
Adaptive Models of Arabic Text

Submitted by Khaled M. Alhawiti

for the degree of

Doctor of Philosophy

Bangor University

March 21, 2014

Declaration and Consent

Details of the Work

I hereby agree to deposit the following item in the digital repository maintained by

Bangor University and/or in any other repository authorized for use by Bangor

University.

Author Name: .

Title:. .

Supervisor/Department: .

Funding body (if any): .

Qualification/Degree obtained: .

This item is a product of my own research endeavours and is covered by the

agreement below in which the item is referred to as “the Work”. It is identical in

content to that deposited in the Library, subject to point 4 below.

Non-exclusive Rights

Rights granted to the digital repository through this agreement are entirely non-

exclusive. I am free to publish the Work in its present version or future versions

elsewhere.

I agree that Bangor University may electronically store, copy or translate the

Work to any approved medium or format for the purpose of future preservation

and accessibility. Bangor University is not under any obligation to reproduce or

display the Work in the same formats or resolutions in which it was originally

deposited.

II

Bangor University Digital Repository

I understand that work deposited in the digital repository will be accessible to a

wide variety of people and institutions, including automated agents and search

engines via the World Wide Web.

I understand that once the Work is deposited, the item and its metadata may

be incorporated into public access catalogues or services, national databases of

electronic theses and dissertations such as the British Library’s EThOS or any

service provided by the National Library of Wales.

I understand that the Work may be made available via the National Library of

Wales Online Electronic Theses Service under the declared terms and conditions

of use (http://www.llgc.org.uk/index.php?id=4676). I agree that as part

of this service the National Library of Wales may electronically store, copy or

convert the Work to any approved medium or format for the purpose of future

preservation and accessibility. The National Library of Wales is not under any

obligation to reproduce or display the Work in the same formats or resolutions in

which it was originally deposited.

Statement 1:

This work has not previously been accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree unless as agreed

by the University for approved dual awards.

Signed. .(candidate)

Date .

Statement 2:

This thesis is the result of my own investigations, except where otherwise stated.

Where correction services have been used, the extent and nature of the correction

is clearly marked in a footnote(s).

All other sources are acknowledged by footnotes and/or a bibliography.

Signed . (candidate)

Date .

III

Statement 3:

I hereby give consent for my thesis, if accepted, to be available for photocopying,

for inter-library loan and for electronic storage (subject to any constraints as

defined in statement 4), and for the title and summary to be made available to

outside organisations.

Signed . (candidate)

Date .

NB: Candidates on whose behalf a bar on access has been approved by the

Academic Registry should use the following version of Statement 3:

Statement 3 (bar):

I hereby give consent for my thesis, if accepted, to be available for photocopying,

for inter-library loans and for electronic storage (subject to any constraints as

defined in statement 4), after expiry of a bar on access.

Signed . (candidate)

Date .

Statement 4:

Choose one of the following options

a) I agree to deposit an electronic copy of my thesis (the Work) in the Bangor University
(BU) Institutional Digital Repository, the British Library ETHOS system, and/or in any
other repository authorized for use by Bangor University and where necessary have
gained the required permissions for the use of third party material.
b) I agree to deposit an electronic copy of my thesis (the Work) in the Bangor University
(BU) Institutional Digital Repository, the British Library ETHOS system, and/or in any
other repository authorized for use by Bangor University when the approved bar on
access has been lifted.
c) I agree to submit my thesis (the Work) electronically via Bangor University’s e-
submission system, however I opt-out of the electronic deposit to the Bangor University
(BU) Institutional Digital Repository, the British Library ETHOS system, and/or in any
other repository authorized for use by Bangor University, due to lack of permissions for
use of third party material.

Options B should only be used if a bar on access has been approved by the University.

IV

In addition to the above I also agree to the following:

1. That I am the author or have the authority of the author(s) to make this

agreement and do hereby give Bangor University the right to make available

the Work in the way described above.

2. That the electronic copy of the Work deposited in the digital repository and

covered by this agreement, is identical in content to the paper copy of the

Work deposited in the Bangor University Library, subject to point 4 below.

3. That I have exercised reasonable care to ensure that the Work is original

and, to the best of my knowledge, does not breach any laws – including

those relating to defamation, libel and copyright.

4. That I have, in instances where the intellectual property of other authors or

copyright holders is included in the Work, and where appropriate, gained

explicit permission for the inclusion of that material in the Work, and in

the electronic form of the Work as accessed through the open access digital

repository, or that I have identified and removed that material for which

adequate and appropriate permission has not been obtained and which will

be inaccessible via the digital repository.

5. That Bangor University does not hold any obligation to take legal action on

behalf of the Depositor, or other rights holders, in the event of a breach of

intellectual property rights, or any other right, in the material deposited.

6. That I will indemnify and keep indemnified Bangor University and the Na-

tional Library of Wales from and against any loss, liability, claim or damage,

including without limitation any related legal fees and court costs (on a full

indemnity bases), related to any breach by myself of any term of this agree-

ment.

Signature: . Date : .

To my Parents and Lama

Abstract

The main aim of this thesis is to build adaptive language models of Ara-

bic text that can achieve the best compression performance over existing

models.

Prediction by partial matching (PPM) language models has been the

best performing over the other adaptive language models through the past

three decades in term of compression performance. In order to get such

performance for Arabic text, the rich morphological nature of Arabic lan-

guage should be taken into consideration.

In this thesis, two new resources of Arabic language have been intro-

duced for understanding the nature of Arabic language and standardizing

the experiments on Arabic text. The first is a new corpus, the Bangor

Arabic Compression Corpus (BACC), for standardizing compression ex-

periments and creating a benchmark corpus for future compression ex-

periments on Arabic text. The second is a new corpus, Bangor Balanced

Corpus of Contemporary Arabic (BBCCA), The purpose of this corpus is to

mirror similar balanced corpora that are available for the English language

(Brown and LOB) but instead comprises the Arabic language.

Two new adaptive models, BS-PPM and CS-PPM, based on the Predic-

tion by Partial Matching (PPM) compression scheme are then introduced

to improve the compression performance of standard PPM model by using

preprocessing techniques. The first model works by replacing the most

VII

frequent bigraphs with unique characters and the second model works

by separating the encoding of the processing text into two streams, named

the vocabulary stream and symbols stream. Both models achieve excellent

compression results with significant improvements over standard PPM.

A further novel model adapted especially for the characteristics of Ara-

bic text, lossless dotted and lossy non-dotted variants of PPM, are then

introduced to also improve the compression performance over standard

PPM by using the historical feature of Arabic language being non dotted.

This method also achieves excellent compression results.

We also have investigated some applications of PPM models to the prob-

lems of authorship attribution, word segmentation and correcting of OCR

output for Arabic text that demonstrate excellent results using PPM.

Acknowledgments

I would like to express my deepest gratitude to Dr. William J. Teahan, for

his outstanding supervision and enthusiasm during my research. I was

fortunate to work with him.

I would like to pay special thanks to my parents, for their love, sup-

port and taking care of my daughter, Lama, during the years when I was

pursuing my PhD degree.

My deepest emotions are for my daughter Lama; I know you missed me,

as I do always. I have now finished my PhD degree, and I will never ever

be away again.

Contents

List of Figures XIV

List of Tables XVI

1 Introduction 1

1.1 Background and Motivation . 2

1.2 Thesis Hypothesis . 3

1.3 Thesis Aim and Research Questions 4

1.4 Thesis Contribution . 4

2 Arabic Language Overview 7

2.1 Intoduction . 8

2.2 Arabic: One of the Most Widely Spoken Languages in the World 8

2.3 Arabic Character: Written Language for Arabic 9

2.4 Arabic Encoding Method . 11

2.4.1 ISO (8859-6) Arabic Coding Standard 12

2.4.2 Windows-1256 . 13

2.4.3 UTF-8 encoding . 13

2.5 Theoretical Models for Arabic Text 14

2.5.1 Some Characteristics of Arabic Characters 15

2.5.2 Some Characteristics of Arabic Words 19

2.5.3 The Type-Token Relationship 21

IX

Contents X

2.5.4 Vocabulary Growth . 23

2.5.5 Zipf’s Law . 24

2.6 Conclusion . 25

3 New Arabic Language Corpora 26

3.1 Introduction . 27

3.2 Existing Arabic Language Corpora 27

3.2.1 Corpus of Contemporary Arabic (CCA) 28

3.2.2 Essex Arabic Summaries Corpus (EASC) 28

3.2.3 Arabic Treebank Corpus (ATC) 29

3.2.4 King Saud University Corpus of Classical Arabic (KSUCCA) 29

3.3 New Arabic Language Corpora 29

3.3.1 Bangor Arabic Compression corpus (BACC) 30

3.3.2 Bangor Balanced Corpus of Contemporary Arabic (BBCCA) 32

3.4 A Codelength Method for Ranking N-gram Diferences Between

Texts . 33

3.4.1 Defining an N-gram Feature-Based Approach as a Met-

ric for Corpora Content Evaluation 38

3.5 Summary . 43

4 PPM Character-Based compression of Arabic Text 45

4.1 Introduction . 46

4.2 Prediction by Partial Matching 46

4.3 Adapting PPM Character-Based Compression for Arabic 48

4.3.1 Bigraph Substitution for PPM (BS-PPM) 49

4.3.2 Character Substitution for PPM (CS-PPM) 53

4.3.3 Character Substitution of Arabic for PPM (CSA-PPM) . . 57

4.3.4 Dotted (Lossless) and Non-Dotted (Lossy) Compression

of Arabic Text . 58

4.4 Conclusion . 63

Contents XI

5 Word and Tag Based Models for Arabic Text 64

5.1 Introduction . 65

5.2 Previous Work . 66

5.3 Experimental results . 68

5.4 Conclusion . 72

6 Some Applications of PPM Models 73

6.1 Introduction . 74

6.2 Authorship Attribution . 74

6.3 Word Segmentation . 76

6.4 Correcting OCR Text . 79

6.5 Conclusion . 82

7 Summary and Future Work 83

7.1 Summary and Conclusions . 84

7.1.1 BS-PPM: Bigraph Substitutions for PPM Models 84

7.1.2 CS-PPM: Character Substitutions for PPM Models . . . 84

7.1.3 CSA-PPM: Character Substitution of Arabic for PPM . . 85

7.1.4 Dotted Lossless and Non-dotted Lossy Compression of

Arabic Text . 85

7.1.5 Arabic Word- and Tag-based Models 86

7.1.6 Authorship Attribution 86

7.1.7 Arabic Word Segmentation 86

7.1.8 Correcting OCR Text for Arabic 86

7.2 Review of Hypothesis and Research Questions 87

7.3 Future Work . 88

A Appendix A – BS-PPM 97

A.1 preprocessing.c . 97

A.2 postprocess.c . 100

Contents XII

B Appendix B – CS-PPM 103

B.1 utf8-encode.c . 103

B.2 utf8-decode.c . 106

B.3 keys.c . 109

C CSA-PPM 114

C.1 arabic-encode.c . 114

C.2 arabic-decode.c . 117

D Lossy non-dotted correction 120

D.1 lossy.c . 120

List of Figures

1.1 The statistics of the growth of Internet use in Arabic countries

between 2000 and 2009 (Marketing,2013). 2

2.1 The former Arabic writing style (UmAlqura, 2014). 10

2.2 New writing style. 11

2.3 ISO 8859-6 Arabic encoding scheme 12

2.4 A Windows-1256 encoding scheme. 13

2.5 A UTF-8 scheme versus various encoding schemes (W3Techs,

2010). 14

2.6 Character-frequency distribution from the Holy Qur’an, EASC

and CCA corpora. 17

2.7 Word length of 3 Arabic text. 20

2.8 A type-token plot for the CCA corpus. 22

2.9 Vocabulary growth of several texts. 24

2.10Zipf’s Law applied to words for three Arabic corpora. 25

37

3.2 Unigram tag clouds are produced using the codelength differ-

ence measurement from the SBACC and the CCA. The mini-

mum codelength difference threshold has been set at 3.0. . . 37

XIII

List of Figures XIV

3.3 A unigram tag cloud produced using the codelength differ-

ence measurement in the last 14 years (1999-2012) of the

speeches of King Abdullah Bin Husain in Jordan. The mini-

mum codelength difference threshold has been set at 3.0. . . 38

3.4 A tag cloud of unigram codelength differences of Brown vs.

LOB corpora. 41

3.5 A tag cloud of unigram codelength differences of Brown vs.

King James Bible. 41

3.6 A tag cloud of unigram codelength differences of SBACC vs.

CCA. 43

3.7 A tag cloud of unigram codelength differences of SBACC vs.

Arabic Bible. 43

4.1 A PPMC model after processing the string “ÕÎ�ÖÏ @” with maxi-

mum order of 2. 47

4.2 The use of preprocessing and postprocessing for compression. 51

4.3 Sample of Arabic script prior to 820 A.D. (UmAlqura, 2014). . 59

5.1 Compraring between various methods of PPM over BACC. . . . 72

6.1 Space insertion of the segmentation model for the word “ é<Ë @” . 77

6.2 Segmentations process. 78

6.3 Sample of scanned text (Hussain, 1996). 80

6.4 Sample of output generated by the Tesseract OCR engine. . . 81

6.5 Corrected Tesseract OCR output after correction by the PPM

model. 82

List of Tables

2.1 The most widely spoken languages by number of speakers

(Lewis et al. 2009). 9

2.2 Character-frequency distribution for three Arabic texts 16

2.3 Character statistics from the CCA corpus. 18

2.4 The top 20 most frequent words from three corpora. 19

2.5 Vocabulary distribution for the CCA corpus. 21

2.6 Type-token data for the CCA corpus. 22

3.1 BACC corpus. 30

3.2 Samples of prefixes and suffixes found in Arabic text. 31

3.3 The top 20 words, bigrams and trigrams that appear in both

the SBACC and the CCA, ranked in descending order accord-

ing to the differences in codelength. 36

3.4 Comparing corpora: Brown, LOB and the King James Bible. . 40

3.5 Comparing corpora: SBACC, CCA and Arabic Bible corpora. . 42

4.1 The most frequent bigraphs found in text from three corpora. 50

4.2 BS-PPM vs. other methods applied to various language texts. 52

4.3 Different order of PPM and BS-PPM over seven corpora. 53

4.4 PPM vs. CS-PPM of BACC. 56

4.5 Results for PPM and CS-PPM on various language texts. . . . 56

4.6 CS-PPM vs. CSA-PPM. 57

XV

List of Tables XVI

4.7 CS-PPM vs. CSA-PPM . 58

4.8 Arabic letters. 58

4.9 List of correction. 60

4.10Dotted PPM vs. Non-Dotted PPM. 61

4.11Ten-fold cross-validation. 62

5.1 Some models for predicting characters, tags and words (Tea-

han, 1998). 66

5.2 Results for PPM variants on the ATC. 69

5.3 Percentage cost of encoding tag-based model. 70

5.4 PPM word-based models vs. character-based models for BACC

corpus. 71

6.1 Identifying the authorship for several texts. 75

6.2 Example of Arabic word identification. 76

6.3 Add caption . 79

6.4 Sample of confusions generated from the Tesseract output

for ‘Alayam’. 80

Chapter 1
Introduction

Contents

1.1 Background and Motivation 2

1.2 Thesis Hypothesis . 3

1.3 Thesis Aim and Research Questions 4

1.4 Thesis Contribution . 4

1.1. Background and Motivation 2

1.1 Background and Motivation

The Arabic language “ �
éJ
K. QªË@” is one of the most widely spoken languages

in the world as it is the primary language for 255 million people in Asia

and North Africa (Lewis et al., 2009). Nowadays, the information being

used, stored and transferred by computer users is rapidly growing. In

Arabic countries, Internet use grew 5,836.9% between 2000 and 2009

(Marketing, 2013). Figure1.1 shows the statistics of the growth of Internet

use in Arabic counties between 2000 and 2009.

Figure 1.1: The statistics of the growth of Internet use in Arabic countries between 2000
and 2009 (Marketing,2013).

It is obvious there is an urgent need for electronic computer processing

in order to understand and generate the information expressed by nat-

ural human languages. Natural Language Processing (NLP) is a science

that investigates the interactions between computers and natural human

languages. NLP uses these interactions to investigate state-of-the-art so-

lutions for efficient processing of the information carried by these natural

languages. Text compression, word segmentation and machine transla-

tion are examples of NLP research applications.

Text compression is the process of reducing the space needed to store

files on computers, or it involves reducing the time needed to transmit in-

formation over a given bandwidth without losing any information from the

1.2. Thesis Hypothesis 3

original text, known as being lossless compression (Bell et al., 1989). The

main goal of text compression is to save expensive media and resources.

There are two main adaptive approaches to building text compression

models of natural languages, which are dictionary and statistically based

(Bell et al., 1990). Each of these approaches has advantages and disad-

vantages in specific terms.

In terms of execution speed, experiments show a dictionary-based ap-

proach is faster than a statistically-based approach, but, in terms of com-

pression rate, a dictionary-based approach usually shows a worse rate

than a statistically-based approach. Therefore, this thesis is only con-

cerned with the statistical algorithms in the Arabic language to find the

models that achieve the best performance in terms of compression rate,

and can capture the properties of the language being modeled. One of

these techniques is prediction by partial matching (PPM) (Cleary and Wit-

ten, 1984). PPM is an adaptive statistical technique, which builds and

updates text compression models dynamically depending on the previous

input stream of the characters being processed.

The Arabic language has its own characteristics that distinguish it from

other languages (such as the English language). So far, there is a lack

of research concerned with PPM-based modeling of Arabic text for NLP

application in comparison with the English (Teahan, 1998) and Chinese

(Wu, 2007) languages, which motivated us to conduct this research for

the Arabic language.

1.2 Thesis Hypothesis

The different nature of languages is an important perspective that should

be taken into consideration when processing these languages for NLP ap-

plications such as text compression. Arabic language has distinguishing

characteristics which can be employed to customize PPM models for Ara-

bic text and text in other languages that use Arabic script, such as Per-

1.3. Thesis Aim and Research Questions 4

sian, Kurdish and Urdu. This employment can significantly improve the

text compression performance over standard PPM in terms of compression

rate.

1.3 Thesis Aim and Research Questions

The broad aim of this thesis is to investigate how to set up adaptive com-

puter models of Arabic text that are effective in term of compression per-

formance. Adaptive statistical models of PPM will be examined to overcome

the drawbacks of applying standard PPM when processing Arabic text due

to the linguistic differences between the Arabic and English languages.

The research questions of this thesis are as follows.

• What are the disadvantages of the current models when they are ap-

plied to Arabic text?

• What is the best computer model for compressing Arabic text?

• How well do these models perform in several natural language pro-

cessing applications?

• Can new language models be devised that lead to significant improve-

ments in Arabic text compression?

1.4 Thesis Contribution

As this thesis is concerned with adaptive models of the Arabic language,

the main contribution of this thesis is the proposal of three new language

models designed especially for the Arabic language. These models are

Bigraph Substitution for PPM (BS-PPM), Character Substitution for PPM

(CS-PPM) and Lossless dotted and lossy non-dotted PPM.

The research questions listed in the previous section have been achieved

by producing BS-PPM, CS-PPM and lossless dotted and lossy non-dotted

PPM models designed for Arabic text (see Chapter 4). Also, BS-PPM and

CS-PPM have shown positive results when applied to other languages that

1.4. Thesis Contribution 5

use Arabic script in their writing system, such as Persian and Kurdish but

also works well for non-Arabic script languages such as English, Arme-

nian, Chinese and Russian. Many Arabic-scripted NLP applications can

use these models to enhance their performance. The significant results

concerning this thesis are listed as below.

1. We introduced a universal text preprocessing technique for PPM al-

phabet adjustment that adapts PPM for Arabic and other languages

such as Persian, Armenian, Russian, Welsh and English by introduc-

ing BS-PPM and CS-PPM. These achieved significant improvement in

the compression rate over standard PPM. This work is discussed in

Chapter 4 and has been published in the Data Compression Confer-

ence proceedings (DCC 2014) (Alhawiti and Teahan, 2014).

2. We have set up a corpus called the Bangor Arabic Compression Cor-

pus (BACC) comprised of 31 million words, available at http://

pages.bangor.ac.uk/~eepe04. It can be used to examine the im-

pact of PPM over different genres and sizes of Arabic text, which is the

first Arabic corpus introduced in this manner. This work is described

in Chapter 3 and has been published as a technical report available

at pages.bangor.ac.uk (Teahan and Alhawiti, 2013).

3. We introduced a lossless dotted and a lossy non-dotted PPM com-

pression scheme that makes use of non-dotted characters in Ara-

bic for encoding instead of dotted characters, which achieves excel-

lent experimental results. This work is discussed in Chapter 4 and

has been published in the Data Compression Conference proceedings

(DCC 2014) (Alhawiti and Teahan, 2014).

4. We introduced word- and tag-based models for Arabic text. This work

is discussed in Chapter 5.

5. We investigated several natural language processing applications for

1.4. Thesis Contribution 6

Arabic, such as correcting OCR text, language segmentation and au-

thorship attribution. We discuss this in Chapter 6 and its in prepara-

tion to be submitted to Computational Linguistics Journal (CL2014).

6. We introduced the Bangor Balanced Corpus of Contemporary Ara-

bic (BBCCA) that is comprised of one million words, which is, to

our knowledge, the first balanced corpus using the same structural

and sampling format used in the Brown Corpus (Francis and Kucera,

1979) which is a standard for corpus compilation and design. This

work is discussed in Chapter 3.

7. We introduced a compression-based method for ranking n-gram dif-

ferences between texts. The method can be used as the basis for

producing tag clouds and is effective at revealing different topics be-

tween two or more texts. Also, this method can be used as a tool for

comparing corpora. This work is introduced in Chapter 3 and has

been published at the 7th Saudi Student Conference (Teahan and

Alhawiti, 2014).

Conclusions, a summary and future work are discussed in the final chap-

ter.

Chapter 2
Arabic Language Overview

Contents

2.1 Intoduction . 8

2.2 Arabic: One of the Most Widely Spoken Languages in

the World . 8

2.3 Arabic Character: Written Language for Arabic 9

2.4 Arabic Encoding Method 11

2.4.1 ISO (8859-6) Arabic Coding Standard 12

2.4.2 Windows-1256 . 13

2.4.3 UTF-8 encoding . 13

2.5 Theoretical Models for Arabic Text 14

2.5.1 Some Characteristics of Arabic Characters 15

2.5.2 Some Characteristics of Arabic Words 19

2.5.3 The Type-Token Relationship 21

2.5.4 Vocabulary Growth . 23

2.5.5 Zipf’s Law . 24

2.6 Conclusion . 25

2.1. Intoduction 8

2.1 Intoduction

“Language is a purely human and non-instinctive method of communicating

ideas, emotions and desires by means of voluntarily produced symbols”

(Sapir, 1921).

The purpose of this chapter is to review some of the structural charac-

teristics of printed Arabic text. The chapter is organized as follows. First,

we provide an overview of the Arabic language and its written characters.

Then, we review several encoding methods designated for Arabic script. Af-

ter that, some theoretical characteristics of Arabic characters and words

are examined. The conclusion and summary are provided in the last sec-

tion of this chapter.

2.2 Arabic: One of the Most Widely Spoken Languages in

the World

Arabic “ �
éJ
K. QªË@

�
é

	
ªÊË @” is one of the most widely spoken languages in the world,

according to Lewis et al. (2009). It is the primary language for 255 mil-

lion people in the Middle East and Africa and a second language for many

other millions. The Arabic language affects directly and indirectly other

languages in eastern Asia like Malay, Kurdish, Urdu and Persian. It also

affects Romance languages like Spanish, Portuguese and Sicilian, and it

borrows words from these languages (Weekley, 2012). The following ta-

ble shows the most widely spoken languages in the world based on the

number of speakers.

2.3. Arabic Character: Written Language for Arabic 9

Table 2.1: The most widely spoken languages by number of speakers (Lewis et al. 2009).

Position Language Script Used
Speakers

(millions)
Major Region

1 Mandarin Chinese 1051 China ,Taiwan

2 English Latin 508 USA, Canada, UK, Australia, New Zealand

3 Hindi Devanagari 497 India

4 Spanish Latin 392 The Americas, Spain

5 Russian Cyrillic 277 Russia, Central Asia

6 Arabic Arabic 255 Middle East, North and South Africa

7 Bengali Bengali 211 Bangladesh, Eastern India

8 Portuguese Latin 191 Brazil, Portugal

9 Malay Latin 159 Indonesia, Malaysia

10 French Latin 129 France, Canada

Arabic is a part of the Afro-Asiatic language family. The Arabic language

belongs to the central Semitic languages, which were the first languages to

apply an alphabetic script to the writing system, even before the Latin and

Greek languages (Kenneth, 2002). Arabic is the original language of the

Holy Qur’an, the Islamic holy book, which serves to maintain the vitality

of the Arabic language and its importance to Muslims, even those who are

not Arabic speakers. In addition, the names of some very old churches

and the text of some Christian holy books and prayers were written and

spoken in Arabic, such as at the al-Muallaqah church in Egypt. Therefore,

the Arabic language is very important to Christians too. As well, during

the Middle Ages, important Jewish holy books were written in Arabic.

The Arabic language has unique characteristics that distinguish it from

other languages, like masculine and feminine forms and a distinction be-

tween singular, dual and plural forms in speech. These are represented

by “ �
I

	
K@” for single, “ AÒ

�
J
	
K @” for dual and “Õ

�
æ

	
K @” for plural. Furthermore, the

Arabic language is read from right to left.

2.3 Arabic Character: Written Language for Arabic

As Arabic was one of the earliest Semitic languages to establish a writing

system, the characters have developed over time. Arabic has 28 basic

2.3. Arabic Character: Written Language for Arabic 10

letters which are “ø

ð è
	

à Ð È ¼
�

�
	

¬
	

¨ ¨
	

	

� �
�

� � 	P P
	
X X p h h.

�
H

�
H H. @”

sorted in alphabetical order and reading form right to left and another four

letters derived from the letter “ @” , the first letter in the Arabic alphabet,

which are “
ø

ð Z ø” . These derived letters in addition to the letter “ð ø

@”

are the vowels in Arabic while the rest of the letters are the consonants.

An Arabic character can be vowelised or not vowelised. In its natu-

ral form, Arabic words are separated by spaces. In recent centuries, the

written Arabic system has been changed and developed from the “Mus-

nad” and “Thamodi” writing system styles to the “Nabati” writing system

style (Versteegh and Versteegh, 1997). Even the Arabic numbering style

has changed. It used to appear as traditional numerals, like 0, 1, 2 and

3, but now appear as the current style, which is the Indian number sys-

tem, represented as “. 3 ,2 ,1 ,0”. Figure 2.1 shows the former Arabic

writing style which is a letter by prophet Muhammad peace be upon him

(UmAlqura, 2014).

Figure 2.1: The former Arabic writing style (UmAlqura, 2014).

Arabic is a vowelised language. Vowelised signs — special symbols writ-

ten above or below a character — are formed to help readers to read words

in the correct way. This is demonstrated with the examples like “H. A
�
J»� ” and

“H. A
��
J
�
»”, which mean book and writers, respectively; the alphabetic script is

the same but the meaning is different. In the last example, the vowelised

2.4. Arabic Encoding Method 11

form marks a difference between two words that occur only in the Arabic

language. The two main types of hand-writing styles in Arabic script are

"Naskh" and "Ruqa’a", as shown below, respectively.

Figure 2.2: New writing style.

Also, Arabic is a morphologically rich language (Ng et al., 2009). The

same word can be found in one text in many different forms. Words take

on four different forms and can be comprised of one or more of these

forms. The first form is a word with no prefixes and/or suffixes added to

it, such as “YËð”, which means “boy”. The second form is a word plus a

prefix, such as “YËñË@” with the prefix “È@” added, which means “the boy”.

The third form is a word plus a suffix, such as “ 	
à@YËð” with the suffix

“ 	
à@” added, which means “two boys”. The last form is a word plus a prefix

and a suffix attached, such as “ 	
à@YËñË@” with the prefix “È@” and the suffix

“ 	
à@” added which means “the two boys”. It should be noted that Arabic

words may be written with more than one prefix and/or suffix attached,

such as “YËñË@ð” with the prefixes “ð” and “È@” attached, which means "and

the boy". We will talk about these prefixes and suffixes in more detail in

the next chapter in 3.3.1.

2.4 Arabic Encoding Method

The Arabic script employs Arabic characters “ �
éJ
K. QªË@

�
H H. @”, as it is a writ-

ten language. Each character represents a unit of the language. Text can

consist of one meaningful character, like “�” or more than one character.

Arabic has 28 characters and has no upper or lower case. Unlike English,

Arabic words consisting of more than one character should be written cur-

2.4. Arabic Encoding Method 12

sively, with the exception of characters, such as Alef “ @" at the beginning

of the word and dal “X”, thal “ 	
X”, ra “P” and zeen “ 	P” at any position in the

word. In this section, various types of Arabic encoding schemes will be

discussed.

2.4.1 ISO (8859-6) Arabic Coding Standard

ISO 8859-6 Arabic coding is an 8-bit character scheme, which was de-

signed by the European Computer Manufacturers Association. This en-

coding method was designed especially for use with the Arabic language

but not Persian or Kurdish. This is because Arabic script is used in the

writing system of these languages but also ISO standard does not repre-

senting Arabic supplement characters as well. The ISO standard consists

of 16 parts, each representing a different language plus Latin characters.

The range of Arabic characters is located in part 6, which is "Arabic/Latin",

as shown in Figure 2.3.

Figure 2.3: ISO 8859-6 Arabic encoding scheme

2.4. Arabic Encoding Method 13

Figure 2.4: A Windows-1256 encoding scheme.

2.4.2 Windows-1256

Windows-1256 is an 8-bit character scheme used with Microsoft Windows

to write Arabic and other languages that use Arabic script, such as Kur-

dish and Persian. This results in Windows-1256 being used more widely

than the ISO scheme. In addition, Windows-1256 is not compatible with

the ISO scheme. It encodes more forms of Arabic characters but, as in the

ISO encoding scheme, it does not represent supplementary characters in

Arabic, as shown in Figure 2.4.

2.4.3 UTF-8 encoding

The UTF-8 encoding scheme has become the most popular character en-

coding method on the web and in applications such as Google, Twit-

ter, Facebook, Yahoo and YouTube (BuiltWith, 2012). Figure 2.5 shows

the percentage of websites using various character encoding schemes,

which clearly indicates that UTF-8 is the predominant method of encoding

(W3Techs, 2013).

2.5. Theoretical Models for Arabic Text 14

Figure 2.5: A UTF-8 scheme versus various encoding schemes (W3Techs, 2010).

UTF-8 is a multi-byte encoding scheme. It uses ASCII code (0-127) to

represent a Latin character in only one byte, and then it uses 1 to 4 bytes

for other languages. UTF-8 encodes each letter form in the Arabic lan-

guage plus the supplements characters, which, as an encoding scheme,

gives it precedence over other encoding methods and widens its use in

many software applications and operating systems like the Apple Mac, and

Linux and on websites. The importance of Unicode derives from its com-

patibility with ASCII, as it encodes English letters with single-byte charac-

ters, along with the rest of the 7 bit ASCII code. Unicode also derives im-

portance from its compactness and efficiency in most scripts that require

more than one byte to encode, such as Arabic, Japanese and Chinese.

2.5 Theoretical Models for Arabic Text

In this section, we will review some theoretical models of Arabic text. We

will present statistics regarding the frequency of characters and words

in order to discover the characteristics of Arabic text. Also, statistics re-

garding n-graphs (character sequences of length n) and word length are

examined for the same purpose. Type-token relations and the growth of

vocabulary in Arabic text are reviewed. Finally, we will show how Zipf’s

law (Zipf, 1949) can be used to predict the number of word occurrences

for a given size of Arabic text.

2.5. Theoretical Models for Arabic Text 15

2.5.1 Some Characteristics of Arabic Characters

Arabic has 28 basic letters and another six forms are derived from some of

those letters. Regarding character frequency, this study aims to examine

how many times a letter occurs in a given text. For example, if we look to

the following sentence, “Õæ

kQË@ 	áÔgQË@ é<Ë @ Õæ��.”, it consists of four words and

a total of 19 characters (without spaces).

Each character has occurred once or more; for example, “H. ” occurs

once, “�” has the same frequency of occurrence and “ @” occurs three times.

If we wish to calculate the character percentage of “ @” and “H. ”, we can do

it by using the following formula.

character % =
number of times character occurs

total number of all characters
× 100. (2.1)

Using the given formula to calculate the frequency of “ @” in the sentence

above will result in (3/19)*100 = 15.78%. For the “H. ” character, the per-

centage will be 5.26%. Table 2.2 examines the character percentage of

three Arabic texts: the Holy Qur’an, the Essex Arabic Summaries Corpus

(EASC) (El-Haj et al., 2010) and the Corpus of Contemporary Arabic (CCA)

(Al-Sulaiti and Atwell, 2006).

2.5. Theoretical Models for Arabic Text 16

Table 2.2: Character-frequency distribution for three Arabic texts

Holy Qur’an EASC Corpus CCA Corpus

Rank Character frequency % Rank Character Frequency % Rank Character Frequency %

1 space 83974 18.89 1 space 58049 16.79085 1 space 600048 17.65097

2 @ 44021 9.90 2 @ 42510 12.29615 2 @ 408047 12.00308

3 È 38754 8.72 3 È 32794 9.485766 3 È 316184 9.300845

4 	
à 27420 6.17 4 ø

20867 6.035844 4 ø

206116 6.063093

5 Ð 27109 6.10 5 Ð 17837 5.159407 5 Ð 169647 4.990324

6 ð 24945 5.61 6 ð 15072 4.359623 6 	
à 144308 4.244953

7 ø

22104 4.97 7 	
à 14045 4.06256 7 ð 134891 3.967944

8 è 14967 3.37 8 �
H 12944 3.744092 8 �

H 128283 3.773563

9 P 12782 2.88 9 P 12554 3.631283 9 P 122193 3.59442

10 H. 11616 2.61 10 H. 9905 2.865052 10 H. 94217 2.77148

11 ¼ 10504 2.36 11 �
è 9261 2.678773 11 ¨ 94010 2.765391

12 �
H 10485 2.36 12 ¨ 9173 2.653319 12 �

è 86091 2.532447

13 ¨ 9422 2.12 13 X 8148 2.356834 13 X 81853 2.407782

14

@ 9123 2.05 14

	
¬ 6815 1.97126 14 è 80867 2.378778

15
	

¬ 8769 1.97 15 � 6670 1.929318 15
	

¬ 67179 1.976133

16 �
� 7055 1.59 16 è 6659 1.926136 16

@ 63316 1.862499

17 � 6253 1.41 17 ¼ 5985 1.73118 17 � 61919 1.821405

18 X 6005 1.35 18 �
� 5623 1.62647 18 �

� 57420 1.689062

19 @

5082 1.14 19

@ 5352 1.548083 19 ¼ 52643 1.548543

20 	
X 4933 1.11 20 h 5184 1.499488 20 h 51800 1.523745

21 h 4382 0.99 21 h. 3692 1.067922 21 h. 39149 1.151604

22 h. 3329 0.75 22 2702 0.781562 22 � 26105 0.767903

23 ø 2591 0.58 23 ø 2659 0.769124 23 ø 25606 0.753224

24 �
è 2527 0.57 24 � 2615 0.756397 24 �

� 25007 0.735604

25 p 2500 0.56 25 �
� 2498 0.722554 25 24954 0.734045

26 �
� 2132 0.48 26 p 2227 0.644167 26 @

24345 0.716131

27 � 2079 0.47 27 @

2079 0.601357 27 p 23376 0.687627

28 	
� 1687 0.38 28 	

X 1854 0.536275 28 	
X 22665 0.666712

29 	P 1607 0.36 29 	
� 1829 0.529044 29 �

H 18278 0.537664

30 Z 1583 0.36 30 �
H 1794 0.51892 30 	

� 17451 0.513337

31
�
@ 1510 0.34 31 	P 1685 0.487391 31 	P 15257 0.448799

32 �
H 1418 0.32 32
ø 1155 0.334087 32

	
¨ 11791 0.346843

33 1280 0.29 33
	

¨ 1072 0.310079 33
ø 10249 0.301484

34
	

¨ 1224 0.28 34 Z 1009 0.291856 34 Z 9921 0.291835

35
ø 1215 0.27 35 	
 665 0.192353 35 	

 6360 0.187085

36 	
 853 0.19 36

�
@ 283 0.081859 36

�
@ 3782 0.111251

37

ð 676 0.15 37

ð 262 0.075784 37

ð 3035 0.089277

Characters such as “space”, “ @”, “È” and “ 	
à”, which are A, L and N in

Latin script, have the highest percentage in all texts, while the characters

“ ”, “ 	
 ” and “

	
¨”, which are TTA, THA and GHA in Latin script, have a

significantly lower percentage.

The following figure plots the character percentage in three Arabic texts.

2.5. Theoretical Models for Arabic Text 17

The Holy Qur’an, EASC and CCA corpora and their frequency percentages

are ranked in alphabetical order where [] represents the space character.

Figure 2.6: Character-frequency distribution from the Holy Qur’an, EASC and CCA corpora.

Figure 2.6 shows that space is the most frequently used in all three cor-

pora. Also, there is almost a match between the CCA and EASC corpora in

the character percentage, despite the fact that there is a big difference in

the number of words between these corpora, where the EASC has 58973

words and the CCA has 583945 words (without punctuation marks). At

the same time, it shows a large mismatch in the character percentages be-

tween both the CCA, EASC and Holy Qur’an, which can indicate a change

between modern Arabic texts and classic Arabic text, as the CCA and the

EASC represent modern text and the Holy Qur’an represents a classic text.

For example, characters such as “ �
è

�
H and X” occur less frequently in

the Holy Qur’an than in the CCA and EASC corpora. Also, characters such

as “Ð
	
à ð” occur more frequently in the Holy Qur’an more than in the CCA

and EASC corpora. These differences are due to the growth of vocabulary

size being used in modern Arabic comparied to the vocabulary used in the

Holy Qur’an.

The top 20 most frequent n-graphs statistics found in the CCA are listed

2.5. Theoretical Models for Arabic Text 18

in the following table in order to explore the frequency of these graphs and

its representation in the text.

Table 2.3: Character statistics from the CCA corpus.

Rank Bigraphs Frequency % Trigraphs Frequency % 4-graphs Frequency %

1 È@ 149501 5.480 ÕË @ 24144 0.885 ú

�
æË@ 4118 0.151

2 	áÓ 21918 0.803 È@ð 11854 0.434 ø

	
YË@ 3195 0.117

3 ú

	
¯ 21668 0.794 �

IË@ 11636 0.426 AªË @ð 2629 0.096

4 @ð 18746 0.687

B@ 11289 0.414 QªË@ 2600 0.095

5 É« 13687 0.502 ©Ë@ 11237 0.412 �ÖÏ@ 2210 0.081

6 AÓ 11429 0.419 úÎ« 7938 0.291 ÕË @ð 1811 0.066

7 	
à

@ 11320 0.415 úÍ@

6597 0.242 �

IÖÏ @ 1798 0.066

8 B 11176 0.410 �Ë@ 6460 0.237 QÖÏ @ 1789 0.066

9 �
éK
 10991 0.403 lÌ'@ 6097 0.223 Ð

B@ 1766 0.065

10 �
H@ 10962 0.402 I. Ë@ 5399 0.198 ©ÖÏ @ 1679 0.062

11 AK. 10062 0.369 ÈAK. 5302 0.194 ú

æ�Ë @ 1600 0.059

12 ÕË 9433 0.346 �
�Ë@ 4780 0.175 	áÖÏ @ 1567 0.057

13 Aë 9307 0.341 	áË @ 4667 0.171 ÉªË@ 1542 0.057

14 È@

8558 0.314 B

@ 4455 0.163 �
IË@ð 1394 0.051

15 P@ 8493 0.311 l .
Ì'@ 4251 0.156 ñÖÏ @ 1317 0.048

16 ú

G
.

8435 0.309 �
�Ë@ 4185 0.153 �

B@ 1201 0.044

17 	
à@ 8323 0.305 YË@ 4045 0.148 éJ
Ê« 1200 0.044

18 	áK
 8196 0.300
	
YË @ 3923 0.144 	

àB

@ 1175 0.043

19 A« 7693 0.282 B@ 3854 0.141 �B

@ 1171 0.043

20 ø

P 7518 0.276 	
àA¿ 3717 0.136 ð

B@ 1160 0.043

total 367416 16.667 145830 5.345 36922 1.353

The top 20 bigraphs represent about 17% of the CCA corpus charac-

ters, trigraphs represent 5.3% and 4-graphs represent 1.4%, which indi-

cates that Arabic words consist of many repeated bigraphs. Many bigraphs

occur more frequently than some unigraph characters, such as “ 	
 ” and

“ �
H”. There is a remarkable change in the percentage between the first

bigraph “È@”, which means “the”, and the next bigraph, “ 	áÓ”, which means

“from”. The difference is about 5% which indicates some bigraphs occur

much more frequently than others.

2.5. Theoretical Models for Arabic Text 19

2.5.2 Some Characteristics of Arabic Words

Unlike for English, there has been no extensive study of words and their

frequencies for The Arabic language so far. The importance of these stud-

ies is to provide a proper understanding of the language structure. Table

2.4 shows the top 20 most frequent words and their frequencies from three

Arabic texts, the CCA, the EASC, and the Holy Qur’an texts, respectively.

In this analysis we excluded punctuation marks and full text was exam-

ined. As Arabic is naturally segmented language by spaces, words are

easily identified by these spaces.

Table 2.4: The top 20 most frequent words from three corpora.

CCA Corpus EASC Corpus Holy Qur’an

Rank Word Frequency % Rank Word Frequency % Rank Word Frequency %

1 ú

	
¯ 17454 2.997 1 ú

	
¯ 1899 3.216 1 	áÓ 2766 3.520

2 	áÓ 15678 2.692 2 	áÓ 1579 2.705 2 é<Ë @ 2267 2.885

3 úÎ« 7873 1.352 3 úÎ« 843 1.428 3 ú

	
¯ 1187 1.510

4 	
à@ 7388 1.268 4 ð 713 1.208 4 AÓ 1011 1.286

5 úÍ@

6594 1.132 5 úÍ@

587 0.994 5 	
à@ 966 1.229

6 ú

�
æË@ 4025 0.961 6 	

à@ 432 0.732 6 B 813 1.034

7 	á« 3300 0.566 7 ú

�
æË@ 383 0.649 7 	áK

	
YË @ 812 1.033

8 AÓ 3132 0.537 8 ð

@ 296 0.501 8 úÎ« 670 0.852

9 B 3125 0.536 9 	á« 293 0.496 9 B 665 0.846

10 @
	
Yë 2967 0.509 10 è

	
Yë 218 0.369 10 Bð 660 0.840

11 è
	

Yë 2779 0.477 11 ø

	
YË@ 190 0.322 11 AÓð 646 0.822

12 ø

	
YË@ 2580 0.443 12 AÓ 178 0.301 12 	

à@ 640 0.814

13 ð

@ 2564 0.440 13 ©Ó 170 0.288 13 ÈA

�
¯ 417 0.530

14 ð 2224 0.381 14 	á�
K. 167 0.283 14 úÍ@

405 0.515

15 	
àA¿ 2084 0.357 15 @

	
Yë 164 0.278 15 ÑêË 374 0.476

16 ©Ó 1728 0.296 16 	
àA¿ 161 0.273 16 AK
 349 0.444

17 ÕË 1665 0.285 17 ÐA« 159 0.269 17 	áÓð 342 0.435

18 É¿ 1654 0.284 18 AÒ» 145 0.246 18 Õç
�
' 341 0.434

19 ½Ë
	
X 1644 0.282 19 �

IJ
k 141 0.239 19 ÕºË 337 0.428

20 	á�
K. 1540 0.264 20 ù

ë 137 0.232 20 éK. 328 0.417

Overall 16.059 15.029 20.35

2.5. Theoretical Models for Arabic Text 20

The relationship between word length and frequency has been explored

earlier as a noticeable correspondence (Miller et al., 1958). For instance,

the average word length of the top ten frequent words in the CCA corpus,

which makes up to 14% of the total number of words in CCA, is 2.5 letters.

The longest words in the CCA are 16 characters, with the average word

length being 4.6 characters.

The following figure presents the word lengths and the percentages of

these words in the CCA, the EASC as modern Arabic texts and the Holy

Qur’an as a classic Arabic text to examine the variety of word length among

these texts.

Figure 2.7: Word length of 3 Arabic text.

The longest word in the Holy Qur’an is 11 characters in length, while

the longest word in the CCA is 16 characters and 14 characters in the

EASC. Also, the Holy Qur’an has between 1% and 8% more vocabulary

using word lengths of two through six characters, than the CCA and the

EASC. The CCA and the EASC have between 1% and 4% more vocabulary

with word lengths between seven and eleven characters than the Holy

Qur’an. This indicates that modern Arabic uses longer word lengths than

classical Arabic texts. For word lengths of six or more, there are matching

vocabulary sizes used in the CCA and the EASC.

2.5. Theoretical Models for Arabic Text 21

2.5.3 The Type-Token Relationship

Another way to explore theoretical models of Arabic text is the type-token

relation for the text. Table 2.5 represents the vocabulary distribution of

words found in the CCA corpus, a modern Arabic text. The words are listed

by most frequently occurring word where types represent the number of

unique words in the CCA and ordered by the frequency of these types over

the whole text. The fraction of types is calculated by dividing the number

of types in each row over the total number of types in the CCA, while

the fraction of tokens is calculated by dividing the tokens over the total

number of words of the whole text.

Table 2.5: Vocabulary distribution for the CCA corpus.

Types No. of

Types

Fraction of

Types %

No. of

Tokens

Fraction of

Tokens %

ú

	
¯ 1 0.001 17447 2.991

	áÓ ú

	
¯ 2 0.002 33073 5.67

úÎ« 	áÓ ú

	
¯ 3 0.003 40944 7.019

úÍ@

	
à

@ úÎ« 	áÓ ú

	
¯ 5 0.005 54881 9.408

@
	
Yë B AÓ 	á« ú

�
æË@ úÍ@

	
à

@ úÎ« 	áÓ ú

	
¯ 10 0.011 71414 12.242

è
	
Yë @

	
Yë B AÓ 	á« ú

�
æË@ úÍ@

	

à

@ úÎ« 	áÓ ú

	
¯

	á�
K. É¿ ½Ë
	
X ÕË ©Ó

	
àA¿ ð ð

@ ø

	
YË@

20 0.021 92130 15.794

	
X ÕË ©Ó

	
àA¿ ð ð

@ ø

	
YË@ è

	
Yë @

	
Yë B AÓ 	á« ú

�
æË@ úÍ@

	
à

@ úÎ« 	áÓ ú

	
¯

.
�

I
	
KA¿

�
éJ
K. QªË@ Y

�
¯ð ú

�
æk

	
à@

Y

�
¯ AÒ» YªK. ñë

	á�
K. É¿ ½Ë

50 0.053 121739 20.87

ÕË ©Ó
	

àA¿ ð ð

@ ø

	
YË@ è

	
Yë @

	
Yë B AÓ 	á« ú

�
æË@ úÍ@

	
à

@ úÎ« 	áÓ ú

	
¯

.
�
éJ
K. QªË@ Y

�
¯ð ú

�
æk

	
à@

Y

�
¯ AÒ» YªK. ñë

	á�
K. É¿ ½Ë
	
X

100 0.106 148425 25.444

½Ë
	
X ÕË ©Ó

	
àA¿ ð ð

@ ø

	
YË@ è

	
Yë @

	
Yë B AÓ 	á« ú

�
æË@ úÍ@

	
à

@ úÎ« 	áÓ

ÕËAªË @ ÐA« ù

ë
�

I
	
KA¿

�
éJ
K. QªË@ Y

�
¯ð ú

�
æk

	
à@

Y

�
¯ AÒ» YªK. ñë

	á�
K. É¿

. . . . éË
�

IJ
k
	

�ªK. Õç
�
' ñëð ú

	
¯ð

93972 100 583329 100

For example, the list in the third row contains the three most frequently

occurring words “úÎ« 	áÓ ú

	
¯” with the number of types and tokens found in

the text and their percentage as a fraction of the whole text. This table

reveals two obvious tendencies. First, a small number of words occur more

frequently. Second, large quantities of words occur rarely. For example,

2.5. Theoretical Models for Arabic Text 22

the top 100 most frequent words represent about 30% of the text, but it

represents only 0.11% of the vocabulary. The following figure shows the

type-token relationship, which clearly graphs the tendencies.

Figure 2.8: A type-token plot for the CCA corpus.

Table 2.5 can be rearranged into type-token data, as in the following

table where the words with the same number of tokens are placed together

with its token count (first column).

Table 2.6: Type-token data for the CCA corpus.

Tokens Word Types
1 @ñ

	
JÓ@Z

	
àA�

	
�B

@ �ÓA
	
mÌ'@ ú

	
¯ð É

	
¢�
ð 52549

2 H.

�
@ ù¢ªK
 AëA

�
®ÊK
 úæ�

	
JK
 I. �

	
�K

	
àAîE
 14596

10 	áÓ

ð

@. ©¢

�
®K
 Ð 	QÊK
 Ð 	QÊK
 éJ.

�
J
	
�K

A

�
�

	
�K

	
�î

	
DK
 753

100 �
éJ

	
K A�

	
�B@. ÈAg. P 	áÓ 	P

�
éJ
«A

	
J� ¨A¢

�
¯

	
àA

	
JJ. Ë 8

441 ÉÒªË@ 1

1728 ©Ó 1

2964 @
	
Yë 1

7343 	
à

@ 1

17447 ú

	
¯ 1

Referring to the table, for example, one word occurs 1728 times, “©Ó”

which means “with”; “ @
	
Yë” which means “this”, is the only word that occurs

2964 times; “ 	
à

@”, which means “that”, is the only word that occurs 7343

times; “ú

	
¯”, which means “in”, is the only word that occurs 17447 times;

2.5. Theoretical Models for Arabic Text 23

and there are 52549 singleton words, words that occur one time only (the

words listed in the first row).

2.5.4 Vocabulary Growth

For Arabic, there is a noticeable growth of the size in the vocabulary as the

text expands. For example, in the EASC corpus of 58973 words, there are

20514 word types. In contrast, the larger corpus CCA has 583945 words,

and there are 93972 word types. This initially indicates two things. First,

there is a relationship between text size and vocabulary growth; second,

vocabulary growth diminishes as text expands. According to Heaps’ law

(Heaps, 1978), this relationship is as follows.

V = K × nβ. (2.2)

where V is vocabulary size (number of word types), n is the number of

words in the text, K and β are the parameters that vary for each text.

Typical values given are 10 ≤ K ≤ 100 and β ≈ 0.5. For Arabic text we

found that typical values are between 10 and 20 for K and between 0.6

and 0.7 for β where K =20 and β =0.7 for the Holy Qur’an as classic text

and K =10 and β =0.6 for both CCA and EASC corpora as modern text.

Experiments with these texts are shown in Figure 2.9 which shows that

Heaps’ observation generally holds true, as shown by the dashed lines.

2.5. Theoretical Models for Arabic Text 24

Figure 2.9: Vocabulary growth of several texts.

2.5.5 Zipf’s Law

Zipf’s law was introduced by George Zipf (Zipf, 1949). It is an empirical

law based on mathematical statistics from different samples. It is simply

a record of the observation of frequency that occurs in some events. The

power of this law is that it can be applied to many observational data.

Here, we are talking about languages and the frequencies of words and

characters. We can use Zipf’s law to examine the frequency distribution

for characters in a given text. In other words, we can estimate, in reference

to Zipf’s law, how often words or characters occur. The formula for Zipf’s

law is as follows:

f(r)× r = C. (2.3)

where f is the frequency of the character or the word in a given text, r is

the rank of the word according to the frequency f of its occurrence and

C is a constant number. For example, the following figure shows using

logarithmic scales the rank on the X-axis and the frequency on the Y-axis

for the three corpora. This graph shows two things: high ranking accounts

for a large percentage of the text, and there is a long tail of words that

occur seldomly.

2.6. Conclusion 25

Figure 2.10: Zipf’s Law applied to words for three Arabic corpora.

These findings indicate that Arabic text, at least initially, follow Zipf’s

law.

2.6 Conclusion

We have reviewed several basic fundamental characteristics of the Arabic

language and its encoding schemes. There are some similarities between

English and Arabic in terms of the size of the alphabets, and there are

some differences, such as the direction of writing and in the morphological

nature of the languages. Also, we have reviewed some characteristics of

Arabic characters and words. We found that the Arabic language has a

noticeable growth in the size of the vocabulary as the text expands and

also it follows Zipf’s law, as shown in Section 2.5.5.

Chapter 3
New Arabic Language Corpora

Contents

3.1 Introduction . 27

3.2 Existing Arabic Language Corpora 27

3.2.1 Corpus of Contemporary Arabic (CCA) 28

3.2.2 Essex Arabic Summaries Corpus (EASC) 28

3.2.3 Arabic Treebank Corpus (ATC) 29

3.2.4 King Saud University Corpus of Classical Arabic (KSUCCA) 29

3.3 New Arabic Language Corpora 29

3.3.1 Bangor Arabic Compression corpus (BACC) 30

3.3.2 Bangor Balanced Corpus of Contemporary Arabic (BBCCA) 32

3.4 A Codelength Method for Ranking N-gram Diferences

Between Texts . 33

3.4.1 Defining an N-gram Feature-Based Approach as a

Metric for Corpora Content Evaluation 38

3.5 Summary . 43

3.1. Introduction 27

3.1 Introduction

Corpora are sets of structured text stored and processed for purposes of

statistical analysis that are usually stored in a machine-readable form

(Teahan, 1998). It may contain more than one language. Corpora are

used in research that relates to linguistic areas such as part of speech tag-

ging, machine translation, word segmentation and text compression, and

it also could be a useful resource for teaching purposes (Alsuliti, 2004). In

our research, we used corpora in order to standardize the results of the

experiments for text compression.

In this chapter, we will review some available Arabic language corpora

and then we will introduce the Bangor Arabic Compression Corpus (BACC)

(Teahan and Alhawiti, 2013), designed for experimental usage and stan-

dardizing the result of compression algorithms. Also, we will introduce the

Bangor Balanced Corpus of Contemporary Arabic (BBCCA) of one million

words, designed for natural language processing research. Finally, we will

describe a new method to evaluate corpora by ranking n-gram differences

between texts. We propose this as a novel corpora assessment tool and

also as a means to reveal different topics between two or more texts (Tea-

han and Alhawiti, 2014). We use this new method to evaluate the quality

of the BACC corpus.

3.2 Existing Arabic Language Corpora

Unlike English, Arabic has a comparatively smaller number of available

reference corpora, such as the Brown corpus (Francis and Kucera, 1979)

and the LOB corpus (Johansson, 1980) for English. This results in NLP

research for the Arabic language being a harder task for researchers. The

next section reviews some available Arabic corpora with their structure

and statistics.

3.2. Existing Arabic Language Corpora 28

3.2.1 Corpus of Contemporary Arabic (CCA)

This corpus was collected by Latifa Alsuliti and Eric Atwell at the Univer-

sity of Leeds (Al-Sulaiti and Atwell, 2006) and is available at www.comp.

leeds.ac.uk/eric/latifa/CCA_raw_utf8.txt. For the written portion,

it is derived mainly from websites, while the spoken part was collected

from Radio Qatar in the form of five small files selected from a set of 415

text files. CCA has 598718 words overall, in the following categories: auto-

biography, short stories, children’s stories, economics, education, health,

medicine, interviews, politics, recipes, religion, sociology, science, sports,

and travel.

The overall file size of the CCA is 6289509 bytes encoded using the UTF-

8 scheme. In terms of file size, CCA is a small corpus created for teaching

purposes and a larger corpus is required for compression purposes. What

is required in order to investigate and emphasise the impact of the com-

pression methods is to categorise experiments into a group of files based

on size (small, medium, large and very large). Therefore, the corpora used

must contain different file sizes. However, CCA is excellent as a training

corpus for small text experiments, as it contains variant genres as well.

3.2.2 Essex Arabic Summaries Corpus (EASC)

The EASC corpus was created by El-Haj et al. (2010) at the University of

Essex. It contains 153 Arabic articles and 765 human-generated extrac-

tive summaries of those articles. It is a written text-based corpus that

consists of the following categories: art and music, education, environ-

ment, finance, health, politics, religion, science, sport and tourisms.

The overall file size in the EASC is 630321 bytes encoded using a UTF-

8 scheme. The EASC corpus is also small in terms of file size. It has

been created for the purposes of text summarization; therefore, we cannot

consider it as a good corpus for compression purposes.

3.3. New Arabic Language Corpora 29

3.2.3 Arabic Treebank Corpus (ATC)

The ATC is one of the Linguistic Data Consortium (LDC) corpora (Maamouri

et al., 2005). It was released in early 2005. The ATC is also a small cor-

pus of 145386 words for the purpose of content extraction, information

retrieval and part of speech tagging. The data of the corpus was extracted

from the Agence France Presse (AFP) newswire between the period of July

and November 2000. For the same reasons as stated above, we cannot

consider the ATC as a good training corpus for compression purposes

based on the need for both size and variation in the text.

3.2.4 King Saud University Corpus of Classical Arabic (KSUCCA)

The KSUCCA is a 50-million-word corpus (Alrabiah et al., 2013) with the

main purpose of studying the lexical semantics of the Holy Qu’ran. The

KSUCCA is a selection of classical Arabic texts from the period of the sev-

enth until the early eleventh century. The categories in the KSUCCA are

religion, linguistics, literature, science, sociology and biography. Since the

KSUCCA is designed mainly for lexical studies of classical Arabic text dur-

ing the pre-Islamic era, it cannot be considered a good training corpus for

compression experiments, as it does not represent the modern text of the

Arabic language.

3.3 New Arabic Language Corpora

In order to standardize our compression experiments and other natural

language processing applications, we have set up two new corpora, which

are the Bangor Arabic Compression Corpus (BACC) (Teahan and Alhawiti,

2013) and the Bangor Balanced Corpus of Contemporary Arabic (BBCCA),

to overcome the shortage of Arabic language resources. These corpora

have been made freely available for research purposes. These two corpora

will now be described in more detail.

3.3. New Arabic Language Corpora 30

3.3.1 Bangor Arabic Compression corpus (BACC)

A 31-millon-word corpus called the Bangor Arabic Compression Corpus

(BACC) was created for this study (Teahan and Alhawiti, 2013). The cor-

pus contains text files of different genres, such as sports, culture, eco-

nomics and so forth, which were collected from many sources including

websites, magazines and books to ensure a variety of texts. Also, the size

of the chosen files was considered as an important target in designing the

BACC. This will allow for a variety of compression experiments on different

file sizes and genres in terms of compression performance and execution

speed. The purpose of this new corpus was to create a benchmark corpus

for compression experiments on Arabic text.

The BACC consists of four sub-corpora in terms of the text file size

(small, medium, large and very large), and comprises 16 text files of dif-

ferent genres encoded using the UTF-8 encoding schemes, as described in

table 3.1.

Table 3.1: BACC corpus.

File name Categorize Size in Byte Description
economic Small 15924 Economics & finance
education Small 27086 Education

sports Small 31706 Sport
culture Small 34760 Culture issues

artandmusic Small 42648 Art and music
political Small 47556 Political
articles Medium 103839 Articles
press Medium 549063 Press
novel1 Medium 860680 Qarytona
novel2 Medium 912604 Wayzhr Alqondol
novel3 Medium 1023987 Afrah Lilat Alqdr

shortstories Medium 1041952 Adventure and horror
literature Large 19187425 Literature and heritage
history Large 30714551 History

bookcollection1 Large 56633170 Popular lore
bookcollection2 Very large 201693734 Collection of books (Religion)

The small corpus consists of files that are under 100 KB, while the

medium corpus consists of files that are larger than 100 KB but smaller

3.3. New Arabic Language Corpora 31

than 18000 KB. The large corpus consists of files that are larger than

18000 KB but smaller than 190000 KB and the very large corpus consists

of files that are larger than 190000 KB.

In the BACC, we take into consideration the representation of modern

Arabic as well as classical Arabic, which can be found in the religious and

literature material and should be included in compression experiments.

The BACC was collected with permission from the owners of the material

used except material that referred to historical times, such as religious

and popular lore texts. To our knowledge, the BACC is the first Arabic

corpus designed for compression purposes.

As an additional component to the BACC corpus, we have also pro-

duced a Stem-Segmented Small Bangor Arabic Corpus (SSSBAC) com-

prising 50,000 words that has been manually segmented by morphology

to ensure high quality. The purpose of this corpus is to segment an Arabic

word that could be found in any text into the form prefix(es)-stem-suffix(es)

which can be very useful to many NLP applications (see section 2.3). For

example, the rich morphological nature of the Arabic language presents

many challenges to the machine translation applications of Arabic (Soudi

et al., 2012). Samples of frequent prefixes and suffixes are shown in Table

3.2.

Table 3.2: Samples of prefixes and suffixes found in Arabic text.

Prefix Stem Suffix
ð

�
I�
K. è

H.
�

I�
K. Ñë

È@ + H. ÕÎ�Ó 	áK

È@ + H. + ð ÕÎ�Ó 	
àð

As we can see from the table, more than one prefix and/or suffix could

be attached to an Arabic word, which can make the segmentation process

not such a trivial task. A good solution is training a statistical language

model, such as PPM models, on SSSBAC to learn about the probability of

3.3. New Arabic Language Corpora 32

these prefixes and suffixes (Teahan et al., 1998).

3.3.2 Bangor Balanced Corpus of Contemporary Arabic (BBCCA)

The Bangor Balanced Corpus of Contemporary Arabic (BBCCA) is a com-

pilation of one million words of contemporary Arabic text. The BBCCA is

the first balanced corpus using the same format (structure and size) as the

Brown Corpus (Francis and Kucera, 1979). The Brown Corpus has been

a template that has been copied by many other English based corpora,

such as the LOB (Johansson, 1980) and the Macquarie and Wellington

corpora. The purpose of this corpus is to mirror similar balanced corpora

that are available for the English language (Brown and LOB) but instead

include Arabic language. The BBCCA is divided into 500 samples of more

than 2000 words for each. The sampling criteria in the BBCCA corpus is

described as follows.

(A) PRESS: REPORTAGE (44 texts)

(B) PRESS: EDITORIAL (27 texts)

(C) PRESS: REVIEWS (17 texts)

(D) RELIGION (40 texts)

(E) SKILL AND HOBBIES (36 texts)

(F) POPULAR LORE (48 texts)

(G) BELLES-LETTRES (52 texts)

(H) MISCELLANEOUS: GOVERNMENT & HOUSE ORGANS (30 texts)

(J) LEARNED (80 texts)

(K) FICTION: GENERAL (29 texts)

(L) FICTION: MYSTERY (24 texts)

(M) FICTION: SCIENCE (6 texts)

(N) FICTION: ADVENTURE (29 texts)

(P) FICTION: ROMANCE (29 texts)

(R) HUMOR (9 texts)

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 33

BBCCA is a corpus of standard, modern, printed Arabic text written in

the last few years. Some of the samples, such as religion and popular lore

texts, were written earlier due to limitations in these categories in Arabic.

Books, journals, magazines and websites were the sources of the collected

materials. Most of the samples of the corpus were chosen from different

authors to ensure a wide range of vocabulary being used in the selected

sample. The selection of the sample had two phases. First, the material

was selected from several alternatives and then at least 2,000 words were

selected randomly.

For the 2000+ selected words sample, we started with the beginning

of a sentence in a paragraph or a new line and did not break up lines

at the end of the selection to maintain the meaning of the selected text.

BBCCA will be a good resource for POS tagging and text correction as it is

represents modern Arabic use in printed text.

For copyright issues, these materials were collected with permissions

from the copyright holders of these samples.

3.4 A Codelength Method for Ranking N-gram Diferences

Between Texts

In this section, we describe a new method that we have developed in order

to evaluate the quality of corpora. The method is based on ranking n-gram

(unigrams, bigrams or trigrams) differences between texts. The method

can also be used as the basis for producing tag clouds and is effective at

revealing different topics between two or more texts.

Various methods have been devised for intelligently processing text doc-

uments. Fundamental to most of these methods is a requirement to rank a

text document according to a metric. Traditionally, the metric is calculated

from the whole document according to relevant criteria. For example, for

vector-space-based information retrieval, a cosine metric is used to find

the documents that are nearest to the user query, where documents and

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 34

queries are represented as points in an n-dimensional space (Manning

et al., 2008).

An alternative to using ranking metrics based on processing the en-

tire document is to use a feature-based approach, where features within

the document (such as n-grams) are considered individually and ranking

statistics are obtained separately for each feature. These are often either

processed across the entire collection of documents or used to compare

two documents (Teahan and Alhawiti, 2014). This method can be used

as the basis for producing tag clouds and is effective in revealing different

topics between two or more texts. The method has also been found to be

effective in revealing trends and emerging topics.

This method uses a simple estimate for the probability of each n-gram,

based on its frequency of use in each text:

PT (g) = CT (g)/NT (3.1)

where PT (g) is the probability of the n-gram g in the text T ; CT (g) is the

frequency of the n-gram, and NT is the total number of n-grams of the

same length (i.e. unigrams, bigrams or trigrams) in the text T . The relative

entropy-based distance metric used for ranking the ‘unusualness’ of each

n-gram g that appears in both texts, T1 and T2, is calculated as follows.

DT1,T2(g) = |HT1(g)−HT2(g)| = | log2 PT1(g)− log2 PT2(g)| (3.2)

where the entropy of the n-gram g is calculated as

H(g) = −log2P (g). (3.3)

From a compression perspective, this measurement which is called

‘codelength difference’ is simply the absolute difference between compres-

sion codelengths and the cost of encoding the n-gram using two different

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 35

models, one trained on the text T1 and the other trained on the text T2. The

codelength is a way of measuring the ‘information’ for an n-gram compared

to the other n-grams.

For example, we can calculate the codelength for encoding the unigram

word “Britain” in the Brown Corpus as follows.

HBrown(“Britain”) = − log2 PBrown(“Britain”) = − log2(61/1014416) = 14.021.

The word “Britain” occurs 61 times in 1,014,416 words. In contrast, the

word “Britain” occurs 290 times in 1,010,401 words in the Lancaster-

Oslo-Bergen (LOB) (Johansson, 1980).

HLOB(“Britain”) = − log2 PLOB(“Britain”) = − log2(290/1010401) = 11.767.

We can use the absolute difference between the two codelength values

as a means to measure how unusual the difference in probability is for the

two corpora:

DBrown,LOB(“Britain”) = |HBrown(“Britain”) − HLOB(“Britain”)| = |14.021 −

11.767| = 2.245.

Table 3.3 lists the top 20 codelength difference values for words, bi-

grams and trigrams that appear in political files from the SBACC and CCA.

For these results, proper nouns, such as “Pñ
�
J�YË@ 	áK
QëA

	
¢

�
JÖÏ @

	á�
g. A�ÖÏ @” (which

mean prisoner, constitution, and demonstrators) appear more frequently

in the SBACC than the CCA, as the CCA is a corpus created in 2006 before

the Arab Spring started in Egypt and Tunisia. However, the SBACC was

created in late 2011 after the revolutions in Tunisia, Egypt and elsewhere.

The differences between the SBACC and the CCA are more revealing

when bigrams are used in the analysis. Here proper name bigram se-

quences are ranked highly, such as “QK
Qj
�
JË @

	
à@YJ
Ó” , “ú

	
æ£ñË@ H.

	QmÌ'@”, “ �
éÓAªË@

�
éK. AJ

	
JË @”

and “I. ª
�

�Ë@ �Êm.
×”, which mean “Tahrir Square” in Cairo, “Alwatani party”,

“solicitor general” and “Parliament”. Figure 3.1 shows the unigram tag

chain produced using the codelength difference measurement of the SBACC

and the CCA corpus. The top ranked unigrams according to the value

HSBACC − HCCA are shown with the red circles on the left, and, according

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 36

Table 3.3: The top 20 words, bigrams and trigrams that appear in both the SBACC and the
CCA, ranked in descending order according to the differences in codelength.

D Unigram D Bigram D Trigram
8.093 	á�
g. A�ÖÏ @ 8.366 QK
Qj

�
JË @

	
à@YJ
Ó 5.508 �

éJ
Ê
	

g@YË@ QK

	Pð P@Q

�
¯

8.031 �
HC

	
®

	
KB@ 7.508 	á£ñË@ H.

	QmÌ'@ 5.508 AÓ ñëð ,

7.678 �
éjÊ�ÖÏ @ 6.967 �

éJ

	
J£ñË@

�
é
	
Jj. ÊË @ 5.315 Õç

�
' 	áÓ ð

7.637 úÍ@ 6.83 Õ
�
P̄

	
àñ

	
KA

�
®Ë @ 5.093 	

à

@ 	Pñm.

�'

 Bð

7.552 	áK
QëA
	

¢
�
JÖÏ @ 6.83 ú

×ñ

�
®Ë@ 	áÓ

B@ 5.093 AÓ ñë ð

7.552 �Ó

@ 6.678 é<Ë @ Q

	
®

	
« 5.093 	á« YK

	Q
�
K B

6.83 	
à@YJ
Öß. 6.678 �

éÓAªË@
�
éK. AJ

	
JË @ 5.093 �

è 	Q
	
« ¨A¢

�
¯ ú

	
¯

6.83 PA
�

�
�
��ÖÏ @ 6.508 	áK
QëA

	
¢

�
JÖÏ @ 	áÓ 5.093 ÈðX

�
èY« ú

	
¯

6.83 ù

ÒÊ�Ë@ 6.508 2003
�
é
	
J�Ë 5.093 	

à

@ YK. C

	
¯

6.83 �
I

	
KQ

�
�
	
KB@ 6.508 �

é£Qå
�
�Ë @

�
H@ñ

�
¯ 5.093 Q

�
®

	
®Ë @ ¡

	
k

�
Im�

�
'

6.83 ú

	
æÓB@ 6.508 é<Ë @YJ.« ñK.

@ 5.093 ÈAÖÞ

�
�ð ¡�ð

B@

�
�Qå

�
�Ë @

6.678 Q
	
®

	
« 6.315 ½ÊÖÏ @

�
éËCg. 5.093 	á�

	
®K
Qå

�
�Ë @

	á�
ÓQmÌ'@

6.678 Pñ
�
J�X 6.245 �

éJ
Ê
	

g@YË@ QK

	Pð 5.093 QîD

�
� 	áÓ É

�
¯

@

6.678 ø

Qå�ÖÏ @ 6.093 25 ÐñK
 5.093 �
I

	
KA¿ @

	
X @

?

6.678 �
éK
Pñ

�
J�YË@ 6.093 �

éJ
k. PA
	
mÌ'@ QK

	Pð 5.093 	áÓ ð .

6.595 �
H@ñ

�
®ÊË 6.093 	

àñ
	
KA

�
®Ë @ 	áÓ 4.83 úÍ@

�
é
	
¯A

	
�@

,

6.595 �
HAK. A

	
j

�
J
	
K @ 6.093 ©

�
¯ñÓ úÎ« 4.508 	

à

@ éË 	áºÖß

6.508 �
éJ
ÒÊ� 6.093 �

éJ

	
¯ñ�Ë@

�
�Q¢Ë@ 4.508 ð

@ Aë

ðA

	
ªË @

	áºÖß

6.508 ÈCK. 6.093 ù

KAK. QêºË@ PAJ

�
JË @ 4.508 ¡

	
k

�
Im�

�
' 	

àñ
�

��
ªK

6.508 QëA
	

¢
�
JË @ 5.967 I. ª

�
�Ë@ �Êm.

× 4.508 	
­ËA

	
m�'

 AÓ ñëð

to the value HCCA − HSBACC are shown with the blue circles on the right,

with the minimum codelength difference set at 3.0.

Figure 3.1 clearly shows the different bigram phrases commonly used

for proper nouns found in the SBACC and the CCA. As a result, the differ-

ent topics of interest that appear in the two respective texts are revealed

effectively. Phrases with proper names, such as “ 	
à@YJ
Öß. , 	áK
QëA

	
¢

�
JÖÏ @

	á�
g. A�ÖÏ @”

and “PA
�

�
�
��ÖÏ @”, which means consultant, demonstrator, square and pris-

oners, appear and clearly indicate the importance of the January revolu-

tion in Egypt and relates to the Arab spring. Alternatively, the phrases

“ �
èPA

	
�mÌ'@ , Qª

�
�Ë@ , ZAÒÊªË@” and “ �

éJ
ÓC�B

@”, which mean scientist, poetry, civiliza-

tion and Islamic, are clearly related to civilization in Islamic culture.

Figure 3.2 shows the unigram tag cloud produced using codelength

differences for the SBACC and the CCA. The tag cloud in this case was

produced using the Processing language that automatically allocated the

positions of the tags either horizontally or vertically in the visualisation.

The figure provides an effective method for visualizing the data provided in

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 37

Figure 3.1: A unigram tag chain is produced using the codelength difference measurement
of the SBACC and the CCA. The top ranked trigrams according to the value HSBACC−HCCA

are shown with the red circles on the left, and, according to the value HCCA −HSBACC , the
unigram are shown with the blue circles on the right.

Table 3.3 and Figure 3.1. It clearly reveals the importance of such phrases

as “ 	
à@YJ
Öß. ,PA

�
�

�
��ÖÏ @” and “ 	áK
QëA

	
¢

�
JÖÏ @”.

Figure 3.2: Unigram tag clouds are produced using the codelength difference measurement
from the SBACC and the CCA. The minimum codelength difference threshold has been set
at 3.0.

As another example, the yearly speeches of King Abdullah Bin Husain

in Jordan (Court, 2013) were analyzed using the same method. The results

are shown in Figure 3.3. From the tag cloud, we can see that in the early

period of King Abdullah’s rule (1999-2005), the king considered important

issues, such as “ �
éK
Pñ

�
J�YË@ , XA�

	
®Ë @” and “ 	

àñ
	
Q̄¢

�
JÖÏ @” which mean corruption,

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 38

constitution and terrorism. However, for the period of 2006 through 2012,

words such as “ÈC
�
JkB@” and “ �

éJ
Ò
	
J
�
JË @”, which mean occupation and devel-

opment, become important. This is understandably due to the Gaza war

in 2006 and demonstrations in Jordan because of rising unemployment

among young Jordanian citizens and the influence of the Arab Spring,

which makes development an important issue.

Figure 3.3: A unigram tag cloud produced using the codelength difference measurement in
the last 14 years (1999-2012) of the speeches of King Abdullah Bin Husain in Jordan. The
minimum codelength difference threshold has been set at 3.0.

3.4.1 Defining an N-gram Feature-Based Approach as a Metric for

Corpora Content Evaluation

Evaluation of corpora is a non-trivial task. If we have a new corpus, how

we can assess it for its quality? Against what criteria? The token frequency

analysis (word and character) might be a way to do so. Alternatively, we

could compare the new corpus with an existing one that has desirable

properties or qualities that we are trying to reproduce. So we can examine

similarities or differences between the two corpora being compared since

token frequency analysis can only show count information (Rayson, 2009).

The following n-gram, feature-based approach is a new metric that has

been devised as a tool for corpora comparison. The new metric is based

on the relative entropy metric defined in the previous section. The corpus

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 39

evaluation metric is calculated using the following formula:

MC1,C2 =

∑n
i=1DC1,C2(gi)

n
(3.4)

where M is the average codelength difference of the two corpora C1 and

C2. D is the codelength difference of the n-gram, and n is the number of

n-grams of the same length that occur in the two corpora C1 and C2.

If the value of MC1,C2 is equal to zero, then the two corpora would be

exactly the same. If the MC1.C2 score was low (< 1), then the corpus be-

ing compared has much in common with the reference corpus. If the M

score is high (> 1), it would indicate that the corpus being compared is

quite different to the reference corpus. As another means for evaluating

corpora, the tag clouds can also be used to visualize the top 100 unigram

codelength differences between compared corpora.

We have found that the proposed techniques are useful in comparisons

with well-known corpora, such as the CCA and the Brown corpora. In

addition, the metrics of average codelength differences of the top 1, 5, 10

and 100 n-grams can also be used to illustrate the changes in codelength

differences between compared corpora. Low codelength values indicate

that the two corpora being compared have similar characteristics and high

changes of these values indicate more differences. Also as a future tech-

nique, the percentage of novel words in both compared corpora can also

be examined such as the sample of top 10 unseen words in the compared

corpora.

In order to illustrate the techniques, the following table shows the com-

parison of the Brown corpus as the reference corpus vs. the LOB and the

King James Bible corpora, using the proposed methods.

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 40

Table 3.4: Comparing corpora: Brown, LOB and the King James Bible.

Metric Brown vs. LOB Brown vs. King James Bible

Average codelength (MC1 ,C2) 0.84 1.84

Top1 unigram 7.65 10.52

Top5 unigram 6.94 10.05

Top10 unigram 6.38 9.72

Top100 unigram 4.88 7.54

Top1 bigram 8.52 11.25

Top5 bigram 6.68 10.23

Top10 bigram 5.94 9.38

Top100 bigram 4.17 7.19

Top1 trigram 5.4 9.56

Top5 trigram 4.77 8.68

Top10 trigram 4.6 8.17

Top100 trigram 3.58 6.3

% of words in 1st corpus not in 2nd corpus 6.05 8.73

% of words in 2nd corpus not in 1st corpus 5.54 2.94

Top 10 unseen words in 1st corpus
Mr. Mrs. Dr. Mr SIC J. St.

Colour Fig. R.

LORD Shalt and was are hast Is

Were be

Top 10 unseen words in 2nd corpus
Mr& **f Mrs& **h Program

Dr& <The **f. Center St&

Has Mr& American Mrs& Around

during United Does don’t didn’t

Since the Brown and LOB are balanced modern corpora of English

texts, the M value = 0.84 indicates a strong similarity between these cor-

pora, unlike the King James Bible, the M value is larger at 1.84, which

indicates that there are differences between the Brown and King James

Bible corpora. Also, the average codelength of n-grams is lower for Brown

vs. LOB than Brown vs. King James Bible, which also indicates similari-

ties between the Brown and LOB corpora and draws attention to the fact

that there are important differences between the Brown and King James

Bible corpora.

In addition, the percentage of novel words in the Brown corpus not seen

in the LOB corpus was 6.05% and the percentage of novel words in the

LOB corpus not seen in the Brown corpus was 5.54%, which is typical for

English text that are similar. In contrast, the percentage of novel words

in the Brown corpus not seen in the King James Bible is 8.73% versus

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 41

2.94 % of novel words in the King James Bible not seen in the Brown

corpus. This is more than double, indicating major differences between

these corpora. A sample of the top 10 unseen words in both corpora is

listed in the last two rows in Table 3.4. A tag cloud of unigram codelength

differences is shown in Figure 3.4 for Brown vs. LOB and for Brown vs.

King James Bible in Figure 3.5.

Figure 3.4: A tag cloud of unigram codelength differences of Brown vs. LOB corpora.

Figure 3.5: A tag cloud of unigram codelength differences of Brown vs. King James Bible.

We will now use the metric to evaluate our BACC corpus against the

Arabic Bible corpus as an example of a classic Arabic text, and we will use

the CCA corpus as an example of a modern Arabic text. Table 3.5 shows

the comparison of SBACC as reference corpus to the CCA and Arabic Bible

3.4. A Codelength Method for Ranking N-gram Diferences Between Texts 42

corpora using the proposed metrics.

Table 3.5: Comparing corpora: SBACC, CCA and Arabic Bible corpora.

Metric SBACC vs.CCA SBACC vs. Arabic Bible

Average codelength (MC1
,C2

) 0.9 1.5

Top1 unigram 6.8 10.5

Top5 unigram 6.4 9.6

Top10 unigram 6.24 9.12

Top100 unigram 5.21 7.09

Top1 bigram 6.52 8.59

Top5 bigram 6.36 8.17

Top10 bigram 5.99 7.7

Top100 bigram 4.53 5.81

Top1 trigram 4.82 6.48

Top5 trigram 4.33 5.75

Top10 trigram 4.05 5.16

Top100 trigram 3.06 3.18

% of words in 1st corpus not in 2nd corpus 16.5 19.57

% of words in 2nd corpus not in 1st corpus 15.33 8.37

Top 10 unseen words in 1st corpus

�
éÊ

	
j

	
JË @ A

�	
��

@ ø

ðCjºË@ Éë?

�
éJ

�
¯@QªË@ ú

æ�ñ

�
®Ë@

�
éJ
K. Pð

B@ ñJ.ÓAJ. Ë @

�
èYK
Yg. ÐñºËAÓ

ú

	
GB ÈðA

�
� ñ

	
JK. hAm��

B@ Õæ

Ê

�
�Pð@ H. QË@

	
�PB@ ÉJ

K @Qå� @ Ñî

	
EB

	
àðQë

Top 10 unseen words in 2nd corpus
H. AK
X ðP@ñK.

	Q�
Ê¾
	
KB@

	á�

	
¯ 	Pñk. AJ

	
¯ñ�

�
éëA

�
�

	PYK
A
	
KñJ
Ë AêÔ« 	Q

	
ª

	
J
�
���
ë Q

	
KQ�

	
¯A

�
K

ñëð ð

@ È@

	

à

@ B@

	
à@

Bð A

	
K

@ ù

ëð é

	
K

@

As the SBACC and the CCA are modern corpora of Arabic text, the M

value is 0.90, which indicates similarities between these corpora. Unlike

the Arabic Bible, the M value is larger at 1.50, which indicates noticeable

differences between the SBACC and Arabic Bible corpora. Also, the aver-

age codelength of an n-gram is lower for SBACC vs. CCA than SBACC vs.

Arabic Bible, which also indicate similarities between the SBACC and the

CCA and more differences between the SBACC and Arabic Bible corpora.

In addition, the percentage of novel words in the SBACC not seen in the

the CCA was 16.05%, and the percentage of novel words in the CCA not

seen in the SBACC was 15.33%, which is typical for Arabic text (higher

than for English texts). In contrast, the percentage of novel words in the

SBACC and not seen in the Arabic Bible is 19.57% versus 8.37 % of novel

words in Arabic Bible not seen in the SBACC, which is again more than

3.5. Summary 43

double, indicating major differences between these corpora. A sample of

the top 10 unseen words in both corpora is listed in the last two rows

in Table 3.5. A tag cloud of unigram codelength differences is shown in

Figure 3.6 for SBACC vs. CCA and SBACC vs. Arabic Bible in Figure 3.7.

Figure 3.6: A tag cloud of unigram codelength differences of SBACC vs. CCA.

Figure 3.7: A tag cloud of unigram codelength differences of SBACC vs. Arabic Bible.

3.5 Summary

In this chapter, we have reviewed several existing corpora of Arabic lan-

guage and produced new resources in the Arabic language for compression

and other NLP applications. A new compression-based method for rank-

ing n-gram differences between texts has been proposed. The method can

readily be applied to producing n-gram tag clouds and lists, and these have

been found to be effective at highlighting differences in topics. By using

3.5. Summary 44

the codelength difference method to compare how a text stream changes

over time, the method can be used for corpora comparison and to reveal

trends or emerging topics of interest.

Chapter 4
PPM Character-Based compression

of Arabic Text

Contents

4.1 Introduction . 46

4.2 Prediction by Partial Matching 46

4.3 Adapting PPM Character-Based Compression for Arabic 48

4.3.1 Bigraph Substitution for PPM (BS-PPM) 49

4.3.2 Character Substitution for PPM (CS-PPM) 53

4.3.3 Character Substitution of Arabic for PPM (CSA-PPM) 57

4.3.4 Dotted (Lossless) and Non-Dotted (Lossy) Compres-

sion of Arabic Text . 58

4.4 Conclusion . 63

4.1. Introduction 46

4.1 Introduction

Text compression is the process of reducing the amount of data needed to

encode text that can be reproduced exactly as the original text after being

decoded without losing any information. PPM has set the performance

standard in terms of lossless compression of text throughout the past

three decades (Teahan, 1998). In this chapter, we adapt PPM for Arabic

text compression that will lead to significant improvements in Arabic text

and other languages that use Arabic script in their writing system. Also

we have found that several of our new techniques work very well when

applied to other languages, such as English, Chinese, Arminian, Russian

and Welsh.

We will first review the PPM model and apply it to Arabic text. Then, we

will discuss our new techniques. The last section shows the experimental

results of compressing different language corpora with a discussion and

summarization.

4.2 Prediction by Partial Matching

PPM was introduced by Cleary and Witten (Cleary and Witten, 1984). The

PPM compression algorithm applies a statistical model; it uses a number

of previous symbols that determines the maximum order of the model

to predict the next symbol. For example, if the maximum order of the

PPM model is 3, the prediction, or probability, of the upcoming symbol

will be estimated based on the three previous symbols. There are several

variations of PPM, such as PPMA and PPMB (Cleary and Witten, 1984),

PPMC (Moffat, 1990), PPMD (Howard, 1993), PPM* (Cleary and Teahan,

1997) and PPMO (Wu and Teahan, 2008). To demonstrate the operation

of PPM, Figure 4.1 shows the state of various conditioning classes where

k= 2, 1, 0 and -1 after the input string “ÕÎ�ÖÏ @” has been processed.

Usually, each symbol will be encoded arithmetically with the proba-

bility estimated by the model (Witten et al., 1987). The PPM encoding

4.2. Prediction by Partial Matching 47

Figure 4.1: A PPMC model after processing the string “ÕÎ�ÖÏ @” with maximum order of 2.

scheme starts from the highest context order (in this case k=2). Where the

highest order context predicts the upcoming symbol, the probability dis-

tribution associated with this symbol will be used to encode it. Otherwise,

the escape probability estimated by the PPM model will be applied to let

the encoder know to move to the next highest context order (k=1), and so

on. This process will be continued until it reaches the lowest order in the

model (k=−1), where all symbols would be encoded based on the probabil-

ity of 1
|A| , where A is the alphabet size. For English texts, the experiment

shows that increasing context length above five does not generally improve

compression (Cleary and Witten, 1984; Cleary and Teahan, 1997; Teahan,

1998).

For example, if “�” followed the string “ÕÎ�ÖÏ @”, (reading from right to left)

the probability of 1
2

will be used as a successful prediction can be made

in the order 2 model with the clause “ÕË→� ”. This requires only 1 bit to

encode (-log 1
2
=1) . Suppose that the character “ @” follows the string "ÕÎ�ÖÏ @",

the escape probability of 1
2

will be encoded for the order k=2 model, and

4.3. Adapting PPM Character-Based Compression for Arabic 48

the encoding process will downgrade from the order 2 model to the order

1 model. Again, a further escape probability 1
2

will be encoded as order 1

does not predict “ @”, and the encoding process will downgrade from order

1 to order 0, where “ @́’ will be selected with the probability of 1
10

. The total

probability to encode the character “ @” is 1
2
× 1

2
× 1

10
= 1

40
, which is 5.3 bits.

If the next symbol has not been encountered before, like “ 	
�”, the es-

cape probability would be encoded down through the models to order -1,

where all symbols have equal denoted by 1
|A| where A is the alphabet size.

Assuming that the alphabet size is 256 for a standard byte-based (8bit)

encoding, the probability will be 1
256

. So, “ 	
�” will be encoded using the

probability which requires 1
2
× 1

2
× 4

10
× 1

256
which is 11.5 bits. Actually,

a more accurate estimation of the probability could be done by using an

exclusion mechanism that will exclude symbols appearing in higher order.

So, the new probability for “ 	
�” will be 1

2
× 1

2
× 4

10
× 1

252
, which is 11.2 bits.

4.3 Adapting PPM Character-Based Compression for Ara-

bic

Surprisingly, considering UTF-8’s popularity as an encoding scheme, there

have been very few publications that have investigated the issues with

finding the most effective compression of UTF-8 text. Fenwick and Brierly

(Fenwick and Brierley, 1998) concluded that, for UTF-8 text, “accepted

‘good’ compressors such as finite-context PPM do not necessarily work

well.”

In this section, we will introduce several new universal preprocessing

techniques to improve PPM compression of the UTF-8 encoding scheme.

These methods essentially adjust the alphabet in some manner prior to

the compression algorithm and is then applied to the amended text. The

impact of the text preprocessing algorithms are examined using different

file sizes and text genres from the BACC and other text corpora, such

as the Hamshahri corpus of Persian texts (AleAhmad et al., 2009), Ar-

4.3. Adapting PPM Character-Based Compression for Arabic 49

menian (Christensen, 3013) and Russian (Christensen, 3013) texts. One

method described that has been found to be effective for English texts

(Abel and Teahan, 2005; Teahan, 1998) is substituting bigraphs with a

single, unique symbol. This bigraph substitution method, described in

more detail in the next section, was only applied previously to English

ASCII text and its effectiveness for other languages and encoding schemes

such as UTF-8 has not been explored previously.

4.3.1 Bigraph Substitution for PPM (BS-PPM)

Bigraphs and Languages

By its nature, languages contain words that have many repeated bigraph

characters, with two characters often appearing together in the same or-

der such as “th” and “ea” in English text, “È@” and “ 	áÓ” in Arabic text.

Usually, each language has common bigraphs that represent a significant

percentage of the text (as was demonstrated in Chapter 2). For example,

examining the most frequent 20 bigraphs over CCA, Brown and LOB cor-

pora using 500,000 words produces some interesting results, as shown in

Table 4.1.

The top 20 bigraphs take up almost 10% of the English texts. For

Arabic texts, on other hand, the top ranked bigraphs take up significantly

more at over 16%. Clearly, dealing with bigraphs for Arabic texts is an

important consideration.

Bigraphs can be employed to enhance the compression performance

over standard PPM by using preprocessing and postprocessing techniques

before and after the compression and decompression, in a technique we

call Bigraph Substitution for PPM (BS-PPM).

4.3. Adapting PPM Character-Based Compression for Arabic 50

Table 4.1: The most frequent bigraphs found in text from three corpora.

Bigraph Arabic English-American English-British
(CCA) (Brown) (LOB)

1 È@ th th
2 ÕË he he
3 �

éK
 in in
4 B er er
5 	áÓ an an
6 ú

	
¯ re re

7 @ð on on
8 AÓ en en
9 �

H@ at nd
10 	

à@ or at
11 Aë nd es
12 �

IË es is
13 	áK
 is or
14 É« ti ar
15 úÍ te ed
16 @P ed to
17 ú

Í ar of

18 P@ st ng
19 A

	
K it te

20

B of it

Percentage 16.61 9.69 9.56

Preprocessing and Postprocessing

The preprocessing technique involves sequentially processing the text and

replacing the most frequent bigraphs in the order that they appear with

unique single characters for each. From experiments, for most natural-

language texts, we have found that replacing the top 100 bigraphs works

best with the alphabet expanded by 100 more characters. The postpro-

cessing operation simply performs the reverse mapping by replacing the

new, unique characters with the original equivalent two-byte bigraphs, as

follows.

4.3. Adapting PPM Character-Based Compression for Arabic 51

Figure 4.2: The use of preprocessing and postprocessing for compression.

Experimental Results for BS-PPM

In order to examine our new method, BS-PPM has been implemented us-

ing C programming language (see appendix A) to examine its efficiency

over different natural languages text encoded using UTF-8 scheme. These

include Arabic, Armenian, Chinese, English, Persian, Russian and Welsh.

The result of the proposed technique is compared (see Table 4.2) against

various well-known compression methods. These include the dictionary-

based approach (Gzip) and the context-based approached (Bzip2 and ABC

2.4) in addition to standard PPM using the PPMD variant. These results

are given in the standard measure bits per character (bpc) with the best

result shown in bold font.

Table 4.2 shows the experimental results using order 4 BS-PPM com-

pared with other well-known compression schemes under Windows and

Unix including standard PPM. These include ABC 2.4 (Advanced Block-

sorting Compressor) which is available to download at http://www.data.

info/ABC and Bzip2 (Seward, 1998) available to download at http://

www.bzip.org. Both ABC 2.4 and Bzip2 use The Burrows-Wheeler com-

pression algorithm (Burrows and Wheeler, 1994). Gzip uses The Ziv-

Lempel compression model (Ziv and Lempel, 1977) and is available to

download at http://www.gzip.org. The files being compressed (specified

in the second column of the table) are UTF-8 encoded files in the BACC for

Arabic text, the HC-Russian corpus for Russian text (Christensen, 3013),

4.3. Adapting PPM Character-Based Compression for Arabic 52

the HC-Armenian text for Armenian (Christensen, 3013), the Hamshahri

corpus for Persian text (AleAhmad et al., 2009), the LCMC (McEnery and

Xiao, 2004) for Chinese text, the CEG corpus (Ellis et al., 2001) for Welsh

text, and the Brown and LOB corpora for American and British English

texts respectively.

Table 4.2: BS-PPM vs. other methods applied to various language texts.

Language Corpus Text Size Bzip2 ABC2.4 Gzip PPM Order4 BS-PPM
File (bytes) (bpc) (bpc) (bpc) (bpc) Order4 (bpc)

Arabic BACC 56633170 1.45 1.43 2.14 1.79 1.34
Armenian HC-Armenian 36700160 1.56 1.37 2.39 1.69 1.17
Chinese LCMC 4555457 2.65 2.57 3.47 2.49 2.46
English Brown 5998528 2.46 2.29 3.16 2.23 2.10
English LOB 5877271 2.43 2.27 3.14 2.21 2.08
Persian Hamshahri 41567603 1.53 1.38 2.22 1.75 1.26
Russian HC-Russian 52428800 1.52 1.31 2.45 1.73 1.12
Welsh CEG 6169422 2.55 2.34 3.19 2.30 2.14

Average 2.02 1.86 2.77 2.02 1.70

Clearly, BS-PPM works very well on UTF-8-encoded texts in many lan-

guages, such as Arabic, Persian, Armenian, Russian, Welsh, Chinese, and

English since it records significant improvements over other methods in

terms of compression rate (bpc). In all cases of these languages, BS-PPM

significantly outperforms the other compression methods, as it has the

best results shown in all cases and also significantly outperforms stan-

dard PPM itself. For example, for Arabic text, BS-PPM shows a 25.14%

improvement over standard PPM. For Armenian text, BS-PPM shows a

14.6% improvement over ABC2.4, 25% over Bzip2 and 30.77% over stan-

dard PPM. For Persian text, BS-PPM showed a 8.70% improvement over

ABC2.4, 17.7% over Bzip2 and 28% over standard PPM. For Russian text,

BS-PPM showed a 14.5% improvement over ABC2.4, 26.32% over Bzip2

and 35.26% over standard PPM. Also, there was a significant improve-

ment in compression rates for both American and British English with

BS-PPM recording a 14.6% improvement over Bzip2 for the Brown corpus

and 14.4% for the LOB corpus. This represents an 8.3% improvement over

ABC2.4 for the Brown corpus and 8.4% for the LOB corpus, 33.5% over

4.3. Adapting PPM Character-Based Compression for Arabic 53

gzip for Brown and 33.8% for LOB and 5.8% over standard PPM for Brown

and 5.9% for LOB.

In order to examine the impact of bigraph coding using different order

PPM models, the following table shows the results of both PPM and BS-

PPM for orders 1 through 7. The results for order 4 from the previous table

are repeated here for clarity. The best result for each row is shown in bold

font.

Table 4.3: Different order of PPM and BS-PPM over seven corpora.

File L
an

gu
ag

e

P
P
M

or
d
er

1
B

S
-P

P
M

or
d
er

1
P
P
M

or
d
er

2
B

S
-P

P
M

or
d
er

2
P
P
M

or
d
er

3
B

S
-P

P
M

or
d
er

3
P
P
M

or
d
er

4
B

S
-P

P
M

or
d
er

4
P
P
M

or
d
er

5
B

S
-P

P
M

or
d
er

5
P
P
M

or
d
er

6
B

S
-P

P
M

or
d
er

6
P
P
M

or
d
er

7
B

S
-P

P
M

or
d
er

7

BACC Arabic 2.42 2.03 2.17 1.68 2.04 1.45 1.79 1.34 1.66 1.30 1.51 1.28 1.44 1.27
HC Armenian 2.43 2.06 2.02 1.49 1.90 1.26 1.69 1.17 1.61 1.15 1.42 1.16 1.36 1.18

LCMC Chinese 4.03 3.72 3.01 2.86 2.66 2.58 2.49 2.46 2.46 2.44 2.47 2.45 2.49 2.46
English Brown 3.67 3.13 3.02 2.34 2.51 2.12 2.23 2.10 2.16 2.13 2.17 2.17 2.22 2.21
English LOB 3.66 3.11 2.99 2.32 2.48 2.1 2.21 2.08 2.14 2.11 2.15 2.15 2.19 2.18

Hamshahri Persian 2.29 1.92 2.09 1.53 1.96 1.3 1.75 1.26 1.60 1.17 1.42 1.17 1.33 1.18
HC Russian 2.47 1.95 2.08 1.48 1.97 1.23 1.73 1.12 1.63 1.09 1.41 1.08 1.33 1.09

CEG Welsh 3.66 3.2 3.07 2.44 2.60 2.18 2.30 2.14 2.20 2.17 2.21 2.21 2.25 2.24

For Arabic text, the best compression rate was using order 7; for Ar-

menian, Persian and Chinese text, the best compression rate was using

order 5; for Russian text the best compression rate was using order 6; and

for Welsh and English text, order 4 is the best compression rate for both

American and British texts and welsh text as well.

These results show that an impressive improvement in compression

performance is possible for UTF-8 encoded natural language texts us-

ing the bigraph substitution method. The next section describes a new

method that also uses preprocessing techniques and also yields impres-

sive improvements in compression performance.

4.3.2 Character Substitution for PPM (CS-PPM)

UTF-8 is a variable-length, byte-based encoding and, therefore, a bigraph-

based substitution method as described in the previous section may not be

best suited for languages where two-byte encoding is not the norm. This is

4.3. Adapting PPM Character-Based Compression for Arabic 54

illustrated by the results for Chinese texts, which in UTF-8 encoding often

requires 3 or 4 bytes to encode each character. This suggests a character,

rather than a bigraph, substitution method might also yield impressive

results.

Preprocessing and Postprocessing

Unlike the bigraph substitution method just described, which replaces the

top 100 bigraphs in the text during the preprocessing stage, our character

substitution method (called CS-PPM) substitutes all the UTF-8 multi-byte

or single-byte character sequences in the original text. Two output files

are produced as a result of the preprocessing; one contains a stream of

UTF-8 characters (called the ‘vocabulary’ stream) and the other contains

a list of symbol numbers (called the ‘symbols’ stream).

Whenever a new character is encountered in the original text, this char-

acter is assigned a symbol number equal to the current symbols count,

which is then incremented. The symbol count is initialised to 1 for the

first character. When that same character is encountered later on in the

text, the symbol number assigned to it is written out to the symbols out-

put file. At the same time, the UTF-8 character-byte sequence for new

characters is written out to a separate vocabulary output file.

Both the vocabulary output file and the symbols output file need to be

compressed during the encoding stage. Therefore, two files also need to

be decoded separately, with the vocabulary output file requiring decoding

first in order to define the reverse mapping between symbols and UTF-8

characters during the postprocessing stage.

We have found the following method works well at encoding the two

files. For encoding the vocabulary output file, standard order 1 byte-based

PPM is quite effective. For the symbols output file, where the symbol

numbers can get quite large for some languages, a similar technique to

word-based PPM (Teahan, 1998) works well with the alphabet size being

4.3. Adapting PPM Character-Based Compression for Arabic 55

unbounded. We have found that an order 4 model works best overall for

the languages we have experimented with.

Experimental Results for CS-PPM

In order to examine our new method, CS-PPM has been implemented us-

ing the C programming language (see appendix B) to examine its efficiency

over texts of different file sizes (small, medium, large and very large) from

the BACC corpus of Arabic language. The results of the proposed tech-

nique is compared (see Table 4.4) against standard PPM using the PPMD

variant. The percentage improvement is calculated to explore the impact

of the proposed technique over these files. As discussed above, CS-PPM

will processed files into two streams, the vocabulary stream and symbols

stream, therefore, the percentage of encoding the vocabulary and symbols

stream for CS-PPM is shown as both of them need to be encoded sepa-

rately. These results are given in the standard measure bits per character

(bpc) with the best result shown in bold font.

Table 4.4 shows that, in all cases, there is a significant improvement

in performance for CS-PPM over standard PPM, as shown in column 4

of Table 4.4. The improvement is noted most for the largest files in the

corpus with almost 25% improvement for the file bookcollection1. Column

5 provides the percentage cost of encoding the symbols output file and

the last column provides the percentage cost of encoding the vocabulary

output file. The symbols output file consistently takes up 75 to 80% of the

overall encoding cost.

Table 4.5 lists results for PPM and CS-PPM on various language texts,

with results from bookcollection1 from the BACC corpus repeated on the first

row for comparison. The languages for which CS-PPM is most effective

are Arabic (23.3% improvement), Armenian (30.4%), Persian (31.5%) and

Russian (35.2%). With Table 4.4, the percentage cost for encoding the

symbols and vocabulary are also shown in the last column.

4.3. Adapting PPM Character-Based Compression for Arabic 56

Table 4.4: PPM vs. CS-PPM of BACC.

File
Size PPM CS-PPM Improv. Percentage Percentage

(bytes) Order4 (bpc) % of encoding of encoding
(bpc) symbols % vocabulary %

economic 15924 2.03 1.90 6.4 76.86 23.14
education 27086 2.06 1.96 4.85 75.99 24.01

sports 31706 1.95 1.77 9.23 78.17 21.83
culture 34760 2.03 1.88 7.39 76.79 23.21

artandmusic 42648 2.08 1.93 7.21 76.06 23.94
political 47556 1.97 1.74 11.68 78.41 21.59
articles 103839 1.94 1.76 9.28 78.18 21.82
press 549063 1.83 1.57 13.74 80.41 19.59
Novel1 860680 1.87 1.63 12.83 79.62 20.38
Novel2 912604 1.86 1.62 12.9 79.72 20.28
Novel3 1023987 1.86 1.61 13.44 79.95 20.05

bookcollection1 56633170 1.79 1.38 24.59 82.7 17.3
Bookcollection2 201693734 1.76 1.35 23.3 83.17 16.83

Average 1.94 1.73 11.37 78.57 21.44

Table 4.5: Results for PPM and CS-PPM on various language texts.

Language
Corpus Size PPM CS-PPM Improve. Percentage of Percentage of
text file (bytes) (bpc) (bpc) % encoding encoding

symbols % Vocabulary %
Arabic bookcollection1 56633170 1.79 1.38 23.3 82.7 17.3

Armenian HC 36700160 1.69 1.18 30.4 85.3 14.7
Chinese LCMC 4555457 2.49 2.37 4.86 70.62 29.38
English Brown 5998528 2.23 2.15 3.47 73.1 26.9
English LOB 5877271 2.21 2.13 3.56 73.36 26.64
Persian Hamshahri 41567603 1.75 1.20 31.53 85.02 14.98
Russian HC 52428800 1.73 1.12 35.15 85.98 14.02
Welsh CEG 6169422 2.3 2.20 4.52 72.55 27.45

Average 2.03 1.72 17.26 78.58 21.42

4.3. Adapting PPM Character-Based Compression for Arabic 57

4.3.3 Character Substitution of Arabic for PPM (CSA-PPM)

In this section, we describe a third method that is tailored specifically for

Arabic text. We call the method Character Substitution of Arabic for PPM

(CSA-PPM).

Unlike CS-PPM which produces two output files (the symbol and vocab-

ulary stream), one output file is produced as a result of the preprocessing

method of CSA-PPM. Since we can assume in advance that we will be

encoding Arabic text, we can directly substitute the characters with the

equivalent number of the UTF-8 scheme to eliminate the need for a vo-

cabulary output file altogether, which will decrease the size of the output

compressed file. This technique is also implemented using the C program-

ming language (see Appendix C). The compressed output file size in bytes

of both CSA-PPM and CS-PPM for comparison for different file sizes from

the BACC corpus are shown in Table 4.6. The difference in the number

of compressed output file size in bytes between these methods are also

shown in the last column of the table.

Table 4.6: CS-PPM vs. CSA-PPM.

File name
Size CSA-PPM CS-PPM Different

(Bytes) Compressed Output Compressed output Bytes
(Bytes) (Bytes)

economic 15924 3629 3681 -52
education 27086 6427 6516 -89

sport 31706 6856 6934 -78
culture 34760 8009 8097 -88

artandmusic 42648 10148 10246 -98
political 47556 10144 10238 -94
articles 103839 22683 22813 -130
press 549063 108083 108339 -256
novel1 860680 176215 176444 -229
novel2 912604 186302 186505 -203
novel3 1023987 206690 206902 -212

shortstories 1041952 201613 201859 -246
literature 19187425 3312444 3312864 -420
history 30714551 4403343 4403730 -387

bookcollection1 56633170 9370563 9371244 -681
Bookcollection2 201693734 32249015 32249566 -551

The savings from not having to encode the characters that make up the

alphabet leads to significant improvements in compression rate (bpc) for

4.3. Adapting PPM Character-Based Compression for Arabic 58

the small sized files as shown in Table 4.7 with the best result shown in

bold font. However, for large files, the improvements are minimal when

compared to the overall compressed file size.

Table 4.7: CS-PPM vs. CSA-PPM

File name Size CSA-PPM CS-PPM Improvements
(bytes) (bpc) (bpc) %

economic 15924 1.83 1.90 3.68
education 27086 1.91 1.96 3.54

sport 31706 1.74 1.77 2.25
culture 34760 1.85 1.88 2.12

artandmusic 42648 1.91 1.93 2.05
political 47556 1.71 1.74 1.72
articles 103839 1.75 1.76 1.13
press 549063 1.57 1.57 0
novel1 860680 1.63 1.63 0
novel2 912604 1.64 1.62 0
novel3 1023987 1.62 1.61 0

shortstories 1041952 1.55 1.55 0
literature 19187425 1.37 1.37 0
history 30714551 1.14 1.14 0

bookcollection1 56633170 1.38 1.38 0
Bookcollection2 201693734 1.35 1.35 0

4.3.4 Dotted (Lossless) and Non-Dotted (Lossy) Compression of Ara-

bic Text

Data compression is divided into two main categories, lossless and lossy

compression. On the other hand, text compression and, more specifically,

the problem of natural language text compression, is usually considered

to be lossless compression since changing the text in natural language

will usually alter the meaning. Despite this, there have been a few papers

that have considered the problem, from the satirical paper by Witten et al.

(1994) to the more recent paper by Çelikel Çankaya et al. (2011).

The Arabic language contains 28 letters, fifteen of them that are dotted

and thirteen of them non-dotted, as shown in table below.

Table 4.8: Arabic letters.

Dotted Non-Dotted
ø

	
à

�
�

	
¬

	
¨

	

	
�

�
� 	P

	
X p h.

�
H

�
H H. ð è Ð È ¼ ¨ � � P X h @

Dots above and below the letter give it a different pronunciation, such

4.3. Adapting PPM Character-Based Compression for Arabic 59

as one dot below “H. ” which is equivalent to a B in English and two dots

above “ �
H” which is equivalent to the T in English, and so on. In old Arabic

texts, all letters were not originally dotted but, despite some ambiguity as a

result, this could still be easily identified by native Arabic readers familiar

with the Arabic language. Figure 4.3 shows a sample ancient Arabic script

that uses the non-dotted form.

Figure 4.3: Sample of Arabic script prior to 820 A.D. (UmAlqura, 2014).

Note that, there are difference between dots and diacritics in Arabic

text, where the dots, either one, two or three are used to identify the char-

acter itself, while the diacritics is used to pronounce the character in the

right way. For instance, character “ @” can be pronounced in many different

ways using the diacritics symbols such as “
�
@ @

�

�
@

�
@

�
@

�
@”.

Due to the ambiguity of identifying the correct letter by non-native Ara-

bic language learners, since 820 A.D, these letters have become dotted

(Baik, 1992). We exploited this historical feature of the language to im-

prove the compression rate of Arabic in some cases by preprocessing the

Arabic text prior to compression with PPM and recovering it during the

postprocessing stage after decompression, as explained in more detail be-

low.

4.3. Adapting PPM Character-Based Compression for Arabic 60

Preprocessing Arabic Text for Lossy Non-Dotted Compression

During the first stage, letters such as “ø

	
à

�
H

�
H H. ” are normalized by

removing the dots to generate the lossy (non-dotted) version of the original

text before it is compressed using PPM. For example, “ø

” becomes “ø”

and letters such as “p h. ” are normalized to be “h”, and letters such as

“ �
�

	
¬

	
¨

	

	
�

�
� 	P

	
X” are normalized to be “

	
¬ ¨ � � P X”.

Encoding and Decoding

During the encoding stage, the preprocessed (lossy) text is compressed

using PPM. During the decoding stage, the compressed text is decoded

using PPM to reproduce the lossy version of the original text.

Recovering the Lossless Version of the Text

In this stage, the lossy text is automatically corrected using the Viterbi

algorithm (Viterbi, 1967) in order to try to recover the original text. This

is done by finding the most probable sequence when a match occurs in

the text from the list shown in Table 4.9. The most probable sequence

is selected which is the sequence that has the best encoding according

to a PPM character-based language model trained on text from the BACC

corpus as it is a large and representative corpus of contemporary Arabic

language.

Table 4.9: List of correction.

List of correction
H→ H. H → �

H H→ �
H

H→ 	
à H→ø

h→h.

h→p h→h X→ 	
X

X→X P→ 	P P→P

�→ �
� �→� �→ 	

�

�→� → 	
 →

¨→ 	
¨ ¨→¨ �→ 	

¬

�→ �
� è→ �

è è→ è

The Viterbi-based correction method will make mistakes, so these have

4.3. Adapting PPM Character-Based Compression for Arabic 61

to be encoded separately to inform the decoder which of the dotted forms

(zero, one or two) each character should take. In our implementation, we

directly encode the file position of the character that has been incorrectly

dotted, which requires [log2N] bits, where N is the number of characters

in the file. One further bit is needed to encode the number of dots, either

one or two dots, with the default form not requiring correction being zero

dots.

Experimental Results

To examine our new method, we conducted experiments using the CCA

and the EASC corpora while training the PPM-based corrector on the

BACC corpus. The results are shown in Table 4.10 with the best results

shown in bold font. Both the CCA and ESAC corpora are preprocessed to

generate the lossy version (non-dotted) which in then compressed, then

the Viterbi-based correction method is used after decompression in order

to recover the lossless version of the text (dotted) when a match occurs

between confusion list and text (see Appendix D). The fifth column shows

the percentage of improvement of non-dotted PPM over dotted PPM, while

the sixth and seventh shows the number of errors (characters that have

been dotted incorrectly) and its percentage respectively. The last column

shows the compression rate after the cost of correcting errors have been

added.

Table 4.10: Dotted PPM vs. Non-Dotted PPM.

File
Size PPM-Dotted PPM Improve. Number of Error PPM Non-Dotted

(Bytes) (bpc) Non-Dotted % error % with dots

(bpc) corrected (bpc)

EASC 630321 1.86 1.72 7.53 2301 0.66 1.78

CCA 6265790 1.83 1.73 5.46 15155 0.43 1.74

As anticipated, lossy compression showed significant improvement over

dotted compression by over 7% for EASC and over 5% for CCA, respec-

tively. When the lossy form of the text was corrected using the Viterbi-

4.3. Adapting PPM Character-Based Compression for Arabic 62

based correction method in order to recover the original non-dotted text,

a small number of errors were discovered. These errors made up 0.66% of

the EASC and 0.43% for the CCA. When the cost of encoding these errors

was added in (see the last column in Table 4.8), the lossless scheme still

resulted in a significant improvement in compression (1.78 bpc compared

to 1.86 bpc for the EASC and 1.74 bpc compared to 1.83 bpc for the CCA).

In order to investigate this result further, 10-fold cross-validation was

performed on the BACC with the results shown in Table 4.11. The corpus

was split into 10 equal parts (splits S1 through S10 as in the first column

of the table). Training of the Viterbi-based corrector was then done on

9/10 of the corpus and testing on the other 1/10, and this was repeated

10 times using each split for testing.

Table 4.11: Ten-fold cross-validation.

BACC Split Size (bytes)
PPM -Dotted PPM Improv. Number of Error PPM

(bpc) Non-Dotted % Errors % Non-Dotted
(bpc) With Dots

Corrected (bpc)
S1 31188787 1.76 1.69 3.98 129662 0.74 1.8
S2 31351880 1.70 1.65 2.94 101282 0.58 1.74
S3 31394336 1.71 1.65 3.51 107259 0.61 1.74
S4 31249486 1.82 1.74 4.4 229401 1.31 1.94
S5 31369255 1.69 1.64 2.96 101334 0.58 1.73
S6 31253465 1.71 1.65 3.51 95563 0.54 1.73
S7 30931867 1.77 1.71 3.39 171525 0.98 1.86
S8 31045940 1.64 1.60 2.43 103952 0.59 1.70
S9 31394039 1.75 1.67 4.57 138527 0.79 1.79
S10 31434684 1.75 1.67 4.57 155972 0.89 1.81

The non-dotted compression shows an improvement of 2 to 5% over

the dotted texts. However, a significant number of errors were made by

the correction software as shown in column six of the table and this re-

sulted in a lossless compression result (as shown in the last column) worse

than the dotted compression result, shown in column three. The worse re-

sult is possibly due to the significant number of dotted characters which

represent half of the Arabic alphabet. Another possible reason is the na-

ture of the BACC corpus with files being on a variety of subjects such as

economics, education, sport and culture for example.

4.4. Conclusion 63

4.4 Conclusion

The PPM compression performance of Arabic text can be significantly im-

proved by applying preprocessing and postprocessing techniques that rely

on adjusting the alphabet, including expanding or reducing the number

of symbols. The BS-PPM, CS-PPM and Non-Dotted PPM techniques de-

scribed in this chapter are all examples of these adjustments with the

first two working by expanding the alphabet and the last one working by

reducing the alphabet.

Chapter 5
Word and Tag Based Models for

Arabic Text

Contents

5.1 Introduction . 65

5.2 Previous Work . 66

5.3 Experimental results . 68

5.4 Conclusion . 72

5.1. Introduction 65

5.1 Introduction

This chapter looks into the problem of encoding Arabic words and parts

of speech tags as units for encoding. Many natural language applications

for machine translation and speech recognition feature models that are

constructed on the basis of words or tags (Brown et al., 1992).

Similar to character-based models, word-based models predict an up-

coming word on the basis of a previous number of words in the context

specified as the order of the model. Word-based compression is usually

faster than character-based compression because considerably fewer sym-

bols need to be encoded. A number of word-based compression methods

for natural language text have been proposed (Horspool and Cormack,

1992; Moffat, 1989; Teahan, 1998).

Another way of building a language model is through the use of part of

speech tag components. Teahan (1998) states that

“The idea is that knowing the tag of the word helps in predicting it. The

advantage of using the tag is that it may have occurred many times

previously and so a good representative sample of what is likely to follow it

has been built up. By contrast, an individual word may have occurred only

a small number of times.”

Two important issues are considered in using a tag-based model. First,

each word in a text must have a tag attached to it in some manner. Second,

the tags are encoded along with the text and therefore has the potential to

increase the size of the text being compressed.

In this chapter, the adaptive word- and tag-based models first proposed

by Teahan (1998) are explored, particularly in relation to the Arabic lan-

guage. First, we review previous work and then apply word- and tag-based

PPM models. The last section of this chapter discusses the experiments.

5.2. Previous Work 66

5.2 Previous Work

As character-based PPM models, word- and tag-based models predict an

upcoming symbol, beginning from the highest context; when the upcoming

symbol does not appear in this context, an escape symbol is encoded to

command the decoder to downgrade to the next highest context (Moffat,

1989; Teahan, 1998). Several escape algorithms have been described in

(Witten and Bell, 1991) and in (Teahan, 1998) for word-based models.

Experiments show that the X1 method is the best for most English text

cases (Teahan, 1998). This method is represented as follows:

e =
t1 + 1

Td + t1 + 1
(5.1)

where t1 is the number of symbols appearing exactly once in context Cd

and Td denotes the frequency with which context Cd occurs. This method

predicts the escape probability proportional to the number of words that

have occurred once in the context, or what are defined as singletons (see

section 2.4.2). For the English language, experiments show that the word-

and tag-based models shown in Table 5.1 exhibit the best performance

amongst all other models (Teahan, 1998).

Table 5.1: Some models for predicting characters, tags and words (Teahan, 1998).

C|C5 Model W|W Model W|TW Model T|TWT Model
p(ci|ci−1ci−2ci−3ci−4ci−5) p(wi|wi−1) p(wi|tiwi−1) p(ti|ti−1wi−1ti−2)
↪→ p(ci|ci−1ci−2ci−3ci−4) ↪→ p(wi|) ↪→ p(wi|ti) ↪→ p(ti|ti−1wi−1)
↪→ p(ci|ci−1ci−2ci−3) ↪→ Character ↪→ Character ↪→ p(ti|ti−1)
↪→ p(ci|ci−1ci−2) model model ↪→ p(ti|)
↪→ p(ci|ci−1) ↪→ peq(ti|)
↪→ p(ci|)
↪→ peq(ci|)

The first model, C|C5, is an order-five PPM model that estimates the

probability of symbols based on characters. In this model, the previous

five characters constitute the context that predicts the probability of an

5.2. Previous Work 67

upcoming symbol, as shown in the following formula:

p(α) =
m∏
i=1

(ci|ci−1ci−2ci−3ci−4ci−5). (5.2)

This estimation varies depending on the escape method used (repre-

sented as ↪→ in Table 5.1). If the highest context (order 5) fails to predict

the upcoming symbol, an escape probability is encoded to downgrade the

decoder to the next highest context as discussed earlier in Chapter 4.

Model W |W is an order-one PPM model that estimates the probability

of symbols based on words. In this model, the previous word is the context

that predicts the probability of an upcoming word, as expressed in:

p(S) =
m∏
i=1

(wi|wi−1). (5.3)

where S is the sequence of the text that is being predicted. If the model

fails to successfully predict a word, an escape probability is encoded to

downgrade the coder to the order 0 model to verify if the word has previ-

ously occurred. If not, the escape probability is encoded to downgrade the

model to a character-based PPM model.

The W |TW model uses both word- and tag-based streams (such as

noun and verb tags that are assigned to the word-based stream on the

tag set scheme) to estimate the probability of the upcoming word. This

probability is expressed thus:

p(S) =
m∏
i=1

(wi|tiwi−1). (5.4)

In this model, the prediction based on an upcoming word tag and a

previous word as the context are estimated to predict the upcoming word.

If the model fails to predict the word, an escape probability is encoded and

the model is downgraded to the next order, where the prediction is based

on the tag of the upcoming word only. In this stage, failure to predict an

5.3. Experimental results 68

upcoming word results in the encoding of an escape probability and the

transformation of the model into a character-based model.

As in the previous model, T |TWT uses both word- and tag-based streams

to estimate the probability of an upcoming tag, as shown in the following

formula:

p(S) =
m∏
i=1

(ti|ti−1wi−1ti−2). (5.5)

The probability of the current tag is estimated using the previous tag,

word and tag prior to the previous word as the context. Under failed pre-

diction, an escape probability is encoded to move the coder to the next

order model, in which case the previous word and tag are the contexts for

estimating the prediction of the upcoming tag.

In case the context fails to predict the upcoming tag, an escape prob-

ability is again encoded to command the coder to downgrade to the next

order model. At this stage, the estimation of the next tag is based on only

the receding tag as the context. If necessary, the coder encodes an escape

and then moves on to the next sequence, where the model verifies if the tag

has previously occurred. This step assigns a probability to the escape on

the basis of the frequency with which the tag has occurred. If escape en-

coding is necessary, the model moves on to the final order model, wherein

the prediction of all tags have equal probability. Teahan (1998) found that

T |TWT is the best model for predicting tags in English text.

5.3 Experimental results

This section discusses the experimental results on the word- and tag-

based models for Arabic text. Given the limitation of available resources

on tagged corpora for the Arabic language (as discussed in Chapter 3),

we report experiments in which only the Arabic Treebank Corpus (ATC)

(Maamouri et al., 2005) is used to train the tag-based models.

5.3. Experimental results 69

In this experiment, the ATC corpus is divided into 10 equal parts as

shown in Table 5.2 with lists the results for various PPM variants that

include order 4 CSS-PPM, order 4 BS-PPM, order 4 standard PPM, the

order 1 word-based model and the tag-based model, which are used to

examine and compare the effect of applying these models on Arabic text

compression.

Table 5.2: Results for PPM variants on the ATC.

File
Size PPM CS-PPM BS-PPM W|W W|TW+

(Bytes) order 4 order 4 order 4 (bpc) T|TWT
(bpc) (bpc) (bpc) (bpc)

ATC1 138733 1.82 1.55 1.56 1.82 2.81
ATC2 140173 1.84 1.59 1.59 1.86 2.91
ATC3 142991 1.78 1.47 1.46 1.78 2.59
ATC4 140607 1.78 1.50 1.50 1.78 2.67
ATC5 141613 1.77 1.47 1.46 1.76 2.59
ATC6 140843 1.69 1.38 1.38 1.69 2.43
ATC7 137489 1.78 1.48 1.48 1.79 2.61
ATC8 141552 1.76 1.49 1.49 1.76 2.67
ATC9 142327 1.75 1.45 1.45 1.74 2.59
ATC10 139148 1.78 1.47 1.47 1.77 2.61

The character-based PPM models CS-PPM and BS-PPM outperform the

other methods, achieving a 15% to 18% improvement in compression

rate over that generated with the standard character-based PPM and PPM

word-based W |W . It also achieves 40% to 24% improvement in compres-

sion rate over that produced by the tag-based W |TW + T |TWT .

A near-match in improvement occurs between the character-based PPM

model and the word-based W |W model. The W |W model frequently es-

capes to the character-based model to predict novel words that are un-

successfully predicted by the word-based model. The poor performance

of the tag-based model is attributed partially to the encoding of the words

and the novel words for which the character-based model and the tags

are used. These results also indicate that the ATC tagset may not be the

best suited for language modelling purposes when we consider how well

the English tag-based models perform using the Brown corpus tagset in

comparison. Table 5.3 lists the number of bytes needed for encoding as

5.3. Experimental results 70

well as the percentage cost of each component of W |TW and T |TWT as

well the cost of encoding the novel words.

Table 5.3: Percentage cost of encoding tag-based model.

File
W|TW

%
T|TWT

%
Novel words

%
(Bytes) (Bytes) order 4

(Bytes)
ATC1 7245 26.1 6102 21.9 14412 51.9
ATC2 7348 25.3 6214 21.4 15423 53.2
ATC3 7083 26.9 5901 22.4 13313 50.6
ATC4 7267 27.2 7267 22.1 13580 50.8
ATC5 6961 26.8 5867 22.6 13177 50.7
ATC6 6861 28.2 5813 23.9 11636 47.9
ATC7 7112 27.8 5857 22.9 12580 49.2
ATC8 7318 27.2 6065 22.6 13474 50.2
ATC9 7001 26.8 6012 22.9 13138 50.2
ATC10 7015 22.4 5802 22.4 13095 50.5

The cost of word encoding accounts for about 23% to 30% of the total

cost of encoding, whereas the tag encoding accounts for approximately

22% to 24% of the total. These percentages amount to about 50%, whereas

the percentages for the encoding of novel words represent more than 50%

of the total. This percentage is notably higher than for comparable English

experiments which indicate that Arabic has a much larger vocabulary due

to a higher use of inflexions, as a result of the rich morphological nature

of Arabic text.

Whether the tag-based PPM models for Arabic text will always perform

poorly compared with other methods is unclear because of the limited

resources on POS-tagged corpora for the Arabic language. This limitation

prevents evaluation with different text sizes, genres and tag sets; the poor

performance of the models may be due to the tagging applied to this text.

To further explore word-based models for Arabic text, we conducted ex-

periments on various order word-based PPM models for the BACC corpus

files. Table 5.4 shows that high-order (e.g. 2, 3 and 4) word-based PPM

models do not improve the compression rate for Arabic text. This result is

understandable given the rich morphological nature of Arabic text which

expands the size of the vocabulary used. For example, “Ég. P” which means

5.3. Experimental results 71

Table 5.4: PPM word-based models vs. character-based models for BACC corpus.

File

Size
PPM PPM PPM PPM PPM BS-PPM

(bytes)
Word Word Word Word Character Character
Based Based Based Based Based Based

Order 1 Order 2 Order 3 Order 4 Order 4 Order 4
(bpc) (bpc) (bpc) (bpc) (bpc) (bpc)

economic 15924 2.02 2.02 2.02 2.02 2.03 1.83
education 27086 2.04 2.04 2.04 2.04 2.06 1.91

sports 31706 1.94 1.94 1.94 1.94 1.95 1.73
culture 34760 2.01 2.01 2.01 2.01 2.03 1.85

artandmusic 42648 2.07 2.07 2.07 2.07 2.08 1.91
political 47556 1.93 1.93 1.93 1.93 1.97 1.72
articles 103839 1.94 1.94 1.94 1.94 1.94 1.75
press 549063 1.83 1.83 1.83 1.83 1.83 1.58
novel1 860680 1.86 1.86 1.86 1.86 1.87 1.63
novel2 912604 1.86 1.86 1.86 1.86 1.86 1.62
novel3 1023987 1.85 1.85 1.85 1.85 1.86 1.61

shortstories 1041952 1.85 1.85 1.85 1.85 1.85 1.55
literature 19187425 1.76 1.76 1.76 1.76 1.76 1.41
history 30714551 1.60 1.60 1.60 1.60 1.60 1.20

bookcollection1 56633170 1.81 1.81 1.81 1.81 1.79 1.34
bookcollection2 201693734 1.77 1.77 1.77 1.77 1.76 1.39

“man”, has been presented in many forms such as “ 	á�
Êg. QË @
	
àCg. QË@ Ég. QË@”

“ÈAg. P
	á�
Êg. P

	
àCg. P ÈAg. QË @”. In most cases, the word-based PPM models im-

prove the compression rate by 1% to 3% over that produced by the stan-

dard PPM character-based models. This improvement applies primarily

to small and medium BACC corpus files. The character-based BS-PPM

model generates the best compression rate amongst the other methods,

with a significant improvement of 8 to 28% (relative to file size) (Figure

5.1).

5.4. Conclusion 72

Figure 5.1: Compraring between various methods of PPM over BACC.

5.4 Conclusion

In this chapter, word- and tag-based PPM models have been compared

with character-based PPM models. The new character-based BS-PPM

model described in Chapter 4 outperforms the other methods. The next

highest performing models are the word-based PPM models, followed by

the standard character-based PPM models for Arabic text. The tag-based

PPM models exhibit the poorest performance. Whether tag-based PPM

models will always perform poorly is unclear given the limited resources

available of tagged Arabic text of different tagsets, text sizes and genres.

Chapter 6
Some Applications of PPM Models

Contents

6.1 Introduction . 74

6.2 Authorship Attribution . 74

6.3 Word Segmentation . 76

6.4 Correcting OCR Text . 79

6.5 Conclusion . 82

6.1. Introduction 74

6.1 Introduction

“Before the invention of the digital computer, language was seen as the ex-

clusive province of human beings. The signaling systems of other animals

were too rigid and simple to deserve the designation ’language’, and all

that mechanical and electrical devices could do was to store and transmit

sequences of code to be interpreted by people. With the computer, new pos-

sibilities appeared. The essential quality of the digital computer is its ability

to manipulate symbols – not just numbers, but symbols of any kind. It was

recognised from the earliest days of computing that, in addition to their obvi-

ous applications in scientific calculation and bookkeeping, computers could

work with language” (Winograd, 1983).

In this chapter, we apply character-based PPM compression models

described in Chapter 4 to produce language models that can be used to

solve problems such as authorship attribution, word segmentation and

OCR text correction for Arabic text.

6.2 Authorship Attribution

Authorship attribution is the process of identifying the exact author for

random anonymous text among several alternative authors by the means

of characteristics of the text being identified (Juola et al., 2006). In other

words, authorship attribution is a text classification task where each au-

thor is considered a class (Koppel et al., 2009).

There are numerous methods that have been proposed to address the

authorship attribution problem based on analyzing semantic, syntactic

and morphological features used by the authors (Koppel et al., 2009). Au-

thorship attribution has a very limited number of studies that are con-

cerned specifically with Arabic language compared to other languages such

as English and French (Shaker and Corne, 2010).

In this section, we will apply PPM character-based compression models

to the problem of authorship attribution for Arabic language using the

6.2. Authorship Attribution 75

same approach by Teahan (1998). First, we selected five famous authors in

Arabic countries – Mohammed Alsalibi, Ibrahim Khalil, Bassem Ibrahim,

Mary Rashow and Taleb Omran. Then we selected two novels for each

author to train the PPM character-based models on these novels, and then

each tested text that was not a part from the trained data was compressed

using these trained models.

Ideally, the best encoding for the tested text being encoded should be

using the model that has been trained on text written by the same author.

In other words, the tested text will achieve the minimum cross-entropy

when it is compressed using the model that has been trained on the author

of this text. The following table presents the result of the experiment as

shown in Table 6.1.

Table 6.1: Identifying the authorship for several texts.

Tested Text

Training Text
(tested text is not included)

Bassim Ibrahim Marry Mohammed Taleb
Ibrahim Khalil Rashow Alsalibi Omran

Bassem Ibrahim 2.998 3.489 3.661 3.577 3.689
Ibrahim Khalil 3.193 2.803 3.349 3.410 3.522
Marry Rashow 3.047 3.192 2.585 3.278 3.275

Mohammed Alsalibi 3.222 3.298 3.351 2.567 3.394
Taleb Omran 3.381 3.472 3.296 3.368 2.851

From this experiment, the accuracy rate is 100% since the correct au-

thor has been successfully identified for each tested text as the best cross-

entropy shown in bold in the table is associated with the correct author

of each text. In contrast, experiments with the same samples used above

achieved 93.82% as the accuracy rate by analyzing the pattern of func-

tional words usage by the authors (Shaker and Corne, 2010), which in-

dicates the high performance of PPM character-based models. However,

much larger datasets need to be investigated to more accurately deter-

mine the performance of the PPM approach, but these initial results are

very promising.

6.3. Word Segmentation 76

6.3 Word Segmentation

The Oxford dictionaries define a ‘word’ as “a single distinct meaningful

element of speech or writing, used with others (or sometimes alone) to

form a sentence and typically shown with a space on either side when

written or printed” (Oxford, 2014).

Similar to English words, Arabic words are naturally delimited by space

— a feature that enables easier word identification than that allowed in

languages that do not use space or other delimiters between words (e.g.

Chinese and Japanese). Word segmentation is the process of determining

the smallest unit (word) in a meaningful context. This process is a critical

component of some NLP tasks, such as speech recognition.

For Arabic, however, word segmentation is a problematic issue (Zeki,

2005). The rich morphological nature of the Arabic language can repre-

sent problems in identifying correctly segmented words amongst several

equally correct possibilities; incorrectly segmented words also add to the

complexity of Arabic word segmentation. Table 6.2 shows examples of

correct segmentation for the same word to demonstrate the problems that

originate from the morphological qualities of the Arabic language when

recognizing these words in handwritten text and speech recognition appli-

cations.

Table 6.2: Example of Arabic word identification.

Word Correct English
Segmentations Translation

AÓ ú

	
¯

AÒJ

	
¯ with

AÓ ú

	
¯ in what

èXPð
èXPð rose

èXP ð and his reply

As can be seen from the table, the words “ AÓ ú

	
¯” and “ èXPð” (‘which’ and

‘rose’, respectively) can be segmented into more than one correct form;

that is, “ AÓ ú

	
¯” and “ AÒJ

	
¯” , and “ èXPð” and “ èXP ð”, respectively. These forms

6.3. Word Segmentation 77

Figure 6.1: Space insertion of the segmentation model for the word “ é<Ë @” .

are all correct in themselves but denote different contexts and meanings.

Teahan (1998) used the character-based PPM model for the word seg-

mentation of English text; the model achieves 99.52 accuracy with the

use of the Viterbi Algorithm (Viterbi, 1967). Using the model and the al-

gorithm, word segmentation is implemented by first generating alternative

segmentations of the text. These alternatives are produced through the in-

sertion of spaces after each letter and then the best probable segmentation

sequences are searched, as shown in Figure 6.1.

The most probable segmentation sequence that exhibits the best en-

coding performance, as determined by the PPM language model which is

trained on the Brown corpus, is selected as the correct segmentation. Two

segmentations are possible for each character: the character itself and the

character followed by a space, denoted by “•” in Figure 6.1.

The possible sequences being searched are 2n, where n is the length

of the sequence. However, the Viterbi algorithm eliminates many of the

search results because of the substantial pruning of poorly performing

paths. PPM is a finite-context model and only one path for each similar

context should remain after each symbol is processed. For example, the

substring “ú

Í@” that forms the word “ÑîD
Ë @” would have eight search possibil-

ities, and the best segmentations that present the best encoding sequence,

as identified by the PPM model, are 22.5, 23.2 and 24.4. The rest of the

alternative segmentations are discarded (Figure 6.2).

We use the character-based PPM technique, as shown in Figure 6.2,

to solve the problem presented by Arabic word segmentation. The PPM

6.3. Word Segmentation 78

Figure 6.2: Segmentations process.

model is trained on the BACC corpus (containing spaces) to segment the

CCA and ESAC corpora (with spaces removed). Table 6.2 shows the results

of our analysis of segmentation for the aforementioned corpora. The table

presents the calculated recall rate, error rate and precision rate, which en-

able us to measure the accuracy of the PPM-based model in segmenting

Arabic text.

Recall rate is calculated by dividing the number of words that is suc-

cessfully segmented by the PPM model (C) over the total number of words

in the original text (N). Error rate is calculated by dividing the number

of words that is unsuccessfully segmented by the PPM model (E) over the

total number of words in (N). Precision rate is calculated by dividing the

number of words that is successfully segmented (C) over the total number

of words that are correctly and incorrectly segmented (L). The calculations

are written as follows:

(%)Recall rate = C/N × 100, (6.1)

(%)Error rate = E/N × 100, (6.2)

(%)Precision rate = C/L× 100. (6.3)

6.4. Correcting OCR Text 79

Table 6.3: Add caption

Test File Size (bytes) Recall Rate % Error Rate % Precision rate %
CCA 6289509 93.77 6.23 95.49
EASC 630321 94.65 5.34 96.24

The character-based PPM model achieves recall rates of 94% and 95%

for CCA and EASC, respectively, indicating high accuracy of Arabic text

segmentation. The 7% and 6% error rates are attributed to the rich mor-

phology of Arabic text; the errors generated are those on proper names of

people and places (e.g. “ÉJ

	
JºÓ” and “ú

�
GðPA

	
¯AK.” which stand for ‘Macneel’ and

‘Pavarotti’ in CCA and EASC, respectively).

6.4 Correcting OCR Text

We apply the PPM character-based models to the output of the Tesseract

OCR software, which is the most accurate freely available OCR engine, as

stated by Google (Google, 2014). Tesseract was developed originally by HP

Labs in 1985 to 1995 and was subsequently improved by Google.

No OCR engine is dedicated to Arabic text so far because this language

is typically included as a second option and not the main language for

recognition in some OCR programmes that offer OCR for Arabic text. An

exception is that referred to by Sakher Inc., who claim a 96.8% accuracy

for normal-quality scanned text (Sakher, 2014). We were not able to in-

dependently verify this claim, however, as we were not able to obtain the

software.

For our experiments to evaluate how effective PPM is at correcting Ara-

bic OCR output, first 2 pages from Taha Hussain’s famous novel ‘Alayam’,

printed in 1996 (Hussain, 1996) has been scanned. These pages, scanned

at 250 dpi, contain 608 words that are used as test text. A sample of the

scanned text is shown in Figure 6.3.

The order-5 character-based PPM model is trained on the BACC corpus

to build the language models that will be used to correct the errors gener-

ated by the Tesseract OCR. The training is executed in the same manner

6.4. Correcting OCR Text 80

Figure 6.3: Sample of scanned text (Hussain, 1996).

as the previous method used in the word segmentation experiments.

Teahan (1998) defines the error generated by the OCR engine as a ‘con-

fusion’ that requires correction using a ‘observed → corrected’ rule, which

denotes the transformation from the observed state to the correct state.

A sample of confusions generated by the Tesseract OCR in the recognised

test text is shown in Table 6.4.

Table 6.4: Sample of confusions generated from the Tesseract output for ‘Alayam’.

confusions

	
à → 	

X
	
à →Ð Ð→ @

�
H→ �

H
�

H→ �
� è→,

�
è→Z

�
�→h. è→ø

	
à→P è→Ð È→ 	

¬

Ð→ è ¨→Ð ð→,

¨→h �→Ð Ð→,

	
à→H. Ð→ø

�
�→ �

H

¨→h ø

→H.

�
�→ 	

¬

	
à→ 	

à
�

H→ �
H

�
è→ �

è

	
¬→ 	

¬ è→ è ¨→¨

As an example, “ 	
à → 	

X” denotes the letter “ 	
à” corrected to the letter

“ 	
X”. When a match occur to the observation strings in the text, the al-

ternative corrected form is generated. We search for the most probable

sequence amongst all the different possible correction using the Viterbi

algorithm. These defined confusions are used to limit the search possi-

bilities required. The number of errors generated by the Tesseract OCR

engine increases as the number of scanned texts increases. A sample of

the output generated by the Tesseract OCR engine for the same sample

shown above is presented in Figure 6.4.

6.4. Correcting OCR Text 81

Figure 6.4: Sample of output generated by the Tesseract OCR engine.

The accuracy of the Tesseract OCR in recognising the scanned test

text is 62.3%, despite the high quality of the scanned text (250 dpi). The

Tesseract OCR engine produces 64 errors out of 229. In 64 cases, an

entire word is completely changed to a different word – an error cannot be

corrected by the PPM correction method to recover the original words in

the scanned text. An example of such an error is “ÉK.”, which should be

written as “ 	
�ªK.” to denote ‘some’. Out of the 229 errors, 165 are the target

for correction as they are errors produced by the Tesseract OCR; in these

errors, one or more letters in the original words need to be changed.

As shown in Figure 6.4, a number of errors occur in the text recog-

nised by the Tesseract OCR. These errors include “ �
�Q

	
k” and “©k. QK
”, which

should be written as “h. Q
	

k” and “ lk
.
QK
” to denote ‘went out’ and ‘probably’,

respectively. The Tesseract OCR generates errors in the letters “ �
�” and

“¨”, which should be written as “h. ” and “h”. These are denoted by “ �
�”

→ “h. ” and “¨” → h in Table 6.4 because the confusion is observed in the

output produced by the OCR engine.

Numerous multiple errors (errors in more than one letter) occur in the

same word, where the context of a word is completely altered as a result of

the poor performance of the Tesseract OCR engine. For example, “0 é
�
KAî

�
D«”

should be represented as “. é

KA

�
�«” in Figure 6.4. It is instead recognised

“ �
�”, “
ø” and “.” as “ é

�
K”, “ �

H” and “0”.

Figure 6.5 shows the corrected Tesseract OCR output after correction

by the PPM model for the sample shown in Figure 6.4. The PPM model

successfully corrects 133 words out of the 165 target words that are in-

correctly recognised by the Tesseract OCR engine.

As we can see, multiple errors occur on the same word. For example,

6.5. Conclusion 82

Figure 6.5: Corrected Tesseract OCR output after correction by the PPM model.

“. é
�
KAÒ

�
J«” in the text corrected by PPM is denoted as “. é

KA

�
�«” in the original

scanned text and “0 é
�
KAî

�
D«” in the text recognised by the Tesseract OCR.

This error is uncorrected because of the poor performance of Tesseract in

recognising such words. PPM successfully corrects words such as “ lk
.
QK
”,

“ �
é
�
®J

�
®k” and “h. Q

	
k”, as well as punctuation such as “.”, which is written as

“0” in the text recognised by the Tesseract OCR engine.

Overall, the character-based PPM model corrects 133 out of the 165

errors generated by the Tesseract OCR engine. This result is despite the

poor recognition (62.3% accuracy) of Arabic text by this OCR engine. Nev-

ertheless, after the application of the PPM models, the Tesseract accuracy

increases to 84.21% — a significant improvement.

6.5 Conclusion

Character-based PPM models have been successfully used to solve sev-

eral problems presented by Arabic text; these problems include word seg-

mentation, OCR text and authorship attribution. The model achieves ap-

proximately 94% accuracy in segmenting words and 80.60% accuracy in

improving the output of OCR texts. The low percentage for OCR text cor-

rection is due primarily to the poor performance of Tesseract OCR engine

for recognising Arabic text, despite the high quality of the scanned docu-

ment. This percentage improves by 22%, a significant improvement. The

Tesseract OCR engine can be substantially improved if PPM models are

embedded into the Tesseract OCR system. Also, PPM Character-based

models successfully employed to identify the correct author of anonymous

Arabic text amongst several alternative authors as shown in section 6.1.

Chapter 7
Summary and Future Work

Contents

7.1 Summary and Conclusions 84

7.1.1 BS-PPM: Bigraph Substitutions for PPM Models . . . 84

7.1.2 CS-PPM: Character Substitutions for PPM Models . 84

7.1.3 CSA-PPM: Character Substitution of Arabic for PPM 85

7.1.4 Dotted Lossless and Non-dotted Lossy Compression

of Arabic Text . 85

7.1.5 Arabic Word- and Tag-based Models 86

7.1.6 Authorship Attribution 86

7.1.7 Arabic Word Segmentation 86

7.1.8 Correcting OCR Text for Arabic 86

7.2 Review of Hypothesis and Research Questions 87

7.3 Future Work . 88

7.1. Summary and Conclusions 84

7.1 Summary and Conclusions

Adaptive models of Arabic text are the main concern of this thesis. We

propose several improvements for standard PPM models that significantly

enhance compression results. These improvements are CS-PPM, BS-PPM

and dotted lossless and non-dotted lossy compression for PPM. The ex-

perimental results for these new methods are discussed in the following

sections.

7.1.1 BS-PPM: Bigraph Substitutions for PPM Models

By its nature, languages contain words that have many repeated bigraph

characters. For Arabic texts, the top ranked bigraphs take up a signifi-

cant percentage of any text. These bigraphs can be employed to enhance

the compression performance over standard PPM. The BS-PPM technique

involves sequentially processing text and replacing the most frequent bi-

graphs in the order that they appear, with unique single characters as-

signed to each bigraph. For most natural-language texts, we found that

replacing the top 100 bigraphs works best with the alphabet being ex-

panded with 100 more characters as a result. In the postprocessing op-

eration, the reverse mapping is performed by replacing the new unique

characters with the original equivalent two-byte bigraphs.

BS-PPM achieves the best compression results for Arabic text, as well

as for languages that use Arabic script (e.g. Persian and Kurdish). More-

over, it presents excellent results for other languages, such as English,

Armenian, Russian and Welsh.

7.1.2 CS-PPM: Character Substitutions for PPM Models

The CS-PPM technique substitutes all the UTF-8 multi-byte or single-byte

character sequences in the original text. Preprocessing produces two out-

put files: one that contains a stream of UTF-8 characters, called the vo-

cabulary stream, and another that contains a list of symbol numbers,

7.1. Summary and Conclusions 85

called the symbol stream. Both the output stream files require compres-

sion during the encoding stage. Therefore, two files also need to be sepa-

rately decoded, with the vocabulary stream file requiring decoding first to

enable the definition of the reverse mapping between symbols and UTF-8

characters during the post-processing stage.

CS-PPM achieves the best compression results for Arabic text, as well

as for languages that use Arabic script (e.g. Persian and Kurdish). It also

generates excellent results for other languages as well such as English,

Armenian, Russian, Welsh and Chinese.

7.1.3 CSA-PPM: Character Substitution of Arabic for PPM

Unlike CS-PPM which produces two outputs (symbol and vocabulary streams),

CSA-PPM involves the production of one output file via preprocessing. This

procedure creates a symbol stream whilst pre-defining the range of Arabic

characters in the UTF-8 scheme, thereby enabling the direct substitution

of characters with the equivalent number of characters used in the UTF-8

scheme. Direct substitution eliminates the need for a vocabulary stream,

which decreases the size of the output compressed file. CSA-PPM presents

excellent results in compressing Arabic text.

7.1.4 Dotted Lossless and Non-dotted Lossy Compression of Arabic

Text

In this method, we exploit the historical feature of the Arabic language–

that is, its non-dotted nature until late 800 A.D.—to improve the compres-

sion rate of PPM. The improvement is achieved by normalising a dotted

letter to a non-dotted one, in which dots are removed to generate the lossy

version of the original text. We then compress the result by PPM and then

automatically recover the original dotted text using the Viterbi algorithm.

This method also achieves excellent results for Arabic scripted text.

7.1. Summary and Conclusions 86

7.1.5 Arabic Word- and Tag-based Models

Unlike the experiments on English text for which word-and tag-based

models achieve excellent compression, those on Arabic text using word-

and tag-based models present contrasting results. That is, the highest

performing models are the character-based BS-PPM and CS-PPM types,

followed by the word- and tag-based models. As previously stated, an un-

clear issue is whether tag-based models of Arabic text will consistently

perform poorly compared with other methods because of the limited avail-

ability of tagged corpora for Arabic text.

7.1.6 Authorship Attribution

Authorship attribution is the process of identifying the exact author for

text of unknown authorship. There are a very limited number of studies

that are concerned specifically with Arabic language compared to other

languages such as English. PPM character-based compression models

have been employed to solve the problem of authorship attribution which

achieves excellent results for Arabic text.

7.1.7 Arabic Word Segmentation

Word segmentation is problematic for Arabic text because it is a rich mor-

phological language. Character-based PPM models have been successfully

used to segment Arabic words – a critical component of NLP applications,

such as speech recognition. The character-based PPM models exhibit an

accuracy of 93.77% and 94.65% for the CCA and EASC corpora, respec-

tively.

7.1.8 Correcting OCR Text for Arabic

OCR applications that accurately recognise Arabic text are lacking. One

of the available OCR engines for Arabic text is the Tesseract OCR engine

powered by Google. Numerous errors are generated by Tesseract OCR in

recognising Arabic text, motivating the use of character-based PPM models

7.2. Review of Hypothesis and Research Questions 87

to correct the errors. The approach improves the accuracy of the output of

the Tesseract OCR engine from 62.3% to 84.2%, despite the poor output

produced by the OCR engine – a significant improvement in accuracy.

As stated earlier, Tesseract can be substantially improved by embedding

character-based PPM models into its system.

7.2 Review of Hypothesis and Research Questions

The characteristics of Arabic have been employed successfully to optimise

PPM models which as a result achieve significant improvement in terms of

compression rate over standard PPM for Arabic text and other languages

that use Arabic script, such as Persian and Kurdish. This was done by

producing the new BS-PPM and CS-PPM models and the lossless dotted

and lossy non-dotted variants of PPM. We have shown that the different

nature of languages is an important perspective that should be taken into

consideration when processing these languages for NLP applications.

As mentioned in Chapter 1, the broad aim of this thesis is to inves-

tigate the manner by which we can establish adaptive computer models

of Arabic language that exhibit effective compression performance. More

specifically, we provide answers to the research questions listed in Section

1.3, discussed as follows.

What is the best computer model for compressing Arabic text?

As indicated in the experiments on the investigated models, the best com-

puter models for compressing Arabic text are BS-PPM and CS-PPM, which

are character-based models, followed by dotted lossless and non-dotted

lossy compression models. These models significantly outperform stan-

dard PPM.

What are the disadvantages presented by the current models when

applied to Arabic text?

The main drawback of standard PPM models when applied to Arabic text

originates from the nature of the language. Arabic is considered a rich

7.3. Future Work 88

morphological language and substantially effects the prediction made by

standard PPM models. In order to capture the properties of the Arabic lan-

guage, training on much larger texts via high-order models is required by

standard PPM to optimise its models. Clearly, this is not always possible

if smaller texts are being encoded and therefore alternative compression

schemes may yield better results.

How well do these models perform in several natural language

processing applications?

Character-based PPM models have been applied to authorship attribu-

tion, word segmentation and OCR text correction for Arabic language. The

models exhibit significant improvements in NLP application despite the

fact that Arabic is a rich morphological language.

Can new language models be devised that lead to significant im-

provements in Arabic text compression?

Three new language models have been designed especially for the Ara-

bic language. These models are Bigraph Substitution for PPM (BS-PPM),

Character Substitution for PPM (CS-PPM) and Lossless dotted and lossy

non-dotted PPM which significantly outperform standard PPM in terms of

compression performance.

7.3 Future Work

The idea behind the use of BS-PPM is driven by the fact that Arabic words

consists of many repeated bigraphs. These features are the factors that

compel us to substitute the bigraphs with one character, thereby result-

ing in significant improvements even under low-order PPM. Therefore, BS-

PPM can be optimised by looking into syllable-based models instead of

character- or word-based models as units of encoding for compression.

This approach may potentially yield better results than BS-PPM because

the probability estimated by this proposed method could captures the

properties of the Arabic language better and possibly those of other lan-

7.3. Future Work 89

guages.

Further investigations of tag-based models require the establishment

of new tagged corpora that represent contemporary Arabic text in terms of

size and genre with different tag sets.

In our future work, we intend to tag the BBCCA corpus as a balanced

corpus of the Arabic language that has been presented in Chapter 3 as a

part of project entitled “Natural Language Processing Resources for Ara-

bic with focus on Saudi Arabian language usage”. This project is a joint

research endeavour supported by Tabuk University and King Abdul Aziz

City for Science and Technology.

Bibliography

Jürgen Abel and William Teahan. Universal text preprocessing for data

compression. Computers, IEEE Transactions on, 54(5):497–507, 2005.

Latifa Al-Sulaiti and Eric Steven Atwell. The design of a corpus of contem-

porary Arabic. International Journal of Corpus Linguistics, 11(2):135–

171, 2006.

Abolfazl AleAhmad, Hadi Amiri, Ehsan Darrudi, Masoud Rahgozar, and

Farhad Oroumchian. Hamshahri: A standard Persian text collection.

Knowledge-Based Systems, 22(5):382–387, 2009.

Khaled Alhawiti and William Teahan. Universal text preprocessing and

postprocessing for PPM using alphabet adjustment. In Data Compres-

sion Conference, 2014. Proceedings. DCC, 2014.

Maha Alrabiah, Al-Salman AbdulMalik, and Eric Atwell. The design and

construction of the 50 million words KSUCCA King Saud university cor-

pus of classical Arabic. In Second Workshop on Arabic Corpus Linguistics,

2013. Proceedings. WACL2 2013, pages 5–8. Lancaster University, UK,

2013.

Latifa Alsuliti. Designing and developing a corpus of contemporary Arabic.

Master’s thesis, University of Leeds, 2004.

90

Bibliography 91

Majed Khair Baik. History of Arabic Language, volume 1. Dar Sa’ad Aldin,

Damascus, 1992.

Timothy Bell, Ian H Witten, and John G Cleary. Modeling for text com-

pression. ACM Computing Surveys (CSUR), 21(4):557–591, 1989.

Timothy C Bell, John G Cleary, and Ian H Witten. Text compression.

Prentice-Hall, Inc., 1990.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra,

and Jenifer C Lai. Class-based n-gram models of natural language. Com-

putational linguistics, 18(4):467–479, 1992.

BuiltWith. UTF-8 usage statistics. Online, 2012. URL http://trends.

builtwith.com/encoding/UTF-8. [Accessed 21 Jun 2013].

Michael Burrows and David Wheeler. A block-sorting loss-

less data compression algorithm. Online, 1994. URL http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.

5254&rep=rep1&type=pdf.

Ebru Çelikel Çankaya, Venka Palaniappan, and Shahram Latifi. Exploiting

redundancy to achieve lossy text compression. Pamukkale University

Journal of Engineering Sciences, 16(3), 2011.

Hans Christensen. HC Corpora. Online, 3013. URL http://www.

corpora.heliohost.org/download.html. [Accessed 14 Feb 2013].

John G Cleary and William J Teahan. Unbounded length contexts for PPM.

The Computer Journal, 40(2 and 3):67–75, 1997.

John G Cleary and Ian Witten. Data compression using adaptive coding

and partial string matching. Communications, IEEE Transactions on, 32

(4):396–402, 1984.

Bibliography 92

Royal Hashemite Court. Speech of King Abdullah II. Online, 2013. URL

http://kingabdullah.jo. [Accessed 19 Feb 2013].

Mahmoud El-Haj, Udo Kruschwitz, and Chris Fox. Using Mechanical Turk

to create a corpus of Arabic summaries. In Proceedings of the Seventh

conference on International Language Resources and Evaluation, 2010.

NC Ellis, C O’Dochartaigh, W Hicks, M Morgan, and N Laporte. Cronfa

electroneg o gymraeg (ceg): A 1 million word lexical database and fre-

quency count for Welsh, 2001.

Peter M Fenwick and Simon Brierley. Compression of unicode files. In

Data Compression Conference, page 547, 1998.

W Nelson Francis and Henry Kucera. Brown corpus manual. Brown Uni-

versity Department of Linguistics, 1979.

Google. Tesseract OCR engine. Online, 2014. URL https://code.

google.com/p/tesseract-ocr. [Acceseed 10 Feb 2014].

Harold Stanley Heaps. Information retrieval: Computational and theoretical

aspects. Academic Press, Inc., 1978.

Nigel Horspool and Gordon Cormack. Constructing word-based text com-

pression algorithms. In Data Compression Conference, pages 62–71,

1992.

Paul Glor Howard. The design and analysis of efficient lossless data com-

pression systems. Technical report, Citeseer, 1993.

Taha Hussain. Alayam, volume 3. Cairo, Dar Alshoroq, 1996.

Stig Johansson. The LOB corpus of British English texts: presentation

and comments. ALLC journal, 1(1):25–36, 1980.

Bibliography 93

Patrick Juola, John Sofko, and Patrick Brennan. A prototype for author-

ship attribution studies. Literary and Linguistic Computing, 21(2):169–

178, 2006.

Katzner Kenneth. The Languages of the World (2002). London and New

york, third edition, 2002.

Moshe Koppel, Jonathan Schler, and Shlomo Argamon. Computational

methods in authorship attribution. Journal of the American Society for

information Science and Technology, 60(1):9–26, 2009.

Paul Lewis, Simons Gary, and Fennig Charles. Ethnologies Languages of

the World. Dallas, Texas: SIL International, sixteenth edition edition,

2009.

Mohamed Maamouri, Bies Ann, Buckwalter Tim, and Jin Hubert. Ara-

bic Treebank: Part 1 version 3.0 (pos with full vocalization + syntactic

analysis). Linguistic Data Consortium, 2005.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. In-

troduction to information retrieval, volume 1. Cambridge university press

Cambridge, 2008.

Miniwatts Marketing. Internet world stats. Online, 2013. URL http://

www.internetworldstats.com/stats.htm. [Accessed 19 July 2013].

A M McEnery and Zhonghua Xiao. The Lancaster corpus of Mandarin

Chinese: A corpus for monolingual and contrastive language study. Re-

ligion, 17:3–4, 2004.

George A Miller, Edwin B Newman, and Elizabeth A Friedman. Length-

frequency statistics for written English. Information and control, 1(4):

370–389, 1958.

Alistair Moffat. Word-based text compression. Software: Practice and Ex-

perience, 19(2):185–198, 1989.

Bibliography 94

Alistair Moffat. Implementing the PPM data compression scheme. Com-

munications, IEEE Transactions on, 38(11):1917–1921, 1990.

Tim Ng, Kham Nguyen, Rabih Zbib, and Long Nguyen. Improved mor-

phological decomposition for Arabic broadcast news transcription. In

Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE Inter-

national Conference on, pages 4309–4312. IEEE, 2009.

Oxford. English dictionary. Online, 2014. URL http://www.oed.com.

[Accessed 10 Jan 2014].

P Rayson. Wmatrix corpus analysis and comparison tool. Online, 2009.

URL http://ucrel.lancs.ac.uk/wmatrix.

Sakher. Arabic language technology. Online, 2014. URL http://www.

sakhr.com/index.php/en. [Accessed 12 Jan 2014].

Edward Sapir. Language: an introduction to the study of speech. Courier

Dover Publications, 1921.

Julian Seward. Bzip2. Online, 1998. URL http://sources.redhat.com/

bzip2.

Kareem Shaker and David Corne. Authorship attribution in Arabic using a

hybrid of evolutionary search and linear discriminant analysis. In Com-

putational Intelligence (UKCI), 2010 UK Workshop on, pages 1–6. IEEE,

2010.

Abdelhadi Soudi, Ali Farghaly, Günter Neumann, and Rabih Zibib. Chal-

lenges for Arabic Machine Translation, volume 9. John Benjamins, 2012.

William Teahan and Khaled Alhawiti. Design compilation and prelimi-

nary statistics of compression corpus of written Arabic. Technical re-

port, Bangor University, 2013. URL http://pages.bangor.ac.uk/

~eepe04/index.html.

Bibliography 95

William Teahan and Khaled Alhawiti. A compression-based method for

ranking n-gram differences between texts and corpora evaluation. In

7th Saudi students scientific conference 2014. Proceedings. SSSC 2014,

Feb 2014.

William John Teahan. Modelling English text. PhD thesis, University of

Waikato, New Zealand, 1998.

William John Teahan, Stuart Inglis, John G Cleary, and Geoffrey Holmes.

Correcting English text using PPM models. In Data Compression Confer-

ence, 1998. DCC’98. Proceedings, pages 289–298. IEEE, 1998.

WJ Teahan and David J Harper. Combining ppm models using a text

mining approach. In Data Compression Conference, 2001. Proceedings.

DCC 2001., pages 153–162. IEEE, 2001.

UmAlqura. Letter by Prophet Muhammad peace be upon him. Online,

2014. URL http://uqu.edu.sa/page/ar/39589. [Accessed 15 Jan

2014].

Kees Versteegh and CHM Versteegh. The Arabic Language. Columbia Uni-

versity Press, 1997.

Andrew J Viterbi. Error bounds for convolutional codes and an asymptot-

ically optimum decoding algorithm. Information Theory, IEEE Transac-

tions on, 13(2):260–269, 1967.

W3Techs. Usage of character encoding for websites. On-

line, 2013. URL http://w3techs.com/technologies/overview/

character_encoding. [Accessed 17 Jun 2013].

Ernest Weekley. An etymological dictionary of modern English, volume 2.

Courier Dover Publications, 2012.

Terry Winograd. Language as a cognitive process. vol. 1: Syntax. Reading,

MA: Addison-Wesley, 1983, 1, 1983.

Bibliography 96

Ian H Witten and Timothy C Bell. The zero-frequency problem: Estimating

the probabilities of novel events in adaptive text compression. Informa-

tion Theory, IEEE Transactions on, 37(4):1085–1094, 1991.

Ian H Witten, Radford M Neal, and John G Cleary. Arithmetic coding for

data compression. Communications of the ACM, 30(6):520–540, 1987.

Ian H Witten, Timothy C. Bell, Alistair Moffat, Craig G. Nevill-Manning,

Tony C. Smith, and Harold Thimbleby. Semantic and generative models

for lossy text compression. The Computer Journal, 37(2):83–87, 1994.

Peiliang Wu. Adaptive Models of Chinese Text. PhD thesis, University of

Wales, Bangor, 2007.

Peiliang Wu and William John Teahan. A new PPM variant for Chinese text

compression. Natural Language Engineering, 14(3):417–430, 2008.

Ahmed M Zeki. The segmentation problem in Arabic character recognition

the state of the art. In Information and Communication Technologies,

2005. ICICT 2005. First International Conference on, pages 11–26. IEEE,

2005.

George Kingsley Zipf. Human behavior and the principle of least effort.

Reading, MA7 Addison Wesley, 1949.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on information theory, 23(3):337–343,

1977.

Appendix A
Appendix A – BS-PPM

Included in this appendix is the code that can be used to perform the
preprocessing and postprocessing stages of BS-PPM. The code comprises
the following files: preprocess.c and postprocess.c. These are described
in more detail below. preprocess.c does the preprocessing, taking an in-
put file into a stream of numbers and replaces those found in the input
stream. postprocessing.c does the reverse mapping for the postprocessing
stage. The output file processed can then be used as input to the encode
program.

A.1 preprocessing.c
/* Preprocesses the input file into a stream of numbers. It also
optionally loads a file of bigraphs and their replacement number,
one per line, and replaces those found in the input stream. */
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include <unistd.h>
#define MAX_BIGRAPHS 101 /* Maximum numbr of bigraphs */
char Bigraphs_filename [128]; /* Name of Bigraphs file */
int Bigraphs [MAX_BIGRAPHS][3]; /* The bigraphs;
/* The bigraphs consist of three numbers [0] is the replacement
number; [1] and [2] are the bigraph character numbers. */
int Bigraphs_size = 0; /* The number of bigraphs in the array */
int Bigraphs_max = 0; /* Maximum number of bigraphs. */
void
usage (void)
{

fprintf (stderr,
"Usage: preprocess [options] <input-text\n"
"\n"
"options:\n"
" -b fn\tfilename of file containing a list of bigraphs=fn\n"
" -m n\tmaximum number of bigraphs to replace=n\n"

);
exit (2);

}
void init_arguments (int argc, char *argv[])
{

int opt;
extern char *optarg;
extern int optind;

97

A.1. preprocessing.c 98

/* get the argument options */
Bigraphs_filename [0] = ’\0’;
while ((opt = getopt (argc, argv, "b:m:")) != -1)

{
switch (opt)
{

case ’b’:
strcpy (Bigraphs_filename, optarg);
break;

case ’m’:
Bigraphs_max = atoi (optarg);
break;
default:
usage ();
break;

}
}

for (; optind < argc; optind++)
usage ();

}
void load_bigraphs ()
/* Load the bigraphs from the file named
Bigraphs_filename if specified. */
{

FILE *fp;
int rp, bg1, bg2;
if (Bigraphs_filename [0] != ’\0’)

{
fprintf (stderr,

"Loading bigraphs from file %s\n",
Bigraphs_filename);

if ((fp = fopen (Bigraphs_filename, "r")) == NULL)
{

fprintf (stderr,
"preprocess: can’t open bigraphs file %s\n",
Bigraphs_filename);

exit (1);
}

while ((fscanf (fp, "%d %d %d", &rp, &bg1, &bg2) != EOF))
{ /* found the next bigraph */

if (Bigraphs_size == MAX_BIGRAPHS)
{

fprintf (stderr, "preprocess: too many bigraphs %s\n",
Bigraphs_filename);

exit (1);
}

Bigraphs [Bigraphs_size][0] = rp;
Bigraphs [Bigraphs_size][1] = bg1;
Bigraphs [Bigraphs_size][2] = bg2;
Bigraphs_size++;
if (Bigraphs_max && (Bigraphs_size >= Bigraphs_max))
break;

}
}

fprintf (stderr, "Bigraphs loaded\n");
}
int find_bigraph (int pc, int cc)
/* Returns 0 if no bigraph is found, or the replacement
number if the bigraph defined by the previous character

A.1. preprocessing.c 99

(pc) and the current character (cc). pc could also be a
replaced bigraph.*/
{

int p;
if (Bigraphs_size == 0)
return 0; /* no bigraph found */

p = 0;
for (;;)

{ /* See if the next bigraph matches */
if (p >= Bigraphs_size)
return 0; /* no bigraph found */
if ((pc == Bigraphs [p][1]) && (cc == Bigraphs [p][2]))
return Bigraphs [p][0];

p++;
}

/* We shouldn’t get here */
return 0; /* no bigraph found */

}
void preprocess_file (FILE *fp)
/* Preprocess the input file fp by first replacing
matching bigraphs as found in the Bigraphs array,
and then outputting a number which represents the
resultant character. */
{

int cc, pc, p, first;
pc = 0;
first = 1;
for (;;)

{ /* read through the file, replacing bigraphs */
cc = getc (fp);
p = find_bigraph (pc, cc);
if (p)

{
pc = p;
if (cc != EOF)
cc = getc (fp);
}

if (!first)
printf ("%d\n", pc);

if (cc == EOF)
break;
first = 0;
pc = cc;
}

}
int main(int argc, char *argv [])
{

init_arguments (argc, argv);
load_bigraphs ();
preprocess_file (stdin);
exit (0);

}

A.2. postprocess.c 100

A.2 postprocess.c
/* Postprocesses the input file consisting of a stream
of numbers and writes it out as an ASCII text file.
It also optionally loads a file of bigraphs, one
per line, and expands those that are found in the
input stream. The input file can be output from
the decode program.*/
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include <unistd.h>
#define MAX_BIGRAPHS 101 /* Maximum number of bigraphs */
char Bigraphs_filename [128]; /* Name of Bigraphs file */
int Bigraphs [MAX_BIGRAPHS][3]; /* The bigraphs*/
/* The bigraphs consist of three numbers [0] is the
replacement number; [1] and [2] are the bigraph character
numbers. Usually, these will be their ASCII numbers, but
they can also be other bigraph numbers specified elswhere
in the array. */
int Bigraphs_size = 0; /* The number of bigraphs */
int Bigraphs_max = 0; /* Maximum number of bigraphs*/
void usage (void)
{

fprintf (stderr,
"Usage: preprocess [options] <input-text\n"
"\n"
"options:\n"
" -b fn\tfilename of file contain a list of bigraphs=fn\n"
" -m n\tmaximum number of bigraphs to replace=n\n"

);
exit (2);

}
void init_arguments (int argc, char *argv[])
{

int opt;
extern char *optarg;
extern int optind;
/* get the argument options */
Bigraphs_filename [0] = ’\0’;
while ((opt = getopt (argc, argv, "b:m:")) != -1)

{
switch (opt)

{
case ’b’:
strcpy (Bigraphs_filename, optarg);
break;

case ’m’:
Bigraphs_max = atoi (optarg);
break;
default:
usage ();
break;

}
}

for (; optind < argc; optind++)
usage ();

}
void load_bigraphs ()
/* Load the bigraphs from the file named Bigraphs_filename */

A.2. postprocess.c 101

{
FILE *fp;
int rp, bg1, bg2;
if (Bigraphs_filename [0] != ’\0’)

{
fprintf (stderr, "Loading bigraphs from file %s\n",
Bigraphs_filename);
if ((fp = fopen (Bigraphs_filename, "r")) == NULL)
{

fprintf (stderr, "preprocess: can’t open bigraphs
file %s\n", Bigraphs_filename);

exit (1);
}

while ((fscanf (fp, "%d %d %d", &rp, &bg1, &bg2) != EOF))
{ /* found the next bigraph */
if (Bigraphs_size == MAX_BIGRAPHS)
{

fprintf (stderr, "preprocess: too many bigraphs %s\n",
Bigraphs_filename);
exit (1);
}

Bigraphs [Bigraphs_size][0] = rp;
Bigraphs [Bigraphs_size][1] = bg1;
Bigraphs [Bigraphs_size][2] = bg2;

Bigraphs_size++;
if (Bigraphs_max && (Bigraphs_size >= Bigraphs_max))
break;

}
}

fprintf (stderr, "Bigraphs loaded\n");
}
int find_bigraph_replacement (int nn)
/* Returns -1 if nn is not found as a replacement
number in the Birgraphs array. If it is found, it
returns its index in the Bigraphs array. */
{

int p;
if (Bigraphs_size == 0)

return -1; /* no bigraph replacement found */
p = 0;
for (;;)

{ /* See if the next bigraph replacement matches */
if (p >= Bigraphs_size)

return -1; /* no bigraph replacement found */
if (nn == Bigraphs [p][0])

return p;
p++;
}

/* We shouldn’t get here */
return -1; /* no bigraph replacement found */

}
void postprocess_file (FILE *fp)
/* Postprocess the input file fp by first expanding
numbers that represent bigraphs as found in the
Bigraphs array, and then outputting the ASCII
character or bigraph. */
{

int nn, p;
while ((fscanf (fp, "%d", &nn) != EOF))

A.2. postprocess.c 102

{
p = find_bigraph_replacement (nn);
if (p < 0) /* Not a bigraph replacement number */

putchar (nn);
else
{

putchar (Bigraphs [p][1]);
putchar (Bigraphs [p][2]);

}
}

}
int main(int argc, char *argv [])
{

init_arguments (argc, argv);
load_bigraphs ();
postprocess_file (stdin);
exit (0);

}

Appendix B
Appendix B – CS-PPM

Included in this appendix is the code that can be used to perform the
preprocessing and postprocessing stages of CS-PPM. The code comprises
the following files: utf8-encode.c, utf8-decode.c and keys.c. These are de-
scribed in more detail below. utf8-encode.c does the preprocessing, taking
a single file as input and produces two streams, the vocabulary stream
(all possible UTF-8 character existing in the text) and the symbols stream
(sequence of numbers equivalent to the character). utf8-decode.c does
the reverse mapping for the postprocessing stage. keys.c is used by the
preprocessing and postprocessing code and defines code for storing keys
(strings) and their frequencies of occurrence in a dictionary.

B.1 utf8-encode.c
/* Outputs two files - a file containing the unique
characters as they appear in the input text, and
another file containing the sequence of symbol numbers
associated with each bigraph on separate lines in the
same order that they appear in the text, with symbol
number 1 being associated with the first bigraph that
appeared, symbol number 2 with the second and so on. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include "keys.h"
#define UTF8_MAX 4
FILE *Output_fp = NULL;
FILE *Vocab_fp = NULL;
void
usage (void)
{
fprintf (stderr,
"Usage: process [options] <input-text-file\n"
"\n"
"options:\n"
" -N \toutput file is list of numbers on separate lines\n"
" -o fn\tconverted bigraphs text output filename=fn (required)\n"
" -v fn\tbigraphs vocabulary output filename=fn (required)\n"

);
exit (2);

}
void

103

B.1. utf8-encode.c 104

init_arguments (int argc, char *argv[])
{

extern char *optarg;
extern int optind;
int opt, vocab_file_found, output_file_found;
/* get the argument options */
vocab_file_found = 0;
output_file_found = 0;
while ((opt = getopt (argc, argv, "No:v:")) != -1)

switch (opt)
{
case ’o’:
if ((Output_fp = fopen (optarg, "w")) == NULL)
{

fprintf (stderr, "Encode: can’t open output file %s\n",
optarg);

exit (1);
}
output_file_found = 1;
break;
case ’v’:
if ((Vocab_fp = fopen (optarg, "w")) == NULL)
{

fprintf (stderr, "Encode: can’t open vocabulary file %s\n",
optarg);
exit (1);

}
vocab_file_found = 1;
break;
default:
usage ();
break;
}

if (!vocab_file_found)
{

fprintf (stderr, "\nFatal error: missing
vocabulary filename\n\n");

usage ();
}

if (!output_file_found)
{

fprintf (stderr, "\nFatal error: missing
output filename\n\n");

usage ();
}

for (; optind < argc; optind++)
usage ();

}
int UTF8(FILE *fp, char *position) {

int First_byte[] = {192, 224, 240};
int cc, dd;
memset(position, 0, UTF8_MAX + 1);
position[0] = getc(fp);
if (position[0] == EOF) {

return 0;
}
cc = 0;
if ((position[0] & First_byte[0]) == First_byte[0]) cc++;
if ((position[0] & First_byte[1]) == First_byte[1]) cc++;

B.1. utf8-encode.c 105

if ((position[0] & First_byte[2]) == First_byte[2]) cc++;
dd = 0;
while (dd < cc) {

dd++;
position[dd] = getc(fp);

}
return cc + 1;

}
int main(int argc, char **argv)
{

char *position = (char*)calloc(UTF8_MAX + 1, sizeof(char));
struct keys_type Keys;
int new, symbol, id_count = 1;
keys_init_keys(&Keys);
init_arguments (argc, argv);
while (UTF8(stdin, position))

{
new = keys_add_keys(&Keys, position, id_count);
if (new)

{
fprintf (Vocab_fp, "%s", position);
id_count++;

}
symbol = keys_find_id (&Keys, position);
fprintf (Output_fp, "%d\n", symbol);

/*printf("%s\n", position);*/
}

fclose (Vocab_fp);
fclose (Output_fp);
return 0;

}

B.2. utf8-decode.c 106

B.2 utf8-decode.c
/* Outputs the UTF-8 characters converted from a
sequence of symbol numbersfound in the input file. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <assert.h>
#include "keys.h"
#define UTF8_MAX 4
#define SYMBOLS_ESCAPE 128 /* Used for coping with
characters that are not Arabic or ASCII */
int decoded_byte_value (int ch)
{

if (ch >= 128)
return - (ch - 128);

else
return (ch);

}
int
getNumber (FILE *fp, unsigned int *number)
/* Returns the next number from input stream fp. */
{

unsigned int n;
int result;
n = 0;
result = fscanf (fp, "%u", &n);
switch (result)

{
case 1: /* one number read successfully */
break;
case EOF: /* eof found */
break;
case 0:
fprintf (stderr, "Formatting error in file\n");
exit (1);
break;
default:
fprintf (stderr, "Unknown error (%i) reading file\n", result);
exit (1);

}

*number = n;
return (result);

}
int main(int argc, char **argv)
{

printf("\xef\xbb\xbf");
char *char_bytes = (char*) calloc(UTF8_MAX + 1, sizeof(char));
char *char_bytes1;
char char_bytes2 [3];
unsigned int byte1, byte2;
struct keys_type Keys;
int new, n, symbol, id_count = 0;
unsigned int number;

keys_init_keys(&Keys); /* Initialise the characters
lookup table */

/* Preload the Keys lookup table with ASCII
characters first (symbols 0 to 127, followed

B.2. utf8-decode.c 107

by a special UTF8_ESCAPE character next
(symbol number 128) to be used to cope with
unrecognized UTF8 characters, followed by the UTF-8

characters allocated with incrementing symbol numbers. */
/* Preload ASCII characters first */
for (symbol = 0; symbol < 128; symbol++)

{ /* Add ASCII characters into lookup table
so that their associated symbol number

matches their ASCII number. */
if (symbol == 0)
{ /* Special treatment needed for null as null

signifies end of strong */
char_bytes [0] = ’\\’;
char_bytes [1] = ’0’;
char_bytes [2] = ’\0’;

}
else
{

char_bytes [0] = symbol;
char_bytes [1] = ’\0’;

}
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

/* printf ("id count = %d\n", id_count); */

/* Then preload the Arabic characters next. */
for (n = 160; n != 383; ++n)

{
char_bytes [0] = 0xC0 + n / 0x40;

char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;

new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 697; n != 880; ++n)
{

char_bytes [0] = 0xC0 + n / 0x40;
char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);

id_count++;
}

for (n = 1536; n != 1792; ++n)
{

char_bytes [0] = 0xC0 + n / 0x40;
char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);

id_count++;
}

for (n = 5760; n != 5761; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

B.2. utf8-decode.c 108

for (n = 12288; n != 12289; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;

new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;

}
for (n = 8192; n != 8336; ++n)

{
char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;

char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

/* printf ("id count = %d\n", id_count); */
id_count++; /* Skip over SYMBOLS_ESCAPE symbol */
/* Now read in the symbol numbers from STDIN one per line

and write out their equivalent UTF8 characters. */
/* repeat until EOF */
for (;;)
{

if (getNumber (stdin, &number) == EOF)
break;

if (number != SYMBOLS_ESCAPE)
{

char_bytes1 = keys_find_key (&Keys, number);
printf ("%s", char_bytes1);

}
else

{ /* Non ASCII or Arabic two byte sequence */
if (getNumber (stdin, &byte1) == EOF)

break;
if (getNumber (stdin, &byte2) == EOF)

break;
char_bytes2 [0] = byte1;
char_bytes2 [1] = byte2;
char_bytes2 [2] = ’\0’;
printf("%lc", (wchar_t) decoded_byte_value (byte1));
printf("%lc", (wchar_t) decoded_byte_value (byte2));
/*printf ("%s", char_bytes2);*/

}
}

return 0;
}

B.3. keys.c 109

B.3 keys.c
/* Routines for maintaining keys and their frequencies
in a dictionary. */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <ctype.h>
#include "keys.h"
int Keys_malloc = 0; /* size of memory mallocated */
void keys_print_malloc(fp)
/* Dumps the memory allocated */
FILE *fp;
{

fprintf(fp, "Freq malloc = %d\n", Keys_malloc);
}
char *keys_save_key(key)
char *key;
/* Save the key. */
{

char *newkey;
newkey = NULL;
if (key != NULL) { /* copy the key */

int slen;
slen = strlen(key);
if (slen != 0) {

Keys_malloc += slen+1;
newkey = (char *) malloc(slen+1);
strcpy(newkey, key);

}
}
return(newkey);

}
void keys_init_keys(keys)
struct keys_type *keys;
/* Initializes the frequencies. */
{

keys->trie = NIL;
}
struct keys_trie_type *keys_create_trie(node, pos, key, id)
/* Creates a new node (or reuses old node). Insert KEY into it. */
struct keys_trie_type *node;
int pos;
char *key;
int id;
{

struct keys_trie_type *this;

if (node != NIL)
this = node;

else {
Keys_malloc += sizeof(struct keys_trie_type);
this = (struct keys_trie_type *) malloc(sizeof

(struct keys_trie_type));
}
this->cc = key [pos];
this->key = keys_save_key(key);
this->next = NIL;
this->down = NIL;

B.3. keys.c 110

this->id = id;
return(this);

}

struct keys_trie_type *keys_copy_trie(node)
/* Creates a new node by copying from an old one. */
struct keys_trie_type *node;
{

struct keys_trie_type *this;

assert(node != NIL);
Keys_malloc += sizeof(struct keys_trie_type);
this = (struct keys_trie_type *) malloc(sizeof

(struct keys_trie_type));
this->cc = node->cc;
this->key = node->key;
this->next = node->next;
this->down = node->down;
this->id = node->id;
return(this);

}
struct keys_trie_type *keys_find_list(head, cc, found)
/* Find the link that contains the character CC and return
a pointer to it. Assumes the links are in ascending
lexicographical order. If the character is not found,
return a pointer to the previous link in the list. */
struct keys_trie_type *head;
int cc;
int *found;
{

struct keys_trie_type *this, *that;

*found = 0;
if (head == NIL)

return(NIL);
this = head;
that = NIL;
while ((this != NIL) && (!*found)) {

if (cc == this->cc)

*found = 1;
else if (cc < this->cc)

break;
else {

that = this;
this = this->next;

}
}
if (!*found) /* link already exists */

return(that);
else

return(this);
}
struct keys_trie_type *keys_insert_list
(head, here, pos, key, freq)
/* Insert new link after here and return it.
Maintain the links in ascending
lexicographical order. */
struct keys_trie_type *head;
struct keys_trie_type *here;

B.3. keys.c 111

int pos;
char *key;
int freq;
{

struct keys_trie_type *there, *new;
assert(head != NIL);
if (here == NIL) { /* at the head of the list */

/* maintain head at the same node position
by copying it */

new = keys_copy_trie(head);
keys_create_trie(head, pos, key, freq);

head->next = new;
return(head);

}
new = keys_create_trie(NIL, pos, key, freq);
there = here->next;
if (there == NIL) /* at the tail of the list */
here->next = new;

else { /* in the middle of the list */
here->next = new;
new->next = there;

}
return(new);

}
struct keys_trie_type *keys_find_node
(keys, node, pos, key)
/* Returns pointer to node if the key
is found in the trie. */
struct keys_type *keys;
struct keys_trie_type *node;
int pos;
char *key;
{

int found;
struct keys_trie_type *here;
assert(key != NIL);
if (node == NIL)

return(NIL);
here = keys_find_list(node, key[pos], &found);
if (!found) /* Not in the list -insert the new key */

return(NIL);
/* Found in the list - is it the same key? */
if (here->key != NIL)

if (!strcmp(key, here->key)) /* key matches */
return(here);

if (here->down == NIL) /* move old key one
level down if needed */

return(NIL);
if (!key [pos+1]) /* end of the key */

return(NIL);
return(keys_find_node(keys, here->down, pos+1, key));

}
struct keys_trie_type *keys_find_keys(keys, key)
/* Finds the key in the keys trie. */
struct keys_type *keys;
char *key;
{

return(keys_find_node(keys, keys->trie, 0, key));
}

B.3. keys.c 112

struct keys_trie_type *keys_add_node
(keys, node, pos, key, id)
/* Add the KEY into the NODE of the
trie. If NODE is NIL,then creates and
returns it. Adds the frequency. */
struct keys_type *keys;
struct keys_trie_type *node;
int pos;
char *key;
int id;
{

int found, cc;
struct keys_trie_type *here, *pnode;
assert(key != NIL);
if (node == NIL) {
node = keys_create_trie(NIL, pos, key, id);
return(node);
}
here = keys_find_list(node, key[pos], &found);
if (!found) { /* Not in the list - insert the new key */
node = keys_insert_list(node, here, pos, key, id);
return(node);

}
/* Found in the list - is it the same key? */
if (here->key != NIL) {
if (!strcmp(key, here->key)) { /* key matches - do nothing */

return(here);
}
}
if (here->down == NIL) { /* move old key one level down if needed */

cc = here->key[pos+1];
if (cc) { /* check if not at end of the key */
node = keys_copy_trie(here);
node->cc = cc;
node->next = NIL;
here->down = node;
here->key = NIL;
here->id = id;

}
}
if (!key [pos+1]) { /* end of the key */
here->key = keys_save_key(key);
here->id = id;
return(here);

}
pnode = here->down;
node = keys_add_node(keys, pnode, pos+1, key, id);
if (!pnode)

here->down = node;
return(node);

}
int keys_add_keys(keys, key, id)
/* Adds the key to the trie. Returns true if the key is new. */
struct keys_type *keys;
char *key;
int id;
{

struct keys_trie_type *node, *pnode;
pnode = keys->trie;

B.3. keys.c 113

node = keys_add_node(keys, keys->trie, 0, key, id);
if (pnode == NIL)

keys->trie = node;
return((node != NIL) && (node->id == id));

}
void keys_dump_node(fp, node, level)
/* Dumps out the keys at the NODE in the trie. */
FILE *fp;
struct keys_trie_type *node;
int level;
{

while (node != NIL) {
fprintf(fp, " %3d [%c] ", level, node->cc);
if (node->key != NIL) {

fprintf(fp, "%5d %s", node->id, node->key);
}
fprintf(fp, "\n");
keys_dump_node(fp, node->down, level+1);
node = node->next;

}
}

void keys_dump_keys(keys, fp)
/* Dumps out the keys in the freq data structure. */
struct keys_type *keys;
FILE *fp;
{

keys_dump_node(fp, keys->trie, 1);
}
int keys_find_id (keys, key)
/* Returns the id associated with the key; 0 if it is not in the keys table. */
struct keys_type *keys;
char *key;
{

struct keys_trie_type *node;
node = keys_find_keys(keys, key);
if (node == NULL)

return (0);
else

return (node->id);
}

Appendix C
CSA-PPM

Included in this appendix is the code that can be used to perform the pre-
processing and postprocessing stages of CSA-PPM. The code comprises
the following files: arabic-encode.c, arabic-decode.c and keys.c. These
are described in more detail below. arabic-encode.c does the preprocess-
ing, taking a single file as input and produces only one stream of symbol
numbers as output. arabic-decode.c does the reverse mapping for the
postprocessing stage. keys.c is the same as that provided in Appendix B.

C.1 arabic-encode.c
/* Outputs a sequence of symbol numbers that represent the
Arabic UTF-8 characters found in the input file. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <assert.h>
#include "keys.h"
#define UTF8_MAX 4
#define SYMBOLS_ESCAPE 128 /* Used for coping with characters
that are not Arabic or ASCII */
int UTF8 (FILE *fp, char *char_bytes)
/* Processes the input file FP one UTF8 character at a time. */
{

int First_byte[] = {192, 224, 240};
int cc, dd;
memset(char_bytes, 0, UTF8_MAX + 1);
char_bytes[0] = getc(fp);
if (char_bytes [0] == EOF) {

return 0;
}
cc = 0;
if ((char_bytes [0] & First_byte [0]) == First_byte [0]) cc++;
if ((char_bytes [0] & First_byte [1]) == First_byte [1]) cc++;
if ((char_bytes [0] & First_byte [2]) == First_byte [2]) cc++;
dd = 0;
while (dd < cc) {

dd++;
char_bytes [dd] = getc(fp);

}
return cc + 1;

}

114

C.1. arabic-encode.c 115

int encoded_byte_value (int ch)
{

if (ch < 0)
{

assert (ch >= -128);
return (128 - ch);

}
else

{
assert (ch <= 127);
return (ch);

}
}
int main(int argc, char **argv)
{

char *char_bytes = (char*) calloc(UTF8_MAX + 1, sizeof(char));
struct keys_type Keys;
int new, n, symbol, id_count = 0;
keys_init_keys(&Keys); /* Initialise the characters

lookup table. Preload the Keys lookup table with ASCII
characters first (symbols 0 to 127, followed by a special
UTF8_ESCAPE character next (symbol number 128)to be used
to cope with unrecognized UTF8 characters, followed by the
Arabic characters allocated with incrementing symbol numbers. */

/* Preload ASCII characters first */
for (symbol = 0; symbol < 128; symbol++)

{ /* Add ASCII characters into lookup table so
that their associated symbol number matches

their ASCII number. */
if (symbol == 0)

{ /* Special treatment needed for null as null
signifies end of strong */

char_bytes [0] = ’\\’;
char_bytes [1] = ’0’;
char_bytes [2] = ’0’;

}
else

{
char_bytes [0] = symbol;
char_bytes [1] = ’\0’;

}
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

/* printf ("id count = %d\n", id_count); */

/* Then preload the Arabic characters next. */
for (n = 160; n != 383; ++n)

{
char_bytes [0] = 0xC0 + n / 0x40;

char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 697; n != 880; ++n)
{

char_bytes [0] = 0xC0 + n / 0x40;
char_bytes [1] = 0x80 + n % 0x40;

C.1. arabic-encode.c 116

char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 1536; n != 1792; ++n)
{

char_bytes [0] = 0xC0 + n / 0x40;
char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 5760; n != 5761; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 12288; n != 12289; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 8192; n != 8336; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

/* printf ("id count = %d\n", id_count); */
id_count++; /* Skip over SYMBOLS_ESCAPE symbol */
/* Now read in the UTF8 characters from STDIN one at a time

and output the symbol numbers associated with each symbol
number one per line. */

while (UTF8(stdin, char_bytes))
{

symbol = keys_find_id (&Keys, char_bytes);
if (symbol >= 0)

printf ("%d\n", symbol);
else

{ /* Symbol not found - not an ASCII or Arabic character */
/* new = keys_add_keys (&Keys, char_bytes, id_count++); */
/* fprintf (stderr, "Error: Unrecognized character <%x><%x>\n",
char_bytes [0], char_bytes [1]); */
printf ("%d\n%d\n%d\n", SYMBOLS_ESCAPE, encoded_byte_value

(char_bytes [0]),
encoded_byte_value (char_bytes [1]));

}
}

return 0;
}

C.2. arabic-decode.c 117

C.2 arabic-decode.c
/* Outputs the Arabic UTF-8 characters converted from a
sequence of symbol numbersfound in the input file. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <assert.h>
#include "keys.h"
#define UTF8_MAX 4
#define SYMBOLS_ESCAPE 128 /* Used for coping with
characters that are not Arabic or ASCII */
int decoded_byte_value (int ch)
{

if (ch >= 128)
return - (ch - 128);

else
return (ch);

}
int
getNumber (FILE *fp, unsigned int *number)
/* Returns the next number from input stream fp. */
{

unsigned int n;
int result;
n = 0;
result = fscanf (fp, "%u", &n);
switch (result)

{
case 1: /* one number read successfully */
break;
case EOF: /* eof found */
break;
case 0:
fprintf (stderr, "Formatting error in file\n");
exit (1);
break;
default:
fprintf (stderr, "Unknown error (%i) reading file\n", result);
exit (1);

}

*number = n;
return (result);

}
int main(int argc, char **argv)
{

printf("\xef\xbb\xbf");
char *char_bytes = (char*) calloc(UTF8_MAX + 1, sizeof(char));
char *char_bytes1;
char char_bytes2 [3];
unsigned int byte1, byte2;
struct keys_type Keys;
int new, n, symbol, id_count = 0;
unsigned int number;

keys_init_keys(&Keys); /* Initialise the characters
lookup table */

/* Preload the Keys lookup table with ASCII
characters first (symbols 0 to 127, followed

C.2. arabic-decode.c 118

by a special UTF8_ESCAPE character next
(symbol number 128) to be used to cope with
unrecognized UTF8 characters, followed by the UTF-8

characters allocated with incrementing symbol numbers. */
/* Preload ASCII characters first */
for (symbol = 0; symbol < 128; symbol++)

{ /* Add ASCII characters into lookup table
so that their associated symbol number

matches their ASCII number. */
if (symbol == 0)

{ /* Special treatment needed for null as null
signifies end of strong */

char_bytes [0] = ’\\’;
char_bytes [1] = ’0’;
char_bytes [2] = ’\0’;

}
else
{

char_bytes [0] = symbol;
char_bytes [1] = ’\0’;

}
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

/* printf ("id count = %d\n", id_count); */

/* Then preload the Arabic characters next. */
for (n = 160; n != 383; ++n)

{
char_bytes [0] = 0xC0 + n / 0x40;

char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 697; n != 880; ++n)
{

char_bytes [0] = 0xC0 + n / 0x40;
char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 1536; n != 1792; ++n)
{

char_bytes [0] = 0xC0 + n / 0x40;
char_bytes [1] = 0x80 + n % 0x40;
char_bytes [2] = ’\0’;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 5760; n != 5761; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

C.2. arabic-decode.c 119

for (n = 12288; n != 12289; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

for (n = 8192; n != 8336; ++n)
{

char_bytes [0] = 0xE0 + n/ 0x40/ 0x40 ;
char_bytes [1] = 0x80 + n/ 0x40 % 0x40;
char_bytes [2] = 0x80 + n %0x40;
new = keys_add_keys (&Keys, char_bytes, id_count);
id_count++;
}

/* printf ("id count = %d\n", id_count); */
id_count++; /* Skip over SYMBOLS_ESCAPE symbol */
/* Now read in the symbol numbers from STDIN one per line

and write out their equivalent UTF8 characters. */
/* repeat until EOF */
for (;;)
{

if (getNumber (stdin, &number) == EOF)
break;

if (number != SYMBOLS_ESCAPE)
{

char_bytes1 = keys_find_key (&Keys, number);
printf ("%s", char_bytes1);

}
else

{ /* Non ASCII or Arabic two byte sequence */
if (getNumber (stdin, &byte1) == EOF)

break;
if (getNumber (stdin, &byte2) == EOF)

break;
char_bytes2 [0] = byte1;
char_bytes2 [1] = byte2;
char_bytes2 [2] = ’\0’;
printf("%lc", (wchar_t) decoded_byte_value (byte1));
printf("%lc", (wchar_t) decoded_byte_value (byte2));
/*printf ("%s", char_bytes2);*/

}
}

return 0;
}

Appendix D
Lossy non-dotted correction

Included in this appendix is the code that can be used to perform the
correction process for non-dotted text (lossy version) using Vetirbi-based
correction in order to recover the original text (lossless version) when a
match occurs between the text and confusion list defined. The code first
requires the installation of the Text Mining Toolkit (Teahan and Harper,
2001).

D.1 lossy.c
/* Correct non-dotted text given a trained model . */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#ifdef SYSTEM_LINUX
#include <getopt.h> /* for getopt on Linux systems */
#endif
#include "io.h"
#include "text.h"
#include "paths.h"
#include "model.h"
#include "markup.h"
#define MAX_FILENAME_SIZE 128
unsigned int Input_file;
char Input_filename [MAX_FILENAME_SIZE];
unsigned int Output_file;
char Output_filename [MAX_FILENAME_SIZE];
boolean Use_Numbers = FALSE;
unsigned int Language_model;
boolean Segment_alphanumeric = FALSE;
boolean Segment_before = FALSE;
boolean Segment_Viterbi = FALSE;
unsigned int Segment_stack_depth = 0;
void
debug_play ()
/* Dummy routine for debugging purposes. */
{

fprintf (stderr, "Got here\n");
}
void
usage (void)
{

120

D.1. lossy.c 121

fprintf (stderr,
"Usage: play [options] training-model <input-text\n"
"\n"
"options:\n"
" -A\tsegment alphanumeric characters only\n"
" -B\tsegment before each character (rather than after)\n"
" -C \tdebug coding ranges\n"
" -d n\tdebug paths=n\n"
" -D n\tstack algorithm only: stack depth=n\n"
" -i fn\tinput filename=fn (required argument)\n"
" -l n\tdebug level=n\n"
" -m fn\tmodel filename=fn\n"
" -N\ttext stream is a sequence of unsigned numbers\n"
" -o fn\toutput filename=fn (required argument)\n"
" -p n\tdebug progress=n\n"
" -V\tsegment using Viterbi algorithm\n"

);
exit (2);

}
void
init_arguments (int argc, char *argv[])
{

extern char *optarg;
extern int optind;
int opt;
boolean Input_found = FALSE, Output_found = FALSE;
/* set defaults */
Debug.level = 0;
Debug.level1 = 0;
/* get the argument options */
while ((opt = getopt (argc, argv,

"ABCd:D:i:l:m:No:p:V")) != -1)
switch (opt)
{

case ’A’:
Segment_alphanumeric = TRUE;
break;

case ’B’:
Segment_before = TRUE;
break;

case ’C’:
Debug.coder = TRUE;
break;

case ’d’:
Debug.level1 = atoi (optarg);
break;

case ’D’:
Segment_stack_depth = atoi (optarg);
break;

case ’i’:
Input_found = TRUE;
sprintf (Input_filename, "%s", optarg);
break;

case ’l’:
Debug.level = atoi (optarg);
break;

case ’m’:
Language_model =

TLM_read_model (optarg, "Loading model from file",

D.1. lossy.c 122

"Segment: can’t open model file");
/*TLM_dump_model (Stderr_File, Language_model, NULL);*/
break;

case ’N’:
Use_Numbers = TRUE;
break;

case ’o’:
Output_found = TRUE;
sprintf (Output_filename, "%s", optarg);
break;

case ’p’:
Debug.progress = atoi (optarg);
break;

case ’V’:
Segment_Viterbi = TRUE;
break;

default:
usage ();
break;

}
if (!Input_found)

fprintf (stderr, "\nFatal error:
missing input filename\n\n");

if (!Output_found)
fprintf (stderr, "\nFatal error:

missing output filename\n\n");
if (!Input_found || !Output_found)

{
usage ();

exit (1);
}

for (; optind < argc; optind++)
usage ();

}
int
getSymbol (unsigned int file,
unsigned int *symbol)
/* Returns the next symbol from
the input file. */
{

unsigned int sym;
int result;
sym = 0;
if (Use_Numbers)

{
result = fscanf (Files [file], "%u", &sym);

switch (result)
{

case 1: /* one number read successfully */
break;

case EOF: /* eof found */
break;

case 0:
fprintf (stderr, "Formatting error in file\n");
break;

default:
fprintf (stderr,

"Unknown error (%i) reading file\n", result);
exit (1);

D.1. lossy.c 123

}
else

{
sym = getc (Files [file]);

result = sym;
}

*symbol = sym;
return (result);

}
void
dump_markup_symbol (unsigned int file,
unsigned int symbol)
/* Writes the ASCII symbol out in human
readable form (excluding white space). */
{

char line [20];
assert (TXT_valid_file (file));
if (Use_Numbers)

sprintf (line, "%d\n", symbol);
else

sprintf (line, "%c", symbol);
TXT_write_file (file, line);

}
int
main (int argc, char *argv[])
{

unsigned int input; /* The input text to correct */
unsigned int markup_text;
unsigned int markup_model;

init_arguments (argc, argv);

Input_file = TXT_open_file
(Input_filename, "r", "Encoding input file",
"Encode_ppmo: can’t open input file");

Output_file = TXT_open_file
(Output_filename, "w", "Writing to output file",
"Encode_ppmo: can’t open output file");

if (TLM_numberof_models () < 1)
usage();

if (Segment_Viterbi)
markup_model = TMM_create_markup

(TMM_Viterbi);
else

markup_model = TMM_create_markup (TMM_Stack,
TMM_Stack_type0, Segment_stack_depth, 0);

if (Use_Numbers)
input = TXT_load_numbers (Input_file);

else
input = TXT_load_text (Input_file);

TMM_start_markup (markup_model,
TMM_markup_multi_context, input,

Language_model);

markup_text = TMM_perform_markup

D.1. lossy.c 124

(markup_model, input);
/* Ignore the sentinel and model

symbols that are inserted at the
head of the marked up text. */

TXT_dump_text1 (Output_file, markup_text, 2,
dump_markup_symbol);

TXT_release_text (markup_text);
exit (0);

}

