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ABSTRACT

The problem of clustering is one of the most widely studied area in data mining and

machine learning. Adaptive resonance theory (ART), an unsupervised learning clustering

algorithm, is a clustering method that can learn arbitrary input patterns in a stable, fast and

self-organizing way. This dissertation focuses on unsupervised learning methods, mostly

based on variations of ART.

Hierarchical ART clustering is studied by generating a tree of ART units with GPU

based parallelization to provide fast and finesse clustering. Experiment results show that

the our method achieves significant training speed increase in generating deep ART trees

compared with that from non-parallelized version.

In order to handle high dimensional, noisy data more accurately, a hierarchical bi-

clustering ARTMAP (H-BARTMAP) is developed. The nature of biclustering, which con-

siders the correlation of each members in clusters, combined with the concept of hierarchi-

cal clustering, provides highly accurate experimental results, especially in bioinformatics

data sets.

The third paper focuses on applying the biclustering concept to a supervised learn-

ing method, named supervised BARTMAP (S-BARTMAP). Experimental results on high

dimensional data sets show that S-BARTMAP is capable of making better predictions com-

pared with those from other math based and machine learning methods

The final paper focuses on solving the semi-supervised support vector machine

(S3V M) optimization problem with the aid of value gradient learning (VGL). By applying a

reinforcement learning method to a semi-supervised problem results in a solid classification

performance in terms of cluster validation, better than algorithms from previous studies.
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1. INTRODUCTION

Nowadays, data stream from daily life; from social network; from computers, credit

cards and mobile devices; from the infrastructure of cities; from sensors in buildings,

planes, and factories. The data is so fast that the total accumulation of the past two years

exceeds the prior record of human civilization[1]. While the quantity of data is a challenge,

extracting information out of data, the so-called data mining, is the critical problem. While

large-scale information technology has been evolving separate transaction and analytical

systems, data mining provides the link between the two. One of the most commonly used

data mining tool is clustering, which ties the data items into groups according to distances

or logical relationships[2, 3].

In[4], a cluster is defined as "a set of entities which are alike, and entities from dif-

ferent clusters are not alike", implying the internal homogeneity and external separation[5,

6]. The procedure of cluster analysis can be depicted with the following four steps[7]:

1. Feature selection or extraction,

2. Clustering algorithm design or selection,

3. Cluster validation,

4. Result interpretation.

The flow chart of the steps are shown in Fig.1.1. In this dissertation, we focus on

various clustering methods, mostly based on a neural network based adaptive resonance

theory and its application.
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Figure 1.1. Clustering procedure. The basic process of cluster analysis consists of four
basic steps with feedback between each other

1.1. ADAPTIVE RESONANCE THEORY

The adaptive resonance theory (ART) was first introduced by Grossberg in 1976[8,

9] in order to analyze how brain networks can autonomously learn in real time about a

changing world in a rapid but stable fashion. Various classes of ART neural network archi-

tectures such as ART1[10], ART2[11], Fuzzy ART[12], ARTMAP[13], Fuzzy ARTMAP[14]

and Distributed ART and ARTMAP[15] were then developed with increasingly powerful

learning and pattern recognition in either an unsupervised or a supervised mode.

In summary, an ART network includes a choice process and a match process as its

key parts. The choice process picks up the most likely node (cluster) for an input pattern.

If the template of the chosen node is sufficiently similar to the input pattern to satisfy

a vigilance parameter ρ , then the node resonates and learns: its template is updated to

respond to the new input pattern. Otherwise, the node is reset, and the next most likely
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node is chosen. If no existing node satisfies the match criterion, then a new uncommitted

node is recruited. Thus, ART incrementally produces nodes necessary to represent clusters

of input patterns. Fig.1.2 shows the simplified configuration of an ART structure, which

involves an input processing field, F1 layer, a clustering field F2 layer, and a vigilance and

reset subsystem.

Figure 1.2. Simplified configuration of ART. The architecture consisting of an input layer
F1, a clustering layer F2 and a reset subsystem.

There are two sets of connections between each node in F1 layer and each node in

F2 layer. F1 layer is connected to F2 layer by bottom-up weights while F2 layer is connected

to F1 layer by top-down weights, the so called templates. The connection weights between

these two layers can be modified according to two different learning rules. The F2 layer

is a competitive layer which follows the winner-take-all paradigm: the node in F2 with the

largest net input becomes the candidate to learn the input pattern. Whether the candidate

will learn the input pattern is decided by the vigilance and reset mechanism, which controls

the degree of similarity of patterns placed in the same node.

The advantage of ART is that it does not assume the number of clusters in advance

and allows the user to control the degree of similarity of patterns placed in the same cluster.

Despite the great success of applying ART to clustering problems, ART architecture re-
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quires modification on handling high dimensional data sets[16]. In particular, ART focuses

on similarity of patterns in the full dimensional space and thus may fail to find patterns

formed in subspaces of higher dimensional space.

1.2. BICLUSTERING ARTMAP

Not only ART but also traditional clustering method often fails to recognize patterns

in high dimensional data sets[17]. To overcome the limitation of clustering, the bicluster-

ing paradigm[18] was introduced and several methods have been developed based on this

paradigm. In contrast to conventional clustering, biclustering, which is also called sub-

space clustering[19] or co-clustering[20], focuses on discovering clustering embedded in

the subspaces of a data set.

Most clustering models define similarity among different objects by distance over

all of the dimensions. However, distance functions are not always adequate in capturing

correlations among the items. The correlation between two vectors X and Y that measures

the grade of linear dependency is defined by:

δ (X ,Y ) =
cov(X ,Y )

σX σY
=

∑
n
i (xi− x̄)(yi− ȳ)

nσX σY
, (1)

where cov(X ,Y ) is the covariance of X and Y , and x̄ and ȳ are the mean of values of X and

Y and σX and σY are the standard deviations of X and Y , respectively.

Given a bicluster B composed of N items, B = {s1, ...,sN}, the average correlation

of B, δ (B), is defined by:

δ (B) =
1(N
2

) N−1

∑
i=1

N

∑
j=i+1

δ (si,s j). (2)
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Due to δ (si,s j) = δ (s j,si), only
(N

2

)
elements are considered.

Fig.1.3 presents a bicluster with lowly-correlated features and highly-correlated fea-

tures. Based on Eq.2, the average correlation δ (B) of Fig.1.3a is 0.003 while Fig.1.3b

which has perfect shifting and scaling patters has an average correlation of 1.

(a) Example of lowly-correlated items (b) Example of highly-correlated items

Figure 1.3. Examples of two sets of biclusters with lowly-correlated features and highly-
correlated features.

Xu[21] developed a biclustering version of ART, named biclustering ARTMAP

(BARTMAP) which is achieved in the form of simultaneous clustering by applying two

separate ART modules, named ARTa and ARTb, to generate sample and feature clusters,

respectively. Inspired by ARTMAP, an inter-ART module which resides between the ART

modules, measures the correlation within clusters to determine whether a newly presented

sample belongs to an existing cluster candidate. The structure of BARTMAP is shown in

Fig.1.4 and the overall procedure of BARTMAP is described as follows:

• Gene (feature) ART clustering: The gene inputs are distributed to the ARTb module

which functions as a standard fuzzy ART and Kg gene clusters are generated.
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Figure 1.4. Topological structure of BARTMAP

• Sample inputs presentation: A new sample input sk is registered to the ARTa module

to find the best matching node J in ARTa and becomes a candidate cluster.

• Correlation check: The similarity between sk and the candidate cluster SJ = {sJ1, ...,sJMJ}

with MJ samples across every gene cluster is calculated with the average correlation

function defined in Eq.2.

• Learning: If the similarity is above the correlation threshold η , the inter-ART module

sends a signal to the ARTa module to associate sk to node J and corresponding weights

are updated.
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• Reset: However, if the similarity test does not pass, the inter-ART module forces

ARTa to discard node J and repeats the correlation check step with the next best

matching node.

BARTMAP experiments on bioinformatics data sets resulted in superior performance[21]

compared to well known clustering and biclustering methods such as K-means, fuzzy ART,

agglomerative hierarchical clustering and interrelated two-way clustering[22].

1.3. SEMI-SUPERVISED LEARNING

In real-world applications of machine learning, it is often the case that abundant

unlabeled training examples are available, while the labeled ones are fairly expensive to

obtain since labeling examples requires more human effort and expertise. Earlier versions

of semi-supervised learning (SSL) had difficulties in incorporating unlabeled data directly

into conventional supervised learning methods and the lack of a clear understanding of

the value of unlabeled data in the learning process, the study of SSL attracted attention

[23, 24]. As the demand of automatic exploitation of unlabeled data increases and the

value of unlabeled data was disclosed by early analysis[25, 26], such learning method has

become a hot topic.

The main difference between the outcome of supervised learning and SSL, is shown

in Fig.1.5. With the addition of unlabeled items, semi-supervised learning expands the

perimeter obtained from the initial supervised method to form ’soft clusters’. Note that the

decision boundary shifts from Fig.1.5c to Fig.1.5d, similar to how support vector machines

(SVM) learns to converge the separator where the margin between each classes is maxi-

mized. Due to its behavior, SVM was one of the earlier tools implemented for SSL[27]. By
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(a) labeled data (b) labeled and unlabeled data

(c) learned from labeled data (d) learned from labeled and unlabeled
data

Figure 1.5. Binary classification example of Gaussian mixture model on supervised cases
(a), (c) and semi-supervised cases (b), (d).

maximizing the margin in the presence of unlabeled data, one learns a decision boundary

that traverses through low data-density regions while respecting labels in the input space.

Assuming that semi-supervised learning problem is of binary classification, the

training set consists of l labeled examples {(xi,yi)}l
i=1, yi = ±1, and of u the unlabeled

examples {xi}n
i=l+1, with n = l + u where xi and yi are the ith input vector and label, re-
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spectively. The goal of semi-supervised SVM (S3V M) can be defined as a minimization

problem[28] to solve

f (w,b,yu) =
1
2
‖w‖2 +C

l

∑
i=1

V (yi,oi)+C∗
n

∑
i=l+1

V (yi,oi), (3)

where yu = [yl+1, ...,yn]
T is the label vector of the unlabeled items, (w,b) is the hyperplane

parameters, oi = wT xi + b, C and C∗ are the weight parameters for labeled and unlabeled

items, respectively, and V is the Hinge loss function defined as:

V (yi,oi) = max(0,1− yioi)
2. (4)

1.4. OBJECTIVE

In this dissertation, an hierarchical version and a supervised modification are stud-

ied, named hierarchical BARTMAP (HBARTMAP) and supervised BARTMAP(S-BARTMAP).

Experimental results on H-BARTMAP show improvement on the bioinformatics data sets,

and on S-BARTMAP, the prediction rate outperforms high dimensional data sets such as

sports statistics.

The study on combining two machine learning schemes - reinforcement learning

and SSL - to solve the S3V M optimization problem is discussed in this dissertation. The

details on applying value gradient learning (VGL) to the S3V M problem space , evaluation

and comparison with published results are illustrated in Paper 4.

1.5. DISSERTATION ORGANIZATION

The research outcome of this study is presented by publication dissertation option.

All the findings and conclusions of this research study have been submitted to technical
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journals and conference proceedings. The thesis is divided mainly into three sections:

Introduction, paper, and conclusions and recommendations.

Introduction. An overview of the background methods with relevant studies are described.

Then, the section summarizes the main objectives and motivations of this dissertation.

Paper. The main body of the thesis contains four technical papers.

Paper 1. The first paper introduces the parallel hierarchical fuzzy ART implemen-

tation on GPUs. The details of how the ART neural network is optimally parallelized on

CUDA environment and presents the increase of runtime in deep neural network tree learn-

ing compared to sequential programming.

Paper 2. The second paper explains hierarchical BARTMAP (HBARTMAP) on

bioinformatics data analysis. The details of how HBARTMAP overcomes the limitations

of BARTMAP and methods on optimal layer selection with internal validation criteria are

presented. The experimental results are justified with various evaluation methods while

also compared with widely used clustering and biclustering algorithms.

Paper 3. The third paper proposes a hybrid machine learning approach to solve

a semi-supervised learning optimization problem with a reinforcement learning method.

Background of value gradient learning (VGL), a dual heuristic dynamic programming

method and semi-supervised support vector machines (S3V M) are detailed.

Paper 4. The final paper introduces a supervised classification and prediction method,

supervised BARTMAP (S-BARTMAP) inspired by the structural conversion from ART to

ARTMAP. The paper describes the utilization of biclustering similarity measurement on

supervised learning and methods of the training and testing mode. The effectiveness of
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the proposed approach is demonstrated through experimental results on prediction with

synthetic and real world statistics data sets.

Conclusion. This section summarizes the work that was accomplished in this dissertation.

It also presents the key findings of all experiments and theoretical analyses, which were

executed during this research study.
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PAPER

I. A GPU BASED PARALLEL HIERARCHICAL FUZZY ART CLUSTERING

Sejun Kim and Donald C. Wunsch II

ABSTRACT

Hierarchical clustering is an important and powerful but computationally extensive

operation. Its complexity motivates the exploration of highly parallel approaches such as

Adaptive Resonance Theory (ART). Although ART has been implemented on GPU proces-

sors, this paper presents the first hierarchical ART GPU implementation we are aware of.

Each ART layer is distributed in the GPU’s multiprocessors and is trained simultaneously.

The experimental results show that for deep trees, the GPU’s performance advantage is

significant.
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1. INTRODUCTION

Graphics Processing Unit (GPU) programming, particularly using the NVIDIA

CUDA(Compute Unified Device Architecture), has been of interest in computational intel-

ligence, particularly for population based algorithms [29, 30, 31]. It would be of additional

significant value to use GPU programming to apply its known advantages in hierarchical

clustering [7].

Fuzzy Adaptive Resonance Theory (ART) is attractive for hierarchical clustering

because of its speed, scalability and amenability to parallel implementation [32]. How-

ever, hierarchical fuzzy ART based on GPU engines has not been reported previously. One

main constraint in CUDA is the inflexibility of memory inside the kernel meaning that the

generation of dynamic arrays is limited only in the host(CPU) side. Typical tree structure

algorithms implement pointers for both node creation and reference [33], which is ineffi-

cient to do in CUDA programming. The other constraint is that each ART unit is trained

as data are fed sequentially. GPU implementation which focuses on the behavior of a sin-

gle ART unit was achieved in [35, 36? ], but hierarchical fuzzy ART required a different

approach. The architecture is inspired from the structure of pipelining [37]. As shown

in Fig. 1, even though ART networks were trained sequentially, the parallelization was

accomplished successfully.

This paper describes the method used to adapt a multi-layer tree structure composed

of FA units into CUDA platforms. The experimental results are presented to imply the per-

formance boost on various data sets and parameters compared with those on conventional

CPUs. Section II briefly explains FA followed by an overview of CUDA in Section III. Sec-

tion IV mainly focuses on the proposed algorithm, the experimental data and results appear

in Section V. Finally, conclusions and further research tasks are discussed in Section VI.
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Figure 1. Data feeding example of CUDA based hierarchical fuzzy ART. The first layer
which is also the root node starts with each sample. Once the training is finished, the root
ART unit passes it to a child node corresponding to the winning category. Each layer loads
the proper ART unit for the training for different samples as the winning category varies.
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2. FUZZY ADAPTIVE RESONANCE THEORY AND THE HIERARCHICAL
FUZZY ART NETWORK

Adaptive Resonance Theory (ART) is an unsupervised learning method that elimi-

nates the “stability-plasticity dilemma". ART is capable of learning arbitrary data in both a

stable and self-organizing manner [12]. ART1 deals with binary data, whereas Fuzzy ART

deals with arbitrary data. Henceforth, we will be referring to Fuzzy ART.

Before the training, the data pass through a preprocess step during which they are

scaled to fit into the range of [0,1]. The weight vectors w j are initialized to be all 1. Let x

be an input sample. When choosing a category, the competition in F2 is calculated, defined

as

Ti =
|x∧w j|
α + |w j|

, (1)

where ∧ is the fuzzy AND operator defined by

(x∧y)i = min(xi,yi), (2)

and α > 0 is the choice parameter. From the winner-take-all competition,

TJ = max{Tj|∀ j}. (3)

The winning neuron J becomes activated and is fed back to layer F1 for the vigilance

test. If

ρ ≤ |x∧wJ|
|x|

, (4)
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resonance occurs. Then, in layer F2, the input x is categorized to J and the network is

trained by the following learning rule,

wJ(new) = β (x∧wJ(old))+(1−β )wJ(old), (5)

where β (0≤ β ≤ 1) is the learning rate. If neuron J does not meet the match crite-

rion, it will be reset and excluded during the presentation of the input within the vigilance

test.

The hierarchical fuzzy ART network is composed of the FA[35]. The hierarchy of

ART units illustrated in Fig. 2 allows the clusters to be split more finely by increasing the

vigilance. An example of a modular multi-layer network architecture composed of ART

networks (HART, for “Hierarchical ART") is discussed in [36].

Figure 2. A hierarchy of ART units. The input pattern is registered at the bottom and is
sequentially fed only to those ART units in the hierarchy of the "winning" F2 units from
the parent node. (Figure adapted from [37]).
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3. GENERAL PURPOSE GRAPHICS PROCESSING UNIT WITH CUDA

The desire to display a 3D world on computers in realtime greatly increased the

computational ability of graphics processors. Fig. 3 illustrates the design difference be-

tween CPUs and GPUs [41]. A kernel, which is the set of operations defined in GPU

processors can be programmed and executed simultaneously in different threads. A single

NVIDIA Fermi GPU theoretically is capable of containing up to 67,107,840 threads.

Figure 3. GPU and CPU architecture comparison. GPUs devote more transistors to data
processing than CPUs.

But several constraints in GPGPU exist. Direct memory access between the host(CPU)

and the device(GPU) is not possible. To handle certain data in other sides, data transfer is

required either from the CPU to the GPU, or vice versa. Because the transfer rate is rela-

tively slow, minimizing data transition is the critical concern. The lack of a dynamic pointer

and array generation inside the kernel limits the GPU as well.
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4. PARALLEL HIERARCHICAL FUZZY ART IN CUDA

To achieve the parallelization of the Parallel Hierarchical Fuzzy ART (PHF-ART),

the layers, as shown in Fig. 1, were distributed among the GPU threads. Each layer is not

an individual module but behaves as a controller to call up the required FA on each diverse

state. Layer 1 is exclusively assigned to the root FA node. Every time an input passes

through a layer, the working FA module in the layer emanates the adapted category back to

the layer. Then it assigns the child FA node and broadcasts the node ID and the input ID to

the adjacent lower layer while receiving the new assignment from the upper layer, which

can be regarded as pipelining. Algorithm 1 is the pseudocode of the kernel in the program.

Algorithm 1 Layer Behavior
if Li assignment exists then

call FA module
call input
do FA training
set Li+1:FAJ ,input

end if
if layer is root then

idData++
else

wait assignment
end if

Defining the tree structure and achieving parallelization in the CUDA platform are

also critical problems. After the initialization step, the first data will be registered in root

FA. Once the training is completed, the layer will attempt to find the ID of the correspond-

ing child’s FA module, which is not set yet. In generic CPU programming, a child node

can be generated easily by allocating a new pointer and cross referring between the parent

and child node, or by employing vector template coding. As these methods are impos-
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sible in the kernel, a semi-dynamic pointer method is applied. Compared with dynamic

arrays, semi-dynamic arrays have a fixed maximum size, and a tracking variable is defined

to record the used amount.

The memory of the graphic card used for the experiment is 1.6 GB. The contents

occupying the VRAM within the program are the data sample vectors, layer states and

other very small entries such as the kernel itself and the registers and local variables in each

kernel. A million samples of a 4 dimensional float vector take up only 32 MB, implying

that the rest of the memory can be dedicated to the FA modules. The number of maximum

FA modules depends on the dimension of the sample vector as well as the preset number of

maximum categories allowed. Typically in the experiment, 1.5 million FA modules could

be pre-declared.

Even though a semi dynamic array is applied, a parallel feature known as race

condition [42] hinders the tracking of the maximum size. Assuming a certain situation in

which all of the layers must generate a new child FA module, the threads will attempt to

assign a child node in the same place because they are running in parallel. Thus, concurrent

or sequential coding is required in order to correctly assign a child node and to keep the

tracker in control. To reduce the non-parallelism, the throughput of the child ID finder,

which runs right after the FA trainer, is limited as much as possible. The pseudocode is

described in Algorithm 2. Once the child node ID is set up, the layer behavior kernel reruns

to finish the task. The entire procedure using the child ID finder is depicted in Algorithm

3.
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Algorithm 2 Child ID Finder
for i = ∀layer do

if new child needed then
idChild←tracker
tracker++

end if
end for

Algorithm 3 Parallel Hierarchical Fuzzy ART
init setting
memcpy(host→device)
for i = 1 to nDATA+nLayer−1 do

FA_Trainer()
childIDFinder()
setNextAssignment()

end for
memcpy(device→host)
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5. EXPERIMENTAL RESULTS

The experiments on both CPUs and GPUs were conducted on an Intel Xeon E5620

Quad Core CPU with 12 GB RAM and NVIDIA Geforce GTX 480. Two sets of arbitrarily

generated data, “abalone" data from the UCI Machine Learning Repository [43] and 5 sets

of the synthetic data developed by Handl and Knowles [44] are used for the performance

testing. The depths of the hierarchy were set in the range of 5, 10, 15, 20, 50, 100 and 200.

For the simulation, only the vigilances of each layer varied linearly in the range of [0.3,

0.9]. The learning rate and the choice parameter were set as 0.8 and 0.1, respectively.

The elapsed times on the CPU platform and the GPU platform were measured dif-

ferently. The initial setup time for both platforms was excluded, but the time consumed

copying data to and from the GPU was included on the GPU’s performance aspect. The

features of the data used for the simulation are summarized in Table 1.

Table 1. Description of the used data

Data Set Attributes Number of Data Points
Arbitrary 1 2 800
Arbitrary 2 2 40000

2d-10c 2 3630
2d-40c 2 2563
10d-4c 10 1482

10d-10c 10 3788
10d-40c 10 2707
Abalone 8 4177

Fig. 4 plots the elapsed time measured on each platform. When the tree depth is low,

the CPU running speed is faster because the algorithm was based on layer pipelining. But

as the depth grows to meet a certain value, the performance of the GPU version exceeds
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the CPU application. The point at which the GPU exceeds the CPU varies on each data

set, as shown in Table 2. The time comparison chart implies that the larger the dimension

of the data, the sooner the GPU surpasses the CPU. The maximum speed was boosted by

1170% on 2d-10c data with 200 layers. The average performance improvement is 859.37%,

527.95%, 294.74% and 140.46% on 200, 100, 50 and 20 layers, respectively.

(a) Arbitrary Data 1 (b) 10d-4c (c) Abalone

Figure 4. The elapsed time as a function of depth of a hierarchical fuzzy ART tree. The
dotted line is the result acquired from the CPU while the dashed line is that from the GPU.
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Table 2. Elapsed time (ms) comparison

Data Set
HF-ART Depth

5 10 15 20 50 100 200
Arbitrary1(GPU) 312 495 498 521 541 581 647
Arbitrary1(CPU) 40 119 174 234 392 778 1572
Arbitrary2(GPU) 4245 4788 6164 6503 7206 8286 10500
Arbitrary2(GPU) 1895 5879 8792 11672 20227 39093 76597
2d-10c(GPU) 968 628 752 783 853 962 1198
2d-10c(CPU) 349 694 1044 1392 3548 6954 14025
2d-40c(GPU) 478 508 597 617 669 751 927
2d-40c(CPU) 246 493 738 987 2463 4964 9907
10d-4c(GPU) 1342 1441 1750 1807 1924 2097 2462
10d-4c(CPU) 458 921 1379 1850 4647 9340 18719
10d-10c(GPU) 2807 3059 3866 4010 4259 4688 5460
10d-10c(CPU) 1186 2354 3539 4735 11925 23926 43974
10d-40c(GPU) 1980 2213 2784 2891 3038 3323 3834
10d-40c(CPU) 836 1681 2526 3343 8406 16863 31027
Abalone(GPU) 2972 2867 3582 3710 3929 4185 4715
Abalone(CPU) 519 1586 2370 3153 5018 10165 20214
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6. CONCLUSIONS AND FUTURE STUDIES

Fig. 5 illustrates how finely the samples can be fragmented. The results also show

that such deep clustering can be accomplished faster with GPU-based clustering than CPU-

based algorithms.

Even though HF-ART on a GPU provides a noticeable speed improvement, a few

obstacles remain. The limited size and the inflexibility of the graphics memory bind the

total size of FA modules that can be generated. Furthermore high-dimensional data strains

the distributed memory limits of the GPU, necessitating the investigation of hybridizing

this approach with data reduction, such as principal component analysis, in preprocessing.

To the best of our knowledge, this is the first report of hierarchical ART clustering

in GPU processors. Unlike previous research focusing on single ART unit parallelization

on GPU platforms [34], this research enables multiple ART units in a tree structure to be

trained simultaneously. We expect this contribution to impact applications where the need

for hierarchical clustering is combined with high data loads and computational demands,

such as in data mining and bioinformatics.
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Figure 5. Generated fuzzy ART module tree throughout the training.
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II. HIERARCHICAL BARTMAP : A NOVEL INNOVATION IN BICLUSTERING
ALGORITHMS

Sejun Kim and Donald C. Wunsch II

ABSTRACT

Biclustering, a form of co-clustering or subspace clustering, has been demonstrated

to be a more powerful method than conventional clustering algorithms for analyzing high-

dimensional data, such as gene microarray samples. It involves finding a partition of the

vectors and a subset of the dimensions such that the correlations among the biclusters are

determined and automatically associated. Thus, it can be considered an unsupervised ver-

sion of heteroassociative learning. Biclustering ARTMAP (BARTMAP) is a recently intro-

duced algorithm that enables high-quality clustering by modifying the ARTMAP struc-

ture, and it outperforms previous clustering and biclustering approaches. Hierarchical

BARTMAP (HBARTMAP), introduced here, offers a biclustering solution to problems

in which the degrees of each attribute vary in association with different samples. We per-

formed experiments on various synthetic and real data sets with other well known methods,

including various clustering algorithms. Experimental results on multiple genetic datasets

reveal that HBARTMAP can offer in-depth interpretation of microarrays, which other con-

ventional biclustering or clustering algorithms do not achieve. Biclustering can be viewed

as a data reduction technique, and its hierarchical version increases its capability of do-

ing so. Thus, this paper contributes an hierarchical extension of biclustering algorithm,

BARTMAP and comparatively analyzes their performance in the context of synthetic clus-

tering and microarray data.
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1. INTRODUCTION

Clustering is a common data-mining technique used to obtain information from

raw data. However, major challenges arise when large numbers of samples must be ana-

lyzed, and these challenges escalate as the rate of data acquisition continues to increase,

especially regarding the ability to gather high-dimensional data [45], such as gene expres-

sion microarray data. The curse of dimensionality renders the conventional clustering of

high-dimensional data infeasible [7, 46, 47, 48]. The two critical traits of bioinformatics

data are noise and high dimensionality, both of which diminish the robustness of clustering

results [49]. Thus, biclustering was introduced to overcome computational obstacles and

provide higher quality analyses [18, 50, 51, 52, 53, 54, 55]. This approach finds subsets

of samples correlated to subsets of attributes. Due to the simultaneous row and column

decomposition of the data matrix, biclustering, unlike clustering, can generate various cor-

related segments within a matrix.

The amount of biological data being produced is increasing at a significant rate [56,

57, 58]. For instance, since the publication of the H. influenzae genome [59], complete se-

quences for over 40 organisms have been released, ranging from 450 genes to over 150,000

genes. This is one of many examples of the enormous quantity and variety of information

being generated in gene expression research. The surge in data has resulted in the indis-

pensability of computers in biological research. Other data sets, such as earth science data

and stock market measures, are also collected at a rapid rate [60, 61]. The discovery of

biclusters has allowed sets with coherent values to be searched across a subset of trans-

actions or examples. An important example of the utility of biclustering is the discovery

of transcription modules from microarray data, which denote groups of genes that show
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coherent activity only across a subset of all conditions constituting the data set, and may

reveal important information about the regulatory mechanisms operating in a cell [62].

Neural networks have played a major role in data mining and clustering [63, 64,

65, 66]. Adaptive Resonance Theory (ART) [10] is a neural network-based clustering al-

gorithm and ARTMAP [13] is a neural network for supervised learning composed of two

ART modules and an inter-ART module. This, particularly the inter-ART mechanism,

was revised to develop Biclustering ARTMAP (BARTMAP) [21]. Biclustering through

BARTMAP is achieved by performing row-wise and column-wise Fuzzy ART cluster-

ing with the intervention of correlation calculations. ART has advantages of speed, low

memory utilization, ease of implementation and analysis, solution of stability-plasticity

dilemma, and no need to determine the number of clusters in advance [32]. These strengths,

particularly the latter, also apply to BARTMAP, as the number of biclusters is adjusted au-

tomatically.

This paper introduces Hierarchical BARTMAP (HBARTMAP), which inherits the

advantages of BARTMAP. HBARTMAP also automatically generates a BARTMAP tree

with attention given to each cluster obtained on every node, starting from the root BARTMAP

node. After generating the tree, this technique uses a correlation comparison method to re-

cursively calculate the measurement of row and column clusters from every terminal node,

eventually creating a full hierarchical bicluster classification.

The remainder of the paper is organized as follows. Section 2 introduces the brief

summary of Fuzzy ART and ARTMAP, followed by details of BARTMAP. In Section 3,

the main topic, HBARTMAP approach is presented. In Section 4, the experimental setup,

data description, comparison methods are explained and the results are shared. Finally, the

conclusion is provided in Section 5. Fuzzy adaptive resonance theory and ARTMAP, which

are the base methods of HBARTMAP are described in detail in the Appendix.
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2. BACKGROUND

2.1. FUZZY ADAPTIVE RESONANCE THEORY AND ARTMAP

Adaptive Resonance Theory (ART) is a neural network-based unsupervised learn-

ing method developed by Carpenter and Grossberg [67] inspired by the autonomous and

cognitive brain function. One of the most important problems in clustering is the stability-

plasticity dilemma [68] and ART provides the solution by proposing how top-down ex-

pectations focus attention on salient combinations of cues, and characterizes how attention

may operate via a form of autonomous normalizing competition. For other relevant exten-

sions of ART, see [12, 14, 69, 70, 71, 72]. [12] and [14] are particularly relevant to this

paper and are summarized in Appendices A and B.

Most details are provided in these Appendices and especially in the original refer-

ences, but a few details are reviewed here for ease of reading the rest of the paper. The base

structure of ART/FA is presented in Fig. 1. The vigilance parameter ρ determines whether

a newly introduced pattern fits into existing neurons. Once a neuron passes the test, the

algorithm will update the weights of the winning neuron. However, if all neuron fail to

meet the criteria, an uncommitted new neuron will be automatically created and updated

correspondingly. More detail about FA is presented in Appendix A.

ARTMAP [14] is a variant of ART, which learns to associate arbitrary sequences

of input and output pattern pairs. It is achieved by incorporating two ART modules, which

receive input patterns (ARTa) and corresponding labels (ARTb), respectively, with an inter-

ART module, hence making it a supervised learning algorithm. The method is capable

of fast, online, incremental learning, classification and prediction. The base architecture
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Figure 1. ART architecture. Two layers are included in the attentional subsystem, con-
nected via bottum-up and top-down adaptive weights. The interaction between the neuron
layers are controlled by a vigilance parameter ρ .

of ARTMAP has inspired the development of Biclustering ARTMAP. A description of

ARTMAP is provided in Appendix B.

2.2. BICLUSTERING ARTMAP (BARTMAP)

The BARTMAP architecture is derived from Fuzzy ARTMAP, which also consists

of two Fuzzy ART modules communicating through the inter-ART module, as shown in

Fig. 2. However, the inputs to the ARTb module are attributes (rows) instead of labels. The

inputs to the ARTa module are samples (columns), although the inputs to the modules can

be exchanged, without otherwise affecting any properties of the algorithm. The objective

of BARTMAP is to combine the clustering results of the attributes and samples of the data

matrix from each ARTa and ARTb module to create biclusters that project the correlations

of attributes and samples.

The first step of BARTMAP is to create a set of Kg gene clusters Gi, i = 1, · · · ,Kg,

for N genes by using the ARTb module, which behaves like standard Fuzzy ART. The

goal of the following step is to create Ks sample clusters S j, j = 1, · · · ,Ks, for M samples
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Figure 2. Structure of BARTMAP. Gene clusters first form in the ARTb module, and sample
clusters form in the ARTa module with the requirement that members of the same cluster
behave similarly across at least one of the formed gene clusters. The match tracking mech-
anism will increase the vigilance parameter of the ARTa module if this condition is not
met.

within the ARTa module while calculating the correlations between the attribute and sample

clusters. When a new data sample is registered to the ARTa module, the candidate sample

cluster that is eligible to represent this sample is determined based on the winner-take-all

rule using the standard Fuzzy ART vigilance test. If this candidate cluster corresponds to

an uncommitted neuron, learning will occur to create a new one-element sample cluster

that represents this sample, as in Fuzzy ART. Before updating the weights of the winning

neuron, it will check whether the following condition is satisfied: A sample is absorbed

into an existing sample cluster if and only if it displays behavior or patterns similar to the

other members in the cluster across at least one gene cluster formed in the ARTb module.
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The similarity between the new sample sk and the sample cluster S j = {s j1, · · · ,s jM j}

with M j samples across a gene cluster Gi = {gi1, · · · ,giNi} with Ni genes is calculated as

the average Pearson correlation coefficient between the sample and all the samples in the

cluster,

rk j =
1

M j

M j

∑
l=1

rk, jl, (1)

where

rk, jl =
∑

Ni
t=1(eskgit − eskGi)(es jlgit − es jlGi)√

∑
Ni
t=1(eskgit − eskGi)

2
√

∑
Ni
t=1(es jlgit − es jlGi)

2
, (2)

and

eskGi =
1
Ni

Ni

∑
t=1

eSkgit , (3)

es jlGi =
1
Ni

Ni

∑
t=1

eS jlgit . (4)

The sample sk is enclosed in cluster S j only when rk j is above some threshold η ;

learning will occur following the Fuzzy ART updating rule.

If the sample does not show any behaviors similar to those of the sample cluster

that the winning neuron represents for any clusters of genes, the match tracking mechanism

will increase the ARTa vigilance parameter ρa from its baseline vigilance to just above the

current match value to disable the current winning neuron in ARTa. This shut-off will force

the sample to be included into some other cluster or will create a new cluster for the sample

if no existing sample cluster matches it well.
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3. HIERARCHICAL BARTMAP

The basic idea of Hierarchical BARTMAP (HBARTMAP) is to reiterate BARTMAP

within the obtained BARTMAP results in order to obtain sub-biclusters, as shown in Fig. 3.

Such subdivision provides insight into reinterpreting the generated biclusters by combin-

ing or disbanding sub-biclusters of the initial results. The overall procedure is presented in

Alg. 1.

Figure 3. Main idea of hierarchical biclustering. Within a subset, the biclustering proce-
dure is repeated to discover finer detail. In HBARTMAP, increasing the vigilances of the
ARTa and ARTb modules as well as the correlation threshold by a preset interval enables
diversification. The result can be visualized as a block diagonal matrix, where the blocks
themselves can also be visualized as block diagonal matrices. The most salient data is
closest to the diagonal. so the technique can be considered a data reduction method.

The first step of HBARTMAP is performing BARTMAP on the data. Data is pre-

processed by rescaling to the range of [0,1] using the formula:

xnew =
x− xmin

xmax− xmin
. (5)
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Algorithm 1 Pseudo Code of Overall HBARTMAP Algorithm
Initialize BARTMAP
Load data Xraw
X← preprocess(Xraw)
Xn,Xd ← shape(X)
Run BARTMAP(X, ρa, ρb, η)
{Bicluster Selection}
for k = 1 to NSampleCluster do

for l = 1 to NAttrCluster do
B← Bicluster[k, l]
if f (B)≤ ξ then

Bic[k]← append(Bic[k],B)
end if

end for
end for
{Recursive ChildBARTMAP}
for i = 1 to NSampleCluster do

Run ChildBARTMAP(Bic[i], Xn, Xd , ρa, ρb, η)
end for

After the data preprocessing is completed, the BARTMAP module goes through the

entire set with preset parameters. Typically, the preset parameters of the root module are

set with low vigilance values so that the initial biclustering result includes a relatively small

number of biclusters with a large number of members in each bicluster. The vigilance ρa

and ρb for each ARTa andARTb unit are both set as 0.1. The correlation threshold η , the

main factor of BARTMAP which decides to include or exclude a newly introduced sample

into an existing cluster, is also set as 0.1. These settings allow the root module to generate

large size clusters.

Unlike BARTMAP, which lacks the ability to select and form biclusters, the bi-

cluster selection step is initiated after each BARTMAP module finishes the biclustering to

evaluate and pair the attribute and sample biclusters, as defined by f (B)≤ ξ , where ξ and

f (B) are the bicluster matching threshold and the correlation fitness function, respectively.
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The correlation coefficient between two variables p and q measures the grade of linear de-

pendency between them. Given a bicluster B composed of N samples and M attributes,

B = [g1, · · · ,gN ], the average correlation of B, δ (B), is defined as

δ (B) =
1(N
2

) N−1

∑
i=1

N

∑
j=i+1

δ (gi,g j) (6)

where δ (gi,g j) is the correlation coefficient between samples i and j.

With the calculated average correlation of bicluster B, the correlation fitness func-

tion is applied, which is defined by

f (B) = (1−δ (B))+σδ +
1
N
+

1
M
, (7)

where σδ is the standard deviation of the values δ (gi,g j). The standard deviation is in-

cluded in order to avoid the value of the average correlation being high. The best biclusters

are those with the lowest fitness function values.

During the bicluster evaluation process, once the fitness of every bicluster of a sam-

ple group is calculated, the most highly correlated attributes begin to be sorted out in ac-

cordance with a preset threshold. If the fitness of an attribute is smaller than the fitness

threshold, it is selected. Once the attribute scan is complete, the process advances to the

next sample group and progresses through the selection step again. However, to avoid

previously-selected attributes overlapping in different sample groups, they are excluded

from the search.

The next step is to register the acquired biclusters to child BARTMAP modules.

Once each child node receive the pass information, the vigilance and correlation thresholds
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are first adjusted by

ρa,i = ρa · (1+ γ
√

Mi), (8)

ρb,i = ρb · (1+ γ
√

Ni), (9)

ηi = η · (1+ γδ (Bi)), (10)

where Mi and Ni are the number of attributes and samples included in the ith bicluster Bi,

respectively, ρa,i, ρb,i and ηi are the vigilances of ARTa, ARTb and correlation threshold for

the ith child BARTMAP node and γ = 1/(Xn ·Xd) being the recursive node control factor,

where Xn and Xd are the number of samples and attributes of the data set X processed

through the parent BARTMAP node.

Fig. 4 depicts how the HBARTMAP tree is formed. The child node generation is

completely recursive, thus the information available for each child node are the parameters

and data sets processed through its parent node. The pseudo-code of ChildBARTMAP

function shown in Alg. 2 is a recursive function used to generate a tree of BARTMAP

modules that solely compute the subset.

The final phase of the algorithm is to decide which layer of the bicluster tree pro-

vides the most meaningful result. For many clustering problems, the external criteria is

unknown, so we applied the Caliński and Harabasz index [73], which is defined as,

CH(K) =
Tr(SB)

K−1
/

Tr(SW )

N−K
, (11)

where N is the number of objects, K is the number of clusters / biclusters and Tr(SB) and

Tr(SW ) are the traces of the between and within-class scatter matrix, respectively. The
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Figure 4. Tree formation of HBARTMAP. Each discovered biclusters from the parent
BARTMAP node are processed to corresponding child node with the parameters adjusted
by Eq. 8, 9 and 10.

traces of the matrices are defined as,

Tr(SB) =
K

∑
i=1

Ni(mi−m)(mi−m)T , (12)

Tr(SW ) =
K

∑
i=1

N

∑
j=1

γi j(x j−mi)(x j−mi)
T , (13)

where

γi j =


1, if x j ∈ cluster i

0, otherwise,
(14)

with ∑
K
i=1 γi j = 1∀ j, where x j, j ∈ 1, ...,N represents each sample.
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Algorithm 2 Pseudo Code of ChildBARTMAP Function
M,N← shape(X)
ρa, ρb, η = AdjustParameters(Xparent,n, Xparent,d , ρparent,a, ρparent,b, ηparent)
if ρa ==1 or ρb ==1 or η==1 then

Return
end if
Run BARTMAP(X, ρa, ρb, η)
if NSampleCluster or NAttrCluster ≤ 2 then

return
end if
for k = 1 to NSampleCluster do

for l = 1 to NAttrCluster do
B← Bicluster[k, l]
if f (B)≤ ξ then

Bic[k]← append(Bic[k],B)
end if

end for
end for
{Recursive ChildBARTMAP}
for i = 1 to Num_SampleCluster do

Run ChildBARTMAP(Bic[i], M, N, ρa, ρb, η)
end for
return

The objective of applying the index is to find the best layer that maximizes CH(K)

as K increases and differs per layer. As the layer that gives the maximum Caliński and

Harabasz index doesn’t always necessarily translate into the best result, the five highest

results are given for analysis.
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4. EXPERIMENTAL RESULTS

4.1. DATA SETS

Various sizes of the synthetic data set developed by Handl and Knowles [41] were

used for the simulation to compare the clustering performance. The features of the applied

data set are given in Table 1.

Table 1. Characteristics of synthetic data set

No. Samples Attributes Clusters
1 1286 100 4
2 2117 860 10
3 9841 1377 27

For real world data experiments, the leukemia data set [72] was applied. The set

consists of 72 samples, including bone marrow samples, peripheral blood samples and

childhood AML cases. Twenty-five of these samples are acute myeloid leukemia (AML),

and 47 are acute lymphoblastic leukemia (ALL), each of which is composed of two subcat-

egories due to the influences of T-cells and B-cells. The expression levels for 7,129 genes

were measured across all of the samples by high-density oligonucleotide microarrays.

The second experiment was done with the yeast cell cycle data set [73]. It demon-

strates the oscillation of expressions of 2,884 genes and 17 conditions, which were se-

lected according to [74]. The value entries were transformed by scaling and logarithm

x→ 100log(105x) so that the matrix was composed of integers in [0,600] range.

The SRBCT data set [75] presents diagnostic research on the Small, Round, Blue-

Cell Tumors of childhood cancers. It consists of 83 samples from four categories, known as

Burkitt lymphomas, the Ewing family of tumors, neuroblastoma and rhabdomyasarcoma.
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Gene expression levels of 6,567 genes were measured during cDNA microarrays for each

samples, 2,308 of which pass the filter that requires the red intensity of a gene to be greater

than 20 and were kept for further analysis. A logarithm was taken to linearize the relations

between different genes and to lower very high expression.

In the experiments, the choice parameters α for both ART modules are set to 0.001

as they do not affect the clustering performance. The learning rates β and γ for both ART

modules are set to 1 to encourage fast learning. The baseline vigilance ρ and correlation

threshold η are both set to 0.1 in the root node. The bicluster matching threshold ξ is set

to 0.6.

4.2. COMPARISON METHODS

We compared the performance of HBARTMAP with various clustering / bicluster-

ing algorithms. Fuzzy ART (FA), Biclustering ARTMAP (BARTMAP) were chosen, both

of which are mentioned in Section II. K-means and agglomerative hierarchical clustering

with three different linkage modes were also implemented for comparison.

The statistical algorithmic method for bicluster analysis (SAMBA) algorithm [78]

shifts the problem domain from finding sub-matrices with coherent behavior to probabilis-

tic modeling and graph theory. The data set is represented as a bipartite graph, where the

vertices correspond to genes and deletions. The problem of identifying biclusters is then

transformed into trying to find heavy sub-graphs in this graph representation. Then the

algorithm attempts to identify the heaviest bicliques by applying a hashing technique. The

final phase of SAMBA is attempting to make local improvements by adding or deleting

vertices until no further improvement is possible.

In interrelated two-way clustering (ITWC), the gene cluster and sample cluster are

viewed simultaneously by dynamically using the relation between the groups of genes and
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samples while iteratively clustering both [22]. As this method works on the principle of

finding the most important genes, the clustering of samples can be far better than clustering

without using information on the clusters of samples. The steps of the algorithm are done

by first performing clustering among genes with K-means or self-organizing map. Then

the sample clustering is performed with K-means. Both results are combined to determine

heterogeneous groups based on correlation and finally during the cleanup phase, the least

important genes are dropped, until the given termination condition.

Co-regulated Biclustering (CoBi) is a relatively fast biclustering algorithm achieved

by using a BiClust tree based technique [79]. The process consists of pruning and expand-

ing the generated cluster decision tree. In the cluster expansion phase, clusters are merged

by an intersection operation between two clusters. The method is shown in Algorithm 3.

Algorithm 3 Pseudo Code of CoBi [79]
Construct initial BiClust tree BT
Prune cluster Ci from BT, if |Ci|< MinGene
BiClust = ExpandCluster(BT,MinGene,θ)
BiClust = RemoveSubCluster(BiClust)

In the ExpandCluster function, two subtrees from the BiClust tree are merged and

pruned if the number of genes is lesser than the threshold MinGene. After the iterative

process, RemoveSubCluster function cleans out redundant clusters, where genes in the

clusters are same.

The parameters used on the methods for comparison are presented in Table 2. For

ranged parameters, the best performance from evaluation metrics are reported.
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Table 2. Parameter setup for clustering and biclustering methods

Method Parameters (best performance reported)
HBARTMAP ρa = 0.1,ρb = 0.1,η = 0.3

KM K = 2∼ 50
FA ρ = 0.3∼ 0.7
HC Single, Complete, Average linkage

BARTMAP ρa = 0.3,ρb = 0.3∼ 0.7,η = 0.4
CoBi MinGene = 3∼ 5 θ = 50%, τ = 20
ITWC K = 2∼ 50

SAMBA k = 20,L = 20∼ 40,D = 40,N1 = 2,N2 = 5∼ 10

4.3. EVALUATION

The results of HBARTMAP and comparison methods are evaluated by several val-

idation methods. See chapter 10 of [7] for an overview of various cluster evaluation meth-

ods. To compare the resulting clusters with the real structures in terms of external criteria,

the Rand index and the adjusted Rand index [78] were applied.

We assume that P is a pre-specified partition of dataset X with N data objects, which

also is independent from a clustering structure C resulting from the use of the algorithm

being evaluated. Therefore, a pair of data objects xi and x j, will yield four different cases

based on how xi and x j are placed in C and P.

• Case 1 xi and x j belong to the same cluster of C and the same category of P.

• Case 2 xi and x j belong to the same cluster of C and different categories of P.

• Case 3 xi and x j belong to different clusters of C and the same category of P.

• Case 4 xi and x j belong to different clusters of C and different categories of P.

The Rand index [78] then can be defined as follows, with larger values indicating greater

similarity between C and P:
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R =
(a+d)

L
, (15)

where a, b, c and d are the quantities of case 1 to 4 with all pairs of points, respectively and

L = a+ b+ c+ d. The adjusted Rand index [81] assumes that the model of randomness

takes the form of the generalized hypergeometric distribution, which is written as,

Ad jR =

(N
2

)
(a+d)− ((a+b)(a+ c)+(c+d)(b+d))(N
2

)2− ((a+b)(a+ c)+(c+d)(b+d))
. (16)

The adjusted Rand index has demonstrated consistently good performance in pre-

vious studies compared to other indices.

Jaccard coefficient is a common method in measuring the species diversity between

two different clusters. It is similar to the Rand index, but it disregards the pairs of elements

that are in different clusters. It is defined by,

J = a/(a+b+ c). (17)

4.4. RESULTS

The relationship of the external and internal criteria obtained through HBARTMAP

on the synthetic data sets are shown in Fig. 5. The results state that HBARTMAP correctly

picks the optimal layer in the bicluster tree, as the peak of CH index matches each peak of

all external criteria.

Fig. 6 shows the clustering result of a synthetic data set. On the root node, HBARTMAP

divides the data set into two major clusters. Then, the algorithm performs BARTMAP

within each cluster to split it into two subclusters.
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(a) Synthetic Data Set 1

(b) Synthetic Data Set 2

(c) Synthetic Data Set 3

Figure 5. Evaluation results of all synthetic data sets showing the relationship between
the external (CH index) and internal (rand, adjrand, jaccard) criteria. Various validation
indexes are presented per layer. The x-axis values are the numbers of clusters found in
each layer.
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(a) Tag of given synthetic data

(b) HBARTMAP clustering result

Figure 6. The result of HBARTMAP running the synthetic data set 1 with 4 given clusters
in a 2-dimensional plane. HBARTMAP results in 5 layers. The cluster index shows that
HBARTMAP initially acquires 3 clusters, then two of each (cluster 1 and 2) splits into
two clusters after the exploring into two more layers in the HBARTMAP bicluster tree,
resulting in 5 biclusters.
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The results from real world data sets are presented in Fig. 7. While the CH index

correctly discovers the layer where the external criteria is highest on the leukemia and the

yeast data set, the results from SRBCT does not match.

The main focus of the real data set simulation is to perform biclustering with

HBARTMAP and to judge how precisely the condition that this approach computes matches

external criteria. Fig. 7 depicts the Rand index and the adjusted Rand index result of each

layer, beginning with the biclustering result from the root HBARTMAP node. Because

the initial vigilance and threshold parameters are set low, the result is rough. While the

leukemia data set has three conditions, the root node only found two. As a result, deeper

layers were evaluated, and the growth of both the Rand index and the adjusted Rand index

is obvious. At layer 3, where 5 biclusters were discovered, the Rand index was 0.9711, and

the adjusted Rand index was 0.8881, both of which values are higher than the second best

result 0.7666 by CoBi.

A comparison of the evaluation results among tested algorithms is shown in Table 3.

The methods used for comparison are Rand index (R) and Adjusted Rand index (AR).

HBARTMAP clearly performs better than the tested methodologies among all data sets

studied.
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(a) Leukemia

(b) Yeast

(c) SRBCT

Figure 7. Evaluation results of real world data sets (leukemia, yeast and SRBCT) showing
the relationship between the external (CH index) and internal (rand, adjrand, jaccard) cri-
teria. Various validation indexes are presented per layer. The x-axis values are the numbers
of clusters found in each layer.
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Table 3. Comparison on various clustering / biclustering methods. The abbreviations of the
methods are as follows: K-means (KM), fuzzy ART (FA), biclustering ARTMAP (BAM),
hierarchical clustering with complete linkage (HC-C), co-regulated biclustering (CoBi),
interrelated two-way clustering (ITWC) and statistical algorithmic method for bicluster
analysis (SAMBA). R and AR are abbreviations for Rand index and Adjusted rand index,
respectively.

Methods
Data Sets

Synth 1 Synth 2 Synth 3 Leukemia Yeast SRBCT

HBARTMAP
R 0.9576 0.8948 0.9401 0.9427 0.9815 0.9652

AR 0.7422 0.7437 0.7997 0.8881 0.7893 0.8247

KM
R 0.7323 0.7486 0.7945 0.8776 0.8583 0.7632

AR 0.6123 0.5486 0.6921 0.5780 0.5943 0.2679

FA
R 0.8404 0.8222 0.7996 0.8709 0.8492 0.8792

AR 0.7020 0.6977 0.7171 0.6874 0.6398 0.7146

BAM
R 0.9385 0.8292 0.9080 0.9109 0.9388 0.8939

AR 0.7351 0.7077 0.7247 0.7573 0.7794 0.7485

HC-C
R 0.8566 0.8191 0.8277 0.8662 0.8145 0.7640

AR 0.5958 0.6036 0.6172 0.5299 0.4936 0.2247

CoBi
R 0.8921 0.8118 0.8750 0.9001 0.8990 0.9101

AR 0.6595 0.5978 0.6972 0.7666 0.7481 0.7592

ITWC
R 0.9105 0.8660 0.9219 0.7625 0.7709 0.7251

AR 0.5389 0.6161 0.7453 0.6956 0.3882 0.4705

SAMBA
R 0.7928 0.8863 0.9158 0.9293 0.8420 0.8906

AR 0.2774 0.7317 0.5594 0.2801 0.5716 0.7613
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5. CONCLUSION

In this paper, we introduce hierarchical BARTMAP, an hierarchical approach for bi-

clustering utilizing BARTMAP. The results indicate that the performance of HBARTMAP

clearly exceeds these other clustering and biclustering methods. In particular, the experi-

mental results demonstrate that HBARTMAP provides better biclustering than BARTMAP,

which had previously shown the best published results we had found. The increase in the

adjusted Rand index while searching each layer indicates that the hierarchical version of

BARTMAP can be implemented effectively in high-dimensional data analysis. It suggests

that utilizing the hierarchical approach on biclustering was the major factor of successful

experiments. The superiority of HBARTMAP over BARTMAP, and BARTMAP over other

approaches, is mostly consistent across a range of problems and of validation criteria.
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III. VALUE GRADIENT LEARNING BASED SEMI-SUPERVISED SUPPORT
VECTOR MACHINES

Sejun Kim and Donald C. Wunsch II

ABSTRACT

Semi-supervised support vector machines (S3VM) are a modification of support

vector machines (SVM) that allows labeled and unlabeled data to be used together for

training. In this research, we further modified the S3VM optimization by using adap-

tive dynamic programming (ADP) to achieve better classification. Value gradient learning

(VGL), a relatively new and powerful ADP algorithm, was applied; it allows faster con-

vergence by learning value gradients directly with lower cost. In order to apply S3VM in

an ADP structure, the state and action vectors were set as the label and hyperplane vec-

tors, respectively. During the initial training process, which was supervised, ordinary SVM

was used, and the acquired hyperplane coefficients were registered to the action network.

As the semi-supervised learning stage began, the unlabeled test set was applied, and the

hyperplane and label vectors of the entire data set were adjusted until the cost function

converged to a preset threshold. The experiments demonstrated that Value Gradient Learn-

ing S3VM (VGLS3VM) can perform more accurate semi-supervised clustering compared

with conventional S3VM algorithms. In so doing, this paper demonstrates one of the few

architectures to combine supervised, reinforcement, and unsupervised learning.
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1. INTRODUCTION

Semi-supervised learning [24] combines the advantages of both supervised and un-

supervised learning. Generally, it is easier and more cost efficient to tag only a small

portion of the data set, which forms the labeled set, while the majority of the data set re-

mains untagged, forming the unlabeled set. In semi-supervised learning, the supervised

stage handles the labeled set and then analyzes the remaining data with the knowledge ac-

quired from the previous step. Generative probabilistic models, semi-supervised support

vector machines and graph-based semi-supervised learning are some widely used methods.

Support vector machines (SVM) [82] have been used for various types of classifi-

cation and clustering, such as biological analysis, statistics and pattern recognition. Semi-

supervised support vector machines (S3VM) can process partially labeled data [83, 84].

The unlabeled set is handled using additional optimization points. The two broad op-

timization strategies are combinatorial optimization and continuous optimization, which

adjust the decision boundary and the label vector, respectively [85, 86, 87, 88, 89].

Adaptive dynamic programming (ADP) is a tool typically used for solving opti-

mization and optimal control problems in the presence of noise, uncertainty and non-

stationarity. The main goal is to learn the cost-minimizing actions of an agent on each

state. An action network is a neural network that generates an action for a given state. The

critic function, another neural network in the ADP structure, is trained to approximate the

long-term cost. Heuristic dual programming (HDP) and TD(λ ) [90, 91] are value learning

(VL) methods, while dual heuristic dynamic programming (DHP) and globalized DHP are

value gradient learning (VGL) [92] methods. VL methods tend to be slow because they

must cover a representative portion of the state space, while VGL methods only require

a single trajectory, making their convergence faster. A thorough review of these terms is
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beyond the scope of this paper, but VGL is explained in Section 2.2, and the other terms

are explained in [93].

This research focuses on solving S3VM using VGL to perform the optimization

motivated by ADP based methods on non-control problems [94, 95, 96]. The state of the

ADP structure is the set of the label vectors. The action network generates the hyperplane

vector, which is defined as the action in the system. The cost function is set as the S3VM

fitness function, so the S3VM can be solved as an optimal control problem. The structure

of the combined model, referred to as VGL based S3VM (VGLS3VM), appears in Fig. 1.

The mathematical configuration and notations are further discussed in Section 3.

Figure 1. General structure of the VGLS3VM system. The initializer sets up the actor
neural network with the supervised SVM results. Afterwards, the adaptive critic design
(ACD) is implemented for the S3VM process by applying VGL.

This paper contains a discussion of the proposed method, VGLS3VM, which in-

herits the advantages of VGL. Before plugging each ADP component into the VGLS3VM

system, the initial supervised learning step trains the action network with the labeled set.

Then, the S3VM process begins, searching through the trajectory to find the optimal action

(hyperplane vector) iteratively. The state (label vector) is adjusted correspondingly by the

model function. Then, the cost (fitness) determines whether the adjusted values are appro-
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priate. Finally, the critic function feeds the trajectory back to the action network to reflect

the result, thus converging to the optima.

This paper is therefore one of few (e.g., [96, 97]) that successfully demonstrate the

combination of supervised, unsupervised and reinforcement learning.

The remainder of the paper is organized as follows. Section 2 introduces S3VM and

VGL, followed by an explanation of the VGLS3VM approach. In Section 4, the experimen-

tal setup, data description, results and comparison are presented. Finally, the conclusion is

provided in Section 5.
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2. BACKGROUND

2.1. SUPPORT VECTOR MACHINE AND SEMI-SUPERVISED SVM

Support vector machines (SVM) were originally introduced to geometrically in-

terpret classification problems by finding a separating hyperplane in a multidimensional

space [7, 83, 98]. With respect to sparse and noisy data, SVM is well suited for applica-

tions such as pattern recognition and biological data analysis. The main goal is to find the

hyperplane that is maximally distant from each cluster. It is also possible to apply SVM on

a non-linear separation with the kernels technique by converting the mapping into a linear

space.

Given a training set of n data points with s dimensions, the set D can be defined by:

D = {(di,ci)|di ∈ Rs,ci ∈ (−1,1),1≤ i≤ n}, (1)

where ci indicates the label to which the ith pattern di belongs, such that ci = hardlims( f (di)),

where hardlims is the symmetrical hard limit function and f is the hyperplane function de-

fined by:

f (di) = wT ·di +b, (2)

where w is the vector lying perpendicular to the hyperplane, and b is the intercept of the

hyperplane. The goal of SVM is to find a classifier that maximizes the margin of each

decision boundary. The distance d between the hyperplane and two decision boundaries,

wT ·da +b = 1 and wT ·db +b =−1, can be calculated by:

d = 2|wT ·da +b|/‖w‖= 2/‖w‖. (3)
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The optimal solution is to maximize d, thus minimizing ‖w‖ subject to ti(wT ·di +

b)≥ 1.

The semi-supervised SVM (S3VM) learning model aims to handle a limited amount

of labeled data by combining supervised and unsupervised learning. A wide spectrum of

techniques have been applied to solve the non-convex optimization problem associated with

S3VMs [84, 85, 86, 87, 88, 89, 99, 100, 101].

The training set consists of nl labeled patterns {di,ci}nl
i=1, and nu unlabeled patterns

{di}n
i=nl+1, with n = nl +nu. In S3VM, the following optimization problem must be solved

over both the label vector t′u = [cnl+1...cn]
T and the hyperplane parameters (w,b),

I(w,b, t′u) =
1
2
‖w‖2 +C

nl

∑
i=1

V (ci,oi)+C∗
n

∑
i=nl+1

V (ci,oi) (4)

where oi = wT ·di +b, and V , a hinge loss function used for maximum-margin classifica-

tion, is defined by:

V (ci,oi) = max(0,1− cioi)
2, (5)

which heavily penalizes mismatch on the labeled patterns, as presented in the example

shown in Fig. 2.

The first two terms in Eq. 4 represent a standard SVM, the third term incorporates

unlabeled data, and C and C∗ are weights that are predefined to reflect the confidence in the

labeled and unlabeled patterns, respectively.

The two main strategies for optimizing I are combinatorial optimization and contin-

uous optimization. The former method explicitly uses t′u, the binary labels of the unlabeled

patterns to find the minima of I. Branch-and-Bound (BB) [84] is one of the easiest meth-

ods; it forms a decision tree through every possible selection and then searches through it
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Figure 2. Example of hinge loss function. The correct label of pattern x1 is 1. Assuming
o1 = 2, if c1 = 1 (correct), then V (ci,oi) = 0, while V (ci,oi) = 9 if c1 = −1 (incorrect),
resulting in a high penalty.

to find the best solution. Due to the exhaustive nature of this method, it will only work with

small data sets. Several other combinatorial methods, such as S3VMlight and Convex rela-

tion [86, 101], are expensive and scale poorly. On the other hand, continuous optimization

aims to adjust (w,b), the hyperplane, and the label vector is simply the symmetrical hard

limit of oi. Therefore, by eliminating t′u, the target function I can be rewritten as:

I(w,b) =
1
2
‖w‖2 +C

nl

∑
i=1

V (ci,oi)+C∗
n

∑
i=nl+1

max(0,1−|oi|)2. (6)

The concave convex procedure (CCCP), ∇S3VM and Newton S3VM [99, 102, 103]

are methods for discovering the global optima, as Eq. 6 is a non-convex function. Contin-

uous optimization methods tend to perform better and faster than combinatorial methods.
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2.2. VALUE GRADIENT LEARNING (VGL)

Value Gradient Learning (VGL) methods [92] were developed in an attempt to elim-

inate the requirements of the Bellman equation, namely, the exploration of the state space.

In contrast, VGL only requires the value gradient along a single trajectory [104]. Therefore,

it is likely that using VGL over value learning (VL) is significantly more efficient.

The VGL system consists of two main neural networks - the critic function and the

action network. Let x and u be the state vector and the action vector, respectively, then

the typical critic function J̃(x,w) in VL methods is redefined in VGL as G̃(x,w) = ∂ J̃(x,w)
∂x .

Then, the VGL algorithm can be defined as a weight update of:

∆w = α ∑
t

(
∂ G̃
∂w

)
t

(G′t− G̃t) (7)

where α is the learning rate and G′t is the target value gradient defined by:

G′t =
(

DU
Dx

)
t
+ γ

(
D f
Dx

)
t
(λG′t+1 +(1−λ )G̃t+1) (8)

where U is the cost function, and λ ∈ [0,1] is a constant. If λ = 0, VGL is equiv-

alent to DHP. However, if λ > 0, the stability of learning improves. The learning speed

is another factor affected by λ . When λ is high, the critic uses a longer look-ahead along

the trajectory, resulting in faster learning. However, if λ is too large, the variance of the

target function increases and consequently lowers the speed, especially in stochastic envi-

ronments. Thus, the optimal λ is often set in the middle range, λ ∈ [0,1] [105]. D
Dx is the

equivalent of:
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D
Dx
≡ ∂

∂x
+

∂A
∂x

∂

∂u
. (9)

The recursion of Eq. 8 is guaranteed to converge when γ < 1
λ

. The action network

with the weight vector z is defined by:

ut = A(x,z), (10)

and is trained using the method employed in [93], which uses the following weight update

for the action network at each time step t:

∆z =−β

(
∂A
∂z

)
t

((
∂U
∂u

)
t
+ γ

(
∂ f
∂u

)
t
G̃t+1

)
, (11)

where β is a separate learning rate for the action network, and f is the model function,

which predicts the next state xt+1.

Algorithm 1 depicts the overall pseudo code of the VGL implementation. This al-

gorithm makes a forward pass through the trajectory, storing all states and actions, followed

by a backward pass through the trajectory, accumulating G′t by the recursion of Eq. 8.
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Algorithm 1 Pseudo Code of VGL implementation [92]
t← 0
{Unroll trajectory...}
while not terminated(x) do

u← A(xt ,z)
xt+1← f (xt ,ut)
t← t +1

end while
F ← t
p←

(
∂U
∂x

)
t
,∆w← 0,∆z← 0

{Backwards pass...}
for t = F−1 to 0 step −1 do

G′t ←
(

∂U
∂x

)
t
+λ

(
∂ f
∂x

)
t
p

+
(

∂A
∂x

)
t

((
∂U
∂u

)
t
+ γ

(
∂ f
∂u

)
t
p
)

∆w← ∆w+
(

∂ G̃
∂w

)
t
(G′t− G̃t)

∆z← ∆z−
(

∂A
∂z

)
t

((
∂U
∂u

)
t
+ γ

(
∂ f
∂u

)
t
G̃t+1

)
p← λG′t +(1−λ )G̃t

end for
w← w+α∆w
z← z+β∆z
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3. VALUE GRADIENT LEARNING SEMI-SUPERVISED SUPPORT VECTOR
MACHINES (VGLS3VM)

The VGLS3VM method was devised to achieve faster and better convergence to the

optimal S3VM solution. To achieve this objective , a hybrid machine learning model was

designed by applying the S3VM optimization problem with VGL. The hyperplane parame-

ters and the label vector interact continuously until the result converges to an optimum, so

VGL is capable of serving as an appropriate tool for S3VM optimization.

As noted previously, the state vector x is the combination of the label vectors of

both the labeled and unlabeled patterns with their respective sizes.Thus the state vector x is

defined by:

x = [τl,nl,τu,nu]
T , (12)

where τl and τu are the tag vectors of the labeled and unlabeled patterns, respectively and

nl and nu are the number of labeled and unlabeled patterns, respectively. The action vector

u is the combination of the hyperplane parameters defined by u = [ws, ...,w1,b]T , where s

is the dimension of the pattern.

The model function f is defined by:

xt+1 = f (xt ,ut) = [τlt+1,nl,τut+1 ,nu]
T (13)

where

τlt+1 = {hardlims
(
wT

t ·di +b
)
|i ∈ Z,1≤ i≤ nl}, (14)
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τut+1 = {hardlims
(
wT

t ·di +b
)
|i ∈ Z,nl +1≤ i≤ n}, (15)

and the cost function U(xt ,ut) is a version of Eq. 6 modified to fit the notation, which is

defined by:

U(xt ,ut) =
1
2
‖w‖2 +C

nl

∑
i=1

V ′(ci,o′i)+C∗
n

∑
i=nl+1

max(0,1−|o′i|)2, (16)

where w = [ws, ...w1]
T , ci = o′i,∀i ∈ (nl,n) and, o′i = hardlims

(
wT ·di +b

)
.

This contribution reflects continuous optimization because the VGL method trains

the action network, the output of which is the hyperplane parameter. One prerequisite of

continuous optimization is the balancing constraint, which limits the number of patterns

belonging to each cluster because of the possibility of the hyperplane being adjusted such

that all of the unlabeled patterns belong to the same cluster. Thus, o′i is modified such

that the first nr or fewer patterns are set to 1 by sorting mi =
(

u1 +∑
s
j=1 u j+1di j

)
in a

descending order as long as mi ≥ 1. The restraint factor nr is typically set to n/2.

For the action network and critic function, a general neural network architecture,

as shown in Fig. 3, is applied, which is a fully connected feed-forward neural network

with all shortcut connections. The number of internal nodes is adjusted based on the input

dimension s.

The learning rates of the critic and the actor neural network are adjusted based on

the number of iterations. Since the supervised SVM process sets up the actor initially as

shown in 1, high learning rate of the actor, β , causes the actor to deviate quickly from the

initially set weights. While preventing the actor from rapidly diverging, the critic needs

to converge faster with higher critic learning rate, α . Thus, in the early stage of iteration,
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Figure 3. Example neural network including shortcut connections with 3 input nodes and
1 output node. Removing the dashed lines by setting those weights to 0 yields a more
traditional layered network with a single hidden layer.

the learning rates α and β are initially set near 0.9 and 0.5, respectively and gradually

converge to a preset value, 0.1 on each iteration. To prevent the hyperplane being stuck

in the local optima, we added a neural network reset feature while keeping track of the

discovered local optimum. When the reset is triggered, learning rate β is set back to 0.5,

with the same decay rate.

In the proposed method, the progress towards the converged optima is less con-

sidered, as long as VGLS3VM can discover the best optima while exploring the problem

space. Thus the discount factor γ was to 1.0. The hyper parameter λ was set to 0.5 based

on [105] while γ < 1
λ

to ensure convergence to an optima.
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4. EXPERIMENTAL RESULTS

4.1. SETUP

We began the simulation with the data sets summarized in Table 1. The wine data

set was derived from the chemical analysis of 13 chemical substances found in each of

three types of wines. The Swiss roll and g50c data sets were artificially generated based on

Gaussians. The Swiss roll data set was generated by converting Gaussian distributed data

points with the equation given by:

(x,y)→ (xcosx,y,xsinx), (17)

which results in the plot of data points shown in Fig. 4. The g50c set was generated from

two standard normal multivariate Gaussians, with different Gaussians and means for each

class. The shape of the patterns for another artificially generated data set, 2moons, is shown

in Fig. 5.

Table 1. Characteristics of data sets [86, 104, 105, 106, 107, 108, 109, 110]

Name Dimension Samples Labeled
Wine 13 130 10

Swiss Roll 3 2000 50
SecStr 314 83,679 1,000
g50c 50 550 50
Text 7511 1946 50

Uspst 256 2007 50
Isolet 617 1620 50

Coil20 1024 1440 40
2moons 102 200 4
ml1m 4000 6000 600

ml10m 10000 100000 1000
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Figure 4. Two-class Swiss roll data set represented on a 3-dimensional plane.

Figure 5. Two-class 2moons data set.

The Text data set was defined using the classes mac and mswindows in the New-

group20 data set. The Uspst set is a collection of handwritten digit recognition features

from USPS data. The Isolet data set is a subset of the ISOLET spoken letter database

containing the sets of 1, 2, 3, and 9 confusing letters { B, C, D, E, G, P, T, V, Z} spoken.

The Coil20 set is a combination of gray-scale images of 20 different objects taken from

different angles, at 5-degree intervals.
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All experiments used the same Gaussian kernel given by:

k(x,y) = exp(−‖x− y‖2/2σ
2) (18)

where σ was adjusted based on the estimated standard deviation within neighborhoods. For

multi-class data sets, we applied the one-vs-rest approach. The balancing constraint was

set to follow the number of patterns labeled 1 from the tag information.

The protein secondary structure prediction task (SecStr) [111] is an extensive data

set in terms of features. The classification problem involves predicting the secondary struc-

ture of a given amino acid in a protein based on a sequence window centered around that

amino acid.

The ml1m and ml10m [110] are the movie ratings data sets collected by the Grou-

pLens research group. In order to make it a classification setup with two labels, we pre-

processed the ratings by giving 1 for scores of 3 or above and -1 otherwise. For the experi-

ments, 10% of the each data set were randomly chosen as the labeled set.

4.2. RESULTS

Table 2 presents the error rate of the wine, Swiss roll, ml1m and ml10m data sets.

The BB and CCCP methods were coded for comparison on the same experimental platform.

Table 2. Unlabeled error rates of investigated methods in percentage

Method wine Swiss roll SecStr ml1m ml10m
VGLS3VM 6.7 8.3 29.86 14.26 23.44

BB 6.7 14.8 39.11 49.39 n/a
CCCP 7.3 9.4 31.79 22.95 37.18
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Unlike conventional S3VM methods, VGLS3VM requires more than one iteration

in order to allow VGL to explore several trajectories until it converges to the optima. De-

spite this requirement, VG3SVM performs better than BB and CCCP in terms of error rate.

BB worked slower than both CCCP and VGLS3VM and often failed to find any optima on

SecStr, ml1m, which are larger data sets than wine and Swiss roll in terms of sample size

and dimension. For ml10m, BB did not give any proper result due to both the dimension

and quantity of the data set being the largest. The wine and Swiss roll sets required 30

and 80 iterations, respectively, to reach the optima. Fig. 6 shows the transformations of the

hyperplane from the initial SVM state to the completed state.

For SecStr, ml1m, and ml10m, the iteration counts needed to converge to the best

optima are shown in Table 3. Due to the randomness in the neural network reset feature, the

required iteration varied throughout each trial but eventually converged to the exact same

hyperplane.

Table 3. Required number of iterations to converge on larger datasets in 20 trials

Dataset Average Min Max StdDev
SecStr 942.8 786 1410 152.36
ml1m 837.65 521 1548 258.71
ml10m 2382.45 1749 4461 686.45

The cost per iteration during the training process is shown in Fig. 7, which presents

the neural network reset mechanism allowing VGLS3VM to avoid being stuck in local

optima and eventually converges to the global optima.

The experiments on the remaining data sets were compared with the results and

setups from [28]. The results appear shown in Table 4, with the best methods for each data
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set shaded in gray. VGLS3VM performed better than other S3VM methods on some, but

not all, of the data sets.

Table 4. Comparison of unlabeled error rate with published results [28]

Method g50c Text Uspst Isolet Coil20 2moons
∇S3VM 7.2 6.8 24.1 48.4 35.4 62.2
cS3VM 6.6 5 41.5 58.3 51.5 33.7
CCCP 6.7 12.8 24.3 43.8 34.5 55.6

S3VMlight 7.5 9.2 24.4 36 25.3 68.8
∇DA 8.4 8.1 29.8 46 12.3 22.5

Newton 5.8 6.1 25 45.5 25.4 8.9
VGLS3VM 5.1 4.9 21.7 36.2 9.8 8.2

SVM 9.1 23.1 24.2 38.4 26.2 44.4
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(a) wine data set

(b) Swiss roll data set

Figure 6. Hyperplane transition of wine and Swiss roll data sets. The dashed line represents
the initial hyperplane acquired from the supervised SVM step. After 30 and 80 iterations,
respectively, the hyperplanes converged to the solid lines, which represent the discovered
optima.
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(a) wine data set

(b) Swiss roll data set

Figure 7. The cost change of wine and Swiss roll data sets shown per iteration. The dashed
line represents the initial hyperplane acquired from the supervised SVM step. In both cases,
the cost increases throughout the training phase due to the reset feature which allows the
neural network to escape the local optima.
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5. CONCLUSION

VGLS3VM uses the VGL approach to ADP in order to modify the S3VM algorithm.

The results indicate that VGLS3VM can perform as good as, and in some cases better than,

conventional S3VM algorithms. Modifications to the procedure described in this paper,

such as using modified kernel functions, warrant further exploration. These promising

results open the possibility of combining reinforcement learning into supervised and un-

supervised learning, and demonstrate that VGL should be considered in semi-supervised

learning approaches.
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IV. BICLUSTERING BASED PREDICTION WITH SUPERVISED
BICLUSTERING ARTMAP

Sejun Kim and Donald C. Wunsch II

ABSTRACT

This paper presents a novel supervised learning algorithm based on an extension of

biclustering. The hypothesis was that by forming associative priming connections between

discovered biclusters and supervisory signals, better inference accuracy could be achieved.

The approach was tested on synthetic data and sports statistics. The approach is called

supervised biclustering ARTMAP (S-BARTMAP), a supervised biclustering based predic-

tion made by modifying biclustering ARTMAP (BARTMAP), an unsupervised learning

method, which itself is an extension of Adaptive Resonance Theory. In order to build a

supervised version, an additional ART unit and an inter-ART module on BARTMAP were

implemented which controls BARTMAP based on the supervised signal. Experiments were

performed mainly on sports match forecasting with baseball, football and basketball statis-

tics. The results show that S-BARTMAP is more precise than other approaches and is

capable of providing insight on feature to label correlation, such as the weight of features

on contribution to winning.



72

1. INTRODUCTION

Sports statistics has become a technology driver for various analytical techniques

[114, 115, 116, 117, 118]. Analysts began building mathematical models to predict perfor-

mances of the players and invent new features to find a better way to evaluate them. For

example, a new metric to measure baseball pitchers is walks plus hits per inning pitched

(WHIP) [119]. Utilizing data mining tools to discover the relevancy of features towards

winning has been an important factor when optimizing team performance within a budget.

Biclustering, first used by Cheng and Church [18] in the community of bioinfor-

matics, is a variant of clustering by considering the local relationship between subsets of

samples and subsets of features. In bioinformatics, biclustering indicates gene groups that

display similar patterns across a set of conditions (important to gene functional annotations

and co-regulated gene identification[78, 120, 121, 122, 123]) or gene groups that are related

to certain cancer types [123, 124, 125, 126]. In fields other than bioinformatics, biclustering

is also known as subspace clustering, co-clustering or block clustering [50, 51, 127].

Biclustering ARTMAP (BARTMAP) [21] is a variant of adaptive resonance theory

(ART) which performs simultaneous clustering by applying a correlation factor through

an interconnected module, inspired by the design of ARTMAP [13, 14]. In comparison

with alternative approaches [78, 79, 128], experimental results acquired from BARTMAP

presented strong performance when handling high dimensional samples, such as Leukemia

or Small, Round, Blue-Cell Tumors of childhood cancer (SRBCT) data sets [77, 129].

In this paper, a supervised biclustering model named Supervised Biclustering ARTMAP

(S-BARTMAP) is developed to achieve clustering and correlation based feature selection

and forecasting through supervised signals. The method is composed of three ART net-

works: ARTa and ARTb unit for biclustering in the BARTMAP module and the ARTc unit
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for supervised signal based control. The features and samples go through clustering in the

BARTMAP and the labels are registered at the ARTc unit to determine whether the trained

unsupervised biclusters are correctly matching the supervised signal. Online training is

also implemented by the inter-BARTMAP module that is built to update the weights of

BARTMAP received from the ARTc neural network.

In Section 2, ART, ARTMAP and BARTMAP are introduced. The algorithm and

implementation is then given in Section 3, followed by experimental results on synthetic

and real world sports data sets in demonstrated Section 4.
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2. BACKGROUND

2.1. ADAPTIVE RESONANCE THEORY AND ARTMAP

Adaptive resonance theory (ART) is an unsupervised learning method which over-

comes the "stability-plasticity dilemma" [10]. The first introduced ART, named ART1,

deals with binary data and the variant to handle arbitrary data was developed which is

known as Fuzzy ART [12].

The basic FA architecture is composed of two-layer of neurons, the feature repre-

sentation field F1 and the category representation field F2, as shown in Fig. 1. The neurons

in layer F1 are activated by an input pattern, normalized with the complement coding rule to

avoid category proliferation [12]. The prototypes of formed clusters are stored in layer F2,

which are initially composed of one uncommitted category set as 1. The neurons in layer

F2 that are already being used as representations of input patterns are said to be committed.

The two layers are connected via adaptive weight wj ∈W, emanating from node j in layer

F2.

Figure 1. Topological architecture of ART. Two layers are included in the attentional sub-
system, connected via bottum-up and top-down adaptive weights. The interaction between
the neuron layers are controlled by a vigilance parameter ρ .
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The summarized steps of FA are as follows:

• Category choice: When a new input pattern A is appointed, the nodes in layer F2

compete by calculating the category choice function, defined as

Tj =
|A∧w j|
α + |w j|

, (1)

where ∧ is the fuzzy AND operator and α is the choice parameter to break the tie

when more than once prototype vector is a fuzzy subset of the input pattern.

• Category selection: Once all Tj is calculated, neuron J becomes activated with the

winner-take-all rule by TJ = max{Tj|∀ j}.

• Category match: The winning neuron is then tested with the vigilance criterion. If

ρ ≤ |A∧wJ|
|A|

, (2)

weight adaption occurs, which is called resonance. In case the winning neuron J does

not meet 2, the corresponding neuron is removed from the competition and repeats

the category match step with the neuron with the next largest Tj.

• Learning: The weight vector of the winning neuron is updated by the learning rule,

wJ(new) = β (A∧wJ(old))+(1−β )wJ(old), (3)

where β ∈ [0,1] is the learning rate parameter.
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In the case that an uncommitted neuron is selected during the category match step, a

new uncommitted neuron is created to represent a potential new cluster. This will maintain

a consistent supply of uncommitted neurons.

ARTMAP is a fast, stable learning method in a supervised setting derived from

ART [13]. For hetero-associative tasks, two connected FA units are required with each unit

receiving either the input or output component of each pattern pair to be associated. Thus,

the input and output spaces are organized into distinct categorized sets during processing.

Fuzzy ARTMAP uses layer of nodes, called the inter-ART module or the map field [14], to

link the two FA units, ARTa and ARTb. The main function of the map field is to associate

compressed representations of the original input and output components.

In the context of supervised classification, the input pattern is presented to the ARTa

unit and the corresponding label is presented to the ARTb unit. The vigilance parameter

ρb of ARTb is set to 1, so that each label represents a specific cluster. The input-output

association is stored in the weights wab of the inter-ART module. The jth row of the inter-

ART module weights wab
j denotes the weight vector from the jth neuron in the ARTa to the

map field. When the map field is activated, the output vector of the map field is

xab = yb∧wab
j , (4)

where yb is the binary output vector of field F2 in ARTb and yb
j = 1 if and only if the jth

category wins in ARTb.

Similar to the category match mechanism in FA, the map field also performs a

vigilance test, such that if

ρab >
|xab|
|yb|

, (5)
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where ρab(0≤ ρab ≤ 1) is the map field vigilance parameter, a match tracking procedure is

activated, where the ARTa vigilance parameter ρa is increased from its baseline vigilance ρ̄a

by a preset value σ(0< σ� 1). This procedure occurs when the current winning neuron in

ARTa does not comply with the label represented in ARTb. The unmatched winning neuron

will be removed from the competition and remaining neurons will continue to compete

until both units find a match. If none of the committed nodes wins, ARTa will assign the

input to an uncommitted neuron, indicating that a new category has been created.

In the test phase where only an input pattern is provided to ARTa without the cor-

responding label to ARTb, no match tracking occurs and the prediction is obtained through

the map field weights of the winning ARTa neuron. In case the predicted neuron is an

uncommitted node, then the input pattern cannot be classified solely from the training set.

2.2. BICLUSTERING ARTMAP

Biclustering ARTMAP (BARTMAP) is an FA based biclustering algorithm which

has performed better in bioinformatics data sets [21]. BARTMAP is composed of two FA

units which focus on the sample inputs and the gene (feature) inputs, respectively, putting

it into the category of two-way clustering that is considered to be conceptually simpler than

other biclustering algorithms [51]. The overall structure of BARTMAP is shown in Fig. 2.

The first phase of BARTMAP is to perform FA clustering on the features by using

the ARTb module, generating K f clusters Fi, i = 1, ...,K f , for N features. In the following

phase, each sample is presented into the ARTa module to check with the existing committed

neurons (clusters). If an uncommitted neuron passes the category match test, learning will

occur to create a new single element sample cluster as is in FA. However, if an already

committed neuron is picked as a winning neuron candidate, the learning will occur if and

only if it passes the correlation test through the Inter-ART module.
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Figure 2. Structure of BARTMAP. Gene clusters are formed in the ARTb module and
sample inputs are processed through the ARTa module. Before generating samples clusters
with the winning neuron in ARTa, the Inter-ART module checks the correlation with other
members in the category across the gene clusters in ARTa. If the condition is not met, the
Inter-ART module adjusts the vigilance ρa of the ARTa module.

The similarity between the new sample sK and the sample cluster S j = {s j1,s j2, ...,s jM j}

with M j samples across a feature cluster Fi = { fi1, fi2, ..., fiNi} with Ni genes is calculated

as the average Pearson correlation coefficient between the samples and all other samples in

the cluster by:

rk j =
1

M j

M j

∑
i=1

rk, jl, (6)

where

rk, jl =
∑

Ni
t=1(esk fit − ēskFi)(es jl fit − ēs jlFi)√

∑
Ni
t=1(esk fit − ēskFi)

2
√

∑
Ni
t=1(es jl fit − ēs jlFi)

2
, (7)

and
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eskFi =
1
Ni

Ni

∑
t=1

eSk fit , (8)

es jlFi =
1
Ni

Ni

∑
t=1

eS jl fit . (9)

The new sample sK is enclosed in the cluster S j only when the average Pearson

correlation rk j is above some threshold η and learning will occur correspondingly following

the weight update rule of FA.

If the correlation is below the threshold, the match tracking mechanism in the Inter-

ART module will increase the vigilance parameter ρa of the ARTa module to disable the

current winning neuron and search for other candidates until a sample cluster is found

which passed the category match test and correlation test. If no existing neuron matches

any criteria, a new sample cluster will be automatically generated.
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3. SUPERVISED BICLUSTERING ARTMAP

Similar to Fuzzy ARTMAP, the supervised biclustering ARTMAP (S-BARTMAP)

consists of two modules, BARTMAP and ARTc, that are linked together via an additional

inter-ART module, as shown in Fig. 3 .

Figure 3. Overall design of S-BARTMAP. The BARTMAP unit takes the samples and fea-
tures as inputs while the labels are presented to the ARTc unit, making it a supervised learn-
ing method. The inter-ART module checks whether a winning bicluster node matches the
associated label and controls the behavior of BARTMAP correspondingly. The hypothesis
is that the improved information content of biclusters will provide better heteroassociative
matches than those coming from clusters, as is done in ARTMAP.

The main concept of S-BARTMAP is an expanded version of fuzzy ARTMAP, so

that supervised classification is achieved through biclustering, with the aid of not only

distances among samples but also correlation based similarity.



81

3.1. TRAINING

The first step of training is creating a set of K f feature clusters Fi, i= 1, ...,K f , for N

features by using the ARTb unit of the BARTMAP module. The goal of the following step

is to create Ks sample biclusters S j, j = 1, ...,Ks, for M samples within the ARTa module

while building the local relations between the samples and feature clusters, associated with

the label input from the ARTc unit.

Upon the presentation of a new sample sk, HBARTMAP proceeds to find a can-

didate neuron within the ARTa unit by testing the category match with Eq. 2 and average

Pearson correlation coefficient with Eq. 6 across all other samples in the candidate cluster.

If a committed neuron j is selected as the candidate, the inter-ART module 2 com-

pares the label input from ARTc with the label associated with the neuron. A sample is

then absorbed into an existing cluster, updating the weights of ARTa with Eq. 3 if the label

matches. Otherwise, the inter-ART module 2 increases the vigilance ρa of the ARTa unit to

seek for other possible candidates until all three criteria - ARTa category match, similarity

test and associated label match - meet the each condition. In case an uncommitted neuron

is picked, a new cluster will be generated and the label input from ARTc is associated to the

new cluster.

After all input samples for training is presented to the BARTMAP module, S-

BARTMAP begins to form biclusters, which is the final step of training. The bicluster

formation is performed by checking the evaluation fitness function described in [130].

Given a candidate bicluster Bi j composed of sample cluster S ji = {s ji1, ...,s jiM j}

across the features in the feature cluster Fi = { fi1, ..., fiNi}, the average correlation of Bi j,

δ (Bi j), is defined as,
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δ (Bi j) =
1(M j
2

) M j−1

∑
k=1

M j

∑
l=k+1

δ (s jik,s jil), (10)

and

δ (x,y) =
cov(x,y)

σxσy
, (11)

where cov(x,y) is the covariance of the variables x and y and σx and σy are the standard

deviations of x and y, respectively. Since δ (s jik,s jil) = δ (s jil,s jik), only
(M j

2

)
combinations

in each bicluster are considered.

The fitness function f (Bi j), which prefers large volume biclusters, is defined by,

f (Bi j) = (1−δ (Bi j))+σδ + c1(1/M j)+ c2(1/Ni), (12)

where c1 and c2 are penalty factors to control the volume of the bicluster Bi j, and σδ is the

standard deviation of all δ (s jik,s jil) from Eq. 10. If f (Bi j) < φ , where φ is the bicluster

formation factor, the features in Fi are associated with the sample cluster S j to form a

bicluster. In case multiple feature clusters meet the criterion, all the members in satisfied

feature clusters will be included. All the features associated with sample cluster S j are

stored in B[ j].

The overall training procedure is detailed in Algorithm 1. Note that there are two

FA functions in the algorithm, named f aV 1 and f aV 2. The former behaves as an ordinary

FA while the latter, f aV 2, is modified so that the weight update is not immediately reflected

during the learning step since the inter-ART module 1 and 2 need to check the correlation

coefficient and label input, respectively before updating the neurons.
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Table 1. Change of input and output behaviors for ART modules in S-BARTMAP

Unit
Mode

Training Testing
ARTa Accept sample input
ARTb Accept feature input No input taken
ARTc Accept label input Provide label output

3.2. TESTING

In the testing mode, the input and output behaviors of ART units are changed as

depicted in Table 1. While the ARTa unit remains the same for training and testing mode,

the ARTb unit will not accept any feature input and utilizes the trained neurons for prediction

and the ARTc unit will provide the predicted label as an output.

Once a sample sp is presented to S-BARTMAP, the ARTa unit first performs the

category choice by calculating Tj =
|sp∧w j|
α+|w j| , j = 1, ...,Ks. The winning node J, obtained

by TJ = max{Tj|∀ j}, becomes the candidate and goes through Eq. 2 with the prediction

vigilance ρap .

If node J passes the category match test, the result is sent to the inter-ART module

1, where the trained bicluster definitions are stored. Assuming that sp belongs to the sample

cluster SJ , a bicluster B′J is formed which contains MJ +1 samples in S′J = {sJ1, ...,sJMJ ,sp}

and features fJ ∈B[J]. The bicluster fitness is calculated and if f (B′J)< φp, where φp is the

prediction fitness threshold, node J becomes the winning neuron and the ARTc unit returns

the associated label lJ as the prediction for sample input sp. On the other hand, if the f (B′J)

does not meet the prediction fitness threshold, then the prediction vigilance ρap is increased

by ε , and repeats the entire testing steps until S-BARTMAP finds a winning neuron.

The testing procedure is summarized in Algorithm 2.
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Algorithm 1 Pseudo-code of S-BARTMAP training process
1: Get data set A, labels t
2: X←normalize(A)
3: Initialize parameters
4: procedure ARTb FEATURE CLUSTERING(XT )
5: for each row fi ∈ XT do
6: F← f aV 1( fi,ρb) . Fi ∈ F, i = 1, ...,K f
7: end for
8: end procedure
9: procedure ARTa SAMPLE CLUSTERING(X)

10: for each row sk ∈ X do
11: ρa← ρ̄a . Base vigilance ρ̄a
12: chk← False, newNode← False
13: l′← ARTc(t j ∈ t) . Get label from ARTc
14: while chk == False do
15: J′,w′← f aV 2(sk,ρa,w)
16: if J′ is uncommitted then
17: chk← True
18: newNode← True
19: else
20: if lJ′ == l′ and rkJ′ ≥ η then
21: chk← True
22: else
23: ρa←

|sk∧w′J′ |
|sk| + ε

24: end if
25: end if
26: end while
27: Register sk→ SJ′ ∈ S
28: w← w′ . Update weight
29: if newNode == True then
30: lJ′ ← l′

31: appendNewNode(w)
32: end if
33: end for
34: end procedure
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35: procedure FORMBICLUSTER(F,S,φ )
36: B← []
37: for j = 1→ Ks do
38: B′← [] . List of features for S j
39: for i = 1→ K f do
40: Calculate f (Bi j)
41: if f (Bi j)< φ then
42: B′← append(B′,Fi)
43: end if
44: end for
45: B[ j]← B′
46: end for
47: end procedure

Algorithm 2 Pseudo-code of S-BARTMAP testing mode
1: Get sample input ap
2: sp← normalize ap
3: pass← False
4: while pass == False do
5: procedure ARTa_GETCANDIDATENODE(sp, ρap)
6: J← f aV 2(sp,ρap,w) . Get winning node J
7: end procedure
8: B′J ← (append(SJ,sp),B[J])
9: procedure INTERART2_GETFITNESS(B′J)

10: MJ′,NJ′ ← sizeo f (B′J)
11: f (B′J)← (1−δ (B′J))+σδ + c1

1
MJ′

+ c2
1

NJ′
12: end procedure
13: if f (B′J)< φp then
14: pass← True
15: else
16: ρap ← ρap + ε

17: end if
18: end while
19: lp← lJ
20: return lp
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4. EXPERIMENTAL RESULTS

4.1. DATA SETS

We first performed the experiment with various sizes of the synthetic data set de-

veloped by Handl and Knowles [41]. The characteristics of the applied data set are given

in Table 2.

Table 2. Characteristics of synthetic data set

No. Samples Features Labels
1 1286 100 4
2 2117 860 10
3 9841 1377 27

For each experiment with the synthetic data sets, half of each set was used for

training and the other half for testing, implying that none of the samples in the testing

phase was presented during the training phase.

For real world data experiments, we focused on sports statistics. The first is baseball

data set which is composed of cumulative stats of players in every Major League Baseball

(MLB) matches in the 2014 and 2015 season gathered from [129]. For better match result

forecasting, we built two separate data sets, defense set and offense set which are based

on how many runs the home team allowed and scored, respectively. Each sample in the

defense set was aligned as offensive stats of away team in batting order, defensive stats of

home team in specific position order. The offense set was arranged similarly with offensive

stats of home team followed by defensive stats of away team. The labels were preprocessed

into predefined buckets based on the runs. The match results of the entire 2014 season was

used for training and that of 2015 season for testing and evaluation.
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Similar to the baseball set, we collected the statistics of National Basketball Asso-

ciation (NBA) and National Football League (NFL) matches [130, 131] in the 2013-2014

season and the 2014-2015 season, named basketball set and football set, respectively. The

sizes of sports statistics sets are detailed in Table 3.

Table 3. Characteristics of sports statistics sets

Name Samples Features Labels

baseball
Offense 2430 144 5
Defense 2430 144 5

basketball
Offense 1230 96 8
Defense 1230 96 8

football
Offense 256 176 7
Defense 256 154 7

With the points scored and allowed predicted with the offense and defense set,

respectively, we eventually built home team win-loss predictor to calculate xwin based on

the category match function and the bicluster fitness function defined in Eq. 2 and Eq. 10.

The three possible outcome with the offense prediction label xo and defense prediction

label xd are described as follows:

• xo > xd: Clearly the points scored by the home team is greater than the points al-

lowed, thus xwin = True,

• xo < xd: Clearly the points scored by the home team is lesser than the points allowed,

thus xwin = False,

• xo == xd: In this case, where the range of points scored by the home team is identical

to that of points allowed. The category match value of all clusters in the offense and

defense set associated to the higher adjacent label is derived and the node Jeo and

Jed with the highest value is chosen. Then the fitness for bicluster B′Jeo
and B′Jed
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are calculated. In case f (B′Jeo
) > f (B′Jed

), implying the likelihood towards points

allowed, xwin = False. Otherwise, xwin = True.

4.2. RESULTS

For the synthetic data set, we performed 10 trials by randomly selecting samples

half of each set for S-BARTMAP training and the remaining half for testing. The average

misprediction rates with minimum-maximum cases and standard deviation are shown in

Fig. 4.

Figure 4. The misprediction rate on the S-BARTMAP experiment on synthetic data sets
for 10 trials. The gray top and bottom peak represents the maximum and minimum errors,
respectively and the thick line is the standard deviation.

The results on the synthetic data sets implies that as the size of the data set in-

creases in terms of numbers of both samples and features, the more accurate prediction

S-BARTMAP performs.

The experimental results on sports statistic data sets are presented in Table 4. The

baseball set, which is the highest in terms of features used, predicted the runs scored and
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allowed with the best misprediction rate compared to other sports type. For the basketball

set and football set, the defensive stats for players were much lower than those in the

baseball set, resulting in significantly higher misprediction rates.

Table 4. Misprediction rates on sports statistics sets

Data Set Offense Defense W/L Prediction
baseball 2.49% 3.21% 2.20%

basketball 13.32% 21.64% 12.03%
football 16.91% 20.71% 14.85%

More details from the baseball set experiment result are shown in Fig. 5. Each spike

in the red line implies S-BARTMAP misprediction compared to the actual scores.

We compared the results from S-BARTMAP with other supervised learning tools,

which are the classification and regression tree (CART), K nearest neighbor (KNN) and

backpropagation neural network(BPNN) [134, 135, 136]. The misprediction rate with the

comparison methods are shown in Table 5.

Table 5. Comparison of misprediction rate on win-loss prediction with other supervised
learning methods

Data Set CART KNN BPNN Fuzzy ARTMAP S-BARTMAP
baseball 9.94% 23.14% 31.44% 10.15% 2.20%

basketball 17.20% 31.62% 29.71% 16.77% 12.03%
football 21.88% 20.67% 37.02% 26.50% 14.85%
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(a) baseball Offense set

(b) baseball Defense set

(c) baseball W/L prediction

Figure 5. The S-BARTMAP experimental results from baseball data set. The blue lines in
Fig. 5a and Fig. 5b indicate the actual points scored and allowed, respectively while the red
lines indicates the median of the range of each predicted label. Fig. 5c presents the win-loss
prediction where the blue line is the point differential by (pointsscored− pointsallowed) and
the gray bars are the win-loss predictions from 4.1. For better presentation, the results are
sorted in ascending order based on the actual points and differential.
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5. CONCLUSION

Inspired by the supervised classification system ARTMAP, we showed that an ad-

vanced version based on biclustering, the S-BARTMAP, is competitive on high dimen-

sional sports statistics data analysis, for match result forecasting. Experimental results on

simulated and real world data indicates the superior performance of this biclustering based

classification method over commonly used supervised learning tools.
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2. CONCLUSION

In this dissertation, novel approaches on clustering and biclustering algorithms are

presented that show how modifications on adaptive resonance theory based methods can

improve the data mining performance on high dimensional data sets or data with limited

informations. The first paper studied the ART tree on a parallelized GPU platform. While

the improvement on the ART neural network training speed was significant, the possibility

on the hierarchical implementation was discovered for deep, finesse clustering.

To efficiently perform clustering on high dimensional, noisy data sets, especially

genetic data sets in bioinformatics, hierarchical BARTMAP was introduced in the second

paper. As BARTMAP essentially being a co-clustering method with correlation based sim-

ilarity measures and forming biclusters, a bicluster fitness function was developed to gener-

ate biclusters from the discovered sample and feature clusters from the two ART modules.

The autonomous BARTMAP parameters - vigilance ρ and correlation coefficient thresh-

old η - adjustment function based on the size of each bicluster allowed to discover higher

quality biclusters as the tree is formed, through a layer suggestion function also included in

HBARTMAP that calculates the internal criteria fitness for each layer in the HBARTMAP

tree. Experimental results indicates that HBARTMAP is superior consistently across a

range of problems, both synthetic and real world data sets.

Paper three suggests a hybrid learning approach on SSL problems, to overcome

the challenge of large data sizes and limited amount of supervised labels. By utilizing the

nature of VGL which is capable of efficiently converging to minima without exploring the

entire data space and appropriately associating the S3VM optimization problem to the cost

function, VGLS3VM performed as good as, and in some cases better than conventional,

SECTION
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published S3VM optimization methods. These promising results also opened the possibility

of combining various learning schemes for more complicated problems.

In the final paper, a supervised classification and prediction method on high dimen-

sional data sets by utilizing BARTMAP was proposed. Inspired by the transformation of

ART to ARTMAP, an additional ART unit was implemented to take the supervised signal

input and the mechanisms to control the behavior of BARTMAP and to generate biclus-

ters associated with the labels were developed. The experimental results on match result

forecasting with sports statistics data sets showed higher prediction rate, compared to tra-

ditional methods.



APPENDIX A

FUZZY ART
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The Fuzzy ART neural network architecture is composed of two layers of neurons,

which include the feature representation field F1, and the category representation field F2.

The neurons in layer F1 are activated by the input pattern, while the prototypes of the

formed clusters are stored in layer F2. The neurons in layer F2 that already represent input

patterns are said to be committed. Correspondingly, the uncommitted neuron encodes no

input patterns. The two layers are connected via adaptive weights w j, emanating from node

j in layer F2, which are initially set as 1. Once an input pattern A is registered, the neurons

in layer F2 compete by calculating the category function

Tj =
|A∧w j|
α + |w j|

, (13)

where α > 0 is the choice parameter that breaks the tie when more than one proto-

type vector is a fuzzy subset of the input pattern, based on the winner-take-all rule,

TJ = max{Tj|∀ j}, (14)

where J is the winning neuron. Then, it becomes activated, and an expectation is

reflected in layer F1 and compared with the input pattern. The orienting subsystem with the

pre-specified vigilance parameter ρ(0≤ ρ ≤ 1) determines whether the expectation and the

input pattern are closely matched. If the match meets the vigilance criterion, that is, if

ρ ≤ |A∧wJ|
|A|

, (15)

weight adaptation occurs, where learning begins and the weights are updated using

the following learning rule,
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wJ(new) = β (A∧wJ(old))+(1−β )wJ(old), (16)

where β (0 ≤ β ≤ 1) is the learning rate parameter, and β = 1 corresponds to fast

learning.

On the other hand, if the vigilance criterion is not met, a reset signal is sent back to

layer F2 to ignore the winning neuron. A new competition will occur among the remaining

neurons, excluding the ignored neurons. This process repeats until the vigilance criterion

is met. If no existing neuron is selected for coding, a new uncommitted neuron is created

to represent a new cluster, thus maintaining a consistent supply of uncommitted neurons.



APPENDIX B

FUZZY ARTMAP
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By incorporating two fuzzy ART modules, which receive input patterns (ARTa)

and corresponding labels (ARTb), respectively, with an inter-ART module, the resulting

ARTMAP system can be used for supervised classifications. The vigilance parameter of

ARTb is set to 1, which causes each label to be represented as a specific cluster. The

information regarding the input-output associations is stored in the weights wab of the inter-

ART module. The jth row of the weights of the inter-ART module wab
j denotes the weight

vector from the jth neuron in ARTa to the map field. When the map field is activated, the

output vector of the map field is

xab = yb∧wab
j , (17)

where yb is the binary output vector of field F2 in ARTb and yb
i = 1 only if the ith

category wins in ARTb. Similar to the vigilance mechanism in ARTa, the map field also

performs a vigilance test such that a match tracking procedure is activated if

ρab >
|xab|
|yb|

, (18)

where ρab (0≤ ρab ≤ 1) is the map field vigilance parameter. In this case, the ARTa

vigilance parameter ρa is increased from its baseline vigilance to a value just above the

current match value. This procedure ensures the shut-off of the current winning neuron

in ARTa, whose prediction does not comply with the label represented in ARTb. Another

ARTa neuron then will be selected, and the match tracking mechanism again will verify its

appropriateness. If no such neuron exists, a new ARTa category is created. Once the map

field vigilance test criterion is satisfied, the weight wab
J of the neuron J in ARTa is updated

using the following learning rule:
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wab
J (new) = γ(yb∧wab

J (old))+(1− γ)wab
J (old), (19)

where γ(0 ≤ γ ≤ 1) is the learning rate parameter of ARTa. Note that with fast

learning (γ = 1), once neuron J learns to predict the ARTb category I, the association is

permanent, i.e., wab
JI = 1 for all input pattern presentations.

In the test phase in which only an input pattern is provided to ARTa without the

corresponding label to ARTb, no match tracking occurs. The class prediction is obtained

from the map field weights of the winning ARTa neuron. However, if the winning neuron

is uncommitted, the input pattern cannot be classified solely based on prior experience. It

would simply form a new, unclassified cluster.
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