
Lehigh University
Lehigh Preserve

Theses and Dissertations

2018

Mixed Integer Conic Optimization and its
Applications
Mohammad Shahabsafa
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd
Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Shahabsafa, Mohammad, "Mixed Integer Conic Optimization and its Applications" (2018). Theses and Dissertations. 5571.
https://preserve.lehigh.edu/etd/5571

https://preserve.lehigh.edu/?utm_source=preserve.lehigh.edu%2Fetd%2F5571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F5571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5571?utm_source=preserve.lehigh.edu%2Fetd%2F5571&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Mixed Integer Conic Optimization

and Its Applications

by

Mohammad Shahabsafa

A Dissertation

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Lehigh University

January 2019

Copyright

Mohammad Shahabsafa

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Mohammad Shahabsafa

Mixed Integer Conic Optimization and Its Applications

Date

Tamás Terlaky, Dissertation Director, Chair

Accepted Date

Committee Members

Dr. Tamás Terlaky, Committee chair

Dr. Julio C. Góez

Dr. Joaquim R. R. A. Martins

Dr. Martin Takáč

Dr. Natasha Vermaak

Dr. Luis F. Zuluaga

iii

iv

Acknowledgement

I would like to sincerely thank my advisor, Prof. Tamás Terlaky, for his patience,

guidance, and inspiration throughout my PhD studies. I wish to express my grat-

itude for the invaluable opportunities that he provided for me during the last five

years. My thanks also go to the members of my dissertation committee for providing

valuable comments on my dissertation.

I would like to thank my wife, Sajedeh, whose love, kindness, and support were

crucial to overcome the difficulties of the PhD life. I would also like to thank my

parents, my brother, and my in-laws for their endless sacrifice and selfless support.

I would like to thank Prof. Luis F. Zuluaga from the ISE Department, Lehigh

University and Prof. Joaquim R. R. A. Martins from the Aerospace Engieering

Department, University of Michigan, whose insight and support were crucial in the

structural design optimization project. I would also like to thank Ali Mohammad-

Nezhad and Weiming Lei, PhD students from the ISE Department, Lehigh, and

Sicheng He from the Aerospace Engineering Department, University of Michigan for

their contributions in the project.

I gratefully acknowledge the contributions of Pennsylvania Department of Cor-

rections personnel for their valuable support of the inmate assignment and inmate

transportation projects. I specifically thank Kristofer Bret Bucklen, director of Bu-

reau of Planning, Research, and Statistics (PRS) and William F. Nicklow, director

v

of the Office of the Population Management (OPM), for their leadership and in-

valuable insight in the projects. I wish to express my gratitude to Jessica Campbell

from the PRS for her tireless, strong support. I acknowledge Jennifer Hendricks

and Tanya Brandt, from the OPM, for their invaluable efforts in testing the IADSS

and patiently providing invaluable and insightful feedback. I am also grateful to

Profs. Louis J. Plebani and George R. Wilson from the ISE Department, Lehigh for

their contributions in the project. Last but not least, I acknowledge the efforts and

contributions of Chaitanya Gudapati and Anshul Sharma, former M.Sc. students

of the ISE Department at Lehigh, who had significant contributions on the inmate

assignment and inmate transportation projects.

vi

Contents

List of Tables xi

List of Figures xv

Abstract 1

1 Introduction 3

1.1 Background . 3

1.2 Dissertation overview . 6

1.3 Publications and Accomplishments 7

1.4 Notation . 10

2 Disjunctive Conic Cuts 11

2.1 Introduction . 11

2.2 DCCs for MISOCO problems . 13

2.3 Redundant DCCs and DCyCs . 15

2.3.1 Redundant DCCs . 16

2.3.2 Redundant DCyCs . 18

2.4 Discussion . 23

2.4.1 Conic cylinders . 24

2.4.2 Branching on a higher dimensional subspace 25

vii

2.4.3 Eliminating pathology by branching 26

2.5 Numerical Experiments . 27

2.5.1 A portfolio optimization problem 28

2.5.2 A service system design problem with congestion 28

2.6 Conclusions . 31

3 Truss Design Problem: Modeling and Analysis 33

3.1 Introduction . 34

3.2 Continuous truss design problem . 36

3.2.1 Preliminary models . 37

3.2.2 Multi-scenario truss design problem 42

3.2.3 Some characteristics of the feasible set of the truss design

problem . 43

3.2.3.1 Feasibility along rays 44

3.2.3.2 Convex hull of the external force scenarios 45

3.3 Lower bound of the continuous models 47

3.3.1 McCormick relaxation . 47

3.3.2 Relaxation based on binary expansion 50

3.4 Discrete truss design problem . 53

3.4.1 Sizing optimization . 53

3.4.1.1 Basic discrete model 53

3.4.1.2 Incremental discrete model 55

3.4.1.3 Reformulating the MILO models 57

3.4.2 Multi-scenario truss sizing optimization 59

3.4.3 Topology design and sizing optimization 60

3.4.3.1 Basic model for TDSO 62

3.4.3.2 Incremental model for TDSO 63

viii

3.5 Conclusions . 65

4 Truss Design Problem: Solution Methodology 67

4.1 Introduction and literature review . 68

4.2 The NS-MILO Approach . 70

4.3 Truss Problems . 76

4.3.1 The 10-bar truss . 76

4.3.2 The 72-bar truss . 76

4.3.3 Scalable 2D cantilever truss problems 78

4.3.4 Scalable 3D cantilever truss problems 79

4.3.5 Wing truss problems . 80

4.4 Lower bound of the continuous model 82

4.5 Basic versus incremental model . 85

4.6 Strengthening the Euler buckling constraints 87

4.7 Numerical results with NS-MILO . 88

4.7.1 Single-scenario results . 88

4.7.1.1 10-bar truss . 89

4.7.1.2 Single-scenario 2D and 3D cantilever trusses 90

4.7.1.3 Single-scenario wing truss problems 92

4.7.2 Multi-scenario results . 97

4.7.2.1 72-bar truss . 98

4.7.2.2 Multi-scenario 2D and 3D cantilever trusses 99

4.7.2.3 Multi-scenario wing trusses 101

4.8 Conclusions . 103

5 The Inmate Assignment and Scheduling Problem 105

5.1 Introduction . 105

ix

5.1.1 Literature Review . 107

5.1.2 Contributions: Novel Modeling and Solution Methodology . . 108

5.1.3 Impact . 109

5.2 Preliminaries and Problem Description 110

5.2.1 Preliminary Development . 110

5.2.2 Assignment Criteria . 112

5.2.3 Treatment Programs . 114

5.2.4 Transfer Constraints . 116

5.3 Modeling and the Solution Methodology 117

5.4 Hierarchical Multi-Objective MILO Model 118

5.4.1 Assignment Criteria Constraints 118

5.4.2 Treatment Program Constraints 120

5.4.3 Scheduling of the Programs for the Inmates 122

5.4.4 Transfer Constraints . 124

5.4.5 The Objective Function . 124

5.4.6 The Multi-Objective MILO Model 126

5.5 Implementation at the PADoC . 131

5.5.1 Development of the IADSS . 132

5.6 Benefits and Impact of the IADSS . 134

5.6.1 High-Quality, Consistent Assignment 134

5.6.2 User-Friendly Web Application 136

5.6.3 Security Enhancement . 138

5.6.4 Quantified Savings . 138

5.7 Summary . 141

6 The Inmate Transportation Problem 145

6.1 Introduction . 145

x

6.2 Problem Description . 147

6.3 Mathematical model . 148

6.3.1 Objective Function . 153

6.3.2 MILO Model . 153

6.4 Computational Results . 156

6.5 Benefits and Impact . 161

6.6 Conclusion . 164

7 Conclusions and Future Research 165

7.1 Conclusions . 165

7.2 Future research . 168

Bibliography 170

Appendix A The discrete set of the cross sectional areas 187

Appendix B The detailed output of the ITP problem 191

Vita 195

xi

xii

List of Tables

4.1 Solutions of 3D-truss sizing instances obtained directly using Gurobi. 71

4.2 Aluminum alloy material properties used for 10-bar and 72-bar prob-

lems. 76

4.3 Aluminum alloy material properties used for the 2D and 3D cantilever

problems. 79

4.4 Displacement bounds for the 2D cantilever problem. 79

4.5 Displacement bounds of the 3D cantilevers. 81

4.6 Aluminum alloy material properties for the wing problem. 81

4.7 Cross-sectional areas (in2) and the weight (lbm) of the solution of the

10-bar truss obtained by IPOPT and by MILO relaxation (3.34) with

τ = 16. 84

4.8 Comparison of the weight (lbm) and solution time (s) of the solution

obtained by IPOPT with the solution of the MILO relaxation (3.34). 84

4.9 Solution times (s) and weights (kg) for the basic and incremental

models. 86

4.10 Impact of introducing the buckling constraints (3.43) on the solution

time (s). 87

4.11 Cross-sectional areas (in2) and the weights (lbm) for the 10-bar truss

problem solutions without Euler buckling constraints. 90

xiii

4.12 Cross-sectional areas (in2) and the weight (lbm) of the solution of the

10-bar truss with Euler buckling constraints. 91

4.13 Weights (kg) and the solution times (s) for the 2D cantilever problem

instances using the NS-MILO approach. 92

4.14 Weights (kg) and the solution times (s) for the 3D cantilever problem

instances using the NS-MILO approach. 93

4.15 Weight (kg) and the solution time (s) for the wing trusses using the

NS-MILO approach. 94

4.16 Solution (in2) and the weights (lbm) for the 72-bar truss problem

without Euler buckling constraints. 99

4.17 Cross-sectional areas (in2) and the weights (lbm) for the 72-bar truss

problem solutions with Euler buckling constraints. 100

4.18 Weights (kg) and the solution times (s) for the two-scenario 2D can-

tilever instances using the NS-MILO approach. 100

4.19 Weights (kg) and the solution times (s) for the multi-scenario 3D

cantilever instances using the NS-MILO approach. 102

4.20 Weights (kg) and the solution times (s) for the multi-scenario wing

trusses using the NS-MILO approach. 103

5.1 The parameters of the IAP . 129

5.2 The decision variables of the IAP. 130

5.3 Assignment recommendations. 136

6.1 The parameters of the ITP. 155

6.2 The decision variables of the MILO model for the ITP. 156

6.3 The number of inmates transported in each week between April 1st

2018 to May 26th 2018. 157

6.4 Average results of the 8 weeks in manual transportation planning. . . 158

xiv

6.5 Average results of the 8 weeks from the MILO model. 159

6.6 Worst case analysis of manual transportation planning and the MILO

model with α = 0.25. 161

6.7 Average quantified savings. 162

6.8 Worst case quantified savings. 163

B.1 Manual transportation planning results. 191

B.2 Week 1 results. 192

B.3 Week 2 results. 192

B.4 Week 3 results. 192

B.5 Week 4 results. 193

B.6 Week 5 results. 193

B.7 Week 6 results. 193

B.8 Week 7 results. 194

B.9 Week 8 results. 194

xv

xvi

List of Figures

2.1 Illustration of the conic redundant DCCs. 18

2.2 Illustration of the cylindrical redundant DCyC. 21

2.3 Illustration of redundant cases for conic cylinders. 25

2.4 A redundant DCyC. 25

2.5 An instance of the conic redundant DCC. 27

2.6 Numerical results for portfolio optimization problems. 29

2.7 Numerical results of the portfolio optimization problem. 30

4.1 The 10-bar truss. 77

4.2 The 72-bar truss. 77

4.3 The 2D cantilever problem instance with 3 blocks. 78

4.4 3D cantilever instance with 3 blocks. 80

4.5 Wing truss problem instance with 315 bars. 82

4.6 Comparison of the solution provided by the IPOPT solver and the

solution of the relaxation model (3.34) with different values of τ for

the 10-bar truss. 83

4.7 Comparison of the basic model and the incremental model for the 2D

cantilever problem instance with 5 blocks. 86

4.8 Comparison of the convergence of the full-MILO and NS-MILO ap-

proaches for the wing problem instance with 315 bars. 95

xvii

4.9 Stress and buckling constraint distribution for the wing problem in-

stance with 315 bars. 96

4.10 Solution time for the NS-MILO approach versus the number of bars

in the truss. 97

5.2 The 25 state CIs of the PADoC and their placement in one of the

three main regions of the state. 113

5.3 Workflow of the IADSS. 133

5.4 A screen shot of the web-based UI of the IADSS. 137

5.5 Program waiting time for inmates with less than 9 months to their

minimum sentence date. 140

5.1 The decision tree of the inmate assignment process. 143

5.1 The decision tree of the inmate assignment process. 144

xviii

Abstract

In this dissertation, we present our work on the theory and applications of Mixed

Integer Linear Optimization (MILO) and Mixed Integer Second Order Cone Opti-

mization (MISOCO). The dissertation is separated in three parts.

In the first part, we focus on the theory of MISOCO. We develop a methodology

to efficiently identify the cases of Disjunctive Conic Cuts (DCCs) that do not tighten

the description of the feasible set of the MISOCO problem. We introduce the concept

of pathological disjunctions for general mixed integer conic optimization problems,

and use the concept of pathological disjunctions to identify redundant DCCs for

MISOCO problems.

In the second part, we study truss design problems. We propose various mathe-

matical models for minimum-weight discrete truss design problems, considering force

balance equations, Hooke’s law, displacement bounds, yield stress, and Euler buck-

ling constraints, while only discrete cross-sectional areas of the bars are allowed.

Additionally, we propose a novel solution methodology to solve the resulting dis-

crete truss design problems. Numerical results indicate that, compared to directly

using a commercial solver to solve the problems, the new solution methodology is

remarkably faster and results in significantly better solutions.

In the third part, we focus on two critical problems that every correctional system

faces on a daily basis, namely, the Inmate Assignment Problem (IAP) and Inmate

1

Transportation Problem (ITP). The IAP concerns the assignment of inmates to

correctional institutions and scheduling of their treatment programs. We present

the Inmate Assignment Decision Support System (IADSS) that is developed for the

Pennsylvania Department of Corrections (PADoC) and has assisted the PADoC to

significantly improve the inmate assignment process. The core of the IADSS is a

multi-objective MILO model which is developed with the goal to simultaneously

assign inmates to correctional institutions and schedule their treatment programs,

while considering various factors, rules, and criteria of the assignment. Implemen-

tation of the IADSS at the PADoC has resulted in substantial monetary savings,

security enhancement for the correctional institutions, and improvement of public

safety. Additionally, we present our work on the ITP. We propose a multi-objective

MILO model for the ITP and demonstrate the effectiveness of the model in reducing

the costs of the inmate transportation process.

2

Chapter 1

Introduction

1.1 Background

A Mixed Integer Conic Optimization (MICO) problem is to minimize a linear func-

tion over the intersection of a closed pointed convex cone and a set of affine con-

straints, where a subset of the variables are constrained to be integer. A MICO

problem is defined as
min 〈c,x〉

s.t. A(x) = b,

x ∈ K,

x ∈ Zp × Rn−p,

where c ∈ Rn, 〈c,x〉 denotes the inner product of vectors c and x, A(·) is a linear

map from Rn to Rm, b ∈ Rm, p ∈ R, and K is a closed pointed convex cone.

In this dissertation, we focus on two important classes of MICO problems,

namely, Mixed Integer Linear Optimization (MILO) and Mixed Integer Second Or-

der Cone Optimization (MISOCO) problems.

A MILO problem is to minimize a linear function over a polyhedral set, where

3

CHAPTER 1. INTRODUCTION

a subset of the variables are constrained to be integer. A MILO problem can be

defined as
min cTx,

s.t. Ax = b,

x ≥ 0

x ∈ Zp × Rn−p,

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and p ∈ R. Numerous problems can mathemat-

ically be formulated as a MILO model, including but not limited to network design

problems [Bertsimas and Tsitsiklis, 1997], the assignment problem [Flood, 1953,

Kuhn, 1955, Votaw and Orden, 1952], the traveling salesman problem [Cook, 2012,

Dantzig et al., 1954], the knapsack problem [Dantzig, 1957], and crew scheduling

problems [Arabeyre et al., 1969, Caprara et al., 1998].

Gomory [1958, 1960b, 1963] proposed a cutting plane algorithm which was the

first finitely-terminating algorithm to solve pure integer linear optimization problems

with bounded feasible sets and obtain the global optimal solution. Land and Doig

[1960] were the first to propose the Branch and Bound (B&B) algorithm to solve

MILO problems. Dakin [1965] proposed the B&B algorithm to solve a general

mixed integer optimization problem given that the optimal solution of the continuous

relaxations of the problem at the nodes of the B&B tree can be computed. A

variant of the B&B algorithm is the branch and cut algorithm where cuts are added

in solving the subproblems at the nodes of the B&B tree [Crowder et al., 1983,

Van Roy and Wolsey, 1987].

A MISOCO problem is to minimize a linear function over the intersection of an

affine space and a Cartesian product of second order cones. A MISOCO problem

4

CHAPTER 1. INTRODUCTION

can be defined as
min cTx

s.t. Ax = b

x ∈ L,

x ∈ Zp × Rn−p,

(1.1)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, L = Ln1×Ln2×· · ·×Lnk is the Cartesian product

of the second order cones, Lni =
{
xi = (xi1,xi2, . . . ,xini) ∈ Rni | xi1 ≥ ‖xi2:ni‖2

}
, and

x =

x1

x2

...

xk

: xi ∈ Rni , i = 1, . . . , k

.

A variety of problems can mathematically be formulated as a MISOCO prob-

lem. Aktürk et al. [2014] propose a MISOCO model for airline recovery optimization

with the goal to investigate the trade-off between flight delays and cost of recovery.

Bertsimas and Shioda [2009] develop a MISOCO model for cardinality constrained

portfolio optimization problems, and propose a branch and bound based algorithm

to solve the problem using its special structure. Jabr et al. [2012] propose a MISOCO

model for the minimum loss distribution network reconfiguration problem. In re-

cent years, optimization packages including CPLEX [IBM Knowledge Center, 2017],

GuRoBi [Gurobi Optimization Inc., 2016], and MOSEK [MOSEK, 2017] have added

the capability of solving MISOCO problems, which has led to broader application

of MISOCO in tackling complex problems arising in a variety of industries.

5

CHAPTER 1. INTRODUCTION

1.2 Dissertation overview

In this dissertation, we present our work on the theory and applications of MILO

and MISOCO. We focus on the theory of MISOCO in Chapter 2 and we study the

applications of MILO in Chapters 3, 4, 5, and 6.

In Chapter 2, we study disjunctive conic cuts (DCCs) for MISOCO problems.

The main goal of Chapter 2 is to develop a methodology to efficiently identify the

cases of DCCs that do not tighten the description of the feasible set of the MISOCO

problem. We introduce the concept of pathological disjunctions for general mixed

integer conic optimization problems, and use the concept of pathological disjunctions

to identify redundant DCCs for MISOCO problems.

In Chapters 3 and 4, we study truss design problems. In Chapter 3, we develop

novel mathematical models for minimum-weight discrete truss design problems, con-

sidering force balance equations, Hooke’s law, displacement bounds, yield stress, and

Euler buckling constraints, while only discrete cross-sectional areas of the bars are

allowed. In Chapter 4, we propose a novel solution methodology to solve the result-

ing discrete truss design problems. Numerical results indicate that, compared to

directly using a commercial solver to solve the problems, the new solution method-

ology is remarkably faster and results in significantly better solutions.

In Chapter 5, we present our pioneering work on a critical problem that every

correctional system faces on a daily basis. We study the problem of inmate as-

signment to correctional institutions and scheduling of their treatment programs.

We develop a novel multi-objective MILO model with the goal to simultaneously

assign inmates to correctional institutions and schedule their treatment programs,

while considering various factors, rules, and criteria of the assignment. We have de-

veloped a decision support system for the Pennsylvania Department of Corrections

(PADoC), which helps the PADoC to significantly improve the inmate assignment

6

CHAPTER 1. INTRODUCTION

process. The core of the system is the MILO model which is developed for the

simultaneous assignment of inmates and scheduling their treatment programs. Im-

plementation of the system at the PADoC has resulted in substantial monetary

savings, security enhancement for the correctional institutions, and improvement of

the public safety.

In Chapter 6, we present our work on the inmate transportation problem (ITP).

We formally define the ITP and propose a multi-objective MILO model for the

problem. Then we present the numerical results to demonstrate the effectiveness of

the model in reducing the costs of the inmate transportation process.

Finally, we present the summary and conclusions of the dissertation in Chapter 7,

and elaborate the future research that can be built upon the dissertation.

1.3 Publications and Accomplishments

The results and accomplishments of this dissertation including the papers, technical

reports and the awards are as follows:

- Chapter 2:

• Shahabsafa M., Góez J. C., and Terlky T., (2018) On pathological dis-

junctions and redundant disjunctive conic cuts, Operations Research Let-

ters, 46(5):500-504, doi: https://doi.org/10.1016/j.orl.2018.07.

004

• Shahabsafa M., Góez J. C., and Terlaky T. (2018) Supplement to the

paper: on pathological disjunctions and redundant disjunctive conic cuts,

Technical report, ISE Department, Lehigh University, URL: https://

ise.lehigh.edu/sites/ise.lehigh.edu/files/18T_007.pdf

7

https://doi.org/10.1016/j.orl.2018.07.004
https://doi.org/10.1016/j.orl.2018.07.004
https://ise.lehigh.edu/sites/ise.lehigh.edu/files/18T_007.pdf
https://ise.lehigh.edu/sites/ise.lehigh.edu/files/18T_007.pdf

CHAPTER 1. INTRODUCTION

- Chapters 3 and 4:

• Shahabsafa M., Mohammad-Nezhad A., Terlaky T., Zuluaga L. F., He S.,

Hwang J. T., Martins J. R. R. A. (2018) A novel approach to discrete truss

design problems using mixed integer neighborhood search. Structural

and Multidisciplinary Optimization, 58(6):2411-2429, doi: https://doi.

org/10.1007/s00158-018-2099-8.

• Shahabsafa M., Lei W., Terlaky T., Zuluaga L. F., He S., Martins J. R. R.

A. (2018) The application of the NS-MILO algorithm to multi-scenario

truss design problems. Working Paper

• Shahabsafa M., Lei W., Terlaky T., Zuluaga L. F., He S., Martins J.

R. R. A. (2018) On the lower bound of truss design problems. Working

Paper

- Chapter 5:

• The work was honored to win the INFORMS 2017 Daniel H. Wagner

Prize.

https://www.informs.org/Recognizing-Excellence/INFORMS-Prizes/

Daniel-H.-Wagner-Prize-for-Excellence-in-Operations-Research-

Practice

• Shahabsafa M., Terlaky T., Gudapati C., Sharma A., Plebani L., Wilson

G., Bucklen K. B. (2018) The Inmate Assignment and Scheduling Prob-

lem and its Application in the PA Department of Correction, Interfaces,

48(5):467-483, doi: https://doi.org/10.1287/inte.2018.0962

• Santos P., Shahabsafa M., Terlaky T. (2018) Optimization saves state

prison system millions, ORMS Today, 45(3):34-38, doi: https://doi.

org/10.1287/orms.2018.03.10

8

https://doi.org/10.1007/s00158-018-2099-8
https://doi.org/10.1007/s00158-018-2099-8
https://www.informs.org/Recognizing-Excellence/INFORMS-Prizes/Daniel-H.-Wagner-Prize-for-Excellence-in-Operations-Research-Practice
https://www.informs.org/Recognizing-Excellence/INFORMS-Prizes/Daniel-H.-Wagner-Prize-for-Excellence-in-Operations-Research-Practice
https://www.informs.org/Recognizing-Excellence/INFORMS-Prizes/Daniel-H.-Wagner-Prize-for-Excellence-in-Operations-Research-Practice
https://doi.org/10.1287/inte.2018.0962
https://doi.org/10.1287/orms.2018.03.10
https://doi.org/10.1287/orms.2018.03.10

CHAPTER 1. INTRODUCTION

• Terlaky T., Shahabsafa M., Plebani L., Wilson G., Sharma A., Gudap-

ati C. (2018) Assigning inmates to correctional institutions and programs,

IFORS Newsletter, 12(3)2:5, URL: http://ifors.org/september-2018-

issue/

- Chapter 6:

• Sharma A, Shahabsafa M, Terlaky T. (2018) The Inmate transporta-

tion Problem and its Application in the PA Department of Correction,

Accepted in final form for publication in H. Yang, and R. Qiu (Eds.),

Advances in Service Science Proceedings of the 2018 INFORMS Interna-

tional Conference on Service Science, Springer

9

http://ifors.org/september-2018-issue/
http://ifors.org/september-2018-issue/

CHAPTER 1. INTRODUCTION

1.4 Notation

Following is the list of the notation conventions used in the dissertation.

R Set of real numbers

R+ Set of non-negative real numbers

Z Set of integer numbers

i, j, k, . . . indices are denoted with lower case letters

| · | Absolute value of a scalar

A,B Sets are denoted with calligraphic letters

A,B,K Matrices are denoted with capital letters

c, q Parameter vectors are denoted with lower case letters

x,xi,σ Decision variable vectors are denoted with lower case letters

K � 0 Positive semi-definite matrices

K � 0 Positive definite matrices

L,Lni Second order cones

‖ · ‖ Euclidean norm of a vector

A∨B The disjunction of sets A and B

diag(·) The diagonal matrix of a vector

lin(·) Lineality space of a set

conv(·) Convex hull of a set

projX (F) The orthogonal projection of set F on subspace X

10

Chapter 2

Disjunctive Conic Cuts

In this chapter we work on identifying the cases where Disjunctive Conic Cuts

(DCCs) do not strengthen the formulation of MISOCO problems. In Section 2.1,

we overview the literature of adding nonlinear cuts for MISOCO problems. In

Section 2.2, we present a brief overview of the derivation of DCCs for the MISOCO

problems. In Section 2.3, we define pathological disjunctions and propose results

on how to identify redundant DCCs. In Section 2.4, we explore some common

instances of redundant DCCs for MISOCO problems. We present numerical results

to demonstrate the effect of adding redundant DCCs to a MISOCO problem in

Section 2.5. Finally, Section 2.6 presents our conclusions.

2.1 Introduction

A General MISOCO problem is defined by (1.1). In principle, one can solve a

MISOCO problem exactly using a branch and cut methodology. One of the key

elements of branch and cut methodology is the derivation of effective and efficient

cuts to strengthen the formulation. Studies have shown performance improvements

11

CHAPTER 2. DISJUNCTIVE CONIC CUTS

that one can obtain in a branch and cut framework using various cuts including

Chvátal-Gomory cuts, mixed-integer rounding cuts, lift-and-project cuts, and split

cuts [see e.g., Nemhauser and Wolsey, 1990]. Most of the work on cut generation

has been focused on obtaining valid linear inequalities. However, the possibility of

generating nonlinear cuts for MISOCO problems have recently received significant

attention in the optimization community. Stubbs and Mehrotra [1999] extended

Balas et al. [1993] lift and project procedure to 0-1 mixed integer convex optimization

problems. They derive valid inequalities for mixed integer problems by solving a

convex optimization sub-problem. Çezik and Iyengar [2005] derive convex cuts for

mixed 0-1 conic optimization problems. They consider the linear cone, the second-

order cone, and the cone of positive semidefinite matrices and extend a variety

of techniques, used in generating cuts for MILO problems such as Gomory cuts

[Gomory, 1960a] and lift and project cuts.

For MISOCO problems in particular, Atamtürk and Narayanan [2010, 2011] ex-

tended the idea of mixed integer rounding cuts developed by Nemhauser and Wolsey

[1990]. They reformulated a SOC in terms of two-dimensional polyhedral SOCs and

designed a rounding procedure to derive conic cuts for the original MISOCO prob-

lem. Kılınç-Karzan and Yıldız [2014] consider a two-term disjunction on a SOC

and derive closed-form convex inequalities describing the convex hull of the inter-

section of the disjunction with the cone. They characterize the cases where one

SOC inequality is enough to describe the mentioned convex hull. Drewes [2009]

presents lift-and-project based linear and convex quadratic cuts for MISOCO prob-

lems. Dadush et al. [2011] extend the idea of split cuts [Nemhauser and Wolsey, 1990]

for a full dimensional ellipsoid. They consider parallel disjunctions on ellipsoids and

derive a conic cut which describes the convex hull of the ellipsoid intersected with

the disjunctive set. Andersen and Jensen [2013] extend the idea of intersection cuts

[Balas, 1971] to mixed integer conic quadratic sets. Modaresi et al. [2015] explains

12

CHAPTER 2. DISJUNCTIVE CONIC CUTS

the relationship between mixed integer rounding cuts [Atamtürk and Narayanan,

2010, 2011] and split cuts, [Dadush et al., 2011] and discusses the trade-off between

computational cost of adding the split cuts and strength of the formulation resulted

from adding them to the model.

Belotti et al. [2013, 2015, 2017] consider a disjunction on a general MISOCO

problem and generate a class of cuts called Disjunctive Conic Cuts (DCCs) and

Disjunctive Cylindrical Cuts (DCyC). The DCCs and DCyCs describe the convex

hull of the intersection of the disjunction with the feasible set of the continuous

relaxation of a MISOCO problem. In other words, the intersection of the DCC with

the feasible set of the continuous relaxation of the MISOCO problem is equal to

the convex hull of the intersection of the disjunction with the feasible set of the

continuous relaxation problem. In this chapter we use the approach proposed by

Belotti et al. [2017] and provide tests to improve the derivation of effective DCCs.

The aim of the tests is to save computational time and effort by identifying cases

when the DCCs do not provide further tightening of the formulation at hand.

2.2 DCCs for MISOCO problems

We provide an overview of the derivation of DCCs for the MISOCO problem (1.1)

and a parallel disjunction. In this section, we assume that L, defined in model (1.1),

is a single SOC.

We use the approach presented by Belotti et al. [2017] to rewrite the feasible

set of the continuous relaxation of (1.1) in terms of the null space of the affine

constraints. Let C = L ∩ {x | Ax = b}, and recall from Belotti et al. [2017] that

{x ∈ Rn | Ax = b} = {x ∈ Rn | ∃w ∈ R`,x = x0 + Hw}, where x0 ∈ Rn, Ax0 = b,

and we assume that {x|Ax = b} is non-empty. Here, the columns of H ∈ Rn×` form

a basis for the null space of A, and ` = n −m is the dimension of the null space.

13

CHAPTER 2. DISJUNCTIVE CONIC CUTS

Hence, C in the null space of matrix A may be represented as

Ĉ = {w ∈ R` | w>Pw + 2p>w + ρ ≤ 0, x0 +H1w ≥ 0}, (2.1)

where H1 is the first row of H, P ∈ R`×` is a symmetric matrix, p ∈ R`, and

ρ ∈ R. We denote the quadratic set (2.1) by the triplet (P , p, ρ). Notice that if a

set or parameter is defined both in Rn and the reduced null space R`, then the one

defined in the null space is indicated by adding a “ˆ” to the set or parameter. It

is proved [Góez, 2013, Lemma 4.2] that the matrix P in (2.1) has at most one non-

positive eigenvalue. That restricts the possible shapes of Ĉ to ellipsoids, paraboloids,

hyperboloids of two sheets, or SOCs.

Consider now a parallel disjunction of the form

A = {x ∈ Rn | a>x ≤ α}
∨
B = {x ∈ Rn | a>x ≥ β}, (2.2)

where a ∈ Rn, α, β ∈ R, and α < β. We can rewrite the disjunction in the null

space of the affine constraints as follows

Â = {w ∈ R` | â>w ≤ α̂}
∨
B̂ = {w ∈ R` | â>w ≥ β̂}, (2.3)

where â ∈ R`, α, β ∈ R, â = H>a, α̂ = α − a>x0, and β̂ = β − a>x0. We assume

that Ĉ ∩ Â 6= ∅ and Ĉ ∩ B̂ 6= ∅, and we may assume w.l.o.g. that ‖â‖2 = 1 and

α̂ < β̂. Using this disjunction we now recall the main elements of the derivation of

the DCC; for a detailed derivation see Belotti et al. [2013, 2015], Góez [2013]. The

key result in that procedure is the existence of a uni-parametric family of quadratic

sets defined as follows

Q(τ) =
{
w ∈ R` | w>P (τ)w + 2p(τ)>w + ρ(τ) ≤ 0

}
, (2.4)

14

CHAPTER 2. DISJUNCTIVE CONIC CUTS

where P (τ) = P + τ ââ>, p(τ) = p − τ
2 (α + β)â>, and ρ(τ) = ρ + ταβ. Observe

that Q(τ) is not necessarily convex. It is shown [Belotti et al., 2013] that the

DCC is given by one of the roots of the equation p(τ)>P (τ)−1p(τ) − ρ(τ), which

is a quadratic function of τ . That result provides an explicit formula for obtaining

DCCs. However, before adding a DCC it is important to know if it actually tightens

the formulation, or not. For that purpose, in this chapter we provide a set of tests

to verify the effectiveness of a DCC.

2.3 Redundant DCCs and DCyCs

For the classification of redundant DCCs in this section, we consider parallel dis-

junctions as defined in Eqs (2.2) and (2.3). We use the results of Belotti et al.

[2017], which ensures that if a DCC cuts a feasible point from (2.1), then it also

cuts a feasible point from (1.1). Hence, we focus in this section on sets of the form

presented in (2.1). Now, when we intersect a disjunction of the form (2.3) with the

set Ĉ as defined in (2.1) and derive a DCC, we show that in some instances it does

not cut off any part of the feasible region. That implies that the derived DCC is

redundant, negatively impacting the effectiveness of branch and cut procedures.

Definition 2.1 (Pathological disjunction). Let X ∈ Rn be a closed convex set, and

consider the disjunction A∪B as defined in (2.2). If conv(X ∩ (A∪B)) = X , then

disjunction A ∪ B is pathological for the set X .

Notice that if disjunction A∪B is pathological for the closed convex set X , then

every convex disjunctive cut using A ∪ B will be redundant, since all possible cuts

must include conv(X ∩ (A ∪ B)). Now, suppose that the DCC exists for set X and

disjunction A∪B. In this case, the DCC, which is the tightest possible cut, will be

redundant as well.

15

CHAPTER 2. DISJUNCTIVE CONIC CUTS

In this section, we explore pathological disjunctions, and thus redundant DCCs

and DCyCs for MISOCO problems. The redundant cases are first defined for a

general convex set, and then they are presented for MISOCO problems.

2.3.1 Redundant DCCs

We first consider sets resulting from the intersection of a closed pointed convex cone

and a disjunctive set. In particular, we are interested in the instances when the

vertex of the cone is in one of the halfspaces defining the disjunctive set. In this

situation we have the following result.

Theorem 2.1 (Conic pathological disjunction). Let K ⊆ Rn be a closed pointed

convex cone with vertex v, and consider two half spaces A = {x ∈ Rn | a>x ≤ α}

and B = {x ∈ Rn | a>x ≥ β}, such that α < β, K ∩ A 6= ∅ and K ∩ B 6= ∅. If

v ∈ A ∪ B, then conv(K ∩ (A ∪ B)) = K.

Proof. As K is convex, we have conv(K ∩ (A ∪ B)) ⊆ K. Thus, we only need to

prove that K ⊆ conv(K ∩ (A ∪ B)). Let x ∈ K be given, then we need to show

that x ∈ conv(K ∩ (A ∪ B)). If x ∈ A ∪ B, then x ∈ conv(K ∩ (A ∪ B)). Now

suppose x 6∈ A ∪ B, i.e, α < a>x < β. We know that the vertex v of the cone is in

one of the disjunctive half spaces. Without loss of generality, we may assume that

a>v ≤ α. Let r = x − v. Vector r is in fact a ray of the cone K, since x ∈ K. As

a>v ≤ α and α < a>x, we have a>r > 0. We know that β − a>x > 0, therefore,

there exists a γ > 0 such that γa>r = β− a>x, and we obtain that a>(x+ γr) = β.

Let x̄ = x+ γr. As x = v + r, we have

x̄ = v + (1 + γ)r.

Vector r is a ray of the cone K, so we have x̄ ∈ K. As v ∈ A and x̄ ∈ B, we can

16

CHAPTER 2. DISJUNCTIVE CONIC CUTS

conclude that v, x̄ ∈ K ∩ (A ∪ B). Let η = γ
1+γ , then we have

x = ηv + (1− η)x̄,

and we obtain that x ∈ conv(K ∩ (A ∪ B)), which completes the proof.

Notice that the result of Theorem 2.1 holds for any general closed pointed convex

cone K. However, to identify the redundant DCCs for MISOCO problems, in this

section we focus on the special case where K is a SOC. We use Theorem 2.1 to

characterize conic redundant DCCs for MISOCO problems.

Corollary 2.1 (Redundant DCCs for MISOCO). If the set Ĉ, as defined in (2.1),

is a cone and its vertex is in one of the disjunctive halfspaces Â or B̂, as defined

in (2.3), then the DCC is equal to Ĉ.

The main consequence of Corollary 2.1 is that in this case a DCC does not cut

off any part of the feasible set. This redundancy is illustrated in Figure 2.1. In

Figures 2.1a and 2.1b, the intersections of the disjunctive hyperplanes with cone C

are hyperboloids. Figure 2.1a is a redundant DCC, since the vertex of the cone is in

one of the disjunctive half spaces; while in Figure 2.1b the DCC is not redundant.

Figures 2.1c and 2.1d are other instances of the conic redundant DCCs, where the

intersection of the cone with the hyperplanes are respectively an ellipsoid and a

paraboloid.

Corollary 2.2 (Identification of a redundant DCC for MISOCO). If the following

two conditions are satisfied for the set Ĉ defined in (2.1), and the disjunctive set

defined in (2.3), then we have a redundant DCC:

- the matrix P has exactly n−1 positive eigenvalues and one negative eigenvalue,

and p>P−1p− ρ = 0;

17

CHAPTER 2. DISJUNCTIVE CONIC CUTS

(a) Hyperboloid intersection
(Redundant DCC).

(b) Hyperboloid intersection and the
DCC (not a redundant DCC).

(c) Ellipsoid intersection
(Redundant DCC).

(d) Paraboloid intersection
(Redundant DCC).

Figure 2.1: Illustration of the conic redundant DCCs.

- the vertex of the cone v = P−1p satisfies either â>v ≥ β̂, or â>v ≤ α̂.

The first condition of Corollary 2.2 ensures that set Ĉ, defined in (2.1) is a cone

and the second condition ensures that the set Ĉ and disjunction (2.3) result in a

redundant DCC.

2.3.2 Redundant DCyCs

We now consider sets resulting from the intersection of a closed convex cylinder and

a disjunctive set. We first need to formally define a cylinder.

18

CHAPTER 2. DISJUNCTIVE CONIC CUTS

Definition 2.2. (Lineality space [Rockafellar, 1997]) Let X ⊆ Rn be a closed convex

set. The lineality space of X is defined as

lin(X) = {d | x+ αd ∈ X , ∀x ∈ X , ∀α ∈ R}.

Lemma 2.1. (Decomposition of a convex set [Rockafellar, 1997]) Let X ⊆ Rn be a

nonempty closed convex set. Then we have

X = S + lin(X),

where S = X ∩ lin(X)⊥, and lin(X)⊥ is the orthogonal complement of lin(X).

Definition 2.3. (Convex cylinder) Let X be a nonempty closed convex set, If

lin(X) 6= {0}, then set X is a cylinder, and the set S = X ∩ lin(X)⊥ is a base

of the cylinder.

The following theorem formalizes the cylindrical pathological disjunction.

Theorem 2.2 (Cylindrical pathological disjunction). Let X ⊆ Rn be a closed convex

cylinder, and consider two half spaces A and B, defined in (2.2), such that α < β,

X ∩A 6= ∅, X ∩ B 6= ∅. If a 6⊥ lin(X), then conv(X ∩ (A ∪ B)) = X .

Proof. As X is convex it follows that conv(X ∩(A∪B)) ⊆ X . Thus, to complete the

proof we need to show that X ⊆ conv(X ∩(A∪B)). The proof goes by contradiction.

Assume to the contrary that there exists an x̄ ∈ X such that x̄ /∈ conv(X ∩ (A∪B)).

Then, we have that x̄ /∈ A ∪ B, and we obtain α < a>x̄ < β.

We know that a = projlin(X)(a)+projlin(X)⊥(a), where projlin(X)(a) and projlin(X)⊥(a)

denote the orthogonal projections of vector a to the subspaces lin(X) and lin(X)⊥,

respectively. As a 6∈ lin(X)⊥, we have projlin(X)(a) 6= 0. Let d be defined as

d = sign
(
a> projlin(X)(a)

)
projlin(X)(a).

19

CHAPTER 2. DISJUNCTIVE CONIC CUTS

Thus we obtain a>d > 0. As a>x̄ − α > 0, there exists γα > 0 such that γαa>d ≥

a>x̄− α, i.e., we have a>(x̄− γαd) ≤ α. Let x̄1 = x̄− γαd, then x̄α ∈ A. Similarly,

there exists γβ > 0 such that γβa>d ≥ β − a>x̄, i.e., we have a>(x̄+ γβd) ≥ β. Let

x̄β = x̄ + γβd, then x̄β ∈ B. Additionally, we have x̄α, x̄β ∈ X , since x̄ ∈ X and

d ∈ lin(X). Hence, we obtain that x̄α, x̄β ∈ X ∩ (A ∪ B). Now, let η = γβ
γβ+γα , then

we have

x̄ = ηx̄α + (1− η)x̄β.

Therefore, x̄ ∈ conv(X ∩ (A ∪ B)), which is a contradiction. This proves that

conv(X ∩ (A ∪ B)) = X .

From Theorem 2.2 we obtain the following result for the special case where the

lineality space of cylinder X is one-dimensional.

Remark 2.1. In Theorem 2.2, assume that X is a closed convex cylinder such that

dim(lin(X)) = 1, i.e., lin(X) = {αd | α ∈ R}. If a>d 6= 0, then conv(X ∩(A∪B)) =

X .

Notice that the results of Theorem 2.2 and Remark 2.1 hold for a general closed

convex cylinder X . However, to identify the redundant DCyCs for MISOCO prob-

lems, in this section we focus on the special case where X is a cylinder defined by a

quadratic constraint.

We use Theorem 2.2 and Remark 2.1 to characterize the redundant DCyCs for

MISOCO problems.

Corollary 2.3 (Redundant DCyC for MISOCO). Let Ĉ, as defined in (2.1), be a

cylinder, and consider the two half spaces defined in (2.3). If â 6⊥ lin(Ĉ), then the

DCyC is equal to Ĉ.

Now, consider the special case of Corollary 2.3 where lin(Ĉ) is one-dimensional

and defined as lin(Ĉ) = {αd | α ∈ R}. Then, the condition â 6∈ lin(Ĉ) simplifies to

20

CHAPTER 2. DISJUNCTIVE CONIC CUTS

â>d 6= 0. The redundant DCyC is illustrated in Figure 2.2a, where the DCyC is

equal to the cylindrical set. However, in Figure 2.2b, the DCyC is not equal to the

original cylinder. In that case we may derive a DCyC that does tighten the original

cylinder.

(a) A cylindrical redundant DCyC. (b) Not a cylindrical redundant DCyC.

Figure 2.2: Illustration of the cylindrical redundant DCyC.

Corollary 2.4. (Identification of a redundant DCyC for MISOCO) Consider

the set Ĉ, as defined in (2.1), and a disjunction as defined in (2.3). We have a

cylindrical redundant DCyC if the following two conditions are satisfied:

- System
[
P p

]>
d = 0, for d 6= 0, has a solution.

- System
[
P p

]
y = â, for y ∈ R`+1, does not have a solution.

Proof. From
[
P p

]>
d = 0, we have Pd = 0 and p>d = 0. So for all w ∈ Ĉ, we

have

d>Pdα2 + 2d>(Pw + p)α = 0. (2.5)

We know, for all w ∈ Ĉ, that w>Pw + 2p>w + ρ ≤ 0. So from (2.5), we have

(w + αd)>P (w + αd) + 2p>(w + αd) + ρ ≤ 0, ∀α ∈ R.

21

CHAPTER 2. DISJUNCTIVE CONIC CUTS

Hence, d ∈ lin(Ĉ). As d 6= 0, we conclude that Ĉ is a cylinder.

Let col(·), row(·), and null(·) denote respectively the column space, row space,

and null space of a matrix. If system [P p]y = â, for y ∈ R`+1, does not have a

solution, then â 6∈ col([P p]); thus, â 6∈ row([P p]>). Therefore, there exists a d0 6= 0

such that d0 ∈ null([P p]>) and â>d0 6= 0. Hence, we obtain that â 6⊥ lin(Ĉ). From

Corollary 2.3, we can conclude that this is a redundant DCyC.

Remark 2.2. The redundancy of a DCyC is independent of the base of the cylinder.

Notice in Corollary 2.4 that the first condition ensures that set Ĉ, defined in (2.1),

is a cylinder and the second condition ensures that Ĉ and disjunction (2.3) define a

redundant DCyC.

Corollary 2.4 is in fact a sufficient condition to identify the cylindrical pathologi-

cal disjunction, as defined in Theorem 2.2, for a MISOCO problem. In Corollary 2.5,

we provide a necessary and sufficient condition to identify when the normal vector of

the disjunctive hyperplanes is orthogonal to the lineality space of the cylinder. The

difference between Corollaries 2.4 and 2.5 is that the former considers a condition in

the null space of the affine constraints of the MISOCO problem, while the latter one

is defined in the original space of the decision variables of the MISOCO problem.

The following lemma is needed to prove Corollary 2.5.

Lemma 2.2 (Lineality space of intersection of two convex sets [Bertsekas, 2009]). If

X1 and X2 are convex sets such that X1∩X2 6= ∅, then lin(X1∩X2) = lin(X1)∩lin(X2).

Corollary 2.5. (Identification of a redundant DCyC for MISOCO) Consider

the MISOCO problem (1.1) and disjunction (2.2). We may assume w.l.o.g. that we

derive the DCyC for L1 ∈ Rn1. Condition a 6⊥ lin(X) holds if and only if

A
a>

0n1

x

 =

0m
1

 , (2.6)

22

CHAPTER 2. DISJUNCTIVE CONIC CUTS

where x ∈ Rn−n1.

Proof. Let KL1 be the cone L1 lifted to Rn. So we have KL1 = {(xc,xr) ∈ Rn1 ×

Rn−n1|xc ∈ L1}. We know that lin(L1) = {0}, hence, lin(KL1) = {(0n1 ,xr) | xr ∈

Rn−n1}. Let C = KL1 ∩ {x ∈ Rn | Ax = b}. We know that lin({x ∈ Rn | Ax =

b}) = null(A). So from Lemma 2.2, we have lin(C) = lin(KL1)∩null(A), and we can

conclude that

lin(C) =
{0n1

xr

 ∣∣∣∣∣ xr ∈ Rn−n1 , A

0n1

xr

 = 0
}

. (2.7)

From Theorem 2.2, we know that if a 6⊥ lin(C), then we have a cylindrical

redundant DCyC. Condition a 6⊥ lin(C) holds if and only if there exists x̄ ∈ lin(C)

such that a>x̄ 6= 0. As lin(C) is a subspace, w.l.o.g. we can acquire a>x̄ = 1

for a 6⊥ lin(C). Combining this condition with equation (2.7), we can conclude

that a 6⊥ lin(C) if and only if system

A
a>

0n1

xr

 =

0m
1

 has a solution, which

completes the proof.

2.4 Discussion

The conic and cylindrical pathological disjunctions, presented in Sections 2.3.1 and

2.3.2 respectively, form the fundamental cases for analyzing the redundant DCCs

and DCyCs. In this section, we explore some instances where one can find the

redundant cases embedded in more complex configurations. The cases presented in

this section are built on the quadratic set Ĉ, as defined in (2.1), and a disjunction

defined in (2.3), such that α < β, X ∩A 6= ∅, X ∩ B 6= ∅.

23

CHAPTER 2. DISJUNCTIVE CONIC CUTS

2.4.1 Conic cylinders

In this section, we define a conic cylinder, and we consider sets resulting from the

intersection of a conic cylinder and a disjunctive set. Then, we formalize a special

case of redundant DCyCs.

Definition 2.4. (Conic cylinder) Let X be a closed convex set, and let K = X ∩

lin(X)⊥. Set X is a conic cylinder if K is a convex cone, and lin(X) 6= {0}.

The following corollary formalizes a special case where the DCyC is redundant.

Corollary 2.6. Let X ⊆ Rn be a closed convex cylinder such that X = lin(X) +K,

and K = X ∩ lin(X)⊥. Suppose that K is a convex cone with vertex v. Let A =

{x ∈ Rn | a>x ≤ α} and B = {x ∈ Rn | a>x ≥ β} such that α < β, X ∩ A 6= ∅,

X ∩ B 6= ∅, and a ⊥ lin(X). If v ∈ A ∪ B, then conv(X ∩ (A ∪ B)) = X .

Proof. The proof is analogous to that of Theorem 2.1.

Notice in Corollary 2.6 that if a 6⊥ lin(X), then from Corollary 2.3, we know that

we have a redundant DCyC. However, in Corollary 2.6 we assume that a ⊥ lin(X),

and derive another case of pathological disjunction and redundant DCyC. Figure

2.3 illustrates this result showing two different cases of redundant DCyCs. In Figure

2.3a we have a case where a 6⊥ lin(X), which complies with Corollary 2.3, thus we

have a redundant DCyC. In Figure 2.3b we have a case where a ⊥ lin(X), so it does

not satisfy the conditions of Corollary 2.3. However, it complies with Corollary 2.6,

thus we have a redundant DCyC. The classification of Figure 2.3b may be obtained

noting that the base of the cylinder is a convex cone and its vertex is in one of the

half spaces defining the disjunction. Henceforth, the original cylinder configures a

redundant DCyC.

24

CHAPTER 2. DISJUNCTIVE CONIC CUTS

(a) A cylindrical redundant DCyC. (b) A conic redundant DCC case for
the base of the cylinder.

Figure 2.3: Illustration of redundant cases for conic cylinders.

2.4.2 Branching on a higher dimensional subspace

In some cases one may have to make a split disjunction on an integer variable that

does not appear in the quadratic set C ∈ Rn. This is in fact one common instance of

redundant DCyCs, where the cylinder is given by {(ξ,x) ∈ R×Rn | (0,x)+(ξ, 0),x ∈

C}, and we want to make a disjunction on the variable ξ. In this case, the disjunction

is pathological and we have a redundant DCyC. This case is illustrated in Figure

2.4, where the quadratic set defines a cylinder with an ellipsoid base defined in the

space of (x1,x2), and we make a disjunction on variable ξ.

Figure 2.4: A redundant DCyC.

25

CHAPTER 2. DISJUNCTIVE CONIC CUTS

2.4.3 Eliminating pathology by branching

Suppose that deriving the DCC for the set Ĉ ∩ (Â∪ B̂), as defined in (2.1) and (2.3),

results in a redundant cut. This situation does not necessarily render the DCC

approach useless. In particular, further down the branch and bound tree, effective

DCCs may be generated.

Figure 2.5 illustrates this case. Suppose that Ĉ is a cone, with a vertex v, and

one wants to make a disjunction on the binary variable x2. Notice that the vertex

of the cone is in one of the disjunctive half spaces in Figure 2.5. Then, the DCC

will be equal to Ĉ, which is a redundant DCC. In this case, one can branch on

the binary variable x2 to obtain new quadratic sets in each branch. Consider first

the branch x2 = 0, the new quadratic set is obtained from the intersection of Ĉ

with the hyperplane x2 = 0, which defines a two-dimensional SOC. In this branch,

making a disjunction on the binary variable x1 again leads to a redundant DCC. Now

consider the branch x2 = 1; the new quadratic set is obtained from the intersection

of Ĉ with the hyperplane x2 = 1, which is one branch of a hyperboloid. Considering

a disjunction on the binary variable x1, one can derive a useful DCC in this branch.

The case presented in this section shows how one can identify opportunities down

the branch and bound tree for using DCCs to improve the performance of a solver.

This is useful to complement existing branching rules [Achterberg et al., 2005] to

define new rules capable of exploiting the structure of a MISOCO problem, which

calls for further research in this area.

26

CHAPTER 2. DISJUNCTIVE CONIC CUTS

Figure 2.5: An instance of the conic redundant DCC.

2.5 Numerical Experiments

The main problem of failing to recognize the redundant DCCs and DCyCs is that

current solvers do not yet have the prepossessing capabilities to recognize those re-

dundancies. As a result, their performance, when solving a MISOCO problem after

adding redundant DCCs or DCyCs, may suffer leading to significant increase in

solution time. In this section we demonstrate this phenomena by solving two prob-

lem sets. First, we consider portfolio optimization problems with higher moment

coherent risk (HMCR) measures presented by Vinel and Krokhmal [2014]. Second,

we consider two conic formulations for service system design problems with conges-

tion as presented in Góez and Anjos [2018]. We derive DCCs using the method

presented by Belotti et al. [2017], and all the DCCs derived satisfy the conditions

of Corollaries 2.1 and 2.2, thus all are redundant. We use CPLEX 12.8 with the

default parameters to solve all the problems. For measuring the performance we

use the wall-clock time and the deterministic time measured in ticks provided by

CPLEX [IBM Knowledge Center, 2017].

27

CHAPTER 2. DISJUNCTIVE CONIC CUTS

2.5.1 A portfolio optimization problem

We consider the 4th moment coherent risk measure and use the method proposed

by Ben-Tal and Nemirovski [2001] to reformulate the 4th-order cone optimization

problem [see Vinel and Krokhmal, 2014, Eq. 49] as a second order cone optimization

problem. We also consider the round-lot constraints, which represent a real-life pol-

icy that assets can be purchased only in lots of shares. Thus, the portfolio optimiza-

tion problem with HMCR measures and round-lot constraints may be formulated

as a MISOCO problem. The DCCs are added at the root node for 30 portfolio opti-

mization problems with different number of assets and different number of scenarios.

We use three different strategies: first we solve each problem without DCCs, second

we derive 4 DCCs for each SOC, and finally we derive all possible DCCs for all the

SOCs. In Figures 2.6a and 2.6b, the wall-clock solution time and number of ticks is

reported for the three different approaches in solving the 30 portfolio optimization

problems. For most of the 30 instances, the solution time and ticks lines for the

strategy without adding redundant DCCs are below the line for strategy where 4

redundant DCCs are added for each SOC. Additionally, the solution time and ticks

without adding DCCs is significantly less than that of the cases where all possible

DCCs are added.

2.5.2 A service system design problem with congestion

For this problem class we consider formulations (MISOCO 1) and (MISOCO 4)

and the instances presented in Góez and Anjos [2018]. For each of these instances

we have ` client locations and m facility locations, where ` ∈ {10, 20, 30}, and

m ∈ {50, 100, 150, 200}. For formulation (MISOCO 1) the dimension of the SOCs

is given by the number of client locations plus two, and the total number of cones is

given by the locations available to open. Hence, for these formulations the potential

28

CHAPTER 2. DISJUNCTIVE CONIC CUTS

0 5 10 15 20 25 30
Instance

10 1

100

101

102

103

So
lu

tio
n

tim
e

Without DCCs
4 DCCs per cone
All DCCs

(a) Solution time.

0 5 10 15 20 25 30
Instance

101

102

103

104

105

106

Ti
ck

s

Without DCCs
4 DCCs per cone
All DCCs

(b) Ticks.

Figure 2.6: Numerical results for portfolio optimization problems.

number of DCCs one could add per cone is `. For formulation (MISOCO 4) the

number of SOCs is equal to `m, but all the cones are three dimensional, and one can

derive only one DCC per cone. In this instance the dimension of the cones plays a

role in its difficulty, in particular formulation (MISOCO 1) has higher dimensional

cones than formulation (MISOCO 4). We observe that (MISOCO 1) needs more

computational time, while the formulations are equivalent. We set a CPU time

limit of 3600 seconds. Figures 2.7a and 2.7b show the results of the experiments

with (MISOCO 1), where we add up to four DCCs per cone. There we list the

results only for the instances that were solved within the time limit, which were 12

in total. Same behavior can be observed as with the portfolio problems in Section

2.5.1, i.e., the larger the number of redundant DCCs is, the larger the solution time.

Figures 2.7c and 2.7d show the results of the (MISOCO 4) experiments. Here we

manage to solve 139 instances, and for each instance we add one DCC per cone for

all the cones, which accounts for all the possible DCCs. We see in Figure 2.7c that

the results are more mixed than in the previous two experiments, showing that the

29

CHAPTER 2. DISJUNCTIVE CONIC CUTS

CPU solution time does not always worsen when the DCCs are added. Nonetheless,

the solution time increases in 60 percent of the instances when DCCs are added.

The negative effect of adding redundant DCCs to (MISOCO 4) formulation is more

clear in Figure 2.7d, where we can see that the line showing the deterministic time

taken to solve the instances without the DCCs is more consistently below the line for

the instances with DCCs. To be more specific, the CPLEX deterministic solution

time increased in 87 percent of the instances when DCCs were added.

0 2 4 6 8 10 12

Instance

10
1

10
2

10
3

10
4

S
o
lu

ti
o
n
 t
im

e
 (

C
P

U
 t
im

e
)

Without DCCs

With 1 DCC per SOC

With 2 DCC per SOC

With 4 DCC per SOC

(a) Solution time (MISOCO 1).

0 2 4 6 8 10 12

Instance

10
4

T
ic

k
s

Without DCCs

With 1 DCC per SOC

With 2 DCC per SOC

With 4 DCC per SOC

(b) Ticks (MISOCO 1).

0 20 40 60 80 100 120 140

Instance

10
2

10
3

S
o
lu

ti
o
n
 t
im

e
 (

C
P

U
 t
im

e
)

Without DCCs

With all DCCs

(c) Solution time (MISOCO 4).

0 20 40 60 80 100 120 140

Instance

10
3

10
4

T
ic

k
s

Without DCCs

With all DCCs

(d) Ticks (MISOCO 4).

Figure 2.7: Numerical results of the portfolio optimization problem.

30

CHAPTER 2. DISJUNCTIVE CONIC CUTS

2.6 Conclusions

In this chapter we presented two fundamental pathological disjunctions, which help

to identify redundant DCCs and DCyCs for MISOCO problems. We know that if the

DCC is redundant, then any other disjunctive cut based on the same disjunction will

be redundant, since the DCC describes the convex hull of the disjunctive set, and

thus is the tightest possible disjunctive cut that can be obtained. We have also shown

how the two fundamental cases are the building blocks of more complex instances.

We illustrated that by analyzing some instances in Section 2.4, and showing how the

instances are combinations of the two fundamental cases considered in this study.

Efficient implementation of branch and conic cut (BCC) algorithms for MISOCO

requires the identification of pathological disjunctions. In a BCC framework, it is

important to keep under control the growth of the problem. For that reason, iden-

tifying whether a DCC is redundant before adding it to the formulation is essential

to obtain an efficient implementation of this methodology. Otherwise, as was shown

in Section 2.5, the solution time can be adversely affected with the addition of re-

dundant DCCs. Thus, this work highlights both limitations of and opportunities

for efficient implementation of BCCs.

31

CHAPTER 2. DISJUNCTIVE CONIC CUTS

32

Chapter 3

Truss Design Problem: Modeling

and Analysis

In this chapter we present mathematical optimization models for truss design prob-

lems under various assumptions. We start with literature review in Section 3.1. In

Section 3.2, we review several mathematical optimization models for the truss design

problem assuming that the cross-sectional areas of the bars are continuous and we

present some characteristics of the feasible set of the truss design problem. In Sec-

tion 3.3, we develop mathematical optimization models which provide lower bounds

for the optimal objective value of the continuous truss design problem. Then, in

Section 3.4, we propose mathematical optimization models for the discrete design

problem, where the cross-sectional areas of the bars are discrete. We develop models

for truss sizing problems and extend the models to account for multi-scenario design

problems. We end the chapter by developing models for truss topology design and

sizing optimization problems.

33

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.1 Introduction

The truss design problem is concerned with the optimal selection of geometry, topol-

ogy and sizing of a structural system (see, e.g., the review paper by Bendsøe et al.

[1994]). In a truss structure, some nodes are fixed at a point, while the others are

free. The external force on the nodes results in structure deformation that induces

internal forces on the bars. The internal forces in turn balance the external force

on the free nodes. We aim to minimize the total weight of the truss. The design

variables are the cross-sectional areas while the unknown internal forces, nodal dis-

placements, and the bars’ stresses are referred to as state variables, and are uniquely

specified if the cross-sectional areas of the bars are determined.

The first use of numerical optimization for the truss design problem is by Dorn

et al. [1964]. They used the ground structure approach, in which the optimal struc-

ture is a subset of a set of bars defined prior to solving the problem. They considered

the single-load minimum weight truss design problem. Achtziger et al. [1992] con-

sidered the truss design problem and developed linear and quadratic optimization

models using displacement variables only, with the goal to minimize compliance.

Bendsøe and Ben-Tal [1993] considered the problem of minimizing the compliance

for a given volume of the material in a truss, where the mathematical model is

formulated in terms of the nodal displacements and bar cross-sectional areas. They

developed a steepest descent algorithm to solve the problem.

Consider a truss design problem with the objective to minimize the total weight

of a given structure, and assume that the cross-sectional areas of the bars are con-

tinuous decision variables. If we only impose force balance equations, Hooke’s law,

and bounds on the stress as the constraints, then all the bars are fully stressed in

the optimal solution, and the model can be reformulated as a linear optimization

34

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

problem. However, adding the Euler buckling constraints makes the problem non-

convex and thus harder to solve. Achtziger [1999a] proposed an optimization model

for the minimum weight truss design problem taking into account yield stress and

Euler buckling constraints, but not considering the kinematic compatibility and the

stress-strain relation. He then developed a sequential linear programming algorithm

which generates feasible solutions for the problem [Achtziger, 1999b].

One of the frequent restrictions in practice, due to manufacturability and eco-

nomic reasons, is that the cross-sectional areas of the bars cannot take an arbitrary

value; instead they only take values from a predefined finite set. The areas of the

truss elements are discrete because the bars are manufactured in fixed sizes. These

restrictions also appear in other structural design problems, such as the design of

shell element structures when dealing with laminated composites. Achtziger and

Stolpe [2007a,b,c] considered the minimum compliance truss design problem with

bounds on the volume of the truss, where the cross-sectional areas of the bars only

take values from a discrete set. They proposed a mixed integer nonlinear optimiza-

tion model and used a branch-and-bound algorithm to find the global optimum of

the problem. They solved continuous relaxations of the problem to obtain lower

bounds for the optimal objective value. However, they did not consider the bounds

on stress and the Euler buckling constraints in the design problem. Stolpe [2007]

considered the minimum compliance problem with constraints on the displacements

and total volume of the structure. He proposed mixed integer linear optimization

(MILO) and mixed integer quadratic optimization reformulations using the tech-

niques presented by Petersen [1971] and by Glover [1975, 1984]. Rasmussen and

Stolpe [2008] used a branch-and-cut approach to solve the MILO formulation of

the minimum weight truss design problem, taking into account the stress and dis-

placement constraints. However, they did not consider the buckling constraints in

35

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

the model. They solved a 2D L-shaped truss problem with 54 bars and 108 bi-

nary variables, and a 3D cantilever truss with 40 bars and 160 binary variables to

global optimality. Mela [2014] investigated the minimum weight truss design prob-

lem, where he assumed that the cross-sectional areas of the bars are discrete. He

formulated and solved a MILO model taking into account the Euler buckling and

kinematic stability constraints. Mela [2014] solved a 2D truss tower with 209 bars,

110 of which were overlapping members. Additionally, he solved a 2D L-shaped

truss with 160 bars, 23 of which were overlapping. Stolpe [2004] suggested a mixed

integer non-convex mathematical model for the minimum weight truss design prob-

lem with displacements, stress, and cross-sectional areas as variables, considering

bounds on stress and cross-sectional areas, as well as Euler buckling constraints.

Then, he used a branch-and-bound framework to obtain the global optimum of the

truss problem. The largest instances solved to global optimality included 25 bars.

There are various other engineering design problems and the MILO formulations

of a truss structure can be generalized to other structures, e.g., Mellaert et al.

[2017] develop MILO formulations for frame structures with various engineering

constraints.

3.2 Continuous truss design problem

In this section, we assume that the cross-sectional areas of the bars are continuous

decision variables. In general, the truss design problem can be formulated as a non-

linear non-convex optimization problem [Stolpe, 2004]. We present three equivalent

mathematical models for the continuous truss design problem.

36

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.2.1 Preliminary models

Let m be the number of bars in the truss, I = {1, . . . ,m}, and n be the number of

degrees of freedom, which is

n = (# of nodes−# of fixed nodes)× dim. of the space.

Let x ∈ Rm denote the cross-sectional areas of the bars, and q ∈ Rm the vector

of the internal forces on the bars. The stress in bar i ∈ I is

σi =

qi

xi
if xi > 0,

0 otherwise.
(3.1)

The vector of external forces exerted on the nodes is denoted by f ∈ Rn. The

equilibrium between the internal forces and the external forces applied to the free

nodes is maintained as a result of the force balance equation [De Klerk et al., 1995]

Rq = f , (3.2)

where R ∈ Rn×m is the topology matrix associated with the design problem. The

ith column of R, denoted by ri, is the vector representing the topology of the ith bar

in the truss for all i ∈ I.

Let u ∈ Rn denote the displacement vector of the nodes. Additionally, let

l ∈ Rm and ξ ∈ Rm denote the length and elongation of the bars, respectively. The

elongation of the bars depends on the displacement vector u as follows:

ξ = RTu. (3.3)

37

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

We assume that the elongation of the bars compared to the length of the bars is

small. Let Ei, for i ∈ I, denote the Young’s modulus of bar i. We can restate

the internal force qi as a function of cross-sectional area xi and elongation ξi. This

relationship is governed by Hooke’s law. For all i ∈ I, we have

qi = Ei
ξi
li
xi. (3.4)

Let λi = Ei/li for i = 1, · · · ,m, and let Λ = diag(λ), where diag(.) is the diagonal

matrix of the corresponding vector. Additionally, Let X denote the diagonal matrix

of x, i.e., X = diag(x). We can rewrite equations (3.4) in the following matrix form:

q = ΛXξ. (3.5)

Let matrix Ki ∈ Rn×n, for i ∈ I, be the contribution of bar i ∈ I to the global

stiffness matrix, defined as

Ki = λiriri
T . (3.6)

Obviously Ki is a positive semidefinite matrix. Further, the stiffness matrix of the

truss is obtained by assembling the bar stiffness matrices as follows

K(x) =
m∑
i=1
xiKi. (3.7)

From (3.6) and (3.7), we can rewrite matrix K as

K(x) = RΛXRT . (3.8)

We may assume that the truss structure is stable, and hence K(x) is positive

definite, denoted as K(x) � 0. As mentioned below, this property is maintained

38

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

by positive lower bounds on the bars’ cross-sectional areas. From Equations (3.2),

(3.3), (3.5), and (3.8), we can derive the following relationship:

f = Rq = R (ΛXξ) = RΛXRTu

= K(x)u.
(3.9)

From Equation (3.9) we can deduce that if K(x) is positive definite for a given

cross-sectional area x, then nodal displacement u is uniquely specified and so are

ξ, σ, and q. This fact is the reason that cross-sectional area x is referred to as design

variable, while u, ξ, σ, and q are called the state variables of the problem.

Lower and upper bounds are enforced for the bar stresses. Let σmin, σmax ∈ Rm

be the given lower and upper bounds on the bar stress, respectively. The bounds

σmin and σmax are actually bounds on the compression and tension of the bars,

respectively. Therefore, we have σmax > 0 and σmin < 0. Lower and upper bounds

umin and umax are considered on the nodal displacements of the structure as well.

Moreover, we consider lower and upper bounds on the cross-sectional areas of the

bars, namely, xmin, xmax ∈ Rm. We consider the truss sizing problem, where xmin
i > 0

for all i ∈ I.

Furthermore, we consider the Euler buckling constraints, which are defined as

σi ≥ σEi , i ∈ I,

where σEi is the Euler buckling stress for bar i ∈ I. We assume that both ends of

all the bars are pinned. Then, the Euler buckling stress for bar i ∈ I with a circular

cross section is

σEi = −
π2Ei

4
(
li
τi

)2, (3.10)

where τi is the radius of bar i ∈ I. If we define γi = πEi/4l2i , then σEi = −γixi, and

39

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

the Euler buckling constraints can be written as

σi + γixi ≥ 0, i ∈ I. (3.11)

Using Equation (3.1), we can also write the Euler buckling constraints as

qi + γix
2
i ≥ 0, i ∈ I. (3.12)

Constraint (3.11) can be generalized to the cases where the discrete choice of the

bar sizes corresponds to similar cross-sectional shapes.

For example, suppose we have a discrete choice set composed of similar rectan-

gles: hi/bi = α, for i ∈ I, where bi and hi denote the width and height for the ith

choice, respectively, and α is a constant. Then the Euler buckling constraints are

written as

σi + γ′ixi ≥ 0, γ′i = απ2E

12l2i
, i ∈ I. (3.13)

Notice that neither Hooke’s law nor the Euler buckling constraints (3.12) are convex.

This results in the following non-convex quadratic optimization formulation of the

truss sizing problem:

min ρlTx

s.t. Rq = f ,

qi − Ei
li

(riTu)xi = 0, i ∈ I,

qi + γix
2
i ≥ 0, i ∈ I,

umin ≤ u ≤ umax,

σmin
i xi ≤ qi ≤ σmax

i xi, i ∈ I,

xmin
i ≤ xi ≤ xmax

i , i ∈ I,

(P1)

where ρ is the density of the bar material. We may assume without loss of generality

40

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

that all bars have the same density.

Model (P1) has m non-convex equalities, and m non-convex inequalities. Each

of the m non-convex equalities, has n bilinear terms. However, the Hooke’s law

constraint—the second constraint in (P1)—can be used to derive a new formulation

in terms of the cross-sectional areas x ∈ Rm and the nodal displacements u ∈ Rn as

min ρlTx

s.t. K(x)u = f ,

Ei

li
(riTu) = σi, i ∈ I,

σi + γixi ≥ 0, i ∈ I,

umin ≤ u ≤ umax,

σmin
i ≤ σi ≤ σmax

i , i ∈ I,

xmin
i ≤ xi ≤ xmax

i , i ∈ I,

(P2)

where all the nonlinearity of the problem is encapsulated in n non-convex equalities,

that is the K(x)u = f constraints, which include mn bilinear terms. However, we

can decrease the number of bilinear terms by adding the internal forces q ∈ Rm and

41

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

Equation (3.1) back to the model. By doing so, problem (P1) can be reformulated as

min ρlTx

s.t. Rq = f ,

σi −
Ei

li
ri
Tu = 0, i ∈ I,

qi − σixi = 0, i ∈ I,

σi + γixi ≥ 0, i ∈ I,

umin ≤ u ≤ umax,

σmin
i ≤ σi ≤ σmax

i i ∈ I,

xmin
i ≤ xi ≤ xmax

i i ∈ I.

(P3)

This model has m non-convex equalities, each of which has only one bilinear term.

Consequently, model (P3) is simpler than models (P1) and (P2). We utilize model (P3)

in Section 3.4.1 to derive mathematical optimization models for truss sizing prob-

lems when the cross-sectional areas are discrete.

3.2.2 Multi-scenario truss design problem

In Section 3.2.1, it was assumed that we have one external force scenario. In this

section we extend model (P3) to multi-scenario truss sizing problems. Let K be the

set of the external force scenarios, and let ` be the number of the external force

scenarios. For each scenario we have an external force and the nodal displacements

and the stress on the bars are calculated based on the cross-sectional areas of the

bars. Let fk, uk, ξk, qk, and σk, for k ∈ K, be the external force, nodal displacement,

bar elongation, internal force, and stress on the bars in scenario k, respectively. It is

worth emphasizing that the cross-sectional areas of the bars are the design variables

for the structure, and thus are common for all the scenarios. In fact, we aim to

42

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

minimize the weight of the structure which withholds all the considered external

force scenarios. Model (P3) can be extended to account for multi-scenario external

forces as follows:

min ρlTx

s.t. Rqk = fk, k ∈ K,

σki −
Ei

li
ri
Tuk = 0, i ∈ I, k ∈ K,

qki − σki xi = 0, i ∈ I, k ∈ K,

σki + γixi ≥ 0, i ∈ I, k ∈ K,

umin ≤ uk ≤ umax, k ∈ K,

σmin
i ≤ σki ≤ σmax

i , i ∈ I, k ∈ K,

xmin
i ≤ xi ≤ xmax

i , i ∈ I.

(3.14)

Models (P1), (P2) can similarly be extended to the multi-scenario design problem.

3.2.3 Some characteristics of the feasible set of the truss

design problem

In this section, we explore two characteristics of the feasible set of a multi-scenario

truss design problem. In Section 3.2.3.1, we present a theorem on the feasibility

of a ray which starts from a feasible solution, and in Section 3.2.3.2, we present a

theorem on adding an external force scenario which is a convex combination of the

current external force scenarios.

Let F denote the set of feasible solutions of problem (3.14), and let X denote the

m-dimensional subspace of the cross-sectional areas of the bars. Additionally, let

projX (F) denote the orthogonal projection of the feasible set F on X , the subspace

of the cross-sectional areas.

43

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.2.3.1 Feasibility along rays

In this section, we show that if cross-sectional area x ∈ Rm is feasible for problem

(3.14), then ray αx, for α > 1, to the boundary of the feasible set will be feasible.

Theorem 3.1. Suppose x ∈ projX (F). If α > 1 and αx ≤ xmax, then αx ∈

projX (F).

Proof. As x ∈ projX (F), there exists (u, q,σ) such that (x,u, q,σ) ∈ F . Let x̄ = αx,

and let (ū, σ̄, q̄) be defined as follows:

ūk =
1
α
uk, ∀k = 1, · · · , `,

σ̄k =
1
α
σk, ∀k = 1, · · · , `,

q̄k = qk, ∀k = 1, · · · , `.

(3.15)

From (3.7), we know that K(x̄) = αK(x). So we have

ūk =
1
α
uk =

1
α
K(x)−1fk

=
1
α

 1
α
K(x̄)

−1

fk

= K(x̄)−1fk.

(3.16)

We know that x̄ ≤ xmax. Similar to (3.16), we can show that (x̄, ū, σ̄, q̄) satisfies all

the constraints of problem (3.14). Thus, we can conclude that x̄ ∈ projX (F).

We use the characteristic, highlighted by Theorem 3.1, in developing a solution

methodology for discrete truss sizing problems in Chapter 4.

44

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.2.3.2 Convex hull of the external force scenarios

Convex combination of external forces is studied in the shakedown analysis and opti-

mal shakedown design of elsto-plastic trusses under multi-parameter static loading,

see, e.g., Giambanco and Palizzolo [1995], Kaliszky and Lógó [2002], and Atkočiūnas

et al. [2008]. However, to the best of our knowledge, this concept is not studied in

the optimal design of the trusses that are limited to have elastic behavior while

considering force balance equations, Hooke’s law, Euler buckling constraints, yield

stress, and displacement bounds.

In this section, we show that a truss structure that copes with a set of external

force scenarios, also copes with any convex combination of the external force scenar-

ios. To do so, we prove that if we have a multi-scenario truss design problem and

add a scenario which is a convex combination of the current external forces, then

the feasible set of the problem does not change.

Theorem 3.2. Suppose we have the multi-scenario truss design problem (3.14) with

feasible set F . Let f̃ be a convex combination of the current external force scenarios,

and let F̃ be the feasible set of the problem with the external force f̃ added as a new

scenario. The following holds

projX (F̃) = projX (F).

Proof. If F = ∅, then F̃ = ∅, and the theorem holds. Suppose F̃ 6= ∅ and let

FX and F̃X denote the orthogonal projection of F and F̃ on the subspace of the

cross-sectional areas X , respectively, i.e., FX = projX (F) and F̃X = projX (F̃).

Suppose we have K̃ = K ∪ {f̃}, where the external force f̃ is a convex combination

45

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

of the current external forces in the set S, defined as

f̃ =
∑
k∈K

λkf
k,

∑
k∈K

λk = 1, λk ≥ 0. (3.17)

We know that F̃X ⊆ FX , since K̃ ⊃ K. So we need only to prove that FX ⊆ F̃X .

Let x̄ ∈ FX be given. We need to prove that x̄ ∈ F̃X . As x̄ ∈ FX , there exists

(ū, q̄, σ̄) such that (x̄, ū, q̄, σ̄) ∈ F , where

q̄ = (q̄1, . . . , q̄`), q̄k ∈ Rm, k = 1, . . . , `,

ū = (ū1, . . . , ū`), ūk ∈ Rn, k = 1, . . . , `,

σ̄ = (σ̄1, . . . , σ̄`), σ̄k ∈ Rm, k = 1, . . . , `.

(3.18)

Let (ũ, q̃, σ̃) be defined as
q̃ =

∑
k∈K

λkq
k,

ũ =
∑
k∈K

λku
k,

σ̃ =
∑
k∈K

λkσ
k,

(3.19)

where λ = (λ1, . . . ,λ`) is the same coefficient vector used to generate the external

force f̃ in (3.17). Then we have

Rq̃ = R

(∑
i∈S
λkq

k

)
=
∑
k∈K

λk
(
Rqk

)
=
∑
k∈K

λkf
k

= f̃ .

(3.20)

Equation (3.20) holds because the force balance equations are linear constraints

of the decision variables, and thus are convex. In fact, when x is given, all the

46

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

constraints of problem (3.14) become linear and so convex. As λ ≥ 0, we can

similarly prove that all the other constraints of (3.14) hold. Thus, we can conclude

that (x̄, ũ, q̃, σ̃), as defined in (3.19), satisfies all the constraints of problem (3.14)

for the external force scenario (3.17).

Therefore, if we generate a new external force, which is a convex combination of

the current external forces, its addition to the problem does not change the feasible

set. Thus, we can conclude that it will not change the optimal solution. We can

use this result to reduce the number of scenarios in a multi-scenario truss design

problem by eliminating the scenarios that are in the convex hull of the rest of the

scenarios.

3.3 Lower bound of the continuous models

In this section, we present two methodologies which provide a lower bound for

the optimal objective value of the continuous truss design problem. One is the well-

known McCormick relaxation, and the other is a relaxation introduced by Bienstock

and Munoz [2014].

3.3.1 McCormick relaxation

McCormick envelopes [McCormick, 1976] are used in nonlinear and mixed integer

nonlinear optimization problems with polynomial terms. McCormick envelopes pro-

vide a convex relaxation of non-convex problems, and thus, alleviate the difficulty

caused by the non-convexity at the cost of adding new constraints and variables.

For a minimization problem, the optimal objective value to the relaxation provides

a lower bound for the optimal value of the original problem.

47

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

In this section, we derive the standard McCormick relaxation for the non-convex

model (P3). The feasible region of this model can be relaxed by using McCormick

envelopes. Specifically, we derive McCormick envelope for the sets Ti, for i ∈ I,

defined as:

Ti := {(qi,xi,σi) | qi = xiσi, xmin
i ≤ xi ≤ xmax

i , σmin
i ≤ σi ≤ σmax

i } (3.21)

The following inequalities form the McCormick envelope for the set Ti:

(xi − xmin
i)(σi − σmin

i) ≥ 0,

(xmax
i − xi)(σmax

i − σi) ≥ 0,

(xi − xmin
i)(σmax

i − σi) ≥ 0,

(xmax
i − xi)(σi − σmin

i) ≥ 0.

(3.22)

Constraints (3.22) can be rewritten as

qi ≥ xmin
i σi + xiσ

min
i − xmin

i σmin
i ,

qi ≥ xmax
i σi + xiσ

max
i − xmax

i σmax
i ,

qi ≤ xmax
i σi + xiσ

min
i − xmax

i σmin
i ,

qi ≤ xiσ
max
i + xmin

i σi − xmin
i σmax

i .

(3.23)

Quality of the McCormick relaxation highly depends on the bounds of the variables

x and σ. Over the box [xmin
i ,xmax

i]× [σmin
i ,σmax

i], the first two inequalities of (3.23)

define the lower approximation as a convex envelop of qi = xiσi, while the second

two inequalities of (3.23) define its upper approximation as a concave envelop. Al-

Khayyal and Falk [1983] prove that inequalities (3.23) define the convex hull of the

set Ti, as defined in (3.21).

48

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

The standard McCormick envelopes provide the following convex relaxation of model (P3):

min ρlTx

s.t. Rq = f ,

σi =
Ei

li
ri
Tu, i ∈ I,

σi + γixi ≥ 0, i ∈ I,

qi ≥ xmin
i σi + xiσ

min
i − xmin

i σmin
i , i ∈ I,

qi ≥ xmax
i σi + xiσ

max
i − xmax

i σmax
i , i ∈ I,

qi ≤ xmax
i σi + xiσ

min
i − xmax

i σmin
i , i ∈ I,

qi ≤ xiσ
max
i + xmin

i σi − xmin
i σmax

i , i ∈ I,

σmin
i ≤ σi ≤ σmax

i , i ∈ I,

xmin
i ≤ xi ≤ xmax

i , i ∈ I,

umin ≤ u ≤ umax.

(3.24)

As problem (3.24) is a relaxation of (P3), its optimal objective value provides a lower

bound for the optimal value of problem (P3). Note that McCormick relaxations can

similarly be derived for models (P1) and (P2).

It is worth mentioning that an arbitrarily tight MILO relaxation of the non-

convex model (P3) can be obtained by using piecewise McCormick relaxation, where

the domain of one of the continuous variables of the bilinear terms is partitioned into

disjoint regions and each region is identified by a binary variable (see, e.g., Bergamini

et al. [2005], Gounaris et al. [2009], Karuppiah and Grossmann [2006], Tawarmalani

and Sahinidis [2004]). The finer the partition is the tighter the relaxation becomes.

49

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.3.2 Relaxation based on binary expansion

In this section we propose an approximate MILO formulation of the problem (P3),

presented in page 42. We use the method by Bienstock and Munoz [2014], where

binary expansion of a continuous variable is utilized to approximate bilinear terms of

continuous variables. We have the following non-convex constraints in problem (P3).

qi − xiσi = 0 i ∈ I (3.25)

To provide a linear approximation for the multiplication of the two continuous vari-

ables, we first define the following linear transformations

σ̄i =
σi − σmin

i

σmax
i − σmin

i

,

x̄i =
xi

xmax
i − xmin

i

.

(3.26)

From Equations (3.26), we have 0 ≤ σ̄i ≤ 1 and 0 ≤ x̄i ≤ 1. Let ∆σi = σmax
i − σmin

i

and ∆xi = xmax
i − xmin

i . Then we have

σi = ∆σiσ̄i + σmin
i ,

xi = ∆xix̄i + xmin
i .

(3.27)

From Equations (3.27), we can rewrite constraints (3.25) as

qi −
(
∆σi∆xiσ̄ix̄i + ∆σixmin

i σ̄i + ∆xiσmin
i x̄i + σmin

i xmin
i

)
= 0 i ∈ I (3.28)

We need to linearize the bilinear term σ̄ix̄i in constraints (3.28). We can write x̄i as

x̄i =
τ∑
j=1

2−jyij + ηi, (3.29)

50

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

where yij ∈ {0, 1}, ηi is the error of the binary approximation (3.29), 0 ≤ ηi ≤ 2−τ ,

and τ ∈ N. So we have

τ∑
j=1

2−jyij ≤ x̄i ≤
τ∑
j=1

2−jyij + 2−τ . (3.30)

From inequalities (3.30), we have

τ∑
j=1

2−jyijσ̄i ≤ x̄iσ̄i ≤
τ∑
j=1

2−jyijσ̄i + 2−τ σ̄i. (3.31)

Let wij = yijσ̄i, which can be enforced by the following inequalities

wij ≤ min (σ̄i, yij) ,

wij ≥ max (σ̄i + yij − 1, 0) .
(3.32)

From inequalities (3.32), we can conclude that if yij = 0, then wij = 0, and if yij = 1,

then wij = σ̄i. Now Let ξi = x̄iσ̄i, for i ∈ I, and let T = {1, · · · , τ}. Then the

following set of constraints provides an approximation for the constraints (3.28)

σi = ∆σiσ̄i + σmin
i , i ∈ I,

xi = ∆xix̄i + xmin
i , i ∈ I,

qi − (∆σi∆xiξi + ∆σixmin
i σ̄i + ∆xiσmin

i x̄i + σmin
i xmin

i) = 0, i ∈ I,
τ∑
j=1

2−jyij ≤ x̄i ≤
τ∑
j=1

2−jyij + 2−τ , i ∈ I,
τ∑
j=1

2−jwij ≤ ξi ≤
τ∑
j=1

2−jwij + 2−τ σ̄i, i ∈ I,

wij ≤ min (σ̄i, yij) , i ∈ I, j ∈ T ,

wij ≥ max (σ̄i + yij − 1, 0) , i ∈ I, j ∈ T ,

yij ∈ {0, 1} i ∈ I, j ∈ T .

(3.33)

51

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

We can replace constraints (3.25) with the set of constraints (3.33) in model (P3)

as follows

min ρlTx

s.t. Rq = f ,

σi −
Ei

li
ri
Tu = 0, i ∈ I,

σi + γixi ≥ 0, i ∈ I,

σi = ∆σiσ̄i + σmin
i , i ∈ I,

xi = ∆xix̄i + xmin
i , i ∈ I,

qi − (∆σi∆xiξi + ∆σixmin
i σ̄i + ∆xiσmin

i x̄i + σmin
i xmin

i) = 0, i ∈ I,
τ∑
j=1

2−jyij ≤ x̄i ≤
τ∑
j=1

2−jyij + 2−τ , i ∈ I,
τ∑
j=1

2−jwij ≤ ξi ≤
τ∑
j=1

2−jwij + 2−τ σ̄i, i ∈ I,

wij ≤ min (σ̄i, yij) , i ∈ I, j ∈ T ,

wij ≥ max (σ̄i + yij − 1, 0) , i ∈ I, j ∈ T ,

umin ≤ u ≤ umax,

σmin
i ≤ σi ≤ σmax

i i ∈ I,

xmin
i ≤ xi ≤ xmax

i i ∈ I,

yij ∈ {0, 1} i ∈ I, j ∈ T .
(3.34)

Model (3.34) is in fact a relaxation of model (P3) presented in page 42; thus, its

optimal objective value provides a lower bound for the optimal objective value of

model (P3).

52

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.4 Discrete truss design problem

In problems (P1), (P2), and (P3), presented in pages 40 and 42, we assume that the

cross-sectional areas are continuous decision variables. In reality, however, the cross-

sectional areas are frequently chosen from a discrete set, corresponding to standard

pre-manufactured bars [Achtziger and Stolpe, 2006, 2007a, Cerveira et al., 2009].

Thus, xi for i ∈ I takes values from the finite set

Si = {si1, si2, . . . , sipi}, (3.35)

where 0 < si1 < si2 < . . . < sipi . Let Ji = {1, . . . , pi} denote the set of indices of

the discrete values in the set Si.

3.4.1 Sizing optimization

We propose two discrete modeling approaches for the discrete set (3.35), which are

referred to as the basic discrete model and the incremental discrete model.

3.4.1.1 Basic discrete model

The cross-sectional areas of the bars in the basic discrete model are formulated as

choice constraints as follows:

xi =
pi∑
j=1
sijzij, i ∈ I,

pi∑
j=1
zij = 1, i ∈ I, j ∈ Ji,

zij ∈ {0, 1}, i ∈ I, j ∈ Ji.

(3.36)

In the basic model, binary variables represent the choice from the discrete set of

the cross-sectional areas. If zij = 1 in the basic discrete model, then xi = sij, and

53

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

zij̄ = 0 for j̄ 6= j.

Next, we explain the derivation of the MILO formulation for problem (P3),

presented in page 42, considering the choice constraints (3.36). This idea can be

used to reformulate problems (P1) and (P2) analogously. We start by substituting

the choice constraints (3.36) in the constraint qi − σixi = 0 for all i ∈ I. We have

qi − σi

 pi∑
j=1

sijzij

 = 0, i ∈ I, (3.37)

where, for all i ∈ I and j ∈ Ji, we have the multiplication of a binary variable and

a bounded continuous variable, i.e., σizij. Using the idea introduced by Petersen

[1971], see also Glover [1975, 1984], we can linearize constraints (3.37) by introducing

auxiliary variables ψij = σizij, for i ∈ I and j ∈ Ji, and adding the following

constraints:
zijσ

min
i ≤ ψij ≤ zijσ

max
i ,

σi − σmax
i (1− zij) ≤ ψij ≤ σi − σmin

i (1− zij).
(3.38)

Then, using constraints (3.36) and (3.38), the discrete version of problem (P3),

54

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

presented in page 42, can be reformulated to obtain the following MILO problem:

min
∑
i∈I
ρlixi

s.t. Rq = f ,

xi −
pi∑
j=1
sijzij = 0, i ∈ I

σi −
Ei

li
ri
Tu = 0, i ∈ I,

qi −
pi∑
j=1
sijψij = 0, i ∈ I,

σi + γixi ≥ 0, i ∈ I,

σmin
i ≤ σi ≤ σmax

i , i ∈ I,

umin ≤ u ≤ umax,

zijσ
min
i ≤ ψij ≤ zijσ

max
i , i ∈ I, j ∈ Ji,

σi − σmax
i (1− zij) ≤ ψij ≤ σi − σmin

i (1− zij), i ∈ I, j ∈ Ji,
pi∑
j=1
zij = 1, i ∈ I,

zij ∈ {0, 1}, i ∈ I, j ∈ Ji.

(3.39)

MILO model (3.39) is referred to as the basic discrete model in the sequel.

3.4.1.2 Incremental discrete model

Let δij := si,j+1 − sij, for i ∈ I and j ∈ J̄i, where J̄i = {1, 2, . . . , pi − 1}. The

incremental representation of choosing discrete values can be modeled as

xi = si1 +
pi−1∑
j=1

δijzij, i ∈ I,

zij ≥ zi,j+1, i ∈ I, j ∈ ¯̄Ji,

zij ∈ {0, 1} i ∈ I, j ∈ J̄i,

(3.40)

where ¯̄Ji = {1, 2, . . . , pi−2}. Binary variables zij, for i ∈ I and j ∈ J̄i, represent the

increments of the cross-sectional areas of the bars in constraints (3.40). If zij = 1,

55

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

then xi ≥ sij and zij̄ = 1 for j̄ < j. If, in addition, zi,j+1 = 0, then zij̄ = 0 for

j̄ > j + 1, and xi = si,j+1.

In a similar manner, as in Section 3.4.1.1, we can substitute constraints (3.40)

in model (P3) and utilize (3.38) to linearize the bilinear terms. All these transform

the discrete version of model (P3) into the following MILO model:

min
∑
i∈I
ρlixi

s.t. Rq = f ,

xi − si1 −
pi−1∑
j=1

δijzij = 0, i ∈ I,

σi −
Ei

li
ri
Tu = 0, i ∈ I,

qi − si1σi −
pi−1∑
j=1

δijψij = 0, i ∈ I,

σi + γixi ≥ 0, i ∈ I,

σmin
i ≤ σi ≤ σmax

i , i ∈ I,

umin ≤ u ≤ umax,

zijσ
min
i ≤ ψij ≤ zijσ

max
i , i ∈ I, j ∈ J̄i,

σi − σmax
i (1− zij) ≤ ψij ≤ σi − σmin

i (1− zij), i ∈ I, j ∈ J̄i,

zij ≥ zi,j+1, i ∈ I, k ∈ ¯̄Ji,

zij ∈ {0, 1}, i ∈ I, j ∈ J̄i.

(3.41)

Model (3.41) in the sequel is referred to as the incremental discrete model. Note

that the incremental model has one less binary variable for each bar. In Section ??,

we compare the basic and incremental models and see that the incremental model

is a better modeling approach when solving the discrete truss design problem.

56

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.4.1.3 Reformulating the MILO models

In this section, we propose a set of valid inequalities that can be used to obtain

MILO reformulations of models (3.39) and (3.41) that can be solved faster. In par-

ticular, these valid inequalities can replace the discrete version of the Euler buckling

constraints (3.11). Next, we derive these valid inequalities for the incremental dis-

crete model (3.41). The derivation of the valid inequalities for model (3.39) can be

done in a similar fashion.

Using formulation (3.40), the Euler buckling constraints (3.11) can be rewrit-

ten as

σi + γi

si1 +
pi−1∑
j=1

δijzij

 ≥ 0, i ∈ I. (3.42)

For each bar i ∈ I, the Euler buckling constraint enforces an inequality on the binary

variables zij for j = 1, . . . , pi − 1. We replace the Euler buckling constraint (3.42)

by pi constraints, each of which is formulated by using only one binary variable.

Theorem 3.3. Considering the incremental model (3.41), the Euler buckling con-

straints (3.42) can be written as:

σi + γisij(1− zij)− σmin
i zij ≥ 0, j = 1, . . . , pi − 1,

σi + γisi,pizi,pi−1 − σmin
i (1− zi,pi−1) ≥ 0.

(3.43)

Proof. Suppose xi = sik for k = 1 . . . , pi − 1 and i = 1, . . . ,m. Then the Euler

buckling constraint (3.42) reduces to

σi + γisik ≥ 0. (3.44)

From the incremental formulation (3.40) we know that zi1 = . . . = zi,k−1 = 1,

and zik = zi,k+1 = . . . = zi,pi−1 = 0. Additionally, the set of constraints (3.43) is

equivalent to
σi + γisij ≥ 0, j = k, . . . , pi − 1,

σi − σmin
i ≥ 0.

(3.45)

57

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

By the inequalities σi − σmin
i ≥ 0, the constraints in (3.45) can be written as

σi ≥ max
j=k,...,pi−1

{−γisij}. (3.46)

This constraint can be written as σi ≥ −γisik, which is equivalent to the Euler

buckling constraint (3.44). Now, suppose that xi = sipi for i = 1, . . . ,m. In this

case, zi1 = . . . = zi,pi−1 = 1, and the set of constraints (3.43) is equivalent to

σi − σmin
i ≥ 0,

σi + γisi,pi ≥ 0,

which is equivalent to the Euler buckling constraint (3.42).

The reason to replace the Euler buckling constraint by pi constraints is that

it helps to decompose the Euler buckling constraints for the binary variables zij,

j = 1 . . . , pi−1. As it can be seen from constraint (3.42), the original Euler buckling

constraint is written in terms of all the pi− 1 binary variables corresponding to bar

i, while in the reformulation (3.43), each constraint is in terms of only one binary

variable. That is the reason that the reformulation would be more effective if pi is

large.

In Section 4.6, we demonstrate that replacing the Euler buckling constraints

with constraints (3.43) in truss instances with large discrete sets can, in most cases,

decrease the solution time by more than 20% on average. The reason to replace the

Euler buckling constraint by pi constraints is that it helps to decompose the Euler

buckling constraints for the binary variables zij, j = 1 . . . , pi − 1. As it can be seen

from constraint (3.42), the original Euler buckling constraint is written in terms of

all the pi − 1 binary variables corresponding to bar i, while in reformulation (3.43),

each constraint is in terms of only one binary variable. That is the reason that the

reformulation would be more effective if pi is large.

58

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.4.2 Multi-scenario truss sizing optimization

In Section 3.4.1, we presented single scenario MILO models for the discrete truss

sizing optimization problems. In the models presented in Sections 3.4.1, single sce-

nario truss design problems were considered. In this section, we extend those models

to multi-scenario discrete truss design problems, which were introduced in Section

3.2.2. As it was explained in Section 3.2.2, the cross-sectional areas of the bars

are the design variables for the structure, and are common in all the external force

scenarios. The solution of the multi-scenario truss design problem must withhold

all the considered external force scenarios. The incremental discrete truss sizing op-

timization model (3.41) can be extended to account for the multiple external force

scenarios as follows:

59

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

min
∑
i∈I
ρlixi

s.t. Rqk = fk, k ∈ K,

xi − si1 −
pi−1∑
j=1

δijzij = 0, i ∈ I,

σki −
Ei

li
ri
Tuk = 0, i ∈ I, k ∈ K,

qki − si1σki −
pi−1∑
j=1

δijψij = 0, i ∈ I, k ∈ K,

σki + γixi ≥ 0, i ∈ I, k ∈ K,

σmin
i ≤ σki ≤ σmax

i , i ∈ I, k ∈ K,

umin ≤ uk ≤ umax, k ∈ K,

zijσ
min
i ≤ ψkij ≤ zijσ

max
i , i ∈ I, j ∈ J̄i, k ∈ K,

σki − σmax
i (1− zij) ≤ ψkij ≤ σki − σmin

i (1− zij), i ∈ I, j ∈ J̄i, k ∈ K,

zij ≥ zi,j+1, i ∈ I, j ∈ ¯̄Ji,

zij ∈ {0, 1}, i ∈ I, j ∈ J̄i,
(3.47)

In a similar manner, we can extend the basic discrete truss sizing optimization

model (3.39) for multiple external force scenarios.

3.4.3 Topology design and sizing optimization

In Section 3.4.1, we developed the basic and incremental models for the discrete

truss sizing optimization problem, where the cross-sectional areas of all the bars

are strictly greater than zero. In this section, based on models (3.39) and (3.41)

we present mathematical optimization models for the discrete truss topology design

and sizing optimization (TDSO) problem, where bars can have zero cross-sectional

areas. In other words, in truss topology and sizing optimization, we let the bars

60

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

vanish in the final structure.

Let S̄i = {0} ∪ Si, where Si is the set of non zeros cross-sectional areas corre-

sponding to bar i, as defined in (3.35). The cross-sectional area of bar i, for i ∈ I,

takes values from the set S̄i in the discrete truss topology design and sizing opti-

mization problem. We need to introduce new decision variables to incorporate zero

cross-sectional areas. Let yi, for i ∈ I, be defined as

yi =

1 if xi > 0,

0, otherwise.

Let σij for i ∈ I and j ∈ Ji be defined as

σij =

Ei

ξi
li

if xi = sij,

0, otherwise.
(3.48)

Variable σij represents the stress on bar i if its cross-sectional area is equal to sij;

otherwise, σij is zero. So we have

σi =
∑
j∈Ji

σij.

Additionally, let σd
i be defined as

σd
i =

Ei

ξi
li

if xi = 0,

0, otherwise.
(3.49)

Variable σd
i , for i ∈ I, is a dummy variable and is equal to zero if bar i takes a

non-zero cross-sectional area. However, if xi = 0, then σd
i takes a non-zero value.

Then, from (3.48) and (3.49), we have

Ei
ξi

li
−

 pi∑
j=1

σij + σd
i

 = 0. (3.50)

As it can be seen in Equation (3.50), by introducing variable σd
i , variables σij, for

j ∈ Ji, can all be equal to zero.

61

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

3.4.3.1 Basic model for TDSO

The choice constraints, as defined in (3.36), need to be slightly modified to account

for topology optimization.

xi =
pi∑
j=1
sijzij, i ∈ I,

pi∑
j=1
zij = yi, i ∈ I, j ∈ Ji,

zij ∈ {0, 1} i ∈ I, j ∈ Ji.

(3.51)

If yi = 1, then (3.51) reduces to (3.36), while yi = 0 enforces xi = 0 and bar i

vanishes from the structure. In addition, to enforce equalities (3.48) and (3.49), the

following set of constraints are needed:

(1− yi)σd
i ≤ σd

i ≤ (1− yi)σd
i , i ∈ I

max (−γisij,σmin
i) zij ≤ σij ≤ σmax

i zij, i ∈ I, j ∈ Ji,
(3.52)

where

σd
i = Ei

li

 ∑
v|riv<0

rivu
max
v +

∑
v|riv>0

rivu
min
v

 ,

σd
i = Ei

li

 ∑
v|riv<0

rivu
min
v +

∑
v|riv>0

rivu
max
v

 .

Note that the Euler buckling constraints are incorporated in the set of constraints

(3.52) as well. The basic MILO model for topology design and sizing optimization

is defined as

62

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

min
∑
i∈I
ρlixi

s.t. Rq = f ,

RTu = ξ,

xi −
pi∑
k=1

sikzik = 0, i ∈ I

Ei
ξi

li
−

 pi∑
j=1
σij + σd

i

 = 0, i ∈ I,

qi −
pi∑
j=1
sijσij = 0, i ∈ I,

pi∑
j=1
zij = yi, i ∈ I,

max (−γisij,σmin
i) zij ≤ σij ≤ σmax

i zij i ∈ I, j ∈ Ji,

umin ≤ u ≤ umax

(1− yi)σd
i ≤ σd

i ≤ (1− yi)σd
i , i ∈ I

yi ∈ {0, 1} i ∈ I,

zij ∈ {0, 1}, i ∈ I, j ∈ Ji.

(3.53)

If yi = 1, for i ∈ I, then model (3.53) reduces to a truss sizing model.

3.4.3.2 Incremental model for TDSO

In the incremental model of the TDSO problem, the cross-sectional area of bar i is

defined as
xi = si1yi +

pi−1∑
j=1

δijzij, i ∈ I,

yi ≥ zi1 i ∈ I,

zij ≥ zi,j+1, i ∈ I, j ∈ ¯̄Ji,

zij ∈ {0, 1} i ∈ I, j ∈ J̄i.

(3.54)

To enforce equalities (3.48) and (3.49), the following set of constraints are needed:

63

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

max (−γisi1,σmin
i) (yi − zi1) ≤ σi1 ≤ σmax

i (yi − zi1) , i ∈ I,

max (−γisij,σmin
i) (zi,j−1 − zij) ≤ σij ≤ σmax

i (zi,j−1 − zij) , i ∈ I, 2 ≤ j ≤ pi − 1,

max (−γisi,pi ,σmin
i) zi,pi−1 ≤ σipi ≤ σmax

i zi,pi−1, i ∈ I,

(1− yi)σd
i ≤ σd

i ≤ (1− yi)σd
i , i ∈ I,

(3.55)

From constraints (3.55), we can see that if yi = 0, then σij = 0, for j ∈ Ji, and σd
i ≤

σd
i ≤ σd

i . If yi = 1, which implies that xi 6= 0, then σd
i = 0. In addition, if zij = 1

and zi,j+1 = 0, then σij̄ = 0, for j̄ 6= j + 1 and max (−γisij,σmin
i) ≤ σij ≤ σmax

i .

The incremental model for the TDSO problem is as follows:

min
∑
i∈I
ρlixi

s.t. Rq = f ,

RTu = ξ,

xi − si1yi −
pi−1∑
j=1

δijzij = 0, i ∈ I

Ei
ξi

li
−

 pi∑
j=1

σij + σd
i

 = 0, i ∈ I,

qi −
pi∑
j=1

sijσij = 0, i ∈ I,

umin ≤ u ≤ umax,

max
(
−γisi1,σmin

i

)
(yi − zi1) ≤ σi1 ≤ σmax

i (yi − zi1) , i ∈ I,

max
(
−γisij ,σmin

i

)
(zi,j−1 − zij) ≤ σij ≤ σmax

i (zi,j−1 − zij) , i ∈ I, 2 ≤ j ≤ pi − 1

max
(
−γisi,pi ,σmin

i

)
zi,pi−1 ≤ σipi ≤ σmax

i zi,pi−1, i ∈ I,

(1− yi)σd
i ≤ σd

i ≤ (1− yi)σd
i , i ∈ I,

yi ≥ zi1, i ∈ I,

zij ≥ zi,j+1, i ∈ I, j ∈ ¯̄Pi
yi ∈ {0, 1}, i ∈ I,

zij ∈ {0, 1}, i ∈ I, j ∈ P̄i.
(3.56)

64

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

It is worth mentioning that, similar to model (3.47), models (3.53) and (3.56)

can be extended to account for the multi-scenario discrete TDSO problem.

3.5 Conclusions

In this chapter, we reviewed various mathematical optimization models for the con-

tinuous truss sizing problems and presented two important characteristics of the

feasible set of the problem. Then we presented the basic and incremental MILO

models for discrete truss sizing problems and extended the models to multi-scenario

external force problems. At the end, we extended the MILO models to discrete truss

topology design and sizing optimization problems.

65

CHAPTER 3. TRUSS DESIGN PROBLEM: MODELING AND ANALYSIS

66

Chapter 4

Truss Design Problem: Solution

Methodology

In Chapter 3, we introduced various mathematical models for the truss design prob-

lem under different assumptions. In this chapter we introduce a novel solution

methodology to provide high-quality solutions in a reasonable time for the discrete

truss design problems, and demonstrate the efficiency of the methodology by exten-

sive numerical experiments. We begin in Section 4.1 by giving a literature review of

the solution methodologies that are used to solve discrete truss design problems. In

Section 4.2, we propose the Neighborhood Search Mixed Integer Linear Optimiza-

tion (NS-MILO) algorithm to solve discrete truss sizing problems. In Section 4.3 we

introduce the truss structures that are used to benchmark the mathematical mod-

els and our solution methodology. In Section 4.4, we present the numerical results

on the relaxation model (3.34), and in Section 4.5, we compare the performance

of the basic and incremental models (3.39) and (3.41). In Section 4.6, we present

the numerical results on strengthening the Euler buckling constraints. Then, in

67

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Section 4.7, we demonstrate the efficiency of the NS-MILO algorithm through ex-

tensive computational experiments. Finally, we close the chapter by presenting our

conclusions in Section 4.8.

4.1 Introduction and literature review

Several meta-heuristic methods have been used to generate good quality solutions

for truss design optimization problems. Genetic algorithms yield the most com-

mon meta-heuristics which are historically used to provide good solutions to truss

design problems [Hajela and Lee, 1995, Kaveh and Kalatjari, 2004, Rajeev and Kr-

ishnamoorthy, 1992, Wu and Chow, 1995]. Ant colony optimization [Bland, 2001,

Camp and Bichon, 2004a, Kaveh et al., 2008] and particle swarm optimization meth-

ods [Li et al., 2009, Zeng and Li, 2012] have also been widely used to solve truss

design problems.

Other methods including simulated annealing [Kripka, 2004], artificial bee colony

optimization [Sonmez, 2011, Stolpe, 2011], mine blast algorithm [Sadollah et al.,

2012, 2015], colliding bodies optimization [Kaveh and Ghazaan, 2015, Kaveh and

Mahdavi, 2014]), and harmony search [SeokLee and Geem, 2004] have also been

used. Stolpe [2016] provides a review on truss design problems with discrete cross-

sectional areas. He presented various models and different methods, including global

optimization methods, heuristics, and meta-heuristics to solve discrete truss design

problems. In the conclusions, he also stated the need for more publicly available

benchmarking problems, which we address herein by contributing three new scalable

problem sets.

Mladenović and Hansen [1997] developed a variable neighborhood search (VNS)

algorithm to solve discrete optimization problems. A VNS algorithm solves the

problem iteratively over a neighborhood structure. At each iteration, local search

68

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

methods are used to find the optimum in the neighborhood. Several general-purpose

and problem-specific variants have been developed [Hanafi, 2016, Hansen and Mlade-

nović, 2003, Lazić, 2010]. Svanberg and Werme [2005] used a neighborhood search

method to solve the topology optimization problem. However, they consider a lim-

ited neighborhood, where “two different designs are neighbors if they differ in only

one single element”. Thus, the complexity of solving the associated subproblems

to proven optimality is O (n), where n is the number of elements in the structure.

In another article, Svanberg and Werme [2007] consider a M -neighborhood, where

the number of the design variables that can simultaneously change is limited to M

at each iteration (M = 1, 2, 4). The complexity of the associated subproblem on a

M -neighborhood is O
(
nM

)
for M = 1, 2, 4.

The subproblems of the neighborhood search MILO (NS-MILO) algorithm that

we propose here are defined over exponentially large neighborhoods, which in turn

decreases the likelihood of getting stuck in a local optimum. As our experiments

illustrate, the trade-off between solving more complex subproblems and the time

needed to obtain near-optimal solutions for large-scale truss design problems is ad-

vantageous. Additionally, we do not solve the subproblems to optimality in the

NS-MILO approach, but rather, we stop the solution process of the subproblems as

soon as a solution better than the current best solution is found. This is one of the

reasons that enables the NS-MILO approach to scale well as the size of the problem

increases.

The minimum weight discrete truss design problem considering Hooke’s law,

bounds on the stress, and Euler buckling constraints has only been solved for small-

scale problems. The main contribution of the work presented herein is developing

an efficient solution methodology to approximately solve large-scale discrete truss

design problems with more than 12,000 binary variables.

First, we consider two well-known instances from the literature: the 10-bar truss

69

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

and the 72-bar truss problems [Haftka and Gürdal, 2012] to compare the NS-MILO

approach with other algorithms used in the literature to solve these instances. In

addition, we introduce three different scalable truss design problem sets, namely,

2D cantilever trusses, 3D cantilever trusses, and truss models of an airplane wing

with the goal to demonstrate how the NS-MILO approach scales as the size of the

problem grows. These three new problems are available online1.

The computational experiments are conducted on a workstation with Dual In-

tel Xeon R© CPU E5-2630 @ 2.20 GHz (20 cores) and 64 GB of RAM. We use

Gurobi 7.0.2 (2016) to solve the MILO models. Gurobi has the capability of using

multiple threads in solving a MILO problem and it uses a branch and cut algorithm.

The optimality gap threshold is set to 0.1%, i.e., when the gap between the best

found solution and the lower bound is less than 0.1%, Gurobi stops and returns the

best solution found up to that point. We set Gurobi to use 16 threads when solving

all the problems and subproblems in this section.

4.2 The NS-MILO Approach

We now present a methodology for solving basic discrete model (3.39) and incre-

mental discrete model (3.41). For ease of presentation in what follows, we refer to

the problems with full discrete sets as the original problems, .

By way of experimentation, it turns out that MILO solvers are not able to solve

to optimality even small-sized 3D instances of the truss design problem [Stolpe,

2016]. The results, presented in Table 4.1 for the optimization of 3D cantilever

trusses (see Section 4.3.4) by Gurobi 7.0.2, confirm Stolpe’s observation that current

methodology is not able to solve even moderate-size discrete truss design problems

to proven optimality. Note that the relative optimality gap threshold is 0.1%, and
1https://github.com/shahabsafa/truss-data.git

70

https://github.com/shahabsafa/truss-data.git

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

the cardinality of the discrete set of cross-sectional areas for all the bars is 41. The

solver is terminated after 24 hours of CPU time for all but the smallest problem

with optimality gap well over %20.

Table 4.1: Solutions of 3D-truss sizing instances obtained directly using Gurobi.

bars # bin. var. Time(s) Weight (kg) Opt. Gap
20 800 247.55 9.75 0.07%
40 1600 86400.02 21.24 25.76%
60 2400 86400.03 24.82 30.03%
80 3200 86400.04 31.22 32.43%

100 4000 86400.05 32.04 34.36%

To generate high-quality solutions in a reasonable time, we present a new solution

methodology, referred to as Neighborhood Search MILO (NS-MILO). The NS-MILO

approach explores MILO subproblems which are defined over the feasible set of the

original problem.

In existing neighborhood search algorithms used to solve the truss design prob-

lems, see e.g., Hanafi [2016], Hansen and Mladenović [2003], Lazić [2010], Mladenović

and Hansen [1997], Svanberg and Werme [2005, 2007], the subproblems are defined

on a small neighborhood of the incumbent solution so that those subproblems are

polynomially solvable. This, in turn, may result in small local improvements, since

the subproblems explore only a small neighborhood for a better solution. However,

the neighborhoods of the subproblems in the NS-MILO approach are significantly

larger, such that the number of the feasible solutions of the subproblems grows

exponentially as the number of bars in the truss increases. Therefore, the subprob-

lems become NP-hard, i.e., the time complexity to solve them to global optimality

grows exponentially as the size of the problem grows. However, we do not solve the

subproblems to proven optimality in the NS-MILO approach. Thus, this approach

enables us to explore a significantly larger neighborhood for a better solution, which

71

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

decreases the likelihood of getting stuck in a local optimum.

In existing neighborhood search algorithms, see e.g., Hanafi [2016], Hansen and

Mladenović [2003], Lazić [2010], Mladenović and Hansen [1997], Svanberg and Werme

[2005, 2007], the small neighborhood subproblems are solved to optimality, while in

the NS-MILO approach, we do not solve the NP-hard subproblems to global opti-

mality. Observe, that the computational resources needed to prove optimality of the

subproblems can be better spent towards solving the original problem. Motivated

by this observation, we stop solving the subproblems as soon as a solution better

than the current best solution is found, and define the next subproblem in the neigh-

borhood of the improved solution. Nowadays, MILO solvers, such as Gurobi (2016),

have extremely powerful methods to improve the best integer feasible solution found,

which helps to significantly reduce the time needed to improve the integer feasible

solution of the subproblems of the NS-MILO approach.

The fact that the NS-MILO approach explores significantly larger neighborhoods

and does not prove global optimality for the subproblems makes it possible to provide

high-quality solutions to large-scale truss design problems.

The NS-MILO methodology is based on sequentially exploring MILO subprob-

lems where the feasible set of each subproblem is a subset of the feasible set of the

original MILO problem. The set of the discrete values of each bar at each sub-

problem is a subset of the full discrete set of that bar. In fact, the discrete values

are chosen from the neighborhood of a given feasible solution. Hence, due to its

reduced size, each subproblem is easier to tackle than the original problem. The

MILO subproblems are denoted by MILOk(x). Specifically, MILOk(x) is the MILO

formulation of a subproblem of the discrete truss design problem, where the cardi-

nality of the discrete set for each bar is at most k, and the discrete set is generated

from the assignment of the bar cross-sectional areas x ∈ Rn. Note that the com-

plexity of solving a MILOk subproblem is O(mk). Let Ŝi be the discrete set of bar

72

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

i ∈ I in subproblem MILOk(x). We attempt to solve three different kinds of MILO

subproblems:

1. MILO2(x), for x ∈ Rn, is the MILO formulation of the discrete design prob-

lem, where the cardinality of the discrete set of cross-sectional areas for each

bar is equal to two. The set Ŝi for a MILO2(x) is defined by

Ŝi :=

{si1, si2}, if xi < si1,

{sik, si,k+1}, if sik ≤ xi < si,k+1,

{si,pi−1, sipi}, if xi ≥ sipi .

2. MILO3(x) for xi ∈ Si, i ∈ I, is the MILO formulation of the discrete design

problem where the cardinality of the discrete set for each bar is at most three.

Suppose that xi = sik. Then the set Ŝi for a MILO3(x) is defined by

Ŝi :=

{si1, si2}, if k = 1,

{si,k−1, si,k, si,k+1}, if 2 ≤ k ≤ pi − 1,

{si,pi−1, si,pi}, if k = pi.

3. MILO5(x) for xi ∈ Si, i ∈ I, is the MILO formulation of the discrete design

problem where the cardinality of the discrete set for each bar is at most five.

Suppose that xi = sik. Then the set Ŝi for a MILO5(x) is defined as follows

Ŝi =

{si1, si2, si3}, if k = 1,

{si1, si2, si3, si4}, if k = 2,

{si,k−2, si,k−1, si,k, si,k+1, si,k+2}, if 3 ≤ k ≤ pi − 2,

{si,pi−2, si,pi−1, si,pi , si,pi+1}, if k = pi − 1,

{si,pi−2, si,pi−1, si,pi}, if k = pi.

Suppose that the original discrete set of the bar i ∈ I is defined by the finite

set (3.35). We start the NS-MILO approach by obtaining a high-quality feasible

73

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

so- lution for the continuous model (P3) using a nonlinear optimization (NLO)

solver. The local optimal solution of the model (P3) is denoted by x0. Then we

attempt to solve a sequence of MILO2 subproblems. We start by attempting to solve

MILO2(αx0) with α = 1 using a MILO solver considering a predefined limit on the

solution time. If an integer feasible solution is not found within the time limit,

we increase α by 0.05, and again try to solve MILO2(αx0). We continue solving

MILO2(αx0) subproblems until an integer feasible solution is found.

Next, we generate MILO3(x̂), where x̂ is the best integer feasible solution ob-

tained from MILO2(αx0). We run the MILO solver to solve MILO3(x̂) until a

solution better than the current best solution is found. The improved solution to

MILO3(x̂) is assigned to x̂. As soon as a better solution is found, we stop the solver,

and use the improved solution x̂ to generate the next MILO3 subproblem. We con-

tinue with MILO3(x̂) subproblems until the objective function does not improve.

Afterwards, we attempt to solve MILO5(x̂), and similarly solve MILO5(x̂) until

a better solution than the current best solution is found. We stop the solver as soon

as a better solution is found, and use the improved solution to generate the next

MILO5 subproblem. We continue with MILO5(x̂) subproblems until the objective

function does not improve.

Note that MILO3 and MILO5 subproblems are not solved to optimality, since

MILO solvers spend a significant portion of time to reduce the optimality gap and

ultimately proving the optimality of the best integer solution obtained. However,

proving that a solution is optimal for a subproblem is not the best way to allocate

computational resources in order to solve the original discrete problem. Therefore,

we stop the solver as soon as a better feasible solution is found, and use that feasible

solution to generate the next subproblem.

The approach described above to generate and attempt to solve MILO sub-

problems sequentially is in fact a moving-neighborhood search, where we search for

74

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

better integer feasible solutions in the neighborhood of the best solution found so

far. This neighborhood search approach for truss design problems is summarized

in Algorithm 1. In this algorithm, BestSol(.) returns the best solution of the cor-

responding problem in the given time budget, while FindSol(.) returns a better

solution as soon as it finds one, or returns the solution that was previously found.

If FindSol(P) returns the previously found solution, it indicates that either that

solution is optimal for the subproblem, or the time limit of solving subproblem (P)

is reached. In (x̂, η̂) := BestSol(P) and (x̂, η̂) := FindSol(P), x̂ is the solution that

is returned and η̂ is the weight of the structure for solution x̂.

Algorithm 1 The NS-MILO approach for single scenario truss sizing problems
1: x0 := local optimal solution of the continuous model
2: α := 1
3: repeat
4: (x̂, η̂) := BestSol(MILO2(αx0))
5: α := α+ 0.05
6: until MILO2(x) is feasible
7: repeat
8: ηcurr := η̂
9: (x̂, η̂) := FindSol(MILO3(x̂))

10: until η̂ = ηcurr
11: repeat
12: ηcurr := η̂
13: (x̂, η̂) := FindSol(MILO5(x̂))
14: until η̂ = ηcurr
15: return x̂

Attempting to solve MILOk subproblems can be done for bigger values of k

(k = 7, 9, . . .). However, in our experiments, considering these subproblems did not

help to significantly improve the solution, when one considers the time that was

spent on trying to solve those larger neighborhood subproblems.

75

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

4.3 Truss Problems

In this section, we introduce the truss problems that are used in the numerical

experiments to evaluate the mathematical models and the solution methodology. We

consider two classical truss problems, namely, the 10-bar truss and the 72-bar truss

to validate our NS-MILO approach. Additionally, we introduce three scalable truss

problem sets that are used to evaluate the performance of the NS-MILO approach

as the size of the problem grows.

4.3.1 The 10-bar truss

The 10-bar truss [Haftka and Gürdal, 2012], shown in Figure 4.1, is frequently

used as a benchmark example. The external force f on nodes 2 and 4 is equal to

444,800 N (105 lb), and the material properties are listed in Table 4.2. Additionally,

the displacement bound on the y-direction of the nodes 1 and 2 is ±2.0 in. The

discrete set of potential cross-sectional areas is listed in Appendix A.

Table 4.2: Aluminum alloy material properties used for 10-bar and 72-bar problems.

Property Value
ρ 0.1 lbm/in3

E 107 psi
σY 25000 psi

4.3.2 The 72-bar truss

The 72-bar truss problem [Haftka and Gürdal, 2012] shown in Figure 4.2 is another

common benchmark. The bar material properties are listed in Table 4.2. Addition-

ally, the displacement bound on the x and y direction of the nodes 1, 2, 3, and 4

is ±0.25 in. We have two load cases. In load case one, the external force is only

76

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

360 in.

y

360 in.

360 in.

43

1 2

65

7 8 9 10

(2)(4)(6)

(1)(5) (3)

f f

x

Figure 4.1: The 10-bar truss.

exerted on node 1, with value fx = 5000 lbf, fy = 5000 lbf, and fz = −5000 lbf.

In load case two, the external force is exerted on the z direction of the nodes 1, 2,

3, and 4 with value fz = −5000 lbf. The discrete set of the cross-sectional areas is

defined in Appendix A.

1
2

0
 in

.

120 in.

X

y

60
 in

.
6

0
 in

.
60

 in
.

60
 in

.

x

z

1

4 3

2
6

7

18

15

10

13

16 14

2

5

9

8

11

12

17

(6)(5)

(1)
(2)

(3)(4)

(7)(8)
(1)

(5)

(9)

(13)

(2)

(6)

(10)

(14)

(18)

Figure 4.2: The 72-bar truss.

77

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

4.3.3 Scalable 2D cantilever truss problems

The 2D cantilever problem set is made scalable by varying the number of blocks,

where each block has five bars. A 2D cantilever instance with 3 blocks is illustrated

in Figure 4.3.

50 cm50 cm50 cm

50 cm50 cm50 cm

 y

 x

50 cm

Figure 4.3: The 2D cantilever problem instance with 3 blocks.

The material properties are listed in Table 4.3. The yield stress corresponds to

the yield strength of an aluminum alloy with a 50% safety margin. The external

force is generated randomly at each node from a given interval using a uniform

distribution. Let f0 = 1.25× 105/nb N, where nb is the number of the blocks of the

cantilever problem. For all the bottom nodes, the y coordinate of the force randomly

takes values in the interval [−f0, 0], and the x coordinate of the force takes value

in the interval [−f0/10, f0/10]. For the top nodes, the y and x force coordinates

take value in the intervals [−f0/10, 0] and [−f0/100, f0/100], respectively. Hence,

the dominant coordinate of the force at each node is the y direction with a negative

sign. The average of the force on the bottom nodes is 10 times bigger than that of

the top nodes. The ground structures and the external forces of the 2D cantilever

trusses are available online2. The bars can take 41 different cross-sectional areas,

which are listed in Appendix A.

Displacement bounds are considered for the two nodes of the tip of the cantilever
2https://github.com/shahabsafa/truss-data.git

78

https://github.com/shahabsafa/truss-data.git

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.3: Aluminum alloy material properties used for the 2D and 3D cantilever
problems.

Property Value
ρ 2.7 kg/m3

E 69 GPa
σY 172.36 MPa

problem in the x and y directions, and are presented in Table 4.4. Note that the

displacement bounds vary with the number of the blocks nb.

Table 4.4: Displacement bounds for the 2D cantilever problem.

nb Bounds (cm) nb Bounds (cm) nb Bounds (cm)
1 0.1 8 6.4 36 129.6
2 0.4 12 14.4 40 160.0
3 0.9 16 25.6 44 193.6
4 1.6 20 40.0 48 230.4
5 2.5 24 57.6 52 270.4
6 3.6 28 78.4 56 313.6
7 4.9 32 102.4 60 360.0

4.3.4 Scalable 3D cantilever truss problems

The 3D cantilever problem set is an extension of the 2D cantilever problem set. Now

each block is a cube, and all the diagonals of the five faces are included. Additionally,

two of the main diagonals of each cube are included. This adds up to 20 bars per

block. The 3D cantilever instance with 3 blocks is illustrated in Figure 4.4.

The material properties are listed in Table 4.3. Similar to the 2D cantilever

problem, the force is generated randomly at each node from a given interval using a

uniform distribution. Let f0 = 1.2× 106/nb N, where nb is the number of the blocks

of the cantilever instance. For all the bottom nodes, the y coordinate of the force

randomly takes values in the interval [−f0, 0], and the x and z force coordinates

79

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

z

y

x

50 cm

Figure 4.4: 3D cantilever instance with 3 blocks.

randomly take values in the interval [−f0/10, f0/10]. For the bottom nodes, the y,

x, and z force coordinates take values in the intervals [−f0/10, 0], [−f0/100, f0/100],

and [−f0/100, f0/100] respectively. Hence, the dominant coordinate of the force at

each node is the y direction with a negative sign. The average of the force on the

bottom nodes is 10 times bigger than that of the top nodes. The ground structures

and the external forces of the 3D cantilever trusses are available online3. Addition-

ally, the bars can take 41 different cross-sectional areas in the range [0.25, 85] cm2,

which are listed in Appendix A.

Displacement bounds are considered for the four nodes at the tip of the cantilever

truss on the x, y, and z direction, and are presented in Table 4.5. Similar to the 2D

cantilever instances, the displacement bounds vary with the number of the blocks

nb.

4.3.5 Wing truss problems

We now consider a 3D wing modeled with bars. The truss layout is generated based

on the undeformed common research model (uCRM) geometry [Brooks et al., 2018],

and is shown in Figure 4.5. For the aerodynamic load, we assume an elliptical
3https://github.com/shahabsafa/truss-data.git

80

https://github.com/shahabsafa/truss-data.git

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.5: Displacement bounds of the 3D cantilevers.

nb Bounds (cm) nb Bounds (cm) nb Bounds (cm)
1 0.3 6 3.6 11 12.1
2 0.4 7 4.9 12 14.4
3 0.9 8 6.4 13 16.9
4 1.6 9 8.1 14 19.6
5 2.5 10 10.0 15 22.5

distribution in the spanwise direction and a uniform distribution in the chordwise

direction. The total load of one wing is set to be one half of the maximum takeoff

weight of the uCRM. For simplicity, we also assume that the aerodynamic load

is not affected by structural deformation, i.e., the aeroelastic effect is neglected in

this study. The ground structures and the external forces of the wing trusses are

available online4. The bars can take 44 different cross-sectional areas in the range

[0.25, 1200] cm2, which are listed in Appendix A.

The material properties are listed in Table 4.6. While it would be possible to

consider bounds on the displacements, we do not do that here, because in practical

aircraft and wing design, stress and buckling constraints are sufficient to achieve

feasible designs from the structural point of view.

Table 4.6: Aluminum alloy material properties for the wing problem.

Property Value
ρ 2.7 kg/m3

E 69 GPa
σY 270 MPa

4https://github.com/shahabsafa/truss-data.git

81

https://github.com/shahabsafa/truss-data.git

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Figure 4.5: Wing truss problem instance with 315 bars.

4.4 Lower bound of the continuous model

In Section 3.3, we presented the MILO relaxation (3.34) which provides a lower

bound for the optimal objective value of the continuous model (P3), presented in

page 42. In this section we aim to evaluate the relaxation model.

In Figure 4.6, the objective function of the relaxation model (3.33) for the 10-

bar truss is plotted for different values of τ . Additionally, the objective value of

the solution obtained from the non-linear optimization solver IPOPT [Wächter and

Biegler, 2006] is plotted. We know that the objective value of model (3.33) and the

objective value of the solution obtained by IPOPT provide a lower bound and an

upper bound for the optimal objective value of problem (P3), respectively. As we can

see in Figure 4.6, the upper bound and lower bound of the optimal objective value

for the 10-bar truss converge as τ increases. So we can conclude that the solution

obtained by IPOPT is a global optimal solution and the lower bound obtained by

MILO relaxation (3.34) converges to the optimal objective value of the problem as

τ increases.

82

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Bienstock relaxation
IPOPT solution

Figure 4.6: Comparison of the solution provided by the IPOPT solver and the
solution of the relaxation model (3.34) with different values of τ for the 10-bar
truss.

Let x1 and x2 be, respectively, the solution of model (P3) obtained by IPOPT

and the solution of the MILO relaxation model (3.34) for the 10-bar truss. Solutions

x1 and x2 are reported in Table 4.7. From the table, we have ‖x1‖2 = 101.08 and

‖x1 − x2‖2 = 0.71, which indicate that not only the optimal objective value of the

MILO relaxation (3.34) converges to the one obtained by IPOPT for the 10-bar

truss, but also the solution of the MILO relaxation (3.34) converges to the solution

of model (P3), as τ increases.

In Table 4.8, the results of the MILO relaxation (3.34) are presented for the 2D

cantilever truss with 5 bars, 10-bar truss, and the 3D cantilever truss with 20 bars.

The time budget for all the MILO relaxation problems is set to 8 hrs. As we can

see in the table, the MILO relaxation, as τ increases, provides a tight lower bound

for the optimal objective value of the 2D cantilever truss with 5 bars, 10-bar truss,

83

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.7: Cross-sectional areas (in2) and the weight (lbm) of the solution of the
10-bar truss obtained by IPOPT and by MILO relaxation (3.34) with τ = 16.

Bar Model (P3) Model (3.34)
1 17.68 17.12
2 0.10 0.10
3 57.09 57.09
4 40.62 40.62
5 0.10 0.10
6 0.10 0.10
7 7.42 7.34
8 69.16 69.15
9 12.55 12.98

10 0.10 0.10
W 8707.56 8704.40

and 3D cantilever truss with 20 bars. In fact, the gap between the lower bound of

MILO relaxation (3.34) and the objective value of the solution provided by IPOPT

is less than %1 and %0.1 for the 2D cantilever truss with 5 bars and the 10-bar

truss, respectively.

Table 4.8: Comparison of the weight (lbm) and solution time (s) of the solution
obtained by IPOPT with the solution of the MILO relaxation (3.34).

Problem type # bars Model τ Objective value Lower bound Time

2D cantilever 5
(P3)-IPOPT - 5.461 - 0.06

(3.34) 12 5.352 5.352 402.15
14 5.434 5.433 3,606.65

10-bar truss 10

(P3)-IPOPT - 8,707.558 - 0.16

(3.34)
12 8,676.732 8,676.048 23.41
14 8,698.829 8,698.008 62.76
16 8,704.407 8,704.326 201.57

3D cantilever 20

(P3)-IPOPT - 20.182 - 0.28

(3.34)
12 19.945 19.653 28,800.00
14 20.126 19.755 28,800.00
16 20.168 19.637 28,800.00

When optimality is proved for MILO relaxation (3.34), the optimal solution of

the relaxation problem provides a lower bound for the optimal objective value of

84

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

the continuous truss design problem. However, when the MILO relaxation (3.34) is

not solved to optimality, then the actual solution does not provide a lower bound.

Instead, the lower bound of the MILO relaxation provides a lower bound for the

optimal solution of the continuous design problem. Notice in Table 4.8, that the

solution time of the MILO relaxation (3.34) increases rapidly as τ increases or size

of the problem grows. In other words current MILO solvers such as Gurobi [Gurobi

Optimization Inc., 2016] or CPLEX [IBM Knowledge Center, 2017] are not capable

of solving large scale MILO relaxation (3.34). Thus, the bound that can be computed

for large scale truss design problems in a reasonable time is not as tight as the ones

in Table 4.8.

4.5 Basic versus incremental model

Although the number of binary variables of the incremental model (3.41) is not sig-

nificantly less than that of the basic model (3.39), the incremental model is solved

significantly faster than the basic model. In Figure 4.7, the objective function im-

provements of the basic and incremental models are plotted for the 2D cantilever

instance with 5 blocks. As we can see, the incremental model stops at t = 64 s,

while the basic model stops at t = 256 s. Additionally, the incremental model finds

the optimal solution at t = 31 s, while the basic model finds the optimal solution

about 7 times slower at t = 221 s. Therefore, the incremental model is faster in

proving optimality, and it finds the optimal solution significantly faster than the

basic model for the 2D cantilever truss with 5 blocks.

In Table 4.9, the 2D and 3D cantilever trusses that are solved to global optimality

in 24 hours with either the basic or incremental model are reported. The incremental

model is significantly faster than the basic model in all the trusses reported in

Table 4.9. As a result, we use the incremental model through the rest of the chapter.

85

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

0 31 64.11 100 150 200 221 256.64

Time (s)

8

9

10

11

12

13

14

15

W
e
ig

h
t
(K

g
)

Basic model

Incremental Model

Figure 4.7: Comparison of the basic model and the incremental model for the 2D
cantilever problem instance with 5 blocks.

The intuition behind the better performance of the incremental discrete model is

that 1) In the incremental discrete model, fixing one of the binary variables to either

zero or one, due to inequality constraints (3.40), automatically fixes the value of a

high number of binary variables; 2) This same set of inequality constraints (3.40)

involving the binary variables can be effectively used by MILO solvers to generate

extra cuts that help to solve the MILO model efficiently.

Table 4.9: Solution times (s) and weights (kg) for the basic and incremental models.

nb m
Basic model Incremental model

bin. var weight time bin var weight time

2D

1 5 205 2.55 0.93 200 2.55 0.89
2 10 410 5.68 27.92 400 5.68 4.33
3 15 615 6.87 240.42 600 6.87 24.17
4 20 820 9.64 3883.97 800 9.64 174.54
5 25 1025 9.18 256.64 1000 9.18 64.11
6 30 1230 13.76 86400.00 1200 13.76 9891.51

3D 1 20 820 9.75 37275.40 800 9.75 247.55

86

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

4.6 Strengthening the Euler buckling constraints

Next, we numerically examine the effect of replacing the Euler buckling constraint

introduced in (3.11) with constraints (3.43) introduced in Theorem 3.3. The impact

of this replacement is demonstrated in Table 4.10, where t1, and t2 denote the

solution time of the model with constraints (3.11), and the solution time of the

model with constraints (3.43), respectively. As we can see in Table 4.10, replacing

the Euler buckling constraints (3.11) with constraints (3.43), reduces the solution

time in 5 out of 7 instances. Specifically, for the largest 2D cantilever truss and

the 3D cantilever truss with 20 bars, the solution time decreases by 10% and 19%

respectively.

Table 4.10: Impact of introducing the buckling constraints (3.43) on the solution
time (s).

nb m
Euler Const. (3.11) Constr. (3.43) t2

t1weight (kg) t1 weight (kg) t2

2D

1 5 2.55 0.89 2.55 0.56 0.63
2 10 5.68 4.33 5.68 3.16 0.73
3 15 6.87 24.17 6.87 21.36 0.88
4 20 9.64 174.54 9.64 190.51 1.09
5 25 9.18 64.11 9.18 110.07 1.71
6 30 13.76 9891.51 13.76 8891.16 0.90

3D 1 20 9.75 247.55 9.75 201.47 0.81

Replacing the Euler buckling constraints (3.11) with constraints (3.43) is useful

for the truss design problems where we have a large discrete set for the cross-sectional

areas. However, if the size of the discrete set is less than 5, the replacement does

not help.

87

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

4.7 Numerical results with NS-MILO

In this section, we compare the NS-MILO approach with attempting to solve the

original MILO problem directly by Gurobi. We refer to the latter as the full-MILO

approach. In all the experiments, the incremental model is used.

To evaluate the NS-MILO approach, we consider the well-known 10-bar and

72-bar instances [Haftka and Gürdal, 2012] and compare the solutions obtained by

NS-MILO with the ones obtained by other approaches used to solve those instances.

Additionally, we attempt to solve the 2D and 3D cantilever instances with 20 to

300 bars, and the wing instances with 81 to 315 bars to see how the NS-MILO

approach scales as the size of the problem grows. Results of the single-scenario

and multi-scenario truss sizing problems are presented in Sections 4.7.1 and 4.7.2,

respectively.

In Tables 4.13 – 4.15 and 4.18 – 4.20, m, wf , and tf denote the number of bars,

the weight of the solution generated by the full-MILO approach, and the time to

obtain that solution, respectively. Parameters ns, wn, and tn denote the number

of MILO subproblems, the weight of the solution, and the solution time of the NS-

MILO approach, respectively. Additionally, in Tables 4.13, 4.14, 4.18, and 4.19, nb
is the number of blocks of the cantilever instances, and in Table 4.15, wc, and tc

denote the weight of the solution of the continuous design problem, and the time to

obtain that solution, respectively.

4.7.1 Single-scenario results

In this section, we compare the NS-MILO approach with the full-MILO approach

for the single-scenario truss sizing problems. The maximum solution time of the full-

MILO approach is set to 24 hrs for all the instances that are solved in this section.

The solution time limits for the MILO2, MILO3, and MILO5 subproblems are set

88

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

to 300, 1500, and 2500 seconds respectively, except for the wing instances with

more than 250 bars, where the solution time limits for MILO2, MILO3, and MILO5

subproblems are set to 300, 3000, and 6000 seconds respectively. That means that

our experiments compare the quality of the solution generated by the full-MILO

approach after 24 hrs, unless an optimal solution was obtained earlier, with the one

provided by the NS-MILO approach in the time settings mentioned above.

Results of the 10-bar truss are presented in Section 4.7.1.1. Additionally, results

of the cantilever and wing trusses are presented in Sections 4.7.1.2 and 4.7.1.3,

respectively.

4.7.1.1 10-bar truss

Results of the 10-bar truss without Euler buckling constraints are presented in Table

4.11. As we can see, the solution of the continuous model matches that of Haftka

and Gürdal [2012], and the solution of the discrete model is identical to that of Cai

and Thierauf [1993], Mahfouz [1999], Camp and Bichon [2004b], Camp [2007], Bar-

bosa et al. [2008], Sonmez [2011], and Camp and Farshchin [2014]. The full-MILO

approach has solved the problem to global optimality, thus the solution obtained by

the full-MILO approach is the global optimal solution. As the solution provided by

the NS-MILO approach is equal to that of the full-MILO, we can conclude that the

solution provided by the NS-MILO approach is also the global optimal solution of

the problem for the 10-bar instance without the Euler buckling constraints.

In Table 4.12 the solution of the continuous and discrete truss sizing problem

with Euler buckling constraints is presented for the 10-bar instance. Petrovic et al.

[2017] state that “there is no research found which gives buckling constrained results

for 10 bar trusses”. Yet, they considered only the continuous truss design problem

with Euler buckling constraints for the 10-bar instance. Although there are some

89

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.11: Cross-sectional areas (in2) and the weights (lbm) for the 10-bar truss
problem solutions without Euler buckling constraints.

Vars. Continuous Discrete
Haftka and Gürdal [2012] Model (P3) Full-MILO NS-MILO

1 30.52 30.52 33.50 33.50
2 0.10 0.10 1.62 1.62
3 23.20 23.20 22.90 22.90
4 15.22 15.22 14.20 14.20
5 0.10 0.10 1.62 1.62
6 0.55 0.55 1.62 1.62
7 7.46 7.46 7.97 7.97
8 21.04 21.04 22.90 22.90
9 21.53 21.53 22.00 22.00

10 0.10 0.10 1.62 1.62
W 5060.85 5060.60 5490.74 5490.74

articles that consider some kind of buckling constraints [Ho-Huu et al., 2016, Rahami

et al., 2008, Rajeev and Krishnamoorthy, 1997, Wu and Chow, 1995], they do not

consider the buckling constraints (3.11) or (3.12). In fact, the solutions provided by

these authors do not satisfy the buckling constraints (3.11) or (3.12). Regardless, the

full-MILO approach finds the global optimal solution in this small instance. Thus, to

check the NS-MILO approach, it is enough to compare the solution obtained by the

NS-MILO approach with the one provided by the full-MILO approach. As we can

see in Table 4.12, the weight of the solution generated by the NS-MILO approach

is within 0.1% of that of the global optimal solution obtained by the full-MILO

approach.

4.7.1.2 Single-scenario 2D and 3D cantilever trusses

Results for the single-scenario 2D and 3D cantilever trusses are presented in Ta-

bles 4.13 and 4.14, respectively. Among the 2D and 3D cantilever trusses, as it

can be seen in Tables 4.13 and 4.14, within the 24 hr time limit of the full-MILO

90

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.12: Cross-sectional areas (in2) and the weight (lbm) of the solution of the
10-bar truss with Euler buckling constraints.

Vars. Continuous Discrete
Petrovic et al. [2017] Model (P3) Full-MILO NS-MILO

1 11.56 17.68 18.80 18.80
2 8.17 0.10 1.62 1.62
3 65.90 57.09 52.50 52.50
4 24.38 40.62 42.50 42.50
5 0.11 0.10 1.62 1.62
6 9.46 0.10 1.80 1.62
7 26.27 7.42 4.80 4.97
8 41.50 69.16 80.00 80.00
9 4.31 12.55 14.20 14.20

10 54.64 0.10 1.62 1.62
W 10492.80 8707.56 9400.97 9403.15

approach, only the 2D and 3D trusses with 20 bars are solved to proven optimality.

Comparing the solutions obtained by the full-MILO approach for the instances that

are solved to optimality with those of the NS-MILO approach indicates that the

NS-MILO approach has found the global optimal solution for all those instances.

From the results shown in Tables 4.13 and 4.14, it is clear that the NS-MILO

approach for the 2D and 3D cantilever instances is significantly faster, at least 10

times, than the full-MILO approach. For all the 2D truss instances, the difference

between the solutions obtained by the full-MILO and NS-MILO approaches is less

than 0.1%. Therefore, we can say that the NS-MILO approach is able to find equally

good solutions for the 2D cantilever instances, but significantly faster than the full-

MILO approach.

In all the fifteen 3D cantilever trusses, the weight of the solution obtained by the

NS-MILO approach is equal to, or lower than, the weight of the solution obtained

from the full-MILO approach. For instance, the weight of the solution obtained by

the full-MILO approach for the 3D instances with 300 bars is 69% more than that

91

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.13: Weights (kg) and the solution times (s) for the 2D cantilever problem
instances using the NS-MILO approach.

nb m
Full-MILO NS-MILO

tf/tnwf tf ns wn tn
4 20 9.64 155.44 7 9.64 0.56 277.57
8 40 21.42 86400.00 5 21.36 8.83 9784.82

12 60 33.52 86400.16 8 33.53 541.09 159.67
16 80 49.51 86400.21 6 49.39 287.82 159.68
20 100 68.85 86400.28 11 68.88 2390.69 36.14
24 120 80.93 86400.15 10 80.92 2543.93 33.96
28 140 110.78 86400.14 13 110.83 3035.35 28.46
32 160 152.81 86400.07 14 152.78 5287.82 16.34
36 180 179.96 86400.14 15 179.81 2712.94 31.85
40 200 219.12 86400.17 8 219.25 1691.19 51.09
44 220 274.88 86400.17 11 275.51 4273.62 20.22
48 240 324.42 86400.19 18 324.88 5027.54 17.18
52 260 382.51 86400.14 15 382.77 6414.20 13.47
56 280 437.11 86400.22 15 437.20 5741.47 15.05
60 300 452.46 86400.11 20 452.70 6588.58 13.11

of the solution provided by the NS-MILO approach.

4.7.1.3 Single-scenario wing truss problems

As it can be seen in Table 4.15, none of the discrete problems of the wing trusses

were solved to optimality in 24 hrs using the full-MILO approach. We let the wing

instances run longer than 24 hrs, however, for the wing instance with 81 bars, after

48 hrs, more than 64 GB of memory was used by the solver to store the nodes of the

branch and bound tree, which renders the full-MILO approach inefficient for times

beyond 48 hrs. This is because once the memory limit is reached, MILO solvers

use the hard drive to store the branch and bound tree information, which due to

the time spent on writing and accessing the hard drive, results in an extremely slow

process for the solver.

Comparing the best solution provided by the full-MILO approach with the one

92

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.14: Weights (kg) and the solution times (s) for the 3D cantilever problem
instances using the NS-MILO approach.

nb m
Full-MILO NS-MILO

wf/wnwf tf ns wn tn
1 20 9.75 247.55 4 9.75 0.51 1.00
2 40 21.24 86400.02 10 21.18 1559.91 1.00
3 60 24.82 86400.02 7 24.75 2542.68 1.00
4 80 31.22 86400.03 5 31.18 4500.35 1.00
5 100 32.04 86400.04 15 31.43 4637.38 1.02
6 120 59.34 86400.05 30 59.22 4300.05 1.00
7 140 85.50 86400.06 5 78.46 4593.84 1.09
8 160 99.64 86400.03 15 89.55 5668.90 1.11
9 180 123.99 86400.05 14 113.33 5026.34 1.09

10 200 158.74 86400.06 8 122.31 4518.66 1.30
11 220 227.43 86400.03 8 144.21 3939.17 1.58
12 240 255.32 86400.04 7 172.02 4981.69 1.48
13 260 244.69 86400.12 16 183.73 6321.59 1.33
14 280 375.48 86400.07 7 222.61 5254.40 1.69
15 300 408.42 86400.05 30 246.14 10337.08 1.66

provided by the NS-MILO approach for the wing instances in Table 4.15, we can

see that the best solution obtained by the full-MILO approach is far from being

optimal. Even though we stopped the full-MILO approach after one day, still the

NS-MILO approach is significantly faster than the full-MILO approach. Note that

the weight of the best solution obtained from the full-MILO approach is 12%-291%

higher than that of the NS-MILO approach for the wing instances.

As mentioned earlier, IPOPT is used to provide a local optimal solution for the

continuous truss design problem. The weight of the continuous model solution is

listed in Table 4.15. We also solved the wing instances with the software package

SNOPT [Gill et al., 2005], which converged to the same solutions for the continuous

model as those of IPOPT. We may entertain the idea that the solutions are the

global optimal solutions of the continuous model, since IPOPT and SNOPT use the

interior point method and sequential quadratic programming, respectively. If the

93

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

solution of the continuous model is the global optimum of the problem, then its

weight provides a lower bound for the optimal solution of the discrete truss design

problem. The gap between the weight of the continuous model solution and the

weight of the solution provided by NS-MILO is, most of the time, less than 12% for

the wing instances.

Table 4.15: Weight (kg) and the solution time (s) for the wing trusses using the
NS-MILO approach.

bars Full-MILO Cont. model NS-MILO
tf/tn wn/wc wf/wnwf tf wc tc ns wn tn

81 19,166.90 86,400.02 16,454.83 8.78 42 17,147.00 230.06 375.55 1.04 1.12
99 16,361.55 86,400.02 13,208.30 11.18 41 14,106.27 189.40 456.18 1.07 1.16

117 14,732.28 86,400.02 11,797.77 33.70 59 12,994.64 2,398.43 36.02 1.10 1.13
135 14,791.77 86,400.02 10,845.89 22.99 28 11,941.59 1,794.42 48.15 1.10 1.23
153 16,384.05 86,400.03 10,145.42 274.17 64 11,090.73 7,518.98 11.49 1.09 1.48
171 15,045.04 86,400.01 9,508.32 92.78 49 10,426.03 6,570.13 13.15 1.10 1.44
207 20,527.61 86,400.12 8,656.48 166.32 81 9,657.39 11,249.02 7.68 1.12 2.13
225 21,615.53 86,400.04 8,320.28 332.60 54 9,270.02 9,350.30 9.24 1.11 2.33
243 18,696.90 86,400.13 8,170.89 246.15 23 9,127.25 6,705.11 12.89 1.12 2.05
261 25,324.62 86,400.27 7,923.76 298.48 99 8,708.22 26,799.14 3.22 1.10 2.91
279 16,821.70 86,400.05 7,833.36 874.01 68 8,756.50 25,899.99 3.34 1.12 1.92
297 23,051.34 86,400.03 7,699.78 887.11 67 8,470.54 31,538.54 2.74 1.10 2.72
315 21,016.83 86,400.24 7,590.09 1100.64 62 10,555.56 20,431.61 4.23 1.39 1.99

The objective function improvement of the full-MILO and NS-MILO approach

for the wing instance with 315 bars is plotted in Figure 4.8. As we can see, the full-

MILO approach improves the objective function slowly, and after 24 hrs, the weight

of the best solution found is about double the weight of the solution provided by

the NS-MILO approach. On the other hand, the NS-MILO approach took 1.82 hrs

to find a feasible solution. The reason is that the first 25 MILO2 subproblems were

not able to find a feasible solution in the time limit of the MILO2 subproblems, and

the first feasible solution to a MILO2 subproblem was found at 1.82 hrs. The weight

of the initial solution obtained by the NS-MILO approach is 210,953.22 kg. The

objective function improved quickly and the NS-MILO process stopped at 5.67 hrs

94

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

1.82 4 6 8 10 12 14 16 18 20 22 24

Time (h)

0.25

1.0556

2.1017

4

6

8

W
e

ig
h

t
(K

g
)

×10 4

Full-MILO

NS-MILO

Figure 4.8: Comparison of the convergence of the full-MILO and NS-MILO ap-
proaches for the wing problem instance with 315 bars.

with a solution that has a weight of 10,555.56 kg. The weight of the solution provided

by the NS-MILO approach is 50% of the one provided by the full-MILO approach,

and is obtained in 23.6% of the time it takes for full-MILO.

To obtain a better physical intuition, in Figure 4.9 we plot the dimensionless

stress, σi/|σY |, and dimensionless buckling constraints, max(−σi/γixi, 0) (stress in

bars under tension is substituted with zero for simplicity) for the solution of the wing

instance with 315 bars obtained the from NS-MILO approach. The stress constraints

are more active for the horizontal bars close to the root of the wing, which is the

fixed end of the wing. This is because those bars are mainly responsible for taking

the large bending moment around the root. As for the buckling constraints, they are

more critical for the upper surface bars because these bars are under compression.

In Figure 4.10, the solution times of the NS-MILO approach for 2D cantilever, 3D

cantilever, and wing instances are plotted. As we can see in this figure, the solution

time of the 3D cantilever trusses are more than that of the 2D cantilever trusses

with more than 160 bars, and the solution time of the wing trusses are significantly

more than that of the 3D cantilever trusses. This reflects the increasing complexity

95

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

(a) Dimensionless stress distribution. (b) Dimensionless buckling distribution.

Figure 4.9: Stress and buckling constraint distribution for the wing problem instance
with 315 bars.

of the three test sets. Additionally, we can see in Figure 4.10 and Tables 4.13, 4.14,

and 4.15 that the number of subproblems and the overall solution time increases

only moderately as the problem size increases.

96

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

0 50 100 150 200 250 300

of bars

0

0.5

1

1.5

2

2.5

3

3.5

T
im

e
 (

s
)

10
4

2D cantilever

3D cantilever

wing

Figure 4.10: Solution time for the NS-MILO approach versus the number of bars in
the truss.

4.7.2 Multi-scenario results

In this section we present computational results of solving multi-scenario truss sizing

problems by the NS-MILO approach. In Section 4.7.2.1, we present the results on

the well-known 72-bar truss and compare the solution obtained by the NS-MILO

approach with that of other methods used in the literature to solve the problem.

Additionally, to demonstrate how the NS-MILO approach scales as the size of a

multi-scenario truss problem grows, we present computational results for the multi-

scenario cantilever trusses and wing trusses in Sections 4.7.2.2 and 4.7.2.3, respec-

tively.

In order to use the NS-MILO approach for multi-scenario truss sizing problems,

we need to modify it as follows:

- The time limits of the MILO2 subproblems are equal to `m seconds, where `

and m denote the number of scenarios and the number of bars, respectively.

Additionally, the time limits of other MILOk subproblems are allocated by

formula αdkm(1 + `2) seconds, where d is the dimension of the truss, and α is

97

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

the coefficient representing the complexity of the structure. Coefficient α is 1

for the wing trusses and is 0.5 for the 2D and 3D cantilever trusses.

- Let (Pm) be the multi-scenario truss sizing problem, presented in model (3.14),

except that we have set xmin
i = si4, i.e., the lower bounds of the cross-sectional

areas are set to the 4th value of the discrete set. Let x̄0 be the solution of

(Pm) obtained by IPOPT. The first subproblem that we attempt to solve is

MILO2(αx̄0), where α = 1. If the first MILO2 subproblem is infeasible or

no integer feasible solution is found within the given time limit of the MILO2

subproblems, then we increase α by 0.1 and attempt to solve MILO2(αx̄0) sub-

problems until we find an initial integer feasible solution. We have increased

xmin
i so as to move away from the boundaries of the feasible set of the contin-

uous problem and help MILO2 subproblems to find an initial integer feasible

solution in the vicinity of αx̄0 faster.

4.7.2.1 72-bar truss

A solution to the 72-bar instance that satisfies Euler buckling constraints has not

been reported in the literature. Thus to benchmark the NS-MILO approach for this

instance, we show in Table 4.16 the results of the 72-bar instance without Euler

buckling constraints. As we can see, the weight of the solution of the continuous

model (P3) matches that of the solution by Haftka and Gürdal [2012] with 0.1%

precision. Additionally, the solution of the discrete model obtained by the NS-

MILO approach in 0.29 hour is the same as the ones by Kaveh and Ghazaan [2015],

Sadollah et al. [2015], and Ho-Huu et al. [2016]. Note that we let the full-MILO

approach run for 120 hrs for the 72-bar instance without Euler buckling constraints,

and the optimality gap is still 32.61% when the full-MILO approach stops.

Furthermore, the solution provided by the NS-MILO approach for the 72-bar

98

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.16: Solution (in2) and the weights (lbm) for the 72-bar truss problem without
Euler buckling constraints.

Vars.

Continuous Discrete
Haftka Model Wu Kaveh Sadollah Kaveh Sadollah Ho-Huu

Full-MILO NS-MILOand (P3) and and et al. and et al. et al.
Gürdal Chow Talatahari [2012] Ghazan [2015] [2016]
[2012] [1995] [2009] [2015]

1-4 0.157 0.156 0.196 0.196 1.800 0.196 0.196 0.196 0.196 0.196
5-12 0.536 0.546 0.602 0.563 0.602 0.563 0.563 0.563 0.563 0.563
13-16 0.410 0.410 0.307 0.442 0.111 0.391 0.391 0.391 0.442 0.391
17-18 0.569 0.570 0.766 0.563 0.111 0.563 0.563 0.563 0.602 0.563
19-22 0.507 0.524 0.391 0.563 1.266 0.563 0.563 0.563 0.785 0.563
23-30 0.520 0.517 0.391 0.563 0.563 0.563 0.563 0.563 0.563 0.563
31-34 0.100 0.100 0.141 0.111 0.111 0.111 0.111 0.111 0.111 0.111
35-36 0.100 0.100 0.111 0.250 0.111 0.111 0.111 0.111 0.111 0.111
37-40 1.280 1.268 1.800 1.228 0.442 1.228 1.228 1.228 1.000 1.228
41-48 0.515 0.512 0.602 0.563 0.442 0.442 0.442 0.563 0.563 0.563
49-52 0.100 0.100 0.141 0.111 0.111 0.111 0.111 0.111 0.111 0.111
53-54 0.100 0.100 0.307 0.111 0.111 0.111 0.111 0.111 0.111 0.111
55-58 1.897 1.886 1.563 1.800 0.196 1.990 1.990 1.990 1.990 1.990
59-66 0.516 0.512 0.766 0.442 0.563 0.563 0.563 0.442 0.442 0.442
67-70 0.100 0.100 0.141 0.141 0.442 0.111 0.111 0.111 0.111 0.111
71-72 0.100 0.100 0.111 0.111 0.602 0.111 0.111 0.111 0.111 0.111

W (lbm) 379.66 379.61 427.20 393.38 390.73 389.33 389.33 389.33 392.96 389.33

truss with Euler buckling constraints is presented in Table 4.17. As we can see, the

solution provided by the NS-MILO approach is better than that of the full-MILO

approach. Note that the NS-MILO approach provided the solution in 27 s, while

the full-MILO approach produced the solution in 24 hrs.

4.7.2.2 Multi-scenario 2D and 3D cantilever trusses

Results of the 2D cantilever trusses with two scenarios are presented in Table 4.18.

As we can see, the solutions obtained by the NS-MILO approach are equal to the ones

obtained by the full-MILO approach for the instances with 20 and 60 bars. In all the

trusses with more than 60 bars, the solution provided by the NS-MILO approach is

better than the one provided by the full-MILO approach. For instance, the solution

provided by the NS-MILO approach for the 2D cantilever truss with 300 bars is

%15 lighter than the solution obtained by the full-MILO approach. Furthermore,

the NS-MILO approach was able to get the solutions significantly faster than the

99

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.17: Cross-sectional areas (in2) and the weights (lbm) for the 72-bar truss
problem solutions with Euler buckling constraints.

Vars. Continuous Discrete
Full-MILO NS-MILO

1–4 1.470 1.457 1.457
5–12 2.283 2.380 2.380
13–16 1.649 1.990 1.620
17–18 2.774 2.630 2.880
19–22 1.498 1.563 1.563
23–30 1.776 1.800 1.800
31–34 0.100 0.196 0.196
35–36 0.330 0.785 0.442
37–40 1.518 1.563 1.620
41–48 1.933 1.990 1.990
49–52 0.482 0.391 0.442
53–54 0.825 0.602 0.766
55–58 2.084 1.990 1.800
59–66 1.906 1.990 1.990
67–70 0.321 0.391 0.442
71–72 0.100 0.111 0.111
W 1264.750 1316.148 1302.500

full-MILO approach in all the 2D cantilever trusses.

Table 4.18: Weights (kg) and the solution times (s) for the two-scenario 2D cantilever
instances using the NS-MILO approach.

nb m `
Full-MILO NS-MILO

wf/wnwf tf ns wn tn
4 20 2 10.31 281.31 9 10.31 3.66 1.00

12 60 2 37.15 86,400.03 9 37.15 1,553.20 1.00
20 100 2 74.20 86,400.07 14 73.95 6,221.25 1.00
28 140 2 119.08 86,400.02 23 119.01 7,309.91 1.00
36 180 2 259.68 86,400.08 10 191.80 7,755.97 1.35
44 220 2 321.42 86,400.11 16 288.22 13,616.79 1.12
52 260 2 518.21 86,400.13 22 397.79 13,684.09 1.30
60 300 2 558.01 86,400.02 19 471.61 23,177.21 1.18

Results of the 3D cantilever trusses with two and three scenarios are presented

in Table 4.19. As we can see, the solution provided by the NS-MILO approach

100

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

for the 3D cantilever truss with 20 bars is the same as th one provided by the

full-MILO approach. In all the 3D cantilever trusses with more than 20 bars, the

solution obtained by the NS-MILO approach is better than the one provided by the

full-MILO approach, and the gap between the weight of the solution provided by

the NS-MILO and full-MILO approaches increases rapidly as the size of the problem

grows. For instance, the weights of the solutions obtained by the NS-MILO approach

for the two-scenario and three-scenario 3D cantilever truss with 300 bars are only

%15.8 and %16.3 of the one generated by the full-MILO approach, respectively. In

other words, the solution obtained by the full-MILO approach is more than six times

heavier than the solution obtained by the NS-MILO approach for the 3D cantilever

truss with 300 bars. Except for the three-scenario cantilever with 220 bars, the

NS-MILO approach required significantly less time than the 24 hrs allocated to the

full-MILO approach.

4.7.2.3 Multi-scenario wing trusses

Results of the 2-scenario and 3-scenario wing trusses are presented in Table 4.20.

As we can see, the solutions provided by the NS-MILO approach are significantly

better than the ones obtained by the full-MILO approach, and the difference between

the weights of the solutions provided by the NS-MILO and full-MILO approaches

increases as the size of the wing truss increases. For the 2-scenario and 3-scenario

wing truss with 315 bars, solutions provided by the full-MILO approach are 9.61 and

8.91 times heavier than the ones obtained by the NS-MILO approach. The primary

reason that full-MILO fails in solving large-scale multi-scenario wing trusses is that

solving the continuous relaxation problems at the nodes of the branch and bound

tree takes excessive time.

Observe that, within the 24-hour time budget, the number of nodes explored by

101

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.19: Weights (kg) and the solution times (s) for the multi-scenario 3D can-
tilever instances using the NS-MILO approach.

nb m `
Full-MILO NS-MILO

wf/wnwf tf ns wn tn

1 20 2 13.47 86400.01 15 13.47 41.33 1.00
3 14.28 86400.00 13 14.28 1317.91 1.00

3 60 2 41.07 86400.01 13 33.62 5424.24 1.22
3 39.63 86400.01 8 37.62 7521.81 1.05

5 100 2 73.77 86400.05 13 55.74 5623.09 1.32
3 105.42 86400.02 18 62.38 17388.69 1.69

7 140 2 199.50 86400.03 23 100.73 16165.49 1.98
3 202.93 86400.02 24 108.72 37528.54 1.87

9 180 2 345.11 86400.02 16 139.78 19032.60 2.47
3 375.75 86400.04 20 162.43 47978.13 2.31

11 220 2 549.47 86400.06 11 179.00 20693.89 3.07
3 701.82 86400.05 20 192.46 121163.95 3.65

13 260 2 714.18 86400.06 9 225.08 17297.92 3.17
3 978.16 86400.06 11 243.02 48180.25 4.03

15 300 2 1847.84 86400.01 10 293.33 26139.16 6.30
3 1970.40 86400.08 11 322.91 48251.02 6.10

Gurobi in the B&B algorithm in the full-MILO approach decreases rapidly as the

size of the problem grows and as the number of the scenarios increases. For instance,

for the 2-scenario wing truss with 315 bars, Gurobi, which is set to use 10 threads,

has explored only 288 nodes, implying that on average the continuous relaxation at

each node is solved in 3,000 s. For the 3-scenario wing trusses with 279 and 315

bars, Gurobi was not able to solve the continuous relaxation at the root node in 24

hrs. The solutions reported by Gurobi for these two problems are obtained by the

heuristics that the solver utilizes to generate initial integer feasible solutions.

102

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

Table 4.20: Weights (kg) and the solution times (s) for the multi-scenario wing
trusses using the NS-MILO approach.

m `
Full-MILO NS-MILO

wf/wnB&B nodes wf tf ns wn tn

81 2 213,902 24,953.10 86,400.01 74 18,730.90 17,120.41 1.33
3 22,952 45,989.98 86,400.04 70 19,334.45 21,479.01 2.38

117 2 39,808 47,131.95 86,400.05 46 14,246.51 36,734.13 3.30
3 600 81,981.44 86,400.02 44 14,354.08 50,541.50 5.71

153 2 29,339 43,995.13 86,400.07 19 12,104.99 23,940.06 3.63
3 20 74,600.89 86,400.32 41 12,306.48 83,625.31 6.06

207 2 6,510 62,157.36 86,400.06 31 10,399.04 47,733.30 5.98
3 0 67,885.71 86,400.04 39 10,466.81 108,493.33 6.49

243 2 1,009 72,658.38 86,400.06 26 10,228.69 86,057.75 7.10
3 15 72,658.38 86,400.07 42 10,033.00 180,992.04 7.24

279 2 181 86,170.94 86,400.03 22 9,661.80 67,236.63 8.92
3 0 86,170.94 86,400.28 26 9,984.50 191,646.64 8.63

315 2 288 91,718.83 86,400.11 16 9,545.63 82,027.25 9.61
3 0 91,718.83 86,400.17 31 9,742.68 466,123.89 9.41

4.8 Conclusions

We presented novel MILO models for the discrete truss design problems that include

both the Euler buckling and the Hooke’s law constraints. We also proposed the NS-

MILO methodology to provide high-quality solutions in a reasonable time for those

problems, where a sequence of MILO subproblems in a moving neighborhood search

framework are explored. The new methodology enables us to provide high-quality

solutions in a reasonable time for previously unsolvable truss design problems.

Computational experiments with the single-scenario and multi-scenario truss

design problems indicate that the NS-MILO approach is significantly faster than

the full-MILO approach. Furthermore, the NS-MILO approach obtains significantly

better solutions for large scale truss design problems. Specifically, the weight of the

solutions provided by the NS-MILO approach for large-scale multi-scenario wing

103

CHAPTER 4. TRUSS DESIGN PROBLEM: SOLUTION METHODOLOGY

design problems has %15 of the weight of the solution obtained by the full-MILO

approach.

104

Chapter 5

The Inmate Assignment and

Scheduling Problem

5.1 Introduction

According to the International Center for Prison Studies, the U.S. incarcerates 698

people for every 100,000 of its population. Despite accounting for approximately

4.5% of the world’s population, the U.S. has 21.4 % of the world’s incarcerated

population [Walmsley, 2017]. In 2010, all levels of government in the U.S. spent more

than $80 billion on corrections [Kyckelhahn and Martin, 2010], implying $260 tax

burden for each U.S. resident. Adjusted to inflation, the expenditures on corrections

in 2010 are more than three times of that in 1979 [Schanzenbach et al., 2016].

Due to insufficient capacity of the correctional institutions (CIs), there is a grow-

ing problem of overcrowding in the CIs. Population management of the inmates is

one of the most critical operations within a correctional system, and requires signif-

icant monetary and human resources. Efficiently managing the inmate population

results in huge savings. Appropriate assignment of the inmates to the CIs is a key

105

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

element of population management, which can lead to significant savings, as well as

enhancing public safety and security of the CIs.

When a court delivers a sentence, the inmate often receives a list of treatment

programs based on the various assessments, including the crime committed. Re-

search shows that inmates who complete the programs, offered by the CIs, have

lower recidivism rate [Davis et al., 2013]; hence, programs have the capability of sav-

ing CI capacity and promoting a safe and healthy society. Inmates usually are given

a minimum sentence length in “indeterminate sentencing states” like Pennsylvania.

Having served the minimum sentence length, they are eligible to be conditionally re-

leased, also known as parole, if they satisfy all of the parole requirements. One of the

parole requirements is to complete all the required treatment programs. Overcrowd-

ing of CIs adversely affects the way inmates receive their treatment programming

and delays scheduling as the resources for the programs are limited. Inmates who

receive timely programming have a better chance of becoming eligible for parole and

leaving the correctional institution earlier, thereby reducing the population of the

CIs.

In 2015, the PADoC had a staggering $2.15 billion in expenditures to house

50,366 inmates [Mai and Subramanian, 2017]. All inmates, who enter the correc-

tional system, have their own programming needs and special requirements. Often,

a CI can offer only certain programs as it has only limited personnel and infrastruc-

ture resources and so might not be able to meet the needs of all inmates. We briefly

describe the inmate assignment process before this project started. Each new inmate

would be assigned to CIs, manually, by a staff member of the Office of Population

Management (OPM). Numerous factors, i.e., rules and criteria, are considered in

assigning inmates to CIs, including but not limited to, security concerns, mental

and medical conditions, program needs, separation from other inmates, capacities

of the CIs, and home county of the inmates. Having to consider all the factors for

106

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

the assignment of each inmate, individually, is time-consuming and prone to human

errors. Additionally, when inmate assignment is done individually and sequentially,

inmates assigned later are not considered in the current assignment. This greedy

sequential assignment of inmates to CIs makes the process highly inefficient, and

results in numerous violations of the factors, or the capacity constraints, or both.

The optimal inmate assignment project in collaboration with the PADoC, spanned

five years from idea to successful implementation. The main goal of the project is to

develop an Inmate Assignment Decision Support System (IADSS) for the PADoC,

which simultaneously assigns the inmates to CIs and schedules the treatment pro-

grams for the inmates, while all the factors and criteria of the assignment are consid-

ered. The IADSS is comprised of a user-friendly web based interface, which is linked

to the PADoC databases, and an optimization engine which does the assignment of

the inmates to CIs.

The goal of the IAP is to optimize inmate assignments, transfers, and program

scheduling, while numerous restrictions and constraints are considered to advance

the following objectives:

- reduce the total population of inmates at the CIs,

- minimize inmate movements during prison terms,

- reduce treatment services waiting lists.

5.1.1 Literature Review

The IAP is a novel class of the assignment problem [Flood, 1953, Votaw and Orden,

1952] with several side constraints. The classic assignment problem and algorithms

to solve it have been extensively studied in the 50s [Dantzig, 1951, Orden, 1951].

Kuhn [1955] suggests the well-known Hungarian method for solving the assignment

107

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

problem. Assignment models have been used in a large variety of applications of

optimization. For instance, crew scheduling is a broadly-used problem class using

generalized assignment models. Airline crew scheduling is one of the most important

crew scheduling problems that received attention within the optimization commu-

nity in the 60s [Arabeyre et al., 1969] and it has been extensively studied since

then. Furthermore, Caprara et al. [1998] have used the assignment model for crew

scheduling in the railway industry. To the best of our knowledge, the only OR paper

for the IAP is by Li et al. [2014], who studied the inmate assignment process and

developed a decision tree representing all the factors of the inmate assignment to

CIs.

5.1.2 Contributions: Novel Modeling and Solution Method-

ology

The IAP mainly revolves around the assignment of inmates to the CIs and schedul-

ing of programs for the inmates at the CIs. In order to develop a mathematical

optimization model, all the processes of the inmate assignment were mapped and

formalized, which in fact was a challenging process, because there are no OR ex-

perts at the PADoC, nor to the best of our knowledge at DoCs elsewhere today. Due

to scarce resources and often conflicting rules, the IAP is inherently an infeasible

problem. In order to address the need for simultaneous system-wide optimization

of inmate assignments, while considering all the conflicting factors, we developed

and fine-tuned a hierarchically weighted multi-objective MILO model. In conjunc-

tion with model development, data collection and preparation procedures, which

interface with the DoC database systems, have been developed. Ultimately, the

web-based IADSS was developed which enables the user to make optimal decisions

in a fraction of the time needed before. Since September 2016, the integrated IADSS

108

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

has been in daily use by PADoC. The IADSS makes the assignment process efficient,

while significantly improving the quality and consistency of the assignments. These

goals are achieved by advanced optimization modeling of system-wide assignment

and scheduling needs, and the use of state of the art optimization methodology.

5.1.3 Impact

IADSS enables the PADoC to have high-quality consistent assignments, which also

increases security and reduces violence. IADSS has resulted in cost savings by

reducing the population of the inmates and the number of transfers between the CIs.

It has also enabled the PADoC to reduce the staff needed for making assignments,

and it has led to a smaller number of assaults in the CIs. As a result of using the

IADSS for the assignment of inmates, the PADoC has saved $2.9 million in the first

year, and it is expected to reduce the cost by $19.8 million over 5 years.

The broader impact of this project, and the highly successful development of the

IADSS is that it can be adapted and used in the correctional systems of other states

and countries. Thus, this project, and the developed solution methodology, is open-

ing a new, high impact area for the application of OR and analytics methodologies.

This paper is structured as follows. Section 5.2 presents the IAP and the numer-

ous factors and program scheduling requirements which define the IAP. Modeling

and solution methodology details are presented in Section 5.3. The multi-objective

MILO model for simultaneously assigning the inmates to the CIs is presented in

Section 5.4. Section 5.5 presents the development of the IADSS, and the implemen-

tation at the PADoC. We list and quantify the benefits of using IADSS in Section

5.6, and Section 5.7 presents the summary of the paper.

109

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

5.2 Preliminaries and Problem Description

In this section, we discuss the preliminary developments at the PADoC and we for-

mally define the IAP and elaborate the rules and criteria used for inmate assignment

to the CIs.

5.2.1 Preliminary Development

We now discuss the developmental evolution of the model and the web based IADSS

at the PADoC. When the project started, we discussed with PADoC the need for

a decision support system to assist the OPM in assigning the inmates to the best

possible CI, considering both the needs and limitations of the inmates and the

available limited resources of the PADoC. This is a complex problem where ideal

assignment of all inmates is not possible. Inmate-specific factors are a combination

of several categories such as medical, psychological, educational, custody level, and

sentence conditions. On the other hand, CIs have numerous limitations, such as

security level, treatment programs availability, and capacity.

Conventionally, the assignment process has been manual and subjective, where

a staff member with the provided information of the inmate and the CIs from the

PADoC database assigns the inmates one-by-one to the CIs. While the general

guidelines for the assignment are known, the large number of factors, the daily

changing capacities of the CIs, and the subjective nature of this sequential ad-hoc

assignment made the efficiency and quality of the assignment heavily dependent on

the experience and judgment of the staff. In order to remove the subjective compo-

nent of the assignment, initially we developed a decision-tree based decision support

system (DTDSS) to reduce bias and variability in assignments, while improving ad-

herence to the guidelines. The DTDSS provided the DoC with a ranked order of

110

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

the CIs for a particular inmate from which the staff member can choose the assign-

ment. This eliminated much of the tedious work of evaluating various combinations

of factors, thus, freeing staff to use their experience to choose from a smaller subset

of the most suitable CIs.

Figure 5.1 illustrates the decision tree of the DTDSS. The development and use

of the decision tree in the DTDSS was critical in classifying and refining all the

relevant factors and their importance level in inmate assignment. After discussing

with PADoC personnel the factors which influenced the inmate assignment in detail,

we identified and incorporated 60 of the most important factors used in the manual

assignment procedure. The DTDSS uses these factors and rules to evaluate and,

subsequently, rank the CIs with respect to their suitability for the inmate being

assigned. DTDSS assigns weights and penalties for each factor, and the accumulated

penalties are used to rank the CIs for the inmates.

This approach could conceivably have been deemed sufficient, while clearly not

optimal, if inmates were arriving to the system in a sequence (one by one). The

greedy assignment strategy embodied in the sequential application of DTDSS can-

not adequately anticipate the bottlenecks in the CIs, several assignments into the

future. When a batch of inmates need assignment, there is an opportunity to make

resource tradeoffs performing the batch assignment that is not present in the sequen-

tial approach. In a sequential assignment, the sequence of the inmates is critical and

significantly affects the succeeding assignments. The need for system-wide, simulta-

neous assignment made clear the need for a multiple-objective optimization model

which treats all the inmates needing assignment and considers the current state of

all the CIs, simultaneously, from a system’s perspective.

111

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

5.2.2 Assignment Criteria

In this section, we present the essential elements of the inmate assignment problem.

First, we give a brief description of the inmate assignment process. Inmates are

evaluated and classified at “intake CIs”. Each period, the accumulated inmates

have to be assigned to CIs, while all restrictions and constraints need to be taken

into account. This is the basic inmate initial assignment problem. The map of PA

with the 25 currently running CIs of the PADoC are shown in Figure 5.2. A crucial

feature of the inmate initial assignment problem is that inmates need to go through

individually specified programs, which are scheduled according to specific rules and

requirements. Furthermore, there are a variety of reasons leading to inmate transfers

from their initially assigned CI to another one. The need for this transfer of inmates

further complicates the problem. Next we explain the criteria that need to be taken

into account at the initial assignment of inmates to the CIs.

112

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

"h $

"h &

"h $

"h $

"h $

"h %

"h %

"h %

"h &

"h &

"h %

"h %

"h &

"h $

"h $

"h &

"h %

"h &
"h $

"h %

"h $

"h %

"h $

"h $

"h &

"h %

Mu
ncy

Me
rce

r

Gre
ene

For
est

Da
llas

Be
nn

er

Alb
ion

Wa
ym

art

Ret
rea

t

Ph
oe

nix

Ma
han

oy

Fay
ett

e

Ch
est

er

Som
ers

et

Ro
ckv

iew
Ho

utz
dal

e

Cam
p H

ill

Sm
ith

fie
ld

Pin
e

Gro
ve

Hu
nti

ngd
on

Gra
ter

for
d

Fra
ckv

ille
Co

al
Tow

nsh
ip

Qu
eh

ann
a

Bo
ot

Cam
p

Lau
rel

Hig

hla
nd

s

Cam
bri

dge

Spr
ing

s

DO
C R

egi
on

"h $
Ce

ntr
al
"h %

Eas
t
"h &

We
st

DO
C/P

RS/
JAH

201
70

62
0

DO
C F

aci
liti

es
by

Re
gio

n

Figure 5.2: The 25 state CIs of the PADoC and their placement in one of the three
main regions of the state.

113

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

General factors: There are a variety of factors, that have to be satisfied at initial

inmate assignment, including but not limited to,

- High risk inmates have to be assigned to a predefined set of CIs.

- Young adult offenders should be assigned to a predefined set of CIs.

- Inmates with mental health issues should be assigned to specified CIs.

- Inmates serving a life sentence have to be assigned to a predefined set of CIs.

- CIs are gender specific; thus, inmates have to be assigned accordingly.

Available beds: The number of available beds for each CI is determined prior to

assigning the inmates. At least a minimum number of inmates, which is a function

of the available beds, should be assigned to each CI in order to properly and pro-

portionally utilize bed spaces. Additionally, for each CI, the maximum number of

inmates, which is again a function of the available beds, is specified to avoid creating

long lists of inmates waiting for beds to become available at the CIs. Furthermore,

the number of inmates assigned to the CIs should be proportional to the available

beds when it is in the minimum and maximum range.

Home county: Inmates need to be assigned to a CI near their home county.

Separations: Considering previous inmate-inmate and inmate-staff conflicts, some

inmates cannot be assigned to certain CIs. Additionally, there might be pairs or

groups of inmates, waiting to be assigned, that cannot be assigned to the same CI.

5.2.3 Treatment Programs

Inmates usually are given minimum sentence length, i.e., the minimum time they

have to stay in CIs, and they have a scheduled parole board interview before their

minimum sentence date. To be eligible for parole, they need to satisfy all of the

requirements of their sentences. One of the requirements is to complete all of their

114

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

treatment programs before the parole board interview. Treatment programs are

prescribed by the court, or by the correctional system.

Ideally, inmates should be assigned to a CI which can offer their program(s)

before their parole board meeting. However, due to limited capacity of the programs

at CIs, not all the inmates are able to finish their program(s) before their parole

board meeting. This results in creating inmate waiting lists for the programs at the

CIs, which provides one of the most important criteria in the IAP. Furthermore,

inmates can start their programs only within the 24-month window before their

minimum sentence date.

Programs can either be open-enrollment or closed-enrollment. In an open en-

rollment program, enrollments can happen any time. If an inmate completes an

open program, the next inmate can start that program immediately. However, in

a closed-enrollment program, a group is identified and they all start and complete

the program at the same time.

The number of inmates that start an open-enrollment program at time t is driven

by the number of open spots of that program at time t. However, the number

of inmates that can start a closed-enrollment program at time t is driven by the

number of groups of that program that can start at time t. There is a minimum

and maximum for the number of inmates that can be enrolled in a group for each

of the closed-enrollment programs.

Another concept which is important in handling the program waiting lists is

clusters. A cluster is a group of closed-enrollment programs that have common

instructors, i.e., an instructor can handle all the programs in a cluster and it needs

to be determined which program(s) the given instructor runs at a given time. Notice

that clusters are only defined for closed-enrollment programs.

One of the main goals of the IAP is to ensure that inmates start their programs as

soon as possible. This goal is formalized as minimizing the maximum waiting time of

115

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

the inmates for starting their required program(s). To reach this goal we schedule the

programs for the incoming inmates, while considering the limited available resources

of the CIs and the inmates that are already in the CIs.

5.2.4 Transfer Constraints

After the initial assignment, some of the inmates need to be transferred. Some of

the reasons for transfers after the initial assignment are as follows

Parole violator : Inmates who are released on parole and have violated their parole

terms are brought back to a “parole intake facility” and need to be assigned to a CI

afterwards.

Program placement: It may happen that the CI, to which an inmate is initially

assigned, does not have all the inmate’s required programs. Additionally, treatment

programs may be prescribed after the initial assignment and some programs might

not be available in the current CI. In these cases, the inmate should be moved to a

CI where all the required programs are offered.

Incentive based transfers: Satisfying specific predefined requirements, inmates can

request to be moved to other CIs.

Separation: Separation of an inmate from other inmates or from DoC staff can lead

to a transfer request.

Constraints and restrictions for transfer placements are the same as the ones

explained in Section 5.2.2 for the initial assignment of the inmates. However, the

importance of the factors for a transfer placement might differ from those of an

initial assignment.

116

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

5.3 Modeling and the Solution Methodology

As it was explained in Section 5.2, one of the main goals of the IAP is to assign

the inmates to CIs. However, it is not a basic assignment problem, since there are

a variety of factors that need to be considered in the assignment of each inmate.

General factors, elaborated in Section 5.2.2, need to be satisfied in the assignment

of each inmate. We not only need to satisfy the bound constraints on the number

of inmates that can be assigned to each CI, but we also need to assign the inmates

in proportion to the capacities of the CIs. Another criterion is that inmates should

be assigned to CIs that are nearest to their home county. Furthermore, we need to

schedule the required programs for the inmates, which brings a scheduling compo-

nent to the IAP. Due to limited availability of resources and the conflicting rules of

the assignment, it is impossible to make an ideal assignment and perfectly satisfy all

the factors and program scheduling needs in the assignment of a batch of inmates.

In order to address all the conflicting factors of the assignment, we developed a

hierarchically weighted multi-objective MILO model. As the problem is inherently

infeasible, we allow the violation of the factors, and penalize the violations according

to their importance. To do so, we define a weight for each factor of the assignment,

which represents the importance of the factor in the assignment process. The vio-

lations of the factors are hierarchically weighted according to their importance, and

the sum of the hierarchically penalized violations serve as the objective function of

the MILO model. The mathematical model is presented in detail in the appendix.

The optimization software package Gurobi (2016) was used to solve the MILO

models. Having developed the MILO model, it was extensively tested with various

real data sets from PADoC with the goal of specifying and fine-tuning the weights

of each of the factors, and ensuring the robustness of the model in recommending

appropriate simultaneous assignments and program scheduling.

117

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

It is worth mentioning that, any time we solve the MILO model and schedule

the programs, not everybody who is going to start the programs in the given time

horizon is currently in the system. For instance, inmates with short sentence times

who need immediate program enrollment enter the correctional system every week.

Thus, there is a lot of freedom in scheduling the programs for periods towards the end

of the time horizon. As a result, the MILO model has many equally good solutions.

This in turn increases the solution time, since a significant amount of time need to

be spent to prove optimality. Knowing that proving optimality requires excessive

amount of time, we stop the MILO solver when the absolute optimality gap reaches

a predefined threshold.

5.4 Hierarchical Multi-Objective MILO Model

In this section, we present a MILO model for the IAP. We first explain the as-

signment and the treatment program constraints, and finally the objectives of the

problem.

5.4.1 Assignment Criteria Constraints

Let I be the set of inmates waiting to be assigned and let J be the set of the

available CIs for the assignment. Each inmate should be assigned to one facility, i.e.

∑
j∈J

xij = 1 ∀i ∈ I,

where xij, for all i ∈ I and j ∈ J is a binary variable and is equal to 1 if inmate i is

assigned to facility j. Let K be the set of general factors, and let coefficient κik for

i ∈ I, k ∈ K be equal to 1 if factor k applies to inmate i; and equal to 0 otherwise.

Additionally, for all j ∈ J , k ∈ K let ρjk be equal to 1 if facility j can accommodate

118

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

inmates with factor k; otherwise, ρjk = 0. The following constraints describe the

general-factors violations of inmates.

κik
(
1−

∑
j∈J

ρjkxij
)

= vik ∀ i ∈ I,∀ k ∈ K,

where vik indicates the violation of factor k by inmate i and is equal to one if inmate

i violates factor k; otherwise, vik is equal to zero. Furthermore, we have capacity

related constraints: ∑
i∈I

xij = sj ∀j ∈ J ,

where sj, j ∈ J denotes the number of the inmates that are assigned to facility j.

Let cj be the capacity of facility j. Ideally, for each pair j1 and j2 of CIs, we want

to assign inmates proportional to their capacities, i.e., ideally we would have

cj1/sj1 = cj2/sj2 .

Variables δ+
j1j2 , δ−j1j2 are the decision variables representing the deviation from as-

signing inmates proportional to the capacities of CIs j1 and j2 and are defined as

cj2sj1 − cj1sj2 = δ+
j1j2 − δ

−
j1j2 ∀j1, j2 ∈ J , j1 6= j2. (5.1)

We aim to minimize δ+
j1j2 , δ−j1j2 by penalizing them in the objective function.

Additionally, we define upper and lower bounds on the number of inmates that

can be assigned to each facility. Let cmin
j and cmax

j be, respectively, the minimum

required and maximum allowed capacity of facility j, which are functions of the

capacity cj of facility j. For instance, cmin
j = ζ−j cj and cmax

j = ζ+
j cj for appropriately

chosen constants ζ−j ≤ 1 ≤ ζ+
j . Let oj be the number of inmates assigned over the

maximum capacity of facility j and let uj be the number of inmates needed to reach

the minimum capacity of facility j. We have

sj ≤ cmax
j + oj ∀j ∈ J ,

sj ≥ cmin
j − uj ∀j ∈ J .

We aim to minimize oj and uj by penalizing them in the objective function.

119

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

Another important criterion for the inmate assignment is the separations. Con-

sidering the history of inmates, there might be pairs of inmates that can not be

assigned to the same facility. Let Is be the set of inmate pairs that should be sep-

arated from each other. Additionally, an inmate might have already on his/her file

that he/she has to be separated from certain staff or inmates that are already in a

facility. Let J s
i be the set of CIs that inmate i should be separated from. We have

∑
j∈J si

xij = 0 ∀i ∈ I,

xi1j + xi2j ≤ 1 ∀(i1, i2) ∈ Is.

5.4.2 Treatment Program Constraints

Next, we explain the constraints needed to describe the waiting lists of the programs

at the CIs. Let Po,Pc be, respectively, the set of open-enrollment and closed-

enrollment programs, and let C be the set of program clusters. Let t̂ip and tip be,

respectively, the latest time and earliest time that inmate i is supposed to start

program p, and let αipt = 1 if t ≥ t̂ip, otherwise αipt = 0, i.e., inmate i should not

start program p later than t if αipt = 1. Similarly, βipt = 1 if t ≥ tip, otherwise

βipt = 0, i.e., inmate i can start program p at time t if βipt = 1.

We would like to minimize the number of inmates that can not start their pro-

grams earlier than their latest start time t̂ip. The decision variable yjpt represents

the number of inmates at facility j that are prescribed program p and have to start

it by time t but can not do so. We aim to minimize yjpt by penalizing it in the

objective function.

Let T = {1, 2, . . . , t′} be the set of the time periods in our decision horizon.

Parameter t′ is the last time period in the decision horizon, and let ψjpt, qjpt, and

qjpt be defined as

120

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

ψjpt: The number of inmates starting program p at t in facility j.

q
jpt

: The number of inmates, already in facility j, that should start program p at

time t or earlier, i.e., the number of inmates with t̂ip ≤ t

qjpt: The maximum number of inmates, already in facility j, that can start program

p at time t, i.e., the number of inmates with tip ≤ t.

The following two sets of constraints compute the lower and upper bound on the

number of inmates that can start the programs at each time period in the CIs∑
i∈I
αiptxij + q

jpt
≤ yjpt +

t∑
τ=0

ψjpτ ∀j ∈ J ,∀p ∈ P , ∀t ∈ T ,

∑
i∈I
βiptxij + qjpt ≥ yjpt +

t∑
τ=0

ψjpτ ∀j ∈ J ,∀p ∈ P , ∀t ∈ T .

Let Rjpt be the number of available spots for open-enrollment program p at time t

in facility j. The following constraints assure that the number of inmates starting

an open-enrollment program does not exceed the number of spots available for that

program at the CIs
t∑

τ=max(0,t−dp)
ψjpτ ≤ Rjpt ∀j ∈ J ,∀p ∈ Po, ∀t ∈ T ,

where dp is the duration of program p.

Next, we explain the constraints related to the closed-enrollment programs. As

mentioned previously, closed-enrollment programs are categorized in clusters. All

the programs in a cluster can be facilitated by one instructor, i.e., programs in a

cluster use common instructors. Let R′jct and ψ′jpt be defined as

ψ′jpt: The number of groups of the closed program p that start at time t in facility j.

R′jct: The number of available groups of cluster c that can start at time t in facility j.

Then we have ∑
p∈Pc

t∑
τ=max(0,dp)

ψ′jpτ ≤ R′jct ∀j ∈ J , ∀c ∈ C, ∀t ∈ T ,

121

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

where Pc is the set of the programs of the cluster c. Let Gp and Gp be, respectively,

the minimum and maximum number of inmates that can be enrolled in closed-

enrollment program p. The following set of constraints enforce these capacity bounds

for the closed-enrollment programs.

Gpψ
′
jpt ≤ ψjpt ≤ Gpψ

′
jpt ∀j ∈ J , ∀p ∈ Pc, ∀t ∈ T .

5.4.3 Scheduling of the Programs for the Inmates

One of the main objectives of the IAP is to minimize the maximum waiting time of

inmates to start their program(s). In this section, we present the constraints needed

to minimize the maximum waiting time of inmates to start their program(s).

Let T ′ = T ∪ {∞}, and let Pi be the set of the programs prescribed for inmate

i. The new decision variable zijpt, for i ∈ I, j ∈ J , p ∈ Pi, t ∈ T ′, is equal to one

if inmate i is assigned to facility j, starting program p at time t; otherwise, it is

equal to zero. If zijp∞ = 1, it implies that inmate i is not going to start program p

in the decision horizon, i.e. later than the last time period of the decision horizon.

Following is the set of constraints that define the relationship between zijpt and xij∑
t∈T ′

zijpt = xij ∀i ∈ I, ∀j ∈ J , ∀p ∈ Pi.

Let yajpt and ψajpt, for j ∈ J , p ∈ P , t ∈ T , be defined as follows,

yajpt: The number of inmates already in facility j, who are prescribed program p

and have to start it by time t but can not do so.

ψajpt: The number of inmates already in facility j, starting program p at time t.

We have

q
jpt
≤

t∑
τ=0

ψajpτ + yajpt ≤ qjpt ∀j ∈ J ,∀p ∈ P , ∀t ∈ T .

Additionally, let ynjpt and ψnjpt, for j ∈ J , p ∈ P , t ∈ T , be defined as follows

122

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

ynjpt: The number of inmates assigned to facility j, who are prescribed program p

and have to start it by time t, but can not do so.

ψnjpt: The number of inmates assigned to facility j, starting program p at time t.

We have
ψnjpt =

∑
i∈Ip

zijpt ∀j ∈ J ,∀p ∈ P , ∀t ∈ T ,

∑
i∈I
αiptxij ≤

t∑
τ=1

ψnjpτ + ynjpt ≤
∑
i∈I
βiptxij ∀j ∈ J ,∀p ∈ P , ∀t ∈ T ,

where Ip is the set of the inmates who need program p.

Suppose the number of inmates, already in facility j that should start program p

at time t is more than the available spots for program p at time t. Then we have

yajpt > 0. In this case, ψnjpt should be equal to zero. In other words, if there are not

enough spots of program p for the inmates that are already in facility j, then the

number of inmates, assigned to facility j through the model, that are going to start

program p at time t should be zero. In order to satisfy this constraint, the indicator

variable φjpt, for j ∈ J , p ∈ P , t ∈ T is equal to one if yajpt > 0; otherwise, it is

equal to zero. Then we have

yajpt ≤Mφjpt ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

ψnjpt ≤M(1− φjpt) ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,
where M is a big number.

Additionally, we have the following set of constraints, which defines the relationship

between the decision variables of the problem

ψajpt + ψnjpt = ψjpt ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

yajpt + ynjpt = yjpt ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,
Let wip, for i ∈ I, p ∈ Pi be the waiting time of inmate i to start program p

after his latest possible start time t̂ip. We have

wip =
∑
j∈J

∑
t∈T

max(0, t− t̂ip)zijpt ∀i ∈ I, ∀p ∈ Pi.

123

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

Finally, let w′i be the maximum waiting time of inmate i to start his/her program(s).

Then

w′i ≥ wip ∀i ∈ I, ∀p ∈ Pi.

5.4.4 Transfer Constraints

The constraints needed to account for the inmate transfers after the initial assign-

ment are the same kind of constraints as the ones for the initial assignment in the

current model. However, as the importance of these constraints are frequently dif-

ferent for transfers, the weights of the factors in the objective function differ from

an initial assignment.

5.4.5 The Objective Function

The IAP is a multi-objective problem. There are different approaches in the litera-

ture to deal with a multi-objective optimization problem. We consider the weighted

sum method [Sawaragi et al., 1985] to combine the objectives and have a one-shot

optimization in assigning the inmates. The choice of the weighted sum of the objec-

tives is validated by solving real data instances from the Pennsylvania Department

of Corrections.

It is worth mentioning that the weights of all the objectives are assumed to be

positive. The objectives of the IAP are listed as follows:

- Violation of the general factors should be minimized. The violation is equal

to

ϑ =
∑
i∈I

∑
k∈K

λfikvik,

where λfik is the weight of factor k for inmate i.

124

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

- Assignment of inmates under the capacity and over the capacity of the CIs

should be minimized. The violations of the capacity constraints are defined as

oj =
∑
i∈I
xij − cmax

j ∀j ∈ J ,

uj = cmin
j −

∑
i∈I
xij ∀j ∈ J .

Then, the overall capacity violation is equal to

η =
∑
j∈J

λojoj + λujuj,

where λoj and λuj for j ∈ J are, respectively, the weights of over-assignment

and under-assignment to the CIs.

- The difference between the capacities of the CIs should be minimized

δ = λδ
∑
j1∈J

∑
j2∈J |j2 6=j1

(
δ+
j1j2 + δ−j1j2

)
,

where λδ is the weight of the capacity difference, and δ+
j1j2 and δ−j1j2 are defined

in equation (5.1).

- Distance to the home county of the CIs should be minimized.

γ =
∑
i∈I

∑
j∈J

λdi dijxij,

where λdi is the weight of the distance for inmate i.

- The number of inmates that can not start their program on time should be

minimized.

ω =
∑
j∈J

∑
p∈P

∑
t∈T

λωjpt yjpt,

where λωjpt is the weight of the wait list of program p at facility j in time t.

125

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

- The maximum program waiting time of inmates need to be minimized

θ =
∑
i∈I

λθiw
′
i,

where λti is the penalty weight of waiting time of inmate i.

The weighted sum of the objectives is defined as

λϑϑ+ ληη + λδδ + λγγ + λωω + λθθ,

where the weights of all the objective elements are positive. Objective hierarchies

are being enforced through order of magnitude differences in the weight applied.

General factors have the highest priority in assigning inmates to CIs. Minimizing

the maximum waiting time for each inmate is second in the hierarchy of objectives.

Assigning in the range of the minimum and maximum capacity of each facility has

the next highest priority. Additionally, in order to reduce the population of the

CIs, program waiting lists have a high priority in the objective function. Assigning

inmates to a facility near their home county is less important compared to the other

objectives of the problem.

5.4.6 The Multi-Objective MILO Model

Now we present the complete optimization model for the inmate assignment and

scheduling problem. The lists of parameters and decision variables of IAP are sum-

marized in Tables 5.1 and 5.2, respectively. We utilize the hierarchically weighted

sum method to combine the objectives and have a single-objective optimization

problem. The MILO model is as follows:

min λϑϑ+ ληη + λδδ + λγγ + λωω + λττ

s.t.
∑
j∈J

xij = 1 ∀i ∈ I,

126

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

∑
t∈T ′

zijpt = xij ∀i ∈ I,∀j ∈ J , ∀p ∈ Pi,

ψnjpt =
∑
i∈Ip

zijpt, ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

κik
(
1−

∑
j∈J

ρjkxij
)

= vik ∀ i ∈ I, ∀ k ∈ K,

∑
i∈I

αiptxij + q
jpt
≤ yjpt +

t∑
τ=0

ψjpτ ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

∑
i∈I

βiptxij + qjpt ≥ yjpt +
t∑

τ=0
ψjpτ ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

t∑
τ=max(0,t−t̂p)

ψjpτ ≤ Rjpt ∀j ∈ J ,∀p ∈ Po, ∀t ∈ T ,

Gpψ
′
jpt ≤ ψjpt ≤ Gpψ

′
jpt ∀j ∈ J , ∀p ∈ Pc, ∀t ∈ T

∑
p∈Pc

t∑
τ=max(0,dp)

ψ′jpτ ≤ R′jct ∀j ∈ J ,∀c ∈ C, ∀t ∈ T

q
jpt
≤

t∑
τ=1

(ψajpτ) + yajpt ≤ qjpt ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

∑
i∈I

αiptxij ≤
t∑

τ=1
(ψnjpt) + ynjpτ ≤

∑
i∈I

βiptxij, ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

yajpt ≤Mφjpt ∀j ∈ J , ∀p ∈ P ,∀t ∈ T ,

ψnjpt ≤M(1− φjpt) ∀j ∈ J , ∀p ∈ P ,∀t ∈ T ,

ψajpt + ψnjpt = ψjpt ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

yajpt + ynjpt = yjpt ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

wip =
∑
j∈J

∑
t∈T

max(0, t− t̂ip)zijpt ∀i ∈ I, ∀p ∈ Pi,

w′i ≥ wip ∀i ∈ I, ∀p ∈ Pi,∑
i∈I

xij = sj ∀j ∈ J ,

cj2sj1 − cj1sj2 = δ+
j1j2 − δ

−
j1j2 ∀j1, j2 ∈ J ,

127

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

sj ≤ cmax
j + oj ∀j ∈ J ,

sj ≥ cmin
j − uj ∀j ∈ J ,∑

j∈J si

xij = 0 ∀i ∈ I,

xi1j + xi2j ≤ 1 ∀(i1, i2) ∈ Is,

zijpt ∈ {0, 1} ∀i ∈ I,∀j ∈ J ,∀p ∈ Pi,∀t ∈ T ′,

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J ,

vik ∈ {0, 1} ∀i ∈ I, ∀k ∈ K,

φjpt ∈ {0, 1} ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

yajpt, ynjpt, yjpt ∈ N ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

ψajpt,ψnjpt,ψjpt ∈ N ∀j ∈ J , ∀p ∈ P , ∀t ∈ T ,

ψ′jpt ∈ N ∀j ∈ J , ∀p ∈ Pc, ∀t ∈ T ,

sj, oj, uj ∈ N ∀j ∈ J ,

δ+
j1j2 , δ−j1j2 ∈ N ∀j1, j2 ∈ J , j1 6= j2,

wip ≥ 0 ∀i ∈ I, ∀p ∈ Pi,

wi ≥ 0 ∀i ∈ I.

128

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

Table 5.1: The parameters of the IAP

Parameter Definition
I The set of inmates that need to be assigned
J The set of the CIs
K The set of factors
P The set of programs
Po The set of open-enrollment programs
Pc The set of closed-enrollment programs
C The set of program clusters
Pi The set of the program(s) of inmate i
Pc The set of closed-enrollment programs of cluster c
J si Set of CIs that inmate i should be separated from
Is Set of inmate pairs that should be separated from each other
T The set of the time periods in the time horizon
T ′ T ∪∞

κik
1 if factor k applies to inmate i
0 otherwise

ρjk
1 if CI j can accommodate inmates with factor k
0 otherwise

t̂ip The latest time that inmate i can start program p and finish it before
his scheduled board meeting

t̃ip The earliest time that inmate i can start program p based on the system
regulations

αipt
1 if inmate i should not start program p later than time t
0 otherwise

βipt
1 if inmate i can start program p at time t
0 otherwise

q
jpt

The number of inmates, already in facility j, that should have started
program p by time t to be able to finish their program before their parole
board meeting, i.e., the number of inmates with t̂ip ≤ t

qjpt The maximum number of inmates, already in facility j, that can start
program p at time t, i.e., the number of inmates with t̃ip ≤ t

Rjpt Number of spots available for open-enrollment program p in CI j at time
period t

R′jct Number of groups available for cluster c in CI j at time period t

Gp Maximum number of inmates in a group of program p
Gp Minimum number of inmates needed to run program p

dij The distance between the home county of inmate i to facility j
cj Capacity of facility j
cmin
j , cmax

j Minimum and maximum capacity at facility j which are functions of cj

129

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

Table 5.2: The decision variables of the IAP.

Parameter Definition

xij
1 if inmate i is assigned to CI j
0 otherwise

zijpt
1 if inmate i is assigned to CI j, starting program p at time t
0 otherwise

vik
1 if inmate i violates factor k
0 otherwise

ψjpt The number of inmates starting program p at t in facility j
ψajpt The number of inmates already in facility j, starting program p at time t
ψnjpt The number of inmates assigned to facility j, starting program p at

time t
ψ′jpt The number of groups of the closed program p that start at time t in

facility j
yjpt The number of inmates at facility j that are prescribed program p and

have to start it by time t but can not do so
yajpt The number of inmates already in facility j, who are prescribed program

p and have to start it by time t but can not do so
ynjpt The number of inmates assigned to facility j, who are prescribed pro-

gram p and have to start it by time t, but can not do so

φjpt
1 if yajpt > 0
0 otherwise

wip The waiting time of inmate i to start program p from his latest possible
start time t̂ip

w′i Maximum waiting time of inmate i to start his/her program(s)
sj Total number of inmates assigned to facility j
oj Number of inmates assigned over the maximum capacity of facility j
uj Number of inmates assigned under the minimum capacity of facility j
δ+
j1j2

, δ−j1j2 Variables representing the difference in capacities between the CIs j1
and j2

We can strengthen the MILO model formulation by adding a set of constraints

for the inmates who have prescribed program(s) as follows∑
j∈J

∑
t∈T ′

zijpt = 1 ∀i ∈ I, ∀p ∈ Pi.

While these constraints are redundant, notably if we add them to the model, the

solution time decreases significantly. Further, in order to generate a good solution

130

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

quickly, we set the MILO solver to perform the highest level of preprocessing before

starting the branch & bound algorithm, which further reduces the overall solution

time.

5.5 Implementation at the PADoC

The project from idea to successful implementation took five years. Before this

project started, inmates were assigned to CIs manually by a staff member of the

OPM. This manual process had three main drawbacks:

- A variety of factors need to be considered in assigning each inmate to a CI, in-

cluding security concerns, mental and medical conditions, program needs, sep-

aration from other inmates, capacities of the CIs, home county of the inmates,

etc. Having all the factors of the assignment and characteristics and capacities

of CIs in mind, and considering them for each individual is time-consuming

and prone to human errors. As a result there were numerous inappropriate

assignment of the inmates.

- If the inmate assignment is done sequentially, then the inmates that are as-

signed later, are not considered in the earlier assignments. This makes the pro-

cess inefficient and suboptimal. In fact, if the assignment is done manually, it

is hardly possible to consider the following inmate assignments appropriately

in the assignment of the current inmate.

- Scheduling of treatment programs was not considered in the manual inmate

assignment. This resulted in inmates having longer waiting times to get their

programming, thus postponed their eligibility to go on parole, and so increased

the population of the CIs.

131

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

The DTDSS, which was initially developed, enabled the PADoC to address the first

drawback of the manual inmate assignment and consider the rules and criteria of

the assignment in assigning each individual inmate to the CIs. However, DTDSS

lacks the ability to simultaneously assign a batch of inmates to the CIs, and it does

not consider the treatment program scheduling in the assignment. This stressed the

need to develop the multi-objective optimization model, which became the heart of

the IADSS. The rigorous optimization model enables OPM to consistently account

for all the the factors of the assignment. It also enables OPM to simultaneously

assign the inmates to CIs, as well as schedule programs optimally to minimize the

waiting time of each individual inmate in starting their program(s).

5.5.1 Development of the IADSS

The development of the IADSS took three years. First, a mathematical optimization

model was developed as a proof of concept to optimize the simultaneous initial

assignment of the inmates to the CIs. It demonstrated to OPM personnel that

mathematical optimization provides a powerful tool to optimally assign inmates to

the CIs. In conjunction with model development, data had to be harvested from

the PADoC databases; thus, data collection and clean up procedures were set up

and implemented to link the model to the live databases. The workflow of IADSS

is presented in Figure 5.3.

132

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

Figure 5.3: Workflow of the IADSS.

The heart of the IADSS is the optimization module which generates the mathe-

matical optimization model of the IAP using the data extracted from the PADoC

databases, and solves the model. As the inmate assignment to CIs is a multi-

objective process, we propose a hierarchical multi-objective optimization model. We

consider the weighted sum method [Sawaragi et al., 1985] to combine the objectives.

The choice of the weighted sum of the objectives is validated by solving real data

instances from the PADoC.

The time sequence of the development phases followed the anticipated increas-

ing mathematical sophistication and complexity of the modules. The violations of

the inmate assignment factors were interpreted as the penalty objectives of the as-

signment and were added one-by-one to the optimization model. As explained in

Section 5.2, we need to make two main decisions: assignment of inmates to the CIs

and scheduling the start of their program(s). We initially developed a model which

only did the assignment of the inmates to the CIs, and tested the model with real

133

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

data from PADoC to validate the assignment recommendations. Then we extended

the model to include the scheduling of the programs for the inmates. Executing the

project in this sequence brought meaningful capability online in a judicious manner,

while demonstrating to OPM what was possible with an optimization model, and

how to utilize a decision support system to optimally execute their most critical task.

The model which does the assignment of the inmates and schedules the programs

has been used for the daily assignment of the inmates since September 2016.

5.6 Benefits and Impact of the IADSS

The successful development and implementation of IADSS has both significant fi-

nancial and non-quantifiable human benefits.

5.6.1 High-Quality, Consistent Assignment

- The assignment of the inmates is done simultaneously for all the inmates

with a petition for assignment or transfer. Simultaneous assignment ensures

system-wide optimum.

- All the factors of the assignment are considered for each individual. As a

result, consistently high-quality assignments are made. Current errors are

almost exclusively due to data inconsistency, so undesired assignments help

OPM to identify data errors.

- The inmate assignment process was previously fragmented in the sense that

assignment was done by OPM and the program waiting list was monitored by

the Bureau of Treatment Services (BTS) and reported to OPM on a monthly

basis. With the implementation of the IADSS, the process is integrated and

all the necessary elements of the assignment are considered in one system.

134

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

- Program schedules and wait lists at each CI are generated as an integral part

of the inmate assignment output. The integrated IADSS minimizes the wait

time of the inmates for their required program(s), thus allowing timely release

of inmates, and so reducing the inmate population.

- In addition to simultaneous assignment, individual assignment can be done for

the inmates. Facilities are sorted in the individual assignment for each inmate

considering all the factors of the assignment only for that inmate. In case the

simultaneous assignment recommendation, for some reason, is not appropriate

for an individual, the individual assignment results can be used to evaluate

possible assignment to other CIs . The simultaneous assignment recommen-

dation and individual assignment recommendations from the IADSS interface

are demonstrated in the first and third panel of Figure 5.4, respectively.

- Three geographical regions (west, central, east) are defined in PA. Counties

and CIs are placed in each of these regions. In Figure 5.2, the regions of

the CIs are given. Due to the complexity of considering the distance of the

home county to the CIs, only assignment of an inmate to his home region was

considered before. The IADSS enables DoC to consider the actual distance of

the home county to the CIs for each inmate.

- The rate of acceptance of the simultaneous assignments and individual as-

signments has been measured to validate the MILO model and ensure that

the MILO model captures the hierarchy of the factors of the assignment. In

Jan 2017, over 90% of the inmates were assigned to the facility that was sug-

gested by the simultaneous assignment. Among the remaining 10 percent of

the inmates, more than 6 percent were assigned to one of the first three CIs

recommended by the individual assignment. The remaining 4 percent, that

135

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

were assigned to other CIs, were either because of data inconsistency, or the

special conditions of those inmates. In Table 5.3, results of the IADSS for the

first 10 days of the year 2017 are presented.

Table 5.3: Assignment recommendations.

Date # of
inmates

Sim.
assignment

match

Ind.
assignment
used and
matched

Not ind. nor
sim. matched

Sim.
assignment

match

Ind. or
sim. assignment

match

3 Jan 15 12 3 0 80% 100 %
4 Jan 54 53 1 0 98.15% 100 %
5 Jan 53 43 5 5 81.13 % 90.57 %
9 Jan 14 12 1 1 85.71% 92.86 %
10 Jan 98 91 5 2 92.86 % 97.96 %
Total 234 211 15 8 90.17% 96.58%

5.6.2 User-Friendly Web Application

- A web-based Graphical User Interface (GUI) is developed to enable interaction

with the IADSS. In Figure 5.4, a screenshot of the GUI is demonstrated.

136

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

Figure 5.4: A screen shot of the web-based UI of the IADSS.

137

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

- All the personal and sentence information needed for the assignment of an

inmate is collected and displayed in the GUI to facilitate the review of the

assignment. In the second panel of Figure 5.4, the inmate display page is

demonstrated.

- Reporting of the program waiting list alerts BTS for current and future bot-

tlenecks in program schedules and availability.

5.6.3 Security Enhancement

Security enhancement is hard to quantify, however, it was one of the main moti-

vations for initiating this project. The use of IADSS at the PADoC has already

resulted in the following identified security enhancements.

- It is stated by the PADoC Secretary, Wetzel, that inmate transportation is

one of the riskiest operations at PADoC. By doing proper initial assignment,

IADSS has reduced inmate transfers, and so enhancing the security of the CIs

and public safety.

- IADSS considers inmates’ demographic information and enforces the separa-

tions in the assignment, which in turn reduces the number of assaults, thus

increasing the security of the CIs.

5.6.4 Quantified Savings

In this section, we present the cost savings resulted from the implementation of

IADSS in the first year, and project the benefits to a period of five years. Four areas

of significant savings are identified.

- Reduced waiting time: IADSS helps to decrease the waiting time for treatment

programs, which reduces the length of stay for inmates past their minimum

138

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

sentence date. We consider the inmates that have less than 9 months to

their minimum sentence date at the time of their initial petition, who need

at least one treatment program. These inmates must start their programs

immediately, since the delay in starting their program(s) directly postpones

their parole eligibility. The waiting time of these inmates to start all their

programs is calculated with the goal to see how much IADSS has helped to

reduce the waiting time for programs. In Figure 5.5, the cumulative distri-

bution functions of the waiting time of these inmates for the first and second

quarters of 2016 (2016-1, 2016-2), and the first and second quarters of 2017

(2017-1, 2017-2) are plotted. Notice that the waiting time in the second quar-

ter of 2017 stops at three months, since we did not have the data for longer

waiting times at the time of writing the paper. For both quarters 1 and 2, the

cumulative distribution function for 2017 is above and to the left of the one for

2016, showing that the use of IADSS has reduced waiting times substantially.

Comparing the waiting time of the inmates with initial petition requests in

the first quarter of 2016, when IADSS was not yet used, with the first quarter

of 2017, we found out that the average waiting time of the inmates in the

first quarter of 2016 is 143 days while the average waiting time of the inmates

in the first quarter of 2017 is 89 days. Therefore, the average waiting time

decreased by 54 days from 2016-1 to 2017-1.

In average, PADoC has 10000 initial petitions annually. 12% of those petitions

have less than 9 months to their minimum sentence date and need at least one

program. The marginal cost of keeping an inmate in a CI is $16 per day.

As a result, the total annual saving of reducing the inmates’ waiting time in

starting their program(s) is 10000 × 0.12 × 54 × 16 = $1, 036, 800. As we

can see in Figure 5.5, the waiting time is significantly decreasing from 2016

139

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

to 2017. Based on already achieved 54 days reduction in the waiting time,

90 days reduction in the waiting time can be projected at the steady state of

the system in years 4 and 5. The 90 days reduction in the waiting time of

programs enables the PADoC to close a full CI unit. Closing a CI unit allows

for more savings than the marginal cost of keeping an inmate in a CI. If a CI

unit is closed, the savings per day for each inmate is $30. Thus, the saving in

years 4 and 5 will be 10000× 0.12× 90× 30 = $3, 240, 000.

1 2 3 4 5 6 7 8 9

t (month)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
in

m
at

es
 w

it
h

 m
ax

 w
ai

ti
n

g
 t

im
e

<
 t

2016-1

2016-2

2017-1

2017-2

Figure 5.5: Program waiting time for inmates with less than 9 months
to their minimum sentence date.

- Fewer assaults: There are fewer assaults, due to assigning the right combi-

nation of inmates to the most appropriate CIs. We compared the number

of assaults in the period January-July of 2017 to the same period in 2016; 95

fewer assaults were reported. If we project this result to the full year, 163 fewer

assaults are expected in 2017. The PADoC estimates that approximately 10%

to 15% of this reduction is due to the introduction of IADSS, thus IADSS re-

sults in 20 fewer assaults in 2017. The criminal justice literature [Cohen, 2005]

documents that an assault on average costs $70,000. Thus IADSS has resulted

in 20× 70, 000 = $1, 400, 000 saving by reducing the number of assaults.

140

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

- Reduced staff : Fewer staff are required in OPM to oversee inmate assignments

and transfers. As a result of using IADSS, one less Captain position is needed

to do the inmate assignments at PADoC. The salary and benefits of a captain

is $134, 742 annually.

- Fewer transfers: Due to initially assigning inmates to the correct CI, fewer

transfers are later required. By making better assignments with IADSS, 4, 672

fewer transfers were needed in 2017. The cost of each transfer is on average

$82.85 at the PADoC. Hence, the total annual transportation saving is equal

to 4, 672× 82.85 = $387, 075.

Considering the four main saving points, IADSS has decreased the annual cost at

PADoC by $2, 958, 617, and the projected saving over five years is $19, 199, 485.

5.7 Summary

Every correctional system faces the inmate assignment problem on a daily basis.

Various constraints, including general assignment factors, CI capacity constraints,

scheduling of inmate treatment programs, and the assignment of inmates near their

home counties, should be satisfied. Making an ideal assignment (i.e., satisfying all

the constraints of the assignment) is impossible; thus, the IAP is inherently an

infeasible problem. Additionally, the treatment programs must be scheduled at the

time of the assignment.

In this chapter, we discuss the development of a novel hierarchical multiobjective

MILO model for the IAP. The weighted sum of the violation of the assignment

constraints and the treatment-program waiting times serve as the penalty objective

of the MILO model. The multiobjective MILO model is the core of the IADSS. The

IADSS enables the PADoC to simultaneously and optimally assign inmates to the

141

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

CIs in the PA correctional system and schedules treatment programs for them, while

considering all the rules and criteria of the assignment. The IADSS minimizes the

waiting time of the inmates for being assigned to their required program(s); hence,

it facilitates the timely eligibility of the inmates for parole, which ultimately reduces

the inmate population within the correctional system. The PADoC has successfully

used the IADSS for the daily assignment of inmates to CIs since September 2016.

To the best of our knowledge, this is the first time that OR methodology has

been built directly into the routine business operations of a correctional system.

The success of this project opens new avenues to: (1) adapt and introduce the

IADSS methodology to optimize the operations of correctional systems of other

states and countries, and (2) explore other applications of OR methodology in the

complex operations of correctional systems. Correctional systems in the United

States and worldwide have numerous problems that cry out for solutions using OR

methodologies. This highly successful application of OR in a large correctional

system will open a rich application area of OR, just as the first crew-scheduling

application did in the airline industry.

142

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

PNG

QUE
Inmate
Info.

Y

Y

N

N

N

ALB, PIT, GRN, HOU,
HUN, ROC, BEN,
CAM, RET, MAH,

GRA
N

QUE,
CHS

Boot Camp and NOT
Sep. from QUE

SIP

Stability ‘D’ code?

CL4

NO

 NO LAU, MER, QUE, WAM

QUE

Sex Offender

Lifers

Escapes

Serious
Detainer

NO PNG

NO QUE

NO MER

NO CHS, LAU, RET*

Detainers NO QUE

Y

Y

Y

Y

Y

Y

Y

N
N

N

N

N

N

N

Exclude
separation
locations

Y

N

Separations

Y

Special
Education

Y

N

COA, FRS, HOU,

QUE, SMR, RET

PNG

N

YAOP
(Age <18)

YAOP
(18<=Age<21) &

NOT Sex Offender

Y

Y

CL3 or CL5

Medical
Needs

Serious
medical

NO CHS,
PIT, QUE

Deaf

Hearing
impaired

Vision
impaired

Wheelchairs

Handicapped
Cells

ALB, GRA

ALB, CAM, CHS,
COA, FRA, GRA, LAU

ALB, CAM, CHS,
FRA, GRA, LAU, MAH

NO DAL, FRA, PIT,
GRA, HUN, RET,
ROC, SMI, WAM

NO DAL, GRA, PIT, ROC,
WAM, FRA, HUN, PNG,

RET

DAL, GRA, MAH

NO FRA, HUN, LAU,
PNG, RET, QBC

Y

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

N

N

LAU

WAM

Programs

Speech
Therapy

Infirmary

Dialysis or Skilled Care

Personal Care

Medical

Medical

Programs

(a) Section one

Figure 5.1: The decision tree of the inmate assignment process.

143

CHAPTER 5. THE INMATE ASSIGNMENT AND SCHEDULING PROBLEM

Expiration Date of
Minimum < 18 mon

Program
Need

CHS, DAL, GRN, GRE,
LAU, HOU, MER, PNG,
PIT, RET, SMR, WAM

NO

Dual
Diagnosis

 PNG, QUE

Hispanic TC

Outpatient

TC

NO CHS, PIT

NO GRN, LAU,
PNG, QUE, RET, SMR

NO CHS, PIT

RET

CHS

Programs

Y

Y

Y

Y

N

N

N

N

N

N

Y

Y

Y

Y

N

N

N

SOP

Min sentences > 7.5 yrs NO

Min sentences > 5 yrs

LAU

NO MER

Min sentences > 10 yrs NO

Age >25 &
Min>=12 mos &

No crimes against kids
WAM NO PNG

Y

Y

Y

Y

N

N

N

N

DDTC
(Co-Occurring Therapeutic

Community)

Assign the inmate to his
home region

Institution
Candidate

(b) Section two

Figure 5.1: The decision tree of the inmate assignment process.

144

Chapter 6

The Inmate Transportation

Problem

In Chapter 5, we introduced the inmate assignment problem, and presented our work

on developing and solving a mathematical optimization model for the problem. In

this Chapter, we present our work on another complex problem that correctional

systems face on a daily basis, namely, the Inmate Transportation Problem (ITP).

6.1 Introduction

The ITP is an extension of the Vehicle Routing Problems (VRP) [Cordeau et al.,

2007, Toth and Vigo, 2014] with several side constraints. The VRP itself is a general-

ization of the Traveling Salesman Problem (TSP) [Cook, 2011, Flood, 1956]. As the

TSP is an NP-hard problem [Cook, 2011], one can conclude that the VRP and the

ITP are NP-hard too. In a TSP, a set of nodes and the distance between each pair

of the nodes is given, and the goal is to find the shortest route which visits each node

once and returns to the starting node. The classic VRP is a well-known problem in

145

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

combinatorial optimization. The VRP was first proposed by Dantzig and Ramser

[1959], who worked on optimum routing of a fleet of gasoline delivery trucks and

developed a MILO model and a solution methodology to find near-optimal solutions

for the problem. The VRP is concerned with optimally routing a fleet of vehicles

to satisfy the demands of a set of customers from a specified depot, see Cordeau

et al. [2007], Toth and Vigo [2014] for more information. The Vehicle Routing

Problem with Pickups and Deliveries (VRPPD) extends the VRP by sending the

goods/passengers from pickup to delivery points [Desaulniers et al., 2002, Dumas

et al., 1991, van der Bruggen et al., 1993]. In a VRPPD, a heterogeneous vehicle fleet

located at different nodes satisfy transportation requests. A transportation request

is specified with an origin, a destination, and demand of the goods/passengers to be

transported. The objective function of the VRPPD is mainly to minimize the costs

of transportation. Parragh et al. [2008a,b] did an extensive survey on the VRPPD.

The ITP can be cast as a VRPPD with additional constraints. In a regular

VRPPD, each node has one transport request, while in the ITP each node can have

multiple transport requests to different nodes. Additionally, a transportation hub is

considered in the ITP for the transportation of the inmates, while in the VRPPD

transportation is done directly from an origin to a destination. Another important

difference is that, unlike the VRPPD, in the ITP a node can be visited more than

once in a route, which in turn renders the mathematical optimization models of the

VRPPD, developed so far, inapplicable for the ITP.

The remainder of the chapter is organized as follows. We formally define the

ITP in Section 6.2, and present a MILO model for the ITP in Section 6.3. Then

we present our numerical results in Section 6.4 to demonstrate the effectiveness of

the model in reducing the costs of the inmate transportation process. We close the

chapter with concluding remarks in Section 6.6.

146

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

6.2 Problem Description

The Office of Population Management (OPM) is responsible for the transportation of

the inmates at the PADoC. On average, 35,000 inmate transportations are scheduled

annually between the 25 CIs at the PADoC, yielding about 650 transportations each

week. Conventionally, a staff member of OPM with his/her experience and judgment

manually makes the decisions about the transportation of inmates. The decisions

are made in two main steps. First, the routes are specified for the vehicles, and

then inmates are assigned to the vehicles based on their origin and destination CIs.

One of the critical restrictions of the manual assignment is that there is a small

set of predefined routes, and the trips are currently scheduled based only on those

predefined routes. The limited number of predefined routes in the current policy

significantly limits the flexibility of transportation decisions. This manual way of

transportation planning is clearly not efficient.

Now, we define the ITP and explain the constraints and objective function of

the problem. Given a time horizon, the set of inmates who need to be transported

and the origin and the destination for each inmate is predefined. In other words,

the decision about the assignment of an inmate to a CI is made prior to deciding

on his/her transportation. In the ITP, we decide on the vehicles used at each

transportation day, their routes, and the number of inmates that are going to be

assigned to the vehicles each day.

Vehicles depart from their home CI, visit a sequence of CIs, and return to their

home CI, since the vehicles are maintained by the respective CIs, and the drivers

need to return home at the end of the day. Trips should be scheduled in the time

window [7 a.m., 7 p.m.]. This means that every route should originate and finish

at the same CI, and transport inmates within the given 12 hours time window.

Considering the travel time limit, there are a few pairs of CIs which can not be

147

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

visited in a single trip. In order to be able to transport inmates between any

two arbitrary CIs, the PADoC has constructed a transfer hub, which is located

at the central region of the state. The hub enables the PADoC to move inmates

between any two CIs in one day. Additionally, the hub helps to significantly reduce

transportation costs.

The time horizon adds another level of complexity to the problem. Currently,

planning for the inmate transportation is done once a week, thus, the time horizon

considered for the trips is a week. The actual time horizon depends on the frequency

of transportation days and the number of inmates which need to be transported.

The MILO model allows to consider a longer time horizon.

6.3 Mathematical model

In this section, we introduce the MILO mathematical model. We define the terms

and assumptions we have used to develop the MILO model.

Definition 6.1. A route is a sequence of CIs which starts and ends at the same

CI. The starting CI of a route is the origin of the route, and two consecutive CIs

of the route form a leg.

Definition 6.2. A trip is specified with a vehicle along with its capacity and location

at a given CI, a given transportation day, and a route. The given CI is the origin

and the final destination of the trip.

Definition 6.3. A potential trip is a trip where the vehicle with its capacity, the

origin CI, and the transportation day is specified, but the route is not specified.

In ITP, we define the set of all potential trips. One of the main decisions to be

made is to assign a route – if any – to potential trips and use those trips for inmate

transportation.

148

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

Due to various policy restrictions and business practices we limited the set of

possible routes. Following is the set of assumptions used in generating the set of

possible routes:

- We allocate a predefined time duration for getting on and off the vehicle at

each CI, except for the route origin.

- The hub may only be visited at most once in a route.

- No consecutive pairs of CIs should be visited more than once.

- Only the legs that are currently used by PADoC are considered in generating

the set of the routes. In this case the vehicles will travel only on the paths

that are approved by the PADoC.

It is worth mentioning that we do not consider special cases of inmate trans-

portation, such as medical transports, since such requests form a small percentage

of the total transportation requests, and are handled by special vehicles. We also

do not consider over-night stay for an inmate during the transportation, i.e., all the

inmates assigned to a trip will reach their destination at the same day.

We have two main objectives. We aim to minimize the number of the allocated

trips and minimize the number of inmates not assigned to a trip. Three main

decisions are made in the ITP. We need to allocate trips for transportation, assign

routes to the allocated trips, and specify the number of inmates that are going to

be transported on each trip.

Let C, R, and P be the set of the CIs, the set of the possible routes, and the

set of the potential trips, respectively. Let the decision variable zpr, for p ∈ P and

r ∈ R, be equal to 1 if route r is allocated to potential trip p; otherwise, zpr = 0.

Constraints (6.1) ensure that at most one route is allocated to a potential trip.

149

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

∑
r∈R

zpr ≤ 1, ∀p ∈ P . (6.1)

Let Kri be the set of the stop numbers corresponding to CI i in route r. Inmates

can either move directly from their origin to their destination in one trip, or they

can go through the hub and get to their destination via two trips. Let yijp, for all

i, j ∈ C and p ∈ P , be the number of inmates moving directly from the origin CI

i to destination CI j on trip p. Also let νr, for all r ∈ R, be the number of stops

in the route r. Let xprk1k2 , for all p ∈ P , r ∈ R, and 1 ≤ k1 < k2 ≤ νr, be the

number of inmates directly going from the k1-th CI to the k2-th CI of route r and

trip p. The following constraints assure that the number of inmates directly moving

between two CIs in a trip is equal to the sum of all the inmates moving between

those two CIs in the route allocated to the trip

yijp =
∑
r∈R

∑
k1∈Kri

∑
k2∈Krj

xprk1k2 , ∀i, j ∈ C, i 6= j, p ∈ P .

We need to have a bound on the number of inmates moving between any two CIs in

a trip. Let ψp, for all p ∈ P , be the seat capacity of the vehicle used on trip p. Let

the parameter ωijr, for all i, j ∈ C and r ∈ R, be equal to 1 if CI i is before CI j in

route r; 0, otherwise. Constraints (6.2) ensure that the number of inmates moving

between any two CIs is not more than Smax, the maximum capacity of the vehicle.

yijp ≤ ψp
∑
r∈R

ωijrzpr, ∀i, j ∈ C, i 6= j, p ∈ P . (6.2)

Let R′ be the set of the routes which go through the hub and let sprk, for all

p ∈ P , r ∈ R, and k ≤ νr, be equal to the number of inmates at the k-th stop of

route r on trip p. Constraints (6.3) and (6.4) enforce the balance of the inmates on

the routes that do not go through the hub. Constraints (6.3) represent the balance

150

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

equations corresponding to the first stop of a route on a trip without hub.

spr1 =
νr∑
k=1

xpr1k, ∀p ∈ P , r ∈ R \ R′. (6.3)

Constraints (6.4) ensure that the number of inmates at each stop of a route in a

trip without hub should be equal to the number of inmates at the previous stop of

that route plus the number of inmates getting on the trip on that stop minus the

number of inmates getting off the trip on that stop.

sprk = spr,k−1 +
νr∑

k2=k+1
xprkk2 −

k−1∑
k1=1

xprk1k, ∀p ∈ P , r ∈ R \ R′, 2 ≤ k ≤ νr. (6.4)

Next, we explain the constraints related to the routes that go through the trans-

portation hub. If an inmate goes through the hub, he/she needs to be assigned to

two separate trips to get to his/her final destination. The first trip transports the

inmate to the hub, and the second picks him/her up from the hub to the destination.

Let ηr, for all r ∈ R′, be the stop number of the hub in route r. Constraints (6.5)-

(6.8) are equivalent to constraints (6.3) and (6.4) for the transportation through the

hub. Constraints (6.5)-(6.8) enforce that the number of inmates getting on at each

stop is equal to the number of inmates at the previous stop plus the ones that are

getting on at the stop minus the ones that are getting off at that stop.

Let uprkj, for all p ∈ P , r ∈ R′, 1 ≤ k < ηr, and j ∈ C, be the number of inmates

on trip p moving from the k-th CI of route r to the hub with final destination j.

Similarly, let vprki for all p ∈ P , r ∈ R′, ηr < k ≤ νr and i ∈ C, be the number

of inmates on trip p moving from the hub to the k-th CI of route r with origin i.

Constraints (6.5) represent the balance equations corresponding to the first stop of

a route on a trip.

spr1 =
∑
i∈C

xpr1i +
νr∑
k=1

upr1k ∀p ∈ P , r ∈ R′. (6.5)

Constraints (6.6) represent the balance equations when the k-th stop of the route

is before the hub, in which ∑
i∈C uprki is the total number of inmates getting on at

151

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

stop n of route r on trip p and getting off at the hub.

sprk = spr,k−1+
∑
k2>k

xprkk2−
∑
k1<k

xprk1k+
∑
i∈C

uprki ∀p ∈ P , r ∈ R′, 2 ≤ k < ηr. (6.6)

Constraints (6.7) enforce the balance equations at the hub.

sprηr = spr,ηr−1 +
νr∑

k2=ηr+1
xprηrk2 −

ηr−1∑
k1=1

xprk1ηr

−
∑
j∈C

ηr∑
k1=1

uprk1j +
∑
i∈C

νr∑
k2=ηr+1

vprk2i, ∀p ∈ P , r ∈ R′.
(6.7)

Constraints (6.8) enforce the balance equations for the stops after the hub.

sprk = spr,k−1 +
νr∑

k2=k+1
xprkk2 −

k−1∑
k1=1

xprk1k −
∑
i∈C

vprki ∀p ∈ P , r ∈ R′, k > ηr. (6.8)

We need to consider the vehicle capacity constraints at each stop. Constraints

(6.9) enforce a bound on the variable sprk, making sure that at any given point of

time during the transportation, the number of inmates on a trip does not exceed

the capacity of the vehicle.

sprk ≤ ψpzpr ∀p ∈ P , r ∈ R, k ≤ νr. (6.9)

Furthermore, constraints (6.10) are the capacity constraints for the transporta-

tion of inmates through the hub.

uprk1j ≤ ψpzpr ∀p ∈ P , r ∈ R′, 1 ≤ k1 < ηr, j ∈ C,

vprk2i ≤ ψpzpr ∀p ∈ P , r ∈ R′, ηr < k2 ≤ νr, i ∈ C.
(6.10)

Let T be the set of the days of the transportation and let Pt be the set of all the

potential trips corresponding to day t ∈ T . Note that P = ⋃
t∈T Pt. Constraints

(6.11) enforce that, at each transportation day, the total number of inmates going

from CI i to the hub with final destination j is equal to the total number of inmates

going from the hub to CI j, with the origin i.∑
p∈Pt

∑
r∈R′

∑
k1∈Kri

uprk1j =
∑
p∈Pt

∑
r∈R′

∑
k2=Krj

vprk2i ∀i, j ∈ C, i 6= j, t ∈ T . (6.11)

152

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

6.3.1 Objective Function

The ITP is a multi-objective problem. The PADoC primarily uses two types of

vehicles to transport inmates between CIs, buses and vans. We consider two main

objectives to reduce the number of inmates not transported in a given transporta-

tion time period and to reduce the total number of seats utilized for the inmate

transportation. Let dij, for all i, j ∈ C, be the number of inmates not assigned to

any trip which is defined in equation (6.12)

dij = ξij −
∑
p∈P

yijp −
∑
p∈P

∑
r∈R′

∑
k1∈Kri

vprk1j ∀i, j ∈ C, i 6= j. (6.12)

Our aim is to minimize the weighted sum of the two objectives of the MILO model

presented in (6.13). Here, α is the weight of the total seats used for transportation.

min α
∑
p∈P

∑
r∈R

ψpzpr +
∑

i,j∈C|i 6=j
dij. (6.13)

6.3.2 MILO Model

In this section, we present the MILO model for the ITP. We utilize the weighted

sum method to combine the two objectives. The MILO model is as follows:

min α
∑
p∈P

∑
r∈R

ψpzpr +
∑

i,j∈C|i 6=j
dij,

s.t.
∑
r∈R

zpr ≤ 1, ∀p ∈ P ,

yijp =
∑
r∈R

∑
k1∈Kri

∑
k2∈Krj

xprk1k2 , ∀i, j ∈ C, i 6= j, p ∈ P ,

spr1 =
νr∑
k=1

xpr1k, ∀p ∈ P , r ∈ R \ R′,

sprk = spr,k−1 +
νr∑

k2=k+1
xprkk2 −

k−1∑
k1=1

xprk1k, ∀p ∈ P , r ∈ R \ R′, 2 ≤ k ≤ νr,

153

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

spr1 =
∑
i∈C

xpr1i +
νr∑
k=1

upr1k ∀p ∈ P , r ∈ R′,

sprk = spr,k−1 +
∑
k2>k

xprkk2

−
∑
k1<k

xprk1k +
∑
i∈C

uprni ∀p ∈ P , r ∈ R′, 2 ≤ k < ηr,

sprηr = spr,ηr−1 +
νr∑

k2=ηr+1
xprηrk2 −

ηr−1∑
k1=1

xprk1ηr

−
∑
j∈C

ηr∑
k1=1

uprk1j +
∑
i∈C

νr∑
k2=ηr+1

vprk2i, ∀p ∈ P , r ∈ R′,

sprk = spr,k−1 +
νr∑

k2=k+1
xprkk2

−
k−1∑
k1=1

xprk1k −
∑
i∈C

vprki ∀p ∈ P , r ∈ R′, k > ηr,

∑
p∈Pt

∑
r∈R′

∑
k1∈Kri

uprk1j =
∑
p∈Pt

∑
r∈R′

∑
k2=Krj

vprk2i ∀i, j ∈ C, i 6= j, t ∈ T ,

dij = ξij −
∑
p∈P

yijp −
∑
p∈P

∑
r∈R′

∑
k1∈Kri

vprk1j ∀i, j ∈ C, i 6= j

sprk ≤ ψpzpr ∀p ∈ P , r ∈ R, k ≤ νr,

uprk1j ≤ ψpzpr ∀p ∈ P , r ∈ R′, 1 ≤ k1 < ηr, j ∈ C,

vprk2i ≤ ψpzpr ∀p ∈ P , r ∈ R′, ηr < k2 ≤ νr, i ∈ C,

yijp ≤ ψp
∑
r∈R

ωijrzpr, ∀i, j ∈ C, i 6= j, p ∈ P ,

zpr = {0, 1} ∀p ∈ P , r ∈ R,

xprk1k2 ∈ N ∀p ∈ P , r ∈ R, 1 ≤ k1 < k2 ≤ νr,

yijp ∈ N ∀i, j ∈ C, p ∈ P , i 6= j,

154

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

sprk ∈ N ∀p ∈ P , r ∈ R, 1 ≤ k ≤ νr,

uprkj ∈ N ∀p ∈ P , r ∈ R′, 1 ≤ k ≤ νr, j ∈ C,

vprki ∈ N ∀p ∈ P , r ∈ R′, 1 ≤ k ≤ νr, i ∈ C,

dij ∈ N ∀i, j ∈ C, i 6= j.

The parameters and sets of the ITP are presented in Table 6.1 and the decision

variables of the MILO model are summarized in Table 6.2.

Table 6.1: The parameters of the ITP.

Parameters Description
C Set of all CIs
R Set of all possible routes
R′ Set of all possible routes visiting the hub
T Set of days of the transportation
Pt Set of the potential trips on day t
P Set of the all the potential trips (P =

⋃
t∈T
Pt)

Kri Set of the stops corresponding to CI i on route r
ωijr 1, if CI i is before CI j on router; 0, otherwise
νr Number of stops (CIs) on route r
ηr Stop number of the hub on route r if the route visits the hub;∞, otherwise
ψp Seat capacity of the vehicle used on trip p
ξij Number of inmates that need to move from CI i to CI j
α Penalty coefficient of the objective function

155

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

Table 6.2: The decision variables of the MILO model for the ITP.

Variables Description
zpr 1, if route r is assigned to potential trip p; 0, otherwise
yijp Number of inmates moving directly (without going to the hub) from CI i

to CI j on trip p
xprk1k2 Number of inmates directly going from the k1-th CI to the k2-th CI of

route r on trip p
uprk1j Number of inmates on trip p going from the k1-th CI of route r to the hub

with final destination j
vprk2i Number of inmates on trip p going from the hub to the k2-th CI of route

r with origin i
sprk Number of inmates on the vehicle at the k-th CI of route r on trip p
dij Number of inmates that need to move from CI i to CI j, but not assigned

to any trip

The ITP is a multi-objective optimization problem. We had to specify and fine-

tune the relative weights of the objectives and ensure robustness of the model in

assigning inmates to trips for various datasets.

6.4 Computational Results

In this section, we present the computational results and compare the performance

of the MILO model with that of the manual transportation process. We used Google

Maps API to calculate the pessimistic travel time between the facilities and create

the distance matrix, which is then further used to create routes. In order to test

the MILO model, A dataset of 4,682 inmates is used which were transported in an

eight-week time period, from April 1st, 2018 to May 26th, 2018. The transportation

of inmates is scheduled on a weekly basis. The number of inmates which were

transported in each week of the time period are presented in Table 6.3.

156

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

Table 6.3: The number of inmates transported in each week between April 1st 2018
to May 26th 2018.

Dates Week Number Inmates Transported
04/01/2018 - 04/07/2018 1 550
04/08/2018 - 04/14/2018 2 530
04/15/2018 - 04/21/2018 3 668
04/22/2018 - 04/28/2018 4 657
04/29/2018 - 05/05/2018 5 499
05/06/2018 - 05/12/2018 6 554
05/13/2018 - 05/19/2018 7 581
05/20/2018 - 05/26/2018 8 643
Total inmates transported 4682

For computational experiments a computer with Dual Intel Xeon R© CPU E5-

2630 @ 2.20 GHz (20 cores) and 64 GB of RAM is used. Gurobi [Gurobi Optimiza-

tion Inc., 2016] is used to solve the MILO model with its default parameters and it

is set to use 10 threads. The solution time limit of Gurobi is set to 43,200 seconds

(12 hours) for all datasets.

There are two vehicle types, buses and vans, available at the CIs. Depending

on their make and model, the capacities of these buses and vans are different. The

capacities of buses are generally larger than those of the vans. Since we minimize

the total number of seats used for transportation, the model tends to minimize the

number of allocated trips with buses as opposed to vans.

In order to evaluate the MILO model and compare its performance with manually

scheduling the transportation, we considered the following indicators:

- Total number of trips allocated.

- Total number of buses and vans used in allocated trips.

- Total number of seats in the vehicles used in allocated trips.

157

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

- Total number of inmates transported and number of inmates not transported.

- Percentage of inmates using the hub for transportation.

If an inmate uses the hub in order to be transported to the destination CI

then the transportation is done by two trips.

- Seat utilization ratio, which is the number of inmates transported to the total

number of seats available in trips for transportation. The seat utilization ratio

can be greater than one, since multiple inmates can occupy the same seat in

a trip, as they can get on and get off at different stops. We consider two

types of seat utilization ratio. In without-hub seat utilization ratio, we count

all the inmates once, even though the inmates that go through the hub used

two vehicles for transportation. In with-hub seat utilization ratio, however, we

count the inmates that are transported through the hub twice as they take

two seats for transportation.

The results of the manual allocation of the trips and the assignment of the

inmates to the trips for the 8 weeks are presented in Table 6.4. Notice that the

average number of the seats, buses, and vans used for the transportation and the

number of inmates transported are rounded up in the table. The detailed results of

each week are presented in Table B.1 of Appendix B.

Table 6.4: Average results of the 8 weeks in manual transportation planning.

Trips Seats used Buses Vans # Inmates
transported

% transported
through hub

Seat utilization ratio
w/o hub w/ hub

39 912 21 18 585 57.55 0.64 1.00

The parameter α is the coefficient used in the objective function to penalize the

allocation of vehicles for transportation. As α increases, the penalty associated with

158

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

allocating a vehicle for transportation increases. Thus, the number of the allocated

trips and more importantly the number of allocated buses for transportation de-

creases as α increases. There is a trade-off between the two objectives of the model:

minimize the number of the inmates not transported and minimize the number of

seats used in the allocated trips. The relative penalty of not assigning inmates to

trips decreases as α increases. Thus, the number of inmates that are not assigned

to a trip increases as α increases. Additionally, the number of inmates assigned to

a trip increases, thus the utilization ratio increases. We tested the MILO model

for α ∈ {0.10, 0.25, 0.50, 0.75, 1.00}. In Table 6.5 the average results of the MILO

model for different values of the penalty coefficient α is presented. Notice that the

average number of seats, buses, and vans used for the transportation of the inmates

is rounded up in the table. The detailed results of the MILO model for each week

is presented in Tables B.2-B.9 of Appendix B.

Table 6.5: Average results of the 8 weeks from the MILO model.

α Trips Seats
used Buses Vans % not

moved
%

moved
% moved
w/ hub

Seat utilization ratio
w/o hub w/ hub

0.10 28 535 12 16 0.13 99.87 40.25 1.10 2
0.25 26 482 10 16 1.49 98.51 39.63 1.20 1.68
0.50 25 437 9 16 4.21 95.79 38.13 1.29 1.78
0.75 23 385 8 16 8.69 91.31 36.00 1.40 1.90
1.00 19 259 5 15 26.47 73.53 23.25 1.66 2.04

One of the important decisions is to select the appropriate value for α. There is

a trade-off between the number of vehicles used for transportation and the number

of the inmates moved. Our aim is to choose an α which leads to a small number

of inmates not transported while a small number of trips are used to transport the

inmates.

159

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

From Table 6.5, we can observe that as α increases the percentage of inmates

not transported increases. Since for the data that we consider, all the inmates

are already transported in those respective weeks, we need to make sure that the

number of inmates not transported is small. When α = 0.25, on average, %1.49

of the inmates are not transported, which is deemed acceptable, since those few

inmates would be transported a week later than their scheduled transportation.

Thus, among the values considered for α in Table 6.5, the most appropriate value

of α was determined to be 0.25.

When α = 0.25, on average, 26 trips are allocated each week for the inmate

transportation and less than 1.4% of inmates are not transported. The inmates who

were not assigned to any trip can be transported in the following week. As seen in

Tables 6.4 and 6.5, on average, weekly transportation of inmates can be done by

using less than half of the buses and 3 fewer vans. Furthermore, the without-hub

seat utilization for the MILO model with α = 0.25, is nearly twice of that for the

manual transportation planning, and with-hub seat utilization is increased by %60.

Thus, the optimized transportation can significantly improve the seat utilization

ratio, while on average less than 1.4 % of inmates are not assigned to trips on a

week.

In Table 6.6, the worst case of the manual transportation planning during the 8

weeks is compared with that of utilizing the MILO model with α = 0.25 for inmate

transportation. In the worst case analysis, the number of the buses is the maximum

number of buses that are used in a week for the inmate transportation, and so is the

number of the vans in the worst case calculated. In the worst case the MILO model,

for α = 0.25, allocates 10 less buses and 5 less vans to transport inmates in a week.

160

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

Table 6.6: Worst case analysis of manual transportation planning and the MILO
model with α = 0.25.

Number of Buses Number of Vans
Manual 22 21

MILO model 12 16

As we can see in Tables B.2-B.9, none of the problems are solved to global

optimality. As the decisions about inmate transportation are made on a weekly

basis, we can let the solver Gurobi run for longer time duration than 12 hours to

obtain better solutions.

6.5 Benefits and Impact

In this section, we quantify the expected savings that can be achieved by using the

MILO model for the inmate transportation process. We have identified two main

areas of savings that can be achieved by optimizing the transportation process. In

order to compute the savings, we compare the average and the worst case of manual

transportation planning with that of the MILO model output.

- Maintenance and gas: It was reported by the PADoC in 2013 that the

cost maintenance and gas for 21 buses that were used for transportation

was $500,000. On average, the number of the buses used for transportation

reduced from 21 to 10. The model reduces the number of buses by 11. Thus,

the savings from the maintenance and gas is projected to be $261,900 annually.

In the worst case, the number of buses used for transportation reduced by 10.

In the worst case scenario the MILO model results in a saving of $238,000

annually.

161

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

- Salary: Each bus and van, used for the transportation, needs three and two

correctional officers, respectively. The average annual salary and benefits of a

correctional officer is $135,000. On average, the number of buses and vans used

for transportation reduced from 21 and 18 to 10 and 15, respectively. There

is a reduction of 11 bus-trips and 3 van-trips weekly. This would translate

in a saving of 39 man-day on a weekly basis which is equivalent to 7.8 full-

time correctional officer positions. Thus, the saving from the salary would be

$1,053,000, annually. For the worst case, the number of buses and vans used

for transportation reduced by 10 and 5, respectively. This could translate in

a saving of 40 man-day weekly, which is equivalent to 8 full-time correctional

officer positions. Thus, the saving would be $1,080,000, annually.

The average projected quantified savings in one year and over five years are

summarized in Table 6.7. The quantified savings for the comparison between the

worst case scenario of the manual transportation process and the worst case scenario

of the MILO model output is presented Table 6.8.

Table 6.7: Average quantified savings.

Savings One Year ($) Five years ($)
Gas & Maintenance 261,900 1,309,500
Salary 1,053,000 5,062,500
Sum 1,314,900 6,574,500

162

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

Table 6.8: Worst case quantified savings.

Savings One Year ($) Five years ($)
Gas & Maintenance 238,000 1,190,000
Salary 1,080,000 5,400,000
Sum 1,318,000 6,590,000

Besides, the hub is visited on average by %57 of the inmates in the manual

transportation planning, while in the solution of the MILO model with α = 0.1, the

hub is visited by %39 of the inmates, which is more than %30 reduction in hub usage

for the transportation of the inmates and can also contribute to significant savings.

Another big saving can be achieved by reducing overtime salaries of correctional

officers required in transports. Often trips are scheduled for irregular time leading to

required extra hours for the correctional officers. Overtime salaries are significantly

higher than the normal work hour salaries. Discussions with the PADoC indicate

that overtime payments have become a significant monetary burden on the PADoC.

To quantify the savings for reduced use of the hub and reduced overtime payment

requires the collection and analysis of additional data. The quantification of these

savings remains for future analysis.

Conventionally, the PADoC uses a set of about 40 routes to transfer inmates.

The model, however, chooses routes from a set of about 1200 possible routes. Reg-

ularly changing the routes and letting the model decide the routes make the entire

transportation process more efficient and safer, since it becomes harder to identify

the pattern of the inmate transportation within the State of PA.

163

CHAPTER 6. THE INMATE TRANSPORTATION PROBLEM

6.6 Conclusion

In this chapter, we presented our work on the ITP. We studied and formalized the

inmate transportation process and developed a multi-objective MILO model for the

ITP. Numerical results indicate that significant savings can be achieved by using the

MILO model in inmate transportation planning. This study was done as a proof of

concept for the project of optimizing the inmate transportation process. The MILO

model can further be advanced to incorporate other business rules and constraints

of the inmate transportation process, and can, additionally, be adapted to other

jurisdictions.

164

Chapter 7

Conclusions and Future Research

In this thesis, we have investigated the theory and applications of Mixed Integer

Conic Optimization (MICO). The work is divided into three main areas: Disjunctive

Conic Cuts (DCCs) for Mixed Integer Second Order Cone Optimization (MISOCO)

problems; developing new models and a novel solution methodology for large-scale

discrete truss design problems; and application of mathematical optimization in

correctional industries.

7.1 Conclusions

In Chapter 2, we presented two fundamental classes of pathological disjunctions for

MICO problems, where the disjunctive cuts do not cut-off any part of the original

sets. Then we utilized the pathological disjunctions to identify redundant DCCs

and DCyCs for MISOCO problems. We know that if the DCC is redundant, then

any other disjunctive cut will be redundant too, since the DCC is the tightest

possible disjunctive cut describing the convex hull of the disjunctive set. We also

showed how those two cases are the building blocks of more complex instances.

165

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

We illustrated that by analyzing some instances in Section 2.4, and showing how

those were combinations of the two fundamental pathological disjunctions. Efficient

implementation of Branch and Conic Cut (BCC) algorithms for MISOCO requires

the identification of pathological disjunctions. In a BCC framework, it is important

to keep under control the growth of the problem. For that reason, identifying

whether a DCC is redundant, before adding it to the formulation, is essential to

obtain an efficient implementation of this methodology.

In Chapters 3 and 4, we presented our work on truss design problems. We

proposed several mathematical models for the continuous and discrete truss design

problems, and we proposed our novel solution methodology to solve discrete truss

sizing problems.

In Chapter 3, we overviewed the continuous truss sizing problem with force

balance equations, Hooke’s law, yield stress and Euler buckling constraints, and

bounds on the nodal displacements and cross-sectional areas of the bars. The re-

sulting model is a non-linear non-convex problem. We presented two MILO models

which provide a lower bound for the optimal objective value of the problem. Then

we proposed several MILO models for the discrete truss sizing optimization prob-

lem and discrete truss topology design and sizing optimization problems, and we

extended all the models to account for multi-scenario design problems.

In Chapter 4, we proposed the novel Neighborhood Search Mixed Integer Linear

Optimization (NS-MILO) methodology to solve the truss sizing problems, where

a sequence of MILO subproblems in a moving neighborhood search framework are

solved. It is impossible to get proven optimal solutions for problems of practical

relevance. The NS-MILO methodology enables us to provide high-quality solutions

for previously unsolvable truss design problems. A variety of different classes of

truss problems, including 2D and 3D cantilever trusses, and airplane wing trusses

166

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

are solved with the NS-MILO approach. Numerical results indicate that the NS-

MILO approach is significantly faster than simply using a MILO solver to solve

the original truss sizing problems. Additionally, for large scale trusses, the solution

of the NS-MILO approach is significantly better than the solution obtained from

attempting to directly solve the original problems.

In Chapters 5 and 6, we presented our pioneer work on the application of math-

ematical optimization in the correctional industry. Specifically, we addressed two

important problems that every correctional system faces on a daily basis: the Inmate

Assign Problem (IAP) and the Inmate Transportation Problem (ITP).

In Chapter 5, we presented our results on the IAP. The IAP is an assignment

problem with various constraints, including general assignment factors, capacity

constraints, scheduling of treatment programs for the inmates, etc. Due to limited

resources, it is impossible to make an ideal assignment and satisfy all the constraints

of the assignment; thus, the IAP is inherently an infeasible problem. We developed

a novel hierarchical multi-objective MILO model for the IAP. We penalize the sum

of the weighted violation of the constraints of the assignment in the multi-objective

MILO model, which is in fact the heart of the Inmate Assignment Decision Support

System (IADSS). The IADSS is a decision support system which enables the PADoC

to simultaneously and optimally assign the inmates to the correctional institutions,

and schedule their treatment programs, while all the rules and criteria of the as-

signment are considered. The IADSS minimizes the waiting time of the inmates

for getting into the required program(s); hence, it facilitates the timely eligibility of

the inmates for parole, which ultimately reduces the population of inmates in the

correctional system. The IADSS has been used with proven success at the PADoC

for the daily assignment of the inmates to CIs since September 2016. The IADSS

has decreased the annual cost at PADoC by $2, 958, 617, and the projected saving

over five years is $19, 199, 485. To our best knowledge, this is the first time that OR

167

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

methodology is built directly into the routine business operations of a correctional

system.

In Chapter 6, we presented our work on the ITP. We studied and formalized the

inmate transportation process and developed a multi-objective MILO model for the

ITP. Numerical results indicate that significant savings can be achieved by using

the MILO model in inmate transportation planning.

7.2 Future research

As a future work to Chapter 2, one can embed the identification of pathological

disjunctions and redundant DCCs in the implementation of BCC algorithms with

the goal to identify those cases and situations where the addition of DCCs can not

tighten the formulation of the problem.

As a future work to Chapter 4, the NS-MILO approach can be extended to solve

the discrete truss topology design and sizing optimization problems. Additionally,

an other model of airplane wing design includes a discrete ply-angle structure, where

the wing is modeled as a multi-layer multi-element plate structure, and the topol-

ogy and fiber orientation of the structure need to be decided. The discrete ply-

angle problem can be modeled as a MISOCO problem, which is challenging to solve

when the size of the problem grows. Thus, research need to be done on developing

mathematical optimization models and efficient solution methodologies for discrete

ply-angle problems.

The success of the inmate assignment project, presented in Chapter 5, opens

new avenues to: a) adapt and introduce the IADSS methodology to optimize the

operations of correctional systems of other states and countries and, b) explore other

applications of OR methodologies in the complex operations of correctional systems.

Correctional systems in this nation and elsewhere have numerous problems that cry

168

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

out for the use of OR methodologies. This highly successful application of OR in a

large correctional system opens a rich application area of OR, just as the first crew

scheduling application did in the airline industry.

The work on the ITP, presented in Chapter 6, was done as a proof of concept

for the project of optimizing the inmate transportation process. The mathematical

optimization model developed for the ITP can further be advanced to incorporate

other business rules and constraints of the inmate transportation process, and can

be adapted to other jurisdictions. Last but not least, having developed the model

to solve the inmate transportation problem, it can be integrated with the IADSS to

optimize the assignment and transportation of the inmates system-wide.

169

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

170

Bibliography

Achterberg, T., Koch, T., and Martin, A. (2005). Branching rules revisited. Opera-

tions Research Letters, 33(1):42–54.

Achtziger, W. (1999a). Local stability of trusses in the context of topology opti-

mization part I: Exact modelling. Structural Optimization, 17(4):235–246.

Achtziger, W. (1999b). Local stability of trusses in the context of topology opti-

mization part II: A numerical approach. Structural Optimization, 17(4):247–258.

Achtziger, W., Bendsøe, M. P., Ben-Tal, A., and Zowe, J. (1992). Equivalent dis-

placement based formulations for maximum strength truss topology design. IM-

PACT of Computing in Science and Engineering, 4(4):315–345.

Achtziger, W. and Stolpe, M. (2006). Truss topology optimization with discrete de-

sign variables—guaranteed global optimality and benchmark examples. Structural

and Multidisciplinary Optimization, 34(1):1–20.

Achtziger, W. and Stolpe, M. (2007a). Global optimization of truss topology with

discrete bar areas—part I: theory of relaxed problems. Computational Optimiza-

tion and Applications, 40(2):247–280.

Achtziger, W. and Stolpe, M. (2007b). Global optimization of truss topology with

171

BIBLIOGRAPHY

discrete bar areas—part II: Implementation and numerical results. Computational

Optimization and Applications, 44(2):315–341.

Achtziger, W. and Stolpe, M. (2007c). Truss topology optimization with discrete de-

sign variables—guaranteed global optimality and benchmark examples. Structural

and Multidisciplinary Optimization, 34(1):1–20.

Aktürk, M. S., Atamtürk, A., and Gürel, S. (2014). Aircraft rescheduling with cruise

speed control. Operations Research, 62(4):829–845.

Al-Khayyal, F. A. and Falk, J. E. (1983). Jointly constrained biconvex programming.

Mathematics of Operations Research, 8(2):273–286.

Andersen, K. and Jensen, A. N. (2013). Intersection cuts for mixed integer conic

quadratic sets. In Goemans, M. and Correa, J., editors, Integer Programming and

Combinatorial Optimization, volume 7801 of Lecture Notes in Computer Science,

pages 37–48. Springer.

Arabeyre, J. P., Fearnley, J., Steiger, F. C., and Teather, W. (1969). The airline

crew scheduling problem: a survey. Transportation Science, 3(2):140–163.

Atamtürk, A. and Narayanan, V. (2010). Conic mixed-integer rounding cuts. Math-

ematical Programming, 122(1):1–20.

Atamtürk, A. and Narayanan, V. (2011). Lifting for conic mixed-integer program-

ming. Mathematical Programming, 126(2):351–363.

Atkočiūnas, J., Merkevičiūtė, D., and Venskus, A. (2008). Optimal shakedown

design of bar systems: Strength, stiffness and stability constraints. Computers &

Structures, 86(17):1757–1768.

172

BIBLIOGRAPHY

Balas, E. (1971). Intersection cuts - a new type of cutting planes for integer pro-

gramming. Operations Research, 19(1):19–39.

Balas, E., Ceria, S., and Cornuéjols, G. (1993). A lift-and-project cutting plane

algorithm for mixed 0–1 programs. Mathematical Programming, 58(1):295–324.

Barbosa, H. J., Lemonge, A. C., and Borges, C. C. (2008). A genetic algorithm

encoding for cardinality constraints and automatic variable linking in structural

optimization. Engineering Structures, 30(12):3708–3723.

Belotti, P., Góez, J. C., Pólik, I., Ralphs, T. K., and Terlaky, T. (2013). On families

of quadratic surfaces having fixed intersections with two hyperplanes. Discrete

Applied Mathematics, 161(16-17):2778–2793.

Belotti, P., Góez, J. C., Pólik, I., Ralphs, T. K., and Terlaky, T. (2015). A conic

representation of the convex hull of disjunctive sets and conic cuts for integer

second order cone optimization. In Numerical Analysis and Optimization, volume

134 of Springer Proceedings in Mathematics & Statistics, pages 1–35. Springer

International Publishing.

Belotti, P., Góez, J. C., Pólik, I., Ralphs, T. K., and Terlaky, T. (2017). A complete

characterization of disjunctive conic cuts for mixed integer second order cone

optimization. Discrete Optimization, 24:3–31.

Ben-Tal, A. and Nemirovski, A. (2001). Lectures on Modern Convex Optimization:

Analysis, Algorithms, and Engineering Applications, volume 2. SIAM.

Bendsøe, M. P. and Ben-Tal, A. (1993). Truss topology optimization by a displace-

ments based optimality criterion approach. In Rozvany, G., editor, Optimization

of Large Structural Systems, volume 231 of NATO ASI Series, pages 139–155.

Springer.

173

BIBLIOGRAPHY

Bendsøe, M. P., Ben-Tal, A., and Zowe, J. (1994). Optimization methods for truss

geometry and topology design. Structural Optimization, 7(3):141–159.

Bergamini, M. L., Aguirre, P., and Grossmann, I. (2005). Logic-based outer approxi-

mation for globally optimal synthesis of process networks. Computers & Chemical

Engineering, 29(9):1914 – 1933.

Bertsekas, D. P. (2009). Convex Optimization Theory. Athena Scientific Belmont.

Bertsimas, D. and Shioda, R. (2009). Algorithm for cardinality-constrained

quadratic optimization. Computational Optimization and Applications, 43(1):1–

22.

Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to Linear Optimization,

volume 6. Athena Scientific Belmont, MA.

Bienstock, D. and Munoz, G. (2014). On linear relaxations of OPF problems.

Preprint arXiv:1411.1120.

Bland, J. A. (2001). Optimal structural design by ant colony optimization. Engi-

neering Optimization, 33(4):425–443.

Brooks, T. R., Kenway, G. K. W., and Martins, J. R. R. A. (2018). uCRM: An

aerostructural model for the study of flexible transonic aircraft wings. AIAA

Journal. (In press).

Cai, J. and Thierauf, G. (1993). Discrete optimization of structures using an im-

proved penalty function method. Engineering Optimization, 21(4):293–306.

Camp, C. and Farshchin, M. (2014). Design of space trusses using modified teach-

ingâĂŞlearning based optimization. Engineering Structures, 62-63:87–97.

174

BIBLIOGRAPHY

Camp, C. V. (2007). Design of space trusses using big bang–big crunch

optimization. Journal of Structural Engineering, 133(7):999–1008.

Camp, C. V. and Bichon, B. J. (2004a). Design of space trusses using ant colony

optimization. Journal of Structural Engineering, 130(5):741–751.

Camp, C. V. and Bichon, B. J. (2004b). Design of space trusses using ant colony

optimization. Journal of Structural Engineering, 130(5):741–751.

Caprara, A., Toth, P., Vigo, D., and Fischetti, M. (1998). Modeling and solving the

crew rostering problem. Operations Research, 46(6):820–830.

Cerveira, A., Agra, A., Bastos, F., and Gromicho, J. (2009). New branch and

bound approaches for truss topology design with discrete areas. In Long, C.,

Sohrab, S. H., Bognar, G., and Perlovsky, L., editors, Proceedings of the American

Conference on Applied Mathematics. Recent Advances in Applied Mathematics,

pages 228–233.

Çezik, M. T. and Iyengar, G. (2005). Cuts for mixed 0-1 conic programming. Math-

ematical Programming, 104(1):179–202.

Cohen, M. A. (2005). The Costs of Crime and Justice. Routledge.

Cook, W. (2012). In Pursuit of the Traveling Salesman: Mathematics at the Limits

of Computation. Princeton University Press.

Cook, W. J. (2011). In pursuit of the traveling salesman: mathematics at the limits

of computation. Princeton University Press.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., and Vigo, D. (2007). Chapter 6

175

BIBLIOGRAPHY

vehicle routing. In Barnhart, C. and Laporte, G., editors, Transportation, vol-

ume 14 of Handbooks in Operations Research and Management Science, pages

367–428. Elsevier.

Crowder, H., Johnson, E. L., and Padberg, M. (1983). Solving large-scale zero-one

linear programming problems. Operations Research, 31(5):803–834.

Dadush, D., Dey, S. S., and Vielma, J. P. (2011). The split closure of a strictly

convex body. Operations Research Letters, 39(2):121–126.

Dakin, R. J. (1965). A tree-search algorithm for mixed integer programming prob-

lems. The Computer Journal, 8(3):250–255.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale

traveling-salesman problem. Operations Research, 2(4):393–410.

Dantzig, G. B. (1951). Application of the simplex method to a transportation prob-

lem. In Koopmans, T. C., editor, Activity Analysis of Production and Allocation,

volume 13, pages 359–373. John Wiley and Sons.

Dantzig, G. B. (1957). Discrete-variable extremum problems. Operations Research,

5(2):266–288.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Manage-

ment Science, 6(1):80–91.

Davis, L., Bozick, R., and Steele, J. (2013). Evaluating the Effectiveness of Cor-

rectional Education: A Meta-Analysis of Programs That Provide Education to

Incarcerated Adults. RAND Corporation.

176

BIBLIOGRAPHY

De Klerk, E., Roos, C., and Terlaky, T. (1995). Semi-definite problems in truss

topology optimization. Delft University of Technology, Faculty of Technical Math-

ematics and Informatics, Report 95-128.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., and Soumis, F.

(2002). VRP with pickup and delivery. In Toth, P. and Vigo, D., editors, The

Vehicle Routing Problem, chapter 9, pages 225–242. SIAM.

Dorn, W. S., Gomory, R. E., and Greenberg, H. J. (1964). Automatic design of

optimal structures. Journal de Mecanique, 3:25–52.

Drewes, S. (2009). Mixed Integer Second Order Cone Programming. PhD thesis,

Technische Universität, Darmstadt, Germany.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem

with time windows. European Journal of Operational Research, 54(1):7–22.

Flood, M. M. (1953). On the Hitchcock distribution problem. Pacific Journal of

Mathematics, 3(2):369–386.

Flood, M. M. (1956). The traveling-salesman problem. Operations Research,

4(1):61–75.

Giambanco, F. and Palizzolo, L. (1995). Optimality conditions for shakedown design

of trusses. Computational Mechanics, 16(6):369–378.

Gill, P. E., Murray, W., and Saunders, M. A. (2005). SNOPT: An SQP algorithm

for large-scale constrained optimization. SIAM Review, 47(1):99–131.

Glover, F. (1975). Improved linear integer programming formulations of nonlinear

integer problems. Management Science, 22(4):455–460.

177

BIBLIOGRAPHY

Glover, F. (1984). An improved MIP formulation for products of discrete and con-

tinuous variables. Journal of Information and Optimization Sciences, 5(1):69–71.

Góez, J. C. (2013). Mixed Integer Second Order Cone Optimization Disjunctive

Conic Cuts: Theory and Experiments. PhD thesis, Lehigh University.

Góez, J. C. and Anjos, M. F. (2018). Second order conic optimization formulations

for service system design problems with congestion. In Pinter, J. D. and Terlaky,

T., editors, Modeling and Optimization: Theory and Applications - 2017 MOPTA

Conference , Selected Contributions. Springer.

Gomory, R. (1960a). An algorithm for the mixed integer problem. Technical report,

Santa Monica, Calif.: RAND Corporation, RM-2597-PR.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear pro-

grams. Bulletin of the American Mathematical Society, 64(5):275–278.

Gomory, R. E. (1960b). Solving linear programming problems in integers. Combi-

natorial Analysis, 10:211–215.

Gomory, R. E. (1963). An algorithm for integer solutions to linear programs. In

Graves, R. L. and Wolfe, P., editors, Recent Advances in Mathematical Program-

ming, volume 64, pages 260–302. New York.

Gounaris, C. E., Misener, R., and Floudas, C. A. (2009). Computational comparison

of piecewiseâĹŠlinear relaxations for pooling problems. Industrial & Engineering

Chemistry Research, 48(12):5742–5766.

Gurobi Optimization Inc. (2016). Gurobi optimizer reference manual.

Haftka, R. T. and Gürdal, Z. (2012). Elements of Structural Optimization. Springer

Science & Business Media.

178

BIBLIOGRAPHY

Hajela, P. and Lee, E. (1995). Genetic algorithms in truss topological optimization.

International Journal of Solids and Structures, 32(22):3341–3357.

Hanafi, S. (2016). New variable neighbourhood search based 0-1 MIP heuristics.

Yugoslav Journal of Operations Research, 25(3).

Hansen, P. and Mladenović, N. (2003). Variable neighborhood search. In Glover,

F. and Kochenberger, G. A., editors, Handbook of Metaheuristics, pages 145–184,

Boston, MA. Springer US.

Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., and Nguyen-Trang, T. (2016). An adap-

tive elitist differential evolution for optimization of truss structures with discrete

design variables. Computers and Structures, 165:59–75.

IBM Knowledge Center (2017). IBM ILOG CPLEX Optimization Studio V12.8.0

documentation.

Jabr, R. A., Singh, R., and Pal, B. C. (2012). Minimum loss network reconfiguration

using mixed-integer convex programming. IEEE Transactions on Power Systems,

27(2):1106–1115.

Kaliszky, S. and Lógó, J. (2002). Plastic behaviour and stability constraints in the

shakedown analysis and optimal design of trusses. Structural and Multidisciplinary

Optimization, 24(2):118–124.

Karuppiah, R. and Grossmann, I. E. (2006). Global optimization for the synthe-

sis of integrated water systems in chemical processes. Computers & Chemical

Engineering, 30(4):650 – 673.

Kaveh, A., Azar, B. F., and Talatahari, S. (2008). Ant colony optimization for

design of space trusses. International Journal of Space Structures, 23(3):167–181.

179

BIBLIOGRAPHY

Kaveh, A. and Ghazaan, M. I. (2015). A comparative study of CBO and ECBO for

optimal design of skeletal structures. Computers & Structures, 153:137–147.

Kaveh, A. and Kalatjari, V. (2004). Size/geometry optimization of trusses by the

force method and genetic algorithm. ZAMM - Journal of Applied Mathematics and

Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 84(5):347–

357.

Kaveh, A. and Mahdavi, V. (2014). Colliding bodies optimization method for opti-

mum discrete design of truss structures. Computers & Structures, 139:43–53.

Kaveh, A. and Talatahari, S. (2009). A particle swarm ant colony optimization for

truss structures with discrete variables. Journal of Constructional Steel Research,

65(8):1558–1568.

Kılınç-Karzan, F. and Yıldız, S. (2014). Two-term disjunctions on the second-order

cone. In Lee, J. and Vygen, J., editors, Integer Programming and Combinatorial

Optimization, volume 8494 of Lecture Notes in Computer Science, pages 345–356.

Springer International Publishing.

Kripka, M. (2004). Discrete optimization of trusses by simulated annealing. Journal

of the Brazilian Society of Mechanical Sciences and Engineering, 26:170–173.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval

Research Logistics Quarterly, 2(1-2):83–97.

Kyckelhahn, T. and Martin, T. (2010). Justice expenditure and employment ex-

tracts, 2010 - preliminary. http://www.bjs.gov/index.cfm?ty=pbdetail&iid=

4679. Accessed: 2017-08-15.

Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete

programming problems. Econometrica, 28(3):497–520.

180

http://www.bjs.gov/index.cfm?ty=pbdetail&iid=4679
http://www.bjs.gov/index.cfm?ty=pbdetail&iid=4679

BIBLIOGRAPHY

Lazić, J. (2010). New variants of variable neighbourhood search for 0-1 mixed integer

programming and clustering. PhD thesis, Brunel University, School of Information

Systems, Computing and Mathematics.

Li, D., Plebani, L., Terlaky, T., Wilson, G. R., and Bucklen, K. B. (2014). Inmate

classification: decision support tool gives help to pennsylvania department of

corrections. Industrial Engineer, 46:44–48.

Li, L., Huang, Z., and Liu, F. (2009). A heuristic particle swarm optimization

method for truss structures with discrete variables. Computers & Structures,

87(7):435–443.

Mahfouz, S. Y. (1999). Design optimization of structural steelwork. PhD thesis,

University of Bradford, United Kingdom.

Mai, C. and Subramanian, R. (2017). The price of prisons: examining state

spending trends, 2010-2015. https://storage.googleapis.com/vera-

web-assets/downloads/Publications/price-of-prisons-2015-state-

spending-trends/legacy_downloads/the-price-of-prisons-2015-state-

spending-trends.pdf. Accessed: 2017-08-15.

McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex

programs: Part 1 convex underestimating problems. Mathematical Programming,

10(1):147–175.

Mela, K. (2014). Resolving issues with member buckling in truss topology optimiza-

tion using a mixed variable approach. Structural and Multidisciplinary Optimiza-

tion, 50(6):1037–1049.

Mellaert, R. V., Mela, K., Tiainen, T., Heinisuo, M., Lombaert, G., and Schevenels,

M. (2017). Mixed-integer linear programming approach for global discrete sizing

181

https://storage.googleapis.com/vera-web-assets/downloads/Publications/price-of-prisons-2015-state-spending-trends/legacy_downloads/the-price-of-prisons-2015-state-spending-trends.pdf
https://storage.googleapis.com/vera-web-assets/downloads/Publications/price-of-prisons-2015-state-spending-trends/legacy_downloads/the-price-of-prisons-2015-state-spending-trends.pdf
https://storage.googleapis.com/vera-web-assets/downloads/Publications/price-of-prisons-2015-state-spending-trends/legacy_downloads/the-price-of-prisons-2015-state-spending-trends.pdf
https://storage.googleapis.com/vera-web-assets/downloads/Publications/price-of-prisons-2015-state-spending-trends/legacy_downloads/the-price-of-prisons-2015-state-spending-trends.pdf

BIBLIOGRAPHY

optimization of frame structures. Structural and Multidisciplinary Optimization,

57(2):579–593.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers

& Operations Research, 24(11):1097–1100.

Modaresi, S., Kılınç, M. R., and Vielma, J. P. (2015). Split cuts and extended

formulations for mixed integer conic quadratic programming. Operations Research

Letters, 43(1):10–15.

MOSEK (2017). The MOSEK Optimization Suite. Version 8.1 (Revision 34).

Nemhauser, G. L. and Wolsey, L. A. (1990). A recursive procedure to generate all

cuts for 0-1 mixed integer programs. Mathematical Programming, 46(1-3):379–

390.

Orden, A. (1951). A procedure for handling degeneracy in the transportation prob-

lem. DCS/Comptroller, Headquarters US Air Force, Washington, DC.

Parragh, S., Doerner, K., and Hartl, R. (2008a). A survey on pickup and delivery

problems, part ii: transportation between pickup and delivery locations. j für

betriebswirtschaft 58 (2): 81–117. doi. org/10.1007/s1130, pages 1–008.

Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008b). A survey on pickup and

delivery problems. Journal für Betriebswirtschaft, 58(1):21–51.

Petersen, C. C. (1971). A note on transforming the product of variables to linear

form in linear programs. Working Paper, Purdue University,.

Petrovic, N., Kostic, N., and Marjanovic, N. (2017). comparison of approaches to

10 bar truss structural optimization with included buckling constraints. Applied

Engineering Letters, 2:98–103.

182

BIBLIOGRAPHY

Rahami, H., Kaveh, A., and Gholipour, Y. (2008). Sizing, geometry and topol-

ogy optimization of trusses via force method and genetic algorithm. Engineering

Structures, 30(9):2360–2369.

Rajeev, S. and Krishnamoorthy, C. S. (1992). Discrete optimization of structures

using genetic algorithms. Journal of Structural Engineering, 118(5):1233–1250.

Rajeev, S. and Krishnamoorthy, C. S. (1997). Genetic algorithms-based method-

ologies for design optimization of trusses. Journal of Structural Engineering,

123(3):350–358.

Rasmussen, M. and Stolpe, M. (2008). Global optimization of discrete truss topology

design problems using a parallel cut-and-branch method. Computers & Structures,

86(13):1527–1538.

Rockafellar, R. T. (1997). Convex Analysis. Princeton University Press.

Sadollah, A., Bahreininejad, A., Eskandar, H., and Hamdi, M. (2012). Mine blast

algorithm for optimization of truss structures with discrete variables. Computers

& Structures, 102-103:49–63.

Sadollah, A., Eskandar, H., Bahreininejad, A., and Kim, J. H. (2015). Water cycle,

mine blast and improved mine blast algorithms for discrete sizing optimization of

truss structures. Computers & Structures, 149:1–16.

Sawaragi, Y., Nakayama, H., and Tanino, T. (1985). Theory of Multiobjective Op-

timization, volume 176 of Mathematics in Science and Engineering. Elsevier.

Schanzenbach, D. W., Nunn, R., Bauer, L., Breitwieser, A., Mumford, M., and

Nantz, G. (2016). Twelve Facts about Incarceration and Prisoner Reentry. The

Brookings Institution, Washington, DC.

183

BIBLIOGRAPHY

SeokLee, K. and Geem, Z. W. (2004). A new structural optimization method based

on the harmony search algorithm. Computers & Structures, 82(9–10):781–798.

Sonmez, M. (2011). Discrete optimum design of truss structures using artificial bee

colony algorithm. Structural and Multidisciplinary Optimization, 43(1):85–97.

Stolpe, M. (2004). Global optimization of minimum weight truss topology problems

with stress, displacement, and local buckling constraints using branch-and-bound.

International Journal for Numerical Methods in Engineering, 61(8):1270–1309.

Stolpe, M. (2007). On the reformulation of topology optimization problems as

linear or convex quadratic mixed 0–1 programs. Optimization and Engineering,

8(2):163–192.

Stolpe, M. (2011). To bee or not to bee—comments on “discrete optimum design of

truss structures using artificial bee colony algorithm”. Structural and Multidisci-

plinary Optimization, 44(5):707–711.

Stolpe, M. (2016). Truss optimization with discrete design variables: a critical

review. Structural and Multidisciplinary Optimization, 53(2):349–374.

Stubbs, A. R. and Mehrotra, S. (1999). A branch-and-cut method for 0-1 mixed

convex programming. Mathematical Programming, 86(3):515–532.

Svanberg, K. and Werme, M. (2005). A hierarchical neighbourhood search

method for topology optimization. Structural and Multidisciplinary Optimiza-

tion, 29(5):325–340.

Svanberg, K. and Werme, M. (2007). Sequential integer programming methods

for stress constrained topology optimization. Structural and Multidisciplinary

Optimization, 34(4):277–299.

184

BIBLIOGRAPHY

Tawarmalani, M. and Sahinidis, N. V. (2004). Global optimization of mixed-integer

nonlinear programs: A theoretical and computational study. Mathematical Pro-

gramming, 99(3):563–591.

Toth, P. and Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applications.

SIAM.

van der Bruggen, L. J. J., Lenstra, J. K., and Schuur, P. C. (1993). Variable-depth

search for the single-vehicle pickup and delivery problem with time windows.

Transportation Science, 27(3):298–311.

Van Roy, T. J. and Wolsey, L. A. (1987). Solving mixed integer programming

problems using automatic reformulation. Operations Research, 35(1):45–57.

Vinel, A. and Krokhmal, P. A. (2014). Polyhedral approximations in p-order cone

programming. Optimization Methods and Software, 29(6):1210–1237.

Votaw, D. F. and Orden, A. (1952). The personnel assignment problem. Symposium

on Linear Inequalities and Programming, SCOOP 10, USAF, pages 155–163.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming. Mathematical

Programming, 106(1):25–57.

Walmsley, R. (2017). World prison population list. http://www.

prisonstudies.org/sites/default/files/resources/downloads/world_

prison_population_list_11th_edition_0.pdf. Accessed: 2017-08-15.

Wu, S.-J. and Chow, P.-T. (1995). Steady-state genetic algorithms for discrete

optimization of trusses. Computers and Structures, 56(6):979–991.

185

http://www.prisonstudies.org/sites/default/files/resources/downloads/world_prison_population_list_11th_edition_0.pdf
http://www.prisonstudies.org/sites/default/files/resources/downloads/world_prison_population_list_11th_edition_0.pdf
http://www.prisonstudies.org/sites/default/files/resources/downloads/world_prison_population_list_11th_edition_0.pdf

BIBLIOGRAPHY

Zeng, S. and Li, L. a. (2012). Particle swarm-group search algorithm and its appli-

cation to spatial structural design with discrete variables. International Journal

of Optimization in Civil Engineering, 2(4):443–458.

186

Appendix A

The discrete set of the cross

sectional areas

The discrete set of the cross-sectional areas for the various problems are listed below.

10-bar truss
S = {1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93,

3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88,

4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22,

7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90,

18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.5, 35,

37.5, 40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60,

62.5, 65, 67.5, 70, 72.5, 75, 77.5, 80, 82.5, 85,

87.5, 90 }(in2).

187

APPENDIX A. THE DISCRETE SET OF THE CROSS SECTIONAL AREAS

72-bar truss
S = { 0.111, 0.141, 0.196, 0.250, 0.307, 0.391, 0.442,

0.563, 0.602, 0.766, .785, .994, 1, 1.228, 1.266,

1.457, 1.563, 1.62, 1.8, 1.99, 2.13, 2.38, 2.62,

2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55,

3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,

4.8, 4.97, 5.12, 5.74, 7.22, 7.97, 8.53, 9.3,

10.85, 11.5, 13.5, 13.9, 14.2, 15.5, 16, 16.9,

18.8, 19.9, 22, 22.9, 24.5, 26.5, 28, 30, 33.5 }(in2).

2D cantilever truss problem

S = { 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14,

16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,

40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5,

65, 70, 75, 80, 85}(cm2).

3D cantilever truss problem

S = { .25, .5, .75, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14,

16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,

40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5,

65, 70, 75, 80, 85}(cm2).

188

APPENDIX A. THE DISCRETE SET OF THE CROSS SECTIONAL AREAS

Wing truss problem

S = { .25, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,

55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150,

200, 250, 300, 350, 400, 450, 500, 550, 600,

650, 700, 750, 800, 850, 900, 950, 1000, 1050,

1100, 1150, 1200}(cm2).

189

APPENDIX A. THE DISCRETE SET OF THE CROSS SECTIONAL AREAS

190

Appendix B

The detailed output of the ITP

problem

Table B.1: Manual transportation planning results.

Week Trips Seats used Buses Vans Inmates
moved

% moved
w/ hub

Utilization ratio
w/o hub w/ hub

1 42 948 21 21 550 58 0.58 0.93
2 40 943 21 19 530 53 0.56 0.85
3 37 931 22 16 668 52 0.72 1.09
4 39 862 19 20 657 55 0.76 1.16
5 38 823 18 20 499 62 0.61 0.96
6 40 925 20 20 554 70 0.60 1.01
7 36 912 22 14 581 58 0.64 0.98
8 38 955 21 17 643 52 0.67 0.99

191

APPENDIX B. THE DETAILED OUTPUT OF THE ITP PROBLEM

Table B.2: Week 1 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 25 444 9 16 1 549 44 1.24 1.78 13.60
0.25 23 430 9 14 4 546 40 1.27 1.78 12.10
0.50 23 430 9 14 1 549 41 1.28 1.80 9.11
0.75 22 404 8 14 14 536 39 1.33 1.85 7.49
1.00 19 265 4 15 129 421 19 1.59 1.89 3.92

Table B.3: Week 2 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 23 430 9 14 0 530 30 1.23 1.60 10.00
0.25 22 437 9 13 1 529 35 1.21 1.63 13.90
0.50 24 418 8 16 10 520 30 1.24 1.61 15.00
0.75 21 312 5 16 65 465 30 1.49 1.94 8.29
1.00 17 251 4 13 116 414 11 1.65 1.82 6.11

Table B.4: Week 3 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 28 550 12 16 0 668 34 1.12 1.63 14.10
0.25 26 517 11 15 5 663 34 1.28 1.72 12.10
0.50 27 510 11 16 19 649 29 1.27 1.65 13.80
0.75 23 437 9 14 60 608 30 1.39 1.80 9.91
1.00 16 230 4 12 240 428 8 1.86 2.01 5.21

192

APPENDIX B. THE DETAILED OUTPUT OF THE ITP PROBLEM

Table B.5: Week 4 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 30 644 14 16 1 656 41 1.02 1.44 33.30
0.25 27 531 11 16 13 644 39 1.21 1.69 25.10
0.50 25 458 9 16 41 616 39 1.34 1.86 19.30
0.75 25 444 9 16 54 603 33 1.36 1.80 15.90
1.00 21 284 5 16 197 460 30 1.62 2.11 12.50

Table B.6: Week 5 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 26 484 10 16 1 498 43 1.03 1.48 24.70
0.25 22 371 7 15 24 475 41 1.28 1.81 22.30
0.50 22 338 6 16 41 458 30 1.36 1.77 18.20
0.75 21 298 5 16 56 443 30 1.49 1.93 10.10
1.00 19 284 5 14 61 438 29 1.54 2.00 6.00

Table B.7: Week 6 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 30 644 14 16 0 554 49 0.86 1.28 36.60
0.25 26 505 10 16 13 541 52 1.07 1.62 26.70
0.50 24 404 8 16 38 516 51 1.28 1.93 15.10
0.75 22 338 6 16 87 467 46 1.38 2.01 11.70
1.00 19 232 3 16 171 383 40 1.65 2.31 4.86

193

APPENDIX B. THE DETAILED OUTPUT OF THE ITP PROBLEM

Table B.8: Week 7 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 27 510 11 16 2 579 39 1.14 1.58 22.60
0.25 27 510 11 16 2 579 40 1.14 1.59 20.70
0.50 25 444 9 16 27 554 45 1.25 1.82 17.50
0.75 22 371 7 15 48 533 40 1.44 2.01 6.73
1.00 19 251 4 15 159 422 21 1.68 2.03 6.22

Table B.9: Week 8 results.

α Trips Seats
used Buses Vans Inmates

not moved
Inmates
moved

% moved
w/ hub

Seat util. ratio Opt. gap
%w/o hub w/ hub

0.10 28 571 12 16 1 642 42 1.12 1.59 23.50
0.25 28 550 12 16 5 638 36 1.16 1.58 22.10
0.50 25 491 10 15 18 625 40 1.27 1.79 16.10
0.75 26 470 10 16 15 628 40 1.34 1.87 10.00
1.00 20 272 4 16 193 450 28 1.65 2.12 8.19

194

Vita

Mohammad Shahabsafa was born in Yazd, Iran in 1987 to Asghar Shahabsafa and

Soraya Ghadirpanah. He received his Bachelor’s and Master’s degrees in Industrial

Engineering from Sharif University of Technology, Tehran, Iran. He entered the

Ph.D. program at Lehigh University in 2013. His research mainly revolves around

discrete optimization and its applications. Mohammad was honored to receive the

Informs Daniel H. Wagner Prize in 2017. He was additionally recognized on the floor

of Pennsylvania House and Senate for the contributions of the inmate assignment

project. Mohammad was awarded the ISE PhD student of the year in 2017. He is

a co-founder of Optamo LLC and will be joining Optamo after graduation.

195

	Lehigh University
	Lehigh Preserve
	2018

	Mixed Integer Conic Optimization and its Applications
	Mohammad Shahabsafa
	Recommended Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Dissertation overview
	Publications and Accomplishments
	Notation

	Disjunctive Conic Cuts
	Introduction
	DCCs for MISOCO problems
	Redundant DCCs and DCyCs
	 Redundant DCCs
	Redundant DCyCs

	Discussion
	Conic cylinders
	Branching on a higher dimensional subspace
	Eliminating pathology by branching

	Numerical Experiments
	A portfolio optimization problem
	 A service system design problem with congestion

	Conclusions

	Truss Design Problem: Modeling and Analysis
	Introduction
	Continuous truss design problem
	Preliminary models
	Multi-scenario truss design problem
	Some characteristics of the feasible set of the truss design problem
	Feasibility along rays
	Convex hull of the external force scenarios

	Lower bound of the continuous models
	McCormick relaxation
	Relaxation based on binary expansion

	Discrete truss design problem
	Sizing optimization
	Basic discrete model
	Incremental discrete model
	Reformulating the MILO models

	Multi-scenario truss sizing optimization
	Topology design and sizing optimization
	Basic model for TDSO
	Incremental model for TDSO

	Conclusions

	Truss Design Problem: Solution Methodology
	Introduction and literature review
	The NS-MILO Approach
	Truss Problems
	The 10-bar truss
	The 72-bar truss
	Scalable 2D cantilever truss problems
	Scalable 3D cantilever truss problems
	Wing truss problems

	Lower bound of the continuous model
	Basic versus incremental model
	Strengthening the Euler buckling constraints
	Numerical results with NS-MILO
	Single-scenario results
	10-bar truss
	Single-scenario 2D and 3D cantilever trusses
	Single-scenario wing truss problems

	Multi-scenario results
	72-bar truss
	Multi-scenario 2D and 3D cantilever trusses
	Multi-scenario wing trusses

	Conclusions

	The Inmate Assignment and Scheduling Problem
	Introduction
	Literature Review
	Contributions: Novel Modeling and Solution Methodology
	Impact

	Preliminaries and Problem Description
	Preliminary Development
	Assignment Criteria
	Treatment Programs
	Transfer Constraints

	Modeling and the Solution Methodology
	Hierarchical Multi-Objective MILO Model
	Assignment Criteria Constraints
	Treatment Program Constraints
	Scheduling of the Programs for the Inmates
	 Transfer Constraints
	The Objective Function
	The Multi-Objective MILO Model

	Implementation at the PADoC
	Development of the IADSS

	Benefits and Impact of the IADSS
	High-Quality, Consistent Assignment
	User-Friendly Web Application
	Security Enhancement
	Quantified Savings

	Summary

	The Inmate Transportation Problem
	Introduction
	Problem Description
	Mathematical model
	Objective Function
	MILO Model

	Computational Results
	Benefits and Impact
	Conclusion

	Conclusions and Future Research
	Conclusions
	Future research

	Bibliography
	Appendix The discrete set of the cross sectional areas
	Appendix The detailed output of the ITP problem
	Vita

