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Abstract 
Of the many targeted therapies introduced since 2006, sunitinib has carved its way to 

become the most commonly used first-line therapy for the treatment of metastatic renal cell 

carcinoma (RCC). Despite significant improvements in progression-free survival, 30% of the 

patients are intrinsically resistant to sunitinib and the remaining 70% who respond initially 

will eventually become resistant in 6–15 months. While the molecular mechanisms of 

acquired resistance to sunitinib have been unravelling at a rapid rate, the mechanisms of 
intrinsic resistance remain elusive. Combination therapy, sunitinib rechallenge and 

sequential therapy have been investigated as means to overcome resistance to sunitinib. Of 

these, sequential therapy appears to be the most promising strategy. This mini review 

summarises our emerging understanding of the molecular mechanisms, and the strategies 

employed to overcome sunitinib resistance. 

 

Introduction 
 

The past decade has witnessed tremendous 

improvements in the understanding of the 

role of angiogenesis in renal cell carcinoma 

(RCC), leading to the development and 

implementation of many angiogenesis-
inhibitors, also known as targeted 

therapies, in clinical practice (1-7). These 

achievements largely stem from the 

elucidation of two inter-connected 

molecular pathways that regulate 

angiogenesis and proliferation in RCC, an 
inactivated von Hippel Lindau (VHL) gene 

and activated mammalian target of 

rapamycin (mTOR) (6-11). These pathways 

have been extensively reviewed (8-18). Of 

the many targeted therapies, sunitinib has 
carved its way to become the most 

frequently used first-line therapy for the 

treatment of metastatic RCC. However, the 

initial enthusiasm is hampered by the 

development of intrinsic and extrinsic 
resistance to therapy. In this mini review, a 

summary of the angiogenesis pathway in 

RCC, the emerging molecular mechanisms 

of sunitinib resistance, and the approaches 

to overcome resistance to sunitinib in RCC 

are discussed.    
 

The VHL-HIF axis in RCC 

 

The VHL gene is inactivated in 70-80% of 

sporadic clear cell RCC either through 

mutations, hyper-methylations or loss of 
heterozygosity (8-10). Subsequently, the 

production of its functional protein, pVHL, 

is either inhibited or decreased in these 

cases. The best studied function of pVHL is 

the degradation of the transcription factor 
hypoxia-inducible factor (HIF). As the 

microenvironment of solid tumors is often 

hypoxic, tumor cells undergo adaptive 

changes to facilitate their survival. One 
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such survival mechanism under hypoxic 

conditions is the up-regulation of HIF-
alpha (HIF-α). Under normoxic conditions, 

pVHL forms complexes with elongin B, 

elongin C, Rbx1 and cullin 2 to form a 

pVHL- E3 ubiquitin ligase complex (pVHL-

E3 complex) (15-23). The pVHL-E3 complex 
then binds to HIF-α, leading to its 

polyubiquitination and proteasomal 

degradation. In the absence of a functional 

pVHL, secondary to VHL mutations, the 

formation of the pVHL-E3 complex and its 

binding to HIF are inhibited and therefore, 
the degradation of HIF-α is prevented even 

in normoxic conditions (15-23). This leads 

to the stabilization and accumulation of 

HIF in cells (Figure 1). Subsequently, HIF is 

translocated to the nucleus, where it binds 
to hypoxia-responsive elements of the DNA 

and transactivates a plethora of molecules 

that regulate angiogenesis (Figure 1). The 

best studied of these molecules is the 

vascular endothelial growth factor (VEGF), 

a crucial regulator of vascular development 
during embryogenesis (vasculogenesis) and 

blood vessel formation from the existing 

endothelium in adults (angiogenesis) (24-

31).  

 

The role of VEGF in RCC 
 

In humans, the VEGF system consists of 

five secreted ligands, VEGF A-D and 

placenta growth factor-1 (PlGF), and three 

receptor tyrosine kinases, VEGF R1-R3. 
The binding of the ligands to the receptors 

initiates VEGF-mediated angiogenesis 

which involves endothelial cell 

proliferation, migration, permeability and 

capillary formation. However, VEGF alone 

is not sufficient for the maintenance and 
stabilization of the newly formed vessels, 

and requires input from the surrounding 

microenvironment. This support comes 

from surrounding peri-endothelial cells 

such as vascular smooth muscles (VSMC) 
and pericytes that stabilize the newly 

formed vasculature and support 

endothelial cell survival (32-34). This is 

achieved by the cross talk between platelet-

derived growth factor-B (PDGF-B) secreted 

by the endothelial cells and the receptor 
tyrosine kinases of PDGF, especially 

PDGFR-B, of the VSMC and pericytes (32-

35).  Thus the interplay between VEGF, 
PDGF and their tyrosine kinase receptors 

plays a crucial role in angiogenesis 

secondary to VHL inactivation in RCC. 

 

The role of mTOR in RCC 
 

mTOR, which exists as mTORC1 and 

mTORC2 complexes, is a key component of 

the phosphoinositide 3-kinase (PI3K)/Akt 

signalling pathway that regulate cell cycle, 

proliferation and angiogenesis (12, 36). 
mTOR signalling can be activated via a 

number of mechanisms, including 

overexpression of growth factor receptors, 

mutations in PI3K/Akt, tuberous sclerosis 

tumor suppressor genes TSC1/2 or 
phosphatase and tensin homolog (PTEN) 

(37-42). mTOR activates the translation of 

the pro-proliferative factors such as cyclin 

D1 and cMyc, and the angiogenic factor 

HIF through phosphorylation of ribosomal 

protein S6 kinase (S6K) and eukaryotic 
translation initiation factor 4E-binding 

protein 1 (4EBP1) (6, 43-45). The mTORC2, 

through protein kinase Cα, regulates cell 

morphology, motility, adhesion, invasion 

and metastasis (45). Furthermore, 

inactivation of VHL increases mTOR 
activity which in turn exacerbates the loss 

of VHL function leading to enhanced HIF 

activity (38) (Figure 1). VHL inactivation 

itself leads to deregulation of cyclin D1 (6, 

44). Thus mTOR activation is involved in 
cell proliferation through cyclin D1 and c-

Myc, and angiogenesis through HIF (Figure 

1).  

 

Targeted therapy in RCC 

 
Elucidation of these pathways had 

identified the potential of angiogenesis 

inhibition as a promising therapeutic 

option for metastatic RCC leading to the 

development and implementation of 
angiogenesis and mTOR inhibitors in 

clinical practice. These targeted therapies 

are broadly classified as VEGF inhibitors, 

multi-tyrosine kinase inhibitors and mTOR 

inhibitors. The most successful VEGF 

inhibitor is the humanized VEGF-
neutralizing antibody bevacizumab, which



Morais, C                                                                                                           Sunitinib resistance in RCC 

 

JKCVHL 2014;1(1):1-11  http://jkcvhl.com  3 

 

 
Figure 1.The role of VHL and mTOR in angiogenesis and proliferation of RCC. A non-functional 
VHL is the major risk factor for the development and progression of RCC. The functional protein of 
VHL, pVHL, complexes with E3-ligase and degrades HIF. When the VHL is non-functional, HIF is 
stabilized and translocated to nucleus where it binds with HIF responsive elements of the DNA and 
activates many pro-angiogenic factors including VEGF and PDGF. They interact with their respective 
tyrosine kinase receptors VEGFR (mostly at endothelial cells) and PDGFR (mostly at vascular smooth 
muscle cells and pericytes) and promote angiogenesis. The PI3K/AKT/mTOR pathway is activated by 
many factors including growth factor receptors. mTOR in turn activates cyclin D1 and cMyc and 
promotes cell proliferation and survival.  Furthermore, VHL inactivation also activates mTOR, which 
in turn up-regulates HIF and subsequent angiogenesis. GFR, growth factor receptor; HIF, hypoxia-
inducible factor; PDGF platelet-derived growth factor; PDGFR, receptor for PDGF; VEGF, vascular 
endothelial growth factor; VEGFR, receptor for VEGF; VHL,von Hippel Lindau gene. 

 

exerts its anti-angiogenic activity by acting 

against the angiogenic endothelial cells 

surrounding the tumor, rather than the 
tumor per se, thus blocking the supply of 

oxygen and nutrients to the tumors (46-

48). The multi-tyrosine kinase inhibitors 

are sunitinib, sorafenib, pazopanib and 

axitinib. Many more are in various phases 

of clinical trials. They inhibit multiple 
tyrosine kinase receptors and neutralize 

the downstream signalling pathways 

activated by ligand-receptor binding that 

leads to angiogenesis. Two of the most 

successful mTOR inhibitors are 

temsirolimus and everolimus. Both are 
rapamycin analogues and bind to FK506-

binding protein 12 (FKBP12), which in turn 

binds to mTOR leading to the inhibition of 

the PI3K/Akt/mTOR pathway (45, 49). In 
addition, temsirolimus has been shown to 

have a direct inhibitory effect on HIF and 

VEGF (50). Of these targeted therapeutics, 

sunitinib has become the most frequently 

used first-line targeted therapeutic for the 

treatment of metastatic RCC. 
 

Sunitinib in RCC 

 

Sunitinib malate (SUTENT®) is a small 

molecule multi-tyrosine kinase inhibitor 
that inhibits VEGFR-1, -2 and -3, PDGFR-α 

and -β, stem cell factor receptor (KIT), Fms-
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like tyrosine kinase 3, colony stimulating 

factor type 1 receptor and the glial cell-line-
derived neurotrophic factor receptor (RET) 

(51). Phase II trials of sunitinib in cytokine-

refractory RCC patients showed response 

rates of 39-40%, stable disease rates of 23-

27%, median time to tumor progression of 
8.7 months, and a median survival of 16.4 

months (52-55), leading to its accelerated 

approval for RCC in 2006. This was 

followed by regular approval in 2007 based 

on a phase III clinical trial that showed 

superior outcome as a first-line therapy 
when compared with interferon alpha in 

patients with clear cell RCC (1, 3, 51, 55). 

Subsequently, immunotherapy, which used 

to be the mainstay of treatment for 

metastatic RCC, was replaced by targeted 
therapy, and sunitinib has become the 

most commonly used first-line therapy for 

metastatic RCC. 

 

Intrinsic and acquired resistance to 

sunitinib 
 

Despite the benefits achieved through 

sunitinib in terms of progression-free 

survival and disease stabilization, all 

patients develop resistance to sunitinib and 

eventually relapse. While the criteria for 
defining resistance or response to therapy 

based on  RECIST (response evaluation 

criteria in solid tumors) are debatable as 

recently pointed out (56, 57), and 

investigators implement variations, based 
on the available data it is reasonable to 

conclude that approximately 70% of 

patients respond to therapy initially and 

the remaining 30% show primary 

resistance (intrinsic resistance) (57-59). In 

the 70% of patients who show initial 
response, durable responses are rare, and 

acquired resistance (extrinsic resistance) to 

treatment develops in almost all of them in 

6–15 months (56-63). 

 
The mechanisms of sunitinib resistance are 

varied and multifactorial. Table 1 

summarizes our emerging understanding of 

the molecular mechanisms of resistance to 

sunitinib. It should be noted that most of 

these mechanisms are based on pre-
clinical studies, and therefore, their 

relevance in clinical settings is yet to be 

verified. Taken together, the functional 

significance of these mechanisms can be 

summarized under two categories: 
restoration of angiogenesis through the 

activation of VEGF-independent pathways 

(64-69, 71-80) and reduced bioavailability 

either through increased efflux or 

lysosomal sequestration (70, 81). Of these, 
activation of tyrosine kinase-independent 

alternate angiogenesis pathways leading to 

restoration of angiogenesis appears to be 

gaining consensus.   

 

While the mechanisms of sunitinib-
mediated alternate angiogenesis are still 

elusive, hypoxia is emerging as the major 

culprit. Sunitinib inhibits angiogenesis, 

largely through the inhibition of VEGF and 

its receptors. This helps in the stabilization 
or regression of the tumor in the short 

term. However, this also results in hypoxia. 

Sustained hypoxia by sunitinib ‘resets’ the 

tumor microenvironment and leads to the 

development of a VEGF/VEGFR-

independent alternate angiogenic pathway 
through the up-regulation of angiogenic 

factors other than VEGF (60, 83). For 

example, as shown in Table 1, up-

regulation of IL-8 or down-regulation of 

IFN-γ (65, 69), may circumvent the anti-

angiogenic effects of sunitinib, and 
functionally compensate for the 

VEGF/VEGFR-mediated inhibition of 

angiogenesis. Apart from contributing to 

acquired resistance through alternate 

angiogenesis pathways, hypoxia could also 
contribute to intrinsic resistance by 

selecting a more malignant RCC 

phenotype, which may accelerate 

metastatic development and prone cells to 

insensitivity for anti-angiogenic treatment 

(59, 84). 
 

Overcoming resistance to sunitinib 

 

The pre-clinical studies (Table 1) have 

demonstrated the beneficial effects of 
adjunct therapy, targeted at the specific 

molecules identified at each study, to 

overcome resistance. However, their clinical 

relevance needs to be established. In 

patients, sunitinib rechallenge, 

combination therapy and sequential 
therapy have been investigated to overcome 

sunitinib resistance.  
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   Table 1. Emerging mechanisms of resistance to sunitinib 

Parameter Mechanism of Resistance Ref 

ATX* Endothelial ATX activates LPA signalling to promote 

renal tumorigenesis 

(64) 

Chemokines Down-regulation of angiostatic chemokines IFN-γ, 

IFN-γR and CXCL9 restores angiogenesis 

(65) 

COX-2 Enhanced COX-2 up-regulates HIF (66) 

EMMPRIN High EMMPRIN causes resistance via hyaluronan-

mediated activation of ErbB2 

(67) 

HDM2/HDMX Inhibition of p53 by HDM2 and HDMX restores 

angiogenesis 

(68) 

 

IL-8 

Increased plasma level leads to tumor growth and 

vascularity 

(69) 

Lysosomes Sequestration of sunitinib in lysosomes reduces 

bioavailability 

(70) 

MicroRNA Decreased miR-141promotes angiogenesis; 

increased miR-942, miR-628-5p, miR-133a, and 

miR-484 promote angiogenesis through up-

regulation of MMP-9 and VEGF 

(71, 72) 

MDSC Intra-tumoral MDSC provides sustained immune 
suppression and angiogenesis 

(73) 

NGAL Increased NGAL activates alternate pro-angiogenic 
signaling pathway such as Ras-GTP, Erk1/2, and 

STAT1α 

(74) 

Polymorphism CYP3A5 rs776746; VEGFR2 rs1870377; VEGFR3 

rs307826; VEGFR3 rs307821; 

VEGFR3 rs448012; PDGFRA rs1800812; IL-8 

rs4073; PXR rs3814055; ABCB1 rs2032582; ABCB1 

rs1128503 

(75-78) 

PRKX Overexpression up-regulates microphthalmia-

associated transcription factor (MITF) 

(79) 

PTEN  Inactivation of PTEN restores angiogenesis through 

activation of P13/Akt/mTOR 

(80) 

RLIP76 Active efflux of sunitinib from cells leads to reduced 

bioavailability 

(81) 

SKI SK1activates ERK and inhibits ATP-binding cassette 

(ABC) drug transporter family 

(82) 

*ATX, autotaxin; Cox-2, cycloxygenase-2; EMMPRIN, Extracellular matrix metalloproteinase inducer; 
HDM2, human double minute 2; HDMX, human double minute x; IL-8, interleukin-8; LPA, 
lysophosphatidic acid; MDSC, myeloid derived suppressor cells; NGAL, neutrophil gelatinase-
associated lipocalin; PRKX, protein kinase x-linked; PTEN, phosphatase and tensin homolog; RLIP76, 
ral-interacting protein 76; SKI,sphingosine kinase-1.  

 

The rationale for sunitinib rechallenge is 

that resistance to sunitinib is transient and 

that after a short treatment interruption, 

sensitivity to sunitinib can be restored by 
subsequent rechallenge. Evidence for this 

comes from a pre-clinical study, a 

retrospective study, and a case report. In 

the pre-clinical study, primary RCC cells 

isolated from patients who were resistant to 
sunitinib, when grown as a mouse 

xenograft, responded to sunitinib (85). In 

the retrospective study, of the 23 patients 

rechallenged with sunitinib, 5 patients 

(22%) achieved an objective partial 

response, and 17 patients (74%) had stable 

disease (86). The median progression-free 
survival (PFS) was 13.7 months with initial 

treatment, and 7.2 months with 

rechallenge. Patients who had an interval 

of more than 6 months between sunitinib 

rechallenge had a longer PFS than those 
who started the rechallenge within 6 

months (median PFS, 16.5 vs 6.0 months; 

P=.03). No substantial new toxicity or 
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significantly increased severity of prior 

toxicity was seen during rechallenge (86). A 
case report by Ravaud and colleagues 

showed that rechallenge with sunitinib 

resulted in a partial response for 12 

months in a 60-year old patient (61). 

Additional prospective studies are required 
to establish the beneficial effect of sunitinib 

rechallenge. 

 

Combination therapy aims to overcome the 

limitations of a single drug either by 

enhancing its effectiveness on a single 
pathway or acting on a different molecule 

thereby by blocking multiple pathways (60, 

87, 88). Medioni and colleagues (89) 

investigated a combination of sunitinib (25-

50 mg) with bevacizumab (10 mg/kg), as a 
salvage therapy after disease progression 

under sunitinib monotherapy. Of the 7 

patients, 2 patients showed a partial 

response, four had stable disease, and one 

patient had disease progression. The 

median PFS and overall survival were 8.5 
and 15.1 months respectively with a 

tolerable toxicity profile (89). Many phase I 

studies have investigated a combination of 

sunitinib with bevacizumab (90), interferon 

(91), temsirolimus (92), and everolimus (60, 

93). These studies were abandoned 
because of high degree of toxicities without 

any apparent benefits.  

 

The rationale for sequential therapy is that 

established resistance to sunitinib may be 
reversed with an alternate agent that either 

targets the same signalling pathway, or a 

different pathway (56, 59, 61, 94, 95). 

Sequential therapies that have been tested 

so far include axitinib (96), pazopanib (97, 

98), everolimus and temsirolimus (99). As 
recently summarized by Sun et al., the 

optimal sequential therapy appears to be 

sunitinib-axitinib-everolimus (100). The 

most promising finding is a recent case 

report by Raja, which employed six lines of 
sequential therapy in a 45-year old male 

patient: Sunitinib-everolimus-sorafenib-

bevacizumab/vinblastine/mitomycinC-

temsirolimus-bevacizumab/everolimus. 

This resulted in a survival of 49 months 

(101). 
 

Conclusion 

 

Intrinsic and extrinsic resistance to 

sunitinib remains a challenge in the 

effective treatment of metastatic RCC. The 

mechanisms of intrinsic resistance remain 
elusive, and much research is warranted in 

this largely unexplored area. At the same 

time, pre-clinical studies have been 

unravelling the molecular mechanisms of 

extrinsic or acquired resistance at a rapid 
rate. However, there is a wide gap between 

the bench and the bedside. While optimism 

remains that this gap will narrow in the 

years to come, at present, the best strategy 

to overcome resistance to sunitinib appears 

to be sequential therapy. There is no 
universal consensus as to the optimal 

sequence of therapy. While establishing a 

universal consensus for sequential therapy 

appears logical, the practicality of 

implementing such approach would be 
difficult, at least in part, due the 

heterogeneity of RCC. Thus personalised 

medicine could be one way to overcome 

resistance. To achieve this, discovery of a 

sunitinib resistance ‘biomarker map’ would 

be of utmost value. A close interaction 
between clinicians and basic scientists 

aimed at designing clinically relevant 

experiments will enable a speedy resolution 

to overcome sunitinib resistance in the 

days to come. 
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