Lehigh University Lehigh Preserve

17th University Glass Conference

Glass Conferences and Workshops

Summer 6-26-2005

XI, Part 1: Structure and dynamics of ionexchanged glasses

E. I. Kamitsos National Hellenic Research Foundation

Follow this and additional works at: https://preserve.lehigh.edu/imi-tllconferences-17thuniversityglassconference

Part of the Materials Science and Engineering Commons

Recommended Citation

Kamitsos, E. I., "XI, Part 1: Structure and dynamics of ion-exchanged glasses" (2005). *17th University Glass Conference*. 10. https://preserve.lehigh.edu/imi-tll-conferences-17thuniversityglassconference/10

This Video is brought to you for free and open access by the Glass Conferences and Workshops at Lehigh Preserve. It has been accepted for inclusion in 17th University Glass Conference by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Structure and dynamics of ion-exchanged glasses

E.I. Kamitsos, R. Todorov and C.P. Varsamis

Theoretical and Physical Chemistry Institute National Hellenic Research Foundation, Athens, Greece

17th Universitty Conference on Glass Science

&

1st International Materials Institute Workshop on NEW FUNCTIONALITY IN GLASSES

June 26-30, 2005 / State College, Pennsylvania

Outline of presentation

- Ion-exchange process: introduction & relevant literature
- Structure of ion-exchanged soda-lime-silica glass
- Structure of ion-exchanged 30Na₂O-70B₂O₃ glass
- ac conductivity spectra of ion-exchanged 30Na₂O-70B₂O₃ glass
- Summary

ION EXCHANGE PROCESS IN GLASS

Applications:

- Chemical strengthening of commercial silicate glass
- Altering optical properties of glass (waveguides, micro-optics) **Open Questions:**
- Is there a "mixed-alkali effect" in ion-exchanged glasses?
- How are K⁺ ions accommodated within the glassy network?
- Can any changes in glass structure occur as a result of ion-exchange below T_g?

Mixed Alkali Effect (MAE) in melt-grown glasses

Mixed alkali glasses by ion exchange

G. Tomandl & H.A. Schaeffer, Non-Cryst. Solids, Trans. Tech. Publ., pp. 480-485 (1977).

 \Rightarrow lon-exchanged glasses below T_g do not show the MAE; i.e. resistivity shows a linear behavior throughout the ion-exchanged layer

 \Rightarrow lon-exchange below T_g generates a different "mixed-alkali structure" than the melting process.

Mixed alkali glasses by ion exchange, cont.

C. Windisch & W.M. Risen, J. Non-Cryst. Solids, 44, 345 (1981).

(Na/Li) ion-exchanged Li₂O-Al₂O₃-2SiO₂ glasses / Raman spectroscopy

 \Rightarrow Network structure of ion-exchanged glasses is different from that of melt-grown glasses of the same stoichiometry

 \Rightarrow Annealing the ion-exchanged glass leads to network structure identical to that of the meltgrown glass.

S.N. Houde-Walter, J.M. Inman, A.J. Dent & G.N. Greaves, J. Phys. Chem. 97, 9330 (1993). (Ag/Na) ion-exchanged Na₂O-4SiO₂ glasses / X-ray absorption fine structure (XAFS) \Rightarrow CN (Na/O) \approx 5, r(Na-O)=2.30-2.32 Å \Rightarrow CN (Ag/O) \approx 2, r(Ag-O)=2.08-2.23 Å (very similar to the environment of Ag in Ag₂O) \Rightarrow metal ions create their own characteristic environments in glass.

G. Berg & A. Ludwig, J. Non-Cryst. Solids, 170, 109 (1994).

(Ag/Na) ion-exchanged soda-lime silica glass / ac conductivity (at 10², 10³ Hz)

 \Rightarrow Concentration dependence of ac conductivity shows the typical mixed cation effect.

Mixed alkali glasses by ion exchange, cont.

T. Yano, K. Azegami, S. Shibata & M. Yamane, J. Non-Cryst. Solids, 222, 94 (1997).

(Ag/Na) ion-exchanged Na₂O-2SiO₂ glasses / X-ray photoelectron spectr. (XPS) & ²⁹Si-NMR

 \Rightarrow Ag ions induced a large charge redistribution on the glass network & an anomalous change in the distribution of Qⁿ silicate units

 \Rightarrow formation of Q² units at the expense of Q³ units, but no Q⁴ formation.

Y-K. Lee, Y.L. Peng & M. Tomozawa, J. Non-Cryst. Solids, 222, 125 (1997).

(K/Na) ion-exchanged soda-lime glass / FT-IR reflectance spectroscopy

 \Rightarrow Shift of the 1050 cm⁻¹ peak is much larger than that caused by changes of the fictive temperature or composition. Thus, the shift of 1050 cm⁻¹ peak is due mainly to the stress.

 \Rightarrow A new peak at 950 cm⁻¹ develops with ion-exchange and is attributed to formation of non-bridging oxygen atoms.

M. Dubiel, B. Roling & M. Futing, J. Non-Cryst. Solids, 331, 11 (2003).

(K/Na) ion-exchanged soda-lime glass / ac conductivity spectroscopy (10⁻² to 10⁶ Hz)

 \Rightarrow No MAE for ion-exchange below T_q; but presence of MAE for ion-exchange slightly above T_q

 \Rightarrow Spectral shape of ac conductivity indicates differences in the ion dynamics between glasses exchanged slightly above T_g and the corresponding melt-grown glasses.

EXPERIMENTAL DETAILS...

GLASS COMPOSITIONS & SPECTROSCOPIC TECHNIQUES

Glass Compositions Investigated (mol%)					
A. Soda-Lime-Silica Glasses					
Oxide	Pilkington float glass (T _g =558 ºC) (FGS0)	C) Soft glass tubing (T0)			
SiO ₂	71.78	71.62			
Na₂O	12.44	14.02			
CaO	8.76	6.19			
K ₂ O	0.38	1.03			
MgO	5.88	4.82			
BaO	none	1.50			
Al ₂ O ₃	0.58	1.49			
Fe ₂ O ₃	0.04	0.02			
SO ₃	0.14	0.22			
B. Sodium-Borate Glass: 30Na ₂ O-70B ₂ O ₃ (T _g =477 ^o C)					

INFRARED SPECTRAL MEASUREMENTS:

• Specular reflectance at quasinormal incidence (11⁰)

 \Rightarrow use the same sample for continuous date acquisition in the mid- & far-IR range

(25-5,000 cm⁻¹)

IMPEDANCE MEASUREMENTS:

• 5Hz -10MHz, f(T)

ELECTRON MICROPROBE ANALYSIS:

• K, Na profiles (Na K_{α} & K K_{α} X-rays produced by a 15 kV, 20-50 nA, e-beam)

ANALYSIS OF REFLECTIVITY SPECTRA

Short-range order structure and metal ion-site vibrations in silicate glasses

Continuous Random Network (CRN) Model

Qⁿ tetrahedral units in silicate glasses

Short-range order structure and metal ion-site vibrations in silicate glasses

IR SPECTRA OF "SYNTHETIC" MIXED-CATION (Na+/K+) FLOAT GLASSES

"Synthetic" float glasses						
mol%	F1	F2	F3	F4	F5	
Na ₂ O	12.44	9.61	6.41	3.21	0.38	
K ₂ O	0.38	3.21	6.41	9.61	12.44	

THERMALLY ION-EXCHANGED FLOAT GLASS: K+/Na+

ANNEALING OF ION-EXCHANGED (K+/Na+) FLOAT GLASS

Infrared spectra of singe alkali borate glasses

IR SPECTRA OF "SYNTHETIC" MIXED-CATION BORATE GLASSES 0.3[xK₂O-(1-x)Na₂O]-0.7B₂O₃

THERMALLY ION-EXCHANGED 0.3Na₂O-0.7B₂O₃ GLASS: K⁺/Na⁺ IR reflectance spectra

THERMALLY ION-EXCHANGED 0.3Na₂O-0.7B₂O₃ GLASS: K⁺/Na⁺ IR absorption spectra

see: B. Roling, A.Happe, K. Funke & M.D. Ingram, Phys. Rev. Lett. 78 (1997) 2160.

Conductivity spectra of the 0.3Na₂O-0.7B₂O₃ glass ion-exchanged in KNO₃

Comparison of conductivity spectra of the base glass 0.3Na₂O-0.7B₂O₃ with those obtained after ion-exchange in KNO₃ at 450 ^oC for 30 min

Scaled conductivity spectra of the 0.3Na₂O-0.7B₂O₃ glass ion-exchanged in KNO₃ at 450 °C for 30 min

scaled with σ_{dc} of the base glass

Comparison of conductivity spectra of mixed alkali glasses $0.3[xK_2O-(1-x)Na_2O]-0.7B_2O_3$: melt-grown vs ion-exchanged glasses

Comparison of activation energies for dc conductivity:

melt-grown 0.3[xK₂O-(1-x)Na₂O]-0.7B₂O₃ glasses vs ion-exchanged glasses

ion-exchanged

Dielectric spectra in the resistivity representation

Dielectric measurements:

apply voltage $V(\omega) = V_m \sin(\omega t)$

measure current $I(\omega) = I_m \sin(\omega t + \delta)$

Complex impedance:

$$Z^*(\omega) = Z'(\omega) - iZ''(\omega)$$

$$Z' = |Z^*| \cos \delta, \quad Z'' = |Z^*| \sin \delta, \quad |Z^*| = \frac{V_m}{I_m}$$

Complex resistivity:

$$\rho^*(\omega) = \rho^{\prime}(\omega) - i\rho^{\prime\prime}(\omega) = Z^*(\omega)\frac{S}{d}$$

d=sample thickness; *S*=electrode area

Complex conductivity:

$$\sigma^*(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{1}{\rho^*(\omega)}$$

$$\sigma'(\omega) = \frac{\rho'(\omega)}{\left[\rho'(\omega)\right]^2 + \left[\rho''(\omega)\right]^2}$$

$$\rho'(\omega) = \frac{\sigma'(\omega)}{\left[\sigma'(\omega)\right]^2 + \left[\sigma''(\omega)\right]^2}$$

Resistivity spectra of the 0.3Na₂O-0.7B₂O₃ glass ion-exchanged in KNO₃

Resistivity spectra of the 0.3Na₂O-0.7B₂O₃ glass ion-exchanged in KNO₃

"Annealing" of the 0.3Na₂O-0.7B₂O₃ ion-exchanged glass

"Annealing" of the 0.3Na₂O-0.7B₂O₃ ion-exchanged glass, cont.

SUMMARY

• Structural aspects of ion-exchanged glasses: soda-lime-silica & sodium-borate

 \Rightarrow Alkali ion motion in the glass matrix below T_g, caused either by ion exchange and/or annealing, is accompanied by local structural rearrangements/relaxations involving short-range order structural units (Cation Induced Relaxations Of the Network, CIRON).

 \Rightarrow The structural rearrangements depend on the nature of the glass network and the type of the foreign cation introduced into the glass structure:

Soda-lime-silica glass:

K+/Na+:	$Q^2 + Q^4 \Rightarrow 2Q^3$
Li+, Ag+/Na+:	$2Q^3 \Rightarrow Q^2 + Q^4$

Sodium-borate glass:

K⁺/Na⁺: $BØ_4^- \Rightarrow BØ_2O^-$

⇒ The structure of an ion-exchanged glass resembles that of the corresponding meltgrown mixed alkali glass (i.e. similar SRO structure and nature of sites hosting metal ions).

• Ac conductivity aspects of ion-exchanged glasses: sodium-borate glass

⇒ The resistivity of the ion-exchanged (surface) layer can be described in terms of the resistivities of melt-grown K/Na mixed alkali glasses.

ACKNOWLEDGMENT

Univ. of Aberdeen, Scotland: M.D. Ingram, J. Davidson, M.H. Wu, A. Coats

NHRF, Athens: J. Kapoutsis, P. Machowski.

 \Rightarrow Royal Society / NHRF (exchange program)

- ⇒ General Secretariat for Research and Technology / Ministry of Development in Greece
- \Rightarrow European Union (project HPMD-CT-2000-00033).