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Summary 

Reliable quantities of blood can be sampled repeatedly from the lesser octopus Eledone 
cirrhosa (Lam. ) and the haemocytes cultured for up to 72 h. Sampling causes an 
increase in the number of haemocytes/ml, in the percentage of haemocytes containing 
cytoplasmic granules and a change in the staining pattern of the haemocytes. Sampling 
also causes a decrease in the amount of copper (mg/ml) in the haemolymph and an 
initial decrease in the amount of protein (mg/ml), which returns to the original values 
over extended sampling periods. 

The haemocytes from E. cirrhosa will phagocytose bacteria (Vibrio anguillarum) in 
vitro in the absence of haemolymph (dependent on the temperature and duration of 
incubation) but enhanced phagocytosis will occur in the presence of haemolymph (10- 
100% concentration). Opsonization is also dependent on the temperature and on the 
duration of exposure of the bacterium to the haemolymph. Haemocytes migrate 
towards low concentrations of blood preparations, to lipopolysaccharide (LPS) and to 
preparations which had contained live bacteria. Haemocytes also have a bacteriostatic 
effect on the growth of live bacteria with the effect being dependent on the 
temperature, duration of the assay and the bacterial species used. Haemocytes also 
produce intracellular reactive oxygen species, detected by nitroblue tetrazolium, after 
incubation with dead bacteria in particular, but also live bacteria and LPS. 

E. cirrhosa haemolymph agglutinates the bacteria V. anguillarum, Y. 
parahaemolyticus and Aeromonas salmonicida and exerts a bacteriostatic effect on 
these bacteria which is dependent on the temperature, the amount of haemolymph 
present and the bacterial species used. 

The haemolymph, haemocytes and certain tissues from E. cirrhosa exhibit lysozyme 

and antiprotease activity. The injection of live V. anguillarum causes an increase in 
lysozyme activity in the branchial heart (after 48 h) and a decrease in the haemocytes 
(after 24 h). Antiprotease activity increased in the haemocytes (4 h) after bacterial 
injection but decreased in the haemolymph. Live bacteria caused an increase in the 
number of circulating haemocytes. The bacteria were cleared from the circulation of 
E. cirrhosa in about 4h by both the haemocytes and tissues (branchial heart, branchial 
heart appendage and white body) where they were degraded. The large vacuole in 
branchial heart cells changed in appearance 4h after bacterial injection and the 
haemocyte nucleus became pleomorphic. Colloidal graphite was aggregrated in blood 

vessels only. 
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Introduction 

Invertebrate Immunity 

Immune systems in animals involve complex combinations of humoral and cellular 

components, as well as external barriers, which act to prevent invasion by pathogens. 

Though invertebrates lack the highly specific immune factors such as immunoglobulins 

(Igs), and other variable region molecules (Marchalonis & Schluter, 1990; Cooper et 

al., 1992) which are characteristic of the vertebrate immune response (Manning & 

Turner, 1976) the invertebrate immune system is adequate for the survival of each 

species (Klein, 1989). External barriers such as mucus, various arrangements of 

epithelial cells, and exoskeletons together with antimicrobial and modulating factors 

serve to prevent external entry by pathogens (Ratcliffe et al., 1985; Millar & Ratcliffe, 

1994). If the external barriers are breached the internal cellular and humoral 

components of invertebrate immune systems act together to destroy the invader. 

Cellular defence activities performed by blood cells in invertebrates include wound 

repair, coagulation, phagocytosis, encapsulation, nodule formation and the production 

of various antimicrobial and cytotoxic substances (Ratcliffe et al., 1985; Pagliara et al., 

1993; Millar & Ratcliffe, 1994). Humoral immunity is characterized by factors present 

in the plasma or serum of invertebrates such as agglutinins and various antimicrobial 

and immune modulating components, which could have originated from the blood cells 

or other tissues, and which are involved in various defence activities (Ractliffe et al., 

1985; Smith & Chisholm, 1992; Millar & Ratcliffe, 1994). Additional self/nonself 

recognition factors in ascidians (Jackson et al., 1993) and arthropods in particular, 

include the prophenoloxidase cascade reaction (Söderhäll, 1982; Söderhäll, & Smith, 
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1986; Smith & Söderhall, 1991). In a few invertebrates, some members of the Ig 

superfamily and the basic components of the vertebrate complement system are present 

(Ratcliffe et al., 1985; Marchalonis & Schluter, 1990; Millar & Ratcliffe, 1994). 

Molluscan Immunobiology: A Brief Survey 

Molluscs in general are a diverse group of animals including gastropods, bivalves and 

cephalopods, however they share with each other and with other invertebrates a 

number of similar immune functions such as phagocytosis and agglutination. Most of 

the studies concerned with immunology of molluscs have concentrated on the 

gastropods and bivalves (Bayne, 1983). 

Blood Cells 

Most gastropods and bivalves have been reported to have morphologically and 

functionally heterogeneous populations of blood cells which are used for different 

functions (Ratcliffe & Rowley, 1979; Sminia & Van der Knaap, 1986; Millar & 

Ratcliffe, 1994). In some instances, the blood cell type present appears to display 

different morphological and functional characteristics as it matures (Sminia & Van der 

Knaap, 1986). Gastropods such as Lymnaea stagnalis (Van der Knaap et al., 1983a) 

apparently have one free circulating blood cell type (haemocyte) which is capable of 

numerous defence related activities. However, recent work with L. stagnalis (Adema 

et al., 1992) and work with other gastropods such as Biomphalaria glabrata (Jeong & 

Heyneman, 1976; Boyer et al., 1994) indicate the presence of 2 or more haemocyte 

page 3 



Introduction 

types, granulocytes and hyalinocytes (Ratcliffe & Rowley, 1979), probably equivalent 

to the cells termed spreading and round haemocytes (Ottaviani 1983; Boyer et al., 

1994) 

Bivalves such as Mytilus edulis (Hughes et al., 1991; Noel et al., 1993; Noel et al., 

1994), Mercenaria mercenaria (Tripp, 1992a) and the clam Tridacna maxima (Reade 

& Reade, 1976) have 2 or more types of haemocyte, the granulocytes and hyalinocytes 

being the most common. 

For bivalves and gastropods the site(s) of blood cell production or leucopoetic 

organ(s) is thought to vary considerably, thus it may be associated with the mantle 

epithelium, walls of the blood sinuses, or associated with the kidney and digestive 

gland (Ratcliffe & Rowley, 1979). In gastropods some of the possible leuopoetic areas 

have been located between the ̀ pericardium and the posterior epithelium of the mantle 

cavity' in B. glabrata (Lie et al., 1975; Jeong et al., 1983) and in the heart lung region 

of L. stagnalis (Sminia et al., 1983). However, proliferation of circulating haemocytes 

has been observed in some gastropod molluscs (Ratcliffe et al., 1985; Jeong et al., 

1983; Sminia et al., 1983; Sminia, 1974). 

Cellular Defence 

The most common cellular defence response in invertebrates, including molluscs, is 

phagocytosis (Ratcliffe et al., 1985; Bayne, 1983; Millar and Ratcliffe, 1994). 

Phagocytosis by haemocytes involves the recognition, ingestion, killing and digestion 

of foreign microorganisms (Ratcliffe et al., 1985; Alberts et al., 1994; Millar & 
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Introduction 

Ratcliffe, 1994). 

Authors who have studied phagocytosis in both gastropods and bivalves have shown 

for example that the presence of humoral lectins or opsonins in the haemolymph or on 

the surface of haemocytes can affect the rate of phagocytosis and in some cases lectins 

are secreted by, or are bound to, the haemocyte itself (Renwrantz, 1983,1986; 

Renwrantz ei al., 1985). Studies have also revealed that phagocytosis is affected by 

such factors as the surface nature of the foreign particle (Anderson & Good, 1976; 

Tripp, 1992a), by the duration of haemocyte incubation with the particle (Abdul- 

Salam & Michleson, 1980) and by the duration of particle exposure to the opsonin 

(Fryer & Bayne, 1989). Further factors which affect phagocytosis are the temperature 

(Tripp, 1992a; Abdul-Salam & Michleson, 1980), pH (Abdul-Salam & Miichleson, 

1980) and the presence of divalent cations (Tripp, 1992a) in the surrounding medium 

as well as by the presence of lectins associated with the haemocyte surface (Renwrantz 

& Cheng, 1977a; Renwrantz & Stahmer, 1983). 

The recognition part of phagocytosis includes migration or chemotaxis of the 

haemocyte to the foreign particle and has been demonstrated in vitro in various 

molluscs (Schmid, 1975; Cheng & Howland, 1979; Schneeweiß & Renwrantz, 1993; 

Fawcett & Tripp, 1994). Once contact has been established attachment of the foreign 

particle to the haemocyte surface occurs before internalization of the particle (Alberts 

et al., 1994). Surface receptors on the haemocyte may aid in this attachment process 

as well as humoral components (e. g. lectins/opsonins) which may coat the surface of 

the foreign invader and aid recognition (Drowse & Tait, 1969; Anderson & Good, 
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1976; Renwrantz & Cheng, 1977a, b; Van der Knaap, 1982; Renwrantz & Stahmer, 

1983; Ratcliffe et al., 1985; Fryer & Bayne, 1989; Millar and Ratcliffe, 1994). 

Following internalization foreign microorganisms are exposed to various lysosomal 

enzymes as well as other bactericidal, bacteriostatic and cytotoxic factors (Millar & 

Ratcliffe, 1994; Ratcliffe ei al., 1985). Lysosomal enzymes such as lysozyme (Cheng 

et al., 1975; Ottaviani, 1991), acid phosphatase (Yoshino & Cheng, 1976) and 

aminopeptidases (Yoshino & Cheng, 1977) have been detected in various gastropod 

and bivalve haemocytes and are in some cases inducible by particle challenge (Cheng, 

1983). Other cytotoxic (Leippe & Renwrantz, 1988; Bayne et al., 1980a, b) and 

bactericidal factors include the production during phagocytosis of toxic oxygen 

metabolites such as singlet oxygen (O2) and hydrogen peroxide (H202) (Nakamura et 

al., ' 1985; Dikkeboom et al., 1987; Dikkeboom et al., 1988; Shozawa et al., 1989; 

Adema et al., 1991; Aderaa et al., 1992; Anderson et al., 1992; Pipe, 1992; Noel et 

al., 1993; Takahashi et al., 1993; Winston et al., 1996). 

The presence of overwhelming quantities of small foreign particles induces nodule 

formation in molluscs where the particles are aggregrated and surrounded by cellular 

clumps (Ratcliffe et al., 1985; Miller & Ratcliffe, 1994). Where particles are too large 

to be phagocytosed by single haemocytes e. g. digenetic trematbdes (Harris & Cheng, 

1975) or large abiotic particles (Sminia et al., 1974) encapsulation occurs by 

haemocytes surrounding the offending objects (Bayne, 1983; Ratcliffe et al., 1985; 

Miller & Ratcliffe, 1994). 

Haemocytes are also involved in the process of wound healing. Since molluscan blood 
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does not clot, vasoconstriction and the contraction of muscles around the wound are 

important in preventing blood loss. Haemocytes migrate to, and aggregrate at, the 

wound site and initially plug the wound before phagocytosis of necrotic tissue and 

invading microorganisms and the replacement of damaged tissue (Pauley & Sparks, 

1967; DesVoigne & Sparks, 1968; Bubel et al., 1977; Sminia et al., 1983; Sparks & 

Morado, 1988). 

Humoral Defence 

Agglutination is one of the most widely studied of the invertebrate humoral defence 

activities. Molluscan agglutinins are generally glycoproteins and have been shown to 

cross link and hold in suspension, thereby immobilizing, a variety of particles (Sminia 

& Van der Knaap, 1986) from bacteria (Fisher & DiNuzzo, 1991; Olafsen et al., 1992; 

Tripp, 1992b) to erythrocytes (McKay et al., 1969; Stanislowski et al., 1976; Bayne et 

al., 1979; Stein & Basch, 1979; Boswell & Bayne, 1984; Fisher & DiNuzzo, 1991; 

Tripp, 1992b). The ability of agglutinins to cross link particles in suspension is 

however, affected in some molluscs e. g. M. mercenaria, by various factors such as the 

presence of divalent ions, temperature and the nature of the particle surface (Tripp, 

1992b), whereas other agglutinins are apparently unaffected by these factors 

(Michelson & Dubois, 1977). Some agglutinins have binding sites for certain 

carbohydrate moieties and are therefore often termed lectins. These lectins are 

possibly involved in self/non-self recognition (Ratcliffe et al., 1985; Renwrantz, 1986; 

Sminia & Van der Knaap, 1986; Millar & Ratcliffe, 1994). Some agglutinins are 
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termed opsonins if after incubation with foreign particles they enhance phagocytosis 

(Ratcliffe et al., 1985; Renwrantz, 1986; Sminia & Van der Knaap, 1986; Millar & 

Ratcliffe, 1994). Such enhanced phagocytosis has been demonstrated in a number of 

gastropods (Renwrantz & Mohr, 1978; Bayne, 1983; Fryer & Bayne, 1989) and 

bivalves (Bayne, 1983; Renwrantz & Stahmer, 1983). In some cases phagocytosis of 

certain particles will only occur in the presence of the haemolymph containing the 

opsonin (Prowse & Tait, 1969; Tuan & Yoshino, 1987) and in other cases opsonin 

independent phagocytosis (Bayne et al., 1979; Abdul-Salam & Michelson, 1980; Tuan 

& Yoshino, 1987; Fryer & Bayne, 1989) occurs. 

Other molluscan humoral defence factors include the lysins, in particular haemolysins 

(Bayne, 1983; Ratcliffe et al., 1985; Leippe & Renwrantz, 1988; Roch et al., 1996), 

and other antimicrobial agents (Bayne, 1983; Ratcliffe et al., 1985; Nottage & 

Birkbeck, 1990; Millar. & Ratcliffe, 1994) and modulating factors, such as various 

protease inhibiting enzymes e. g. the a macroglobulins (Armstrong & Quigley, 1992; 

Bender et al., 1992; Fryer et al., 1996). The most common antibacterial factor is the 

bacteriolytic enzyme lysozyme which has been identified in the haemolymph of various 

molluscs (McDade & Tripp, 1967; Cheng & Rodrick, 1974; Rodrick & Cheng, 1974; 

Hardy et al., 1976; Cheng et al., 1978; Kassim & Richards, 1978a; Cheng, 1983; 

Takahashi et al., 1986). Other lysosomal enzymes detected in molluscan haemolymph 

(Cheng, 1983) include acid phosphatase (Cooper-Willis, 1979) and aminopeptidase 

(Yoshino & Cheng, 1977). Particle challenge will elevate the amount of these enzymes 

present in molluscan haemolymph e. g. aminopeptidase (Cheng et al., 1978; Cheng & 
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Dougherty, 1989), lysozyme (Cheng et al., 1977; Kassim & Richards, 1978b; Cheng & 

Dougherty, 1989) or acid phosphatase (Cheng & Butler, 1979; Cooper-Willis, 1979; 

Cheng & Dougherty, 1989). 

In Vivo Clearance of Particles 

Various experiments have demonstrated that injected biotic and abiotic particles are 

rendered non-viable, or are cleared from the blood, of both gastropods and bivalves 

(Tripp, 1960; Reade, 1968; Pauley & Krassner, 1972; Bayne, 1973a; Reade & Reade, 

1976; Hartland & Timoney, 1979; Bayne 1983; Van der Knaap et al., 1983b; Ratcliffe 

et al., 1985) The actual process of clearance appears to involve phagocytosis by the 

circulating blood cells (Prowse & Tait, 1969; Feng, 1966; Bayne & Kime, 1970; 

Pauley & Krassner, 1972; Crichton et al., 1973; Killby et al., 1975) as well as by fixed 

phagocytic cells in organs such as the digestive gland, kidney, connective tissues and 

head-foot muscle (Reade, 1968; Pauley & Krassner, 1972; Bayne, 1973a; Crichton et 

al., 1973; Killby et al., 1973; Bayne, 1974; Renwrantz et al., 1981; Bayne, 1983). 

Where injected or introduced particles are too large to be phagocytosed, nodule 

formation and encapsulation by haemocytes occurs (Tripp, 1961), and lysosomal 

enzymes are secreted into the capsule by the encapsulating haemocytes (Harris & 

Cheng, 1975). Clearance times vary between molluscan species and the type of 

particle injected (Renwrantz et al., 1981), and may also depend on certain factors such 

as the ambient temperature (Feng, 1966) or the amount and specificity of opsonins 

present in the haemolymph of the experimental animal (Renwrantz & Mohr, 1978; 
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Harm & Renwrantz, 1980). Injected pathogens as well as e. g. temperature (Stumpf & 

Gilbertson, 1978), wounding (Sminia, 1972) and oxygen tension (Wolmaraus & 

Yessel, 1988) can cause the number of circulating haemocytes in molluscs to either 

increase (Abdul-Salam & Michelson, 1980; Mounkassa & Jourdane, 1990; Suresh & 

Mohandas, 1990) or decrease initially before returning to original values (Bayne & 

Kirre, 1970; Renwrantz et al., 1981; Van der Knaap et al., 1983b). Increased 

haemocyte numbers, or leucocytosis, appears to be related, in some cases, to an 

increase in the size of the amoebocyte producing organ (Jeong et al., 1983). However, 

decreased haemocyte counts are apparently related to the attraction of fixed 

phagocytes containing the injected particles, for the circulating haemocytes, which 

eventually return to the blood laden with the particles (Renwrantz et al., 1981). Some 

of the tissues which contain fixed phagocytic cells also display antimicrobial properties 

such as lysozyme (Kassim & Richards, 1978a; Takahashi ei al., 1986) and 

aminopeptidase (Yoshino & Cheng, 1977) activity. Elimination of unwanted abiotic 

particles for example carbon apparently occurs by the migration of phagocytes through 

various epithelial layers such as the digestive tract and mantle epithelium (Stauber, 

1950; Tripp, 1961; Reade, 1968). However, biotic particles such as bacteria appear to 

be degraded (Feng, 1966) and then either voided (Feng, 1966; Ratcliffe et al., 1985) or 

digested by the cell (Cheng & Cali, 1974; Ratcliffe et al., 1985). 
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Cephalopod Immunobiology 

Cephalopods are soft bodied advanced molluscs which inhabit a variety of marine 

environments. Though commercially important in a number of countries such as Spain 

(Gonzalez et al., 1994; Guerra & Rocha, 1994; Guerra et al., 1994) and Japan (Osako 

& Murata, 1983; Murata, 1989) very little information exists on the ability of these 

animals to survive in the microbe-rich marine environment (Ford, 1992). 

Various studies using captive cephalopods have demonstrated that once injured 

cephalopod wounds are invaded by various opportunistic bacteria which can be fatal 

(Leibovitz et al., 1977; Hanlon et al., 1984; Ford et al., 1986; Bullock et al., 1987; 

Hanlon & Forsythe, 1990; Ford, 1992). Various factors such as temperature and 

condition of the seawater have also been shown to have a detrimental effect on the 

survival of cephalopods in culture conditions (Reimschuessel & Stoskopk, 1990). 

Cephalopods have a closed circulatory system encompassing a central systemic and 2 

branchial or gill hearts (Wells, 1978; Wells, 1983; Wells & Smith, 1987). The blood is 

pumped around elastic arteries and veins through ̀ capillary beds' similar to the 

vertebrate circulatory system (Browning, 1979; Wells, 1983; Shadwick & Nilsson, 

1990) and is also `stored' in large blood sinuses (O'Dor & Wells, 1984). The blood 

consists of haemolymph (plasma) containing dissolved protein, of which 98% is the 

respiratory pigment haemocyanin (Ghiretti, 1966; Wells; 1983). There appears to be 

one type of haemocyte (blood cell). This apparently originates and matures in the 

leucopoetic organ, situated in the orbital sockets behind the eyes (Cazal & Bogoraze, 

1943; Cowden, 1972; Cowden & Curtis, 1974,1981; Wells, 1978). As with other 
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molluscs, cephalopod blood does not clot and blood loss after sustaining a wound is 

prevented by vasoconstriction of the muscles surrounding the wound. Haemocytes 

aggregate at the wound site and form a plug sealing the wound (Polglase et al., 1983; 

Wells, 1983; Feral, 1988; Ford, 1992). 

Stuart (1968) demonstrated that haemocytes from the octopus Eledone cirrhosa 

would phagocytose human macrophages only after their prior exposure to F- cirrhoses 

plasma, indicating the presence of opsonins in the plasma. Cephalopod haemolymph 

contains agglutinins for various particles (Cushing et al., 1963; Stuart, 1968; Russo & 

Tringall, 1983; Fisher & DiNuzzo, 1991; Ford, 1992) and agglutin activity has also 

been found in the skin mucus of cephalopods (Marthy, 1974; Renwrantz & 

Uhlenbruck, 1974) as well as in other organs (Marthy, 1974). Lectins have been 

islolated and characterized from Octopus vulgaris (RBgener et a!., 1985,1987), and a 

lactose specific lectin from 0. vidgaris demonstrated similar properties to ̀ a sub unit' 

of haemocyanin, e. g. both contain copper and have comparable molecular weights 

(RÖgener ei al., 1986). 

0. tiulgaris haemolymph also displays antibacterial activity (Russo & Tringall, 1983), 

and antiprotease activity has been detected in various organs of Loligo m1garis 

(Tschesche & Von Rucker, 1973) and in the haemolymph of 0. v ulgaris (Thogersen et 

at, 1992). 

Stuart (1968) observed that carbon injected into E. cirrliosa was cleared from the 

circulation and accumulated in phagocytic cells in organs such as the gill, posterior 

salivary glands, white bodies and branchial hearts. Bayne (1973b) after injecting 
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Octopus dofleini with bacteria suggested that fixed phagocytes in the gill of the 

octopus were primarily responsible for clearance and not the circulating haemocytes. 

However, Froesch (1979) demonstrated that injection of foreign proteins into 0. 

vulgaris caused the mass production and release of particulate material from the optic 

gland, suggesting that other organs may be involved in the immunocomptence of 

cephalopods 

The work on Eledone cirrhosa presented here, though touching briefly on only a few 

of the well known immune defence responses of invertebrates, aims to increase the 

knowledge of, and stimulate interest in, this advanced invertebrate. 
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Introduction 

Cephalopods are relatively advanced invertebrates, belonging to the phylum Mollusca. 

They incorporate a high pressure, closed circulatory system where elastic arteries 

(Shadwick & Nilsson, 1990) are linked, via capillary beds, with the venous system and 

its associated large sinuses and extracellular spaces (Browning, 1979; Wells, 1978, 

1983). It has been proposed that cephalopods have a primitive type of lymphoreticular 

system which incorporates the branchial gills, the salivary glands and the white body, 

all containing fixed phagocytic cells, and the blood or haemolymph containing 

circulating phagocytes called haemocytes (Stuart, 1968; Bayne, 1983). The 

haemolymph also contains the respiratory pigment haemocyanin, which makes up 

about 98% of the total blood protein (Ghiretti, 1966; Senozan et al., 1988). The blood 

is approximately isotonic with seawater, with an average value of 1150 mOsm for 

haemolymph of the Northern octopus Eledone cirrhosa. The inorganic constituents of 

haemolymph differ from those of seawater, particularly the concentration of sodium 

(lower) and potassium (higher) (Robertson, 1953; Gnap, 1987). Morphologically, 

there appears to be only one type of haemocyte present in the blood of species such as 

E. cirrhosa and Octopus vulgaris (Ford, 1992) and this is thought to originate and 

mature in the white body or haematopoietic organ, located in the orbital pits behind the 

eyes. Once mature, the haemocytes are released into the circulation (Necco & Martin, 

1963; Cowden & Curtis, 1974,1981). In other invertebrates significant advances have 

been made in our knowledge of the structure and function of blood cells and the 

presence of different types of cell (Millar & Ratcliffe, 1994). In contrast, very little is 
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known about octopod haemocytes, their response to infection and therefore what role 

they play in protecting the animal (Ford, 1992). The study of octopod haemocytes has 

been hampered by their rapid aggregation into clumps or morulae (Cowden & Curtis, 

1974,1981), a problem frequently encountered with many invertebrates. The methods 

for collecting octopod haemocytes and obtaining successful short-term cultures for 

functional assays will be described. 
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Isolation of Haemocytes 

It is possible to sample haemolymph and haemocytes from a number of diverse 

invertebrates including crustacea (McKenzie & Preston, 1992; Söderhäll & Cerenium, 

1992), annelids (Dales & Kalar, 1992), echinoderms (Smith & Söderhäll, 1991), 

urochordates (Smith & Peddie, 1992; Parrinello et al., 1993) and molluscs. Within the 

molluscs, gastropod (Adema et al., 1994), bivalve (Noel et al., 1993; Russel-Pinto et 

al., 1994; Anderson, 1994) and cephalopod (Ford, 1992) haemocytes have been 

isolated. The haemocytes are usually isolated in an anticoagulant to prevent morula 

formation. The anticoagulants used for different invertebrates vary but typically 

include a chelating agent such as ethylenediaminetetraacetic acid (EDTA), or ethylene 

glycol-bis (ß-aminoethyl ether) tetraacetic acid (EGTA) and exclude calcium and/or 

magnesium. The effects of EDTA, magnesium (Takahashi et al., 1994) and calcium on 

morula formation of invertebrate blood cells is well documented (Kenney et al., 1972; 

Kanungo, 1983); both calcium and magnesium promote morula formation at certain 

concentrations, and EDTA inhibits aggregration (Shozawa & Suto, 1990). Other 

anticoagulants used with invertebrate blood cells include heparin or cysteine 

hydrochloride (Tyson et al., 1974), cysteine (Smith & Ratcliffe, 1978; Smith & 

Söderhäll, 1983) and caffeine (Bertheussen & Seljelid, 1982; Fryer & Adema, 1993). 

The maintenance and handling of cephalopods is described by Boyle (1991) in the 

UFAW Handbook and will not be discussed here. While it is possible to bleed freshly 

killed cephalopods, it is often difficult to obtain reasonable amounts of blood (Young, 

1992). Thus, it is necessary to use live animals. With large octopods (e. g.; 0. 
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vulgaris) it is possible to anaesthetize the animal and insert a cannula into the dorsal 

aorta to obtain blood (Wells, 1979) or with 0. dofleini cannulae can be inserted into 

the anterior vena cava and the afferent branchial vein (Harrison & Martin, 1965). With 

smaller octopods such as E cirrhosa, the traditional methods of bleeding involve 

surgery of anaesthetized animals to gain access to the blood vessels, and as a result the 

animals do not often recover (Stuart, 1968; Rogener et al., 1985; Senozan et al., 1988; 

Fisher & DiNuzzo, 1991). A modification of the bleeding technique of Bayne (1973) 

described below, makes it possible to collect a sample of haemolymph and keep the 

animal alive and available for the collection of multiple blood samples. 
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Materials 

1. Eledone cirrhosa >250g 

2. Seawater 

3. Absolute ethanol (ultrapure, perfumery grade, 99.9%) 

4.21 gauge 1'h" needle 

5.2.5m1 syringe (plastic) 

6. Marine Anticoagulant (adjusted to pH 7 using sodium hydroxide)-see table 1 

7. Haemocytometer 

8. Sterile 20m1 bijou tubes. 

Table 1 

Marine Anticoagulant (modified from Söderhäll & Smith, 1983) 

Chemicals g/100 ml Distilled Water 

Sodium chloride 2.630 

Glucose 1.800 

Tri-sodium citrate 0.088 

Citric acid 0.055 

EGTA 0.030 
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Methods 

1. To ensure maximal survival, all animals to be used in experiments are kept in well 

aerated seawater at 10°C for 48 h prior to use. Food in the form of shore crabs, 

Carcinus maenas, is provided in excess during this period. Since-haemocpte-countý 

start to decrease after 7 days in the laboratory, the animals should be bled between the 

second and seventh day following capture. 

2. Weigh the animal. 

3. Immerse the animal in freshly prepared 2.5% ethanol in seawater. Typically 2L of 

seawater are sufficient to cover the animal. 

4. Observe the animal continuously. As soon as there is a decrease in mantle 

contractions, highly reduced resistance to insertion of fingers into the mantle cavity, 

relaxation of chromatophore organs and contraction of the pupils, the bleeding 

procedure should be initiated. 

5. Partially evert the mantle on one side of the ventral septum by reflexing posteriorly 

the mantle rim. Pressure is required on the rear of the body on the side where the 

mantle is to be reflexed. Following mantle rim reflection, the gill will partially extrude 

and the branchial arteries will be exposed (see fig. 2.1). 

6. A 21g-11/2" needle is then inserted into the blood vessel and the blood collected. A 

rough guide as to the volume that can be collected is 0.3ml/l00g animal, although a 

maximum volume of 3ml is recommended from animals weighing approximately 1000g 

or larger. Blood is withdrawn slowly to prevent the vessel from collapsing; should 

blood movement through the vessel cease the animal is immediately revived. The 
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Figure 2.2. Haemocytes cultured in octopus Ringer for 72 h, after staining with the 

supravital dye Evans blue. Attached (AH), spreading (SH) and dead (DH, i. e. stained 

with Evans blue) haemocytes can be seen. 
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volume of blood taken from the animal is small in comparison to the total volume of 

blood present (Martin et al., 1958) and the amount taken does not harm the animal and 

allows repeated sampling. Due to the small size of the branchial vessels, bleeding 

using this technique is not recommended for animals weighing less than 250g. 

7. Allow the mantle rim to return to its normal position and return the animal to well 

aerated seawater and revive by agitating the gills. The animal should recover within 5 

min and feed within 6 h. However, if the above procedure (steps 3-6) is allowed to 

extend beyond 5 min, recovery is less than 100%. 

8. Immediately after collection, the blood is diluted 1: 10 in ice cold marine 

anticoagulant (table 1) and a cell count is made using a haemocytometer. The tubes 

containing the isolated haemocytes should be kept on ice. 
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Discussion 

Large numbers of haemocytes can be isolated using this technique. Care should be 

taken when inserting the needle to avoid penetrating the kidney sac of the animal as 

this contains mesozoan parasites (Hochberg, 1982) that would contaminate the 

isolated haemocytes. The large volume of marine anticoagulant used to rapidly dilute 

the cells and the haemolymph is to prevent morulae formation. While it is possible to 

collect haemolymph into syringes containing marine anticoagulant, this is generally not 

as successful in preventing morulae formation as the described method. Use of other 

anticoagulants is possible although acidic isolation media, used by workers with some 

invertebrates (e. g. Söderhäll & Smith, 1983), are not successful for Eledone 

haemocytes which lyse or become highly crenulated at these pH's. 

Since the haemolymph isolation procedure is fast, the animal does not need to be under 

the anaesthetic for long and recovery is good. The amount of stress that the animal 

suffers is also minimal, an important factor if rebleeding is required. Further, there is 

little chance of general infections arising which could be detrimental to the animal's 

health, with implications for altered immunological status of the animal. Thus, blood 

collection can be repeated, enabling experiments involving haemocyte numbers and 

activity to be conducted on the same animal. There are, however constraints on the 

number of times any one animal can be bled. Bleeding should not be performed more 

than once every 2-3 days and up to a maximum of 5 times. Further, depending on the 

quality of seawater and the conditions under which the animals are kept, e. g. 
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temperature, the number of haemocytes obtained progressively decreases over a period 

of 4 weeks, and the haemocytes themselves may become less amenable to culture. 
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Haemocyte Culture 

Eledone haemocytes cannot be cultured in the isolation media because at the EGTA 

concentration present, haemocytes will not adhere to the surface of the culture 

chambers and there is a high haemocyte mortality. Similarly, when EDTA is used at a 

concentration equivalent to that of EGTA in the isolation medium, there is strong cell 

to cell adhesion resulting in the formation of morulae within 4h and high haemocyte 

mortality. Other workers have cultured invertebrate haemocytes in a Ringer solution 

post-collection, e. g. as with Lymnaea stagnalis (Van der Knapp, 1982) and Carcinus 

maenas (Smith & Ratcliffe, 1978). However, such cultures are relatively short-term. 

Eledone haemocytes and white body cells have been cultured in mammalian tissue 

culture media (e. g. medium 119 or Minimum Essential Medium) with the addition of 

sodium chloride and other supplements, i. e. haemolymph, fetal calf serum and vitamins 

(Necco & Martin, 1963; Stuart, 1968). Even these cultures are rarely successful 

beyond 12 days, and morula formation is common, especially in the presence of 

haemolymph. Longer term (1 month) cultures have been described for other tissues 

such as ovarian and optic gland tissue (Durchon & Richard, 1967). 

A Ringer solution adapted from those described for other invertebrates but containing 

EGTA has been successfully used for culturing Eledone haemöcytes by the present 

authors and is described next. It allows haemocytes to survive attached to the surfaces 

of culture vessels with only temporary morula formation for up to 72 h. 
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Materials 

1. Centrifuge 

2. Eledone blood in marine anticoagulant 

3. Octopus Ringer medium (see table 2) 

4.96-well culture plates 

5.1 m! Eppendorf centrifuge tubes 

6. Haemocytometer 

Table 2 

Octopus Ringer for short-term culture of Eledone cirrhosa haemocytes. 

Chemicals g/100ml Distilled Water 

Sodium chloride 2.433 

Glucose 1.400 

EGTA 0.015 

Potassium chloride 0.082 

Potassium di-hydrogen phosphate 0.004 

page 36 



E. cirrhosa Haemocytes: Isolation and Culture 

Methods 

1. Transfer the Eledone blood, in marine anticoagulant to 1ml Eppendorf tubes. 

2. Centrifuge the blood at 800g for 5 min at 4°C. 

3. Remove the supernatant and resuspend the cells in octopus Ringer medium (table 

2). Centrifuge at 800g for 5 min at 4°C. 

4. Remove the supernatant and resuspend the cells. Make a haemocyte count and 

adjust the cells to the required concentration, up to a maximum of 6x 106 

haemocytes/ml. 

5. Aliquot 100µl of haemocyte suspension into the culture chambers and incubate at 

15°C for a maximum of 72 h. 
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Figure 2.2. Haemocytes cultured in octopus Ringer for 72 h, after staining with the 
1,11 

supravital dye Evans blue. Attached (AH), spreading (SH) and dead (DH, i. e. stained 

with Evans blue) haemocytes can be seen. 
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Discussion 

High concentrations of haemocytes can be rapidly isolated and cultured for up to 72 h 

(see fig. 2.2) using the described protocol. Haemocyte viability remains high for this 

period and the cells can be used in various immunological assays such as phagocytosis. 

Isolated haemocytes adhere to the surface of the culture chambers within 4 hours, at 

which time more than 75% of the cells resist dislodgment by vigorous pipetting. After 

4 hours, a few morulae may form but these are temporary and have dissociated by 24 

hours. 

Sterility is one major problem with the isolation and culture of haemocytes. The main 

source of contaminants entering the culture is from the bleeding procedure. Care 

should therefore be taken when bleeding the animals to allow no contact of the needle 

used to withdraw blood with the anticoagulant and to follow sterile procedures 

thoughout. Even with EGTA in the octopus saline, morula formation can be increased 

in the presence of as little as 1% haemolymph, and this is a problem for assays looking 

at the influence of haemolymph on cellular functions. Temperature may also be a 

problem. Eledone haemocytes rapidly lose viability at room temperature and therefore 

the duration of time "at the bench" must be limited. Temperatures lower than 5°C also 

have an inhibitory effect on cellular functions such as phagocytosis. Another problem 

which is frequently encountered is the large variation in haemocyte activity and inter- 

animal variability. Such variation can be kept to a minimum by using triplicate and 

quadruplicate assays for each parameter examined. 
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Abstract 

Sampling blood has an effect on both the number of circulating haemocytes and the 

concentration of copper present in the haemolymph of Eledone cirrhosa. Haemocyte 

counts increase within 2 h, revert to near starting values after 4/5 days, then increase 

again to the end of the sampling period. The increase in the number of haemocytes 

also brings a concomittant increase in the percentage of haemocytes containing visible 

granules. Acid phosphatase, diaminobenzidine and periodic acid Schiffs reaction gave 

variable staining results over 10 and 24 days. 

The concentration of copper in the haemolymph decreases within 24 h, but further 

sampling between days 1-3 shows no significant change. However continued 

sampling causes the copper concentration to significantly decrease over the next 7 

days. Protein values fluctuate and show no significant change between the first and 

last samples over 7 days. 

Key Words: Eledone cirrhosa; Haemocytes; Haemolymph; Copper, Protein. 
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Introduction 

Cephalopods have a closed circulatory system in which the blood is circulated through 

contractile blood vessels and capillaries by the contraction of 3 hearts (Wells & Smith, 

1987; Shadwick & Nilsson, 1990). The blood consists of blood cells, the haemocytes, 

and plasma, the haemolymph. Unlike a number of other invertebrates (Ratcliffe & 

Rowley, 1979; Ratcliffe et al., 1986; Millar & Ratcliffe, 1994) Eledone cirrhosa 

appears to have only one haemocyte type. The haemocyte matures in the leucopoetic 

organ or white body and when released into the circulation, contains a ̀ U' shaped 

nucleus with several electron-dense granules present in the cytoplasm (Cowden & 

Curtis, 1974,1981). Haemocytes from E. cirrhosa are involved in cellular defence 

activities such as phagocytosis (Stuart, 1968; Chapter 4) and demonstrate chemotaxis 

for certain bacteria and bacterial products (Chapter 5) 

The haemolymph of cephalopods, as with other invertebrates, e. g., gastropods and 

crustacea, contains the respiratory pigment haemocyanin dissolved in the blood. 

Haemocyanin is a high molecular weight copper protein supposedly synthesized in the 

branchial glands of cephalopods (Messenger, 1974). Haemocyanin amounts to about 

98% of the total protein present in octopus blood (Ghiretti, 1966) and oxygen is 

transported bound between 2 copper atoms and ligated by protein side chains. 

The total blood volume of the octopus Octopus dofleini was demonstrated to be 5.8 t 

1% of the body weight (Martin et al., 1958). Using the octopus Octopus vulgaris, 

Rögener et al. (1987) demonstrated that the total protein concentration of 

haemolymph was 108mg/ml, with an estimated copper concentration of 183 ± 5pg/ml 
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of haemolymph. Wells and Wells (1993) demonstrated that removal of a large amount 

of blood (up to 40%) from O. vulgaris was followed by the rapid replacement of blood 

fluid over 24 h but no replacement of haemocyanin. The authors implied that no 

reserve of haemocyanin existed and that haemocyanin could not be synthesized rapidly. 

However O'Dor and Wells (1984) suggested that in times of stress or blood loss, O. 

vulgaris might utilize blood from the large blood sinuses around the gut. 

Elucidation of the immune functions of E. cirrhosa necessitated the development of a 

sampling technique (Chapter 2). Very little information existed on the effects of 

removing blood on, in particular, the haemocytes of E. cirrhosa. This paper 

investigates some of the effects of taking blood samples on the haemocytes and the 

haemolymph of the octopod E. cirrhosa. 
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Materials and Methods 

Animals 

Eledone cirrhosa (Lam. ) were caught in crab pots around the North Wales coast. 

They were brought into the aquarium at the University of Wales at Bangor and 

assigned to particular tanks. The animals were allowed to settle for 48 h before being 

weighed, sexed and marked. They were anaesthetised before being marked by use of 

a syringe and needle (21 gauge 1'h"needle) containing a 1% solution of alcian blue in 

octopus Ringer (Chapter 2). The alcian blue mark was introduced into the tissue of 

the web as near to the base of the arm(s) as possible, and the arm thus marked used in 

a numbering system (left or right, 1-4). 

Sampling 

Several sampling routines were performed on different sets of animals. In each case 

the weight of the animal and the arm marks were recorded. The animals were then 

anaesthetised and sampled as described in Chapter 2. The volume of blood obtained 

was recorded and a 100µl sample were placed in 9O0pl of marine anticoagulant (MA) 

(NaCl, 2.63g1100ml; glucose, 1.8g/100ml; tri-sodium citrate, 0.088g/ml; citric acid, 

0.055g/100ml) containing ethylene glycol-bis(ß-aminoethylether) N, N, N', N', - 

tetraacetic acid (EGTA) (0.029g/100ml) and duplicate blood counts made using a 

haemocytometer. In some cases blood smears were made by placing 20gl of blood 

directly from the syringe onto glass slides and the blood drawn out over the slide. The 

glass slides were air-dried and stored at 4°C before staining. During some sampling 
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routines the remaining blood was then centrifuged, at 800g for 5 min at 4°C, and the 

cell-free haemolymph stored at -70°C for further analysis. This stored sample was 

used to determine the effect of sampling on protein and copper levels in the 

haemolymph. 

Sampling Routines 

Four sampling periods were utilized. One set of five animals was bled at 0 h, (taking 

between 1-2ml) followed by smaller samples (about 400µl) at 2, and 4h (fig. 3.1). A 

second set of 5 animals was bled as the first set but sampling times were; day 0 and 

then days 1,2,3,4,7 (fig. 3.2) with 1- 2m1 samples being removed. A third set (of 10 

animals) were all bled on day 0, sampling between 1-2m1, and then 2 animals were bled 

every 24 h, taking about lml of blood per animal, allowing all ten animals to be 

sampled over a5 day period (A-E) (fig. 3.3). The final set of five animals were all 

sampled on day 0 taking as much blood as was possible (between 1-2 ml) and then 

less blood (about 400pl) was taken on subsequent samples at days 1,2,3,5,8,12, 

17,24 (fig. 3.4). 

Staining 

Twelve blood smears were obtained per animal per sample for the first and third 

sampling routines, (i. e., 6 originals and 6 duplicates per sample). The second sampling 

routine was for blood counts only, but the fourth routine used only the blood stain, 

Giemsa (Sigma). The staining techniques employed for the first and third sampling 
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routines were acid phosphatase, alkaline phosphatase, peroxidase, Giemsa, periodic 

acid Schiffs (PAS) reaction and bromophenol blue. In all cases controls were run to 

ensure that the techniques were working. Acid phosphatase activity in the blood 

smears was detected by incubating the slides for 30 min in veronal acetate buffer 

containing sodium a-naphthyl phosphate (Gurr) and diazotized pararosaniline (Gurr) 

and adjusted to pH 6.0. Alkaline phosphatase activity was detected by incubating the 

glass slides for 60 min in a Tris buffer (pH 10.0) medium containing sodium a- 

naphthyl phosphate and fast red (Gun). Peroxidase activity was determined by 

incubating the slides in a solution of diaminobenzidine (DAB) in tris buffer (pH 7.75) 

and hydrogen peroxide (Sigma). General blood stains using Giemsa in Gun buffer (pH 

6.8) and bromophenol blue were used for detection of major morphological differences 

in the haemocytes using a light microscope. Carbohydrates were detected using the 

PAS reaction. 

Protein Determination 

Ten pl of haemolymph diluted with 500µl distilled water were precipitated in 400µl of 

12% trichloroacetic acid (TCA) for 2h at 4°C. Individual samples were centrifuged at 

(4000g) for 30 min and the protein pellet resuspended in 200µ1 of 0.3M sodium 

hydroxide (NaOH) with the addition of 800µ1 of Biuret reagent (6g sodium potassium 

tartrate; 1.5g copper sulphate; 30g sodium hydroxide/l000ml distilled water). Samples 

and bovine serum albumin (BSA, 'Sigma) standards (0.125 - 2mg/ml) were incubated at 

37°C for 30 min. One ml of heptane was added and the samples were vortexed and 
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centrifuged. The heptane was removed and 350µl of each sample were added in 

duplicate to a flat bottom 96 well plate(Dynatech). hnd point readings were taken at 

550nm after a 30 min incubation of the plate at room temperature. 

Copper Determination 

Standards of 1,2, and 3pg/ml of copper (B. D. H. ) in distilled water were aspirated 

directly into an air-acetylene flame and a standard curve obtained using a Thermo- 

Jarrell-Ash atomic absorption spectrophotometer at 324.7nm. Twenty pl haemolymph 

samples were added to 5m1 of distilled water and the mean atomic absorption readings 

calculated from the standard curve. Distilled water blanks were passed through the 

spectrophotometer after each haemolymph reading. 

Analysis 

Duplicate blood cell counts were averaged and converted to counts per ml. The mean 

and standard error of the replicates were then used to plot haemocyte numbers against 

the time used of sampling. Student t-tests were used to compare replicated blood 

counts at different sampling times. The Giemsa stained slides were used to determine 

differences in the number of granules in the haemocyte cytoplasm. The number of 

haemocytes with visible granules was expressed as a percentage of the total number of 

haemocytes recorded for each sample and replicate means and standard errors were 

recorded. Student t-tests were then used to compare the percentage number of 

haemocytes containing visible granules with the sampling time. 
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Observations on acid and alkaline phosphatase, peroxidase, the PAS reaction, and 

bromophenol blue stain were recorded and used to demonstrate possible haemocyte 

differences over the sampling periods. 

Haemolymph protein and copper concentrations were determined and the mean and 

standard error of the replicates were plotted. T-tests were used to determine 

significant differences between sampling times. 
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Results 

Blood Counts 

It has been demonstrated that sampling has an effect on the haemocyte population 

present in the blood of Eledone cirrhosa. When a sample(1-2ml) is taken, the 

haemocyte number per ml increased within the first couple of hours. 

Haemocyte counts over 4h indicate that within 2h of removing 1- 2 ml of blood from 

the animal the count nearly triples, but it has decreased significantly (p<0.05) at 4h 

(fig. 3.1). Samples taken from a second set of 5 animals sampled over 7 days indicate 

a significant increase (p<0.05) in haemocyte numbers/ml within the first 24 h (fig. 3.2). 

Over the following 6 days the haemocyte numbers decreased and have decreased 

significantly by day 7 in comparison with the 24 h sample. 

Sampling over 10 days with all 10 animals sampled at day 0 (fig. 3.3), then 2 animals 

per day resampled over the following 10 days indicates a dramatic increase in 

haemocyte numbers within the first 48 h (13'). All subsequent haemocyte counts were 

significantly less than the 48 h sample but apart from the day 4 sample (D') were all 

significantly higher than the day 0 sample. All 10 animals were sampled 3 times over 

the 10 day sampling period, on day 0 and then twice in rotation on subsequent days, 

e. g. animals in set A were bled on day 0, day 1 (A') and day 6 (A). The haemocyte 

counts obtained over the 10 days appeared to indicate a possible cycle of increasing 

counts followed by a decrease, e. g. the values between days 0&3,4 &7 and 7& 10. 

However when results for different individuals are compared there is an indication that 

the timing of sampling is important. 
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11-1111 i1 

Figure 3.1. The number of haemocytes/ml in blood in Eledone cirrhosa over a4 hour 

I'sampling period. The bars are the means of 5 animals and the error bars are the 

standard errors of the mean. 

Figure 3.2. The number of haemocytes/ml in blood in E. cirrhosa over a7 day 

sampling period. The bars are the means of 5 animals and the error bars are the 

standard errors of the mean. 
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Figure 3.3. The number of haembcytes/ml in blood in E. cirrhosa over a 10 day 

sampling period. Ten animals were bled on the first day, day 0, and 2 animals/day over 

the remaining 10 days. The bar on day 0 is the mean of 10 animals whereas the bars for 

days 1-10 are the mean of 2 animals. The error bars are the standard errors of the 

mean. 

(Al -El = days 1-5; A2 - E2 = days 6 -10). 

Figure 3.4. The number of haemocytes/ml in blood in E. cirrhosa over a 24 day 

sampling period. The bars are the means of 5 animals and the error bars are the 

standard errors of the mean. 
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When the sampling period was extended to 24 days, sampling animals on days 0,1,2, 

3,5,8,14,18 and 25 (fig. 3.4), the haemocyte numbers again increased significantly 

(p<0.05) to day 2. This was followed by a decrease to day 8. Then haemocyte 

numbers continued to increase again until the end of the experiment. 

Blood Smears 

The percentage of haemocytes containing Giemsa positive granules increased over the 

4h sampling period (fig. 3.5). Similarly there was an increase in the percentage of 

haemocytes containing granules up to day 3 of the 10 day sampling period (fig. 3.6) 

and up to day 5 of the 25 day sampling period (fig. 3.7). The set of animals (A) bled 

on days 1 and 6, in the 10 day sampling regime, showed large increases in the 

percentage of haemocytes containing granules visible in the cytoplasm (fig. 3.6), while 

both sets B and C showed a significant decrease from the first to the second sampling 

sets. This may again indicate that the time of sampling is important. Animals in the 25 

day sampling group showed an increase in the percentage of haemocytes containing 

granules to day 5 (fig. 3.7) followed by a dramatic decrease to day 8 with a slower rate 

of decline to a value less than the day 0 value by day 24. 

Haemocytes obtained in samples from the 10 day group were negative or only stained 

weakly with the PAS and DAB reactions for carbohydrate and peroxidase respectively 

(table 1). Weak staining in comparable smears stained with bromophenol blue for 

protein indicated a slight increase in staining for 3 animals (L1 @ day 6, RI @ day 3 
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3.5. The bars represent the mean value for the percentage of haemocytes 

fining cytoplasmic granules from 5 animals over a4 hour sampling period. Error 

bars are standard errors of the mean. 

Figure 3.6. The bars represent the percentage of haemocytes containing cytoplasmic 

granules over a 10 day sampling period. The mean for 10 animals is presented on day 

0 whereas over the remaining sampling period (days 1-10) the mean of 2 animals was 

taken. Error bars are standard errors of the mean. 

(Al -E1=days I -5; A2-E2=days6- 10). 
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Figu ie113. I. The bars represent the mean value for the percentage of haemocytes 

containing cytoplasmic granules from 5 animals over a 24 day sampling period. Error 

ars are standard errors of the mean. 
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Table 1. Blood smears were taken from 10 animals on day 0 and from 2 

animals/day for the next 9 days. The smears were stained with periodic acid Schiffs 

reagent, bromophenol blue, acid phosphatase and diaminobenzidine. The staining 

intensity for each of the stains used was recorded. 

l. a. Periodic Acid Schiffs 
Day L1 L2 Day L3 LA Day RI R2 Day R3 R4 Day L1 

RI 
L2 
R2 

0 - - 0 - - 0 - - 0 + + 0 + + 
1 + + 2 - - 3 + + 4 - - 5 - + 
6 - - 7 - - 8 - - 9 + + 10 - - 

1. b. Bromonhenol Blue 
Day Li L2 Day L3 L4 Day RI R2 Day R3 R4 Day Ll 

R1 
L2 
R2 

0 + + 0 + + 0 + + 0 + + 0 + + 
1 + + 2 + + 3 ++ ++ 4 + + 5 + + 
6 ++ + 7 + + 8 + + 9 + + 10, + + 

l. c. Acid Phncnhatace 
Day Ll L2 Day L3 

0 - + 0 - 
1 + ++ 2 - 
6 ++ ++ 7 + 

L4 Day RI R2 Day R3 R4 Day Ll L2 
R1 R2 

-0--0--0++ 
-3++4++5-- 
-8++9 ++ + 10 -- 

1. d. D. A. B. 
Day Ll 

0- 
1+ 
6- 

L2 Day L3 IA Day RI R2 Day R3 R4 Day Ll 
R1 

L2 
R2 

0 + + 0 + - 0 + - 0 + + 
- 2 - - 3 - - 4 - + 5 - - 
- 7 - - 8 - - 9 - - 10 - - 

L1-L2R2 = 10 Individual Animals 

-= No Reaction 
+= Slight Positive Reaction 
++ = Moderate Positive Reaction 
-H-I- = Strong Positive Reaction 
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and R2 @ day 3). Considerable variation was noted with staining for acid phosphatase 

but an increase in staining in the second and third samples was noted for 7 of the 10 

animals. 

All 4 staining techniques indicated increased positive results compared to day 0 for all 

animals in the 25 day sampling group (table 2). The haemocytes from 3 animals 

showed increased levels of staining with PAS at day. 3 and this was maintained or 

increased until day 24. Levels of staining increased at day 1 but then decreased to day 

0 levels at day 8 in the other 2 animals. Staining for protein in the haemocytes from all 

animals increased by day 8 or 12 but decreased to day 0 levels at day 24 in 3 of the 5. 

Staining for acid phosphatase and peroxidase increased within 1 to 3 days but returned 

to day 0 levels in all but 2 animals. No positive results were obtained for alkaline 

phosphatase, (results not shown). 

Protein Concentration 

Over 4h (fig. 3.8) the protein concentration of the haemolymph decreased significantly 

(p<0.05) from about 116 mg/ml to 64 mg/ml. Large individual variations were 

observed over the 7 day sampling routine (fig. 3.9). The protein concentration at day 

7 was not significantly different (pß. 4) from the day 0 value. The possible increase at 

days 2 and 3, of the 7 day sample, although not significant because of the high level of 

variation, requires further study. 
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Table 2. Blood smears were taken from 5 animals over a period of 24 days. The 

smears were stained with periodic acid Schiffs reagent, bromophenol blue, acid 

phosphatase and diaminobenzidine. The staining intensity for each of the stains 

used was recorded. 

2. a. Periodic Acid Schiffs 
Da L1 L2 L3 L4 R2 

0 + + + + + 
1 + + ++ ++ + 
2 + + ++ + + 
3 ++ ++ ++ ++ ++ 
S ++ ++ ++ + ++ 
8 ++ ++ + + + 

12 +++ ++ + + + 
17 ++ ++ + + ++ 
24, ++ ++ + + ++ 

2. b. Bromonhenol Blue 
L1 L2 L3 L4 R2 

_ + - + - 
+ + + + - 
_ + + - + 
+ + - - + 
+ ++ + + ++ 
++ + ++ + ++ 

+1-F ++ ++ -t+ - 
++ 

+ - ++ + 
17++ 

2. c. Acid Phosphatase 
Da L1 L2 L3 L4 R2 

0 + + + 
1 - + + ++ + 
2 ++ ++ ++ + 
3 + +++ ++ + + 
S - ++ + + + 
8 + ++ + + + 

12 ++ ++ + ++ ++ 
17 + + + ++ + 
24 + 

+ 

+ -- + 

F 
+ + 

L1-R2 =5 Individual Animals 

-= No Reaction 
+= Slight Positive Reaction 
++ = Moderate Positive Reaction 
+++ = Strong Positive Reaction 

2. d. D. A. B. 
L1 L2 L3 L4 R2 

+ + + ++ - 
++ + + ++ 
++ ++ + ++ + 
++ ++ + + + 
++ + + + + 
+ + + + + 

++ + - + + 
++ + - + + 
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Figure 3.8. The protein concentration in samples of haemolymph collected from E. 

cirrhosa over 4 h. Each value is the mean of 5 animals. Error bars are standard errors 

of the mean. 

Figure 3.9. The protein concentration in samples of haemolymph collected from E. 

cirrhosa over 7 days. Each value is the mean of 5 animals. Error bars are standard 

errors of the mean. 
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Copper Concentration 

The concentration of copper in the haemolymph decreases in the 4h sampling group 

(fig. 3.10), and the decrease was significant (p<O. 05) between the initial (0 h) and final 

(4 h) bleeds. The concentration of copper in the haemolymph decreases in the 11 day 

sampling group after the initial sample on day 0 (fig. 3.11). Over days 1,2 and 3, the 

copper concentration does not change even though on each day between 2- 4% of the 

animals blood is being removed. After day 3 however continued sampling at the same 

rate resulted in the copper concentration continuing to decrease and no recovery was 

observed over the rest of the sampling period. 
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Figure 3.10. The copper concentration in samples of haemolymph collected from E. 

cirrhoses over 4 h. Each value is the mean of 5 animals. Error bars are standard errors 

of the mean. 

Figure 3.11. The copper concentration in samples of haemolymph collected from E. 

cirrhosa over 11 days. Each value is the mean of 5 animals. Error bars are standard 

errors of the mean. 



Figure 3.10 

- 240 
E 
Z 220 
c 

c 200 
0 

180 C 

160 
O 
0 

140 
CL 
CL 
0 
0 120 

Figure 3.11 
250 

E 
224 

C 0 
Ä 198 
L 

C 
O 
C 172 
0 U 
m 146 
0. 
CL 0 0 120 

Haemolymph Copper Concentration 

Haemolymph Copper Concentration 
. &.. a !- 

01234 

Hours 

02468 10 12 

Days 



Effects of Sampling on Eledone cirrhosa 

Discussion 

The number of circulating haemocytes in Eledone cirrhosa increases in response to 

blood loss. The increase in haemocyte numbers/ml is associated with an increase in the 

percentage of haemocytes containing cytoplasmic granules as detected by the Giemsa 

blood stain. The concentration of copper in the haemolymph decreases and does not 

appear to be replaced whereas the protein concentration did not significantly change 

over seven sampling days. 

Increased haemocyte counts have been demonstrated for other molluscs following 

injury (Sminia et al., 1973), decrease in oxygen tension (Wolmorans & Yssel, 1988), 

increased temperature (Stumpf & Gilbertson, 1978), blood extraction (Sminia, 1972) 

and after bacterial challenge (Suresh & Mohandas, 1990). Haemocyte counts initially 

increase 4h after surgery in the Pacific oyster Crassostrea gigas and this appears to be 

a stress response (Jones et al., 1993). Blood sampling obviously induces stress in E. 

cirrhosa, as evidenced by the initial increase in blood count but it does decrease by day 

8, before increasing again, suggesting that stress was not a major factor in increasing 

haemocyte numbers. One possible explanation could be the release of mature or 

maturing haemocytes from the white body or leucopoetic organ, and/or other stores, 

e. g. the posterior salivary glands (pers obs. ), to compensate for blood loss. Production 

of amoebocytes in large numbers under specific pathological conditions has been 

demonstrated in Biomphalaria glabrata after infection with different Echinostoma 

species (Lie et al., 1975). Jeong et al. (1983) further demonstrated that the 

amoebocyte producing organ of B. glabrata increased in size and an increased number 
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of amoebocytes were loosely arranged in zones of progressive maturation after 

infection with Echinostoma species. The bivalves Sunetta scripta and Villorita 

cyprinoides var. cochinensis demonstrated leucocytosis after both sham and bacterial 

injections (Suresh & Mohandas, 1990). Further, using Lymnaea stagnalis, Mohandas 

et al. (1992) suggested that after haemolymph extraction young and mature 

haemocytes were released from a `reservoir' (Sminia et al., 1983) into the haemolymph 

of the snail. No evidence for leucocytosis was demonstrated for E. cirrhosa after 

sampling, however when challenged with bacteria, (Chapter 8) massive haemocyte 

release was also indicated suggesting possible leucocytosis. Though invertebrate 

circulating haemocytes have been shown to proliferate (Sequira et al., 1996; Peddie et 

al., 1995), no evidence of such proliferation was observed with E cirrhosa (pers. 

obs. ). 

A complex cycle of increasing and decreasing haemocyte numbers in E. cirrhosa is 

also indicated by the animals sampled on 3 occasions at different times over 10 days. 

The counts in set A' (fig. 6) sampled 1 day after the initial sample had increased to a 

very high level, however, set D' which was not sampled until 4 days after the initial 

sample had a reduced count and this was still low 5 days later (D2). This sampling 

regime needs to be repeated at a wider range of sampling times. 

The changes in the percentage of haemocytes containing granules and the changes in 

the histochemical properties of the haemocytes under the different sampling regimes 

would support the suggestion that haemocytes with different properties are being 

added to those already present in the blood of the octopod. Presumably these are new 
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haemocytes, being released from the white body, containing a higher proportion of 

cytoplasmic granules. Cowden and Curtis (1974,1981) showed that mature 

haemocytes from Octopus briareus and O. vulgaris have a large number of irregular 

electron-dense inclusions in the cytoplasm upon release into the circulation. 

Interestingly haemocyte numbers/ml decreased significantly in E. cirrhosa after the 

third sample (day 2) was taken during the 24 day sample routine. However the 

percentage of haemocytes containing visible granules continues to increase until the 

fifth sample (day 5). Over the following 8 days the number of haemocytes/ml increases 

while the percentage of haemocytes with granules decreases. Mohandas et al, (1992) 

showed that haemocytes from L. stagnalis demonstrated differential staining after 

haemolymph collection following forced foot retraction. Acid phosphatase activity in 

L. stagnalis increased over 1-5 days following bleeding whereas peroxidase staining 

decreased. Lysosomal enzymes and peroxidase have been demonstrated to be 

associated with many invertebrate blood cells (Ratcliffe et al, 1985; Millar and 

Ratcliffe, 1994). With Octopus, a PAS positive reaction in the cytoplasm of mature 

haemocytes was obtained for O. vulgaris but not for O. briareus (Cowden, 1972). 

Since E. cirrhosa haemocytes are known to be involved in cellular defence functions 

(Stuart, 1968; Chapter 5, Chapter 6, Chapter, 7) it is assumed that lysosomes and 

peroxisomes would be present in the haemocytes, particularly in those newly released. 

The concentration of haemolymph protein decreases initially during the first 4h of 

sampling in E. cirrhosa. Over 7 days however it does not significantly depart from the 

day 0 value. Apart from haemocyanin, octopus haemolymph also contains 
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glycoproteins, lectins and agglutinins (Rögener et al� 1986,1987). Busselen (1970) 

demonstrated that haemolymph glycoprotein levels in Carcinus maenas changed 

during blood sampling, causing an increase of the ratio of glycoprotein : haemocyanin 

concentrations. Further the glycoprotein concentration depended on the nutritional 

status of the animal. Djangmah (1970) also demonstrated that glycoprotein levels in 

Crangon vulgaris haemolymph were dependent on nutritional status with both the 

glycoprotein and haemocyanin being utilized as a food reserve during starvation. 

The large variation observed for the protein concentrations obtained could be due to 

individual variation. Though all octopuses used were female, not all animals were of 

the same weight or maturity stage. Food was available in abundance in an attempt to 

reduce any effects on plasma protein due to nutritional stress. Large variation of the 

total protein concentration in the haemolymph has been demonstrated in the blue crab 

Callinectes sapidus (Horn & Kerr, 1963) and the shore crab C. maenas (Uglow, 

1969a, b). However in both species sampling over a week caused a decrease in protein 

concentration accompanied by only a minor change in copper concentration. Horn and 

Kerr (1963) suggested that circulating apohaemocyanin molecules were being 

converted to haemocyanin by the addition of copper atoms. 

The samples taken for protein determination in both the 4h and 7 day sampling 

routines were also used to determine the copper concentration in the haemolymph of 

E cirrhosa. The copper and protein levels decreased over the first hours of sampling. 

Interestingly the protein concentration does not significantly vary over 7 days (fig. 9) 

while the copper concentration decreases by 40% in the same samples (fig. 11). The 
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above results could therefore indicate that within the first few hours following 

sampling fluid moves into the blood reducing the haemocyanin concentration but that 

over a longer period the protein concentration is restored with a non-haemocyanin 

protein. Whether the protein is apohaemocyanin remains to be determined. It has 

been demonstrated that after blood loss, O. vulgaris is able to restore its blood volume 

(Wells & Wells, 1993), by increasing fluid uptake. Wells and Wells (1993) also 

showed no replacement of haemocyanin after the withdrawal of a large volume of 

blood from 0. vulgaris. Controlled depletion and replacement of haemocyanin during 

nutritional distress, moulting and at different seasons have been shown for several 

crustaceans (Busselen, 1970; Djangmah, 1970; Djangmah & Grove, 1970). However 

the synthesis and breakdown of haemocyanin in cephalopods appears to be tightly 

controlled (Senozan et al., 1988). 

No correlation was found between weight, sex and haemocyanin concentration in the 

haemolymph of the cephalopod Sepia officinalis, and very little individual variation 

was shown in copper concentration (Senozan et al� 1988). The copper concentration 

results presented for E. cirrhosa also show less individual variation than those found 

for protein even though the same samples were used for both determinations. 

In conclusion, it would appear that loss of blood in E. cirrhosa is followed by an 

almost immediate increase in newly released circulating haemocytes. Further 

experiments are being undertaken to look at haemocyanin and also the other 

constituent proteins present in the haemolymph of E. cirrhosa. The haemocytes and 
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leucopoetic organs are also being extensively studied as is the relationship between 

blood loss, bacterial challenge and leucocytosis in E. cirrhosa. 
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Abstract 

Haemocytes from Eledone cirrhosa phagocytose formalized bacteria (Vibrio 

anguillarum). The phagocytic capabilities of E. cirrhosa haemocytes are affected by 

several factors, including the haemocyte culture medium, temperature, duration of the 

assay, and the bacterial pre-incubation conditions such as haemolymph concentration, 

temperature and the duration of pre-incubation. 

Haemocytes will phagocytose in the absence of haemolymph and enhanced 

phagocytosis will occur in 100% haemolymph. After 2 hours at 15 or 20°C however, 

the number of haemocytes phagocytosing unopsonized bacteria is equivalent to the 

number engulfing 100% haemolymph opsonized bacteria. In addition, with a 30min 

incubation period, the number of phagocytosing haemocytes increases as the prior- 

opsonization concentration of haemolymph and the incubation temperature increase. 

Key Words: Eledone cirrhosa; haemocytes; phagocytosis; opsonization. 
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Introduction 

In vivo and in vitro investigations into the cellular activities of molluscs have 

demonstrated that, in a number of cases, the blood cells or haemocytes are avidly 

phagocytic and capable of recognising non-self (reviewed by Millar & Ratcliffe, 1994). 

The process of phagocytosis involves a number of recognizable stages, which include 

attraction, attachment, ingestion and killing of foreign organisms, and is influenced by 

a number of factors (reviews by Ratcliffe et al., 1985; Millar & Ratcliffe, 1994). 

Variables which have been shown to affect phagocytic rates in molluscs include 

incubation temperature (Foley & Cheng, 1975), time and pH (Abdul-Salam & 

Michelson, 1980), the size of the particle presented for phagocytosis and the nature of 

the particles (reviewed by Bayne, 1983). Though phagocytosis will take place in the 

absence of opsonizing agents (Renwrantz & Stahmer, 1983; Tuan & Yoshino 1987; 

Fryer, et al., 1989), several experiments have shown that soluble humoral factors or 

opsonins may be instrumental in non-self recognition (Prowse & Tait, 1969) and/or 

enhancement of phagocytosis (reviews by Jenkin, 1976; Ratcliffe et al, 1985). 

The haemocyte culture medium has been shown to influence phagocytosis with, in the 

case of the Asian clam, Corbicula fluminea, the presence of divalent cations being 

necessary for both opsonin-independent and opsonin-dependent phagocytosis (Tuan et 

al. 1987). The process of opsonization also appears to be influenced by several other 

factors. Fryer and Bayne (1989), using Biomphalaria glabrata, showed that for this 

mollusc opsonization is a time-dependent process. Further, Tripp (1992), working 
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with Mercenaria mercenaria demonstrated that at low temperatures, opsonized 

particles were phagocytosed at a faster rate than unopsonized particles. 

The octopus Eledone cirrhosa is benthic in habit, ranges in depth from sub-littoral to 

770 m and encounters temperatures between 5 and 15°C (Boyle, 1983). The animal 

has a closed circulatory system and if wounded prevents blood loss by local 

vasoconstriction of the area surrounding the wound. The blood of the octopod does 

not clot and further blood loss is prevented by allowing seepage of blood through the 

wound until blood cells eventually plug the wound (Wells, 1978,1983; Bayne, 1983). 

If the animal loses a large amount of blood a dilution of the blood constituents such as 

the respiratory pigment (haemocyanin) occurs which takes up to 2 hours to be reversed 

(Wells & Wells, 1993). There appears to be only one main type of blood cell or 

haemocyte in E. cirrhosa. The haemocyte matures in the white body, or leucopoetic 

organ, of the animal and is released into the closed circulatory system (Cowden & 

Curtis, 1974,1981). Few cephalopod defense mechanisms have been elucidated 

(Ford, 1992). It is known that E. cirrhosa haemocytes will phagocytose erythrocytes 

only in the presence of haemolymph in vitro (Stuart, 1968). Also in vivo studies with 

E cirrhosa (Stuart, 1968) and with Octopus dofleini (Bayne, 1973), demonstrate that 

it is mainly fixed phagocytes in certain organs which clear injected foreign particles, 

with haemocytes only removing a small fraction of them. 

This paper investigates whether haemocytes from E. cirrhosa are capable of 

phagocytosing dead bacteria in vitro and whether temperature, time and haemolymph 

concentrations influence phagocytosis. Additional experiments were also performed to 
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determine whether bacterial pre-incubation (prior-opsonization) at different 

temperatures, times and haemolymph concentrations affected phagocytic rates. 
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Materials and Methods 

Animals 

Octopuses, Eledone cirrhosa, (Lamarck) were obtained from crab pots around the 

North Wales coast. The animals were brought into the aquarium at the University of 

Bangor and maintained in natural seawater at 10-12°C. After 48 h the animals were 

weighed, marked using a syringe and assigned to a particular tank. Five octopuses per 

tank were chosen at random for each set of experiments. 

Haemolymph 

Blood was withdrawn from the branchial blood vessel of each octopus as described in 

Chapter 2. The blood was centrifuged at 4°C for 5 min at 800g to remove the 

haemocytes. The resulting haemolymph from a number of individuals was pooled and 

frozen at -20°C. Before use the haemolymph was thawed and diluted to a final 

concentration of 0.1,1 or 10% in sterile octopus saline (SOS)(NaCI, 2.367g/100ml; 

glucose, lg/100ml; CaC12,0.116g/100ml; KH2PO4,0.0056g/100m1; KCI, 

0.1089g/100ml; MgS04. H20,0.503g/100ml; MgCl2,0.419g/100ml). 

Haemocytes 

From each animal 1 ml blood samples were withdrawn into l Oml of ice cold marine 

anticoagulant (MA)(NaCI, 2.63g/l00ml; glucose, 1.8g/100ml; tri-sodium citrate, 

0.088g/ml; citric acid, 0.055g/100ml) containing ethylene glycol-bis(ß- 

aminoethylether) N, N, N', N', - tetraacetic acid (EGTA) (0.029g/100ml). After a 
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blood count the haemocytes were centrifuged at 800g for 5 min at 4°C, and washed by 

resuspension in octopus Ringer (OR)(NaCI, 2.433g/100m1; glucose, 1.4g/100m1; 

EGTA, 0.015g/100ml; KCI, 0.082/100ml; KH2P04,0.004g/100ml) containing 

CaC12(0.0142g/100m1), MgCI2 (o. 0524g/100m1) and MgSO4 (0.0629/100ml). A final 

haemocyte count was made before the haemocytes were washed for a second time and 

resuspended in SOS at 1x 106 haemocytes/ml. 

Bacteria 

Vibrio anguillarum (MT275) were obtained from the Scottish Office, Agriculture and 

Fisheries Department, Marine Laboratory, Aberdeen. Formalized V. anguillarum 

were counted, washed twice by resuspension in SOS and centrifuged at 13000g for 10 

min before resuspension at 8x 108 cells/ml in the required treatments. 

Transmission Electron Microscope (T. E. M. ) Preparation 

Five hundred µl of blood were withdrawn from the branchial blood vessel of the 

octopus and mixed directly with 500µl of washed bacteria. After 2h incubation at 

15°C the blood was centrifuged and the haemolymph removed. The pelleted 

haemocytes were fixed for 24 h at 4°C in 2.5% glutaraldehyde (in 0.1M sodium 

cacodylate buffer at pH 7.4). The haemocytes were washed in 0.1M sodium 

cacodylate buffer and secondarily fixed for 2h at room temperature in 1% osmium 

tetroxide before staining en bloc with 2% uranyl acetate over night. The pellet was 

then dehydrated through ethanol and propylene oxide and embedded in Spurr resin. 
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Cut sections (50nm) were mounted on 100 mesh pioloform coated copper grids and 

stained with lead citrate. Sections were viewed in a GEC Corinth 500 at 60 KV. 

Phagocytosis Assay 

Two phagocytosis experiments were performed to determine the effect of haemolymph 

concentration, temperature and time on haemocyte phagocytosis. Five animals were 

used for each experiment. The first experiment involved incubating haemocytes in 16 

well, tissue culture slides (Nunc) for 2h at different temperatures, but utilizing one 

pre-incubation temperature and time for the bacteria. The second experiment involved 

haemocyte incubations of 30 min only and utilized different temperatures, times and 

haemolymph concentrations for bacterial pre-incubations. 

For the first experiment 50µl of the haemocyte suspension in SOS were put into each 

of the 16 well chambers of a tissue culture slide. Fifty microliters of either SOS or 

haemolymph diluted in SOS were added in duplicate, at half hour intervals, to selected 

wells. Bacteria were resuspended in either SOS or 100% haemolymph for 2 hat 15°C 

and washed twice before use. Fifty microliters of either SOS treated or haemolymph 

treated bacteria immediately followed the haemolymph additions, again in duplicate. 

Each well of the tissue culture slide therefore contained: 50µI of haemocytes in SOS, 

S0µ1 of either SOS or haemolymph diluted in SOS to 0.1,1 or 10% concentration 

(final concentrations of 0.03,0.33 or 3.33% respectively) and 50µl of bacteria 

resuspended in SOS, after treatment. The assays were run at four temperatures (5,10, 
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15 and 20°C). After 2h the tissue culture slides were rinsed in SOS to remove 

unattached bacteria and the slide fixed by immersion in methanol for 3-5 min. 

The second experiment involved the addition of 5091 of haemocytes in SOS at 1x 106 

haemocytes/ml, followed by 50µl of haemolymph diluted in SOS at 0,0.1,1 or 10% 

concentrations and 50µ1 of the different bacterial preparations added in duplicate to the 

tissue culture slides. The bacteria were washed and resuspended in haemolymph at 

concentrations of 0,0.1,1,10 or 100%, using phosphate buffered saline pH 7.0 

(PBS, Gibco, without Ca2+ and Mg2) as the diluent. Bacteria were incubated for 1, 

10,60 or 120 min at 5,10,15 or 20°C, before being washed twice and used in the 

assay. The slides were incubated at temperatures of 5,10,15 or 20°C. After 30 min 

the tissue slides were rinsed with SOS and the experiment stopped by immersion of the 

slide in methanol as previously. 

All slides were then stained in Giemsa (Sigma), rinsed in Gurr buffer (BDH pH 6.8) 

and air dried before mounting using DPX. 

Statistical Analysis 

Analysis was performed by random counting of 200 haemocytes in each well. The 

haemocytes were counted under oil using a compound binocular microscope at 800x 

magnification. All slides were numbered and randomly selected to reduce observer 

bias. The number of haemocytes which had phagocytosed bacteria was expressed as a 

percentage of the haemocytes counted in each of the duplicate wells. The results for 

each of the duplicate wells were averaged and analysis of variance (ANOVA) 
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performed for the 2 experiments using the 5 replicates. In each case P values of < 

0.05 were taken as being significant. The replicate means were calculated and Tukey's 

pairwise comparison was performed for each experiment using the calculated 

confidence interval estimation (CI estimation). The CI estimate allows 2 separate 

means to be statistically compared (Rice, 1988). 
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Results. 

Phagocytosis of the formalized Gram negative bacterium, Y. anguillarum by E 

cirrhosa haemocytes occurs both in the presence and absence of haemolymph. 

Collected haemocytes were incubated with bacteria for 2h before fixation for T. E. M.. 

Sections clearly indicated that E. cirrhosa haemocytes phagocytose and degrade 

bacteria (fig. 4.1). 

From analysis of variance a number of significant conclusions were obtained. 

Phagocytosis by haemocytes following pre-incubation of the bacteria in 100% 

haemolymph was significantly greater than phagocytosis following SOS treatment 

(F=594.85, P<0.0001) (fig. 4.2a, b). Highly significant values were also obtained for 

the effect of incubation temperature (F=155.09, P<0.0001), and also for the duration 

of the assay (F=178.9, P<0.0001). The concentrations of haemolymph used in the 

assay medium did not have a significant effect (F=0.32, P=0.814) indicating that the 

rate of phagocytosis was statistically equivalent in assays containing 0,0.1,1 or 10% 

haemolymph. 
(Ft 

5 q. 3) 00v, 
- 

Cross-wise comparisons of the percentage of haemocytes phagocytosing opsonized 

and unopsonized bacteria, temperature and assay duration were also highly significant, 

(P<0.0001), whereas cross-wise comparisons involving haemolymph concentration in 

the assay medium, confirmed that the haemolymph concentrations, in SOS, did not 

affect phagocytic rates. Haemolymph concentration was therefore not considered in 

further analysis, and results at each temperature and time were pooled. 

Phagocytosis of bacteria pre-incubated in SOS was affected by temperature and time 
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Figure 4.1. Transmission electron micrograph of Eledone cirrhosa haemocytes (H). 

One haemocyte has engulfed a bacterium (Vibrio anguillarum) (B). 



Fig. 4.1 4µm 
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Figure 4.2(a) Phagocytosis by haemocytes of non-opsonized formalized Vibrio 

anguillarum at four temperatures over a2h incubation period. The bacteria were pre- 

treated with SOS for 2h at 15°C. Tukeys CI estimate = 9.52. 
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(fig. 4.2a). At all temperatures the number of haemocytes engulfing bacteria increased 

over time. At 20°C there appeared to be fewer haemocytes phagocytosing than at 

15°C, however statistically there was no difference between the means at the two 

temperatures. At 10°C there was a rapid increase in the number of haemocytes 

phagocytosing bacteria during the first 30 min followed by a slower rate of increase up 

to 2 h. At both 5 and 10°C significantly lower phagocytic rates were observed than at 

15 and 20°C over the 2h period. The mean number of haemocytes phagocytosing 

bacteria, pre-incubated in 100% haemolymph, over time were shown in Figure 4.2b. 

The haemocyte phagocytic rate again increased over the 2h period but there were far 

smaller differences between the incubation temperatures. The phagocytic rates were 

again lower at 5°C than at the other temperatures. The maximum increase in 

phagocytosis at all temperatures occurred within the first 30 min. 

As with the first experiment, the different concentrations of haemolymph in SOS (at 

0,0.1,1 or 10%) used in the second assay were found to have little effect, so were 

removed from the pair wise comparison with no appreciable percentage error increase 

(0.027%) and the results pooled at each pre-incubation temperature and time. To 

simplify the pairwise comparison the assay temperature was not included as a main 

factor, but was added as an interacting factor. The results from the simplified model 

show that there were large statistically significant differences (F=1083.35 P<0.0001) 

between the haemolymph pre-incubation concentrations. The pre-incubation 

temperatures (F=61.32 P<0.0001), and the pre-incubation times (F=725.24 P<0.0001) 

were similarly significantly different. Pre-incubation of the bacteria in PBS alone at 
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Figure 4.2(b). Phagocytosis by haemocytes of opsonized formalized Vibrio 

anguillarum at four temperatures over a2h incubation period. The bacteria were pre- 

treated with 100% haemolymph for 2h at 15°C. Tukeys Cl estimate = 9.52. 
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different temperatures and time periods caused no significant differences in the 

phagocytic rate (fig. 4.3). Bacteria pre-incubated in 0.1% haemolymph in PBS at all 

pre-incubation temperatures and times were phagocytosed at a significantly lower rate 

than in PBS alone. Pre-incubation of the bacteria in 1% haemolymph showed initially 

the same lowered phagocytic rate as for 0.1% pre-incubation. However, pre- 

incubation of the bacteria in 1% haemolymph for 10 min at 20°C caused an enhanced 

phagocytic rate which also occurred at all temperatures at 60 and 120 min. Bacteria 

pre-incubated in 10% haemolymph for 1 min at 5,10,15 and 20°C and for 10 min at 5 

and 10°C were statistically equivalent to the values determined in PBS alone. 

However, at 10 min following pre-incubation at 15 and 20°C more haemocytes were 

observed phagocytosing bacteria than at 5 or 10°C, or at 1 min at all temperatures. 

Pre-incubation of the bacteria in 100% haemolymph caused enhanced phagocytic rates 

after 10 min at all temperatures and time periods. Apart from one value incubated at 

15°C for 120 min, the enhanced phagocytic rate was statistically equivalent to the 

enhanced rates found after bacterial pre-incubation in 1 and 10% haemolymph 

concentrations. 

page 80 



Phagocytosis by Haemocytes from Eledone cirrhosa 

Figure 4.3. Phagocytosis of formalized Vibrio anguillarum. The haemocytes were 

incubated at diffferent temperatures for 30 min only. The bacteria were pre-incubated 

in 0% haemolymph (i. e., PBS only), 0.1% haemolymph, 1% haemolymph, 10% 

haemolymph and 100% haemolymph concentrations. The bacterial pre-incubation 

temperatures were 5,10,15 and 20°C and the pre-incubation times were 1,10,60 and 

120 min. Tukeys CI estimate = 3.1. 
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Discussion 

The results presented here demonstrate that E. cirrhosa haemocytes are capable of 

recognizing and ingesting the formalized bacterium Vibrio anguillarum. V. 

anguillarum is a Gram negative commensal marine opportunist and was chosen as the 

experimental bacterium because it has been isolated from, and used in previous studies 

on wound healing in E. cirrhosa (Bullock et al., 1987). This bacterium has also been 

implicated in causing cephalopod infections when the animals are held in captivity and 

is a common contributory cause of death at high aquarium temperatures (Lebovitz et 

al., 1977; Hanlon et al., 1984; Ford et al., 1986; Hanlon & Forsythe, 1990). 

Stuart (1968) found that E. cirrhosa haemocytes required haemolymph for in vitro 

phagocytosis of erythrocytes. The data presented in this paper demonstrate that the 

presence of haemolymph is not necessary for ingestion of bacteria. However, this 

bacterium is smaller with far less surface area than an erythrocyte and as such may be 

more easily phagocytosed. It was found by Tyson and Jenkin (1974) that haemocytes 

from a crayfish (Parachaeraps bicarinatus) phagocytosed bacteria in the absence of 

haemolymph, but erythrocytes were not phagocytosed unless they were pre-treated 

with haemolymph (McKay et al., 1969). Further Jenkin (1976), suggested that the 

concentration of certain recognition molecules on the crayfish haemocyte surface was 

not sufficient to bind erythrocytes, but was sufficient to bind bacteria, and a similar 

explanation could apply to E. cirrhosa haemocytes. Another possibility was 

demonstrated by Bayne et al., (1979), who showed that haemocytes from Mytilus 

californianus had a greater affinity for yeast cells than human erythrocytes, and 
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suggested that phagocytosis of foreign particles was selective. Results from other 

molluscan species also demonstrate that surface antigenicity of the respective test 

particles has an effect on phagocytosis by haemocytes (Tripp & Kent, 1967; Anderson 

& Good, 1976). 

Tripp (1966) using the bivalve M. mercenaria concluded that haemolymph pre- 

treatment of erythrocytes caused increased phagocytosis. The same experiment 

showed however that if untreated erythrocytes were incubated with haemocytes for 

longer periods of time, the same levels of phagocytosis were achieved. With E. 

cirrhosa haemocytes at 15 and 20°C the phagocytic rate is higher at 30 min for 100% 

haemolymph treated bacteria compared to SOS treated bacteria, but after 2h there 

was no difference in phagocytic rates between the 2 treatments. The data presented 

here also indicate that a higher percentage of haemocytes phagocytosed haemolymph 

treated bacteria at 5 and 10°C over 2h than SOS treated bacteria. Tripp (1992) also 

showed that the haemocytes ofM. mercenaria were avidly phagocytic in the absence 

of haemolymph, however at low temperatures, in the presence of haemolymph there 

was increased phagocytosis of yeast. Abdul-Salam and Michelson (1980) working 

with Biomphalaria glabrata also demonstrated that temperature has an effect on 

haemocyte phagocytosis. A phagocytic activity peak was evident at 30°C with 

inhibition of phagocytosis below 15°C. Low temperature inhibition (4°C) of 

phagocytic rates has also been demonstrated for haemocytes from the hard clam M. 

mercenaria with maximum rates occurring at 22 and 37°C (Foley & Cheng, 1975). 

With SOS treated bacteria, E. cirrhosa haemocytes demonstrate an activity peak with 
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about 70% of haemocytes phagocytosing after 2h at 15 and 20°C. At 5°C only 14% 

of haemocytes contained bacteria, whereas if the bacteria were initially pre-incubated 

in haemolymph before addition to the assay, the phagocytic rate at 5°C increased to 

around 47%. 

The results presented above indicate that the amount of haemolymph present in the 

bacterial pre-incubation medium has a dramatic effect on the number of haemocytes 

subsequently engulfing these bacteria within a 30 min period. Haemolymph 

concentrations of 0.1 and 1% in PBS, resulted in lower numbers of haemocytes 

phagocytosing compared to PBS alone. This inhibition changes to enhanced 

phagocytosis, at all higher pre-incubation concentrations. Further comparisons 

demonstrate that the temperature of the pre-incubation medium and particularly the 

duration of incubation are also important factors. The observed trends indicate that 

increasing the pre-incubation temperature decreases the pre-incubation time needed for 

enhanced phagocytosis to occur. Fryer and Bayne (1989) working on B. glabrata 

similarly demonstrated that phagocytosis was inhibited after short pre-incubation 

periods, whereas longer pre-incubation periods of 1h resulted in enhanced levels. It 

was suggested by the authors that initial non-specific adsorption of a variety of plasma 

components (opsonins) occurred onto, in their case, the yeast surface. Longer 

exposure to the plasma allowed more of the opsonins to bind to the yeast surface. The 

results from the data presented here for the different pre-incubation haemolymph 

concentrations and durations of exposure seem to support this hypothesis. In addition 

it is possible that if the temperature is increased further, more of the available plasma 
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components would adhere onto the surface of the bacterium. 

When haemocytes from K cirrhosa were resuspended in SOS, as stated above, there is 

phagocytosis of the formalized bacterium V anguillarum. In buffers containing either 

EDTA or EGTA, no phagocytosis of the same bacterium was evident (Malham, 

unpublished data). SOS contains Ca2+ and Mg2+ and it appears likely that the presence 

of these divalent ions has an effect on phagocytosis. Fryer and Adema (1993) 

showed that manipulated haemocytes from B. glabrata retained some phagocytic 

activity, but that addition of excess Ca2+ and Mg2+ to the haemocytes before the 

addition of the target particles enhanced their phagocytic rates. E. cirrhosa 

haemocytes were initially drawn into an anticoagulant buffer containing EGTA and 

washed in Octopus Ringer, also containing EGTA, before resuspension in EGTA-free- 

SOS, all of which could alter haemocyte behaviour and affect phagocytosis. Corbicula 

fluminea haemocytes (Tuan & Yoshino, 1987) also required extracellular Ca2+ or Mg2+ 

for both opsonin-dependent and -independent phagocytosis. The authors suggest that 

the opsonin possibly exists as a divalent cation-macromolecular complex due to the 

loss of enhanced phagocytosis after dialysis against EDTA and EGTA. Further, 

Mytilus edulis haemocytes phagocytosed yeast cells with high efficiency when calcium 

ions were present in the suspension medium, and gave similar results when 

haemolymph alone was added, but almost no phagocytosis was recorded with 

haemocytes in buffered saline (Renwrantz & Stahmer, 1983). When V. anguillarum 

was resuspended in SOS, E. cirrhosa haemolymph diluted in SOS, or in PBS alone, 

there was no change in the haemocyte phagocytic rate. However, when Y. 
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anguillarum was resuspended in haemolymph diluted in PBS L 1% haemolymph 

concentration) or in haemolymph alone, enhanced phagocytosis was observed. 

Haemolymph lectins have been shown to act as opsonins for haemocyte phagocytosis 

(e. g., Renwrantz, 1983; Renwrantz 1986; Smina & Van der Knapp, 1986, Vasta, 

1991). Agglutination results from Octopus maya (Fisher & Dinuzzo, 1991) further 

support the role of lectins in recognition of non-self. Studies using the molluscs 

Mytilus edulis (Renwrantz & Stahmer, 1983) and Lymnaea slagnalis (Van Der Knapp, 

19S2) have demonstrated that molecules antigenically related to haemolymph lectins 

have been found in the cytoplasm and on the surface of haemocytes. Lectins, in 

particular C-type, are found in a number of invertebrates including Octopus vulgaris. 

These lectins are Ca2+ dependent, and these ions are required for ligand binding of the 

lectin (Rögener et al., 1986). Stuart (1968) suggested a possible link between an 

opsonic factor and haemocyanin in E. cirrhosa. Also a lectin identified from the 

haemolymph of O. vulgaris has been shown to be similar to a haemocyanin subunit 

(Rögener et al., 1985). The nature of the soluble factor causing enhanced 

phagocytosis in L cfrrhosa has not been studied, however the factor (s) must be 

present at a high concentration, since it is effective at a haemolymph concentration of 

1% at 15 and 20°C. 

In conclusion, in vitro phagocytosis of Vibrio anguillarum by haemocytes from E. 

cirrhosa is aided by a component of haemolymph and is affected by temperature, 

duration of the assay and pre-incubation of the bacterium with different haemolymph 

concentrations. Further studies to elucidate whether E. cirrhosa haemocytes are 
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capable of phagocytosing and digesting live microorganisms in vitro and in vivo are 

being pursued. 
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Abstract 

Eledone cirrhosa haemocytes are attracted to certain blood preparations at low 

concentrations (0.1-10%). Haemocytes migrated to blood solutions which had 

contained live Vibrio anguillarum (a Gram-negative bacterium) for 2h at 15° C. 

When the same experiments were performed with formalized V. anguillarum very little 

migration was observed. E. cirrhosa haemocytes also migrated to blood preparations 

containing lipopolysaccharide from the Gram-negative bacterium, Escherichia coli at 

0.0625 - 0.25mg/ml. 

Key Words: Eledone cirrhosa; Whole blood; Whole blood lysate; Haemolymph; 

Haemocyte lysate; Haemocytes; Migration; Bacteria; Lipopolysaccharide 
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Introduction 

The primary cellular defence mechanism of most invertebrates is the recognition, 

ingestion and killing of invading micro-organisms by the blood cells (Millar & 

Ratcliffe, 1994). Recognition involves the detection, by the blood cell, of the invader 

and the directional movement towards the offending organism (Ratcliffe et al., 1985). 

It has been demonstrated in a few invertebrates, e. g. insects (Stefano et al., 1989), 

crustaceans (Smith & Söderhäll, 1986), and oligochaetes (Marks et al., 1979) that 

chemotaxis/chemokinesis is involved in non-self detection. Chemotaxis is the 

activation by, or detection of, a chemical gradient by the blood cell and directional 

movement in that gradient whereas chemokinesis is an increase in random migration 

due to a chemical gradient and is not directional. 

Molluscan studies have concentrated on the bivalves and gastropods. It is known that 

haemocytes from certain bivalves, e. g. Mytilus edulis, will migrate to, and infiltrate 

wounded areas (Bubel et al., 1977). Haemocytes from Mercenaria mercenaria 

(Fawcett & Tripp, 1994), Crassostrea virginica (Cheng & Rudo, 1976; Cheng & 

Howland, 1979) and Mytilus edulis (Schneeweiß & Renwrantz, 1993) have also been 

shown to migrate in vitro towards bacteria or secreted bacterial products. Gastropod 

haemocytes from Viviparus malleatus migrated towards heat killed bacteria (Schmid, 

1975) and in Biomphalaria glabrata haemocyte migration to Schistosoma mansoni 

sporocysts occurred in resistant snails (Basch, 1979) and was modulated by excretory- 

secretory products in vitro (Lodes & Yoshino, 1990). Molecules of bacterial origin 

also stimulate molluscan haemocyte migration. In M. edulis, lipopolysaccharide (LPS) 
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from various bacteria was found to be chemoattractive to haemocytes, whereas the 

formylated tripeptide N-formyl-methionyl-leucyl-phenylalanine (N-FMLP) stimulated 

random cell migration (Schneeweiß & Renwrantz, 1993). Fawcett and Tripp (1994) 

demonstrated that N-FMLP induced migration in M. mercenaria haemocytes and that 

migration was inhibited by use of the N-FMLP receptor antagonist. Howland and 

Cheng (1982), working with C. virginica, found that certain bacterial cell wall and cell 

envelope proteins of about 10,000Da induced haemocyte migration. 

Octopus blood does not coagulate upon wounding, however the muscles around the 

wound vasoconstrict and the wound is eventually plugged by the blood cells 

(haemocytes) of the animal. There appears to be only one type of haemocyte 

detectable in Eledone cirrhosa (Cowden & Curtis, 1974,1981) and it is released from 

the leucopoetic organs or white bodies located in the orbital sinuses behind the eyes 

(Wells, 1978,1983). The haemocyte is capable of in vitro phagocytosis of mammalian 

red blood cells (Stuart, 1968) and bacteria (Chapter 4), and will rapidly infiltrate and 

migrate to wounded areas which quickly become infested with bacteria (Bullock et al., 

1987; Polglase et al., 1983; Feral, 1988; reviewed by Ford, 1992). This paper 

attempts to determine whether E cirrhosa haemocytes migrate to different blood 

preparations in vitro. Lipopolysaccharide (LPS) as well as bacteria were also added to 

the blood preparations, and to a buffer, to determine any effect on haemocyte 

migration. 
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Materials and Methods 

Animals 

Octopuses (Eledone cirrhosa) were obtained from around the North Wales and Isle of 

Anglesey coast lines. The animals were maintained in the aquarium at the University 

of Wales, Bangor at 12°C. The animals were weighed, sexed and marked (Chapter 3) 

within 48 h of being brought into the aquarium. The marked animals were returned to 

specific tanks (8 animals/tank) and allowed to recover for 24 h. 

Haemocytes 

Animals were randomly chosen from certain tanks, weighed, anaesthetized and blood 

sampled from the branchial blood vessel (Chapter 2). The sample was put directly into 

an ice cold marine anticoagulant (MA) (NaCl, 2.63g/100ml; glucose, 1.8g/100ml; tri- 

sodium citrate, 0.088g/100m1; citric acid, 0.055g/100m1) containing ethylene glycol- 

bis(ß-aminoethylether) N, N, N', N', - tetraacetic acid (EGTA) (0.029g/100m1) to 

which blood was added (I ml blood : lOml MA). A haemocyte count was taken and 

the blood centrifuged at 800g for 5 min at 4°C. The haemocytes were then 

resuspended in octopus Ringer (OR) (NaCl, 2.433g/100ml; glucose, 1.4g/100ml; 

EGTA, 0.015g/100m1; KCI, 0.082g/100ml; KH2PO4,0.004g/l00ml) at 1x 106 

haemocytes/ml before a final centrifugation and resuspension in OR containing CaC12 

(0.0142g/l00ml), MgC12 (0.0524g/100ml) and MgSO4 (0.0629g/100m1(ORCM). The 

haemocytes were then held on ice before use in the chemotaxis assay. 
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Experimental Media 

Four blood preparations, whole blood, whole blood lysate, haemolymph, haemocyte 

lysate and ORCM were used in the migration assay. Whole blood preparations were 

standardized by taking a blood count and adjusting the haemocyte number to 1x 106 

haemocytes/ml by the addition of extra pooled haemolymph. The whole blood 

preparation was pooled from several individuals and then held on ice until the various 

incubations and additions had been performed (see below). After the various 

incubations the whole blood preparation was centrifuged at 800g for 5 min at 4°C to 

remove the haemocytes and then centrifuged at 13000g for 10 min to remove 

incubated bacteria (see below). The resulting haemolymph was stored at -20°C until 

use.. Preparation of the whole blood lysate solution involved pooling standardized 

whole blood, freezing and thawing (x3), to ensure rupture of all the haemocytes, 

centrifuging at 13000g for 5 min-to remove all cellular debris and storing at -20°C until 

required. For haemolymph, the sampled blood was centrifuged at 800g for 5 min at 

4°C and the haemolymph decanted and frozen at -20°C until use. In order to obtain 

enough haemolymph and to negate individual variation between haemolymph samples, 

haemolymph from several individuals was pooled before use. The haemocyte lysate 

preparation involved putting the blood directly into MA, centrifuging and resuspending 

in ORCM at lx 106 haemocytes/ml and then freezing at -20°C. Before use the 

haemocyte lysate solution was frozen and thawed x3 and centrifuged at 13000g for 5 

min as for whole blood lysate and stored at -20°C. 
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The four blood preparations were each diluted in ORCM to 0,0.1,1,10,25,50 and 

100% concentrations (table 1). Lipopolysaccharide (LPS) (K coil serotype 0127: B8) 

(Sigma) (0.25mg/ml) was added to each of the blood preparations and also to ORCM 

and then either serially diluted (x2) in the respective blood preparations or in ORCM 

(i. e. 100,50 and 25% concentrations were used) (tables 2& 3). After 2h incubation 

ät' 15°C the different solutions (diluted blood preparations and LPS preparations) were 

frozen at -20 °C until use. Live and dead Vbrio anguillarum (MT275) (obtained from 

the Scottish Office Agricultural Environment and Fisheries Department, Aberdeen) 

were centrifuged at 13000g for 10 min and resuspended at 108 cells/ml in ORCM. The 

bacteria were then centrifuged again before resuspension in each of the blood 

preparations or in ORCM to 108 , 107 and 106 bacteria/ml (tables 2& 3). After 

incubation for 2h at 15°C the bacteria were removed by centrifuging at 1300g for 10 

min and the solutions frozen at -20°C until use. 

Table I. Blood preparations were diluted in octopus Ringer, with added 

ä-. calcium and magnesium, to 0.1,1,10,25,50 and 100% concentration. 

*= Octopus Ringer with Calcium and Magnesium. 
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Table 2. Live or dead V. anguillarum and lipopolysaccharide were 

added to 100% blood preparations. After 2h incubation the bacteiia 

were removed. The preparations were used in the determination of 

häemocyte migration. 

Blood Preparation Live or Dead Bacteria/ml Li o of saccharide m ml 
Whole Blood 106 10 10g 0.625 1.25 2.50 

Whole Blood Lysate 106 10 10 0.625 1.25 2.50 

". - -Haemo1h 10 10 108 0.625 1.25 - 2.50 

Haemocyte Lysate 

J 
1 

10 -10-7 - 10 0.625 1.25 2.50 

Table 3. Live and deäd ti'. wiguillarur and lipopolysacchaiide were 

added to 25,50 and 100% blood preparations. After a2h incubation 

the bacteria were removed. The pie aiitiöns were used ih the 

determination of haeiriöcyte migration. 

Solutions Live or Dead Bacteria/ml Li o of saccharide (mg/ml) 
25% Whole Blood 106 - - 0.625 - - 
50% Whole Blood - 10 - 1.25 - 

-- 100% Whole Blood - 108 -- - 2.50 
25% Whole Blood Lysate 10 - - 0.625 - - 
50% Whole Blood Lysate - 10 - - 1.25 - 
100% Whole Blood Lysate - - 108 - - 2.50 

25% Haemol h 106 - - 0.625 - - 
50% Haemol h - 10 - - 1.25 - 
1001/6 Haemol h - - 108 - - 2.50 

25% Haemo e Lysate 106 - - 0.625 - - 
50% Haemocyte Lysate - 10 - - 1.25 - 
100% Haemocyte Lysate - - 10 - - 2.50 

- ORCM* Buffer 10 10 108 0.625 1.25 2.50 

*= Octopus Ringer with Calcium and Magnesium. 
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Migration Assay 

Thirty microlitres of one of the blood solutions (experimental media) or the control 

(ORCM), were added, in triplicate, to the wells in the bottom part of a 48 well 

migration chamber (Neuro Probe, MD, USA). The blood solutions used were the 

four blood preparations diluted in ORCM (table 1), the four blood preparations that 

had contained live or dead bacteria (tables 2& 3), and the blood preparations 

containing LPS (tables 2& 3). A 3µm pore size polyvinylpyrrolidone-free 

polycarbonate filter (Millipore, Bedford, MA, USA) was placed over the bottom of the 

lower chamber followed by a silicon gasket and the top part of the chamber. Forty- 

three microlitres of the haemocytes in ORCM at 1x 106 haemocytes/ml (held on ice) 

were added to the wells in the top part of the migration chamber. The migration 

chamber was then sealed in a moist environment at 15°C for 90 min. The assay was 

terminated by removing the filter paper from the chamber and carefully scraping any 

haemocytes from the upper side of the filter. The filter paper was then fixed in 

methanol for 2 min and air dried. The paper was stained in Giemsa, rinsed in Gurr 

buffer (pH 6.8), dried and mounted using DPX. The number of migrating haemocytes 

(those in the pores or on the underside of the filter) were counted in triplicate in each 

well using a1 mm2 field of view at 400x magnification. 

Each set of experimental media was run 5 times. At the end of each run the chamber 

was sterilized before the addition of the same but fresh media to the bottom of each 

chamber. For each set the haemocytes added to the top of the chamber originated 

from a different octopus. 
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Analysis 

Means and standard errors were taken of the 5 replicates of each set of experiments. 

The control values in each case were subtracted from the experimental values and the 

results plotted. Analysis of Variance (ANDVA) and Student's t-test were used to 

determine significant differences between the different blood preparations and the 

various experimental media (P < 0.05). 

Positive migration was indicated where more haemocytes were traversing the filter 

than the control value for each set of replicates (N = 5). Negative migration values 

were obtained when less haemoyctes traversed the filter than the control. 
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Results 

Eledone cirrhoses haemocytes showed both positive and negative migration from a 

suspension in ORCM through the 3µm pore sized membrane to various blood 

preparations. Significant haemocyte migration (P < 0.05) was also recorded when live 

or dead bacteria (Vibrio anguillarum) or LPS were added to the blood preparations. 

Dilution of the four blood preparations (whole blood, whole blood lysate, haemolymph 

and haemocyte lysate) affects the number of haemocytes traversing the 3µm pore filter 

(fig. 5.1a & b). Analysis of Variance (ANOVA) results showed that blood 

preparations at low concentrations (0-10%), and the type of blood preparation used, 

significantly (P<0.0001) affected haemocyte migration. A low concentration (fig. 

5.1a) of haemocyte lysate (0.1% at 1x 10' haemocytes/ml) attracted fairly high 

numbers (60 haemocytes/mm2) (P<0.05) of haemocytes across the filter. Increasing 

the haemocyte lysate concentration however decreased (P<0.05) the number of 

migrating haemocytes, whereas with the whole blood lysate and whole blood 

preparation the number of haemocytes crossing the membrane was greatest (P<0.05) 

at 10% concentration (137.83 and 77.2 haemocytes/mm2 respectively). At whole 

blood and whole blood lysate concentrations of 25 to 100% the number of haemocytes 

which traversed the filter decreased (P<0.05) compared to the number at 10%. Both 

haemolymph and haemocyte lysate preparations at 25 - 100% (fig. 5.1b) showed no 

difference compared to the controls in the number of haemocytes crossing the filter to 

the preparations. 
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Figure 5. I a. The number of haemocytes/mm2 which migrated towards various blood 

preparations diluted in ORCM buffer to 0.1,1 and 10% concentrations. Each value 

represents the mean of 5 individual animals. Error bars are the standard errors of the 

mean. 

Figure 5. lb. The number of haemocytes/mm2 which migrated towards various blood 

preparations diluted in ORCM buffer to 25,50 and 100% concentrations. Error bars 

are the standard errors of the mean. 
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The effects of the blood preparations which had contained live and dead bacteria (V. 

anguillarum) on the number of haemocytes crossing the filter to the blood 

preparations are shown in Figure 5.2 (a&b) and Figure 5.3 (a&b). ANOVA results 

demonstrated that haemocyte migration is significantly (P<0.0001) affected by the 

concentration of live bacteria previously incubated in the blood preparation, as well as 

by the blood preparation used to incubate the live bacteria. The different blood 

preparations in which dead bacteria had previously been incubated also demonstrated 

highly significant (P<0.0001) ANOVA values. The pre-incubation of live bacteria in 

whole blood (fig. 5.2 a&b) or whole blood diluted in ORCM, caused significantly 

(P<0.05) higher numbers of haemocytes to migrate through the filter compared to the 

other blood preparations. The number of haemocytes which migrated decreased 

(P<0.05) as the concentration of bacteria decreased for both the 100% whole blood 

lysate preparation (fig. 5.2a) and for the lysate diluted with ORCM to 50% (10" 

bacteria/ml) (fig. 5.2b). 

The pre-incubation of bacteria at low concentrations (1 x 106 bacteria/ml) in 100% 

haemolymph and whole blood preparations caused fairly high (P<0.05) numbers of 

haemocytes to cross the filter (75.5/mm2 and 102.56/mm2 respectively compared to 1x 

107 bacteria/ml). However when haemolymph was diluted with ORCM to 50 and 25% 

concentrations the number of migrating haemocytes decreased (P<0.05) and became 

less than the control value at a bacterial concentration of 1x 106/ml. 

Haemolymph pre-incubated with dead bacteria at 106 and 107 cells/ml (fig. 5.3a&b) was 

significantly (P<0.05) less attractive to haemocytes compared to the control and all the 
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Figure 5.2a. The number of haemocyteslmm2 which migrated towards various blood 

preparations at 100% concentrations in which live bacteria at 106,107 and 108 cells/ml 

were incubated for 2 h, after which the bacteria were removed and the supernatant 

used in the assay. Error bars are the standard errors of the mean. 

Figure 5.2b. The number of haemocyteslmm2 which migrated towards various blood 

preparations diluted to 25,50 and 100% concentrations in ORCM buffer in which live 

bacteria at 106,10' and 108 cells/ml respectively were incubated for 2h before removal 

of the bacteria and use of the preparations in the assay. Error bars are the standard 

errors of the mean. 



Figure 5.2. a. Haemocyte Migration to Preparations 
200 which had contained Live Bacteria 
175 N= 5 
150 

E 125 
100 

0 75 
50 

E 25 

R 0 

-25- 
0 
Z -50   Haemolymph 

-75 A Haemocyte Lysate 
v Whole Blood Lysate 

-100 " Whole Blood 
fi 

1/100 10/100 100/100 

Bacterial Concentration (x106)/Blood Preparation (%) 

Figure 5.2. b. H aemocyte Migration to Preparations 
200 which had contained Live Bacteria 
175 (Diluted in ORCM) 
150 N= 5 

E 125 y 
100 

75 
v 50 
E 25 
m 
R 0 t 

r� 

-25 p 
-50 

  Haemolymph 
z A Haemocyte Lysate 

-75 v Whole Blood Lysate 

-100 " Whole Blood 
* ORCM 

1/25 10/50 100/100 

Bacterial Concentration (x106)/Blood Preparation (%) 



Migration by Octopus Haemocytes 

other blood preparations. Whole blood lysate and whole blood at bacterial 

concentrations of 106 and 107 bacteria/ml when diluted to 50 and 25% concentrations 

with ORCM, caused between 50 - 75 haemocytes/mm2 to cross the filter. At a 

bacterial concentration of 1 x108 cells/ml with all preparations at 100% concentration a 

small amount of haemocyte migration was evident (fig. 5.3 a), whereas the same 

concentration of bacteria (1x108 cells/ml) in the ORCM diluted preparations (fig. 5.3b) 

showed almost no significant migration. 

A comparison of solutions which had originally contained live or dead bacteria 

indicated that less haemocyte migration occurred when dead bacteria were incubated in 

the blood preparations than when live bacteria were used. In particular, the pre- 

incubation of dead bacteria with a 100% concentration of whole blood caused a 

significant (P<0.05) decrease in the number of haemocytes crossing the filter in both 

the 100% blood preparation and the 50 and 25% concentrations ORCM diluted blood 

preparation when compared to the pre-incubation of live bacteria in these media. 

Interestingly, undiluted haemolymph in which live bacteria had been incubated at 1x 

106/ml attracted haemocytes but when dead bacteria were used the solution was 

repellent at all concentrations (figs. 5.2a & 5.3a). 

LPS addition to the blood preparations also affected haemocyte migration (fig. 

5.4a&b). ANOVA results showed that both the blood preparations used and the 

concentration in both the LPS experiments, significantly (P<0.0001) affected 

haemocyte migration. Apart from haemolymph, which remained significantly (P<0.05) 

but constantly high, (fig. 5.4a), the other blood preparations caused an increase in the 
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Figure 5.3a. The number of haemocytes/mm2 which migrated toward various blood 

preparations, at 100% concentrations, in which dead bacteria at 106,107 and 108 

cells/ml were incubated for 2 h, after which the bacteria were removed and the 

preparations used in the assay. Error bars are the standard errors of the mean. 

Figure 5.3b. The number of haemocytes/mm2 which migrated toward various blood 

preparations diluted to 25,50 and 100% concentrations in ORCM buffer in which dead 

bacteria at 106,107 and 108 cells/ml respectively were incubated for 2h before removal 

of the bacteria and use of the preparations in the assay. Error bars are the standard 

errors of the mean. 
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number of haemocytes passing through the membrane as the LPS concentration 

increased (fig. 5.4a). Dilution of the haemolymph to 50 and 25% concentrations in 

ORCM also caused the number of migrating haemocytes to decrease with decreasing 

LPS concentrations (fig. 5.4b). When comparing the blood preparations, haemocyte 

lysate caused the highest number of haemocytes to migrate in both the 100% undiluted 

and 50 and 25% ORCM diluted preparations. ORCM with LPS (fig. 5.4b) caused 

haemocytes to migrate at significantly (P<0.05) higher levels at 0.0625 and 

0.125mg/ml (133.8/mm2 and 154.4/mm2 respectively) compared to the blood 

preparations. At a LPS concentration of 0.025mg/ml in ORCM however, the number 

of haemocytes crossing the membrane decreased. 

With all blood preparations pre-incubation with live bacteria or the addition of LPS 

caused increased haemocyte migration, while there was either no difference or a 

decrease for dead bacteria. Pre-incubation with live bacteria, generally, prompted 

increased migration at concentrations of 1x 106 and 1x 107 cells/ml for haemocyte 

lysate and whole blood. 
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Figure 5.4a. The number of haemocytes/mm2 which migrated toward various blood 

preparations, at 100% concentration, containing LPS at 0.0625,0.125 and 0.25mg/ml. 

Error bars are the standard errors of the mean. 

Figure 5.4b. The number of haemocytes/mm2 which migrated toward various blood 

preparations, diluted to 25,50 and 100% concentrations in ORCM buffer, containing 

LPS at 0.0625,0.125 and 0.25mg/ml respectively. Error bars are the standard errors 

of the mean. 



Figure 5.4. a. Haemocyte Migration to Preparations 
300 IN =5 containing LPS 

N 250 
E 
E 

y 200 
O 
t" 
ö 150 
E 
m 

= 100 

0 
'G 50   Haemolymph 

A Haemocýyto Lysate 
v Whole Blood Lysate 
" Whole Blood 

0 
0.0625/100 0.1250/ 100 0.25/100 

. 
LPS Concentration (mg/ml)/Blood Preparation (%) 

Figure 5.4. b. Haemocyte Migration to Preparations 
300 containing LPS 

N_ 5 (Diluted in ORCM) 
250 1 

E 
E 

y 200 
O 

T ö 150 
E 

= 100 $ 

Z   Haemolymph 1 50 A Haemocyte Lysate 
v Whole Blood Lysate 
" Whole Blood 

0 * ORCM 
0.0625/25 0.1250/50 0.25/100 

LPS Concentration (mg/ml)/Blood Preparation (X) 



Migration by Octopus Haemocytes 

Discussion 

It has been demonstrated that Eledone cirrhosa haemocytes will positively migrate 

towards certain chemical stimuli, in particular factors induced by the presence of LPS 

and by pre-incubation with live bacteria, Vibrio anguillarum. 

Negative migration in the form of fewer haemocytes passing through the 3µm pores of 

the filter, compared to controls, has also been shown in particular for haemolymph in 

which dead bacteria had been incubated. 

Vibrio species are known to be fatal to cephalopods in captivity (Hanlon & Forsythe, 

1990). These bacteria are found naturally on the skin of octopuses and when this soft 

bodied animal squeezes through rocks in its natural environment it could easily sustain 

injuries in which these opportunistic bacteria would rapidly multiply. 

Interestingly, it is low concentrations of blood (0.1 - 10%) which prove attractive to 

haemocytes. Specifically haemocyte lysate is attractive at a 0.1% concentration but 

whole blood lysate and whole blood attract high haemocyte numbers at 10% 

concentration. There appear to be no previously published studies on haemocyte 

migration to different blood preparations apart from that inferred from the effects of 

injury in molluscs (Tripp, 1961; Pauley & Sparks, 1967; DesVoigne & Sparks, 1969; 

Pauley & Krassner, 1972; Sminia et at, 1973; Bubel et al., 1977; Bayne et al., 1979; 

Sparks & Morado, 1988), the effect of haemocyte lysate supernatant on insect 

haemocytes (Takle & Lackie, 1986) or the effect on, among others, the earthworm 

coelomocytes by grafting experiments (Marks et al., 1979). Presumably the release of 

certain constituents by haemocytes themselves attracts naive haemocytes. However in 
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high concentrations of haemocyte lysate (>1%) and haemolymph (>1%) the blood 

preparations appear to become either too concentrated and prevent haemocyte 

migration or is the normal value and therefore does not stimulate migration 

respectively. Further, since both whole blood and whole blood lysate are highly 

attractive for haemocytes, even at 10% concentration, while undiluted haemolymph 

has little attraction, it appears that a chemoattractant could be released from E. 

cirrhosa haemocytes when placed in diluted haemolymph or released from cell 

breakdown. 

The response of haemocytes to blood preparations in which a Gram-negative 

bacterium (V. anguillarum) has been pre-incubated depends on whether the bacteria 

are alive or dead. Whole blood in which live bacteria have been incubated caused high 

numbers of haemocytes to migrate, which is significantly (P<0.05) increased above the 

migration found for 100% whole blood and whole blood lysate without bacteria. The 

results indicate again that combined components from the haemolymph and either 

whole or lysed haemocytes moderate haemocyte migration when using a high bacterial 

concentration. Studies with insects have suggested that insect immunocytes will 

secrete chemotactic substances upon contact with a foreign antigen and haemolymph 

factors such as lysozyme are also chemoattractants (Gupta, 1991). Interestingly both 

the haemocytes and haemolymph ofE. cirrhosa display lysozyme and antiprotease 

activity (Chapter 8). 

When formalin killed V. anguillarum were incubated in the blood preparations the 

results indicate that haemocytes are not attracted to preparations in which dead 
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bacteria are incubated, possibly indicating that dead bacteria do not induce the release 

of chemoattractants. However, there is evidence for some attraction when dead 

bacteria are incubated in whole blood lysate and whole blood (diluted in ORCM). 

Indeed, negative chemotaxis was detected when bacteria had been pre-incubated in 

haemolymph. Several authors working on molluscs have determined that migration of 

haemocytes occurs to live but not to dead bacteria. Cheng and Howland (1979), using 

Crassostrea virginica haemocytes, and Fawcett and Tripp (1994), using Mercenaria 

mercenaria haemocytes, demonstrated that live Gram negative and Gram positive 

bacteria were chemoattractant but dead bacteria were not. However, haemocytes from 

the gastropod Viviparus malleatus were attracted towards heat killed Staphylococcus 

aureus, though the presence of an ̀ agglutinin' was necessary before migration would 

occur (Schmid, 1975). Lastly, Kumazawa et al. (1990) demonstrated that haemocytes 

from the marine gastropod Nerita albicilla were attracted to both live and dead Vibrio 

parahaemolyticus without agglutinins being necessary. With E. cirrhosa it is highly 

unlikely that any agglutinin effect on haemocyte migration would be apparent since to 

prevent cell aggregration E. cirrhosa haemocytes were suspended in ORCM which 

would inhibit any agglutinating or opsonizing activity present in the haemolymph, 

(Chapter 4). 

Fawcett and Tripp (1994) and Cheng and Howland (1979) suggest that 

chemoattractant molecules are emitted by living vegetative cells of certain Gram- 

positive and Gram-negative bacteria, and indicate that there are several possible 

attractants. Investigations by Howland and Cheng (1982) showed that the 
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chemoattractant for C. virginica haemocytes was a protein of approximately 10,000Da 

associated with the cell wall components of Bacillus megaterium and the cell envelope 

components of Escherichia coll. However, Fawcett and Tripp (1994) and Schneeweiß 

and Renwrantz (1993) have demonstrated haemocyte migration for M. mercenaria and 

haemocyte activation for Mytilus edulis haemocytes, respectively, using N-formyl- 

methionyl-leucyl-phenylalanine (N-FMLP) an oligopeptide isolated from Gram- 

negative bacterial cultures (Marasco et al., 1984). 

E. cirrhosa haemocytes are attracted to LPS, isolated from E. coli, in both buffer and 

blood preparations. Dilution of each of the blood preparations in buffer caused the 

migration of haemocytes to haemolymph to decrease, but increased the overall 

migration of haemocytes to haemocyte lysate, whole blood lysate and whole blood (fig. 

5.1. a&b). Overall the maximum number of migrating haemocytes, (about 172 

haemocytes/mm2), occurred to LPS at 0.25mg/mi in haemocyte lysate (1 x 106 

haemocytes/ml). Experiments using higher concentrations of LPS produced no 

significant haemocyte migration (unpublished data). Though Fawcett and Tripp 

(1994) state that M mercenaria haemocytes were not attracted to LPS, Hughes et al. 

(1991) clearly demonstrated that haemocytes from M. edulis were attracted to 

bacterial products. LPS from Gram negative bacteria (Serratia marcescens and E. 

coli) stimulated chemotaxis in M. edulis whereas formylated peptides appeared to 

induce chemokinesis (Schneeweiß & Renwrantz, 1993). Substances which induce 

chemokinesis (random haemocyte movement) were not specifically investigated in the 

experiments on E cirrhosa reported here. The optimum assay incubation time found 
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for E. cirrhosa haemocytes was 90 min, with shorter assay termination times giving 

unreliable and unreproducible results (pers. obs. ). However as found by Schneeweiß 

and Renwrantz (1993) with M. edulis, there was large individual variation among 

replicates. Individual variation was reduced as much as possible with E. cirrhosa by 

pooling the blood solutions and subtracting control values away from experimental 

values. It proved impossible to investigate whether E. cirrhosa haemocytes were 

displaying chemotaxis or chemokinesis as investigated by Schneeweiß and Renwrantz 

(1993) with M. edulis. The addition, to naive haemocytes from E. cirrhosa, of the 

solutions used to determine migration caused the haemocytes to clump together 

(unpub. data) and appeared to negate the effect of EGTA in the ORCM buffer which 

was used to keep the haemocytes separate and viable (Chapter 2). Low 

concentrations of calcium and magnesium were also added to the ORCM buffer to 

facilitate haemocyte movement. The second set of experiments was performed in 

order to try to quantify the effect of the buffer on the blood solutions. However, the 

results obtained, with the differing solutions used in the determination of haemocyte 

migration, prove that E. cirrhosa haemocytes do migrate in response to these 

stimulants. 

In conclusion, E. cirrhosa haemocytes are capable of migrating to low concentrations 

of blood preparations such as whole blood lysate and whole blood. The haemocytes 

will also migrate to whole blood in which live bacteria and dead bacteria had been 

incubated before use in the assay. Finally, the haemocytes will recognise and move 

towards LPS. Further experimentation is required to determine the nature of the 
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chemoattractants demonstrated in this paper, and whether other chemoattractants such 

as N-FMLPs will also cause E. cirrhosa haemocytes to migrate. 
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Abstract 

Eledone cirrhosa haemocytes are capable of inhibiting the growth of the bacteria V. 

anguillarum, V. parahaemolyticus and Aeromonas salmonicida in vitro. Haemocyte 

growth inhibition of the bacteria varies with the type and concentration of bacteria 

used, the incubation temperature (5-20°C), and the duration of the experiment (0,3 

and 6h). Superoxide dismutase inhibitable nitroblue tetrazolium reduction showed, 

that exposure of haemocytes to dead V. anguillarum caused a higher reduction 

compared to live V. anguillarum. Lipopolysaccharide also caused formazan 

deposition. 

Key Words: Eledone cirrhosa; Haemocytes; Bacteriostatic activity; Reactive oxygen 

intermediates. 
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Introduction 

Circulating invertebrate blood cells are involved in a number of innate defence 

functions. In particular, phagocytosis has been studied and demonstrated in numerous 

invertebrates and involves the recognition, ingestion and killing of invading 

microorganisms (Ratcliffe et al., 1985; Millar & Ratcliffe, 1994). Cellular bactericidal 

activity has been demonstrated in a few invertebrates, e. g., insects (Anderson et al., 

1973), crustaceans (White et al., 1985; Chisholm & Smith, 1992; 1995; Schnapp & 

Smith, 1996), ascidians (Findlay & Smith, 1995,1996), bivalves (Nottage & Birkbeck, 

1990) and echinoderms (Plytycz & Seljelid, 1993; Stabili et al., 1996). Cellular 

bactericidal activity involves the ingestion and killing of foreign invaders which can 

stimulate the intracellular release of various killing factors. Lysozyme, peroxidase and 

Reactive Oxygen Species (ROS) are all part of the battery of killing factors used by 

haemocytes against microorganisms (Ratcliffe et al., 1985). The production of 

different Reactive Oxygen Intermediates (ROIs), e. g., superoxide anion (02), 

hydrogen peroxide (H202), hydroxyl radicals (OM and myeloperoxidase (WO), has 

been demonstrated in a number of invertebrates, e. g., with gastropods (Dikkeboom et 

al, 1987,1988; Shozawa et al., 1989; Adema et al., 1991) and with bivalves 

(Anderson et al, 1992; Pipe, 1992; Takahashi et al, 1993; Greger, 1996). 

Release of ROS after membrane stimulation following phagocytosis, causes an increase 

in oxygen utilization, which is termed the respiratory burst. Biochemically the 

respiratory burst involves the change of molecular oxygen into superoxide anion by the 

use of the enzyme NADPH oxidase (Chakravarti & Chakravarti, 1987) and the 
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activation of the hexose monophosphate shunt pathway. The superoxide anion is then 

detoxified either spontaneously, or via the enzyme SuperOxide Dismutase (SOD) to 

H202 which is then converted to molecular oxygen and water. Some invertebrates, 

however, appear unable to generate ROS, e. g. Mercenaria mercenaria (Cheng, 1976). 

Two methods are used to detect OZ production. Intracellular ROS production is 

detected by the reduction by 02 of the redox dye nitroblue tetrazolium (NBT) to 

formazan. Extracellular ROS release is detected by the reduction of ferricytochrome C 

by 02 (Secombes, 1990). 

It has been demonstrated that Eledone cirrhosa haemocytes are attracted to certain 

stimulants (Chapter 5) and will phagocytose carbon, red blood cells (Stuart, 1968) and 

dead bacteria (Chapter 4). Haemocytes also contain various granules which stain with 

acid phosphatase, indicating lysosomal activity, and stain with DiAminoBenzidine 

(DAB) indicating peroxidase (hence peroxisome) activity (Chapter 3). Lysozyme 

activity has also been demonstrated in the haemocytes ofE. cirrhosa and the activity is 

affected by bacterial challenge (Chapter 8). Live bacteria injected into Octopus 

dofleini (Bayne, 1973) and E. cirrhosa (Chapter 8) are quickly cleared from the 

circulation suggesting that the bacteria are either sequestered into fixed phagocytes in 

certain organs, and/or that the circulating haemocytes phagocytose and kill the 

bacteria. This paper investigates the effect of incubating live bacteria with E cirrhosa 

haemocytes and determines whether bacteria or lipopolysaccharide cause the 

production of intracellular ROIs using the NBT reduction assay. 
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Materials and Methods 

Animals 

The octopuses were obtained from crab pots around the north coast of Anglesey. The 

animals were brought into an aquarium at the University of Wales at Bangor and 

maintained at 10-12°C. After 48 h the animals were weighed, sexed and marked using 

a syringe (1% alcian blue in octopus Ringer (OR) (NaCl, 2.433g/100m1; glucose, 

1.4g/100ml; EGTA, 0.015g/100ml; KCI, 0.082g/100m1; KH2PO4,0.004gl100m1)) 

(Chapter 3) and returned to specific tanks. 

Haemocytes 

Five marked animals were chosen at random. The animals were then weighed, 

anaesthetised and bled from the branchial blood vessel (Chapter 2). The collected 

blood was immediately transferred into marine anticoagulant (MA) (NaCI, 

2.63g/100ml; glucose, 1.8g/100ml; tri-sodium citrate, 0.088g/100ml; citric acid, 

0.055g/100ml) containing ethylene glycol-bis(ß-aminoethylether) N, N, N', N', - 

tetraacetic acid (EGTA) (0.029g/100ml). Generally 1 ml of blood was added to 10 ml 

of ice cold MA. Blood counts were performed on the individual samples obtained and 

the blood was then centrifuged at 800g for 5 min at 4°C. The haemocytes were 

resuspended at 1x 106 haemocytes/ml in OR. The haemocytes were then centrifuged 

again and resuspended in OR containing calcium and magnesium (ORCM) 

(CaC12.6H20, (0.0142gl100m1), MgC12 (0.0524g/100m1) and MgSO4.7H20, 

(0.0629g/100m1)) and held on ice until use. 
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Bacterial Cultures 

The cellular bacteriostatic assay used three bacteria, Yibrio anguillarum (MT275), 

Vibrio parahaemolyticus (MT295) and Aeromonas salmonicida (W004), obtained 

from the Scottish Office, Agricultural Environment and Fisheries Department, Marine 

Laboratory, Aberdeen. The two Vibrio species were grown on 3% Tryptic Soya Broth 

(Gibco) (TSB) containing 2% NaCl, whereas the Aeromonas bacterium was grown on 

3% TSB only. Before use the bacteria were counted, using Norris Powell Diluent 

(NPD) (0.5% formajin, sodium dodecyl sulphate, adjusted to pH 7.3 with Na2HPO4) 

and HCI, centrifuged at about 13000g for 10 min and resuspended in their respective 

growth media at 1x 108 bacteria/ml. 

Cellular Bacteriostatic Assay 

The cellular bacteriostatic assay used to establish the bacteriostatic capacity of E. 

cirrhosa haemocytes was based on that described by Secombes (1990). Serial 

dilutions were made of the bacteria from a concentration of Ix 108 cells/ml. 

One hundred microlitres of the haemocytes at Ix 106 haemocytes/ml were added to 

the wells of a 96 well flat bottom plate (Dynatech) followed by 2Oµ1 of each of the 

bacterial dilutions in triplicate. Blanks containing ORCM (l00µ1) and TSB (20µ1 ± 

NaCl) were incorporated on each plate. The plates were immediately centrifuged at 

800g for 5 min at 4°C and then placed in incubators set at 5,10,15 or 20°C and 

incubated for 6 h. The remaining bacteria, at the required dilutions, were stored at the 

same temperature as the 96 well plates. 
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After 3ha further set of plates was set up using the bacteria which had been serially 

diluted and allowed to multiply for the 3 h. Twenty microlitres of the stored bacteria 

at the required incubation temperature were added in triplicate to l00µ1 of haemocytes 

at the same temperature. These plates were also incubated at 5,10,15 or 20°C but for 

3h only. 

After 6h incubation, 20µ1 of the remaining stored bacteria, which had been serially 

diluted and allowed to multiply, were added to haemocytes at the same temperature to 

both 3 and 6h plates. This last bacterial addition was the control (0 h) for the 

experiment. 

After the addition all plates were immediately centrifuged at 800g for 5 min at 4°C (i. e. 

0 h). The experiment was then stopped by removal of the supernatant and addition of 

S0µ1 of 0.1% Tween 20 (Sigma) (0.1% Tween in sterile octopus saline (NaCl, 

2.367g/100ml; glucose, lg/l00m1; CaC12.6H20,0.116g/100ml; KH2PO4, 

0.0056g/100ml; KCI, 0.1089g/100ml; MgSO4.7H20,0.503g/100ml; MgC12, 

0.419g/100ml)) to lyse the haemocytes. The plates were then left for 5 min before the 

addition of 100pl of 3% TSB (±NaCI depending on the bacteria used). All plates 

were then incubated at 15°C for 16 h, to allow the bacteria to grow, before the 

addition of 10µ1 of 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, 

(MTT) (Sigma) (5mg/ml in distilled water) (detects live bacteria). The plates were 

then incubated for a further 15 min in the dark and the optical density values read at 

600nm in a multiscan spectrophotometer. This procedure was used for all 3 bacteria, 

using the same incubation periods (0,3 and 6 h) and the same incubation temperatures. 
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NBT Reduction Assay 

The NBT reduction assays used one species of bacterium, V. anguillarum, or 

lipopolysaccharide (LPS) (E. coli, Sigma 0127: B8). Live and formalized V. 

anguillarum were centrifuged and resuspended at dilutions of 109,10g, 107 and 106 in 

ORCM. LPS was diluted in ORCM to 1,0.5,0.25,0.125 and 0.063mg/ml. 

A modified form of the assay used by Secombes (1990) was used to test reactive 

oxygen production by octopus haemocytes. One hundred microlitres of E. cirrhosa 

haemocytes in ORCM at 1x 106 haemocytes/ml, were added to triplicate wells of 96 

well plates. The plates were centrifuged at 800g for 5 min and the supernatants 

removed. One hundred microlitres of the stimulants, live and dead V anguillarum and 

LPS, were then each added in triplicate to the wells and the plates were incubated at 

15°C for 1 h. ORCM was added to haemocytes in triplicate wells on each plate to act 

as an unstimulated haemocyte control. Superoxide dismutase (SOD) (Sigma) controls 

were also incorporated for each of the stimulants at a final concentration of 300µg/ml. 

After 1h the plates were centrifuged again and the supernatant containing the 

stimulant was removed. The haemocytes were then washed with octopus buffer (x2) 

before the addition of l00µ1 of NBT (Sigma) (0.3% in ORCM), followed by a further 

incubation of 1h at 15°C. The NBT solution was then removed from the wells and 

absolute methanol was added. The haemocytes were washed (x2) with 70% methanol, 

to remove any extracellular NBT, followed by the addition of 120µ1 KOH (2M) and 

l40pl of dimethyl sulphoxide (DMSO) to rupture the haemocytes and release the 

intracellular NBT. After a further 10 min incubation the optical densities of the plates 
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were recorded at 620nm on a multiscan spectrophotometer with KOH/DMSO used as 

a blank for each stimulant. 

Statistical Analysis 

Analysis for the cellular bacteriostatic assay involved subtracting the blank from all 

values. The triplicate means for each of the 5 replicates were averaged and the mean 

and standard error values for the control, 3 and 6h incubations for the 5 replicates at 

each temperature were plotted against the initial bacterial concentration. Analysis of 

variance (ANOVA) and Student t-tests were used to determine significant differences 

between the incubation time periods, the incubation temperatures and the different 

bacteria used. 

For the NBT assay, the blank was subtracted from all values, and the control values 

were also subtracted from the optical density values obtained from the wells given 

stimulants. Means and standard errors of all of the triplicated 5 replicates were 

calculated and the results plotted. ANOVA was performed to determine the effect of 

concentration for each stimulant. 
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Results 

Cellular Bacteriostatic Assay 

Haemocytes from Eledone cirrhosa demonstrated an ability to inhibit the growth of 

the bacteria Vibrio anguillarum, Vibrio parahaemolyticus and Aeromotors 

salmonicida in vitro. Analysis of Variance (ANOVA) performed on the cellular 

bacteriostatic results produced highly significant (P<0.0001) values for each parameter 

tested. This growth inhibition by the haemocytes depended on the species and 

concentration of bacteria used (P<0.0001 in both cases). Other factors which affect 

haemocyte killing are the incubation temperature and the duration of the exposure of 

bacteria to the haemocytes (P<0.0001 for both parameters). 

At 5°C (fig. 6.1 a) very little growth or growth inhibition of Y. anguillarum was 

observed at bacterial concentrations of 1.25 x 107 bacteria/ml and below. During 

incubations at both 3 and 6 h, haemocytes inhibited bacteria at 1x 108 bacteria/mi. At 

10°C (fig. 6.1b) and 20°C (fig. 6.1d) bacterial inhibition by haemocytes occurred 

across the whole bacterial dilution range with very little difference between the 3 and 6 

h results at 10°C. At 15°C (fig. 6.1 c) incubation of Y. anguillarum with E. cirrhosa 

haemocytes for 6h causes significantly (P<0.05) greater inhibition than when 

incubated for 3 h. 

Generally both 3 and 6h incubations of live V. parahaemolyticus with E. cirrhosa 

haemocytes at 5 and 10°C produced similar levels of growth inhibition (figs. 6.2a & 

6.2b respectively). However at bacterial concentrations of > 6.25 x 106 bacteria/ml 

the 6h and 3h incubations at 10 and 15°C showed no significant difference from the 
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Figure 6.1. a. Haemocytes from Eledone cirrhosa at 1x 106 haemocytes/ml incubated 

with live Vibrio anguillarum at 5°C for 0.3 or 6 h. Each point represents the mean 

from 5 replicates. Error bars are standard errors of the mean. 

Figure 6. I . b. Haemocytes from E. cirrhosa incubated with live V.. anguillarum at 

10°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars are 

standard errors of the mean. 
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Figure 6.1. c. Haemocytes from E. cirrhosa incubated with live V.. anguillarum at 

15°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars are 

standard errors of the mean. 

Figure 6.1. d. Haemocytes from E. cirrhosa incubated with live V.. anguillarum at 

20°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars are 

standard errors of the mean. 
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Figure 6.2. a. Haemocytes from E. cirrhosa incubated with live Vibrio 

parahaemolyticus at 5°C for 0.3 or 6 h. Each point represents the mean from 5 

replicates. Error bars are standard errors of the mean. 

Figure 6.2. b. Haemocytes from E. cirrhosa incubated with live V. parahaemolyticus 

at 10°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars 

are standard errors of the mean. 
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Figure 6.2. c. Haemocytes from E. cirrhoses incubated with live V. parahaemolyticus at 

15°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars are 

standard errors of the mean. 

Figure 6.2. d. Haemocytes from E. cirrhosa incubated with live V. parahaemolyticus 

at 15°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars 

are standard errors of the mean. 
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control values. Low concentrations of bacteria (<3.125 x 106/ml) at 15°C (fig. 6.2c) 

were significantly (P<0.05) inhibited by E. cirrhosa haemocytes. Though growth 

inhibition was indicated at 20°C (fig. 6.2d) for both 3 and 6 h, the plots for both the 

control, 3 and 6h incubations were erratic. 

Very little significant inhibition ofA. salmonicida occurred at 5°C (fig. 6.3a). 

Generally, at 10 and 15°C (figs. 6.3b & 6.3c respectively) 6h incubations of the 

bacteria with the haemocytes indicated decreased growth, however at high bacterial 

concentrations (>2.5 x 107/ml) at 15°C significant (P<0.05) growth inhibition was 

detected after 3h incubation only (fig. 6.3c). At 20°C significant (P<0.05) bacterial 

inhibition occurred at <6.25 x 106 bacteria/ml at both 3 and 6h compared to the 

control (fig. 6.3d). 

Overall E. cirrhosa haemocytes reduced the growth of V. parahaemolyticus more 

than A. salmonicida at 5°C, whereas at 10°C they significantly reduced the growth of 

V. anguillarum. Very little growth of V anguillarum occurred ar 5°C. At 15°C V. 

parahaemolyticus at low concentrations were inhibited but V. anguillarum were 

inhibited over the middle range of concentrations tested. Very little inhibition of A. 

salmonicida occurred except at 20°C when low concentrations were inhibited. With 

all three bacteria inhibition of growth tended to be greater at 20°C. 

NBT Reduction Assay 

Dead V. anguillarum (fig. 6.4) at all concentrations tested, gave the strongest positive 

results with NBT reduction compared to the other 3 stimulants used. ANOVA results 
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Figure 6.3. a. Haemocytes from E. cirrhosa incubated with live Aeromonas 

salmonicida at 5°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. 

Error bars are standard errors of the mean. 

Figure 6.3. b. Haemocytes from E. cirrhosa incubated with live A. salmonicida at 

10°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars are 

standard errors of the mean. 
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Figure 6.3. c. Haemocytes from E. cirrhosa incubated with live A. salmonicida at 

15°C for 0.3 or 6 h. Each point represents the mean from 5 replicates. Error bars are 

standard errors of the mean. 

Figure 6.3. d. Haemocytes from E. cirrhosa incubated with live A. salmonicida at 

20°C for 0,3 or 6 h. Each point represents the mean from 5 replicates. Error bars are 

standard errors of the mean. 
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Figure 6.4. Nitroblue tetrazolium reduction detected at 620nm using E. cirrhosa 

haemocytes at 1x 106 haemocytes/ml stimulated with dead V. anguillarum at 106,107, 

10' and 109 bacteria/ml. Each bar represents the mean of 5 replicates. Error bars are 

standard errors of the mean. 

Figure 6.5. Nitroblue tetrazolium reduction detected at 620nm using E. cirrhosa 

haemocytes at 1x 106 haemocytes/ml stimulated with live V. anguillarum at 106,107, 

108 and 109 bacteria/ml. Each bar represents the mean of 5 replicates. Error bars are 

standard errors of the mean. 
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showed that incubation with dead bacteria significantly (P<O. 0001) affected the 

haemocytes. NBT reduction was also significant (P<0.05) for live V.. anguillarum (fig. 

6.5) at 106 bacteria/ml and for LPS (fig. 6.6), but no differences were detected 

between the LPS concentrations used. 
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Figure 6.6. Nitroblue tetrazolium reduction detected at 620nm using E. cirrhosa 

haemocytes at 1x 106 haemocytes/ml stimulated with lipopolysaccharide at 0.0625, 

0.125,0.25,0.5 and 1.0 mg/ml. Each bar represents the mean of 5 replicates. Error 

bars are standard errors of the mean. 
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Discussion 

The bacteria Vibrio anguillarum, V parahaemolyticus and Aeromonas salmonicida 

are inhibited in their growth by haemocytes from Eledone cirrhosa in vitro. The 

amount of inhibition depends on the bacterium and the bacterial concentration present, 

as well as the incubation temperature and duration. 

V. anguillarum, V parahaemolyticus and Aeromonas (sp) have been cultured from 

ulcerated skin obtained from cephalopods held in captivity (Hanlon & Forsythe, 1990). 

Abrasions to the skin of cephalopods occur by contact with other cephalopods or by 

contact with the retaining tank wall. The bacteria, found naturally on the skin of 

cephalopods, are opportunistic and quickly invade and multiply in any wound causing 

ulcers which can be fatal. The octopod E. cirrhosa, will die from mantle ulcerations at 

temperatures above 17°C (pers. obs. ). 

Bayne (1973) showed that specialized tissues in Octopus dofleini removed injected live 

bacteria from the circulation rather than circulating haemocytes phagocytosing the 

bacteria. In Carcinus maenas, however, injected bacteria were killed following 

removal from the circulation by haemocyte clumps lodged in blood sinuses (White et 

al, 1985). It has been shown that E. cirrhosa haemocytes phagocytose in vitro dead 

(Chapter 4), and in vivo injected live, V anguillarum (Chapter 9), thereby removing 

them from the circulatory system (Chapter 8). Studies on E. cirrhosa haemocytes 

have also demonstrated the presence of lysozyme activity (Chapter 8) which could aid 

in inhibiting growth of the bacteria. The haemocyte bacteriostatic results indicate that 

E. cirrhosa haemocytes are capable of inhibition of the growth of both V. anguillarum 
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and V parahaemolyticus at temperatures up to 20°C. However, at 15°C there is no 

significant inhibition of V. parahaemolyticus at high bacterial concentrations. It is 

possible that the reduced growth of V. anguillarum at 10 - 20°C is due to culture 

confinement over the time period, and could be an artefact of the assay due to the 

rapid growth of this bacterium at these temperatures (Secombes, pers. comm. ). 

Haemocytes from the cockroach Blaberus craniifer were shown to phagocytose and 

destroy some bacteria, the pathogenicity being dependent on the bacterial strain and 

the concentration (Anderson et al, 1973). Chisholm and Smith (1992) demonstrated 

an antibacterial factor(s) present in the haemocyte lysate solution of C. maenas. They 

later showed (Chisholm and Smith, 1995) that similar antibacterial activity was present 

in the haemocyte lysate solutions from a variety of crustaceans. Though the 

antibacterial activity varied between species it was operative mainly against Gram- 

negative bacteria and was stable to between 65-70°C. Antibacterial proteins from the 

haemocyte lysate supernatants of C. maenas have, however, recently been 

characterized and were shown to be also active against Gram-positive bacteria 

(Schnapp & Smith, 1996). Findlay and Smith (1995) showed that haemocyte lysate 

supernatants from the solitary ascidian Ciona intestinalis displayed more effective 

antibacterial activity against Gram-positive than Gram-negative bacteria and that the 

bacteriolytic enzyme lysozyme was not present. The two proteins responsible for the 

antibacterial activity (Findlay & Smith, 1996) in C. intestinalis have also been 

characterized. Using haemocyte lysate solutions, the bivalves Ostrea edulis and 
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Crassostrea gigas have been shown to display inducible antibacterial activity against 

both Gram-negative and Gram-positive bacteria (Roch et al., 1996). Using 

haemocytes from Mytilus edulis, Nottage and Birkbeck (1990) showed that large 

numbers of V.. alginolyticus (2 isolates) were toxic to the bivalves' haemocytes as was 

the culture filtrate. The pathogenic virulent form of V.. alginolyticus was demonstrated 

to have a higher cytotoxic effect than the ̀ environmental isolate' of the bacterium. 

Low Vibrio numbers were, however, killed by M. edulis haemocytes which produced 

reactive oxygen intermediates when stimulated by the bacteria. The bacteriolytic 

lysosomal enzyme, lysozyme, has been detected in both the haemocytes and 

haemolymph of E. cirrhosa (Chapter 8). It is possible that part of the inhibition 

reported here, with the 3 bacteria used, could be due to the action of lysozyme. 

Further work with E. cirrhosa is at present underway to determine whether the growth 

inhibition detected with the bacteria used is in fact killing of the bacteria by the 

haemocytes e. g. by phagocytosis or whether other secreted antibacterial factors are 

present. 

The addition of live Y. anguillarum to haemocytes from E. cirrhosa induces a small 

stimulatory effect on the haemocytes, as indicated by NBT reduction. However, the 

addition of dead V. anguillarum to E. cirrhosa haemocytes shows a significantly 

(P<0.05) higher reduction of NBT compared to all the other stimulants studied. The 

fact that dead V. anguillarum shows high SOD inhibitable NBT reduction leads to the 

possibility that ROS are produced during phagocytosis, if so this would be the first 

page 127 



Cellular Activity in Eledone cirrhosa 

demonstrable case of ROS production in cephalopods. LPS also stimulates a small 

amount of NBT reduction indicating possible haemocyte membrane stimulation. 

However, preliminary experiments with E. cirrhosa which used the soluble membrane 

elicitor phorbol 12-myristate 13-acetate (PMA) in conjunction with NBT, produced no 

reduction, possibly due to the concentrations used (0.125 - 1.0µ1/m1 PMA) (unpub. 

data). Lymnaea stagnalis haemocytes when stimulated with particulate agents and 

with PMA showed higher responses to the particulate agents (Dikkeboom et al., 

1987). Before and after stimulation with yeast cells, haemocytes from the Pacific 

oyster Crassostrea gigas also showed an ability to reduce NBT to solid formazan. 

Though phagocytosis increased NBT reduction by C. gigas haemocytes, it was 

temperature dependent (Anderson et al., 1992). Both types of coelomocyte from the 

earthworm Eisenia foetida were also shown to produce ROI's after stimulation with 

zymosan (Valembios & Lassegues, 1995). Pipe (1992) further demonstrated the 

release of superoxide anions from M. edulis haemocytes using both particulate and 

soluble stimulants. However, Takahashi et al. (1993) working with the Pacific oyster 

C. gigas, and Bell and Smith (1993) working with Carcimrs maenas were able to 

stimulate the respective haemocytes to produce 02 using PMA with ferricytochrome 

C. Preliminary experiments with E. cirrhosa haemocytes using ferricytochrome C to 

measure extracellular ROI production, produced no reduction using the same 

stimulants e. g. bacteria, LPS or PMA (unpub. data). When haemocytes from the tiger 

shrimp Penaeus monodon were stimulated with various agents, ß-glucan had the 

strongest stimulating effect (as shown using NBT reduction) followed by zymosan and 
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then PMA (Song & Hsieh, 1994). However, the addition of PMA caused hypochiorite 

(OC17) production and MPO activity, leading the authors (Song and Hsieh, 1994) to 

suggest that different stimulants affect different stages of the phagocytic process. 

In conclusion, E. cirrhosa haemocytes are capable of inhibiting the growth of certain 

bacteria over a range of concentrations and temperatures. Part of the bacterial growth 

inhibiting mechanism involves the production of superoxide anions detectable by SOD 

inhibitable NBT reduction using bacterial and LPS stimulants. It is possible that the 

superoxide anions are retained within the haemocyte and not released extracellularly 

since experiments using ferricytochrome C produced no result (unpub. data). Further 

PMA did not stimulate E. cirrhosa haemocyte membranes to produce ROS although it 

is possible that the concentrations used were too high (unpub. data). 

Work is continuing with E. cirrhosa haemocytes to determine whether other reactive 

oxygen intermediates are produced (e. g., H202). Since haemolymph bacteriostatic 

activity has also been established for E. cirrhosa (Chapter 7) it is apparent that the 

octopod is able to deal effectively with invading microorganisms. Further work will 

try to elucidate the nature of the killing mechanisms detected in the haemocytes. 
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Abstract 

Haemolymph from Eledone cirrhosa is able to significantly inhibit the growth of the 

bacteria Vibrio anguillarum, V. parahaemolyticus and Aeromonas salmonicida. At 15 

and 20°C with V. anguillarum and at 20°C with V. parahaemolyticus at high bacterial 

concentrations (1 x 109 cells/ml) growth is less inhibited. 

V. anguillarum, V. parahaemolyticus and A. salmonicida are agglutinated by E. 

cirrhosa haemolymph. Agglutination activity is generally not affected by temperatures 

between 5, and 20°C. A. salmonicida showed significantly lower loge titre values than 

either Y. anguillarum or Y. parahaemolyticus at all temperatures. 

Key Words: Eledone cirrhosa, Haemolymph; Agglutination; Bacteriostatic activity. 
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Introduction 

Humoral immunity in invertebrates encompasses a wide range of defence activities 

such as agglutination, lytic factors and antimicrobial agents (Millar & Ratcliffe, 1994; 

Smith & Chisholm, 1992; Ractliffe el al., 1985). Agglutination, or the aggregation of 

foreign particles, is perhaps the most widely studied of the serum defence activities and 

has been demonstrated in most invertebrates. Agglutinins appear to vary in structure 

and function between the different invertebrate classes but most are proteins with the 

ability to bind certain carbohydrate moieties. Some agglutinins are referred to as 

lectins, or carbohydrate binding proteins, and can be free in the serum or bound to the 

surface of blood cells. In a variety of invertebrates some agglutinins are involved in 

enabling, or enhancing, the phagocytosis of particles by the blood cells, they are then 

referred to as opsonins (Ratcliffe et al., 1985; Renwrantz, 1986; Sminia & Van der 

Knaap, 1986; Millar & Ratcliffe, 1994). Invertebrates, in general, possess several 

agglutinins enabling a variety of particulate materials (e. g. bacteria and erythrocytes) to 

be recognised by one animal. 

In molluscs, agglutinins have been detected in the cell free haemolymph of various 

gastropods (e. g. Prowse & Tait, 1969; Stanislowski et al., 1976; Stein & Basch, 1979; 

Harm & Renwrantz, 1980; Jeong et al., 1981; Renwrantz & Stahmer, 1983; Boswell 

& Bayne, 1984), bivalves (e. g. Bayne et al., 1979; Suzuki & Mori, 1990; Fisher & 

DiNuzzo, 1991; Olafsen et al., 1992; Tripp, 1992) and cephalopods (Stuart, 1968; 

R6gener et al., 1986; Fisher and DiNuzzo, 1991). Agglutinins have also been found in 

the gastropod albumen gland (Renwrantz & Mohr, 1978; Stein & Basch, 1979; Jeong 
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et al., 1981) and cephalopod embryos (Marthy, 1974) as well as in the ̀ skin slime' of 

cephalopods (Marthy, 1974; Renwrantz & Uhlenbruck, 1974). 

The ability of humoral components to kill invading organisms is demonstrated by 

antimicrobial and lytic factors. In particular antibacterial activity has been detected in 

the cell free haemolymph of a number of invertebrates (e. g., Anderson & Chain, 1982; 

Valembois et al., 1982; Kubo et al., 1984; Vaillier et al., 1985; Lassegues et al., 1989; 

Nottage & Birkbeck, 1990: Xylander & Nevermann, 1990; Stabili et al., 1996), in 

mucus from the sea hare Aplysia kurodai (Yamazaki et al., 1990) and from the 

hemichordate Saccoglossus ruber (Millar & Ratcliffe, 1987), in whole body 

homogenates of the hemichordate S. ruber (Millar & Ratcliffe, 1987), in haemocytes 

from Eledone cirrhosa (Chapter 6) and in haemocyte lysate supernatants from various 

crustaceans (Chisholm & Smith, 1992,1995; Findlay & Smith, 1995). Natural and 

induced antibacterial components have been demonstrated in invertebrates, with most 

studies concentrating on insects where several bactericidal factors, e. g. lysozyme and 

antibactericidal proteins such as cecropins and attacins, have been isolated and 

identified (Okada & Natori, 1983; Millar & Ratcliffe, 1994; Morishima et al., 1995). 

Induced antibacterial activity can also depend on the bacterium used, as in the spiny 

lobsters Panulirus interruptus (Evans et al., 1969) and P. argus (Evans et al., 1968) 

where the induced bactericidal effect was due to the use of a Gram negative bacterium 

normally associated with the lobsters. 

There have been some cephalopod studies on haemolymph agglutination and 

bactericidal activity. Bayne (1973) suggested that no bactericidal factors existed in the 

page 136 



Humoral Activity in Eledone cirrhosa 

haemolymph from Octopus dofleini. However, Russo and Tringall (1983) using the 

octopod 0. vulgaris demonstrated that haemagglutinating and antibacterial activity 

were present in the haemolymph. The antibacterial activity was effective against the 

bacteria Serratia marcescens and Salmonella typhimurium as detected by a decrease in 

the percentage viable bacteria in counts after incubation in haemolymph. Fisher and 

DiNuzzo (1991) showed that bacterial agglutinins were also present in the 

haemolymphs of 3 other cephalopods; the octopus, Octopus maya, the cuttlefish, Sepia 

officinalis, and the squid Sepioteuthis lessoniana. 

Previous work with the octopod E. cirrhosa has demonstrated that the haemocytes can 

migrate towards (Chapter 5) and affect the growth of bacteria ( Chapter 6). Further 

the phagocytic properties of haemocytes are increased by pre-opsonization of particles 

with haemolymph (Chapter 4) and in some cases these haemocytes will only ingest 

foreign objects after pre-opsonization (Stuart, 1968). The haemolymph of E. cirrhosa 

also exhibits lysozyme activity which is unaffected by bacterial challenge (Chapter 8). 

The aim of this paper is to broadly investigate whether the cell-free haemolymph from 

E cirrhoses has any effect on dead or live bacteria at various temperatures. 
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Materials and Methods 

Animals 

The Lesser Octopus Eledone cirrhosa (Lam. ) were brought into the aquarium at the 

University of Wales at Bangor from the surrounding area. Within 48 h of arrival the 

animals were weighed, marked with alcian blue, using a syringe, (Chapter 3) and 

sexed. The marked animals were assigned to particular tanks and allowed to recover 

for 24 h. The animals were kept at 10-12°C and food in the form of Carcinus maenas 

was always available. 

Haemolymph Collection 

The animals were weighed, anaesthetised and bled from the branchial blood vessel 

(Chapter 2) and the volume of blood obtained was recorded. The blood was then 

centrifuged at 800g for 5 min at 4°C and the cell-free haemolymph removed. For the 

agglutination assay, haemolymph from different individuals was frozen separately at 

-20°C. The haemolymph for the bacteriostatic activity assay was pooled from a 

number of individuals and frozen at -20°C. 

Bacteria 

Vibrio anguillarum, (MT275), V. parahaemolyticus, (MT295), and Aeromonas 

salmonicida, (MT004) were all obtained from the Scottish Office Agricultural 

Environment and Fisheries Department, Torry, Aberdeen. V. anguillarum and Y. 

parahaemolyticus were grown on 3% tryptic soya broth (Gibco) (TSB) with 2% 
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NaCl, whereas A. salmonicida was grown in TSB only. Quantitative bacterial 

counting in the assays was performed in triplicate using Norris Powell Diluent, (NPD) 

(0.5% formalin, sodium dodecyl sulphate, adjusted to pH 7.3 with Na2HPO4), HCl and 

a haemocytometer. For the agglutination assays, the 3 bacteria were formalised after 

counting. 

Haemolymph Bacteriostatic Assay 

The 3 live bacterial species were washed, centrifuged and resuspended (x2) at 1x 109 

bacteria/ml in TSB or TSB + NaCl as appropriate. Fifty µl of each bacterium were 

serially diluted in 50µ1 of the respective TSB growth medium in a 96 well flat bottom 

microtitre plate (Dynatech). Fifty µl of TSB were also added to the control wells and 

l00µ1 of TSB were added in triplicate to each plate to act as a blank. Fifty, 25 or 5µl 

of octopus haemolymph were added to the experimental wells in triplicate. Where 25 

and 5µ1 of haemolymph were used a further 25 or 45µl respectively of TSB were 

added. The final haemolymph concentrations was therefore 5,25 or 50% respectively. 

Haemolymph was found to interfere with the optical density values obtained and so 

triplicate haemolymph blanks at the same concentrations as the experimental wells 

were incorporated on each plate. The readings obtained from the haemolymph blank 

wells were subtracted from the experimental wells prior to analysis. 

After the addition of haemolymph and TSB the 96 well plates were shaken and then 

incubated at 5,10,15 or 20°C for 4 h, shaking hourly, before the addition of I Oµl of 

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, (MTT) (Sigma) 
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(5mg/ml in distilled water) to each well to quantify the surviving bacteria. The plates 

were then shaken and after a further 15 min incubation in the dark, endpoints were 

read at 600nm on a multiscan spectrophotometer. 

Agglutination Assay 

A bacterial count was made of the formalised bacteria. The bacteria were then 

centrifuged at 13 000g for 10 min and resuspended (x2) in phosphate buffered saline 

pH7.0 (PBS, Gibco, without Ca2+ and Mg2) at 8x 10g cells/ml. Serial dilutions of 

1000 of haemolymph from each of 10 individuals was performed, in triplicate, in 

100µ1 of PBS using round bottom 96 well microtitre plates (Dynatech). One hundred 

µl of each of the bacterial suspension were then added to each well. The assays were 

incubated at 5,10,15 or 20°C for 16 h before being read. In each case the logt titre at 

the last dilution able to give visible agglutination was recorded. 

Statistical Analysis 

For the agglutination results the triplicate loge titres for each individual were averaged 

and then means and standard errors were taken of the ten individuals for each 

bacterium at each temperature. 

For the haemolymph bacteriostatic results the blank value was taken away from the 

controls (no haemolymph added) and the haemolymph blank was taken away from the 

experimental wells, for each plate. For each temperature and each bacterial species the 

means for the triplicated values obtained for 0 (control), 5,25 and 50µl haemolymph 
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additions were calculated. One way analysis of variance (ANOVA) was performed to 

determine whether, the bacteria used, the bacterial concentration, the amount of 

haemolymph added and the incubation temperature affected the experimental results. 

Student t-tests were then performed to determine statistical differences between the 

amount of haemolymph added, the temperature and the bacterium used at each 

concentration. 
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Results 

Cell-free haemolymph from Eledone cirrhosa can agglutinate and inhibit the growth of 

the bacteria Vibrio anguillarum, V. parahaemolyticus and Aeromonas salmonicida. 

Analysis of variance (ANOVA) for these results demonstrated that various factors 

significantly (P<O. 0001) influenced the action of haemolymph on the bacteria. 

Significant factors were; the bacterial species used, the bacterial concentration present, 

the amount of haemolymph added to the bacteria and the incubation temperature used 

for the assay. 

Increasing the incubation temperature over the range 5- 20°C caused an increase 

(P<0.05) in the number of V. anguillarum (figs. 7.1a-d) present after 4 h, except at the 

highest initial bacterial concentrations, as indicated by the control samples at the 4 

temperatures. Generally a haemolymph concentration of 50% caused a significant 

reduction (P<0.05) in the number of surviving bacteria, compared to the control 

bacterial samples, after 4h at the 4 temperatures. At 10°C (fig. 7.1b) 25% 

haemolymph caused significant (P<0.05) bacterial inhibition at bacterial concentrations 

above 6.25 x 107. After 4h at 15°C (fig. 7.1 c) and 20°C (fig. 7.1 d) the growth of 

bacteria was reduced (P<0.05) in the presence of 25% haemolymph at bacterial 

concentrations between 1.56 x 107 and 5x 108/ml. 

The effect of different concentrations of E. cirrhoses haemolymph on V. 

parahaemolyticus cultures at 4 temperatures is shown in figures 7.2a - 7.2d. As 

demonstrated by the control values bacterial growth increased (P<0.05) as the 

incubation temperature increased. At 5°C (fig. 7.2a) and 10°C (fig. 7.2b) the number 
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Figure 7. La. Amounts of haemolymph (0,5,25 and 50pl) added to the assay with 

live Vibrio anguillarum at 5°C. Each point represents the mean of triplicated 

incubations using pooled haemolymph. The error bars are standard errors. 

Figure 7.1. b. Amounts of haemolymph (0,5,25 and 50µ1) added to the assay with live 

V. anguillarum at 10°C. Each point represents the mean of triplicated incubations 

using pooled haemolymph. The error bars are standard errors. 
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Figure 7. l. c. Amounts of haemolymph (0,5,25 and 50pl) added to the assay with live 

V. anguillarum at 15°C. Each point represents the mean of triplicated incubations 

using pooled haemolymph. The error bars are standard errors. 

Figure 7.1. d. Amounts of haemolymph (0,5,25 and 50pl) added to the assay with live 

Y. anguillarum at 20°C. Each point represents the mean of triplicated incubations 

using pooled haemolymph. The error bars are standard errors. 
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Figure 7.2. a. Amounts of haemolymph (0,5,25 and 50µl) added to the assay with live 

Vibrio parahaemolyticus at 5°C. Each point represents the mean of triplicated 

incubations using pooled haemolymph, The error bars are standard errors. 

Figure 7.2. b. Amounts of haemolymph (0,5,25 and 50µl) added to the assay with live 

V. parahaemolyticus at 10°C. Each point represents the mean of triplicated 

incubations using pooled haemolymph. The error bars are standard errors. 



Figure 7.2. a. ' Incubation with Haemolymph at 5 C 
2.4- 

2.2-   Ojtl Haemolymph (Control) 

2.0 A 51I Haemolymph 
a v 251I Haemolymph 
0 1.8 f 50p1 Haemolymph 
to 1.6- 

1.4- 
1.2- 
1.0- 
0.8- 

. Z; 0.6 
0 0.4- 

0.2 
0.0 

7.8 15.6 31.3 62.5- 125 250 500 1000 

Vibrio parahaemolyticus (x10'6) 

Figure 7.2. b. Incubation with Haemolymph at 10'C 
2.4- 
2.2-   Opi Haemolymph (Control) 

E 0A 2 5p1 Haemolymph 
. v 25pl Haemolymph 

0 1.8 " 50p1 Haemolymph 
0 
to 1.6- 

1.4- 

U) 1.2- 

0.8 
0.6 

0 0.4- 
0.2- 
0.0 

7.8 15.6 31.3 62.5 125 250 500 1000 

Vibrio parahaemolyticus (x10'6) 



Humoral Activity in Eledone cirrhosa 

of live bacteria detected was significantly (P<0.05) reduced compared to the control by 

the addition of either 50 or 25µ1 haemolymph. At 15°C (fig. 7.2c), however, a 

haemolymph concentration of 50% caused a greater reduction (P<0.05) in bacterial 

growth than a haemolymph concentration of 25% at bacterial concentrations above 

6.25 x 107. Incubation of 25 and S0µ1 of haemolymph with Y. parahaemolyticus 

cultures at 20°C (fig. 7.2d) also caused reduced (P<0.05) bacterial growth at initial 

bacterial concentrations below 2.5 x 108 and 5x 108 bacteria/ml respectively. A small 

but significant (P<0.05) reduction in the bacterial concentration present was also 

detected when 5µl of haemolymph was added to Ix 109 bacteria/ml at 15°C and 

between 6.25 and 12.5 x 107 bacteria/ml at 20°C. 

A. salmonicida grows more slowly than either V. anguillarum or V. parahaemolyticus 

between 5 and 20°C (figs. 7.3a-d) but E. cirrhosa haemolymph again demonstrated a 

moderating effect on the growth of the bacteria. High initial bacterial concentrations 

were significantly (P<0.05) affected by both 25 and 50% haemolymph concentrations 

at 5 (fig. 7.3a) and 10°C (fig. 7.3b). Lower bacterial concentrations at 15°C (fig-7.3c) 

and 20°C (fig. 7.3d) also showed decreased (P<0.05) growth after the addition of 25 

or 50g1 of haemolymph. Fifty pl of haemolymph significantly (P<0.05) reduces 

bacterial growth compared to the control and compared to 25µl haemolymph at higher 

bacterial concentrations of 1x 109 at 15°C and above 1.25 x 108 at 20°C. 
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Figure 7.2. c. Amounts of haemolymph (0,5,25 and 50µ1) added to the assay with live 

V. parahaemolyticus at 15°C. Each point represents the mean of triplicated 

incubations using pooled haemolymph. The error bars are standard errors. 

Figure 7.2. d. Amounts of haemolymph (0,5,25 and 50µl) added to the assay with live 

Y. parahaemolyticus at 20°C. Each point represents the mean of triplicated 

incubations using pooled haemolymph. The error bars are standard errors. 
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Figure 7.3. a. Amounts of haemolymph (0,5,25 and 50pl) added to the assay with live 

Aeromonas salmonicida at 5°C. Each point represents the mean of triplicated 

incubations using pooled haemolymph. The error bars are standard errors. 

Figure 7.3. b. Amounts of haemolymph (0,5,25 and 50µl) added to the assay with live 

A. salmonicida at 10°C. Each point represents the mean of triplicated incubations 

using pooled haemolymph. The error bars are standard errors. 
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Figure 7.3. c. Amounts of haemolymph (0,5,25 and 50µl) added to the assay with live 

A. salmonicida at 15°C. Each point represents the mean of triplicated incubations 

using pooled haemolymph. The error bars are standard errors. 

Figure 7.3. d. Amounts of haemolymph (0,5,25 and 50µ1) added to the assay with live 

A. salmonicida at 20°C. Each point represents the mean of triplicated incubations 

using pooled haemolymph. The error bars are standard errors. 
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The agglutination results for E cirrhosa haemolymph were affected by the bacterial 

species used and slightly by the incubation temperature (table 1). Significantly 

(P<0.05) higher agglutination titres (P<0.05) were obtained for both V.. angullairum 

and V. parahaemolyticus as compared to A. salmonicida. 

Table 1. Loge titres of the Agglutination experiments using Vibrio 

anguillarum, Vibrio parahaemolyticus and Aeromonas salmonicida 

at 5,10,15 and 20°C. Each mean loge titre represents the mean of 10 

individuals. 

l. a. Vibrio anguillarum 
Incubation 

Temperature 
Mean Loge Titre Standard Error 

5°C 7.0 0.00 
10°C 5.8 0.20 
15°C 6.4 0.25 
20°C 6.8 0.20 

1. b. Vibrio parahaemolvticus 
Incubation 

Temperature 
Mean Loge Titre Standard Error 

5°C 6.4 0.25 
10°C 6.2 0.37 
15°C 5.6 0.25 
20°C 6.8 0.27 

1. c. Aeromonas salmonicida 
Incubation 

Temperature 
Mean Loge Titre Standard Error 

5°C 4.2 0.20 
10°C 4.8 0.20 
15°C 4.8 0.20 
20°C 3.2 0.20 
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Discussion 

Cell-free haemolymph from Eledone cirrhosa possesses antibacterial factors which 

inhibit the growth of the bacteria Vibrio anguillarum, V. parahaemolyticus and 

Aeromonas salmonicida. Agglutinating properties are also present as demonstrated by 

the aggregating ability of E. cirrhosa haemolymph for dead V. anguillarum, V. 

parahaemolyticus and A. salmonicida. 

V.. anguillarum, V parahaemolyticus and various Aeromonas (sp) are opportunistic 

marine bacteria and have been implicated in causing skin ulcers in various laboratory 

maintained cephalopods. These Gram negative bacteria are a normal constituent of the 

skin flora and secondarily invade wound sites when they can cause death of the 

infected animal, particularly at high temperatures (Hanlon & Forsythe, 1990; Ford, 

1992). The haemolymph from E. cirrhosa is able to inhibit the growth of high 

concentrations of V. anguillarum and V. parahaemolyticus at temperatures below 

15°C. However, at 20°C V.. parahaemolyticus is not inhibited at high bacterial 

concentrations and the number of viable V.. anguillarum detected at high 

concentrations at 15°C is only slightly below the control values. Nevertheless, the 

bacterium A. salmonicida, a freshwater bacterial pathogen of fish which also grows in 

seawater but has not been identified as pathogenic to E. cirrhosa, is affected by 25 and 

50% haemolymph concentrations at 20°C. 

Bayne (1973) using the bacterium Serratia marcescens, suggested that haemolymph 

from the octopus Octopus dofleini contained no bactericidal capacity. However Russo 

& Tringall (1982) indicated that bactericidal activity against the bacteria S. marcescens 
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and Salmonella typhimurium was present in the haemolymph of Octopus vulgaris. It 

is possible that the two octopods demonstrate differences in their ability to kill these 

bacteria and it would be interesting to determine whether O. dofleini haemolymph 

demonstrates any bactericidal activity towards marine Gram negative bacteria. 

At present it is unknown whether haemolymph from E. cirrhosa produces a 

bactericidal (killing) or a bacteriostatic (growth inhibiting) effect on live bacteria. It is 

known that lysozyme is present in unchallenged haemolymph from E. cirrhosa 

(Chapter 8), and heating of the haemolymph to 80°C for 30min did not conclusively 

remove the bacteriostatic capacity of the plasma (unpub. data). It is possible that some 

of the reduction of growth is due to lysozyme, isolated and characterised in a number 

of invertebrates (Jolles & Jolles, 1975; Jolles & Jolles, 1984; Lassalle et al., 1988; 

Fenouil & Roch, 1991; Sun et al., 1991), but further work would be needed to 

determine this. 

Humoral antibacterial activity has been detected in a variety of marine invertebrates. 

Anderson & Chain (1982) demonstrated the presence of a naturally occurring 

antibacterial factor in the coelomic fluid of the marine annelid Glycera dibranchiata. 

The study showed that it was probably due to a protein which did not display lytic 

properties against the bacteria, and also that lysozyme was not present in the coelomic 

fluid. Further study of G. dibranchiata antibacterial activity demonstrated a2 stage 

killing process involving binding of the bactericidal factor (a glycoprotein) (Chain & 

Anderson, 1983 a) to the bacterium and then killing of the bacterium (Chain & 

Anderson, 1983b, c). Antibacterial activity against, in particular, Gram negative marine 
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bacteria, was also detected in mucus and whole body homogenate from the 

hemichordate Saccoglossus ruber (Millar & Ratcliffe, 1987). However, though the 

nature of the bactericidal activity in S. ruber was not elucidated, the preliminary data 

suggested that the active factor was not proteinaceous. Stabili et al. (1996) has also 

demonstrated the presence of antibacterial activity in naive haemolymph from the sea 

urchin Paracentrotus lividus. In crustaceans, Noga et a!. (1994) showed that the 

antibacterial activity detected in the haemolymph of the blue crab Callinectes sapidus 

was active against over 50% of the bacteria isolated from the shell of the crab. A true 

bactericidal effect has also been detected in the haemolymph of the bivalve, Mytilus 

edulis against the Gram negative bacterium Vibrio alginolyticus (Nottage & Birkbeck, 

1990). 

Bacteriostatic or growth inhibiting activity has mainly been demonstrated using the 

earthworm Eisenia fetida andrei. The antibacterial activity, shown to be directed only 

against highly pathogenic soil bacteria from the worm's environment, consisted of two 

lipoproteic molecules which were also demonstrated to be involved in haemolytic 

activities (Valembois et al., 1982). The antibacterial activity was also shown to be 

active against sensitive species of both Gram positive and Gram negative bacteria and 

the authors suggested that lysozyme (which acts primarily against Gram positive 

(Salton, 1957) but also against Gram negative bacteria (Miller, 1969)) was not 

involved. Further work demonstrated that the bacteriostatic activity found in the 

coelomic fluid of the earthworm was mediated by three different proteins (Vaillier et 

al., 1985) and the activity could be induced by injection with pathogenic bacteria 
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(Lassegues et al., 1989). A bacteriostatic factor `aplysianin P' has also been isolated 

from the purple fluid of the sea hare Aplysia kurodai and is capable of inhibiting 

nucleic acid synthesis (Yamazaki et al., 1990). 

As found with other cephalopods, the cell free haemolymph from Eledone cirrhosa 

displays both bacterial and erythrocyte agglutination properties (Russo & Tringall, 

1983; Marthy, 1974; Stuart, 1968). All three of the bacteria used in this study were 

agglutinated with the highest activities against V. anguillarum and Y. 

parahaemolyticus. Stuart, (1968) indicated that no agglutination of unsensitised 

particles (erythrocytes or bacteria) occurred with E. cirrhosa serum, the bacteria used 

by Stuart (1968) were Escherichia coli, Salmonella typhi and Staphylococcus aureus. 

Preliminary experiments for this paper demonstrated that reliable agglutination results 

for unsensitised bacteria were produced only when PBS was used as the diluent buffer 

for the haemolymph. Other buffers studied were a marine anticoagulant and an 

octopus Ringer, which both contained ethylene glycol-bis((3-aminoethylether) N, N, 

N', N', - tetraacetic acid (EGTA), an octopus Ringer with added calcium and 

magnesium and sterile octopus saline which contains high quantities of calcium and 

magnesium (unpub. data). Haemagglutinating activity as demonstrated by Russo & 

Tringall (1983) for 0. vulgaris was found to be partially dependent on the divalent 

cation content of the haemolymph. Removal of calcium from the haemolymph of 0. 

vulgaris inhibited the haemagglutination activity. 

A lectin has been isolated from the haemolymph of 0. vulgaris (RÖgener et al., 1985) 

and its composition is similar to `a subunit' of the haemolymph respiratory pigment, 
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haemocyanin (Rogener et al., 1986). Investigations into haemolymph from Sepia 

officinalis and Loligo vulgaris revealed the presence of glycoproteins with blood 

group A like specificity (Renwrantz & Uhlenbruck, 1974). Rögener et al. (1987), 

using haemolymph from 0. vulgaris, demonstrated the presence of a glycoprotein with 

blood group A-like properties and suggested it could be involved in neutralizing 

bacterial lectins. 

In conclusion, E. cirrhosa haemocytes display both cellular bacteriostatic activity 

(Chapter 6) and phagocytosis (Chapter 4), which is enhanced by pre-opsonization of 

the bacteria with haemolymph, suggesting a combined humoral and cellular response to 

bacterial pathogens. Experiments are currently underway to determine the nature of 

the growth inhibition effect on live bacteria and to elucidate the haemolymph 

components involved. 
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Abstract 

Antiprotease and lysozyme activities were detected in various tissue samples and in the 

haemocytes and haemolymph ofEledone cirrhosa. Injection of live Vibrio 

anguillarum caused an increase in lysozyme activity in the branchial heart over 48 h 

and a decrease in the lysozyme activity of haemocytes over 24 h. The haemocytes 

from control PBS injected animals demonstrated increased lysozyme levels within 4h 

after injection whereas it decreased after the injection of live bacteria in PBS. Both 

PBS alone and PBS with bacteria did not affect the lysozyme activity of the 

haemolymph. Bacterial injections had no effect on the antiprotease activity of the 

tissue samples but increased the antiprotease activity of the haemocytes compared to 

the control haemocytes in the 4h sample. Haemolymph antiprotease activity 

decreased at a greater rate following bacterial injection than in control PBS injected 

animals. 

Haemocyte numbers/ml increased for both the control and bacterial injected animals 

with a greater increase demonstrated for the bacterial injected animals in the 4h 

sample. Concomittant with the increase in the numbers of circulating haemocytes live 

V anguillarum were cleared from the circulation of E. cirrhosa in about 4 h. 

Key Words: Eledone cirrhosa; Haemocytes; Haemolymph; Tissues; Lysozyme; 

Antiprotease. 
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Introduction 

Antimicrobial defence mechanisms against various potentially pathogenic organisms 

have been demonstrated in a variety of invertebrates such as insects, crustaceans and 

annelids (Ratcliffe et al., 1985; Millar & Ratcliffe, 1994). Lysosomal enzymes which 

form part of the cellular and humoral antimicrobial defence of invertebrates, appear to 

act non-specifically against a wide range of foreign invaders. Lysozyme, one of the 

most common of these enzymes, is bacteriolytic and destroys certain pathogenic agents 

by breaking the 1-4 bonds between N-acetylglucosamine and N-acetylmuramic acid 

present in the cell walls of certain bacteria and fungi (Millar & Ratcliffe, 1994; Ratcliffe 

et al., 1985). Lysozyme has been identified and characterized in a variety of 

invertebrates for example, annelids (Lassalle et al., 1988; cotuk & Dales, 1984), 

echinoderms (Jolles & Jolles, 1975; Jolles & Jolles, 1984) and insects where the 

lysozyme gene has been isolated and characterized for the giant silk moth Hyalophora 

cecropia (Sun et al., 1991). Infection or injury is known to induce lysozyme synthesis, 

apparently in the haemocytes of crustaceans (Fenouil & Roch, 1991), annelids 

(Lassalle et al., 1988; cotuk & Dales, 1984) and in insects (Zachary & Hoffinann, 

1984) where synthesis also occurs in the fat body (Morishima et al., 1995). Studies on 

molluscs such as gastropods (Bayne, 1983; Cheng, 1983) and bivalves (Cheng, 1983; 

Takahashi et al., 1986) have demonstrated that various lysosomal enzymes, e. g. 

lysozyme, aminopeptidase and lipase, are present in both the blood cells and 

haemolymph of these molluscs and contribute to their antimicrobial system. Cheng et 

al. (1975) working on Mercenaria mercenaria demonstrated that lysozyme was 
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present in certain haemocytes (granulocytes) and was released into the haemolymph 

during phagocytosis by, or degranulation of, the granulocytes. Lysozyme activity has 

also been detected in the digestive diverticula, gill, mantle and crystalline style of the 

bivalves Crassostrea virginica and Mytilus edulis (Takahashi et al., 1986). 

Additionally, both gastropods (Cheng et al., 1977) and bivalves (Cheng et al., 1975) 

have elevated levels of lysozyme activity after in vivo exposure to, various agents. 

Antiproteases or proteinase inhibitors aid in the defence of various organisms by 

regulating and inhibiting the activities of potentially destructive proteases. There are 

several classes of protease inhibitors which only inhibit specific proteases. However, 

there is one family of inhibitors, the a-macroglobulins, and in particular ar 

Macroglobulin (a2M), which will inhibit proteases of various classes. In general 

antiproteases inhibit the action of proteases either by binding to the active site of the 

proteinase or for a2M, by "trapping" the proteinase to prevent protein hydrolysis 

although the active site is still accessible by low molecular weight substances 

(Laskowski & Kato, 1980; Travis & Salvesen, 1983). Interestingly, in mammals 

proteases bound to a2M complexes are removed from the blood system by secondary 

lysosomes following internalisation by endocytosis (Van Leuven, 1984). 

Antiproteases are present in invertebrates (Boigegrain et al., 1994) and in particular 

a2M activity has been demonstrated (Quigley &Armstrong, 1994). In gastropods a2M 

occurs in the plasma of Biomphalaria glabrata (Bender et al., 1992) and acts by 

inhibiting cysteine proteinase from Schistosoma mansoni (Fryer et al., 1996). 

a2Iacroglobuhn activity also occurs in the plasma of the gastropod Busycon 
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canaliculatum and the bivalve Spisula solidissima (Armstrong & Quigley, 1992). In 

cephalopods antiprotease activity was detected in the skin of Loligo vulgaris 

(Tschesche & Von Rucker, 1973) and in the plasma ofLoligo pealii (Armstrong & 

Quigley, 1992). 

Most of the other work concerning invertebrate antiproteases originates from 

arthropods. In the horseshoe crab Limulus polyphemus, a2M activity was detected in 

the haemolymph (Quigley & Armstrong, 1983; Enghild et at, 1990; Armstrong & 

Quigley, 1991) and in the haemocytes (Armstrong & Quigley, 1985) and appears to be 

involved in suppression of proteases released from aggregated blood cells at wound 

sites (Armstrong et al., 1990). a2-M has been isolated from the haemolymph of the 

American lobster Homarus americanus (Spycher et al., 1987) and a2-Macroglobulin- 

like activity has also been antigenically characterized in both the haemocytes and 

haemolymph of Penaeus japonicus (Bachere ei al., 1995). Additionally, haemocyte 

degranulation, or exocytosis, appears to be the source of the plasma antiprotease 

activity in the horseshoe crab Limuluspolyphemus (Armstrong & Quigley, 1985; 

Armstrong et al., 1990). Various antiproteases have also been identified in the crayfish 

Pacifastacus leniusculus i. e. a2-M and another serine protease inhibitor are found in 

the haemocytes and haemolymph and these aid in the regulation of coagulation and in 

prophenoloxidase activation (Aspän et at, 1990; Hergenhahn et al., 1988; Hergenhahn 

& Söderhäll, 1985; Hall & Söderhäll, 1982,1983). Protease inhibitors have also been 

found in mucus from the skin of Branchiostoma lanceolatum (MÖck & Renwrantz, 

1987). 
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Cephalopods have a closed circulatory system containing one type of blood cell 

(haemocyte) and plasma (haemolymph). Blood coagulation does not occur after 

wounding, instead blood flow eventually ceases by constriction of the muscles around 

the wound and the formation of a plug of haemocytes (Polglase ei al., 1983). It has 

also been demonstrated that lysosomal enzymes such as acid phosphatase occur in the 

branchial heart appendage of the cuttlefish Sepia offrcinalis (Schipp et a1., 1971). It is 

known from previous work with octopods that live bacteria injected into the octopod 

Octopus dolfeini are removed from the circulation in about 2 hours (Bayne, 1973), and 

work with 0. vulgaris has demonstrated the presence of a2M in the cell free 

haemolymph (Thogersen et al., 1992). Experiments with the octopod Eledone 

cirrhosa have demonstrated that the haemocytes will phagocytose (Chapter 4) and 

restrict the growth of live bacteria (Chapter 6) and that the haemolymph of E cirrhoses 

will opsonize (Chapter 4), agglutinate and inhibit the growth of live bacteria (Chapter 

7). This paper aims to determine whether lysozyme and antiprotease activity exist in 

various tissues and in the haemolymph of E. cirrhosa. Additionally the in vivo effect 

of live bacteria on these lysozyme and antiprotease activities will be determined. 
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Materials and Methods 

Animals 

Octopus (Eledone cirrhosa (Lam. )) were obtained from commercial crab pots situated 

around the coast of the Isle of Anglesey. The animals were brought into an aquarium 

at the University of Wales, Bangor, weighed and marked using a syringe containing 

1% alcian blue (Chapter 3) in octopus Ringer (OR) ((NaCl, 2.433g/100ml; glucose, 

1.4g/100ml; EGTA, 0.015g/100ml; KCI, 0.082/100ml; KH2PO4,0.004g/100ml). The 

animals were maintained at 12°C for 48 h before experimentation. 

Haemolymph and Haemocyte Collection 

Animals were sampled from the branchial blood vessel as described in Chapter 2. One 

hundred µl of the blood were added to 900µl of marine anticoagulant (MA) (NaCl, 

2.63g/100ml; glucose, 1.8g/100ml; tri-sodium citrate, 0.088g/100m1; citric acid, 

0.055g/100ml) containing ethylene glycol-bis(ß-aminoethylether) N, N, N', N', - 

tetraacetic acid (EGTA) (0.029g/100m1)and a blood count taken. A further 100µl of 

blood were added to 900µ1 of phosphate buffered saline (pH 7.0) (PBS) (Gibco) and 

blood sterility checked. The remaining blood was separated into 2 aliquots, 

centrifuged at 800g for 5 min at 4°C and the haemolymph removed and stored 

immediately at -70°C. The separated haemocytes were washed and centrifuged in OR 

(Chapter 2). The OR was removed and the haemocytes frozen at -70°C. 
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Bacteria 

The Gram-negative bacterium Vibrio anguillarum (MT275) was obtained from the 

Scottish Office Agricultural Environment and Fisheries Department, Torry, Aberdeen. 

The bacterium was cultured in tryptic soya broth (Gibco) containing 2% sodium 

chloride for 48 h. Triplicate bacterial counts were taken and the bacterial 

concentration adjusted to 1x 106 bacteria/ml. The bacteria were centrifuged at 

13000g for 10 min and washed twice in sterile PBS before resuspension to 500µl in 

PBS 

Inoculation and Experimentation 

Five control and 5 experimental animals were chosen at random. Both sets of animals 

were maintained separately under sterile conditions and waste seawater treated to kill 

any escaping bacteria. The control and experimental animals were sampled from the 

branchial blood vessel at 0h and blood counts taken. Immediately following the 0h 

sample the experimental animals were injected with 500µ1 of bacteria in PBS, and the 

control animals injected with 500µl of PBS, alone into the branchial blood vessel. All 

animals were sampled again after 4h and 24 h, and blood counts recorded. After 48 h 

the experiment was stopped and duplicate tissue samples were taken from all animals 

and rinsed in PBS before storage at -70°C for use in both the lysozyme and 

antiprotease assays. 
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Blood Sterility 

Blood samples at 0,4 and 24 h from both the control and experimental animals, 

collected in PBS, were further diluted, twice to a final dilution of 1: 1000 in PBS. 

Twenty µl of each of the samples were then placed in triplicate on tryptic soya agar 

(Gibco) (TSA plates), incorporating blanks on each plate, which were then incubated 

at 15°C for 48 h. After 48 h bacterial colonies on all plates were counted and the 

number of colonies present recorded. In order to check the viability of the bacteria, 

2Oµ1 samples of the bacteria in PBS were plated out on TSA, as for the blood samples, 

at the same time that the animals were injected with the bacteria. 

Lysozyme Assay 

Tissue samples from both experimental and control animals were weighed and 

homogenised in a known amount of phosphate/citrate buffer (pH 5.8) 

(Na2HPO4.2H20,4.45g/250m1 distilled H2O; citric acid, 2.1g/100ml distilled H2O; 

NaCl, 0.09g/100ml buffer). Washed haemocytes at a known concentration were 

homogenized in the same buffer and all samples (haemocytes, haemolymph and tissue) 

centrifuged at 13000g for 10 min. Supernatants were removed and stored at -70°C 

until use in the assay. 

Fifty µl of a hen egg white lysozyme (Sigma) (5ug/ml of buffer) standard were serially 

diluted in duplicate in sterile 96 well flat bottom plates (Dynatech). Fifty pl of each 
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sample was added in triplicate to the 96 well plates as well as 50 pl aliquots of buffer, 

as blanks. One hundred and fifty t1 of freeze dried Micrococcus lysodeikiicus (Sigma) 

(0.075g/100m1 of buffer) was added to each well. The plates were read on a multiscan 

spectrophotometer for 5 min at 15 sec intervals at 450nm using negative kinetics. 

Antiprotease Assay 

Tissue samples from both sets of animals were weighed, and both the tissues and 

haemocyte pellets were homogenised in a known amount of PBS. All samples, 

including haemolymph, were centrifuged at 13 000g for 10 min and the supernatants 

frozen at -70°C until required. Samples were serially diluted in 25µl PBS in round 

bottom 96 well microtitre plates (Dynatech) and 20µl of each dilution transferred to 96 

well flat bottom microtitre plates. PBS was used for the blanks and for the standards 

which were incorporated on these flat bottom plates. Ten µ1 of trypsin standard 

(Sigma) (5mg/100ml PBS) was added to each well and the plate incubated for 5 min at 

room temperature. Two hundred p1 BAPNA (5.2mg benzoylarginine-p-nitroaniline/ml 

dimethylformamide added to 20m1 Tris. CaC12 buffer (Tris 6.057g/100m1 distilled H2O, 

CaC12 0.694g/100m1 distilled H2O added together and adjusted to pH 7.8 with conc. 

HC1)) was added to each well and the plate read on a spectrophotometer, using kinetic 

analysis, at 405nm for 15 min at 30 sec intervals. 

page 163 



Lysozyme and Antiprotease in Eledone cirrhosa 

Analysis 

The means and standard errors of the replicate blood counts were calculated for each 

sampling period. Student t-tests were used to compare the mean blood counts at the 

different sampling times and between the experimental and control animals. 

Lysozyme activity per well was recorded and activity calculated /mg for the tissue 

samples and /106 haemocytes/ml for the haemocyte samples. The means and standard 

errors for the lysozyme replicates were determined for each sample (tissue, haemocytes 

and haemolymph). Student t-tests were used to establish the significance of the 

differences between the control and experimental animals for each set of samples. 

The 85% inhibition value for antiprotease activity in units of trypsin inhibited /µg were 

calculated for all the samples. Means and standard errors were calculated for the 

replicates and the results of the control and experimental samples compared using 

Student t-tests for each set of samples. 

page 164 



Lysozyme and Antiprotease in Eledone cirrhosa 

Results 

Blood Counts 

The number of haemocytes/ml increased between the 0h and 4h samples (fig. 8.1) and 

remained at an equivalent level in the 24 h sample. Significantly more (p<0.05) 

haemocytes were detected after 4h in the bacterial injected animals compared to the 

control animals. 

Blood Sterility 

No bacteriä were present in the blood of E. cirrhosa before injection of either PBS or 

PBS containing bacteria (table 1). One bacterial colony was observed at the first 

dilution (1: 10) for 1 of the animals, which had been injected with bacteria, on the 

plates made from the 4h sample. Bacterial colonies where the bacteria in PBS were 

plated out to determine viability proved impossible to count at the dilutions chosen due 

to the large number of colonies present (data not shown). No bacterial colonies grew 

from the 24 h sample TSA plates in either the control or bacterial injected animals. 

Table 1. The mean number of bacterial colonies present in the blood of 

Eledone cirrhosa over a 24 h sampling period for both control (sham 

injected) and experimental (live Vibrio anguillarum injected) animals. 

The mean was taken from 5 animals. 
Mean Num ber of Bacterial Colonies 

Sample 
Time 

Control 
1: 10 

Infected 
1: 10 

Control 
(1: 100) 

Infected 
(1: 100) 

Control 
(1: 1000) 

Infected 
1: 1000 

Oh 0 0 0 0 0 0 
4h 0 0.067 0 0 0 0 
24 h 0 0 0 0 0 0 
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Figure 8.1. The number of haemocytes/ml in blood from both control and injected 

animals over a 24 h sampling period. The bars are the means of 5 animals and the 

error bars are the standard errors of the mean. *=P<0.05 compared to control animals. 
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Lysozyme Assay 

Lysozyme activity was detected in all tissue samples (fig. 8.2). The branchial heart 

appendage and anterior salivary gland had a significantly higher (p<0.05) activity/mg of 

tissue than the other samples. Only the branchial heart tissue from the bacterial 

injected animals had a significantly higher (p<0.05) lysozyme activity than in the 

control animals. Lysozyme activity increased in the haemocyte samples from control 

animals within 4h (fig. 8.3) but significantly (p<0.05) decreased over the 24 h 

sampling period in the animals injected with bacteria. Haemolymph lysozyme levels 

(fig. 8.4) showed no change over the sampling period for either the control or bacterial 

injected animals. 

Antiprotease Assay 

Tissue samples from both control and bacterial injected animals indicate variable 

amounts of antiprotease activity (units of trypsin inhibited/pg) (fig. 8.5). The standard 

error bars indicate large variation between individuals. Antiprotease activity was 

observed in varying amounts in the branchial heart appendage, branchial heart, the 

optic lobe and in the posterior salivaryglands and anterior salivary gland. There was 

no significant difference in antiprotease activity in the tissue samples collected from the 

control and bacterial injected animals. Haemocyte antiprotease activity (fig. 8.6) was 

significantly (p<0.05) higher in samples taken 4h after bacterial injection compared to 

samples taken 4h after the control injection. Both control injected and bacterial 

injected animals had a significantly (p<0.05) lower antiprotease activity in the 4 and 24 
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Figure 8.2. Lysozyme activity/mg (tissue wet weight) present in the tissues of both 

control and bacterial injected animals after 48 h. The bars represent the means of 5 

animals and the error bars are the standard errors of the mean. Gill=Branchial Gill; 

Gland=Branchial Gland; BH=Branchial Heart; BHA=Branchial Heart Appendage; 

WB=White Body; OL=Optic Lobe; PSG=Posterior Salivary Gland; ASG= Anterior 

Salivary Gland. *=P<0.05 compared to control animals. 
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Figure 8.3. Lysozyme activity/ml in a suspension at 106 /ml of haemocytes from 

control and bacterial injected animals over a 24 h sampling period. The bars represent 

the means of 5 animals and the error bars are the standard errors of the mean. 

Figure 8.4. Lysozyme activity/ml present in the haemolymph of control and bacterial 

injected animals over a 24 h sampling period. The bars represent the means of 5 

animals and the error bars are the standard errors of the mean. 
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Figure 8.5. Antiprotease activity (units of trypsin inhibited/µg tissue wet weight) 

present in the tissues of both control and bacterial injected animals after 48 h. The bars 

represent the means of 5 animals and the error bars are the standard errors of the 

mean. Gill=Branchial Gill; Gland=Branchial Gland; BH=Branchial Heart; 

BHA=Branchial Heart Appendage; WB=White Body; OL=Optic Lobe; PSG=Posterior 

Salivary Gland; ASG= Anterior Salivary Gland. 



Figure 8.5 

m 020 
N 
N 

F- 

0.15 

:c0.10 

C 

CL 

0.05 
H 

C 

0.00 

Antiprotease Activity in Tissues from Control and 
Injected Animals 

Tissue 

Gill Gland BH BHA WB OL PSG ASG 



Lysozyme and Antiprotease in Eledone cirrhosa 

h samples compared to 0 h. In haemolymph samples (fig. 8.7) the amount of 

antiprotease present was significantly (P<0.05) less in the bacterial injected animals 

than in control injected animals and the 4 and 24 h samples had significantly (p<0.05) 

less activity than the 0h samples. 
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Figure 8.6. Antiprotease activity (units of trypsin inhibited/106 haemocytes/ml) present 

in the haemocytes of control and bacterial injected animals over a 24 h sampling 

period. The bars represent the means of 5 animals and the error bars are the standard 

errors of the mean. *=P<0.05 compared to control animals. 

Figure 8.7. Antiprotease activity (units of trypsin inhibited/pl) present in the 

haemolymph of control and bacterial injected animals over a 24 h sampling period. The 

bars represent the means of 5 animals and the error bars are the standard errors of the 

mean. 
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Discussion 

Live bacteria, Vibrio anguillarum, injected into the circulatory system of Eledone 

cirrhosa were mostly removed within 4 hours. Over the same time period the number 

of haemocytes/ml present in the blood increases. The haemocyte, haemolymph and 

various tissue samples display both lysozyme and antiprotease activity in control 

animals. However, the injection of live bacteria generally reduces the lysozyme and 

antiprotease activity of the haemocytes and the antiprotease activity of the cell free 

haemolymph. 

As indicated by Bayne (1973) with Octopus dolfeini practically all of the live bacteria 

injected into E. cirrhosa were either cleared from the circulation or rendered non- 

viable within 4 hours. It appears possible that haemocytes play an important role in 

removing foreign organisms from the circulation of E. cirrhosa. As with other 

invertebrates (Millar & Ratcliffe, 1994; Ratcliffe et al., 1985; Bayne, 1983) the 

haemocytes from E cirrhosa phagocytose (Chapter 4) and affect bacterial growth 

(Chapter 6). Further, the number of haemocytes/ml increase in both the control and 

bacterial injected E. cirrhosa with a greater increase in the bacterial injected animals at 

the 4 hour sample (fig. 1). Recent work on the effects of repeatedly sampling blood 

from E cirrhosa also demonstrated increased blood counts after sampling (Chapter 3). 

Additionally haemocytes are involved in the clearance of bacteria from the circulation 

(Chapter 9) and the increase in haemocytes demonstrated for this paper may indicate 

possible leucocytosis. Prospectively as demonstrated with the bivalves Sunetta scripta 

and Villorita cyprinoides var. cochinensis (Suresh & Mohandas, 1990) and the 
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gastropods Biomphalaria glabrata (Lie et al., 1975; Jeong et al., 1983) and Patella 

vulgata (Cooper-Willis, 1979) in vivo exposure to pathogenic organisms can cause the 

release of large numbers of haemocytes. This release however may be dose and/or 

time dependent since other authors working on gastropods such as Bayne and Kime 

(1970), Renwrantz et al. (1981) and Van der Knapp (1982) showed a decrease in the 

number of circulating haemocytes after injections of large numbers of bacteria 

(Ratcliffe et al., 1985). 

Though lysozyme is known to act primarily on Gram positive bacteria (Salton, 1957) it 

will also act on Gram negative bacteria (Miller, 1969) and in this instance the Gram 

negative bacterium V. anguillarum was injected into E. cirrhosa. V. anguillarum is 

known to be pathogenic to cephalopods in captivity and infections can be fatal (Hanlon 

& Forsythe, 1990). All tissue samples taken from the octopus demonstrated 

lysozyme activity with the branchial heart appendage and anterior salivary gland having 

the highest activities. It is possible that the activity detected in the anterior salivary 

gland could be secreted as a constituent of the saliva during feeding. The branchial 

heart appendage of octopods is involved in ultrafiltration of the haemolymph (Martin 

& Aldrich, 1970; Schipp & Hevert, 198 1) and lysozyme activity in this instance could 

aid in the degredation or inactivation of certain molecules. Of particular interest is the 

increase in lysozyme activity, 48 hours after infection, in the branchial heart, which is 

involved in the circulation of blood and which in Sepia officinalis contains lysosomal 

activity (Schipp et al., 1971), suggesting a possible synthesis site for circulating 

lysozyme. Lysozyme activity has been demonstrated in the mantle mucus of the oyster 
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(McDade & Tripp, 1967), the digestive gland and headfoot of Biomphalaria glabrata 

(Kassim & Richards, 1978a, b) and the kidney ofPlanorbarius corneus (Ottaviani, 

1991). As with other molluscs (Cheng, 1983) E. cirrhosa exhibits lysozyme activity in 

both the haemolymph and haemocytes. While the level of activity in the haemolymph 

does not change over the 48 hours of the experiment, the haemocyte activity level in 

the control injected animals increases, while in the bacterial injected animals it shows 

decreasing activity. Cheng et al. (1977) demonstrated that the in vivo challenge of 

Biomphalaria glabrata with dead bacteria caused initially elevated serum lysozyme 

activity levels followed by depressed levels. Additionally, the initial level (0 h sample) 

of lysozyme activity in the haemolymph of E cirrhosa was greater than that found in 

the haemocytes. Similar findings of higher lysozyme activity in the haemolymph were 

demonstrated for the oyster Crassostrea virginica (Rodrick & Cheng, 1974) and the 

clam, Mercenaria mercenaria (Cheng et al., 1975), leading the authors to suggest that 

serum lysozyme originated in the respective haemocytes. Foley and Cheng (1977) 

confirmed the release of lysozyme from certain M. mercenaria haemocytes into the 

haemolymph via the process of degranulation, particularly during phagocytosis. E. 

cirrhosa haemocytes phagocytose bacteria (Chapter 4) and newly released haemocytes 

contain numerous cytoplasmic granules some of which could contain lysozyme 

(Chapter 3). However, the white body or leucopoetic organ from which new 

haemocytes are supposedly released, demonstrated significantly less lysozyme activity 

than the haemocytes obtained from the circulation for both sets of animals. The 

reduced lysozyme activity in the white body might suggest that new haemocytes 
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containing lysozyme from both control and experimental animals had already been 

released over the 48 hour sampling period, or that enzymatically active lysozyme 

synthesis occurs in the haemocytes after their release from the white body. It is also 

possible that lysozyme is produced elsewhere, secreted into the haemolymph and 

pinocytosed by the haemocytes, or that only a small part of the white body consists of 

mature haemocytes containing a full lysozyme complement. 

As stated by most workers who have determined lysozyme levels in invertebrates, 

(Cheng, 1983; Hardy et al., 1976; M6ck et al., 1992; Takahashi et al., 1986), the 

optimum pH for lysozyme detection, when using a phosphatelcitric acid buffer is 

between 4 and 6.2 depending on the animal (e. g., pH 5.0 for the soft clam Mya 

arenaria (Cheng & Rodrick, 1974), pH 5.5 for Mercenaria mercenaries (Cheng et al., 

1975) and pH 6.2 for the earthworm Eisenia foetida (cotuk & Dales, 1984)). Though 

lysozyme activity in E. cirrhosa was detected in different samples at various pH's 

(between 4 and 7) (pers. obs. ) the buffer pH of 5.8 was chosen for 2 main reasons. 

Firstly it gave the most consistent results and secondly the haemolymph did not 

immediately precipitate upon addition of the substrate containing the buffer as it did at 

more acid pH's. 

The antiprotease activity detected in the salivary glands (posterior and anterior) Could 

well be involved in the regulation of the powerful proteases associated with the saliva 

(Grisley & Boyle, 1987). The branchial heart appendage, branchial heart and the optic 

lobe exhibit some antiprotease activity. The white body, which is a possible 

leucopoetic organ (Cowden & Curtis, 1974,1981), exhibits a very low level of 
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antiprotease activity when compared to the haemocyte samples at 24 hours. The 

amount of antiprotease activity in the haemolymph decreases at a faster rate in the 

bacterial injected animals than in the control animals. 

Recent work has demonstrated that injected active trypsin associates with a2-M in 

Limuluspolyhemus and after clearance is degraded to small peptides (Melchoir et al., 

1995). Additionally, the same experiment demonstrated that the blood cells in this 

animal were also involved in the clearance of trypsin a2-M complex. Melchior et al. 

(1995) suggested that as with vertebrates, the protease a2-M complex is endocytosed 

by blood cells and degraded by secondary lysosomes. Additionally a2-M and 

agglutinins/lectins also appear to be functionally related (Bachere et al., 1995). Both 

L. polyhemus (Armstrong &Quigley, 1991; Quigley & Armstrong, 1994) and Homarus 

americanus (Spycher et al., 1987) have thioester-containing peptide sequences similar 

to mammalian arM suggesting evolutionary conservation of this molecule from 

invertebrates, such as arthropods (Spycher et al., 1987; Armstrong & Quigley, 1991; 

Spycher & Painter, 1991; Quigley & Armstrong, 1994) and molluscs (Armstrong & 

Quigley, 1992; Bender et al., 1992; Fryer et al., 1996), to mammals (Sottrup-Jensen et 

al., 1990). 

Since haemolymph from Octopus vulgaris (Thogersen et al., 1992) and Loligo pealii 

(Armstrong & Quigley, 1992) have been shown to contain a2M like activity it is 

possible that some of the detected antiprotease in E. cirrhosa could also be a2M. 
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Further work however is needed to characterize the antiprotease activity found in E. 

cirrhosa and to determine the role it plays in octopod immunity. 

In conclusion, both lysozyme and antiprotease activity are present in the haemocytes 

and haemolymph of E. cirrhosa. Work is continuing with E. cirrhosa in order to 

determine whether other lysosomal enzymes are present and also to characterise the 

antiprotease activity detected. 
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Abstract 

The octopus Eledone cirrhosa was challenged with five Vibrio anguillanim for 4h 

and 48 h and with colloidal graphite for 4 h. The fixed tissues (branchial gill, branchial 

heart, branchial heart appendage, white body and haemocyte peHets) were examined 

histologically and ultrastructurally to determine which tissues were involved in the 

clearance of the injected particles. The tissues were also compared to control tissues 

to identify any major morphological changes resulting from bacterial or graphite 

challenge. 

Colloidal graphite was found to aggregate in blood vessels and caused a morphological 

change in the nuclei of some circulating haemocytes 4h after the injection of the 

graphite. Evidence of bacteria in the circulating haernocytes were obtained in sections 

from all the tissues sampled from the octopus. Forty-eight hours after bacterial 

challenge the nuclei of some of the haemocytes demonstrated morphological changes. 

Bacteria were seen in the branchial heart, branchial heart appendage and white body 

cells. 

Key Words: Eledone cirrhosa; Bacteria; Colloidal graphite; Haemocytes; Branchial 

Heart; Branchial Heart Appendage; White Body. 
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Introduction 

Various in vivo studies have demonstrated that invertebrates are able to recognise and 

remove from their circulation foreign biotic and abiotic particles. Methods of removal 

vary between the invertebrate classes but include such processes as phagocytosis by 

free and fixed phagocytes, nodule formation and encapsulation (Ratcliffe et al. 1985; 

Millar & Ratcliffe, 1994). 

Research using molluscs has shown that in gastropods injected particles are removed 

by circulating and fixed phagocytes and also by aggregation of the particles in specific 

organs such as the digestive gland, the foot and the kidney (Bayne, 1973 a; Crichton et 

al., 1973; Killby et al., 1973; Renwrantz, et al., 198 1; Bayne 1983). Experimentally 

introduced particles are also removed from bivalves by circulating phagocytes 

(haemocytes) (Sparks & Morado, 1988; Suresh & Mohandas, 1990). Cephalopods 

will also remove experimentally introduced particles from their circulation. Stuart 

(1968) showed that varying quantities of injected colloidal carbon were removed by 

specific organs such as the gill and posterior salivary gland of Eledone cirrhosa, where 

supposedly fixed phagocytes occur. Further Bayne (1973b) injected carbon and live 

bacteria into Octopus doj7eini and these were rapidly removed from the circulation 

with the carbon accumulating in the gills. Cephalopods have a closed circulatory 

system as in vertebrates (Browning, 1979; Wells, 1983; Shadwick & Nilsson 1990). 

The blood consisting of haemolymph (plasma) and haemocytes (blood cells), is 

pumped around the animals body by 3 hearts, the central systemic heart and a branchial 

heart associated with each 01. The branchial hearts and the associated branchial heart 

page 182 



Graphite and Bacteria in E. cirrhosa 

appendage are involved in the circulation (Wells, 1978; Wells, 1983; Wells & Smith, 

1987) and ultrafiltration (Schipp et al., 1971; Witmer & Martin, 1973; Schipp & 

Hevert, 198 1) of the blood of the octopus. The haernocytes in cephalopods are 

thought to originate from the leucopoetic organ, or white body, located in the orbital 

sockets behind the eyes. The haemocytes are apparently held there in clusters 

undergoing maturation, before release into the circulation as mature haemocytes 

containing various granules in their cytoplasm (Cowden, 1972; Cowden & Curtis, 

1974,198 1). Interestingly encapsulation reactions have been recorded in some 

cephalopods (Jullein, 1940) and the formation of 'cellular aggregrates' after 

dissociation of the white body in 0. birareus has been reported (Cowden & Curtis, 

1973). 

Previous work from this laboratory has demonstrated that E cirrhosa will clear live 

Vibrio anguillarum from the circulation and that the number of circulating haemocytes 

as well as lysozyme activity, detected in the branchial heart, increased in response to 

bacterial challenge (Chapter 8). This paper aims to conduct a preliminary investigation 

into certain tissues and the haemocytes ofE. cirrhosa to determine their involvement 

in the response to colloidal graphite and bacterial challenge. 
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Materials and Methods 

Animals 

Octopuses were collected from commercial crab pots situated around the north side of 

the Isle of Anglesey. The animals were brought into the aquarium at the University of 

Wales, Bangor and immediately weighed, marked at the base of the arm using a 21 

guage I V2"' needle (Chapter 3) containing 1% alcian blue in octopus Ringer (OR) 

(NaCl, 2.433g/lOOn-d; glucose, 1.4g/100ml; EGTA, 0.015g/100ml; KCI, 

0.082g/IOOH; KH2P04. 
j 0.004g/IOOH) and assigned to tanks. Theanimalswere 

maintained at 12*C for 48 h before experimentation. 

Haemocyte Sampling 

Blood was sampled from the branchial blood vessel (Chapter 2). A haemocyte count 

was taken and the blood immediately divided into 2 Eppendorfs and centrifuged at 

800g for 4 min at 4'C. The haernolymph was removed and the pellet of cells fixed 

either for histological or Transmission Electron Microscope (TEM) analysis. 

Graphite 

Colloidal graphite (Agar Scientific) (pH 10) was diluted (1: 4) in sterile phosphate 

buffered saline (pH 7) (PBS) (Gibco) and the pH altered to pH 7.0 using sodium 

hydroxide. Five hundred pt of the solution were loaded into sterile 2 ml syringes and 

the syringes frozen at -20"C until use. 
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Bacteria 

Vibrio anguillarum (MT275) was obtained from the Scottish Office Agricultural 

Environment and Fisheries Department, Torry, Aberdeen. The Gram. negative 

bacterium was cultured in tryptic soya broth (Gibco) containing 2% sodium chloride. 

Triplicate bacterial counts were taken and the bacterial concentration adjusted to Ix 

106 bacteria /ml. The bacteria were centrifuged at 13 OOOg for 10 min and washed 

twice in sterile PBS before resuspension to 500pl in PBS. 

Inoculation and Experimentation 

Five control and 15 experimental animals were chosen at random. All sets of 5 animals 

were maintained separately under sterile conditions and waste seawater was treated to 

kill any escaping bacteria. All the control and experimental animals were sampled from 

the branchial blood vessel at 0h and blood counts taken. Immediately following the 0 

h sample 10 of the experimental animals were injected with 500[d of bacteria in PBS, 

and the 5 control anhnals injected with 500pl of PBS only, into the branchial blood 

vessel. The last set of 5 animals were injected with the prepared colloidal graphite in 

PBS. The control animals and 5 of the bacteria injected animals were sampled after 4 

h and after 24 h and the duplicate haemocyte samples fixed for histology or TEM 

preparation. Five of the bacteria injected, and all the carbon injected, animals were 

sacrificed 4h after injection and duplicate tissue samples were taken. After 48 h the 

experiment was stopped and duplicate tissue samples were taken from the remaining 

bacterial infected animals and from the control animals. Tissue samples were taken 
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from the branchial gill, the branchial heart, the branchial heart appendage and the white 

body and fixed for either histology or TEM. 

Histology Preparation 

Tissue samples and the haernocyte pellets were fixed for 48 hours in 10% phosphate 

buffered formalin. The samples were washed in distilled water and dehydrated in 

alcohol before infiltration in Ifistoresin (Leica) for 7 days at 4'C. Samples were 

embedded in Ifistoresin and sections cut, put on glass slides and mounted with DPX 

after staining. 

Staining 

The Historesin sections were stained either with Ehrlich's haematoxylin and eosin (H 

& E), toluidine blue (1% toluidine blue in 1% Na2B407. I OH20) or with a polychrome 

stain (Blackstock, unpublished) (1% Alcian blue in 3% acetic acid, 1% periodic acid, 

Schifrs reagent, iron alum (2.5%), Heidenhain's haematoxylin, acid fuchsin). 

TEM. Preparation 

All tissue samples including the haemocyte pellets were fixed for 24 h at 4'C in 2.5% 

glutaraldehyde (in 0. IM sodium cacodylate buffer at pH 7.4). The samples were 

washed in 0.1 M sodium cacodylate buffer and secondarily fixed for 2h at room 

temperature in 1% ostnium. tetroxide before staining en bloc with 2% uranyl acetate 

overnight. The samples were then dehydrated through ethanol and propylene oxide 

and embedded in Spurr resin. Cut sections (50nm) were mounted on 100 mesh 
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. pioloform coated copper grids and stained with lead citrate. Sections were viewed in a 

GEC Corinth 500 at 60 KV. 
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Results 

Branchial Gill. (Figures 9.1-9.5) 

The haemocyte (H) (fig. 9.1) in the gill lamellae of a control animal has rather 

indistinctly stained granules, however, 4h after the injection of bacteria (fig. 9.2) 

distinct granules (G) and large dark stained masses surrounded by an unstained halo, 

which appear to be ingested bacteria, are also present in the cytoplasm. Histological 

sections taken (fig. 9.3) 48 h after the injection of bacteria indicated the presence of 

large masses resembling phagocytosed bacteria (B), as well as sites of possible 

bacterial degredation. (D), indicated by unstained areas in the cytoplasm of the 

haemocytes (M. A TEM section of a haemocyte (fig. 9.4) from the gill, 48 h after 

bacterial challenge, showed bacteria being degraded (D), indicated by the particulate 

nature of the bacterium surrounded by a double membrane, in the cytoplasm. Four 

hours after colloidal graphite (C) injection an histological section (fig. 9.5) of a gill 

lamella indicated the accumulation of graphite in a blood vessel. 

Branchial Heart. (Figures 9.6-9.16) 

Histological sections of the branchial heart of a control animal (fig. 9.6) showed large 

cells each with a large vacuole (V) containing unknown large particles of differentially 

stained material. Haemocytes (H), with a variety of cytoplasmic granules (G), were 

present in blood vessels (BV) (fig. 9.6). A TEM section of the branchial heart from a 

control animal (fig. 9.7) showed characteristic pore cells (P) (after Sminia et al., 1972) 

each with a large prominent electron-dense vacuole M of unknown material. The 
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Figure 9.1. Polychrome stained section of a gill lamella of a control E. cirrhosa 

BV = Blood vessel; H= Haemocyte with smaU cytoplasmic granules; E= Gill 

epithelium. 

Figure 9.2. Polychrome stained section of part of the giU lamella of E. cirrhosa 4h 

after bacterial injection. 

H= Haemocyte; G= Cytoplasmic granules in the haemocyte; B= Bacteria in the 

haemocyte. 

FigUre 9.3. Polychrome stained section of the gill of E cirrhosa 48 h after bacterial 

injection. 

H= Haemocyte; B= Bacteria in the haemocyte; D= Evidence of bacterial degradation 

in the haemocyte. 
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Figure 9.4. TEM section of a haernocyte in the gill of E. cirrhosa 48 h after bacterial 

injection. 

H= Haernocyte; D= Possible bacterial degradation in the haemocyte. 

Figure 9.5. H&E section of gifl lamellae of E. cirrhosa 4h after the injection of 

colloidal graphite. 

C= Graphite aggregated in a blood vessel. 
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vacuole (V) of the pore cell (P) (fig. 9.7) contained areas of darker electron-dense 

material which were difficult to distinguish from a surrounding matrix of similar 

electron-density. A TEM section of a haemocyte (H) (fig. 9.8) next to a pore cell (P) 

in a control animal indicated the heterogeneity of the electron-dense granules (G) 

present in the cytoplasm. Four hours after the itýjection of bacteria the prominent 

vacuole (V) in the pore cells (P) of the branchial heart had become finely granular in 

appearance (fig. 9.9). A TEM section taken 4h post-injection (fig. 9.10) showed that 

this large vacuole (V), contained several small accumulations of electron-dense 

material. Clear vacuoles (CV) were also present in these pore cells (P) (fig. 9.9) which 

suggest that breakdown of the contents had occured resulting in a distinct double 

membrane surrounding the translucent vacuole containing indistinguishable contents. 

A haemocyte (ID next to a pore ceH (P), 4h post-injection (fig. 9.11), showed a 

variety of electron-dense granules (G), a pleomorphic nucleus and a translucent area 

(CV) surrounded by a double membrane which possibly contained breakdown products 

of phagocytosed material. Forty-eight hours after injection with bacteria (fig. 9.12) the 

large vacuole (V) in the pore cell (P) has become indistinct, however granules which 

resemble phagocytosed bacteria (B), shown by particles enclosed in medium stained 

vacuoles, and clear vacuoles (CV), which could indicate bacterial breakdown, were 

present in the cytoplasm. The normally bilobed nucleus (N) of some haemocytes (H) 

(fig. 9 173) haýd become pleomorphic, 48 h post-challenge, and only a few small 

granules (G) were present in the cytoplasm. Colloidal graphite (C) was found in a 

blood vessel (BV) of the branchial heart 4h after graphite injection (fig. 9.14) and the 
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Figure 9.6. Polychrome stained section of the branchial heart of a control animal. 

H= Haemocyte; G= Cytoplasmic granules in the haernocyte; BV = Blood vessel with 

haemocytes; CN = Nucleus of pore cell from a branchial heart; V= Large vacuole of 

pore cell with differentially stained contents. 

Figure 9.7. TEM section of a pore cell in the branchial heart of a control animal. 

P= Pore cell in a branchial heart; V= Large vacuole of a pore cell which contains dark 

granules difficult to distinguish from a matrix of sinfdar electron density; CN = Nucleus 

of pore cell. 

Figure 9.8. TEM section of a haemocyte containing various granules from the 

branchial heart of a control animal. 

H= Haemocyte; G= Cytoplasmic granules of the haemocyte; P= Pore cell. 1- (- 

Figure 9.9. Polychrome stained section of the branchial heart 4h after the injection of 

bacteria. 

V= Large vacuole of a pore cell which now contains less granular material. 
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Figure 9.10. TEM section of the branchial. heart of an experimental animal 4h after 

bacterial injection. 

P= Pore cell; V= Large vacuole of a pore cell which now contains electron-dense 

granules in a clear matrix; CV = Small clear vacuoles. 

Figure 9.11. TEM section of a haemocyte in the branchial heart of an experimental 

animal 4h after bacterial injection. 

11 = Haemocyte; N= Nucleus of haemocyte; G= Various electron-dense cytoplasmic 

granules; D= Possible bacterial breakdown in the cytoplasm of the haemocyte. 

Figure 9.12. Polychrome stained section of the branchial heart of an experimental 

animal 48 h after bacterial challenge. 

V= Smaller vacuole of a pore cell with less contrast between the granules and the 

matrices; CV = Clear vacuoles; B= Vacuoles containing bacteria in the cytoplasm of a 

pore cell. 

Figure 9.13. TEM section of a haemocyte in the branchial heart 48 h after bacterial 

injection. 

H= Haemocyte; G= Small granules in the cytoplasm of the haemocyte; N= Nucleus 

of the haemocyte which is now pleomorphic. 
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large vacuole (V) (fig. 9.15) of the pore cells (P) showed small accumulations of 

electron-dense material. It is possible that the clear areas (CV) (fig. 9.15) represent 

accumulations of graphite, which would be translucent when viewed using the TEM. 

The nuclei (N) of some haernocytes (H) (fig. 9.16) were pleomorphic 4h after the 

injection of graphite and the cytoplasm contained small granules (G) of varying 

density. 

Branchial Heart Appendage. (Figures 9.17-9.22) 

Circulating haemocytes (to in the branchial heart appendage of a control animal (fig. 

9.17) showed a few small granules present in the cytoplasm. The branchial heart 

appendage of the control animal contained various large clear blood spaces (BS). The 

circulating haemocytes (11) seen in a blood vessel (BV) 4h post-injection (fig. 9.18) 

demonstrated a few cytoplasmic granules (G), however particles which resemble 

phagocytosed bacteria (B), indicated by a darker stained material surrounded by a 

fighter stained matrix, were visible in the cells of the appendage. A TEM section 

demonstrated an haemocyte (H) (fig. 9.19) containing cytoplasn-dc granules (G) and 

possible phagocytosed, bacteria (B), a blood vessel (BV) and podocyte-type processes 

(PD) (after Witmer & Martin, 1973; Schipp & Hevert, 198 1). Haemocytes (H) 

present in the branchial heart appendage 48 h after bacterial injection (fig. 9.20) 

contained various granules (G), however, a few also contain vacuoles, of darker stained 

material which resemble phagocytosed bacteria (B). The haemocyte (H) (fig. 9.2 1) in 

the TEM section 48 h post-challenge showed electron-dense granules (G), clear 

page 190 



Gmphite and Bactena in E cirrhosa 

Figure 9.14. H&E section of the branchial heart 4h after cofloidal graphite injection. 

BV =A blood vessel; C= Graphite visible in the blood vessel; P= Pore cell; V= 

Large vacuole of a pore cell which now contains granules. 

Figure 9.15. TEM section of the branchial heart 4h after colloidal graphite injection. 

P= Pore cell; V= Large vacuole of a pore cell w1fich now contains small 

accumulations of electron-dense material in an electron-lucent matrix; CV = Clear 

vacuoles which may contain colloidal graphite. 

Figure 9.16. TEM section of a haemocyte from the branchial heart 4h after colloidal 

graphite injection. 

H= Haemocyte; G= Small granules of varying density in the cytoplasm of the 

haemocyte; N= Nucleus of haemocyte which is now pleomorphic. 
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Figure 9.17. Polychrome stained section of the branchial heart appendage of a control 

. al. 

H= Circulating haemocytes; G= Small cytoplasmic granules of an haemocyte; BS, = 

Blood spaces. 

Figure 9.18. Polychrome stained section of the branchial heart appendage 4h after 

injection with bacteria. 

H= Circulating haemocytes; G= Granules in the cytoplasm of an haemocyte; BV =A 

blood vessel containing haemocytes; B= Possible bacteria. 

Figure 9.19. TEM section of the branchial. heart appendage 4h after bacterial 

challenge. 

H= An haemocyte; G= Granules in the cytoplasm of the haemocyte; B= Possible 

bacteria; PD = Podocyte processes surrounding a blood vessel; BV = Blood vessel. 

Figure 9.20. Polychrome stained section of the branchial heart appendage 48 h after 

injection of bacteria. 

H= Haemocytes; G= Cytoplasmic granules of the haemocyte; B= Bacteria in some 

vacuoles. 
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vacuoles (CV) which contain possible bacterial breakdown products (D), indicated by 

the particulate nature of the vaucoles, and also phagocytosed bacteria (B) in the 

cytoplasm. The haemocyte (H) (fig. 9.21) also contains a few cytoplasmic vacuoles 

which are crystalline (M) in appearance. Colloidal graphite (C) was found aggregrated 

in a blood vessel (BV)(fig. 9.22) 4h post-injection. 

White Body. (Figures 9.23-9.28) 

I-Estological sections taken from a control animal (fig. 9.23) showed free mature 

circulating haemocytes (11) which contained a variety of granules, and attached 

maturing haernocytes (MH) with large granules (LG) in the cytoplasm (after Cowden, 

1972; Cowden and Curtis 1974,198 1). Large granules (LG) and granules which 

resemble phagocytosed bacteria (B) (fig. 9.24) were visible in the attached maturing 

haernocytes (N" 4h post-injection. The circulating haemocytes (fig. 9.24) contained 

numerous small granules (G) as well as granules which contain possible bacteria (13). 

Forty-eight hours after bacterial injection (fig. 9.25) the maturing haemocytes (MH) 

contain granules (LG), areas (CV) where material (possibly bacterial) breakdown has 

occurred and granules which resemble phagocytosed bacteria (B). The. circulating 

haemocytes contain small granules (G) as well as large darkly stained particles, 

possibly bacteria (B), in the cytoplasm. A TEM section of the white body 48 h post- 

injection showed an haemocyte (10 which contained small cytoplasmic granules (G) 

(figs. 9.26 & 9.27), and bacteria (B) (fig. 9.26) surrounded by a double membrane, 
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Figure 9.2 1. TEM section of the branchial heart appendage 48 h afler the injection of 

bacteria. 

H= Haemocyte; G= Granules in the cytoplasm of the haemocyte; CV = Vacuoles 

containing bacteria or bacterial breakdown products; D= Bacterial breakdown 

products; B= Bacteria in the process of digestion; M=A crystalline material present 

in some vacuoles. 

Figure 9.22. H&E stained section of the branchial heart appendage 4h after coHoidal 

grap te 

BV =A blood vessel; C= Graphite aggregated in a blood vessel. 
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Figure 9.23. Polychrome stained section of the white body of a control animal. 

H= Circulating haemocyte; G= Granules in the cYtOPlasm of the haernocytes; MH = 

Maturing haemocytes; LG = Large granules in the cytoplasm of maturing haemocytes. 

Figure 9.24. Polychrorne stained section of the white body of an experimental animal 

4h after bacterial injection. 

H= Circulating haemocytes; G= Cytoplasmic granules of the haemocytes; MH = 

Maturing haemocytes; LG = Granules of the maturing haemocytes; B= Possible 

phagocytosed bacteria in the granules of the maturing and circulating haemocytes. 

Figure 9.25. Polychrome stained section of the white body 48 h after bacterial 

injection. 

H= Circulating haemocytes; G= Granules in the cytoplasm of the haemocytes; B= 

Phagocytosed bacteria in the cytoplasm of the haemocytes; MH = Maturing 

haemocytes; LG = Granules in the cytoplasm of maturing haemocytes, only a few are 

present; CV = Clear vacuoles containing degraded bacteria. 

Figure 9.26. TEM section of the white body of an experimental animal 48 h after the 

injection of bacteria. 

N= Nucleus of an haemocyte; B= Degrading bacteria in the cytoplasm of the 

haemocyte; G= Cytoplasmic granules of the haernocyte. 
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Figure 9.27. TEM section of the white body 48 h after bacterial injection. 

H= Haemocytes; B= Bacteria in the cytoplasm of the haemocytes; G= Granules in 

the cytoplasm of the haemocytes. 

Figure 9.28. H&E stained section of the white body 4h after the injection of coUoidal 

graphite. 

BV =A blood vessel; C= Graphite contained within a delimited blood space. 
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undergoing degredation in the cytoplasm. Colloidal graphite (C) was located in a 

blood vessel (BV) of the white body (fig. 9.28) 4h post-injection. 

Haemocytes (Figures 9.29-9.34) 

A TEM section of a haemocyte (H) sampled at 0h from a control animal (fig. 9.29) 

showed the bi-lobed nucleus (N) and various electron-dense granules (G). The number 

of granules (G) present in the cytoplasm of the circulating haemocytes (11) increase in 

number, and larger granules are present, at sampling times of 4h (fig. 9.3 1) and 24 h 

(fig. 9.32) compared to 0h (fig. 9.30) from control animals. However, some 

haernocytes sampled 4h (fig. 9.33) and 24 h (fig. 9.34) post-injection showed a 

decrease in the number of granules (G). Both at 4h (fig. 9.33) and at 24 h (fig. 9.34) 

post-injection various particles which resemble bacteria (B), shown by dark stained 

material in non-stained matrices, and bacteria in various stages of breakdown were 

present in the cytoplasm of the haemocytes. 
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Figure 9.29. TEM section of a haemocyte obtained from the 0h sample. 

H= Haemocyte; N= Nucleus of an haemocyte, G= Various electron-dense granules 

in the cytoplasm of the haemocyte. 

Figure 9.30. Polychrome stained section of haemocytes obtained from the 0h sarnple. 

H= Haemocyte; G= Cytoplasmic granules of the haemocyte. 

Figure 9.3 1. Polychrome stained section of haemocytes, sampled from the control 

animals 4h after the initial (0 h) sample. 

H= Haemocytes; G= More and slightly larger cytoplasmic granules in the 

haemocytes. 

FigUre 9.32. Polychrome stained section of haemocytes sampled from the control 

animals 24 h after the initial (0 h) sample. 

H= Haemocytes; G= Granules in the cytoplasm of the haernocytes, more are present 

than at 0 h. 
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Figure 9.33. Polychrome stained section of haemocytes, sampled 4h after the 

injection of bacteria. 

H= Haemocytes; B= Bacteria in various stages of breakdown; G= Haemocyte 

c))i 
, toplasmic granules. Note less granules are present compared to the control 4h 

sample. 

Figure 9.34. Polychrome stained section of haernocytes, sampled 24 h after bacterial 

challenge. 

H= Haemocytes; B= Bacteria in various stages of breakdown; G= Granules in the 

cytoplasm of the haemocytes. Note very few granules are present. 
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Discussion 

The number of circulating haemocytes/ml in Eledone cirrhosa increase in response to 

sampling (Chapter 3) and after injection of phosphate buffered saline or live bacteria 

(Chapter 8). It has also been shown that live bacteria are either cleared from the 

circulation of K cirrhosa or rendered non-viable in about 4 hours (Chapter 8). 

Opportunistic Vibrio (sp), including V. anguillarum, have been implicated in causing 

mantle lesions and even death in various species of cephalopods held in captivity 

(Hanlon & Forsythe, 1990). 

Haemocytes have been shown in a variety of invertebrates to clear experimentally 

introduced particles (Ratcliffe ef al., 1985). In crustaceans for example, carmine 

(Smith & Ratcliffe, 1980) and live bacteria (White & Ratcliffe, 1982; White et al., 

1985) injected into Carcinus meanas were removed and killed in haemocyte clumps, 

which fonned in the gills, as well as by fixed phagocytes in other organs (Johnson, 

1987). Work with anneUds has also demonstrated that in the earthworm Eisenia 

foefida an&ei bacteria are initially degraded by humoral factors (Valembois et al., 

1992) before 'aggregation' by chloragocytes and the formation of brown bodies 

(Valembois et al., 1993). Fitzgerald and Ratcliffe (1983) working with Arenicold 

marina showed 'coelomocyte aggregates' after five bacterial injection, followed by 

accumulation of bacteria in various organs where eventually brown bodies formed. 

Yui and Bayne (1983) also demonstrated the formation of 'cellular aggregrates' after 

live bacterial injection, in the sea urchin Strongy1ocentrotuspurpuratus. Insect 

research has indicated that for example, phagocytosis occurs after the introduction of 
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low doses of bacteria into the Madeira cockroach Leucophaea maderae, whereas 

higher infection loads and larger particles are aggregated and encapsulated in nodules 

(Rahmet-Alla & Rowley, 1989). 

Research into various molluscan species has also demonstrated that haemocytes play a 

role in clearance of introduced particles (Bayne, 1983). Stauber (1950) showed that 

injected Indian ink was eventually removed from the circulation of Ostrea virginica by 

mobile phagocytes and distributed throughout the organism. Haemocytes of the 

American oyster Crassostrea virginica are known to phagocytose and digest injected 

live bacteria (Feng, 1966; Tripp, 1960) and haemocytes from the clarn, Tridacna 

maxima phagocytosed injected carbon particles (Reade & Reade, 1976; Sparks & 

Morado, 1988). Haemocytes and fixed phagocytes were however implicated in the 

clearance of particulate materials injected into the California Sea Hare Aplysid 

califomica (Pauley & Krassner, 1972). Gastropod studies appear to indicate that 

circulating haemocytes are not the sole agents responsible for clearance of injected 

particles. Using Helix pomatia Bayne and Kime (1970) demonstrated an initial 

decrease in circulating haemocytes after bacterial injection. Further, Bayne (1973a) 

showed that experimentally introduced bacteria were cleared to particular tissues with 

the digestive gland being the most important. Also using H. pomatia, Renwrantz el al 

(198 1) found that circulating haemocytes were not involved in the initial stage of 

clearance of injected foreign cells, they first accumulated in the digestive gland, kidney 

and foot muscle of the snail. Haemocytes, which initially decreased in number in the 

circulation ofH, pomafia, were apparently attracted by these organs containing 
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trapped foreign cells and later returned to the circulation containing the foreign 

particles. Interestingly, Renwrantz el al. (198 1) indicated that the clearance and 

attachment of foreign cells was mediated by the level of opsonins in the haemolymph 

ofH. pomatia. 

It has also been demonstrated that octopods are able to clear their haemolymph of 

introduced foreign particles. Stuart (1968) injected E. arrhosa with different amounts 

of colloidal carbon and sampled animals after certain time periods. The experiment 

showed that some organs, in particular the gills and posterior salivary glands, and to a 

lesser extent the white body and branchial heart, were able to remove carbon from the 

circulation of the octopod (Stuart, 1968). No carbon was detected in the circulating 

haemocytes of E. cirrhosa following the various experiments performed by Stuart 

(1968). Bayne (1973b) injected carbon and also five bacteria, Serratia marcescens, 

into Octopus doj7eini. The bacterium was cleared rapidly leading Bayne (1973b) to 

suggest that fixed phagocytes rather than circulating haemocytes were responsible. 

This was also supported by the finding that the carbon injected into 0. dofleini was 

found to have accumulated in the gills. The data presented in this paper are 

preliminary and only low doses of carbon and bacteria were injected. Also the carbon 

experiment and one of the bacteria experiments were only run for 4h with the second 

bacterial experiment run for 48 h. However, the histological and TEM evidence does 

appear to suggest that within 4h of live bacterial injection the circulating haemocytes 

are involved to some extent in phagocytosis of the bacteria, as shown by circulating 

haemocytes in the branchial gill, branchial heart, branchial heart appendage and white 
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body sections. The cells of the branchial heart, branchial heart appendage and 

maturing haemocytes in the white body were also involved in the removal of bacteria 

from the circulation. Though no evidence was observed for the involvement of the 

branchial gill in bacterial removal, this organ can not be ruled out and it is possible that 

other organs, e. g. the digestive gland and posterior salivary gland are also involved. 

Further experiments are currently underway to determine the involvement of other 

organs using different labelling techniques such as fluorescein iso-thiocyanate (FITC). 

The circulating haemocytes are possibly involved in the removal of graphite which 

aggregated in the blood vessels, as demonstrated by the 4h histological sections of the 

branchial heart, branchial heart appendage, branchial gifl and white body of E. 

cirrhosa. However it would be necessary to run this experiment for longer time 

periods and to investigate whether various other organs such as the posterior salivary 

gland, digestive gland and the circulating haemocytes are involved in clearance. The 

injection of bacteria into E. cirrhosa caused the branchial gill, branchial heart and heart 

appendage as well as a small portion of the kidney to turn green (pers. obs. ) which was 

assumed to be similar to the inflammation reactions demonstrated in bivalves in 

particular (Sparks & Morado, 1988). Morphologically the branchial heart and white 

body changed after the injection of V anguillarum and cofloidal graphite into E. 

cirrhosa. The significance of the change in the large vacuole found in the branchial 

heart cells is unknown. It is assumed that the contents of the vacuole are involved in 

part of the immune defences of the animal and this needs to be further investigated. 

Further investigation is also required into the pleomorphic state of some haemocyte 
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nuclei seen 4h after graphite injection and 48 h after bacterial injection. Of major 

interest was the response of the white body to the bacterial injection. It appears that 

large numbers of mature and maturing haemocytes are held in clusters in the white 

body (Cowden, 1972; Cowden & Curtis, 1974,198 1) and it is possible that there is 

fairly rapid release of haemocytes from this organ or other stores e. g. the posterior 

salivary gland (pers. obs. ) into the circulation of the octopod after insult. Blood 

sampling increases the number of haemocytes present in the circulation of F- cirrhosa 

and the timing of sampling was also found to be important (Chapter 3), however 

bacterial challenge induces significantly higher numbers of haemocytes to be released 

compared to control (PBS) injections (Chapter 8). The newly released haemocytes 

also contain more cytoplasmic granules (Chapter 3) and haemocytes exhibit lysozyme 

and cc2-macroglobulin activity (Chapter 8) as well as acid phosphatase and peroxidase 

staining granules (Chapter 3). Observationally the haernocytes collected from the 

bacterial injected animals (4 & 24 h samples) appeared to contain fewer granules 

whereas those collected from control animals (4 & 24 h PBS injected samples) 

contained a greater percentage of granules than in 0h controls. 

Lie et al. (1975) showed that large numbers of amoebocytes were released from the 

amoebocyte producing organ ofBiomphalaria glabrata after challenge with 

Echinostoma (sp). Exposure of B. glabrata to Echinostoma miracidia also results in 

morphological changes in the amocbocyte producing organ which when fully activated 

consisted of an increased number of amoebocytes arranged in zones of progressive 

maturation (Jeong et al., 1983). Leucocytosis was demonstrated in the bivalves 
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Sunetta scripta and Villorita cyprinoides var. cochinesis after bacterial or sharn 

injections (Suresh & Mohandas, 1990). The time period for leucocytosis in the 

bivalves was shown to depend on the nature of the particles/substances injected and 

also varied between the 2 bivalves. 

In conclusion, preliminary observations indicated that the circulating haemocytes in E. 

cirrhosa aid in the removal of foreign particles as do the cells of the branchial heart, 

branchial heart appendage and the white body of the animal. Further research aims to 

detem-dne whether other organs are involved in the clearance of injected particles and 

the. nature of haemocyte involvement in phagocytosis in vivo. 

page 198 



Graphite and Bacteria in E. cirrhosa 

References 
Bayne, CL 1973a. Molluscan internal defense mechanisms: 711C We of 14C labelled bacteria in the 
land snail Helixpomatia (L). Journal of Comparative Physiology. 86: 17-25 

Bayne, Cl 1973b. Internal defense mechanisms of Octopus dofleini. Malacological Review. 6: 13- 
17. 

Bayne, C. J. 1983. Molluscan immunobiology. In: The Mollusca. Vol. 5. Physiology Part 2. 
Saleuddin, A. S. M and Wilbur, K. M. (Eds. ). Academic Press. London. pp: 407-486 

Bayne, C. J. & Kime, J. B. 1970. In vivo removal of bacteria from the haemolymph of the land snail 
Reftxpomatia (Pulmonata: Stylommatophora). Malacological Review. 3: 103-113. 

Browning, J. 1979. Octopus microvasculature: Permeability to ferritin and carbon. Tissue & Cell. 11: 
371-383. Z- 

Cowden, R. P- 1972. Some cytological and cytochcmical observations on the leucopoictic organs the 
"white bodies" of Octopus vulgaris. Journal of Invertebrate Pathology. 19: 113-119. 

Cowden, R. R. & Curtis, S. K. 1973. Observations on living cells dissociated from the lcukopoictic 
organ of Octopus briareus. Experimental and Molecular Pathology. 19: 178-185. 

Cowden, R. R. & Curtis, S. K 1974. The Octopus white body: An ultrastruchmal survey. In: 
Contemporary Topics in Immunobiology. Invertebrate Immunology. Vol. 4. Cooper, E. L. (Ed. ). 
Plenuan Press. New York. pp: 87-90. 

Cowden, R. P- & Curtis, SK 198 1. Ccphalopods. In: Invertebrate Blood Cells. Vol 1. Ratcliffe, N. A. 
& Rowley, A. F. (Eds). Academic Press. pp: 301-323. 

Crichton, R., Killby, V. A. A. & Lafferty, lCJ. 1973. The Distribution and morphology of phagocytic 
cells inthc chitonDolophuragaimardi. Australian Journal of Experimental Biology and Medical 
Science. 51 (3): 357-372. 

FCng, S. Y. 1966. Experimental bacterial infections in the oyster Crassostrea virginica. Journal of 
Invertebrate Pathology. 8: 505-511. 

Fitzgerald, S. W. & Ratcliffe, N. A. 1983. An in vivo cellular immune response to bacteria in the 
polychacteArenicola marina (L. ) (Annelida). Developmental and Comparative Immunology. 7 (4): 
657-660. 

Hanlon, R. T. & Forsythe, J. W. 1990. Diseases caused by microorganisms. In: Diseases ofMarine 
Animals, Vol. 3. Kinne, 0. (Ed. ). Biologische Anstalt Helgoland, Hamburg, Germany. pp: 23-46. 

Jeong, Y-H., Lie, K. J. & Heyneman, D. 1983. The ultrastructure of the amebocyte-producing organ in 
Biomphalaria glabrata. Developmental and Comparative Immunology. 7.217-228. 

Johnson, P. T. 1987. A review of fixed phagocytic and pinocytotic cells of decapod cnistaceans, with 
remarks on haernocytes. Developmental and Comparative Immunology. 11 (4): 679-704. 

Jullein, A. 1940. Sur les rdactions des Mollusques c6phalopodes aux injections de goudron. Comptes 
Rendus Academie des Sciences. 210: 608-6 10. 

page 199 



Graphite and Bacteria in E. cirrhosa 

Killby, V. A. A., Crichton, P, & Lafferty, KJ. 1973. Fine structure of phagocytic cells in the chiton, 
Dolophura gaimardi. Australian Journal of Experimental Biology and Medical Science. 51 (3): 
373-391. 

Lie, K. J., Hcyncman, D. & Yau, P. 1975. The origin of amebocytcs in Biomphalaria glabrata. 
Journal of Parasitology. 63 (3): 574-576. 

Millar, D. k & Ratcliffe, N. A- 1994. Invertebrates. In: ImmunoloV. - A Comparative Approach. 
Turner, PU (Ed. ). John Wiley and Sons. pp: 29-68. 

Pauley, G. B. & Krassner, S. R 1972. Cellular defense reactions to particulate materials in the 
california, sea harc Aplysia californica. Journal of Invertebrate Pathology. 19.18-27. - 

Rahmct-Alla, Nt & Rowley, A. F. 1989. Studies on the cellular defense reactions of the madeira 
cockroach, Leucophaea maderae: Nodule fonnation in response to injected bacteria. Journal of 
Invertebrate Pathology. 54: 200-207. 

Ratcliffe, N. A., Rowley, A. F., Fitzgerald, S. W. & Rhodes, C. P. 1985. Invertebrate immunity: Basic 
concepts and recent advances. International Review of Cytology. 97: 184-350. 

Reade, P. & Reade, E. 1976. Phagocytosis in invertebrates: Studies on the hemocytes of the clam 
Tridacna'maxima. Journal of Invertebrate Pathology. 28: 281-290. 

Rcnwmntz, L., Sclancke, W., Harm, H., Erl, H., LiebscI4 H. & Gcrcken, J. 1981. Discriminative 
ability and function of the immunobiological recognition systcni of the snail Helix pomatia. Journal 

of Comparative Physiology. 141: 477-488. 

Schipp, PL, Höhm, P. & Schäfer, A 1971. Elektronenmikroskopische und histochemische 
Unterschungen zur Funktion des Kiemenherzanhanges (Pericardialdrüse) von Sepia officinalis. 
Zeitschrift für Zeilforschung und Mikroskopische Anatomie. 177: 252-274. 

Schipp, P, & Hevcrt, F. 198 1. UltrAtration in the branchial heart appendage of dibranchiate 
cephalopods: A comparative ultrastructural and physiological study. Journal of Experimental 
Biology. 92: 23-35. 

Shadwick, ILE. & Nilsson, E. K- 1990. The importance of vascular elasticity in the circulatory system 
of the cephalopod Octopus vulgaris. Journal of Expcrimental Biology. 152: 471-484. 

Sminia, T. 1972. Structure and function of blood and connective tissue cells of the freshwater 
pulmonate Lymnaea stagnalis studied by electron nficroscopy and enzyme histochemistry. Zeitschrift 
ffir Zellforschung und Mikroskopische Anatomie. 130: 496-526. 

Smith, VI & Ratcliffe, N. A. 1980. Host defence reactions of the shore crab, Carcinus maenas (L. ): 
Clearance and distribution of in ected test particles. Journal of the Marine Biological Association. 
UK 60: 89-102. 

Sparks, A. K. & Morado, IF 1988. Inflammation and wound repair in bivalve molluscs. American 
Fisheries Society Special Publication. 18: 139-152. 

Stauber, L. A. 1950. The fate of indian ink injected intracardially into the oyster, Ostrea virginica 
Gmelin. Biological Bulletin. 98: 227-24 1. 

page 200 



Graphite and Bacteria in E. cirrhosa 

Stuart, A. E. 1968. The reticulo-endothclial apparatus of the lesser octopus Eledone cirrhosa. Joumal 
of Pathology and Bacteriology. 96: 401-412. 

Surcsh, K. & Mohandas, A- 1990. Number and types of hemocytes in Sunetta scripta and rillarita 
cyprinoides var. cochinensis (Bivalvia), and leucocytosis subsequent to bacterial challenge. Journal of 
Invertebrate Pathology. 55: 312-318. 

Tripp, M. P. 1960. Mechanisms of removal of injected microorganisms from the american oyster 
Crassostrea virginica (Gmelin). Biological Bulletin. 119: 273-282. 

Vallembois, P., Lassegucs, 14 & Roch, P. 1992. Formation of brown bodies in the coelomic cavity of 
the earthworm Eiseniafetida andrei and attendant changes in shape and adhesive capacity of 
constitutive cells. Developmental and Comparative Immunology. 16: 95-101. 

Vallembois, P., Lasscgues, M., Hirigoyenberry, F. & Seymour, J. 1993. Clearance and breakdown of 
pathogenic bacteria injected into the body cavity of the earthworm EiseniaJefida andrej. 
Comparative Biochemistry and Physiology. 106C (1): 255-260. 

Wells, M. J. 1978. Octopus: Physiology and Behaviour ofan Advanced Invertebrate. Chapman and 
Hall, London. p: 417. 

Wells, M. I. 1983. Circulation in ccphalopods. In: Yhe Afollusca. Vol 5. Saleuddin, A. S. M. & Wilbur, 
KM. (Eds. ). Academic Press. London. pp: 239-290. 

Wells, M. J. & Smith, P. J. S. 1987. The performance of the octopus circulatory system: A triumph of 
engineering over design. Expcricntia. 43: 487-499. 

White, K. N. & Ratcliffe, N. A. 1982. The segregation and elimination of radio- and fluorescent- 
labelled manne bacteria from the haemolymph of the shore crab, Carcinus maenas. Journal of the 
Marine Biological Association. UK 62: 819-833. 

White, K-N., Ratcliffe, N. A. & Rossa, M. 1985. The antibacterial activity of haemocyte clumps in the 
gills of the shore crab, Carcinus maenas. Journal of the Marine Biological Association. UK 65: 
857-870 

Witmer, A. & Martin, A. W. 1973. The fine structure of the branchial heart appendage of the 
ccphalopod Octopus dofleini martini. Zeitschrift rur Zellforschung und Mikroskopische Anatomie. 
136: 545-568. 

Yui, M. A. & Bayne, C. L 1983. Echinoderm immunology: Bacterial clearance by the sea urchin 
Strongylocentrotuspurpuratus. Biological Bulletin. 165: 473-486. 

page 201 



Discussion 

Chapter 10 

General Discussion 

pagc 202 



Discussion 

Discussion 

This study has established that the haemocytes, haemolymph and tissues of the lesser 

octopus Eledone cirrhosa (Lam. ) exhibit both cellular and humoral immune reactions. 

Indications are that the cellular and humoral components interact to protect the 

octopod against potentially pathogenic bacteria if extemal barriers such as the skin and 

mucus are breached. 

Haemocytes and Haemolymph of E cirrhosa 

In order to perform this study on the cellular and humoral components of the immune 

system of E. cirrhosa it was necessary to sample adequate quantities of blood, 

(repeated samples if needed). Further, it was also necessary to be able to separate the 

haemocytes (blood cells) from the haemolymph (plasma) and to culture the haemocytes 

in vitro under controlled conditions. 

The blood sampling technique developed for E. cirrhosa is quick and guaranteed 

quantities can be obtained with 100% survival (Chapter 2). Improvements to the 

maintenance conditions for the animals (constant temperature, 10- 1 2*C; abundant 

food; biological filters) has enabled repeated sampling of the same animals once every 

5/6 days, without apparent ill effects, for periods of longer than 9 months. Further, the 

haemocytes can be separated from the sampled blood and cultured for up to 72 h 

without morulae formation. 

The sampling and culture technique (Chapter 2) could be used in further studies of the 

immune system of E. cirrhosa or other cephalopods. Other applications could include 
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their use in assessing the health of E cirrhosa in captivity; detennination. of 

reproductive development and the effects of pollutants. In vitro culture of haemocytes f, 1ý 

could also be used to detennine whether subpopulations of haemocytes exist. Though 

there appears to be one main type of haemocyte in E. cirrhosa, subpopulations, or 

haemocytes at different maturity stages, could be present (Chapter 3). 

Importantly however, sampling and repeated sampling does affect both the haemocytes 

and haemolymph ofE. cirrhosa (Chapter 3). In particular, the haemocyte numbers/H 

of blood and the percentage of haemocytes containing cytoplasmic granules increase JI 
v 

while the amount of copper and initially the amount of protein in the haemolymph 
tc 

decrease. 

Looking at the haemocyte response it appears that initially the increase in haemocyte 

numbers/ml due to sampling, is caused by loss of blood, i. e. a wounding response. 

Concomitant with this increase in the number of circulating haemocytes is a change in 

the staining pattern and as mentioned above an increase in the percentage of 

haemocytes containing cytoplasmic granules. Whether these 'new' haemocytes are 

released from the leucopoetic organ, or white body, (as suggested by preliminary data), 

or from other stores (such as the posterior salivary gland, the space around the white 

body or the branchial heart) or by proliferation of circulating haemocytes requires 

further investigation. Cowden and Curtis (1974,1981) showed that the haemocytes 

matured in the white body of octopuses and upon release contained numerous 

cytoplasmic granules. Necco and Martin (1963) suggested that maturing haem6cytes 

were held in the white body at telophase. ý If true then large numbers of newly mature 

V) 
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haemocytes could be quickly released if needed. With this in mind it would appear that 

loss of blood causes the release of haemocytes, which are mature or quickly complete 

maturation, and it is these cells which have the numerous cytoplasmic granules. 

Interestingly haemocyte numbers/ml and the percentage containing cytoplasmic 

granules increases over 3-5 days during repeat sampling whereupon the number of 

haemocytes/ml decreases before secondarily increasing again. However, the 

percentage of haernocytes containing cytoplasmic granules continually decreases from 

day 5. The timing of sampling is therefore important. If newly released haemocytes 

have cytoplasmic granules then these results suggest that only a certain number of 

gnew' haemocytes can be released over a particular time period. Since the samples 

obtained from new, previously unsampled animals shows only a small percentage of 

haemocytes containing cytoplasmic granules, it is assumed that the granules are either 

released by exocytosis or used during the life cycle of the circulating haemocyte. Only 

about 10% of the circulating haemocytes are normally newly released. The secondary 

increase in haemocytes/ml could be due to the release of haemocytes which are not 

fully mature (they have not yet developed their full complement of granules), to the 

proliferation of circulating haemocytes, or more likely to the mobilisation of older 

stored haemocytes. Stores of haemocytes in places, other than the white body, have 

been detected in the posterior salivary gland, which secretes proteases (Chapter 8) and 

the branchial. heart, which contains pore cells with large vacuoles (Chapter 9) (pers. 

obs. ). However, as will be seen later (Chapter 8), the haemocytes contain antiprotease 

activity (possibly within granules). Interestingly, haemocytes undergoing degradation 
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have been seen in the branchial heart which, as will be discussed later, has lysozyme 

activity (Chapter 8). So far there is no evidence to support the suggestion that there is 

proliferation of circulating haemocytes. In effect very little is known about the life 

cycle or replacement rate of the circulating haemocyte found in E. cirrhosa and further 

investigation into its activities and life span, in conjunction with studies on the white 

body, are required. How they are related to the tissue haemocytes is also unknown. 

With regard to the changes in the haernolymph parameters due to sampling, the 

decrease in the amount of copper is extremely important and could lead to a possibly 

fatal decrease in the oxygen carrying capacity of the blood of these aerobic animals. 

Though protein levels do decrease over a short sampling period they do return to 

original values (even if highly variable) over extended sampling times. Thus although 

the protein concentration is restored it is not in the form of the respiratory protein 

haemocyanin. Whether, the replaced protein is in the form of apohaemocyanin remains 

to be determined. Interestingly, when sampled for 3 consecutive days over a 12 day 

sampling period, the copper content of the haemolymph does appear to remain stable. 

Preliminary data suggests that sampling once every 5/6 days allows the amount of 

copper in the haemolymph to return to original values. This effect however urgently 

needs further investigation and these experiments need to be repeated in conjunction 

with blood volume measurements. 
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Cellular Defence 

As with other invertebrates, the baemocytes from E. cirrhosa will phagocytose 

bacteria (Chapter 4). In vitro phagocytosis occurs in the absence of haernolymph and 

is affected by temperature and the duration of haemocyte incubation with, in this case, 

formalised bacteria (Pbrio anguillarum). Additionally enhanced phagocytosis occurs 

if the bacteria are pre-incubated in haemolymph (10- 100% concentrations), suggesting 

that opsonins are present. Stuart (1968) showed that erythrocytes were only 

phagocytosed by E cirrhosa haernocytes after pre-incubation in haernolymph. It 

therefore appears that the opsonin acts as a recognition molecule (lectin) on the 

surface of particles either initiating or enhancing phagocytosis. This leads to the 

assumption that in vivo invading bacteria would be opsonized and quickly 

phagocytosed. 

Opsonization of bacteria and therefore phagocytosis is however affected by a number 

of parameters. In particular, where bacteria are only opsonized for a short time (1-10 

min) at low temperatures (5- 1 OT), the phagocytic rate decreases below that obtained 

for unopsonized bacteria. In effect, as suggested by Fryer and Bayne (1989), initial 

non-specific adsorption of a variety of plasma components (including opsonins) onto 

the surface of the bacterium could explain the inhibition. Longer exposure of the 

bacteria to the haemolymph at higher temperatures would allow more of the opsonin to 

bind, enabling faster recognition and therefore increased phagocytosis. Other factors 

which appear to affect enhanced phagocytosis by E. cirrhosa haemocytes include the 

presence in the buffer, used to dilute the haemolymph containing the opsonin, of the 
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divalent ions calcium and magnesium and the chelating agents 

ethylenediaminetetraacetic acid (EDTA) and ethylene glycol-bis (B-aminoethyl ether) 

tetraacetic acid (EGTA). This appears to indicate that the attachment of the opsonin 

to the bacterium is sensitive to the presence of divalent cations. Further investigations 

into the nature of the opsonin is required and it would be interesting to determine the 

effect of the surface properties of particles, their size and any bound ions, on 

opsonization and subsequent phagocytosis by haernocytes. 

The investigation of the recognition aspect of phagocytosis in E cirrhosa has 

established that haemocytes will ýnigrate towards certain preparations (Chapter 5). 

The fact that haernocytes rnigrate towards low concentrations of blood preparations is 

again suggestive of a wounding response. Molluscan blood does not clot, and it has 

been claimed that cephalopod haernocytes mýigrate into the wound and seal it (Polglase 

el al., 1983; Wells, 1983; Feral, 1988; Ford, 1992). In vivo haernocytes presumably 

move towards an area of diluted blood, which would probably also contain lysed 

haernocytes, so plugging the wound and they would then phagocytose necrotic tissue. 

Blood preparations in which live bacteria had been incubated were also attractive to K 

cirrhosa haemocytes suggesting that some of the bacterial secretions are 

chemoattractant(s). In vivo, wounding could also lead to the invasion of live bacteria 

which upon release of certain substances would be recognised by and attract the 

haemocytes. In vitro studies have also shown (Chapter 5) that haemocytes win 

migrate towards blood preparations which contain lipopolysaccharide (LPS). Since 

LPS is part of the cell wall of bacteria it appears that haemocytes will not only 
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recognise secreted bacterial products (from live bacteria) but will also recognise 

constituent molecules from bacterial walls. Interestingly, negative migration, 

compared to controls, was seen when blood preparations, haemolymph in particular, 

were used in which dead bacteria had been incubated. However, phagocytosis of dead 

bacteria does occur (Chapter 4). Investigations are however needed into the nature and 

effects of the chemoattractants secreted by live bacteria and whether other molecules 

such as other bacterial constituents also induce haemocyte migration. Further it would 

be phylogenetically interesting to investigate whether molecules which induce 

vertebrate macrophage migration such as tumor necrosis factors and interleukins also 

stimulate E. cirrhosa haemocytes. 

The electron rnicroscope results suggest that once the bacteria are internalised, the 

haemocyte appears able to kill and digest them (Chapter 4& 9). The decrease in the 

number of five bacteria after incubation with haemocytes from E. cirrhosa is assumed 

to be due to phagocytosis (Chapter 6). Though it is possible that the haemocytes 

secrete bacteriostatic molecules this appears to be unlikely as regards the evidence 

from the NBT reduction experiments. The experiment, involving NBT reduction, 

showed that dead bacteria in particular, but also live bacteria and intriguingly LPS, 

caused intraceflular reactive oxygen intermediate (ROI) production by E. cirrhosa 

haemocytes. The production of ROls is in effect an indication that phagocytosis, or 

possibly pinocytosis with LPS, has taken place. Additionally, haemocytes contain 

lysosomal enzymes such as acid phosphatase (Chapter 8) as well as lysozyme and 

antiprotease activity, which could protect against bacterial proteases. Presumably, 
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other bactericidal molecules are present and it would be interesting to isolate and 

characterise these molecules as well as determining the exact nature of the action by 

haemocytes on the bacteria. Preliminary investigation with E. cirrhosa haemocytes 

was also carried out using phorbol myristate acetate (PMA) (a membrane stimulator), 

bacteria and LPS with ferricytochrome C which detects extracellular ROI production 

(unpub. data). However no extracellular ROI production was demonstrable for E. 

cirrhosa which could be due to either the buffers (containing EGTA) used to isolate 

and culture the haemocytes for the assays, or to the possibility that haemocytes do not 

produce extracellular ROIs. Additional experiments are necessary to determine 

whether ROIs are produced extracellularly. 

Humoral Defence 

E. cirrhosa haemolymph contains agglutinins for the bacteria V anguillarum, V 

parahaemolyticus and Aeromonas salmonicida (Chapter 7). Stuart (1968) also 

demonstrated the presence of agglutinins in E. cirrhosa. He also reported the presence 

of opsonins, which were also seen in this study (Chapter 4), and suggested that the 

respiratory pigment haemocyanin could be the opsonin. No evidence was obtained 

from this study for the involvement of haemocyanin in the humoral defence of E. 

cirrhosa, but it would be interesting to remove haemocyanin from the haemolymph and 

determine the effects on opsonization. Lectins have been demonstrated in another 

octopod, Octopus vulgaris (R6gener el al., 1985,1986,1987). It appears therefore 

that invading particles are quickly cross linked in suspension (agglutination), marked 
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for recognition and opsonized for rapid. phagocytosis by the haemocytes. Additionally 

the haemolymph ofK cirrhosa contains either a bacteriostatic or a bactericidal 

capacity, as well as lysozyme and possibly 'protective' antiprotease activities (Chapter 

8). Experiments are required to determine whether the effect of the haemolymph on 

bacterial growth is due to bacteriostatic or bactericidal activity and what the causative 

agent is. It would also be interesting to determine the effect of the removal of 

haemocyanin on this activity of the haemolymph of F. cirrhosa. 

In rivo Gearance 

Live bacteria injected into K cirrhosa are cleared from the circulation in about 4 hours 

(Chapter 8). Additionally haemocyte and branchial heart lysozyme and haemocyte 

antiprotease activity were affected by bacterial injection, as were the number of 

circulating haemocytes/ml. Lysozyme activity was shown to increase in the branchial. 

heart and decrease in the haemocytes possibly suggesting the production of lysozyme 

in the branchial heart and either its utilisation. or release by the haemocytes. Lysozyme 

production in the branchial heart may be associated with the changes in the 

morphology of the large vacuole of the pore cells 4 hours after bacterial injection 

(Chapter 9). Additionally, haernolymph lysozyme activity did not change after 

bacterial injection (Chapter 8). 

The decrease of antiprotease activity in the haemolymph suggests utilisation which 

could possibly protect the tissues of E. cirrhosa against possible bacterial proteases. 

Since blood was sampled from the animals before injection of bacteria, it is difficult to 
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determine whether the increase in haernocyte numbers/ml is due to the blood loss, or 

the injection, or both. However, more haernocytes/ml were detected in animals 

injected with bacteria, compared to the control, suggesting that the bacteria had a 

greater effect than sampling alone. 

The final experiments (Chapter 9) showed that, as with other molluscs, injected 

bacteria were cleared by circulating haemocytes and also by certain tissues such as the 

branchial heart, the white body and the branchial heart appendage. Bacteria 

undergoing degradation were seen in these tissues and in the circulating haemocytes 

confirming that potentially pathogenic bacteria can be removed from, and destroyed 

by, the internal defences of the animal. This however does need further investigation 

and a better understanding of the clearance mechanisms could be obtained by using 

labelling techniques such as "'C and fluorescein isothiocyanate(FITC) on the bacteria. 

Other factors which need investigating are the change in the large vacuole of the 

branchial heart cells and the changes in morphology of the haemocyte nucleus. 

injected colloidal graphite was detected as aggregates in blood vessels. This agrees 

with the findings of Stuart (1968). 

In conclusion, E. cirrhosa is able to deal with invading potentially pathogenic bacteria 

by using combinations of both the humoral and cellular components of its immune 

system. Wounding, or bacterial invasion, causes an increase in circulating 

haemocytes, followed by agglutination, opsonization, and possible killing of the 

bacteria in the haemolymph. Haemocytes migrate towards, phagocytose and probably 
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kill any invader. If the invader escapes the haemocytes other tissues are also capable 

of removing and IdUing these foreign organisms. 
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