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Abstract

III-nitride alloys and nanostructures have been proved reliable materials for elec-

tronic and photonic applications. In particular, indium-gallium-nitride (InGaN) based

quantum wells (QW) have been greatly improved over the years exhibiting very high

efficiencies (>80%) in the blue spectral regime and have been successfully imple-

mented as active region in light emitting diodes (LEDs). However, there are still

challenges to achieve longer wavelength emission with high quantum efficiencies from

the InGaN based alloy. Novel III-nitride active region designs and III-nitride ma-

terials doped with rare-earth elements have been proposed over the years for high

efficiency visible light emission. Part of this dissertation is focused on the study

of the europium doped GaN red light emitter (GaN:Eu). A model has been devel-

oped to elucidate the limiting factors for the efficiency droop issue observed in this

type of emitter and also explain the discrepancy observed between optically-pumped

and electrically driven GaN:Eu based devices. The model also provides experimental

approaches to enhance the internal quantum efficiency of the GaN:Eu when it is im-

plemented as an active region in a light emitting diode. In addition, a novel type of

active region based on the integration of a thin InN layer (δ-layer) in an InGaN QW

is studied for high efficiency visible light emission. This novel active region design

is experimentally investigated via the organometallic vapor phase epitaxy technique

(OMVPE). Strategies for efficient δ-InN integration into the InGaN QW are devel-

oped and proof-of-concepts experiments are carried out. These studies are important

1



for providing an intuitive approach in the development of high efficiency electrically-

driven GaN:Eu and δ-InN/InGaN QW based devices in the visible spectral regime,

which will enable their use for lighting applications.

2



Chapter 1

Introduction

1.1 Current status and future prospects of III-

Nitride based light emitting devices

In recent years, III-Nitride based alloys (i.e AlxGa1−xN , InxGa1−xN) have been

placed at the frontiers of semiconductor technologies. The use of III-Nitrides has

found places in a wide span of technological applications including bio-applications,

thermoelectrics, solar cells, power electronics, optoelectronics and photonics [1-10].

As of 2018, the high demand of III-nitride based alloys and their applications is

reflected to the increased revenues of the related semiconductor companies.

Among III-Nitrides, InxGa1−xN -based alloys are of great interest. As shown in

figure 1.1, the versatility to tune the band-gap of InGaN -based alloys from the UV

(AlN) to the infrared (InN) spectral regime have established them as the main tech-

nologies driving the light emitting diode (LED) innovations [11-13]. However, despite

the rapid development of high efficiency UV and blue InGaN based light emitting

diodes for general lighting applications, the commercially available primary colors

(green and red) are generated via a phosphor -energy down conversion- integrated

with an InGaN based blue LED.
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Figure 1.1: Lattice constant versus energy band-gap. The versatility of alloying the
(Al,Ga,In)N material system can result in the energy coverage beyond the visible
spectral regime [12].

For over a decade the pursuit of high efficiency InGaN based light emitters towards

red spectral regime has proven to be challenging. The need for higher In-content in the

InGaN active region for longer wavelength emission, results in phase separation and

higher polarization fields with reduced wavefunction overlap, which are detrimental

for efficiency of the device [15-17]. In figure 1.2(a) the evolution of the external

quantum efficiencies from the III-Nitride based alloys along with other commercially

used material systems for lighting applications is displayed. In addition, the highest

reported external quantum efficiencies in the visible spectral regime are shown in

figure 1.2(b).

Despite the demonstration of InGaN based LED in the red spectra regime, the

highest reported external quantum efficiency (EQE) is 2.9% which is much lower from

the blue and green InGaN-based QW LEDs [18]. Several works in recent years have

suggested innovative approaches with the potential of achieving high efficiency for

InGaN based quantum well (QW) LED towards red spectral regime. These works

include the investigation of staggered InGaN QWs, strain compensated InGaN QWs,
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Figure 1.2: (a) Improvement of the external quantum efficiency of the (Ga,In)N
based LED’s and (AlGa)InP based LED’s over the years [13]. (b) Best-reported
LED external quantum efficiencies as a function of peak emission wavelength, at
typical operating current densities of 35 Acm-2 or greater, and at room temperature
T=300K. In addition to primary (Ga,In)N and (Al,Ga)InP LED performance, full-
conversion phosphor converted (PC) LED performance for green and amber emission
are indicated [14]. As of 2018 the highest reported external quantum efficiency of an
InGaN based LED in the red spectral regime is 2.9% [18].

alternative substrates and buffer layers of InGaN QWs, InGaN with AlGaN and

AlInN interlayers, semipolar and non-polar InGaN QW, InGaN/dilute-As GaNAs

interface QW and InGaN delta- InN QW [18-28]. Furthermore, another interesting

approach which targets to the emission of red and green from the GaN material,

is the doping of GaN with rare-earth elements such as europium (Eu) and erbium

(Er) [29-31]. The possibility of introducing europium element (Eu) into the GaN

material has enabled the realization of GaN:Eu red light emitting devices including

LEDs in the past decade [32-38]. However, the internal quantum efficiency (IQE) of

the GaN:Eu emitter is low ( < 1%), despite the recent years of effort in improving

the device performance.

Therefore, achieving high efficiencies towards red spectral regime either through

the improvements of the InGaN- or GaN:Eu-based LEDs is a challenging task. Un-

derstanding the limiting factors and finding new methods and ways of improving the
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efficiency of the GaN based LEDs at longer emission wavelengths, will open a new

era for smart and ultraefficient solid stated lighting technology in the future [39].

1.2 Research work accomplished

1.2.1 Current injection efficiency study of GaN:Eu based de-

vices

The efficiency of the GaN:Eu based red light emitters has been investigated. More

specifically, a physically intuitive current injection efficiency model for the electrically-

driven GaN:Eu based devices with different active region configuration (GaN:Eu

based QW and GaN/GaN:Eu/GaN) has been developed to clarify the necessary

means to achieve device quantum efficiency higher than the state-of-the-art for the

GaN:Eu system. The identification and analysis of limiting factors for high internal

quantum efficiencies (IQE) are accomplished through the current injection efficiency

model. In addition, the issue of the significantly lower IQE in the electrically-driven

GaN:Eu devices in comparison to the optically-pumped GaN:Eu devices is clarified

in the framework of this injection efficiency model. The improved understanding of

the quantum efficiency issue through current injection efficiency model provides a

pathway to address the limiting factors in electrically-driven devices. Based on the

injection efficiency model, several experimental approaches are suggested to address

the limitations in achieving high IQE GaN:Eu QW based devices in red spectral

regime.
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1.2.2 Plasmonics for efficiency enhancement of GaN:Eu de-

vices

Titanium nitride (TiN) has been theoretically investigated as a plasmonic material

to enhance the internal quantum efficiency of a GaN:Eu red light emitter. Theoret-

ical calculations are performed to evaluate the surface plasmon polariton dispersion

relation and Purcell enhancement factor for a single TiN layer on top of the GaN:Eu

emitter. High Purcell factors ( > 100%) are predicted for the case of a single TiN

layer. Moreover, by tuning the dielectric properties of TiN and through the utiliza-

tion of a double TiN layer, the surface plasmon frequency can be tuned to cover a

wide range in the visible spectral regime with high Purcell factors. The findings of

this work suggest the potential use of TiN as plasmonic material for increasing the

internal quantum efficiency in GaN:Eu red light emitters as well as other GaN based

light emitters.

1.2.3 Pulse-OMVPE growth studies of III-Nitrides

The pulsed-organometallic vapor phase epitaxy (OMVPE) of indium nitride (InN)

has been investigated. The goal is the fabrication of high quality InN films on top of

on GaN/sapphire templates and its potential use as a delta layer in the InGaN based

QW. Theoretical simulations suggest that the integration of InN with the InGaN-

based technology forms nano-engineered active region which is applicable for red and

near-infrared light emitters.

In the pulsed-OMVPE mode, the ammonia (NH3) was constantly flowing into

the chamber, while pulsing the indium precursor (TMIn). A comprehensive study

on the effects of the pulsing period (T p), V/III ratio, and temperature (T ) is carried

out under a growth pressure of 200torr. The study shows that the presence of the

metallic-In, as well as the structural and electrical properties of the InN thin films
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can be tuned by varying the growth conditions. By selecting the optimum conditions

for the pulse-OMVPE growth of InN, a preliminary study on the integration of the

InGaN-delta-InN QW is performed. In addition, the use of a low temperature AlGaN

interlayer is crucial for the device performance. XRD analysis and PL studies were

performed to evaluate the quality and luminescence of the emitters.

The growth and study of this preliminary structure (InGaN/delta-InN+AlGaN)

exhibits a 50 nm wavelength shift compared to the InGaN/AlGaN structure. This

approach opens the possibility of delta-InN active region as a promising candidate for

the realization of InGaN based-QW emitters in the long wavelength regime.
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Chapter 2

Rare-Earth doped Gallium Nitride

2.1 Eu-doped GaN for red light emission

An alternative approach of achieving red emission without the need of high In-

content of InGaN based alloys is the incorporation of rare earth elements into GaN (e.g

Europium) [1-3]. The possibility of introducing Europium element (Eu) into the GaN

material has enabled the realization of GaN:Eu red light emitting devices including

LEDs in the past decade [4-20]. However, the internal quantum efficiency (IQE) of

the GaN:Eu emitter is still low (< 1%), despite the recent years of effort in improving

the device performance. These efforts include improving the GaN:Eu material quality

and utilizing heterostructures for higher IQE [3,15,18-21]. Improving the IQE of the

GaN:Eu devices is necessary for practical technological implementation.

In addition, another major obstacle is found to be the IQE discrepancy between

the electrically driven and optically excited GaN:Eu devices. Interestingly, the IQE of

electrically-driven GaN:Eu devices is much lower than that of the optically-pumped

GaN:Eu devices. Despite the fact that optically-pumped devices exhibited an increase

in the output power and consequently in the IQE over the years, the electrically-driven

devices showed a saturation in the output power, probably due to the IQE limitation
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of the device [22]. This discrepancy is possibly attributed to the dependency of

the IQE on the current injection efficiency of the GaN:Eu active region for the two

different excitation ways. The need of electrically-driven device is however arguably

stronger than optically-pumped device because in many applications including LEDs,

the devices are typically driven by injected current to achieve emission. If the GaN:Eu

device is to be employed for the light emitting applications, the understanding of the

factors which lead to low efficiency in electrically-driven GaN:Eu device needs to

be enhanced. Thus, developing a current injection efficiency model of the GaN:Eu

active region will provide a qualitative picture and a better understanding of the IQE

of both optically-pumped and electrically-driven GaN:Eu red light emitters. Besides,

the model can further provide the opportunity to enhance the design and fabrication

of high efficiency GaN:Eu based red light emitters.

Figure 2.1: Concept of monolithically integrated white LED based on GaN material.
The high efficiency blue and green InGaN QW can be monolithically integrated with
the high efficiency red GaN:Eu emitter.

The development for high efficiency red light emitters based on InxGa1−xN QW

or GaN:Eu active region, is mandatory for the monolithic realization of GaN-based

white LEDs. The solutions for challenges to achieve InGaN-based red emitters are

important and still being pursued. However, the use of GaN:Eu LEDs may provide an

interesting advantage over InGaN, namely: a) narrower linewidth red spectral emis-

sion, and b) less temperature-sensitivity to the emission wavelength [12-15,20,23,24].

The availability of red emitters based on GaN:Eu LEDs provides a pathway for inte-
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gration with the more established InGaN-based blue and green emitters. Figure 2.1

shows the integration method that can be pursued for GaN-based display emitters

with integration of InGaN-based LEDs and red-emitters based on GaN:Eu materials.

Such integration can provide a solution for individually-addressed emitter in the three

colors grown by selective-area epitaxy.

2.2 Excitation path of Eu+3 ions in the GaN host

It is known that the excitation of the Eu+3 ions in the GaN host is mediated by

traps which are close to the vicinity of the Eu+3 ions [5,6,18,22,25-27]. The created

or injected electron-hole pairs in the GaN host are captured from these traps where

they recombine and release energy. The released energy is used for the excitation of

the nearby Eu+3 ion. The excitation path of the Eu+3 ion is a complex process since

different carrier processes are involved, specifically including carrier transport across

the GaN:Eu region, fundamental recombination processes of carriers in the GaN host,

and interactions between the host, traps and Eu+3 ions. This process becomes more

complex in the presence of different active regions such as an AlGaN/GaN:Eu/AlGaN

heterostructure and a GaN/GaN:Eu/GaN homojunction. In these type of structures,

which are used for devices applications, additional mechanisms are involved. These

mechanisms will be presented in detail in the following sections of Chapter 2.

Traps present in the vicinity of Eu+3 ions assist the excitation of the Eu+3 ion

for red light emission. More specifically, studies have revealed several emission sites

related to different configurations of trap-Eu+3 ion known as complexes [22,26]. In

this model, this pictured is simplified by assuming a single level trap located near to

the Eu+3 ion. In addition, it is assumed that the nature of the complex in this study

is a bound-exciton in the vicinity of the Eu+3 ion.

In addition, it is important to clearly state that the SHR recombination, which is
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present in semiconductors, is related to the non-radiative recombination rate of free

carriers from defect centers in the crystal lattice. This mechanism is still present for

the case of the GaN:Eu emitter. However, it is important to clarify that those defect

centers should not be confused with the traps that are in the vicinity of the Eu+3

ions and assist to their excitation. Therefore, the SHR monomolecular recombination

rate primarily describes how fast the free carriers are captured and recombine non-

radiatively at the defects in the crystal lattice.

As shown in figure 2.2, the free electron-hole pairs (e-h) present in the GaN host

are captured by traps, where this state of captured electron-hole pairs at the trap level

is denoted as bound-exciton formation / complex foramtion - these terms are used

interchangeably - in this model. The recombination of e-h pair at the trap level can

result in the energy transfer and excitation to a nearby Eu+3 ion. In addition, different

processes can take place at the trap level, including the non-radiative recombination

of e-h pairs, which results in heat transfer to the lattice, as well as the bound-exciton

dissociation process which leads to the release of the electron and hole back to the

conduction band and valence band respectively. The deexcitation process of the Eu+3

ion consists of the radiative and non-radiative processes, as well as the energy back-

transfer process resulting in a formation of a bound-exciton.

2.3 CIE Models - GaN:Eu QW

This chapter presents the development of physically intuitive current injection ef-

ficiency model for a GaN:Eu QW active region for understanding the discrepancy be-

tween the efficiencies of optically-pumped and electrically-driven GaN:Eu QW based

devices. The discrepancies between the optically-pumped and electrically-driven RE-

doped GaN LEDs devices can be explained from the differences on the carrier injection

processes in the two types of devices. The following study identifies and explains the
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Figure 2.2: Trap assisted excitation path of Eu+3 ion in the GaN host. The free
electron-hole pairs present in the GaN host are captured by traps close to the vicinity
of Eu+3 ions and form bound-excitons. The recombination of bound-excitons can
result to energy transfer and excitation of a nearby Eu+3 ion. The excited Eu+3 ion
can de-excite non-radiatively and radiatively as well as non-radiatively by releasing
the energy to a nearby trap to form a bound-exciton.

limiting factors for the low IQE of the GaN:Eu QW active region and provides the

pathway to enhance the IQE of the GaN:Eu QW based devices.

2.3.1 GaN:Eu QW active region considerations

The analysis in this work is carried out based on the model of a trap assisted

excitation path of Eu+3 ion in the GaN:Eu QW active region with AlxGa1−xN barriers

as shown in figure 2.3. The role of traps is presented by a single trap level but note that

the extended nature of these traps close to the vicinity of Eu+3 ions could also result

in several levels. The electron-hole pair capture from the trap with a characteristic

rate 1/τ c cap is notated as complex (bound-exciton) in this model, as shown in figure

2.3(b). The subsequent recombination of carriers at the trap level (i.e. de-excitation

of complex, figure 2.3(c) releases a non-radiative recombination energy that leads

to the following possible reactions: (a) excitation of the nearby Eu+3 ion with a

characteristic energy transfer rate of 1/τ tr , (b) energy to the crystal lattice with a
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Figure 2.3: Model of the trap assisted excitation of Eu+3 ion in GaN:Eu QW active
region. (a) The confined electron-hole in the GaN:Eu QW are captured by the traps
(purple arrows) which are close to the vicinity of Eu+3 ion and results in (b) complex
formation. (c) After the complex formation the electron-hole pair can recombine at
the trap level by releasing a non-radiative energy to the crystal lattice (brown arrow)
or release a non-radiative energy used for the excitation of the nearby Eu+3 ion
(energy transfer process-gold arrow) or it can dissociate by releasing the electron-hole
back to the GaN:Eu QW. Similarly, the excited Eu+3can recombine non-radiatively
by releasing energy to the crystal lattice (brown arrow) or release non-radiative energy
for complex formation (energy back-transfer process, dark blue arrow) or recombine
radiatively with photon emission (red arrow).

characteristic rate of 1/τ c heat . In addition, after the formation of complex, another

process can occur which results in the electron-hole population of the QW with a

characteristic rate of 1/τdiss (complex dissociation process). Additional mechanisms

to consider including the consequence of the then-de-excitation of Eu+3 ions: a)

photon release with a characteristic rate of 1/τ rad , b) non-radiative de-excitation

with a characteristic rate of 1/τEu heat , and c) complex formation through energy

back-transfer process with a characteristic rate of 1/τbt . In addition, the carrier

processes related to the GaN host and the AlxGa1−xN barrier need to be taken into

consideration, will be further discussed below.
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2.3.2 Electrical model

In the electrically-driven GaN:Eu QW device, carriers are injected into the GaN:Eu

QW active region from the barriers. This analysis is similar to the current injection

efficiency analysis in a typical QW without the presence of RE elements [28,29]. The

presence of Eu+3 ions modifies these rate equations to account for coupling with Eu+3

ions and complexes.

Previous experimental work on QW devices have shown that the carriers injected

into the QW can escape to the barrier due to the high thermionic emission energy

[30]. The thermionic-related carrier escape process needs to be accounted in the

determination of IQE of electrically-driven QW based devices. In addition, the non-

radiative and spontaneous radiative recombination process of carriers in the GaN host

and AlxGa1−xN barriers are also taken into consideration in the electrically-driven

GaN:Eu QW.

The carrier rate equations both in the barrier (NB) and GaN:Eu QW active region

(NQW ) are given by:

dNB

dt
=

Itot
q V B

+
NQW

τe

V QW

V B

−NB

(
1

τB
+

1

τbw

)
(2.1)

dNQW

dt
=
NB

τbw

V B

V QW

+
Nc

τdiss

V Eu

V QW

−NQW

(
1

τnr
+

1

τsp
+

1

τe
+

1

τc cap

)
(2.2)

where, the VB, VQW , VEu are the volumes of the barrier, GaN:Eu QW and Eu-

doped region of the GaN:Eu QW respectively. The Itot is the total injected current

in the barriers which is assumed to be equal to the total injected current into the de-

vice, 1/τ e is the carrier thermionic escape time form the GaN:Eu QW active region to

the barriers, 1/τB is the carrier lifetime in the barrier described by the non-radiative

and spontaneous radiative processes in the barrier, and 1/τbw is the barrier-well life-
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time [28,31]. The radiative and non-radiative carrier processes in the GaN host are

described by the 1/τ sp and 1/τnr respectively. In general, the non-radiative and spon-

taneous radiative recombination rates in the GaN host and AlxGa1−xN barriers are

functions of the carrier concentrations in the QW and barrier, the bimolecular recom-

bination coefficient B, Shockley-Hall-Read (SHR) constant A, and Auger coefficient

C. More details regarding the non-radiative and spontaneous radiative recombina-

tion processes of carriers in the GaN host and AlxGa1−xN barriers, as well as the

thermionic escape from GaN:Eu QW active region to the AlxGa1−xN barriers can be

found in references [28,29,31-34]. The rate equations of complexes (Nc) and excited

Eu+3 ions (NEu) in the GaN:Eu QW active region are:

dNc

dt
=NQWCc cap (Ntraps −Nc)

V QW

V Eu

+NEuCbt (Ntraps −Nc)

−Nc

(
Ctr (N −NEu) +

1

τdiss
+

1

τc heat

)
(2.3)

dNEu

dt
= NcCtr (N −NEu)−NEu

(
Cbt (Ntraps −Nc) +

1

τrad
+

1

τEu heat

)
(2.4)

where, the N and Ntraps are the concentrations of Eu+3 ions and traps in the

GaN:Eu QW active region, respectively. The parameters Cc cap, Cbt and Ctr are

defined as the capture, back-transfer and transfer coefficients in cm3/s respectively.

For the rate equations (2.3) and (2.4), a general capture, back-transfer and transfer

rate can be defined as:

Cc cap (Ntraps −Nc) =
1

τcap0

(
1− Nc

Ntraps

)
=

1

τccap
(2.5)
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Cbt (Ntraps −Nc) =
1

τbt0

(
1− Nc

Ntraps

)
=

1

τbt
(2.6)

Ctr (N −NEu) =
1

τtr0

(
1− NEu

N

)
=

1

τtr
(2.7)

Equations (2.5)-(2.7) account for saturation in the excited Eu+3 concentration

as well as in the concentration of formed complexes, when substituted in the rate

equations (2.3) and (2.4). The subscript 0 denotes the relative capture, transfer and

back-transfer rate and the term in the parenthesis denotes the degree of the respective

excitation of Eu+3 ion and the complex concentration. Thus, the terms of 1/τ c cap,

1/τ tr and 1/τbt can be viewed respectively as the general capture transfer and back-

transfer rates of the system.

The injection efficiency of GaN:Eu QW active region is the ratio of the current

arising from the radiative and non-radiative de-excitation of Eu+3 ions to the total

current injected into the GaN:Eu QW system Itot, and can be expressed as:

ηinj electrical =
IEu
Itot

(2.8)

where, the IEu represents the total recombination current arising from the radia-

tive and non-radiative de-excitation of the Eu+3 ion and is defined as:

IEu =
NEu q V Eu

τ
(2.9)

with

1

τ
=

1

τrad
+

1

τEuheat
(2.10)

where, the q is the electron charge.

Solving the system of equations (2.1)-(2.4) under steady state condition the cur-

22



rent injection efficiency of the electrical model is obtained:

ηinj electrical =





 1 +

τbw(
1
τB

+ 1
τbw

)−1



(
− τ τtr
τEu τdiss

+

τ τc cap(
1
τnr

+ 1
τsp

+ 1
τccap

)−1
(

τtr
τEu τcomp

− 1

τbt

)



− τ τc cap
τe

(
τtr

τEu τcomp
− 1

τbt

)]−1
.

(2.11)

where, the 1/τEu and 1/τ comp are rates related to Eu+3 and complex:

1

τEu
=

1

τrad
+

1

τEu heat
+

1

τbt
(2.12)

1

τcomp
=

1

τtr
+

1

τcheat
+

1

τdiss
(2.13)

the internal quantum efficiency (ηIQE electrical) for the electrical model is given by:

ηIQE electrical = ηinj electrical ηrad (2.14)

where, the ηrad is the radiative efficiency of the Eu+3 ions defined as the ratio of

radiative to both radiative and non-radiative de-excitation of Eu+3 ions:

ηrad =
NEu/τrad
NEu/τ

=
1

τrad
1

τrad
+ 1

τEu heat

(2.15)

2.3.3 Optical model

For the case of optically-pumped GaN:Eu QW, the thermionic emission rate from

the GaN:Eu QW active region to the AlxGa1−xN barrier is neglected. In optically-
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pumped GaN:Eu QW, the excitation of the GaN host is resonant, and the generated

carriers do not possess excess energy to escape the QW [35-38]. For the same reason,

the AlxGa1−xN barriers are not excited and hence the non-radiative and radiative

process of carriers in the barriers can be neglected.

In the optically-pumped GaN:Eu QW, the assumption that the GaN:Eu QW

active region is excited resonantly above the band-gap with a photon flux φ, results

in a rate equation of carriers in the GaN:Eu QW active region (NQW ) of:

dNQW

dt
= α ϕ+

Nc

τdiss

V Eu

V QW

−NQW

(
1

τnr
+

1

τsp
+

1

τc cap

)
(2.16)

where, the α is the absorption coefficient of GaN and the φ is the photon flux of

the excitation. The first term of the left part of equation (2.16) can be viewed as the

corresponding current Itot arising from the creation of carriers due to absorption of

the incident photon flux and is equal to:

a ϕ =
Itot

q V QW

(2.17)

The rate equations of complexes (Nc) and excited Eu+3 ions (NEu) in the GaN:Eu

QW active region are same as in the case of electrically-driven GaN:Eu QW and are

given from equations (2.3)-(2.4). The injection efficiency for the optical model is

defined as:

ηinj optical =
IEu
Itot

(2.18)

where, the IEu is defined from equation (2.9).

Solving the system of equations (2.3)-(2.4) and (2.16) under steady state condition,

the injection efficiency for the optical model is obtained:
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ηinj optical =


 τ τ c cap(

1
τnr

+ 1
τsp

+ 1
τc cap

)−1
(

τtr
τEu τ comp

− 1

τbt

)
− τ τtr
τEu τ diss




−1

(2.19)

The internal quantum efficiency for the optical model is given from equation (2.14)

with the respective injection efficiency.

2.3.4 Comparison between optical and electrical model

The analysis of the current injection efficiency model indicates fundamental dif-

ferences in the excitation path of Eu+3 ion in the GaN:Eu QW active region for the

optically-pumped and electrically-driven GaN:Eu QW. In figure 2.4 a flow chart de-

picts the related mechanisms and phenomena along the excitation path of Eu+3 ion

in the GaN:Eu QW for both models.

Figure 2.4: Flow charts of electrical and optical current injection efficiency models.
The blue boxes indicate the different levels of barrier, GaN:Eu QW, complex and
Eu+3 ion. Each level includes its own related processes. The levels are connected
via the ‘forward mechanisms’ (black arrows), and via the ‘recycling mechanisms’ (red
arrows).
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More specifically, the presence of the barrier level in the electrical model results in

transport phenomena of the carriers. The effect of barrier-well lifetime which depends

on the mobility of the carriers and the temperature T strongly influences the injection

efficiency in the active region in a similar way as in the case of a QW without the pres-

ence of RE elements [29,33]. Additionally, recombination mechanisms (monomolec-

ular, bimolecular and Auger recombination) also exist in the barrier. Further, the

barrier opens an extra path for the carriers through the recycling mechanisms (red

arrows in figure 2.4), increasing the probability of carrier deviation from the Eu+3

excitation path. The thermionic escape from QW to the barrier, which is proportional

to the concentration of carriers (NQW ), becomes stronger with increasing the current

density [28,32,33]. The transport phenomena and thermionic process limit the injec-

tion efficiency and internal quantum efficiency in the electrically-driven GaN:Eu QW

device as opposed to optically-pumped GaN:Eu QW in which these phenomena do

not exist.

2.3.5 Simulation results

This section presents how the parameters such as SHR constant A, capture time

τ cap0 , transfer time τ tr0, back-transfer time τbt0, dissociation time τdiss, and Eu+3

radiative lifetime τ rad, affect the injection efficiency of electrically driven and optical-

pumped Eu-doped GaN QW active region. Table 2.1 presents the parameters used

in the numerical calculation of the injection efficiency for the GaN:Eu QW active

region. The QW and barrier parameters used for the simulations, such as the values

of effective masses and mobilities, can be found in reference [31] and correspond to

experimental values for the III-nitride materials. For the numerical calculations, the

bimolecular recombination coefficient B and Auger coefficient C are fixed to 10−11

cm3/s and 10−32 cm6/s respectively [31]. However, those experimental values can

significantly vary among GaN samples fabricated under different growth conditions.
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In particular, values of the SHR recombination constant A have been reported within

the range [10−6-10−8 s−1] [53,54]. Note that the A, B and C coefficients, which

describe the radiative and non-radiative processes in the GaN host and AlxGa1−xN

barriers, are assumed to be the same for the barriers and the well. The Al composition

was set at x = 10% for the AlxGa1−xN barriers.

Moreover, as mentioned in section 2.2, the traps that capture free electron-hole

pairs to form a bound-exciton, as shown in figure 2.3, are distinct from the SHR re-

lated crystal defects. Those traps are related to the Eu+3 ion incorporation into the

GaN host [25-27]. In addition, those traps are described by the τ cap0, back transfer

time τ ttr0 , dissociation time τdiss and a non-radiative time τ c heat. Those character-

istic times have been obtained from experimental works [39]. In this experimental

work [39], time resolved photoluminescence measurements were performed in GaN:Eu

samples. The PL decay signal was fitted according to different trap-assisted excita-

tion models. From this PL decay fittings a relative energy transfer time between a

trap state and GaN host (denoted as transfer time in this thesis), as well as, energy

transfer time between the Eu+3 ions and the trap level (denoted as back-transfer time

in this thesis) was able to be obtained. The calculated results from the experimental

work in [39] - which are in the order of µs. -were used as a reference point for all

the numerical calculations presented in this thesis. However, in the models presented

in this thesis, there are processes related to the bound-exciton recombination which

result to the crystal lattice heat, as well as, the dissociation process of the complex

as defined in paragraph 2.3. Although those processes might be present, there are

not available data in the literature regarding the magnitude of the corresponding

lifetimes. However, in the following simulations those processes (τdiss and τ c heat)

are assigned to a lifetime of 1 ms to ensure negligible effect on the current injection

efficiency with respect to the other lifetimes which are in the order of microseconds.

In the present analysis, the injection efficiency (ηinj optical , ηinj electrical) is plotted
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with the excited Eu+3 concentration (NEu) versus the photon flux (φ) - optical model

-and input current density (J) - electrical model - (figures 2.5-2.9). As shown in fig-

ures 2.5-2.9, the injection efficiency of the Eu-doped GaN QW active region exhibits

the droop characteristics. Since the excited Eu+3 concentration cannot exceed the

maximum available Eu+3 concentration in the active region, the excited Eu+3 con-

centration increases with the photon flux and the current density. At a point where

the excited Eu+3 concentration saturates due to the maximum available Eu+3 con-

centration in the active region, the subsequent increase of photon flux and current

density leads to the droop in the injection efficiency. The rate of this saturation and

the droop in the injection efficiency depend on the values of the different parameters

related to specific mechanisms in the excitation path.

Parameters Study I Study II Study III Study IV Study V
A (107 s−1) 0.1-1 1 1 1 1
τ cap0 (10−7 s) 10 0.1-10 10 10 10
τ tr0 (10−7 s) 360 360 3.6-360 360 360
τdiss (10−3 s) 1 1 1 0.0001-1 1
τbt0 (10−6 s) 200 200 200 0.2-2 200
τ c heat (10−3 s) 1 1 1 1 1
τEu heat (10−3 s) 1 1 1 1 1
τ rad(10−6 s) 400 400 400 400 30-400
N (cm−3) 1019 1019 1019 1019 1019

Ntraps (cm−3) 1019 1019 1019 1019 1019

LQW , LEu, LB (nm) 2.5, 2.5, 5 2.5, 2.5, 5 2.5, 2.5, 5 2.5, 2.5, 5 2.5, 2.5, 5

Table 2.1: Parameters used for the numerical calculations of the current injection
efficiency models. Study of individual parameters associated with the Eu+3 excitation
path.

Study I: Effect of Shockley-Hall-Read constant

The SHR constant A is related to the non-radiative process of monomolecular

recombination which takes place through defects in the crystal lattice. SRH mecha-

nisms has been shown to be a critical process affecting the injection efficiency of light

emitting diodes [31].

As shown in figure 2.5, at low photon fluxes and current densities, the injection
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efficiency is higher as the SRH constant is smaller. Such characteristic is expected,

since lower values of SRH constant indicate lower non-radiative recombination rates

of carriers in the active region and barrier. As a result, the injection efficiency in the

GaN:Eu QW active region increases for optical and electrical model. Interestingly, it

should be noted that the increase of the SHR constant A would lead to slower sat-

uration of the excited Eu+3 concentration as the photon flux and current density is

increasing. This indicates that additional carriers are required through optical exci-

tation in the optically-pumped device or electrical injection in the electrically-driven

device to replace the carriers lost in the monomolecular non-radiative recombination

process. Thus, higher photon fluxes and current densities are required to result in

same Eu+3 excitation as opposed to lower values of A.

Figure 2.5: Effect of Shockley-Hall-Read constant A on injection efficiency and excited
Eu+3 ion concentration of GaN:Eu QW active region. (a) Injection efficiency and
excited Eu+3 ion concentration as a function of photon flux for optical model and
(b) Injection efficiency and excited Eu+3 ion concentration as a function of current
density for electrical model. The ηIQE is defined as ηIQE = ηinj ηrad and follows the
same trend as the ηinj of the optical and electrical model.

Study II: Effect of capture time

The capture of carriers from traps with a rate 1/τ cap0 results in the creation of

complexes. A general capture time τ c cap is given from equation (2.5) which is a

function of the formed complexes (Nc).

Figure 2.6 shows the effect of capture time τ cap0 both for optical and electrical
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model. Following the previous analysis, as the capture time decreases, the carriers are

captured more efficiently from traps increasing the formation rate of complexes and

consequently the excited Eu+3 concentration. This efficient capture of carriers from

traps increase the injection efficiency and decrease the required amount of photon

fluxes and current densities. This is observed as a shift towards lower photon fluxes

and current densities of the excited Eu+3 concentration and injection efficiency for

both models. For the optical model, the higher injection efficiency occurs for the lower

capture time of τ cap0 = 10-7 s where the injection efficiency drops from ηinj optical =

21% to ηinj optical = 0.2%. In contrast, for the electrical model it drops from ηinj electrical

= 9% to ηinj electrical = 0.01%.

Figure 2.6: Effect of capture time τ cap0 on injection efficiency and excited Eu+3 ion
concentration of GaN:Eu QW active region. (a) Injection efficiency and excited Eu+3

ion concentration as a function of photon flux for optical model and (b) Injection
efficiency and excited Eu+3 ion concentration as a function of current density for
electrical model. The ηIQE is defined as ηIQE = ηinj ηrad and follows the same trend
as the ηinj of the optical and electrical model.

Study III: Effect of transfer time

The transfer time defines the rate at which complexes de-excite by releasing energy

to a nearby Eu+3 ion. As shown in figure 2.7, the injection efficiency increases as

the transfer time τ tr0 decreases, which is a result of the faster de-excitation of the

complexes. Equation (2.4) indicates that the de-excitation rate of complexes, 1/τ tr, is

essentially the excitation rate of Eu+3 ions. As a result, the higher excitation rates of
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Eu+3 ions result in faster saturation of excited Eu+3 concentration under steady state

conditions. This is observed as a shift toward lower photon fluxes (φ) and current

densities (J) of the excited Eu+3 concentration. For the given range of photon flux

and current density, the values of τ tr0 = 36 x 10-6 s and τ tr0 = 36 x 10-7 s result in

saturation of excited Eu+3 concentration close to the value of Eu+3 ion concentration

in the active region (N = 1 x 1019 cm-3), while the value ofτ tr0 = 36 x 10-5 s results

in saturation NEu ≈ 4 x 1018 cm-3 which is almost 40% of the total concentration of

Eu+3 ion in the GaN:Eu QW active region.

Figure 2.7: Effect of transfer time τ tr0 on injection efficiency and excited Eu+3 ion
concentration of GaN:Eu QW active region. (a) Injection efficiency and excited Eu+3

ion concentration as a function of photon flux for optical model and (b) Injection
efficiency and excited Eu+3 ion concentration as a function of current density for
electrical model. The ηIQE is defined as ηIQE = ηinj ηrad and follows the same trend
as the ηinj of the optical and electrical model.

Study IV: Effect of complex dissociation rate and energy back-transfer rate

As stated before, the complexes can dissociate, releasing the captured electrons

and holes into the QW with a rate of 1/τdiss. Similarly, the excited Eu+3 ions can

de-excite with a rate 1/τbt0 by releasing energy which results in the formation of

complexes. Both dissociation time and back-transfer time are related to processes

which can be considered as recycling mechanisms: in the case of dissociation process,

the resulted electrons and holes can be re-captured from traps to form complexes,

while in the back-transfer process the formed complexes can result to the excitation
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of Eu+3 ions. For this study, five different values of back-transfer and dissociation

rates are selected for a given current density J = 0.87 A/cm2 and photon flux of φ

= 4 x 1019 cm-2s-1.

As it is shown in figure 2.8, by increasing the dissociation rate, the injection

efficiency and excited Eu+3 concnetration drop significantly. More specifically, for

the electrical model injection efficiency drops from ηinj electrical = 0.18% to almost

ηinj electrical = 0.001%, while for the optical model drops from ηinj optical = 0.9% to

almost ηinj optical = 0.01%. The changes in excited Eu+3 concnetration are identical

for the two models.

Figure 2.8: Injection efficiency and excited Eu+3 ion concentration of GaN:Eu QW
active region as a function of (a) back-transfer rate 1/τbt0 and (b) dissociation rate
1/diss. The ηIQE is defined as ηIQE = ηinj ηrad and follows the same trend as the ηinj
of the optical and electrical model. The two models are compared for the same values
of Eu+3 excited ion concentration in the GaN:Eu QW active region

A droop in the injection efficiency and excited Eu+3 concentration with the back-

transfer rate is also observed for both models. More specifically, the droop starts

when the back-transfer rate of 1/τbt0 = 5 x 104 s-1 becomes comparable with the

transfer rate of complexes, 1/τ tr0 = 2.77 x 104 s-1. For back-transfer rates lower than

1/τbt0 = 5 x 104 s-1, the injection efficiency and excited Eu+3 concentration remain

unaffected.

In addition, the changes in the injection efficiency and excited Eu+3 concnetration

with the back-transfer rate, are smaller as compared to the changes with the complex
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dissociation rate. As it can be seen from figure 2.4, the level at which the dissociation

process takes place is distant from the level of Eu+3 ion. Thus, the carriers resulted

from the dissociation of complexes have higher probability to deviate from the Eu+3

excitation path reducing in that way the injection efficiency and the excited Eu+3

concentration in the GaN:Eu QW active region.

Study V: Effect of radiative lifetime of Eu+3 ion – Enhancement of radiative efficiency

The parameters presented in the previous sections affect the internal quantum

efficiency of the system by altering only the injection efficiency in the active region.

The internal quantum efficiency is calculated from equation (2.14) with a radiative ef-

ficiency fixed at ηrad ≈ 72% and follows the same trend of the injection efficiency. The

radiative lifetime (τ rad) and the non-radiative time (τEu heat) of Eu+3 ion determine

the radiative efficiency of the GaN:Eu QW system. Lower radiative lifetime results

in higher radiative efficiencies, assuming that the non-radiative lifetime of Eu+3 ion

remains unchanged.

By reducing the radiative lifetime, the injection efficiency and excited Eu+3 con-

centration are significantly altered. The lower radiative lifetime indicates faster ra-

diative de-excitation rate of excited Eu+3 ions, therefore, higher injection efficiency

can be achieved at a given photon flux and current density. This is clearly illustrated

in figure 2.9. In addition, the resulted lower saturation values of excited Eu+3 ions,

make the injection efficiency to be strongly altered at higher photon fluxes and current

densities.

Attributed to the differences in the complex interplays among the fundamental

processes in the current injection process, the optical model exhibits higher injection

efficiency as compared to the electrical model for the same values of excited Eu+3

concentration. In particular, the reduction of radiative lifetime from τ rad = 400 µs

to τ rad = 30 µs, changes the excited Eu+3 concentration from NEu = 8.4 x 1018 cm-3
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to NEu = 3.25 x 1018 cm-3 at a given φ = 4.7 x 1018 cm-3. Meanwhile, injection

efficiency increases from ηinj optical = 0.62% to ηinj optical = 2.4% which is 3.8 times

higher. A similar change in the excited Eu+3 concentration occurs at J = 1 A/cm2

for the electrical model while the injection efficiency increases from ηinj electrical =

0.12% to ηinj electrical = 0.46% which is almost 3.8 times higher, same change as in the

optical model. The reduction of the radiative lifetime is essential for achieving higher

injection efficiencies at higher photon fluxes and current densities, while at the same

time the radiative efficiency of Eu+3 ions is enhanced.

Figure 2.9: Effect of radiative lifetime trad of Eu+3 ion on injection efficiency and
excited Eu+3 ion concentration of GaN:Eu QW active region. (a) Injection efficiency
and excited Eu+3 ion concentration as a function of photon flux for optical model and
(b) Injection efficiency and excited Eu+3 ion concentration as a function of current
density for electrical model. The ηIQE follows the same trend as the ηinj for the optical
and electrical model. The non-radiative lifetime of Eu+3 ion is set to τEu heat = 1ms.
Different radiative lifetimes correspond to different radiative efficiencies. For τ rad =
400µs the radiative efficiency is ηrad =71.43%. Similarly, for τ rad = 200 µs / ηrad =
83.3%, for τ rad = 7 µs / ηrad = 93.46%, and for τ rad = 30 µs / ηrad = 97.09%.

2.3.6 Comparison with experimentally reported data

In order to compare the present work with experimentally reported values of

GaN:Eu devices, the external quantum efficiency (ηEQE) for a GaN:Eu QW LED with

a square device area of 1000 x 1000 µm is calculated. The external quantum efficiency

is the product of the extraction efficiency (ηextr) and the internal quantum efficiency
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of the device. An extraction efficiency of ηextr = 44% was used for thes calculations,

which is a typical value for GaN:Eu based device [19]. The details of each simulation

are given in Table 2.2 (Group A) and Table 2.3 (Group B). The numerical calculations

for the external quantum efficiency are divided into two groups: Group A represents

those which resulted in ηEQE > 1% and Group B represents those which resulted in

ηEQE <1%.

Parameters Simulation I Simulation II Simulation III Simulation IV
A (s−1) 0.5 × 108 106 106 106

τ cap0 (s) 10−7 10−7 10−8 10−8

τ tr0 (s) 36 × 10−6 36 × 10−6 36 × 10−7 36 × 10−7

τbt0 (s) 200 x 10−6 200 × 10−6 200 × 10−6 200 × 10−6

τdiss (s) 10−3 10−3 10−3 10−3

τ c heat, τEu heat (s) 10−3, 10−3 10−3, 10−3 10−3, 10−3 10−3, 10−3

τ rad (s) 200 × 10−6 200 × 10−6 200 × 10−6 100 × 10−6

N (cm−3) 8.5 × 1019 8.5 × 1019 8.5 × 1019 8.5 × 1019

Ntraps (cm−3) 8.5 × 1019 8.5 × 1019 8.5 × 1019 8.5 × 1019

LQW , LEu, LB (nm) 5, 5, 10 5, 5, 10 5, 5, 10 5, 5, 10

Table 2.2: Simulations of external quantum efficiency (EQE) for a GaN:Eu QW
device-high EQE.

Parameters Simulation I Simulation II Simulation III Simulation IV
A (s−1) 106 106 106 106

τ cap0 (s) 10−4 10−6 10−6 10−6

τ tr0 (s) 36 × 10−6 36 × 10−6 36 × 10−4 36 × 10−6

τbt0 (s) 200 x 10−6 200 × 10−6 200 × 10−6 200 × 10−8

τdiss (s) 10−3 10−6 10−3 10−3

τ c heat, τEu heat (s) 10−3, 10−3 10−3, 10−3 10−3, 10−3 10−3, 10−3

τ rad (s) 200 × 10−6 200 × 10−6 200 × 10−6 100 × 10−6

N (cm−3) 8.5 × 1019 8.5 × 1019 8.5 × 1019 8.5 × 1019

Ntraps (cm−3) 8.5 × 1019 8.5 × 1019 8.5 × 1019 8.5 × 1019

LQW , LEu, LB (nm) 5, 5, 10 5, 5, 10 5, 5, 10 5, 5, 10

Table 2.3: Simulations of external quantum efficiency for a GaN:Eu QW device-low
EQE.

Figure 2.10(a) presents the numerical calculations form the CIE model and the

experimentally reported values of two different types of GaN:Eu based LED. A.

Nishikawa and co-workers fabricated two GaN:Eu based LEDs with a 300 nm GaN:Eu
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active layer each, under different growth conditions [15]. They reported an external

quantum efficiency of ηEQE = 0.6% at an injected current of 0.5 mA which was found

to reduce to ηEQE = 0.04% at 20 mA. W. Zhu and co-workers fabricated a GaN:Eu

based LED with an active layer of alternate GaN/GaN:Eu regions and they reported

an external quantum efficiency of ηEQE = 4.6% at an injected current of 1 mA which

reduced to ηEQE = 0.9% at 20 mA [20]. These values correspond to the highest

reported external quantum efficiency up to date. The calculated EQE from the elec-

trical current injection efficiency model, follows the same trend as the experimentally

reported values. In addition, both experimental studies revealed that higher injected

current into the GaN:Eu device led to saturation in the electroluminescence spectrum,

which was attributed to the saturation of the excited Eu+3 ions. Similar findings have

also been reported elsewhere [16,18]. The present study is consistent with the exper-

imental observations that increasing the injected current will eventually result in the

saturation of the excited Eu+3 concentration with a subsequent decrease in the in-

jection efficiency and internal quantum efficiency the GaN:Eu QW active region.

2.4 CIE Model for a GaN/GaN:Eu homojunction

Here, a CIE model is developed for electrically-driven GaN:Eu device with a

GaN/GaN:Eu/GaN active region to identify the limiting factors of the internal quan-

tum efficiency (ηIQE) and explain the efficiency droop issue of this particular type

of active region. This type of structure is fundamentally different from the struc-

ture investigated in the previous section on quantum well based active region. The

present model provides the analysis of the current injection efficiency and IQE in

the structures pursued by experimentalists [20], specifically the active region with

GaN/GaN:Eu alternate layers where the active regions (GaN:Eu) are not confined by
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Figure 2.10: (a) EQE calculated from the electrical CIE model of GaN:Eu QW device
and experimentally reported values of GaN:Eu based LED. (b) Calculated IQE for
the electrically-driven GaN:Eu QW device. The simulation parameters are shown in
table 2(a).

larger band-gap barrier systems. Such structure presented a very different challenge,

which also required a completely different physics of carrier transport – beyond the

QW model. This present model is important for enabling the direct comparison with

the experimental devices.

2.4.1 Model formulation

Figure 2.11 depicts the GaN/GaN:Eu/GaN active region structure and the re-

lated carrier mechanisms along the Eu+3 excitation path. According to this model,

radiative and non-radiative recombination processes of carriers exist both in GaN

and GaN:Eu regions. These fundamental processes are described through the Auger
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and the Shockley-Hall-Read (SHR) recombination processes (non-radiative) and the

bimolecular recombination process (radiative) in the semiconductors. In addition,

carrier transport mechanisms across the structure are present which are described

through the ambipolar diffusion carrier transport across the GaN and GaN:Eu re-

gions [289,29,31,41].

The development of the current injection efficiency model for the GaN:Eu / GaN

based LED is developed here, and the framework follows the treatments presented

for III-V [28,29] and GaN-based [31] lasers / LEDs. The rate equations of carriers in

the GaN region (N1) and GaN:Eu region (N2) are given by:

dN1

dt
=

Itot
q V 1

+
N2

τr2

V 2

V 1

−N1

(
1

τnr1
+

1

τsp1
+

1

τr1

)
(2.20)

dN2

dt
=
N1

τr1

V 1

V 2

+
Nex

τdiss
−N2

(
1

τnr2
+

1

τsp2
+

1

τr2
+

1

τcap

)
(2.21)

with the rate 1/τ cap defined as

1

τcap
=

1

τcap0

(
1− Nex

Ntraps

)
(2.22)

The Itot is the total current injected into the GaN region from the n- and p-

cladding layers of device. The parameters, Nex and Ntraps, denote the bound-excitons

and the maximum available trap concentration in the GaN:Eu region, respectively,

and the τ cap0 is the capture time at the low regime where Nex<<Ntraps. In equations

(2.20) and (2.21), the V1 and V2 are the volumes of the GaN and GaN:Eu regions

respectively. The rates 1/τnr1 , 1/τ sp1 , 1/τnr2 and 1/τ sp2 are the non-radiative and

spontaneous radiative recombination rates in the GaN (subscript 1) and GaN:Eu (sub-

script 2) regions, respectively. These rates are described by the SHR recombination

constants A, the Auger coefficient C, and the bimolecular recombination constant

B in the semiconductors. The rates 1/τ r1 and 1/τ r2 are described by the ambipolar
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diffusion carrier transport time in the GaN and GaN:Eu regions respectively. The

rate equations of bound-excitons and excited Eu+3 ion concentration are given by:

dNex

dt
= N2

1

τcap
+NEu

1

τbt
−Nex

(
1

τtr
+

1

τdiss
+

1

τex heat

)
(2.23)

dNEu

dt
= Nex

1

τtr
−NEu

(
1

τbt
+

1

τrad
+

1

τEu heat

)
(2.24)

The rates 1/τ tr and 1/τbt are defined in an equivalent manner as in the equation

(2.22):

1

τtr
=

1

τtr0

(
1− NEu

N

)
(2.25)

1

τbt
=

1

τbt0

(
1− Nex

Ntraps

)
(2.26)

where the NEu and N are the excited and the maximum concentrations of Eu+3

ions in the GaN:Eu region, respectively. The current injection efficiency (ηinj) is

defined as the ratio of the current arising from the radiative and non-radiative de-

excitation of Eu+3 ions over the total current Itot, entering the device:

ηinjection =
IEu
Itot

(2.27)

The IEu corresponds to the total recombination current arising from the radiative

and non-radiative de-excitation of the Eu+3 ion in the GaN:Eu region:

IEu =
NEu q V Eu

τ
(2.28)

with q as the electron charge, and the lifetime has both contributions from the

radiative and non-radiative processes as stated below:
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1

τ
=

1

τrad
+

1

τEu heat
(2.29)

By solving the rate equations (2.20), (2.21), (2.23), and (2.24) under steady

state conditions and using the equation (2.27), the current injection efficiency for

the GaN:Eu / GaN LED can be expressed as:

ηinjection =



(
L1

L2

)

b+

b
(

1
τr1

+ 1
τsp1

+ 1
τnr1

)−1 −
(
L2

L1

)
c

τr2







−1

(2.30)

with

b =
L2

L1


a−

(
1

τrad
+ 1

τEu heat

)−1
τ
tr(

1
τrad

+ 1
τEu heat

+ 1
τbt

)−1
τdiss


 τr1 (2.31)

a =


 c
(

1
τr2

+ 1
τsp2

+ 1
τnr2

+ 1
τcap

)−1


 (2.32)

c =







(
1

τrad
+ 1

τEu heat

)−1
τ
tr(

1
τrad

+ 1
τEu heat

+ 1
τbt

)−1 (
1

τdiss
+ 1

τex heat
+ 1

τtr

)−1 −

(
1

τrad
+ 1

τEu heat

)−1

τbt


 τcap




(2.33)

where, the L1 and L2 are the lengths of the GaN and GaN:Eu regions respectively.

Then, the internal quantum efficiency (ηIQE) of the rare-earth doped GaN LED is

given by:

ηIQE = ηinjection ηrad (2.34)

where, the ηrad is the radiative efficiency of the Eu+3 ions defined as the ratio of
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radiative to both radiative and non-radiative de-excitation of Eu+3 ions:

ηrad =
NEu/τrad
NEu/τ

=
1

τrad
1

τrad
+ 1

τEu heat

(2.35)

2.4.2 Simulation results

As for the case of the GaN:Eu based QW, the study of the injection efficiency

in the GaN:Eu/GaN homojunctions is similar. The material parameters used for

the simulations, such as SHR recombination constant A, bimolecular recombination

constant B, Auger coefficient C, electron and hole effective masses and mobilities

can be found in reference [31]. For this work the values of material parameters both

for the GaN and GaN:Eu region are assumed to be the same. In addition, for the

magnitude of the relative times related to traps, bound-excitons and Eu+3 ions, the

experimental results described in [39,40] were used as a point of reference. Despite the

fact that the two models (the GaN:Eu based QW and the GaN/GaN:Eu/GaN) are

physically and fundamentally different (the excitation path is governed by different

mechanisms), the effect of the Shockley-Hall-Read constant A, capture time τ cap0,

transfer time τ tr0 and radiative lifetime of Eu+3 ion τ rad, on the injection efficiency

and excited Eu+3 ion population is similar as in the case of the GaN:Eu based QW.

However in this section, only the effect of the length of the GaN:Eu and GaN regions

on the current injection efficiency and excited Eu+3 ion population is presented. In

addition, the effect of the carrier confinement is also presented with respect to the

GaN/GaN:Eu/GaN structure.

Study: Effect of GaN and GaN:Eu region lengths

The effect of the lengths of the GaN and GaN:Eu regions is depicted in figure 2.11.

As it is shown, the increase of the GaN length (LGaN) reduces the current injection

efficiency (ηinjection) and excited Eu+3 ion concentration. In contrast, an increase in
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the GaN:Eu length (LGaN :Eu) will give rise to the current injection efficiency (ηinjection)

as well as to the excited Eu+3 ion concentration under steady state conditions. The

change in the lengths of the two regions affects the ambipolar diffusion transport time

(τ r1, τ r2) of carries across the structure. For higher LGaN , the carriers require more

time to be transported across the GaN region, reducing the rate at which they arrive

in the GaN:Eu region. As a result, the current injection efficiency (ηinjection) and

excited Eu+3 ion concentration in the active region are decreased. In contrast, for

higher LGaN :Eu , the ambipolar diffusion transport time in the GaN:Eu region (τ r2)

will be increased giving rise to the carrier concentration in the GaN:Eu region. The

increased carrier concentration in the GaN:Eu region will result in higher probability

of bound-exciton formation. Consequently, the excited Eu+3 ion concentration and

the current injection efficiency (ηinjection) are increased.

Figure 2.11: Effect of GaN and GaN:Eu region lengths (LGaN/LGaN :Eu) on (a) current
injection efficiency (ηinjection) and (b) excited Eu+3 ion concentration of the GaN:Eu
region. The dashed lines correspond to changes in the length of the GaN region
(LGaN) with a fixed LGaN :Eu = 2.5 nm. Similarly, the solid lines corresponds to
changes in the length of the GaN:Eu region (LGaN :Eu) with a fixed LGaN = 5 nm

Study: Effect of carrier confinement in the GaN:Eu region

The utilization of heterostructures such as AlxGa1−xN/GaN:Eu/AlxGa1−xN in-

creases the carrier confinement in the GaN:Eu quantum well (QW) region, enhanc-

ing in that way the excitation probability of Eu+3 ions. In addition, the replace-
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ment of the GaN/GaN:Eu/GaN structure with the AlxGa1−xN/GaN:Eu/AlxGa1−xN

heterostructure results in different carrier processes (figure 2.12). These additional

processes include the quantum mechanical capture process of carriers from the bar-

rier to the QW and the thermionic carrier escape process from the GaN:Eu QW to

the AlxGa1−xN barriers. The analysis of the AlxGa1−xN/GaN:Eu/AlxGa1−xN het-

erostructure has already been provided in the previous sections. The effect of the

carrier confinement on the current injection process in RE-doped GaN LED is shown

in figure 2.13. The presence of the GaN:Eu quantum well (QW) confined within

AlxGa1−xN barriers increases the current injection efficiency (ηinjection) and the ex-

cited Eu+3 ion concentration at a given current density. The carrier confinement in

the QW increases the carrier density near the Eu+3 ions and thus, the probability

of carrier capture form traps increases, giving rise to the excitation of Eu+3 ions.

In addition, increasing the Al composition of the AlxGa1−xN barrier increases the

barrier height, which results in the suppression of the thermionic carrier escape pro-

cess [31]. As a result, the current injection efficiency (ηinjection) and excited Eu+3 ion

concentration in the active region are increased. The effect of carrier confinement,

has been demonstrated by T. Arai et al. [18], where they showed an increase of the

PL intensity of a AlGaN/GaN:Eu/AlGaN multiple QW structure as compared to a

rudimentary GaN:Eu based light emitter. Similar findings have been demonstrated

for Erbium-doped GaN based heterostructures, where the effect of carrier confinement

increases the luminescence of the GaN:Er emitter [42,43].

2.4.3 Comparison with experiment

The results from the CIE model are compared with the experimentally reported

values. More specifically, the external quantum efficiency (ηEQE) of a GaN/GaN:Eu/GaN

structure is calculated. The external quantum efficiency (ηEQE) is defined as the prod-

uct of the internal quantum efficiency (ηIQE) and the extraction efficiency (ηEXT) of
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Figure 2.12: Active region structures for GaN:eu based device. The AlxGa1−xN /
GaN:Eu heterostructures result in the formation of GaN:Eu quantum well (QW).
This QW structure results in quantum mechanical processes such as the capture of
carriers form the barrier to the QW as well as to the thermionic carrier escape form
the QW to the barrier. The carrier confinement give rise to the carrier concentration
inside the GaN:Eu QW which in turns enhances the excitation probability of Eu+3

ions.

the device. For the purpose of these calculations, a device area of 0.1 x 0.1 cm2 with

an external quantum efficiency of ηEXT = 44% was used, which is a typical value

of the GaN:Eu based devices [19]. W. Zhu and co-workers fabricated a high power

GaN:Eu based LED via low temperature OMVPE technique [20]. The active region

of this device consisted of alternate GaN (6 nm) and GaN:Eu (3 nm) regions and

exhibited an external quantum efficiency of ηEQE = 4.6% at an injected current of 1

mA which was reduced to ηEQE = 0.9% at 20 mA. These values correspond to the

highest reported external quantum efficiency (ηEQE) for a GaN:Eu based device up
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Figure 2.13: Effect of carrier confinement on (a) current injection efficiency (ηinjection)
and (b) excited Eu+3 ion concentration of the GaN:Eu active region. Higher Al
percentage in the AlxGa1−xN barrier results in the suppression of the thermionic
emission of carriers form the GaN:Eu QW to the AlxGa1−xN barrier.

to date.

Figure 2.14 presents the numerical fitting results to the experimentally reported

values from W. Zhu et al. [20]. The simulation parameters used here are presented in

Table 2.4. The simulation results provided an excellent fit with the experimental data

from reference 23, as shown in figure 2.14. In order to guide the experiments, two

cases (Case I and Case II) with different design parameters are investigated. In Case

I (figure 219), by increasing the length of the GaN:Eu region from 3 nm to 6 nm, an

increase of the external quantum efficiency (ηEQE) with respect to the fitting of the

experimental data is possible. More specifically, an increase of 167%, 112% and 103%

at an injected current of 5 mA, 15 mA and 30 mA respectively, is predicted. In Case

II, by an additional decrease of the radiative lifetime of Eu+3 ion from τ rad =100 µs

to τ rad = 70 µs, an increase of 173% and 183% at 15 mA and 30 mA respectively, is

possible.

The experimental work by W. Zhu et al., showed that increasing the current into

the GaN:Eu device, will eventually result in the saturation of the output light power

of the device, as well as, in the decrease of the external quantum efficiency (ηEQE).
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The saturation in the output power is a result of the saturation of the excited Eu+3

ions in the active region. The present work has showed that this saturation causes the

efficiency droop issue in the GaN:Eu devices. Similar results have been experimentally

verified elsewhere [15,16,18].

Figure 2.14: Experimentally reported values for a GaN:Eu device and the fitting
with the CIE model. Two simulations for higher external quantum efficiency are
performed. The increase at the particular current, is calculated with respect to the
fitting of the experimental values.

Parameters Fitting Case I Case II
A (108 s−1) 0.01 0.01 0.01
τ cap0 (10−8 s) 10 10 10
τ tr0 (10−7 s) 0.36 0.36 0.36
τdiss (10−6 s) 1000 1000 1000
τbt0 (10−6 s) 200 200 200
τ ex heat (10−3 s) 1 1 1
τEu heat (10−3 s) 1 1 1
τ rad (10−6 s) 100 100 70
N (1019 cm−3) 8.7 8.7 8.7
Ntraps (10−19 cm−3) 8.7 8.7 8.7
LGaN , LGaN :Eu (nm) 6, 3 6, 6 6, 3

Table 2.4: Parameters used for the fitting of the experimental values of the GaN:Eu
device and the simulations for higher external quantum efficiency (ηEQE)
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2.5 Key findings of the CIE models - Remarks

Following the analysis of the CIE models it was identified that the saturation of

the excited Eu+3 ions is the main reason for the efficiency droop issue. However,

the saturation rate (how fast or how slow) of the excited Eu+3 ions will define the

values of the current injection efficiency and consequently the internal and external

quantum efficiencies of the emitter. Following the analysis presented in this thesis, it

can be stated that the bottleneck for the low efficiency of the GaN:Eu emitter can be

divided into two parts: the efficiency bottleneck a) at the low current regime and b)

at the high current regime. Figure 2.15 summarizes the key findings.

Regarding the low current regime it was shown that the SHR recombination pro-

cess of carriers at crystal defects, the capture process of free carries from traps in

order to form the bound-exciton, as well as, the energy transfer process from the

bound-excitons to the Eu+3 ions, are the main contributing factors for the low ef-

ficiency. For the high current regime, the radiative life time of the Eu+3 ion plays

the major role. The lower the radiative lifetime, the faster the radiative de-excitation

of the Eu+3 ions, which means that higher current densities can be used to excite

more Eu+3 ions and hence increase the current injection efficiency at that particular

current density.

A more intuitive approach into these mechanisms, at the low current regime, would

reveal that the capture process and the SHR process - which both take place inside

the GaN:Eu region- are two competing processes. Note that both processes (capture

and SHR processes) are accounted for analyzing the dynamics of the carriers within

the GaN:Eu layer. In addition, the transfer process takes place between the bound-

exciton and the Eu+3 ion. As described from the rate equations of the carriers in

the GaN:Eu region in the previous sections it can be clearly seen that under steady

state conditions the SHR recombination process competes with the capture process of

carriers from the traps which are in the vicinity of the Eu+3 ion. In the case where the
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SHR recombination rate is large (high value of A) compared to the capture process of

carriers from traps (to form a bound-exciton), the carrier loss rate into this mechanism

will be very high compared to the capture rate of carrier from traps. This means that

many carriers are lost into the non-radiative process of the SHR, while some of them

will contribute to the formation of the bound-exciton. In an ideal case where the

non-radiative recombination process SHR would be negligible or non-existent (very

high GaN crystal quality), a large fraction of the carriers in the GaN:Eu region would

result to the bound-exciton formation, which in turn would significantly increase the

current injection efficiency. However, no matter how ”efficient” the bound-excitons

are formed not all of them will result to the excitation of the Eu+3 ions via the transfer

process. As it has been mentioned previously, there other competing processes in the

bound-exciton level (such as the dissociation and the non-radiative recombination

process of the bound-exciton) that would take place.

Figure 2.15: Simulated experimental EQE values [20] and the desirable improvement
on the EQE (orange line). The orange line represents the EQE for an optimized
device that would be suitable for technological applications. Arrows indicate the key
points for EQE improvement at low and high current regimes.
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2.6 IQE droop suppression remedies

Based on the previous analysis, several experimental pathways on how to in-

crease the internal quantum efficiency (ηIQE) of the GaN:Eu based devices, including

strategies for suppressing droop are presented. In figure 2.16, the internal quantum

efficiency (ηIQE) is decomposed into two components, namely the current injection

(ηinjection) and radiative (ηrad) efficiencies. The individual efficiencies depend on spe-

cific phenomena along the excitation path of Eu+3 ions. The experimental pathway

on how to alter these phenomena, in favor of the respective efficiency, are also shown

in figure 2.16.

The utilization of advanced growth techniques such as metalorganic chemical va-

por deposition technique (OMVPE) can result in high crystal quality [44-47]. By

carefully adjusting the growth parameters, the defect concentration in the GaN host

can be minimized resulting in lower SHR recombination constant A. In addition, the

lower defect concentration will give rise to the carrier mobility along the structure due

to reduction of the scattering centers. The carrier mobility affects the transport time,

which plays an essential role in the electrically-driven internal quantum efficiency

(ηIQE) of the system. The direct effect of carrier mobility was not presented here,

but it is evident through the ambipolar diffusion transport time [29,29,31,41]. For

higher carrier mobility in the GaN region, the current injection efficiency (ηinjection)

will be enhanced in the RE-doped LEDs. In contrast, the higher carrier mobility in

the GaN:Eu region will result in lower current injection efficiency (ηinjection) and lower

excited Eu+3 ion concentration in the active region. Both the carrier mobility and

length of the device active regions affect the transport time. Furthermore, the utiliza-

tion of heterostructure will be beneficial for the internal quantum efficiency (ηIQE),

attributed to the stronger carrier localization which in turn increases the trap capture

probabilities [18,42,43]. In order to obtain a more efficient excitation of Eu+3 ion,

co-doping and strain engineering in the GaN host are possible pathways. These meth-
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ods have been proved to result in more efficient capture process and energy transfer

process to the Eu+3 ion [15,20,21,22,26,27,48].

Figure 2.16: Internal quantum efficiency in the GaN:Eu based devices and its depen-
dency on the parameters along the excitation path of Eu+3 ion.

The effect of radiative lifetime of Eu+3 ions is crucial for the internal quantum

efficiency (ηIQE) of the device. From the present analysis, the current injection effi-

ciency (ηinjection) and consequently the internal quantum efficiency (ηIQE) are limited

by the saturation of the excited Eu+3 ion concentration at higher input current den-

sities. In order to achieve higher efficiencies at higher input current densities, the

change of this saturation rate is essential. It has been experimentally demonstrated

that by utilizing surface-plasmon (SP) in GaN based QW can significantly increase

the radiative efficiency of the system (49-52). For the case of GaN:Eu based emitters,

through the engineering of the deposited materials used as SPs, the SP frequency can

be adjusted to be very closed to the frequency of the emitted photons from the Eu+3

ions. This approach will increase both the current injection efficiency (ηinjection) and

also the radiative efficiency (ηrad) of the system. The effect of the SPs on the IQE of

the GaN:Eu emitters is presented in the next chapter.
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2.7 A note to the relative magnitude of the life-

times across the Eu+3 excitation path

It is necessary to clarify that, as described in section 2.3.5, the values of the dif-

ferent lifetimes associated with the trap/bound-exciton and Eu+3 ions were mainly

based on the studies presented in the recent experimental works available in the lit-

erature [references 39 and 40]. However, it is important to mention that the range

of the values of these lifetimes can significantly vary between GaN:Eu samples fabri-

cated under different synthesis methods and conditions. In addition, as the GaN:Eu

material quality is improved over the years and a better understanding of the exci-

tation of the Eu+3 ions in the GaN host is established, the magnitude of the relative

lifetimes associated with the trap-assisted excitation path of the Eu+3 ions might be

proven to be lower than the values that have been used in this thesis. Nevertheless,

the key idea and message obtained from the models presented in this thesis would

not be altered.

2.8 Summary of Chapter 2

In summary, a current injection efficiency model (CIE) for optically-pumped and

electrically -driven GaN:Eu based device with different active region configurations

was developed. Through this model, the limiting factors of an optically-pumped

GaN:Eu based QW device as well as and electrically-driven GaN:Eu based QW and

GaN/GaN:Eu/GaN device is identified. In addition, the discrepancy between the

efficiencies of optically-pumped and electrically-driven GaN:Eu QW is explained in

the framework of the current injection efficiency models.

The analysis of the internal quantum efficiency (ηIQE) is accomplished in the basis

of a multilevel system, which includes the carrier behavior and mechanisms in the
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different regions of the active region and the interactions of the traps, carriers and

Eu+3 ions with the GaN host. It was found that the droop in the efficiency of

the GaN:Eu devices is associated with the droop in the current injection efficiency

(ηinjection) of the active region which arises from the saturation of the excited Eu+3

ion concentration. Through the manipulation of the characteristic rates and processes

associated with the excitation path of Eu+3 ions, efficiencies higher than the current

state of the art can be achieved.

These findings are applied both to optically-pumped and electrically-driven GaN:Eu

based devices. Figure 2.16 provides the key points required for higher efficiency in the

GaN:Eu based devices. Note that potential improvements in the extraction efficiency

of the devices could further improve the EQE, but since they are not within the scope

of this work, they are not taken into consideration here. In addition, according to the

CIE model, several experimental pathways on how to increase the internal quantum

efficiency (ηIQE) of the GaN:Eu based devices, including strategies for suppressing

droop were presented.

This work demonstrates the pathway for enhancing the efficiency of the GaN:Eu

based red light emitting devices. In addition, the CIE model can be extended to other

RE-doped wide band-gap semiconductors, in which the excitation of RE ion is trap

assisted.
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Chapter 3

Surface plasmon polaritons for IQE

enhancement

3.1 Theory of surface plasmon polaritons

Plasmons are the quanta of the collective oscillations of the “free” electrons in a

material at the presence of an electromagnetic field. The term “free” usually denotes

the electrons present in the conduction band of the (semi-) conductive material. Sur-

face plasmons are a special case, where collective plasma oscillations take place at the

interface of negative dielectric constant -(semi-) conductive material- and a positive

dielectric constant material. Surface plasmons oscillate at frequency (ωsp), which is

lower than the oscillation frequency of the bulk plasmons (ωp). When coupling of an

electromagnetic wave and a surface plasmon occurs, a quasi-particle named surface-

plasmon-polariton is formed, which propagates along the (semi-)conductor/dielectric

interface (figure 3.1). A detailed theory regarding the formation of surface plas-

mon polaritons in metal-dielectric interfaces can be found in references [1-5]. In the

following section a brief description of the surface plasmon polariton in an infinite

metal-dielectric interface and in a multiple dielectric/metal/dielectric system will be
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given.

Figure 3.1: Surface plasmon polaritons at the metal / dielectric interface.

3.1.1 Case of semi-infinite layers

To describe the surface plasmon polaritons mathematically, we need to solve the

Maxwell’s equations by imposing appropriate boundary conditions in the metal /

dielectric system. Assuming the structure depicted in figure 3.2, a dielectric material

εd , occupies half space (z > 0) while a conductive material with a relative dielectric

function εm occupies the other half space (z < 0).

Figure 3.2: Schematic diagram of a semi-infinite metal/dielectric structure. The
dielectric has a positive relative dielectric function εd >0 and the metal has a complex
relative dielectric function with Re(εm)<0.

Considering an electromagnetic wave propagating in the x̂ direction as ~E(x, y, z)

= ~E(x)e−iγx the wave equation take form of

∂2 ~E(x, y, z)

∂z2
+
(
k0

2 − γ2
)
~E (x, y, z) = 0 (3.1)

where, the k0 is the propagation constant in the free space (k0 = ω/c) and γ is the

propagation wavevector along the x̂ direction. Assuming harmonic time dependence

61



and homogeneity along the ŷ direction the following set of equations for TM solutions

(which are confined at the interface) are derived:

Hy (z) = Ade
−iγxe−kdz , z > 0

Hy (z) = Ame
−iγxekmz , z < 0

(3.2)

where the kd and km are the wavevectors perpendicular to the interface of the two

materials. The continuity of the electromagnetic field at the interface requires that

Am = Ad and

kd
km

= − εd
εm

(3.3)

In order to have confinement of the wave at the interface the above equation

requires that Re(εm)<0 and εd>0 , i.e the metal and the dielectric need to have

opposite sings of the real part of their relative dielectric functions (for the case of

complex values of the dielectric). According to the definition of equation (3.1) the

following relations are obtained:

k2d = γ2 − k20εd (3.4)

k2m = γ2 − k20εm (3.5)

and combining the equations (3.3)-(3.5) yields to the dispersion relation of SPPs

propagating at the interface between two semi-infinite spaces:

γ = k0
√

εdεm
εd+εm

(3.6)

For the case of TE modes, the continuity at of the electromagnetic wave at the

interface requires Am(km+kd) = 0 and since confinement in the interface requires
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positive real values of the complex kd and km , the above condition is fulfilled only

for the case where Am=0 and therefore Am = 0 = Am . Thus, no surface modes exist

for TE polarization for this structure.

Note: The definition of a complex relative dielectric function is εr = ε′r - iε′′r where

ε′r <0 and ε′′r <0. In addition, in the set of equations (3.2) the propagation constant

equals to γ = α - iβ, where α >0 and β >0 (In the section 3.2 of this chapter, the γ

is presented as kspp). In this definition, α is the real propagation constant and the β

is the attenuation constant. The last one defines the effective propagation distance

(1/e decay length) of the surface plasmon polariton Lspp = β−1 (or (2β)−1 if it refers

to Power).

Figure 3.3 shows the dispersion relation of a semi-infinite strucure of Au/air. For

these calculations the dielectric function of the air is εrair = 1 and that of gold is

described by the Drude model as:

εrAu = ε∞ −
ωp

2

ω2 − iωΓp
(3.7)

where the ε∞ = 6.21 is the background constant permittivity at high frequency,

the ωp =1.33×1016 rad/s is the plasma frequency of the gold and the Γp = 1.32×1014

rad/s is the damping factor.

The dashed line is the light line in the air while the the blue and orange represents

the dispersion without and with a damping factor Γp respectively. In general, it is

important to mention that the SPP resonance frequency is the frequency at which

the condition Real{εrAu} = Real{εrair} is satisfied, and defines an asymptotic limit

for the SPP dispersion. The dispersion relation for both cases exhibits two branches,

a high-energy and a low-energy branch. The high-energy branch, called the Brewster

mode, does not describe true surface waves, since according to the equations (3.5)

and (3.2) the z-component of the wavevector in the metal is imaginary and hence the

fields propagate inside the metal. The low-energy branch corresponds to the real in-
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Figure 3.3: Dispersion relation of a semi-infinite strucure of Au/air.

terface wave, i.e the surface plasmon polariton, and it approaches the asymptotic limit

corresponding to the ωsp. For the case with a damping factor there is a continuous

transition from the lower-energy branch (SPP dispersion) to the upper higher-energy

branch. This is because, as the SPP dispersion line approaches the asymptotic limit

ωsp, the losses inside the metal increase significantly. As a result, for energies higher

than ωsp the dispersion curve bends back and connects to the upper higher-energy

branch. In the connecting region the energy of the mode is strongly localized in-

side the metal, and hence the high losses are present. In contrast, for the ideal case

without damping, the two branches are not connected (the connection is due to the

numerical simulation in Matlab) which means that the fields do not propagate inside

the metal and no losses take place. For this study, the upper high-energy branch is

not considered.

An important feature of surface plasmons is that for a given energy the wavevector
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kx is always larger than the wavevector of light in free space (dashed line). It is seen

that for small wavevectors kx the SPP dispersion curve asymptotically approaches

the light line in air (or any other dielectric in case of Au/dielectric interface). The

physical reason for the increased kx (and hence momentum) of the SPP is the strong

coupling between the light and the surface charges. The light field has to ”attract”

the electrons along the metal surface. This means that in order for the SPP to be

excited, phase matching condition must exist (photon must have similar wavevector

to kx). The same also is true for the decoupling of the SPP into radiation modes in

the air (or dielectric). This will be described in the later section.

3.1.2 Case of a planar multilayer structure

For the case of a multilayer structure the transfer matrix method is utilized to

solve for the surface plasmon dispersion relation. The schematics of such structure

are shown in figure 3.4.

Figure 3.4: Schematic diagram of a multilayer structure.

The equation of TM modes propagating along the x̂ direction is given by

~Hj = Hj(z)ei(ωt−γx) ŷ (3.8)
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~Ej =

(
γ

ωε0εrj
Hj (z) ẑ − j

ωε0εrj

∂Hj (z)

∂z
x̂

)
ei(ωt−γx) (3.9)

where the propagation constant γ is defined in an equivalent manner to the section

3.1.1. and the index j refers to the particular jth layer. The magnetic field amplitude

Hj(z) in the jth layer is defined as

Hj (z) = Aje
−i kj(zj−zj−1) +Bje

−i kj(zj−zj−1) (3.10)

where theAj andBj are the coefficients corresponding to the ẑ and−ẑ propagation

directions respectively. In addition, zj defines the boundary between the jth and

(j + 1)th layer and kj is the wavevector normal to the interface, defined as

kj =

√
γ2 − ω2

c2
εrj (3.11)

where the c is the speed of the light in vacuum and εrj is the complex relative

dielectric function of the jth layer. (Note that the εr of a material is given is related

to the complex refractive index via εr = n2 ).

By applying boundary conditions requiring the continuity of the fields at the

interface of the jth and (j + 1)th layer (i.e at z = zj) and requiring their equality at

zj-zj−1 the following matrix regarding the amplitudes of the jth and (j + 1)th layer is

derived:



Aj+1

Bj+1


 = Qj



Aj

Bj


 (3.12)

where Qj is the transfer matrix is defined as

Qj =
1

2




(
1 +

(
n2
j+1

n2
j

)
kj
kj+1

)
e−kjdj

(
1−

(
n2
j+1

n2
j

)
kj
kj+1

)
ekjdj

(
1−

(
n2
j+1

n2
j

)
kj
kj+1

)
e−kjdj

(
1 +

(
n2
j+1

n2
i

)
kj
kj+1

)
ekjdj


 (3.13)

66



where dj = zj+1-zj is the thickness of the jth layer.

For a multilayer structure having l layers the transfer matrix for the whole struc-

ture equals to the product of

Qtot =
∏0

j=l−1Qj =



q11 q12

q21 q22


 (3.14)

and corelates the complex coefficients of the cover and substrate layer



Ac

Bc


 = Qtot



As

Bs


 (3.15)

For confined modes whose fields must vanish in the infinity (−∞, +∞) the coef-

ficients As and Bc must equal to 0. Therefore, by substituting in the above equation

we get:

q22 (γ, ω) = 0 (3.16)

The values of the complex propagation wavevector γ that satisfy the above equa-

tion give both the guided and leaky modes of the structure and determine the disper-

sion relation of the surface plasmon polariton ~ω vs Re(γ), where the ~ is the Plank’s

constant. The equation (3.15) is solved numerically in Matlab while the electromag-

netic field profile is evaluated though equations (3.11)-(3.14). Note that the complex

coefficients Aj and Bj are unnormalized. The normalization condition requires that

the field carries 1 watt of power flow along the x̂ axis per unit width in the ŷ direction:

∫ ∞

−∞

|Hj(z)|2
εrj
∗ dz =

2ωε0
γ∗

(3.17)
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3.2 Purcell factor Fp due to SPP coupling

The spontaneous emission rate of an emitter in a dielectric medium of refractive

index of n is given by the well know formula of (derived from the Fermi’s golden rule)

Γ0 = n
ωp

3µ2

3π2~ε0c3
(3.18)

where n is the refractive index of the dielectric where the emitter is embedded, ω

is the transition frequency of the emitter and µ is the dipole matrix element of the

transition.

If the system of the emitter is in the vicinity of a conductive layer such as metal,

the spontaneous emission rate will be modified due to the coupling to the SPP modes

(assuming that the frequency of the emitter is very close to the SPP frequency ωsp).

The total recombination rate of the emitter will be the sum of Γ0 +Γp +Γnr, with Γnr

the non radiative recombination of the emitter and Γp the recombination rate into

the plasmon modes.

This total new recombination rate with respect tot he recombination rate of the

emitter without the presence of the metal, is an analog of the Purcell factor Fp and

can be expressed as :

Fp =
Γp(ω) + Γ0(ω) + Γnr(ω)

Γ0(ω) + Γnr(ω)
≈ 1 +

Γp(ω)

Γ0(ω)
(3.19)

assuming minimal non-radiative recombination rate of the emitter compared to

its radiative recombination rate.

The local electric filed of the plasmon mode E(a), where a is the distance of the

emitter relative to the conductive layer, can be used to estimate the corresponding re-

combination rate (Γp) of the emitter into the plasmon continuum. This recombination

rate of the emitter is given by the Fermi’s golden rule:
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Γp =
2π

~
〈
~µ~E(a)

〉2
ρ(~ω) (3.20)

where ρ(~ω) is the mode density of plasmons and is equal to

ρ(~ω) =
L2

4π

d(k2)

d(~ω)
(3.21)

It can be seen that the surface plasmon density of states can be calculated from

the dispersion relation ω vs k.

The electric field E(a) can be normalized to a half quantum for zero-point fluctu-

ation by the following relation:

E2(a) =
~ω/2

L2

4π

∫∞
−∞ d(ωε)/d(ω)E2

0(z)dz
E2

0(a) (3.22)

where E0(z) is the unnormalized plasmon electric field and L2 is the in-plane

quantization area and ε the dielectric fucntion of materials that conist the system

emitter/dielectric and conductive layer (εr is the relative dielectric function). Com-

bining the above equations the Purcell factor of the emitter/dielectric in the presence

of the conductive layer is given by:

Fp(ω) = 1 +
3πc3E2

0(a)

4nω2
∫∞
−∞ d(ωεr)/d(ω)E2

0(z)dz

d(k2)

d(ω)
(3.23)

3.3 Coupling of SP on GaN based emitters for vis-

ible emission

The field related to surface plasmon polariton and their properties is named plas-

monics. Due to their novel optical properties, SPPs have been used in a variety of

applications, such as sensing spectroscopy and subwavelength optics [6-9]. In ad-
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dition, their usage in enhancing the efficiency of light emitting devices has already

been established. The first researchers that theoretically proposed the use of plas-

monics for the emission enhancement of materials were Yablonovitch et al [10,11].

Okamoto et all were the first to demonstrate the light emission enhancement for an

InGaN/GaN quantum well (QW) material coated with Ag thin film [12]. The reason

for the efficiency enhancement is due to the coupling of the emitted electromagnetic

(EM) mode to a surface plasmon (SP) of a conductive layer, spaced at a distance from

the emitter, and the generation of a surface plasmon polariton (SPP). Through this

coupling, the radiative efficiency of the system is enhanced (the effective radiative

lifetime is reduced) due to increase of photon density states near the surface plasmon

energy Esp - a phenomenon known as the Purcell effect [13]. Since the first work

of Okamoto et al., the concept of SP coupling to the active materials in III-Nitride

semiconductors has been widely used. More specifically, metallic thin layers such as

silver (Ag) and gold (Au) have been deposited on top of InGaN multiple quantum

wells for increasing the efficiency of the emitter in the ultraviolet (UV) and visible

spectral regimes [10-12,14-17].

However, despite the popularity of these noble metals as the metallic plasmonic

material choices for applications in the UV and visible spectral regime, such mate-

rials are unsuitable for plasmonic applications in the red and near infrared spectral

regime attributed to high Ohmic losses [18, 19]. In contrast, the transition-metal ni-

trides, such as titanium nitride (TiN), hafnium nitride and zirconium nitride (ZrN),

are promising candidates as low-loss plasmonic materials in the visible and near-IR

spectral regimes attributed to the ability for achieving negative real permittivity val-

ues at relatively lower carrier concentrations [20-25]. In addition, these materials

offer a wide tunability of their dielectric properties, usually through the variation of

the deposition parameters [20-25]. The concept of the efficiency enhancement via

the surface plasmon polaritons can be applied for the case of the GaN:Eu emitters.
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Through the CIE models and the analysis presented in the previous chapter, it was

identified that the saturation of the excited Eu+3 ions in the GaN host - resulted

either by optical excitation or electrical injection in the GaN host - as one of the key

factors limiting the peak internal quantum efficiency and droop issue at high injection

current level. These limiting factors resulted in the low current injection efficiency in

electrically-driven GaN:Eu LED, which in turn led to a significant reduction in both

its internal and external quantum efficiencies.

In addition, it was proposed that the reduction in the radiative life time of Eu+3

ions (τ rad) reduces the saturation issue of the Eu+3 ions up to higher current density;

such approach enables the ability to achieve high current injection level and minimize

the drooping issue at higher current density (for electrically-driven GaN:Eu devices)

and at higher photon flux (for optically-excited devices). The reduction in the τ rad

also increases the radiative efficiency (ηradiative) of the Eu+3 ions, which in turn results

in a further enhancement of the internal quantum efficiency (ηIQE = ηinjection ηradiative)

of the device.

In this chapter, the use of metal nitrides - TiN, HfN and ZrN - as plasmonic

materials in the red spectral regime is investigated. More specifically, the effect of

the coupling of the surface plasmons of the metal-nitride to the GaN:Eu based red

light emitter and its impact on the internal quantum efficiency - of this particular

type of red light emitter - is studied. A comparison among the metal nitrides is

made, and it was found that TiN is the most suitable selection for applications in

the characteristic photon energy of the GaN:Eu emitter at ≈ 2 eV . Consequently,

the study is proceeded to investigate the effect of the TiN layer thickness (dTiN) and

GaN spacer thickness (dspr) on the SPP dispersion relation and Purcell factor. The

impact on the electrically-driven device characteristics for TiN-based surface plasmon

coupled on GaN:Eu LEDs is also presented.
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3.3.1 Effect of single layer of metal-nitride on the GaN:Eu

emitter

For the purpose of the theoretical study, the structure depicted in figure 3.4 (a) is

considered. The metal-nitride layer is placed on top of a GaN/GaN:Eu/GaN emitter,

where the last layer of GaN serves as the spacer between the GaN:Eu and metal-nitride

regions. The SPP dispersion relation is computed by solving the Maxwell’s equations

in the GaN/GaN:Eu/GaN active layer, metal-nitride plasmonic layer, and air region

with the appropriate boundary conditions. After solving the SPP dispersion relation,

the electric field profile is evaluated to calculate the Purcell enhancement factor; this

method is similar to work presented in reference 10. The simulations are performed

assuming the dielectric functions of GaN:Eu and GaN regions as identical and equal

to is the refractive index of GaN. For the dielectric function of the metal-nitride the

Drude-Lorentz model is used according to the following formula:

εrT iN = ε∞ −
ωp

2

ω2 − iωΓp
+

m∑

j=1

fjωj
2

ωj2 − ω2 + iωΓj
(3.24)

where the ε∞ is the background constant permittivity at high frequency, the ωp

is the plasma frequency of the metal-nitride, the Γp is the damping factor, and the

ωj is the frequency of the Lorentz oscillators with strength fj and damping factor Γj.

The parameters of the dielectric function of the individual metal-nitride materials

investigated in this study are shown in Table 3.1.

Parameters HfN TiN ZrN
ε∞ 2.5 4.855 3.465
ωp (eV ) 5.71 7.9308 8.018
Γj (eV ) 0.6878 0.1795 0.5192
ω1 (eV ) 4.60 4.2196 5.48
f1 1.20 3.2907 2.450
Γ1 (eV ) 2.65 2.0341 1.736

Table 3.1: Parameters of the Drude-Lorentz model for the different metal-nitrides
investigated in this study.
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Prior to the theoretical investigation it is important to mention that the structure

studied here (figure 3.5 (a)) is basically the active region of a GaN:Eu based device.

In addition, in this study any possible cavity effects on the Purcell enhancement

factor have been excluded. The structure depicted in figure 3.5(a) does not contain

any highly reflective layers (i.e reflective metals, distributed Bragg reflectors), as well

as, does not meet the criteria for the lowest resonant cavity frequency: the required

cavity width for the lowest resonant wavelength (or frequency) is λ/2 (where the λ

is the characteristic emitted wavelength of the light source), while the total width of

the structure depicted in figure 3.5(a) is much less than the above required condition.

Figure 3.5(b) depicts the effect of different metal-nitride materials on the SPP

dispersion relation. The thickness of the metal-nitride layer was fixed at 20 nm

while the thickness of the GaN spacer was fixed at 15 nm. It can be seen that the

SPP dispersion relation approaches an asymptotic limit which corresponds to the

characteristic surface plasmon polariton energy (Esp). Among the metal-nitrides the

energy of the SPP of the TiN is very close to the characteristic photon energy of the

GaN:Eu emitter (≈ 2 eV ) in the red spectral regime. In contrast the ZrN and HfN

present a characteristic Esp which is in the green (≈ 2.2 eV ) and deep red (≈ 1.70

eV ) spectral regime respectively. In addition, as it is shown in figure 3.5(c), TiN

presents high Purcell factor at the characteristic energy of Esp as compared to the

other metal-nitrides. It is important to mention that this comparison of metal-nitrides

aims on the selection of the appropriate material for plasmonic application only in

the spectral regime of the characteristic photon energy of GaN:Eu emitter at ≈ 2 eV .

Therefore, TiN is found to be a suitable plasmonic material for the surface plasmon

coupling with the GaN:Eu based red light emitter. The use of the other metal-nitrides

presented in this study can be used for similar applications in the spectral regime of

their characteristic asymptotic limit of Esp.

Figure 3.6(a) depicts the effect of different TiN layer thickness on the SPP disper-
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Figure 3.5: (a) Schematic of the structure used for the simulations. (b) Energy dis-
persion relation of the surface plasmon polariton (SPP) for different metal-nitrides.
The thickness of the metal-nitride film was set at 20 nm while the GaN spacer thick-
ness of was set at 15 nm. (c) Purcell factor for different metal-nitrides films on top
of the GaN:Eu red light emitter

sion relation for the case of dspr = 15 nm. By decreasing the TiN thickness, the SPP

curve is pushed down at lower energies while maintaining the asymptotic limit at Esp

≈ 2.0 eV . In general, for a thin conductive layer surrounded by dielectrics, collective

plasma oscillations localized at the metal/dielectric and metal/air interfaces exist.

The thinner the conductive layer is, the stronger the coupling between the SPPs at

the two interfaces becomes resulting in a larger energy separation of the two SPPs

[15]. As the energy approaches the Esp , the penetration depth of the electric field of

the SPP in the conductive layer significantly reduces resulting in the non-interaction

of the two SPPs at the two interfaces. Hence, the limit of Esp is independent of the

conductive layer thickness.

Figure 3.6(b) depicts the Purcell factor for various TiN thicknesses for the case

of dspr = 15 nm. As the energy of the SPP increases towards Esp, the Purcell factor
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increases due to the increased surface plasmon density of states (SPDS). The maxi-

mum value of the Purcell factor is obtained at the limit of Esp, where the SPDS has

its maximum value. Note that the SPDS is proportional to (∂E
∂k

)−1 of the dispersion

curve shown in figure 3.6(a). At energies above Esp, the GaN / TiN interface cannot

support a guided SPP mode, hence the Purcell factor drops to unity. In addition,

by decreasing the TiN thickness, the Purcell factor can be obtained for values higher

than 100. In contrast, by reducing the TiN thickness beyond 10 nm, the Purcell factor

drops at energy ≈ Esp, while it becomes broader at lower energies. This behavior is

attributed to the lower energies of the SPP for the case of dT iN = 5 nm as compared

to those with dT iN > 5 nm, as shown in figure 3.6(a).

Figure 3.6: (a) Energy dispersion relation of the surface plasmon polariton (SPP) for
different TiN thickness (dT iN) with GaN spacer thickness of dspr = 15 nm. (b) Purcell
factor for different TiN thickness (dT iN) with GaN spacer thickness of dspr = 15 nm.

As shown in figure 3.6(a) and 3.6(b), the use of thinner TiN layer results in larger

SPP wavevector (kspp) with high Purcell factor; however, such condition comes at

the expense of the SPP propagation length λspp = 2π/Re{kspp} and the 1/e decay

length of the electric field (Lspp). A length Lspp of ≈ 4.05 nm is obtained for the case

of dT iN = 5 nm. As the dT iN is increased to 15 nm (or 20 nm), the Lspp increases

to ≈ 11.7 nm (≈ 15 nm). Despite the relatively low 1/e decay propagation length,
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the out-coupling of the SPP into the air can be achieved through scattering via the

roughness of the TiN / GaN interface [12, 26].

In figure 3.7(a), a similar dependency of the Purcell factor on the TiN thickness

is observed for a different spacer thickness of dspr = 25 nm. Figure 3.7(b) depicts

the Purcell factors at the asymptotic limit of Esp versus different spacer thickness,

plotted for different TiN thicknesses. A reduction of the Purcell factor with the spacer

thickness is observed for all cases. In general, a thicker spacer corresponds to a larger

separation of the TiN and GaN:Eu layers, which in turn results in a weaker coupling

of the GaN:Eu region to the SP layer. The interplay role of the conductive and

the spacer layer thicknesses has also been demonstrated for the case of GaN/Ag/air

interfaces [11].

Figure 3.7: (a) Purcell factor for different TiN thickness (dT iN) with GaN spacer
thickness of dspr = 25 nm. (b) Purcell factors at the asymptotic limit of Esp versus
different GaN spacer thickness (dspr) plotted for different thickness of TiN (dT iN).

3.3.2 Effect of double metallic layer on GaN:Eu emitter

The dielectric properties of TiN strongly depend on the deposition conditions [27-

33]. By tuning the deposition conditions of TiN on top of GaN, the desirable dielectric

properties of TiN can be achieved. In this way the surface plasmon frequency can be
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designed to cover a wide range of the visible spectral regime. In contrast to the single

TiN layer presented in this work, two different layers of TiN with different dielectric

functions can be used to tune the asymptotic limit Esp. The concept of a double layer

(DL) has been demonstrated for the case of the InGaN QWs where the thickness of

the individual layers of the DL varied to tune the surface plasmon energy Esp [15,16].

A similar concept can be applied for the case of a double TiN layer on top of GaN

based light emitters, including GaN:Eu and InGaN QWs, which could potentially

increase the Purcell factor over a wide range in the visible spectral regime.

3.4 Impact of Purcell Factor on Internal quantum

efficiency

The analysis of the Purcell factor in the internal quantum efficiency of the electrically-

driven GaN:Eu LEDs is presented in figure 3.8, in order to quantify the improvement

presented from the use of surface plasmon structure. The device used for this cal-

culation is identical to the device structure studies in section 2.4 of Chapter 2. The

introduction of surface plasmon coupled active region in GaN:Eu results in an order

of magnitude increase in the internal quantum efficiency of the electrically-driven

devices, and provides a reduction of efficiency-droop up to relatively high current

density (J).

A large surface plasmon coupled structure (Purcell factor ≈ 1000) results in peak

internal quantum efficiency ≈ 20% for J = 0.1 A/cm2. The droop suppression from

the Purcell effect is found to be more significant at higher current densities. Specifi-

cally, a Purcell factor of 1000 results in an increase of the internal quantum efficiency

by ≈ 16 times at a current density of J = 10 A/cm2, while the same Purcell factor

results in only ≈ 1.7 times higher improvement for J = 0.1 A/cm2. For the structure

without any surface plasmon coupling (reference case, with Purcell factor = 1), a
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Figure 3.8: Internal quantum efficiencies of electrically-driven GaN:Eu LED as a
function on Purcell enhancement factor, plotted for three different current densities
(J).

significant reduction (≈ 30 times) in the internal quantum efficiency is observed as

the current density increases from J = 0.1 A/cm2 to J = 10 A/cm2. In contrast, the

reduction of only ≈ 3.5 times in the internal quantum efficiency was observed in the

structure having a large Purcell factor (≈ 1000) for the same current density range

(J = 0.1 A/cm2 to J = 10 A/cm2). As mentioned earlier, the changes in the Purcell

factor correspond in changes of the radiative lifetime of the GaN:Eu region (i.e Eu+3

ions) which affect the radiative efficiency of the system. In addition, a change in the

current injection efficiency will also occur resulting in an overall change of the internal

quantum efficiency of the GaN:Eu device.

3.5 Summary of Chapter 3

The metal-nitrides of hafnium-nitride (HfN), zirconium nitride (ZrN) and titanium

nitride (TiN) have been investigated as plasmonic materials to enhance the internal

quantum efficiency of the GaN:Eu red light emitter. It was found that among those
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metal-nitrides, the TiN is the most promising material candidate for surface plasmon

coupling to the GaN:Eu red light emitter. Through the tuning of the TiN and GaN

spacer thickness, Purcell factors as high as 1000 can be achieved at a photon energy

≈ Esp. The coupling of the active region of a GaN:Eu LED to the surface plasmon

of the TiN layer is expected to result in significant increase in the internal quantum

efficiency of the electrically-driven devices. This approach will provide a pathway for

achieving 20% internal quantum efficiency in electrically-driven devices. A significant

reduction in drooping at high current density is expected in the surface-plasmon

coupled GaN:Eu electrically-driven LED. The droop suppression in the electrically-

driven surface plasmon coupled device is expected to improve by ≈ 16 times over that

of the reference devices without employing surface plasmon coupling.
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Chapter 4

Organometalic Vapor Phase

Epitaxy of III-Nitrides

4.1 OMVPE epitaxial system

Organometalic vapor phase epitaxy (OMVPE) is a compound semiconductor epi-

taxial growth technique that is widely used both in the industry and in research

facilities. The growth of the of the III-nitrides takes place in a high vacuum cham-

ber with typical growth pressures ranging from 20 to 500 mtorr. The growth of the

semiconductor compounds is a result of complex chemical reactions of gases at the

surface of a substrate under certain temperature and pressure. Figure 4.1 depicts the

main proceces during the epitaxy of the film. The purpose of this chapter is to give

an introduction to the OMVPE system that was used in the framework of this thesis

and also introduce in the derivation of the V/III molar ratio, which is one of the

main parameters to achieve high quality epitaxial films. The growth of the III-nitride

coimpunds and epitaxial structures for visible light emission, is presented in Chapter

5 and Chapter 6 respectively.

In this work, the growth of the Ill-nitride compounds was performed in vertical-

84



Figure 4.1: Processes during OMVPE epitaxy of III-nitride compounds.

type turbo-disk rotating showerhead OMVPE reactor (VEECO P-75). The schematic

of the reactor is shown in figure 4.2. The main components of this particular type of

reactor are grouped into three parts: 1) gas and metalorganic (MO) sources delivery

system, 2) growth chamber, and 3) pressure maintenance system. The gas delivery

system mainly consists of stainless-steel tubes, pressure regulators and electronically-

controlled pneumatic valves, capable of delivering high-purity gases, i.e. parts-per-

billion (ppb) level impurity, into the growth chamber.

Figure 4.2: Schematics of the OMVPE growth chamber as it is seen from the user’s
interface program.
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Figure 4.3: Schematics of the MO sources and bubblers as it they are seen from the
user’s interface program.

Gas and metalorganic (MO) sources delivery system

For the growth of all the Ill-nitride compounds, the following MO sources are

used: trimethylgallium (TMGa), triethylgallium (TEGa), trimethylindium (TMln)

and trimethylaluminum (TMAl). The MO source of bis cyclopentadienyl magnesium

(Cp2Mg) is also employed as p-dopant. Nitrogen (N2) (or hydrogen (H2)) is used

as the carrier gas for the III-precursor. While the MO sources provide the desirable

III-precursor, ammonia (NH3) is used to provide the atomic nitrogen (V-precursor).

Another V precursor which is used to provide n-type doping in III-nitrides is silane

(SiH4). In addition, hydrogen (H2) and nitrogen (N2) are employed as ambient gases

during growth.

Highly purity H2 is generated in-house by electrolysis process by Teledyne HM-

100 H2 generator and further purified by an SAES Getter H2 purifier. House N2

and NH3 gases are also purified by an Aeronex gas purifiers. The gas flow is indi-

vidually regulated by mass flow controllers (MFC) calibrated to the respective input

gas pressure. The MO source manifolds are connected to the gas delivery system.

Figure 4.2 depicts the schematic of the metalorganic sources used in this work. The
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MO sources are contained inside cylindrical stainless steel called ’bubblers’, which

in turn are immersed into a temperature-controlled baths. The temperature of the

MO source is crucial because it determines the vapor pressure and consecutively the

partial pressure in the growth chamber. In this work, nitrogen is used as the carrier

gas of the MO source. The carrier gas is passed through a mass flow controller to

regulate its flow prior to its entrance to the inlet of the MO bubbler. The carrier

gas picks up the MO vapor and carries it into the growth chamber. The vapor and

bubbler pressure can be directly correlated to the actual flow of the MO source.

Growth chamber

The carrier gas (with the MO source), as well as, ammonia (NH3) and other

gases (H2, N2) are introduced into the growth chamber from the top, where they

pass through a metallic screen with a ’showerhead’ configuration. This configuration

allows flexibility in specifying the amount of flows and the relative position of differ-

ent vapor sources impinging on the substrate. The substrate utilized for growth, is

usually sapphire (for u-GaN growth) or u-GaN/sapphire (for III-nitride alloy / semi-

conductor structure growths). The substrate is placed on top of a circularly-indented

2” graphite platter coated with silicon carbide (SiC). Bellow the platter is a resistive-

heating filament, which is connected to a power supply. The platter is mounted on

top of a spindle, which is connected to a motor that spins the substrate/sample during

the growth. A rotational speed of 1100- 1500 rpm is typically employed. The rota-

tion of the substrate/sample also assists to a viscously drug/pulling of gases straight

down and redirecting them outward over the substrate carrier. During the growth,

the temperature of the sample is monitored by RealTemp monitoring system, which

measures the ’glow’ of the sample at high temperature (T > 450 oC). Additionally,

the RealTemp also serve as film thickness and growth rate monitor, where the growth

rate is measured in-situ from the peaks and valleys of the reflectivity plot. The
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growth chamber is double-walled and cooled by temperature-controlled recirculating

water loop. The sample is transferred into and out of the growth chamber through

a separate loading area called the load-lock. The load-lock is kept under vacuum (0

psi) and is isolated from the growth chamber by a gate-valve. The processes of the

load-lock routine (sample loading into the load-lock) and gate-valve routine (sample

loading into the growth chamber) are automatically via a control panel. In addition,

the gas flows, growth pressure and temperature are controlled via a program interface

(LabView) which allows the user to build a desirable recipe for a particular growth.

Pressure maintenance system

The pressure maintenance system consists of a particle filter, throttle valve, EBARA

vacuum pump and exhaust line connected to the Vector scrubber. Throttle valve and

EBARA pump regulate the pressure of the growth chamber. The gases in the outlet

of the growth chamber pass through a particle filter trap prior to being pumped out

by the Ebara AA70W pump. The outlet of the Ebara pump is connected with a wet

scrubber unit of Vector Ultra 3001 that provides abatement of toxic, corrosive, and

water-reactive gases from process equipment effluent. The scrubber, which utilizes

water and N2, is used to purify the gases before they get passed onto the main ex-

haust line for further scrubbing and released into the atmosphere. The throttle valve

is located between the growth chamber and the Ebara pump and is used to control the

growth chamber pressure by tuning its opening from 0% to 100%. Other supporting

facilities include heat exchanger for pumps and reactor cooling, process gas manifolds

for gas flow controlling, gas purifiers for N2, H2, NH3, etc.
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4.2 Epitaxial growth parameters

One of the most important parameters for the epitaxial growth of high qual-

ity III-nitride compound semiconductors, besides the growth pressure (PCG) and

temperature(Tg), is the V/III molar ratio during the epitaxy. The V/III molar

ratio is directly related to the flow of the carrier gas and NH3 and can be derived as

follows:

The vapor pressure of the MO source inside the bubbler is a function of temper-

ature and can be described from the followin empirical equation:

Pvapor = 10(a−b)/T (4.1)

with a and b the empirical parameters which are shown in Table 4.1.

MO Source a b (K) T (K) Pvapor (Torr) PBubbler (Torr)
TMGa 8.07 1703 273.15 64.443 900
TEGa 8.083 2162 283.15 2.802 900
TMIn 10.98 3204 293.15 1.123 900
TMAl 8.224 2134.83 293.15 8.742 900

Table 4.1: Parameters of the Drude-Lorentz model for the different metal-nitrides
investigated in this study.

For the group III-precursors that use a single dilution configuration the actual

flow (sccm) is calculated by:

FIII = FIII × Pvapor

PBubbler − P vapor
(4.2)

It is important to mention that the partial pressures of the TMGa and TMAl are

much higher than those of TMIn and TEGa. Therefore, a double dilution configu-

ration is employed for the TMGa and TMAl in order to reduce the flow and avoid

any possible precipitation and contamination of the precursors in the gas line or the

growth chamber. Moreover, the double dilution assists to the more precise control of
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the flow. For the case of the double dilution, the actual flow of the the III-precursor

is given by:

FIII = FIII Main × Pvapor

PBubbler − P vapor
× FIII DD

FIII Main −FIII Push
(4.3)

where FIII Main, FIII Push, and FIII DD are flow rates of pure N2 carrier gas going

through the bubbler, pure N2 push gas, and double dilution of N2 carrying MO source,

respectively. They are controlled by the main MFC, Push MFC, Double Dilute MFC

(for the case of TMGa this corresponds to main MFC = MFC - 4, Push MFC =

MFC - 18 Double Dilute MFC = MFC - 17 as shown in figure x).

Therefore, the partial pressure of the III-precursors PIII partial (mtorr) in the

growth chamber is given by:

PIII partial = PGC × FIII

FAmbient gas +FNH3

(4.4)

The partial pressure of the ammonia (NH3) PV partial is obtained from the follow-

ing equation:

PV partial = PGC × FNH3

FAmbient gas +FNH3

(4.5)

where the FAmbient gas represents the total flow rate of ambient gas of N2 and H2

flowing into the chamber during the growth. The chamber growth pressure (PCG)

is set by the growth recipe and is controlled by the throttle valve underneath the

chamber. The V/III molar ratio of the growth is defined as:

V/III =
PV partial

PIII partial
(4.6)
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Chapter 5

Pulse-OMVPE Growth Mode of

InN

5.1 Motivation for bulk InN growth via the pulse-

OMVPE growth technique

In virtue of its narrow band-gap of ≈ 0.7 eV , indium nitride (InN) is an important

semiconductor material for optoelectronic applications including solar cells, THz gen-

eration, high-speed electronic devices and light emitters [1-13]. However, challenges

in growing high quality epitaxial InN films via the metal-organic chemical vapor depo-

sition (OMVPE) technique still hinder the development of InN based devices. These

challenges are attributed to the low dissociation temperature of InN (≈ 600 oC), and

the low pyrolysis efficiency of ammonia (NH3) at low growth temperatures. These

challenges impose a narrow set of growth conditions that need to be met in order

to avoid the formation of metallic-In on the surface of the InN films. An effective

method to overcome these issues is the use of the pulsed-OMVPE technique. In this

growth technique, the indium precursor is supplied into the chamber in pulses while

the supply of NH3 is constantly flowing. For the case of the InN epitaxial growth,
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it has been shown that the use of the pulsed-OMVPE mode results in the increased

adatom mobility of the In on the surface of the substrate, the etching of the metallic-

In droplets during the off state of the indium precursor due to hydrogen generation -

arising from the pyrolysis of the NH3, and the consumption of metallic-In by reactive

nitrogen species [9-11]. In addition, the use of the pulsed-OMVPE allows a wider

window for optimized growth conditions to achieve high quality metallic-In free InN

epitaxial films [9-11, 14-17].

In this work, the pulsed-OMVPE technique was employed for the growth of the

InN in a vertical-flow Veeco P-75 reactor. Unintentionally doped GaN templates (3

µm), grown on c-plane sapphire substrates at a pressure of 500 torr and a temperature

of ≈ 1050 oC, were used as the substrates for the InN growths. The structural

characteristics of the films were determined by X-ray rocking curve scans of the (002)

plane and the full width at half maximum (FWHM) was found to be ≈ 200 arcsec.

The electron background concentration was determined via Hall measurements in the

Van der Pauw configuration and it was found to be in the range of n ≈ 3 x 1016

cm-3 with an electron mobility of µe ≈ 430 cm2/V s. For the growth of the InN, the

NH3 was constantly supplied into the reactor while the trimethylindium (TMIn)

precursor was introduced via the nitrogen carrier gas (N2) into pulses. Four different

growth studies were carried out to investigate the effect of growth temperature, V/III

molar ratio and pulse characteristics - pulse period (T p) and duty cycle (T dc) -,

on the structural and electrical properties of the films. The duty cycle (T dc), at a

particular pulse period (T p), determines the time duration that the TMIn precursor

is flowing into the chamber. For each InN growth, the total pressure was set to

200 Torr and the delivery of the TMIn precursor was set to 5.5 µmole/min for the

“on” state, while the number of the periods was tuned accordingly so that the total

TMIn supply time was kept constant and equal to 35 minutes. The growths resulted

in film thicknesses in the range of ≈ 100-200 nm, as it was estimated through the
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reflectance oscillations at 930 nm during the growth. The structural properties were

studied, using an Empyrean Panalytical Malvern X-ray diffractometer with parallel

beam geometry and CuKa radiation. Atomic force microscopy (AFM) in tapping

mode was used to evaluate the surface morphology of the films in a 5 µm x 5 µm

surface area, while the electrical properties of the films were studied via an Ecopia

HMS - 3000 Hall measurement system in a Van der Pauw configuration. The present

findings indicate that metallic-In-free InN films with relatively low structural defect

densities, sheet carrier concentrations (ns) and high electron mobilities (µe) can be

fabricated using the pulsed-OMVPE growth technique.

Despite the suggestion of the use of the pulse-OMVPE mode, as the method to

eliminate any metallic-In from the epitaxial InN films, metallic-In is still present,

especially at low V/III ratios. As it is shown from the XRD pattern in figure 4.1,

metallic-In is still present when the V/III ratio is ≈ 17000 , growth temperature

T= 540 oC. The metallic-In was able to be removed through HCL etching for 3

min at 100 oC. However, as it will be shown later in this chapter, the formation

of metallic-In depends upon a combination of parameters and growth temperature

operating regimes. Nevertheless, the use of the pulse-OMVPE allows a wider window

for optimized growth conditions to achieve the desirable properties of the epitaxial

InN films.

5.2 Epitaxy of InN

5.2.1 Effect of growth temperature T g

The effect of the growth temperature (T g) was studied under a V/III molar ratio

≈ 39000, pulse period T p = 26 s and duty cycle T dc = 50%. In figure 5.2(a), the

XRD patterns of the coupled ω/2θ scan revealed a wurtzite InN (002) peak located

at ≈ 15.65o and the GaN substrate (002) peak located at ≈ 17.30o. In addition, for
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Figure 5.1: Pulse OMVPE growth of InN on GaN/sapphire with growth conditions of
V/III ratio of ≈ 17000, growth temperature of T = 540 oC and pulsing characteristics
of T p =26 s and T dc = 50%. Metallic-In is still present at these growth conditions.

the sample grown under the lowest temperature of 460 oC an extra peak located at ≈

16.40o was observed, which corresponds to the cubic metallic-In (101) crystal plane.

The presence of metallic-In is probably attributed to the low NH3 dissociation at this

low growth temperature. To evaluate the crystal structure quality of the InN layers, a

rocking curve scan for the (002) plane (symmetric scan) and (105) plane (asymmetric

scan) was performed. It is well known that for the III-nitrides, the full width at half

maximum (FWHM) of the symmetric scan corresponds to the lattice distortions due

to screw type of threading dislocations, while that of the asymmetric scan is related

to any type of threading dislocations that distort the crystal structure (screw, edge

and mixed screw-edge threading dislocations) [19]. In addition, it has been shown

that the threading dislocations significantly affect the mosaic, tilt and twist of the

InN epitaxial films [20,21]. Nevertheless, in this study the FWHM of the symmetric

and asymmetric rocking curve scans are expected to give a qualitative view of the

crystal structure quality of the InN films.

As the growth temperature increases from 460 oC to 535 oC (low temperature
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regime), the FWHM of the rocking curve, shown in figure 5.2(b), varies slightly in

the range of 343-408 arcsec and then rapidly increases towards 1647 arcsec for higher

growth temperatures (T g > 535 oC) (figure 5.2(b)). In contrast, the FWHM of the

(105) plane gradually increases from 705 to 1712 arcsec with increasing the growth

temperature. This is an indication that the crystal structure quality of the InN films

degrades with increasing the growth temperature. This might be attributed to the

generation of threading dislocations and the increase of the mosaicity of the InN films.

As shown in figure 5.2(c) and 1(d) the AFM images revealed a 3-dimensional

morphology - due to large lattice mismatch between the GaN and InN (≈ 10%) - of

the surface of the films consisting of grains, whose size and density were dependent

on the growth temperature. More specifically, at higher growth temperatures, the

size of the grains increased, and their density became smaller resulting in higher

surface roughness and an overall increasing trend of the RMS roughness of the films.

Moreover, the larger grains are expected to be more tilted and twisted with respect to

each other contributing more to the broadening of the rocking curve linewidths [20].

This controversial trend of the crystal structure quality with increasing the growth

temperature has also been reported elsewhere [22].

The electrical properties of the films for the growth temperature study are shown

in figure 5.2(e). The InN films exhibited n-type conductivity. In general, the InN

films exhibit an intrinsic n-type conductivity which is associated with several sources,

including intrinsic defects such as nitrogen vacancies, extrinsic defects such as oxygen

and hydrogen impurities, as well as, a surface electron accumulation layer [23-28]. The

extend at which each of the above sources contributes to the electrical characteristics,

is reflected on their dependency on the growth parameters. In this study, the electrical

properties of the films are improved with increasing the growth temperature. The

sheet carrier concentration decreases (ns) which is an indication that elevated growth

temperatures eliminate possible defects that would act as donors. In this particular
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Figure 5.2: ω/2θ XRD scans, b) full width at half maximum of symmetric (002)
and asymmetric (105) rocking curve scans, c) RMS surface roughness and d) sur-
face characteristics of InN grown at different growth temperatures. e) Hall electrical
characteristics of the films measure via the Van der Pauw method.
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case, considering the low growth temperature regime of InN, we believe that the

density of nitrogen vacancies (V N) is reduced due to higher efficiency of NH3 pyrolysis

and atomic nitrogen production at elevated temperatures. Furthermore, despite the

statistical variation, the carrier mobility (µe) exhibits an increase with the growth

temperature, which is attributed to the reduction of scattering centers such as grain

boundaries. An average mobility of µe ≈ 570 cm2/V s with an average sheet carrier

concentration of ns ≈ 1.6 x 1014 cm-2 was observed for growth temperatures in the

range of 505-550 oC. In addition, the sample grown under the lowest temperature,

exhibited the highest sheet carrier concentration (ns ≈ 5 x 1014 cm-2) and mobility

(µe ≈ 627 cm2/V s), due to the presence of the metallic-In.

5.2.2 Effect of V/III molar ratio

For the study of the effect of V/III molar ratio, the growth temperature was

set at T g = 505 oC, and the pulsing period and duty cycle were set at T p = 26

s and T dc = 50%, respectively. For each growth, the NH3 flow varied in order to

achieve V/III molar ratios of 24500, 29000, 32000, 34000 and 39000. In figure 5.3(a)

the XRD pattern of an ω/2θ coupled scan is shown. The peaks corresponding to

wurtzite InN (002) and wurtzite GaN (002) planes are clearly observed at ≈ 15.65o

and ≈ 17.30o, respectively. For the growth under the lowest V/III molar ratios of

24500 and 29000, a peak corresponding to the cubic-In (101) crystal plane appeared.

The lower V/III molar ratio corresponds to lower NH3 flow into the chamber, which

limits the production of atomic nitrogen and hydrogen to effectively etch / consume

the metallic-In during the “off” state of the pulse, respectively. The FWHM of the

rocking curve of the (105) plane indicates an increase in the crystal defect density

and mosaicity as the V/III molar ratio increased (figure 5.3(b)).

The surface roughness, as well as the surface morphology for films does not sig-

nificantly changes under different V/III molar ratios except for the film grown under
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Figure 5.3: ω/2θ XRD scans, b) full width at half maximum of symmetric (002) and
asymmetric (105) rocking curve scans, c) surface morphology and d) Hall electrical
characteristics of the films measured via the Van der Pauw method at different V/III
ratios.
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the lowest V/III ratio of 24500 (figure 5.3(c)). It is known that during the growth

of III-nitrides (i.e GaN), higher V/III ratios enhance the nuclei and grain density

and assist to the lateral (2-dimensional) growth of the grains. However, for the case

of InN the large lattice mismatch between the InN and the GaN template cannot

accommodate a 2-dimmensional growth. Similar observations regarding the trends

of surface roughness of the pulsed-OMVPE-grown InN films have been reported by

Jamil et al. [10].

The electrical characteristics obtained from the Hall measurements are shown in

figure 5.3 (d). The sample grown under the lowest V/III ratio of 24500 exhibits a very

high sheet carrier concentration (ns) which arises from the presence of the metallic-In

in the film. In addition, its low mobility of µe ≈ 205 cm2/V s can be attributed to

scattering from grain boundaries, as well as to carrier-carrier scattering mechanisms.

Overall, the electron background concentration was reduced at higher V/III molar

ratios. We expect that higher V/III molar ratios result in higher production of atomic

nitrogen and suppress defect formation, especially nitrogen vacancies (VN), which may

act as intrinsic donors. On the contrary, the measured mobilities of the films exhibit

a large variation, which can be attributed to changes of the surface morphologies of

the InN films. The lowest sheet carrier concentration was measured ns ≈ 1.97 x 1014

cm-2 with a corresponding carrier mobility of µe ≈ 531 cm2/V s under a V/III molar

ratio of 39000.

5.2.3 Effect of pulse characteristics – pulse period & duty

cycle

The effects of the pulse period (T p) and the duty cycle (T dc) were studied under

a growth temperature of T g = 505 oC and a V/III molar ratio of 34000. A duty

cycle of T dc = 50% was selected for the pulse period study, while a period of T p

= 26 s was selected for the duty cycle study. An ω/2θ coupled scan revealed the
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characteristic wurtzite (002) InN peak and no metallic-In presence was detected in

both studies (Figure 5.4(a), 5.4(a)). Table 5.1 and Table 5.2 present the FWHM of

the symmetric and asymmetric rocking curves for the pulse period and duty cycle

studies respectively. As the pulse period increases from T p = 16 s to T p = 26 s, the

FWHM of the (002) and (105) planes varies slightly in the range of 332-368 arcsec

and 610-731 arcsec respectively. Similar behavior is observed for the case of the duty

cycle. Under these growth conditions, the dependency of the linewidth variations of

the rocking curves on the pulse characteristics is minimal compared to the cases of the

growth temperature and V/III molar ratio studies. In addition, as shown in Figure

5.4(b) and 5.4(d) the surface morphology of the InN films with longer pulsing periods

and longer duty cycles resulted in larger and less dense islands, which effectively

increased the surface roughness of the InN films. In Figure 5.5(a) and 5.5(b)) the

electrical characteristics of the films are shown. The lower pulsing periods and duty

cycles resulted in a lower background electron concentration. More specifically, the

sheet carrier concentration (ns) decreased from 8.4 x 1014 cm-2 to 4.3 x 1014 cm-2

when the pulse period reduced from T p = 46 s to T p = 16 s, respectively. Similarly,

the sheet carrier concentration decreases by more than half, reducing from 7.54 x 1014

cm−2 down to 3.49 x 1014 cm−2 with reducing the duty cycle. Moreover, for both

studies the electron mobility (µe) is found to vary within the range of µe ≈ 310-610

cm2/V s and is probably associated with the variations in the crystal structure quality

of the films.

The changes of the duty cycle alter the effective V/III molar ratio as

(
V

III

)

eff

=

(
V

III

)

nom

(
1 +

1− T dc
Tdc

)
(5.1)

where, T dc is the duty cycle of the pulsed-OMVPE mode and ( V
III

)nom the nominal

V/III molar ratio during the growth. It is obvious from the above relation that for a

given nominal V/III molar ratio, the effective V/III molar ratio increases for lower
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duty cycles - of a given T p - and remains unchanged with variations in the pulse period

T p - of a given pulse duty cycle T dc -. As mentioned earlier, the role for the pulsed-

OMVPE growth mode is to allow sufficiency time for the formation of metallic-In

free InN films. From the observed experimental trends we intuitively believe that the

reduction of the pulse period - under a pulse duty cycle of T dc = 50% - , as well as

the reduction of the duty cycle - under a pulse period of T p = 26 s - , decreases the

scattering of the atoms on the surface and accommodates a better adatom mobility

of the In on the surface of the films. Hence, better incorporation of the In and N

atoms in the crystal lattice is expected resulting in smoother surfaces as well as in

less background electron concentration due to the suppression of nitrogen vacancies

(VN). From these observations it can be suggested that a pulsed-OMVPE growth

mode with low pulse period with relatively low duty cycle would be advantageous for

the formation of high-quality InN with smooth surfaces and low background electron

concentration.

Pulse Period FWHM (002) FWHM (105)
Tp (acsec) (arcsec)

16 s 368 731
26 s 397 766
36 s 386 743
46 s 332 610

Table 5.1: Full width at half maximum of symmetric (002) and asymmetric (105)
rocking curve scans for the pulse period study with Tdc = 50%.

Pulse Period FWHM (002) FWHM (105)
Tdc (acsec) (arcsec)
30% 338 666
40% 336 719
50% 396 767
60% 332 609
70% 367 653
80% 350 675

Table 5.2: Full width at half maximum of symmetric (002) and asymmetric (105)
rocking curve scans for the duty cycle study Tp = 26 s.
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Figure 5.4: a-b) ω/2θ XRD scans and surface morphology at different pulse periods
T p. c-d) ω/2θ XRD scans and surface morphology at different pulse duty cycles T dc.
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Figure 5.5: Hall electrical characteristics of the films measured via the Van der Pauw
method at different a) Pulse Periods T p and b) Pulse Duty Cycles T dc.

5.3 Comparison with similar studies

Table 5.3 presents data reported by various groups on InN grown via the pulsed-

OMVPE technique. These data correspond to InN with thicknesses between 150-300

nm grown under optimal conditions [15-18,22]. For most of the studies, the low sheet

carrier concentration (ns ≈ 1 x 1014 cm-2), is accompanied by a large FWHM of the

rocking curve of the (002) crystal plane (> 1000 arcsec). In addition, this trend is

followed by either high surface roughness and/or low electron mobility (µe). In the

current study, InN films with very low dislocation densities - as indicated from the

low FWHM of the rocking curves (FWHM (002) < 400 arcsec and FWHM (105) <

1000 arcsec) - and low surface roughness (< 15 nm), values, which are among the

lowest reported up to date via the pulsed-OMVPE growth technique. In addition,

these superior structural properties, as compared to the studies presented in Table

5.3, are accompanied with high electron mobilities (µe > 550 cm2/V s) and relatively

low sheet carrier concentration (ns < 2 x 1014 cm-2). Hence, a systematic study of InN

films with high crystal structure quality, high electron mobilities and low background

carrier concentration has bee demonstrated, which will be essential for future devices
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employing this material for applications such as LEDs and LASERs.

Scientific work Rocking curve RMS ns µe
FWHM arcsec nm cm−2 cm2/(V s)

Jamil et al. [22] (102)-1800 31 3.3× 1014 681
(002)-1281

Fareed et al. [17] - 42 1.49× 1014 98
Kadys et al. [16] (002)-820 12 1× 1014 644
Baijun et al. [18] (002)-4900 13.2 1.04× 1014 67
Mickevicius et al. [15] (002)-1744 28.3 − -
Present work (105) < 1000 <15 < 2.0× 1014 >550

(002) < 400

Table 5.3: Structural and electrical data of InN films grown on GaN/sapphire via
the pulsed-OMVPE. The data represent InN films fabricated under optimal growth
conditions with thickness of 150-300 nm.

It has been suggested that high quality InN can be integrated with a conventional

InGaN QWs to realize high efficiency long wavelength emitters. More specifically,

theoretical, as well as some preliminary studies, have shown that the insertion of an

ultra-thin layer of InN (delta-like) in a conventional InGaN-based QW results in a

significant shift of the emitted wavelength towards the red spectral regime with a si-

multaneous enhancement of the spontaneous emission rate [13,29,30]. The theoretical

and experimental investigation of this concept is presented and discussed in the fol-

lowing chapter. In addition, it is worth mentioning that the 3-D growth mode of InN

can be exploited in order to form InN quantum dots (QD) with various thicknesses

through the photoelectrochemical process [31,32]. It is known that this process is ini-

tiated in regions with low material quality i.e regions with high dislocation densities

and grain boundaries.The the 3-D morphology of the InN thin films will assist to the

formation of the InN QDs.
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5.4 Summary of Chapter 5

Metallic-In free InN samples with different growth conditions were fabricated via

the pulsed-OMVPE technique. It was found that the crystal structure quality of the

InN films was degraded with increasing the growth temperature from 460-565 oC while

the presence of point defects, which act as intrinsic donors, was suppressed resulting in

low sheet carrier concentration of ns ≈ 1.6 x 1014 cm-2 and high electron mobilities of

µe ≈ 570 cm2/(V s). Higher V/III molar ratios degraded the crystal structure quality

and the surface roughness of the films, while the sheet carrier concentration (ns)

decreased due to suppression of nitrogen vacancies (VN). The formation of metallic-In

was more pronounced for growths with V/III molar ratios < 32000, which significantly

affected the structural and electrical characteristics of the InN films. The study of the

pulse period and duty cycle showed that no metallic-In was formed under the specific

growth conditions. In addition, the lower pulse periods and lower duty cycles assist

to the improvement of the surface roughness of the films and to the reduction of sheet

carrier concentration (ns). The current work systematically presents how the various

growth parameters governing the InN pulsed-OMVPE growth can be effectively tuned

in order to achieve high crystal structure quality (FWHM of (002) < 400 arcsec and

(105) < 1000 arcsec) with high electron mobilities (µe > 550 cm2/V s) and low sheet

carrier concentrations (ns < 2 x 1014 cm-2) which can be useful for future electronic

devices employing the InN material system. The electrical properties of the films

remain almost unaffected in a wide range of environmental temperatures as it was

observed from the Hall dependent measurements.
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Chapter 6

III-Nitride based QWs for long

wavelength emission

6.1 InGaN delta-InN based QW for long wave-

length emission

In recent years, the pursuit of high efficiency InGaN based quantum well (QW)

light emitters towards red spectral regime has been proven to be challenging. The

need for higher In-content in the InGaN active region for longer wavelength emis-

sion, results in phase separation of the InGaN alloy, defect formation due to lattice

mismatch with the u-GaN substrates, and higher polarization fields which reduce the

wavefunction overlap between electrons and holes inside the QW. These factors are

detrimental for the internal quantum efficiency (IQE) of the emitter and have resulted

to the well-known “green-gap” problem [1-5]. The challenges for high In-content in

the InGaN active region, have hindered the development of relatively high efficiency

visible light emitters - without the need of phosphor down conversion - that could

exploit a full color gamut and enable LED devices for solid state lighting and display

applications [6].
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Several theoretical and experimental approaches have been proposed to overcome

these issues including, staggered InGaN QWs, strain compensated InGaN QWs,

semipolar and non-polar InGaN QWs, ternary substrates and buffer layers, and high

bandgap thin interlayers embedded in the InGaN QWs. Recently, special research

interest has been given for the later one, since the use of AlGaN and AInN inter-

layers has resulted in InGaN QWs with the highest efficiencies in the red and green

spectral regime [7-23]. In addition to the above solutions, a different approach which

eliminates the need for high In-content has been proposed. In particular, theoretical

studies have shown that by varying the thickness of an inserted ultra-thin layer (delta-

like) of InN (≈ 6 nm) in the middle of a conventional 3.0 nm In0.25Ga0.75N QW with

GaN barriers results in a significant wavelength shift towards the red spectral regime

(≈ 740 nm) with enhanced wavefunction overlap (Γe−h ≈ 50%) [24].

The work presented in this thesis exploits the concept of the δ-InN layer in combi-

nation with a thin AlGaN interlayer (IL) integrated into a conventional InGaN QW

with GaN barriers (δ-structure) to achieve high efficiency long wavelength emitters.

This new δ-structure is depicted in figure 6.1, is different form the one presented in

reference [24], since it consists of a δ-InN layer placed on top of a conventional InGaN

QW – rather than in the middle – followed by the AlGaN IL. Numerical simulations

were carried out based on a six-band k.p formalism for wurtzite semiconductor which

took into account the strain effect, valence band mixing, polarization fields, and the

carrier screening effect [9]. The energy band structure, wavefunction overlap and

spontaneous emission rates were calculated for the δ-structure and were compared to

a reference structure. The reference structure consists of an InGaN QW, AlGaN IL

and GaN barriers with the same layer thicknesses and compositions as the δ-structure.

This new design enables experimental verification via the OMVPE growth tech-

nique since the use of the AlGaN IL circumvents the issue of the δ-InN evapora-

tion/decomposition during the high temperature GaN barrier growth. More specifi-
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Figure 6.1: Novel active region design consisted of InGaN QW + δ-InN + AlGaN
interlayer between GaN barriers.

cally, the large discrepancy on the optimized growth temperatures between the InN

(< 600 oC), InGaN (≈ 700 oC) and GaN (≈ 850 oC) materials would result in the

decomposition/out-diffusion of InN during the growth of the GaN barrier growth

[25,26], thus creating a challenge for the integration of this new active region design.

However, this challenge can be addressed by growing an AlGaN interlayer at the same

temperature as the InN (< 600 oC) in order to “cap” the indium during the high tem-

perature growth of the GaN barrier [25,26]. The concept of the AlGaN IL has been

demonstrated in the case of the conventional InGaN QWs. In addition, the AlGaN

IL is beneficial for high temperature GaN barrier growth with a concurrent thermal

annealing of the beneath layers [19]. Moreover, despite the low growth temperature

of the AlGaN IL, the material quality is expected to be moderate due to the low

adatom mobility of the Al precursors. However, during the high temperature GaN

barrier growth, the thermal annealing that occurs in the AlGaN IL is expected to

improve its crystal quality overall [19].

Following the numerical simulations, proof-of-concept experiments were carried

out via the OMVPE technique to demonstrate the properties of the δ-structure in

comparison with the reference structure.
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6.2 Numerical simulations

Figure 6.2 (a) and 6.2 (b) depict the band structure of the reference and the δ-

structures respectively. The reference structure is consisted of a 2.6 nm In0.2Ga0.8N

QW with 1 nm Al0.4Ga0.6N IL and 5 nm GaN barriers while the δ-structure has a

0.6 nm δ-InN layer inserted between the In0.2Ga0.8N QW and Al0.4Ga0.6N IL. The

reference structure is characterized by a transition (emitted) wavelength of λ = 437

nm which is the blue spectral regime with an electron-hole (e-h) wavefunction overlap

of Γe−h = 43%. According to the concept of the δ-InN layer, as presented in reference

[24], the introduction of a very thin layer of a much lower bad gap material should

decrease the energy transition levels both in the condition band and valence band of

the quantum well, shifting the emitting wavelength towards the red spectral regime.

As it is shown in figure 6.2 (b), the insertion of the δ-InN layer redshifts the transition

wavelength from 437 nm to 634 nm (red spectral regime) but at the expense of the

e-h wavefunction overlap Γe−h , which is dramatically reduced to 3% as compared to

the reference structure.

Figure 6.2: Numerical simulations of bandstructure and e/h wavefunction profile of a)
reference structure consisted of 2.6 nm In0.2Ga0.8N QW + 5 monolayers Al0.4Ga0.6N
interlayer between 5 nm GaN barriers, and b) δ-structure consisted of of 2.6 nm
In0.2Ga0.8N QW + 3 monolayers (0.6 nm) δ-InN + 5 monolayers Al0.4Ga0.6N inter-
layer between 5 nm GaN barriers.

113



It is important to mention that the thickness of the inserted δ-InN layer is 0.6

nm which corresponds to a few monolayers (≈ 3) of InN. For such low thickness, the

δ-InN can not act a quantum well i.e there are no confined states within this layer.

All of the confined states are located in the InGaN QW layer. The main reason of

the low e-h wavefunction overlap of the δ-structure is the location of the holes in the

valence band. In particularly, as it can be seen in figure 6.2 (a), the peak of the hole

wavefunction (Ψh) of the reference structure is located at the interface of the InGaN

layer with the left GaN barrier and its position does not change with the insertion

of the δ-InN layer in the δ-structure (figure 6.2 (b)) as opposed to the peak of the

electron wavefunction Ψe. For the later one, the peak of Ψe moves into the δ-InN

layer of the δ-structure.

In order to increase the e-h wavefunction overlap in the δ-structure, the peak of

the Ψh has to be shifted towards the δ-InN layer. A simple way to accomplish this,

is to reduce the thickness of the InGaN layer. Figure 6.3 (b) presents the case where

the InGaN layer is reduced to 2.0 nm. By doing so the peak of the hole wavefunction

is shifted into the δ-InN layer, dramatically increasing the e-h wavefunction overlap

Γe−h to 86% with an emitted wavelength λ = 615 nm. Figure 6.3 (a) corresponds to

a reference structure with a 2 nm In0.2Ga0.8N layer.

It is obvious that the δ-InN layer itself does not help to achieve large e-h wavefunc-

tion overlap in this particular novel active region design. The thickness of the InGaN

layer is very crucial. In general for thin InGaN layers < 2 nm with few monolayers of

δ-InN and an AlGaN IL, the δ-structures will result in very high wavefunction overlap

with a simultaneous wavelength shift towards the red spectral regime as compared to

the reference structure without the δ-InN layer.

In addition to the wavelength shift and the high e-h wavefunction overlap, the

δ-InN structure can exhibit very high carrier injection efficiencies if the active region

is implemented for LEDs. The high bandgap material of the AlGaN IL can act as
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Figure 6.3: Numerical simulations of bandstructure and e/h wavefunction profile of a)
reference structure consisted of 2.0 nm In0.2Ga0.8N QW + 5 monolayers Al0.4Ga0.6N
interlayer between 5 nm GaN barriers, and b) δ-structure consisted of of 2.0 nm
In0.2Ga0.8N QW + 3 monolayers (0.6 nm) δ-InN + 5 monolayers Al0.4Ga0.6N inter-
layer between 5 nm GaN barriers.

an effective barrier for the injected electrons and holes into the active region, by

preventing them from the thermionic escape from the quantum well [27]. It is very

common that in conventional InGaN QW based LEDs, as the injected current is in-

creased over some range, there is an observed blue-shift of the emitted photon energy.

This blue-shift in general is attributed 1) in the band-filling effect of localized energy

states formed by potential profile fluctuations (due to In composition fluctuations)

and 2) to the carrier screening of the strain-induced polarization fields (those fields

are responsible for the quantum confined stark effect (QCSE). the carrier screening

of the QCSE flattens the potential across the MQWs increasing the quantum energy

states into the QW).

For the case of the δ-structure, the QCSE is expected to be strong enough (due

to the large lattice mismatch among the δ-InN and AlGaN IL) so that the presence

of the carries will not be able to screen it. This will result in minimum blue-shift of

the emitted wavelength of the spontaneous emission spectrum (assuming that there

is not In-composition fluctuation into the active region of the δ-structure). This can

be seen in figure 6.4 where the peak of the spontaneous emission spectrum of the
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Figure 6.4: Spontaneous emission spectra and radiative recombination rate of a δ-
structure consisted of of 2.0 nm In0.2Ga0.8N QW + 3 monolayers (0.6 nm) δ-InN +
5 monolayers Al0.4Ga0.6N interlayer between 5 nm GaN barriers.

δ-structure increases from 0.04 × 1026 to 1.12 × 1026 s−1cm−3eV −1 while the carrier

density n increases form 2.5 × 1018 to 2 × 1019 cm−3 respectively, with no observed

blue-shift on the transition wavelength.

6.3 Proof-of-concept experiments

The numerical simulations so far have indicated the δ-structure with a relatively

thin InGaN QW and an AlGaN IL can be used as a highly efficient light emitter in

the visible spectral regime without the need of high In-content in the active region.

Proof-of concept experiments are carried out in order to demonstrate the concept

of the δ-structure presented in this thesis. The proof-of-concept experiments were

done according to the flow of the simulations and are divided into two parts: in the

first part the δ-structure was studied for a ≈ 3 nm In0.15Ga0.85N QW with ≈ 1 nm

Al0.4Ga0.6N IL and for the second part the δ-structure was studied for a ≈ 2 nm

In0.17Ga0.83N with a QW ≈ 1 nm Al0.35Ga0.65N IL. The composition of the InGaN

layers among the two experimental parts varied slightly, but this does not significantly

alter the concept of the wavelength shift and e-h wavefunction overlap changes of the
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δ-structures with respect to their reference structures.

As described in introduction part, the new design of the δ-structure, enables the

experimental verification via the OMVPE technique. However, an issue that needs to

be taken under consideration is the growth of pure InN δ-layer, without the presence of

metallic-In. It is well known that the OMVPE growth of InN imposes a very narrow-

optimized growth conditions which are limited by the ammonia (NH3) dissociation

and metallic-In formation. Nevertheless, this issue can be overcome by employing a

pulsed-OMVPE growth mode for the InN layer, which results in high quality metallic-

In free InN films.

The structures investigated in this study are depicted in figure 6.1. The epitaxy of

the structures was done in a vertical-flow shower-head type Veeco-P75 reactor under

a growth pressure of 200 Torr. Ammonia was used as the group-V precursor while

triethylgallium (TEGa), trimethylindium (TMIn), and trimethylaluminium (TMAl)

were used as group-III precursors for the III-nitride layers. Five periods consisted

of InGaN/ δ-InN / AlGaN / GaN were grown on top of a 3 nm thick n-doped GaN

(3×1016 cm−3) templates on patterned c-plane sapphire substrate. The growth profile

of the structure is depicted in figure 6.5. The InGaN layers were grown at ≈ 730 oC

while the GaN barriers at ≈ 860 oC. To accommodate the growth of the InN at ≈

560 oC, the pulsed-OMVPE growth was employed. During the growth of the InN

δ-layer, the NH3 was constantly running into the reactor while the TMIn precursor

was pulsed. Following the growth of the δ-InN layer, the AlGaN layer was grown via

the normal-OMVPE growth mode at the same temperature of ≈ 560 oC.

To study the effect of the δ-InN, a second structure without the δ-InN layer was

grown under the same growth temperature profile depicted in figure 6.5. Both MQW

structures consisted of a ≈ 3 nm In0.15Ga0.85N QW, ≈ 5 monolayers (≈ 1 nm)

of Al0.4Ga0.6N IL and ≈ 10 nm GaN barriers. For the structure with the δ-InN

layer, the growth conditions of the pulsed-OMVPE growth mode were optimized in
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Figure 6.5: a) OMVPE growth temperature profile of 1 period of a δ-structure. b)
Actual growth temperature profile of a 5 period δ-structure. The reference structures
exhibit similar growth temperature profile.

order to achieve metallic-In free δ-InN layer with nominal thickness of ≈ 0.6 nm [25-

26]. This thickness of the δ-InN layer corresponds to ≈ 2 monolayers (≈ 0.6 nm)

which is the optimum thickness for fully strained InN layer. The two structures were

characterized by using a coupled ω/2θ scan in the (002) - growth direction - via a

X-ray diffractometer. As it can be seen from figure 6.6 (a), both structures exhibit

sharp diffraction peaks which is an indication that the crystallinity of the MQWs is

maintained, despite the low growth temperature of AlGaN IL and the introduction

of the δ-InN layer. We believe that the high growth temperature of the GaN barriers

assists to the re-crystallization of the δ-InN + AlGaN IL which in turns improve the

overall crystal quality of the structure. It is also important to notice that despite

the introduction of the δ-InN layer, the picture of the coupled ω/2θ scan for the δ-

structure does not significantly change. One would expect smaller fringes between

the satellite pics for the MQW δ-structure. However, the very thin layer of the δ-InN

in combination with the low resolution of the XRD diffractometer cannot detect its

presence. Any detected signal would be buried into the noise between the adjacent

picks of the MQW δ-structure.
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Figure 6.6: a) (002) plane ω/2θ XRD scans, and b) Photoluminescence spectra of the
reference and δ-structure with a 3 nm InGaN layer.

The PL spectra of both structures is depicted in figure 6.6 (b). A source of a

405 nm laser with a 95 mW power was used as the excitation source. The reference

structure has a sharp luminescence with a peak wavelength of λ=448 nm. With the

insertion of the δ-InN layer, the δ-structure exhibits a very low luminescence with a

peak wavelength of λ=571 nm. Notice: In order to see the signal, the integration

time of the digital spectrophotometer had to be increased by 10 times to that of the

reference structure. Although the emitted wavelength has shifted towards the yellow

region of the spectrum, the PL signal arising from this δ-structure is most probably

associated with the yellow band luminescence of the GaN substrate. In addition, con-

sidering fact that the δ-structure maintains relatively good crystal quality, according

to the XRD spectrum, the very low luminescence could not be due to bad crystal

quality. The reason for the low luminescence is most probably associated with poor

e-h wavefunction overlap as predicted from the numerical simulations.

Following the order of the numerical simulations, the second part of the proof-of-

concept experiments consists of a reference and δ-structures of ≈ 2 nm In0.17Ga0.83N

QW, ≈ 1 nm Al0.35Ga0.65N IL and ≈ 10 nm GaN barrier while the δ-InN in the

δ-structure is ≈ nm. Figure 6.7 (a) depicts the ω/2θ scan of both structures. Sharp
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satellite peaks are observed which is an indication of the good crystal quality of the

structures. Both structures were excited with a 405 nm laser at 95 mW power.

The PL signal is depicted in figure 6.7 (b). It can be seen that after the thickness

of the InGaN layer is reduced to ≈ 2 nm, the luminescence of the δ-structure has

been increased approximately from 40000 to 49000 (1.22 times) - the plots have been

normalized to the maximum peak of the δ-structure) and the peak wavelength has

been slightly increased from 450 nm to 475 nm with respect to the reference structure.

This result is consistent with the numerical calculations: for a 2 nm InGaN layer,

the reference structure exhibits an e-h wavefunction overlap Γe−h ≈ 63% while the δ-

structure has Γe−h ≈ 83% (1.36 times) with a simultaneous increase of the transition

wavelength. Despite the fact that only the PL enhancement is observed here, which

is ≈ 1.3 times of that of the reference structure, the shift of the emitted wavelength

is very small ≈ 25 nm.

Figure 6.7: a) (002) plane ω/2θ XRD scans, and b) Photoluminescence spectra of the
reference and δ-structure with a 2 nm InGaN layer.

These results indicate that the reduction of the thickness of the InGaN layer and

the insertion of the δ-InN layer, indeed help to improve the radiative efficiency of the

emitter and also shift the emitted wavelength as opposed to the structure with thicker

InGaN layer where the insertion of the the δ-InN layer completely killed the photolu-
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minescence. However, it is important to mention that the experimental structures are

not ideal i.e they do not exhibit abrupt hetero-interfaces, neither coherently strained

and uniform layers as it is assumed for the numerical calculations. The above factors

will certainly introduced unwanted crystal defects during the growth of the structures

which will impact their properties. This is the reason of the observed discrepancy in

the absolute values of the wavelength shift between the simulation and the experi-

ment. Further improving the OMVPE process or even switching to molecular beam

epitaxy (MBE), where the uniformity of the layers and strain control are better con-

trol, will dramatically improved the properties of the δ-structures. Nevertheless, the

numerical calculations and the simulations in general should serve as a guidance of

the experimental design. The experimental trends are consistent with the trends of

the numerical calculations presented in this thesis.

Figure 6.8: Relative efficiencies under different excitation powers with a 405 nm laser
for the reference and δ-structure with 2 nm InGaN layer.

Figure 6.8 depicts a relative efficiency of the δ-structure with respect to the refer-

ence structure for the case of a 2 nm InGaN layer. The relative efficiency is defined

as the integral of the PL spectra in the ranged of 350 nm - 550 nm over the relative

output power of the laser (maximum output power of 350 mW ). The δ-structure

exhibits almost 1.85 times higher efficiency than the reference structure. This is an

121



indication that the insertion of the δ-InN layer enhanced at some degree the wave-

function overlap improving in that way the internal quantum efficiency of the emitter

(assuming that the two structures have identical defect concentration).

6.4 Summary of Chapter 6

In summary, a novel active region design of GaN/InGaN/δ-InN/AlGaN/GaN has

been proposed in order to achieve high efficiency visible light emitters without the

need for high In content in the active region. This new design enables experimental

demonstration via the OMVPE technique because it helps to overcome the issue of the

δ-InN evaporation/decomposition during the growth of the structure. In particular,

the growth of the thin AlGaN interlayer following the growth of the δ-InN layer at the

same temperature, prevents the evaporation/decomposition/out-diffusion of the InN

during the high temperature GaN barrier growth. In addition, the high temperature

GaN barrier growth assists to the annealing of the layers and improves the overall

quality of the structure. The experimental trends are consistent with the numerical

calculations which they showed that a) a δ-structure with relatively thick InGaN

layer reduces the e-h wavefunction overlap and kills the efficiency of the emitter as

compared to the reference structure, and b) a δ-structure with a relatively thin InGaN

layer provides a wavelength shift towards red spectral regime and high efficiencies as

compared to the the reference structure.
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Chapter 7

Future outlook

7.1 Summary and future outlook of GaN:Eu based

work

In this thesis the internal quantum efficiency of the GaN:Eu based emitters was

studied. In particular a current injection efficiency model was developed both for

optically-pumped and electrically-driven GaN:Eu based devices. Through this model

the efficiency discrepancy observed between the optically-pumped and electrically-

driven GaN:Eu based devices was clarified. The current injection into the Eu+3 ions

was studied at the basis of different carriers mechanism that take place along the ex-

citation path of the Eu+3 ion. It was shown that the absence of transport phenomena

in the optically case resulted in a magnitude higher current injection efficiencies and

consequently higher internal quantum efficiencies in the optically-pumped GaN:Eu

emitter as compared to the electrically-injected GaN:Eu emitter. This is an indication

that the efficiency of this type of emitter is greatly affected by the GaN crystal host

as well as from the formation trasport and quantum mechanical phenomena arising

form the formation of a AlxGa1−xN/GaN : Eu/AlxGa1−xN hetero/homojunction.

It was identified that the droop in the external quantum efficiency of the GaN:Eu
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based emitters arises from the saturation of the Eu ions with increasing the pho-

ton flux or the current density. The saturation rate of the Eu+3 ions depends on

the different parameters along their excitation path. In particular, several carriers

mechanisms were identified to limit the current injection efficiency at low photon

fluxes and current densities. Those mechanisms are related to the GaN host crys-

tal quality, transport/quantum mechanical phenomena arising from the formation of

GaN:Eu/AlGaN hetero/homojunctions, as well as, to the traps which are close to the

vicinity of the Eu+3 ions. At high photon fluxes and current densities the current

injection efficiency is limited by the radiative lifetime of the Eu+3 ion. The reduction

of this time is essential for achieving high efficiencies at the the higher photon flux

and current density regime. The realization of high efficiency GaN:Eu emitter will

enable their use in micro-LED applications and other solid state lighting applications.

The use of surface plasmon polariton is essential to achieve a reduction of the

radiative lifetime of the Eu+3 ion. The theoretical calculations has shown that

the use of TiN is a promising candidate to achieve thin. Preliminary studies have

been carried out to demonstrate the effect of the TiN on the internal quantum ef-

ficiency of the GaN:Eu emitter. For these studies TiN was sputtered on top of

GaN/GaN:Eu/sapphire substrate. The sapphire was double polished to allow the

excitation and PL measurements of the sample from the back. The excitation source

was a 325 nm laser.

Figure 7.1 depicts the photoluminescence from the back of sapphire of an 100 nm

GaN:Eu with 4 nm and 1 nm GaN spacer with 30 nm sputtered TiN. An non-coated

sample was used as a reference (both samples of Gan:Eu with different GaN spacer

thickness exhibit similar values of photoluminescence). It can be seen that the peak

of the PL at 621 nm was reduced by approximately 46% and 78% for the sample with

4 nm and 1 nm GaN spacer respectively.

This might be an indication that effective coupling between the surface plasmon
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Figure 7.1: Photoluminescence measurements from a 100 nm GaN:Eu sample with a
10 nm GaN spacer and 33 nm sputtered TiN layer. A reference sample without TiN
coating is used for comparison. A 325 nm laser was used as the excitation source and
the samples were excited form the back.

and the electromagnetic wave emitted from the Eu+3 ions is established. However, the

SPP cannot be decoupled, probably due to non sufficient scattering mechanisms at the

interface of the TiN and the GaN spacer. According to the simulation, although TiN

is suitable, the wavevectors of surface plamson polariton are relatively large, which

means that the SPP needs to be scattered in order to be de-coupled and radiate. This

decoupling could be achieved via the surface roughening of the GaN spacer or even

by fabricating surface Bragg gratings that would match the wavevector of the surface

plamson polariton.

It is also important to mention that part of the reflected laser beam from the

Air/TiN/GaN interface will also contribute to the excitation of the GaN:Eu region

(during the second pass from the GaN:Eu region). Numerical calculations have shown

that the percentage of reflection of the 325 nm laser from such interfaces it is in the or-

der 20% for the Air/GaN interface (uncoated sample) and 28% for the Air/TiN/GaN

interface (30 nm TiN coated samples). This reduction should be similar for both

GaN:Eu samples with different spacer thickness. Hence, the amount of available
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photons that excite the GaN:Eu samples are lower from the case of the uncoated

sample. Therefore, part of the PL reduction of the TiN coated samples might also

be attributed to the less available photons for the excitation of the GaN:Eu active

region.

7.2 Summary and future outlook of δ-InN/InGaN

QW based work

An alternative active region design based on the integration of a δ-InN into an

InGaN QW + AlGaN interlayer active region was studied. This structure enables light

emission into the visible spectral regime with high quantum efficiencies. However, to

fully take advantage of this structure, the InGaN layer has to be carefully designed in

order to provide high e-h wavefunction overlap and hence high quantum efficiencies

For the experimental study of this structure, δ-InN layer was grown by pulsed-

OMVPE technique to ensure metallic-free δ-InN layer. The growth of the AlGaN

interlayer is essential for preventing the out-diffusion/evaporation of the δ-InN dur-

ing the high temperature growth of the GaN barrier. The experiential results are

consistent with the numerical studies. A δ-structure with thinner InGaN layer of

approximately 2 nm is beneficial for much stronger luminescence as compared to a

δ-structure with thicker InGaN layer. In addition, the δ-structure with thin InGaN

layer exhibited 1.85 times higher efficiencies as compared to the reference structure

without the δ-InN layer. However, the OMVPE growth of this structure is still chal-

lenging. Challenges associate with the δ-InN uniformity, as well as, the optimization

of the AlGaN interlayer at low growth temperatures need to be resolved in order to

further improved the device performance.

Nevertheless, the results are of this study are promising for the realization of the

novel δ-structure as an effective and efficient visible light emitter. Further future
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studies would be needed to improve and optimize the growth conditions of such

structure that would enable its implementation as an effective and efficient visible

light emitter.
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