the form of expandable particle materials, the like materials 

applied in the expandable elastomeric production packers. The materials may be used in 

combination with the granular LCM. The idea is the expandable particles, slightly smaller 

in sizes compared to the fracture width, will be allowed to pass through the fracture 

entrance into the available spaces in-between the fracture walls while the coarse granular 

LCM particles will bridge at the fracture entrance, temporally hold back the flow. The 

expandable particles entering the fracture space will increase in size over time. Scraper 

tools, if applicable, may be used to open the seal at the fracture entrance to allow more 

expandable material occupy the space between the fracture walls. Once the expandable 

particles enlarge themselves inside the fracture, they essentially become the bridging 

structure readily for the seal development inside the fracture. The materials are not yet 

available and need further study to bring them into the LOC application. 
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6.5) Another possible application, presented as one of the possible bridging 

mechanism in parallel fracture by Loeppke et al (1990), is that the coarse particles can 

enter the fracture entrance while the fracture width is increased by the increasing of the 

wellbore pressure. With this idea, the seal can form at the fracture mouth to stop the flow, 

then the wellbore pressure can be carefully and slowly increased by adding a surface 

pressure on the column of the drilling fluid inside the well. The increasing pressure will 

widen the fracture planes allowing the bridging structure to be slowly squeezed or into 

the fracture. The pressure is then relieved at a later time. This application can also be 

done with the expandable materials in the LCM system.  

7) Laboratory vs. downhole conditions and the surroundings, the knowledge can 

be applied to the field treatment. 

7.1) In the author’s understanding after reviewing the literature and conducting 

many experiments, it is preferable if one can develop a perfect testing apparatus that can 

take every physical process into account. All the researchers previously conducted the 

LCM experiments tried to create the testing apparatus to most accurately simulate the 

operating conditions as actually present in the subsurface conditions.  

7.2) Knowing the strong effect of testing conditions on the evaluation results, it 

is then very important to design the testing apparatuses to represent the field conditions. 

The limitation is that it is difficult to combine every simulated condition with only one 

set of apparatus and only one set of experiments. The complexity of the natural physical 

processes with many affecting variables, the scale of the problems, and the variation of 

some variables with the other variables and time create more difficulties comparable to 

solving the LOC problem itself. 

7.3) Because the sealing ability varies with the environment, this knowledge 

implies that the results from a set of testing conditions which are different to the field 

conditions have less value to the field application. If the field conditions are so different 

from the testing conditions, it may not be applicable at all, and the success field treatment 

following such laboratory experiment just happened by chance. This probably was the 

reason why some field applications were not effective or successful even though the 

selected LCM showed good performance in the laboratory. 
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7.4) Field treatment sometimes fails or needs multiple attempts to mitigate the 

LOC incidents. Unconventional treatments with higher cost and side effects can be 

unnecessarily applied prior to truly understand what should be corrected. For example, 

switching from healing with conventional granular LCM to the polymer or cement-gunk 

method without an improvement in the LCM granular particle size with respect to the 

fracture geometry.  

7.5) Even though the LCM fracture sealing is considerable a temporary (short-

term) treatment before the well section is protected by the casing and cementing 

processes, the following drilling operations can cause the seal to fail and LOC to resume. 

In a long well section, drilling parameters can change significantly from the starting of 

the section to the casing and cementing processes. Since all involving parameters can 

affect the sealing ability of the LCM, laboratory evaluation should cover the range of 

expected parameters and the predicted downhole environment in each well section.  

7.6) The ideal apparatus may or may not be innovated in the future; however, in 

the meantime, the error of LCM evaluation can be decreased by using a combination of 

testing apparatus while trying to control the involving parameter as accurate as possible.     

8) The experiment needs the statistical methods applying to the data processing. 

8.1) The resulting analysis indicates that using the same set of apparatus, the 

results of each testing condition or environment is not constant, but tend to distribute 

within a specific range. Even though all the parameters are completely kept constant, the 

non-uniformity (the variety in shape, size, PSD, local concentration, and composition) of 

the granular particles got from the storage containers, and thereafter randomly dispersed 

in the liquid mixture, are the uncontrollable factors that arbitrarily affect the scattering of 

the results.  

8.2) The number of experiments is important if the results are found to spread in 

a wide range of data. The central of tendency using the statistical method is generally 

used as the representative result; however, the worse result is also important depending 

on the probability that the similar event will happen in the actual application. Worst case 

may be used as a performance indicator to increase the chance of success of the field 

application if it is not considered as an outlier. 
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9) The statistical model in Paper III was created with a 90% accuracy while using 

for sealing integrity (sealing pressure) estimation. This model can be used as a tool to 

predict the performance of a known data of LCM formulation. Under a range of 

uncertainty, the model can be used to eliminate the unnecessary trial and error in the 

formulation development. However, as the overall experiment showed that the testing 

conditions strongly affect the testing results, the detailed tests under the expected 

treatment conditions should be performed to get the most accurate results for field 

application. 

10) The aging conditions with the temperature of 200 and 400 °F were 

investigated in this experiment. These temperatures were set as the base case to know the 

LCM performance in a normal temperature and an extremely high temperature for a high-

pressure high-temperature drilling operation. In the case of the other temperature between 

the tested temperature or with a different aging period, the experiment should be 

conducted for that specific case with the used based fluid, fluid density, temperature, 

aging period, etc. Loop flowing in the pipe instead of rolling shear condition may better 

simulate the aging environment better than the standard testing methodology used in this 

experiment. However, this aging condition tests can be used as an initial idea for further 

study due to the lack of the information about LCM aging test in the petroleum industry. 

11) The industry standard or recommendation practice for LCM fracture-sealing 

testing methods is not updated. The standard testing methodology for the LCM 

evaluation purpose is not well established in the petroleum industry. It is a good idea to 

set up a standard testing methodology or recommendations to be used in research and 

apply in the drilling operation. 

 

3.2 CONCLUSIONS  

Based on this study, the overall conclusion is that the experimental setup and the 

fluid properties creating different sealing environments can change the results of the tests, 

so caution should be taken when quantitatively comparing LCM tests on slot disks from 

different experiment setups and surrounding conditions. Additionally, the following 

conclusions can be drawn 
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1) Slot disc configurations were varied in this study and found to affect the 

evaluation results significantly. The specific testing condition effects seen were;  

1.1) Increasing the discs’ wall angle tends to decrease the maximum sealing 

pressure. The same behavior could happen in subsurface fractures if they are tapered in 

shape with an open end at the tip. 

1.2) No correlation was found between the average fluid loss per cycle of seal 

initiation and the sealing pressure, the wall angle or disc thickness variation in slow 

injection tests. Fluid losses might not be a good indicative parameter for an effective 

fracture sealing in impermeable rock.  

1.3) The depth of the fractures with parallel planes propagating into the formation 

had no effect on sealing efficiency since the large-size particles would bridge the fracture 

entrance. No test resulted in particles smaller than the fracture width forming the bridging 

structure inside the parallel walls to resist the flow. 

1.4) In the Fractures tapered towards the tip, the bridging particles could set 

wherever the sizes agree with the fracture width. Setting the seal completely in-between 

the fracture walls was found to improve the sealing integrity, forming a more effective 

sealing profile compared to sealing at the fracture entrance. 

1.5) For the tested LCM formulation, shape and dimensions of the tapered slot 

discs affected the seal integrity. This observation implies that the same behavior could 

also happen with different experimental setup used by laboratories, as well as in the real 

fractures under subsurface conditions. Imaginably, the subsurface fracture sealing occurs 

with higher complexity. 

2) The experimental results showed that a proper range of solid particle sizes was 

very important and confirmed the effect of PSD on sealing efficiency. In addition, the 

following behavior of the drilling fluid and LCM was observed. 

2.1) The base fluid effects did not show consistent results. That was because many 

factors were involved in creating the seal, where the interaction between the base fluids 

containing different solids and LCM particles resulted in different sealing performance.  

2.2) Increasing the drilling fluid density before applying any LCM treatment 

tends to increase the seal integrity, interrelating with the increase of the solid particles  
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within the mixture. The flattened rate of the sealing pressure increasing implied the 

optimum point where the best performance occurred. 

2.3) For each type of weighting material, adding a proper range of particle sizes 

fulfilled the missing particle sizes in the LCM formulation. Sufficient sizes and 

concentration of fine particles increased seal integrity.  

2.4) From the effect of density and weighting materials on the sealing integrity, 

where the solid particles in the based drilling fluid influenced the overall performance, 

the PSD should be considered in the final mixed fluid, not only the added LCM solid 

particles. 

2.5) Observation shows that the seals consisted of three layers forming 

chronologically during the seal development. The layers performed different essential 

tasks in the sealing mechanism and the sealing procedure was more understood.  

2.6) An analytical flow model was developed from the statistical method and 

might be used to predict sealing pressure from the same testing condition when the input 

parameters are known. 

3) Downhole conditions with higher pressure, temperature, and dynamic shearing 

significantly affected the application of some LCM formulation.  

3.1) Aging the treated fluid strongly affected the performance of LCM. It might 

promote or reduce the sealing pressure at a moderate downhole temperature (200 °F) 

depending on the LCM thermal properties.  

3.2) Some LCM formulations that contained natural plant products failed to 

perform a strong seal at a higher temperature (400 °F). Aging tests should be conducted 

if the high temperature is expected in the downhole conditions. 

4) Having the disk placed on top or at the bottom of the cell did not significantly 

change the results of sealing integrity; however, flow pattern did significantly change the 

results in the following way: 

4.1) Apparatus with disc installed at the upward position resulted in decreasing 

of the sealing pressure under a dynamic shearing condition. The setup increased the initial 

fluid loss and the fluid loss during seal redevelopment. This created a more accurate 

representation of the downhole sealing environment.   
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4.2) Instantaneous flow conditions did not affect the ability of LCM to form a 

seal. The seal integrity of a specific LCM formulation obtained from a slow injection test 

was useful for quantifying the LCM sealing strength and LCM selection, while the seal 

forming ability can be proved in the sudden flow tests. Testing using a high-pressure cell 

approach was validated to be used in LCM evaluation. 
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