
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

Object oriented simulation of systems with
examples in structural design and parallel
processing
David A. Bader
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Bader, David A., "Object oriented simulation of systems with examples in structural design and parallel processing" (1992). Theses and
Dissertations. 5533.
https://preserve.lehigh.edu/etd/5533

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5533?utm_source=preserve.lehigh.edu%2Fetd%2F5533&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

~ ·t:.: ..

OBJECT ORIENTED SIMULATION

OF SYSTEMS

WITH EXAMPLES IN

STRUCTURAL DESIGN

AND PARALLEL PROCESSING

by

David A. Bader

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

m

Electrical Engineering

Lehigh University

1991

© Copyright 1992 by David A. Bader

All Rights Reserved

..
11

This thesis is accepted in partial fulfillment of the requirements for the degree of

Master of Science.

I I
(Date)

Meghanad D. Wa ·,
Advisor in Charge

Secondary Advisor in Charge

111

p J

• g

Acknowledgments

I would like to thank my advisors, Dr. Meghanad D. Wagh, Associate Professor of

Computer Science and Electrical Engineering, and Dr. Richard Sause, Assistant Pro­

fessor of Civil Engineering, for encouraging me to pursue my academic and research

interests. I would also like to thank the National Science Foundation (NSF) sponsored

Center for Advanced Technologies of Large Structural Systems (ATLSS) at Lehigh

University for supporting my graduate education and research project .

.
lV

Contents

Acknowledgments •
IV

Abstract 1

1 Introduction 2

1.1 Introduction to Problem ' I I I I 2

1.2 Motivation I I I I I I I I .. ' ' 3

1.3 Literature Survey on Object Oriented Simulation . ' .. 3

1.4 Organization of thesis I I I I ... ' .. 4

2 Theoretical Foundations 5

2.1 Introduction I I I I ' . 5

2.2 Notion of Abstract Modeling . I I I I . I I t I I I I t 5

2.3 Object Oriented Programming Concepts 7

2.3.1 an object I I I I 7

2.3.2 data abstraction I t I I ... 9

2.3.3 hierarchy. I I I I I I I I ' 10

2.3.4 inheritance I I I I t I I I . ' .. 11

2.3.5 client/ supplier relationships I I I I I I I I 11

2.3.6 polymorphism I I I I I I I I I I I I 12

2.3.7 virtual functions . . I I I I . I I I I I I I I 13
0

2.3.8 reuse of code ... I I I I I I I I I 14

2.4 Creating the Object Oriented Process Model . I I I I 15

2.5 Managing Collections of Objects ... I I I I I I I I .. 16

V

\

2.5.l Overview of a Manager . 16

2.5.2 Design ofa Manager . 17

2.5.3 Functions of Managers 19

2.5.4 Heterogeneous Collections 20

2.5.5 Polymorphism of Objects 20

2.5.6 Memory Allocatio~; . 21

2.6 Problems with C++ . 21

2.6.l Using Multiple Libraries . 21

2.6.2 encapsulation of library objects 23

2.6.3 The need to know implementation of library objects 24

2.6.4 Type Casting . 25

2.6.5 Copying Objects . 26

2.6.6 Garbage Collection and Memory Management ... · ..

2.6.7 Documentation

2. 7 Interface between Simulation and External World

27

28

31

3 Project: FIDS

3 .1 Overview

3.2· Modeled Objects

3.2.l GridLine

3.2.2 GenericPoint .
3.2.3 Compass.

Load ...

LoadList .

t t t I I t t t t I t I t I t t t t t t t t I I I I I

3.2.4 t I

3.2.5 I I I I I I I I I I t I t I t t t t t t t t t t

3.2.6 LoadEvent
.._.,.. 3.2.7 ClearSpace .

3.2.8 LOG (List of Objects on a GridLine)

3.2.9 Offset

3.2.10 RelativePosition .. .

3.3 Managing Objects

3.3.l Grid Holder

.
Vl

33

33

33

35

37

42

43

46

48

50

52

54

56

58

60

r .,:.,

3.3.2 Grid Manager

3.3.3 LoadEvent Manager

3.3.4 Load Manager ...

3.3.5 ClearSpace Manager

3.3.6 LOG Holder

3. 3. 7 Offset Manager

3.3.8 RelativePosition Manager ..

3.3.9 Geometric Constraint Manager

3.3.10 Manager

3.4 Problem Formulation

3.4.1 Interface between Manager and User Interface

3.4.2 Stripped Problem Formulation Interface

4 Parallel Simulator

4.1 Overview.

4.2 Introduction to Parallel Computation .

4.3 ParSim Engine Description .

4.3.1 Activities Menu . .

4.3.2 Connectivity Matrix

4.3.3 Connectivity Matrix File ...

4.3.4 A Sample Connectivity Matrix File • f I I I I I I I I f I

4.3.5 Topologies of Connectivity Networks ...

4.4 Algorithms used in ParSim

62

65

67

69

71

73

75

77

79

84

84

85

87

87

87

89

89

89

90

90

91

91

4.4.1 Runtime Creation of a Connectivity Matrix 91

4.4.2 Mapping Algorithm 92

4.4.3 Finding the Minimum Distance/Paths between two PE's 93

4.4.4 Mutual Partitions

4.5 General Execution Steps of Simulation

4.5.1 Example of Data Flow Simulation .

4.6 Controller Object

4.7 Nodes

Vll

93

94

94

100

100

4.8 Links
I t I I I 101

4.9 Message . .r·. • . • • 101

4.10 Architecture ... :

4.11 Mapper

4.12 Conclusions
I

5 User Interface

5.1 Accessing the interface
I I I I I I I I I I I

5.2 Layout of workspace I I I I f I I t I I I

5.3 Getting input from user
I I t t I I t f I t I t I I t I I I I I I I I I I

6 Conclusions

A The NIH C++ Class Library Hierarchy

B The NIH C++ Collections

C NIH Template header file

D NIH Template implementation file

E Complete PF Header File (PF .h)

F Stripped PF Header File (PF .g)

G ParSim Definition Language Overview

Bibliography

Vita

Vlll

.102

102

102

103

103

104

114

115

117

120

124

126

133

139

144

147

151

List of Tables

4.1 ParSim Activity Menu . 89

4.2 Algorithmically generatable topologies 91

lX

List of Figures

2.1 Animal Class Hierarchy. 8

2.2 Derived Class MyObject . 9

2.3 Cat Class Member Variables . 12

2.4 Example of Arrow and Related Class Hierarchy 13

3.1 The Manager Structure . 59

3.2 Problem Formulation Interface

4.1 Connectivity Matrix

84

89

4.2 Linear Array with 4 PE's . 91

4.3 Example Data Flow Network . 95

5.1 FIDS-GUI File Menu . 105

5.2 FIDS-GUI Activity /Tools Menu . 106

5.3 FIDS-GUI GridLine Form . 107

5.4 FIDS-GUI Duplicate Label Error Window 108

5.5 FIDS-GUI Relative Position Form . 109

5.6 FIDS-GUI Offset Form . 110

5.7 FIDS-GUI ClearSpace Form . 111

5.8 FIDS-GUI Distributed Load Form . 112

5.9 FIDS-GUI Point Load Form . 113

X

Abstract

This thesis describes the design procedures for the constructing an object oriented

simulation. The object oriented programming technique enables simulations of real

world events to be modeled with ease. The gateway between the internal simulation

and external user interface is described, and the appearance of the user interface for

simulati0ns is discussed. A prototype system for designing 2D steel structural frames
"

given initial structural engineering constraints has been built and will be reviewed.

Also, an example simulation of a parallel processing network will be given.

1

\

Chapter 1

Introd uct'ion

1.1 Introduction to Problem

A systematic approach for designing simulations using object oriented techniques

encourages the use of abstract data packages for modeling real world occurrences.

In this thesis, I will discuss the methodologies for creating a dynamic simulation

package, and apply it to two examples: the simulation of large, steel structures for the

construction industry, and the simulation of parallel processing networks for computer

architects.

Powerful computer workstations are being developed at a rate faster than appli­

cations can be written for these new machines. I will attempt to shed some light on

the software engineering tasks involved for creating large simulation packages for such

workstations.

A new concept of Object Oriented Design is also integrated in this thesis.

Object orientation implies that Objects in a model contain both data and functions

for each instance of an object. Classic programming languages, as a reference, only

provide for data structures and functions which can act on the data. Object oriented

design has already prove·n useful in prototyping languages, such as SmallTalk, in

which ideas are .rapidly transformed into an implementation.

Object Oriented Libraries contain ready-made classes from which a software en­

gineer can derive his object classes. By using abstract data hierarchies, inheritance,

2 ··-

CHAPTER 1. INTRODUCTION

polymorphism, and reuse of code, the application's engineer can quickly and power­

fully model his problem using the expertise of the class library's software engineer.

Object Oriented Programming has been used extensively in industries to prototype

user interfaces, but I will show that it is also applicable to the modeling of objects

for simulation purposes. ,,

1.2 Motivation

Recently, programming languages have been developed in which powerful functions

are combined with object oriented capabilities, allowing a researcher to program in

the problem domain and not the implementation of basic data st~uctures. This thesis

will describe how tools have been created, harnessing the high computational abilities

of currently available workstations.

1.3 Literature Survey on Object Oriented Simu­

lation

Various progra1nming languages allow for object oriented constructions: C++, Eif­

fel, SmallTalk, Borland's Turbo Pascal v6.0, etc. In addition, there are general

purpose object oriented libraries containing abstract data type hierarchies available
I

for some of these platforms: Texas Instruments' OATH [20] and COOL C++ [35] li-

braries, National Institutes of Health's C++ Class Library [14], ParcPlace Systems'

SmallTalk class hierarchy [llJ,, Borland's Turbo C++ Libraries [18], etc.

Other special purpose libraries have also been written: New York University's

object oriented parallel progra1nming language ALLOY [28], Andrew Grimshaw's

Mentat [15] runtime system which allow for distributed parallelism and dataflow,

and ROSE, an object oriented database management system.

Object oriented graphical libraries, such as Stanford's Inter Views [37] and Cor­

nell's HOOPS are also helpful.

3

CHAPTER 1. INTRODUCTION

1.4 Org~nization of thesis

This thesis will first cover the theoretical foundations in the use of object oriented

programming concepts, and the organization of computer-based simulation. The

Framework for Integrated Design System, (FIDS), a structural engineering simu­

lation package written in C++ using a Sun Spare Workstation, the NIH C++ Class

Li~rary, and Stanford's InterViews C++ User Interface Routines, is an example of

one such simulator engineered by the author. ParSim [2], a concept for a paral­

lel processing simulation of parallel interconnection networks, will also be discussed.

Finally, I will present guidelines for constructing special purpose user interfaces for
0 computer-based simulations.

)
-/

4

(

>'

(

Chapter 2

Theoretical Foundations

2.1 Introduction

This chapter introduces the reader to the theory behind object oriented design. First,

the concepts needed to begin object oriented decomposition of a problem are dis­

cussed. Then the relationship between the mechanisms provided in an object oriented

language and their benefit to the theoretical model of a simulation will be shown.

Also, the necessary in-depth techniques for designing an object oriented simulation

package frorn beginning criteria to a finished product are examined.

2.2 Notion of Abstract Modeling

Object Oriented Programming (OOP) relies on the principle that the behavioral and

physical characteristics of a real-world entity can be conceptualized in an abstract

model, called the object. The degree to which the abstraction models the entity

will be directly proportional to the complexity of the simulation. If the problem

to be simulated can be modeled very precisely, by including a lot o'f detail into the

representation for each entity, the results will be far more accurate than a simple

model could provide. The task of designing an object relies on the assumption that

one knows the behavior of an entity under certain conditions, which is not always

the case. Also, one might not wish to have such a fine grained simulation. The

5

CHAPTER 2. THEORETICAL FOUNDATIONS

I
abstraction encapsulates data structures and functions which describe the behavior

and characteristics of any instance of the entity type involved in the simulation. By

lumping the data and functionality together, we create a truer sense of an object than

classical programming techniques, which separate coding into two distinct portions:

data structures, and functions operating on these data structures.

In most simulation applications, many entities being simulated are "similar". Fur­

ther, they may be gro\!ped into layers of classes that may be similar themselves. For

example, for a simulation of a parallel processing environment, one may have entities

of type ALU (Arithmetic Logic Unit), CL (Control Logic), and memory. The ALU

and CL together may form the entity called the CPU (Central Processing Unit), and

the CPU and memory together may form each PU (Processing Unit). It is important

to note that all the ALU's are similar as are all the CL's or memories. Further, all

the clusters of these basic units, such as the CPU's or PU's are also similar to others

of the same kind.

Object oriented programming successfuJly captures this idea by creating models

which can have data and functionality for a particular species. In this scheme, objects

belong to object classes, and these classes are arranged in a hierarchical structure.

· Each derived class can be inherited from a previously defined base class, and the new

class provides a superset of the base class' functionality. If such a class hierarchy,

or class library, is available, the software engineer need not spend his time recreating

the wheel, per se, or creating the basic data structures for every application but spend

his valuable time in the problem domain. Reuse of code, due to efficient hierarchical

schemes, also reduces the number of lines of code an engineer must maintain, and in

effect, drastically reduces the amount of time the engineer must spend in debugging

his routines.

This thesis, although applicable to most object oriented languages, will be pre­

sented with specific references to C++, an object oriented programming language and

superset of C.

6

CHAPTER 2. THEORETICAL FOUNDATIONS

2.3 Object o·riented Programming Concepts

2.3.1 an object

Amongst the new concepts of object oriented languages, the one that is of the most

fundamental importance is the concept of object classes. Most programming lan­

guages provide the us.er with a selection of fundamental data types (FDT) from

which all other types can be created. For instance, most languages have predefined

types for integers, floating point reals and doubles, characters, strings, etc., which
\ .

are standards of the language and portable to all hardware platforms for which the
\

language is implemented. In most languages, a software engineer may define new

types constructed as compounds of the FDT's. Records holding fields of FDT's are

also standard forms for grouping data.

In object oriented languages, abstract data types (ADT), called object classes,

organize both data structures and functions. ~n object class resembles a record, only

in addition to holding data fields, the object class also holds functions to access and

modify its data. Each class specifies its relation to existing classes by supplying a

reference to the base class, or class from which it is derived1. The object class is

used similar to a conventional type, allowing instances of its class to be instantiated

at the runtime of the program.

An object class hierarchy tree grows as new classes are added to the system.

Since each new class is a superset of its base class, it inherits selected data and

functions, meaning that the derived class, when given access by the inheritance rules,

can call any of its base class' functions, or modify any of the data.

C++ is a strongly typed language, implying that at compile time, every literal in

the code must know to which type it belongs. For example, the base class can be an

Animal and it might have derived classes of Mammal and Fish, and Mammal has

derived classes of Dog, Cat, and Elephant, and the Elephant might have a derived

class for the Gray Elephant, as in Figure 2.1. Then at compile time, we must know

what type of Animal an object is (it might just be an Animal). But _at runtime, it

1See Appendix C and Appendix D for Te~plates provided by the NIH Class Library for designing
ADT's.

7

CHAPTER 2. THEORETICAL FOUNDATIONS

G) Cat

Figure 2.1: Animal Class Hierarchy

would be nice if we could ask an Animal: "What type are you?" and have it respond

with "I'm a Cat!" or "I'm a Gray Elephant!" The root of the class hierarchy, (in this

example, the Animal), must have those unique functions defined to answer all such

questions for which objects need to respond. Also, functions which affect the entire

class hierarchy may be implemented in this root class. An example of one type of

such a function is an overloaded operator which supersedes the previously defined

functionality for standard operators such as arithmetic, logical, conditional, indexing,

pointer, and allocation operators. The operator can be given a new implementation

when called for a specific class with varying arguments, and can be redefined at any

point lower in the class hierarchy, too.

When designing an object found in a class library, a software engineer derives

objects from a predefined class Object. Usually the engineer would like these objects

to answer cornrnon messages which are not implemented in the library's root Object

class. In this case, the software engineer should make a derivect class of Object, for

example: MyObject, and derive all classes from MyObject that would normally be

8

CHAPTER 2. THEORETICAL FOUNDATIONS

Object

MyObject

Classl *** ClassN

Figure 2.2: Derived Class MyObject

directly derived classes of Object, as shown in Figure 2.2.

2.3.2 data abstraction

Before any coding is done, a study must be performed on the entity to,be modeled such

that its properties are adequately contained in a class representation. The properties

can be divided into two areas: behavior and physical attributes. Based on the

behavioral characteristics, this work decomposes Objects into three main types:

Physical Objects - actual entities being simulated

Container Objects - dynamic holders for the physical objects

Process Objects - control and transformation processes on the physical objects

Various philosophies of programming exist for creating classes. In Top Down

design, one creates all the classes for these objects, then fills in the functionality

as needed. In Bottom Up design, the lowest level functions are written and then

combined to create the classes. In this thesis, I propose that Middle Out design is
A

9

CHAPTER 2. THEORETICAL FOUNDATIONS

'·--

the only practical method by which a software engineer c~n create an object oriented

system. Middle Out design is the combination of the two previous methods, whereby

the designer fleshes out classes as he needs them, sometimes modifying other classes

when a. better design is discovered. When the designer attempts to think in terms

of the implementation and begins to write the member functions, he becomes either

more secure of his original design, or finds that the object class would be better

suited with some other structure. As one proceeds in this fashion, the object classes

constantly evolve.

2.3.3 hie~archy

The National Institutes of Health's Class Library2 (NIH CL) provides a class Object

which handles queries on an Object's class, name, initial assignments of all operators

on the class, etc. so that the properties shared by all objects are represented by

this class. All object classes are then created as derived classes of this Object class.

By having a root base class, all instances of all object classes can be passed around

the code as the type Object, eliminating the restriction of strong type checking for

C++. Typecasting is a feature that allows a software engineer to explicitly change the

apparent type of an object to another. This is very useful when the engineer wishes to

handle objects similarly without knowing the explicit classes of the individual objects.

At runtime, an object gets allocation of memory space sufficient to hold the class'

member variables. The pointer to this memory space, however, may be of any type,

ma.sking the appearance of the object held. Typecasting is merely changing the class

associated with the pointer without affecting the memory location. Typecasting is

dangerous, because the engineer may change this pointer to a class other than a base

class; when an access to the object is made using the pointer, an error will occur.

For example, referring back to Figure 2.1, one may instantiate a Gray Elephant,

and pass the Gray Elephant to a routine written for any derived class of Animal. If this

routine then wishes to call a function only available to Mammals, it must typecast the

Animal object to a Mammal first. In order to classify the Animal object as a Mammal

2See Appendix A for the NIH Class Library hierarchy.

10

CHAPTER 2. THEORETICAL FOUNDATIONS

instead of a Fish, for instance, requires every Animal to know its derived class so that

the software engineer can check this class and typecast the object accordingly. If the

engineer mistakenly typecast this Gray Elephant, held as an Animal, as a Fish, the

routine would fail at runtime.

2.3.4 inheritance

In decomposing an entity to be modeled, one must determine the data unique to the

current object class, and concurrently, find similarities to the other existing object

classes such that similar, or sibling, object classes can be generalized from a single

base class containing all of the similarities. From experience in this procedure, sim­

ilarities are found only after the first object class already has been modeled. Then

a compro1nise is struck to create the object class that can be the abstract base class

from which the siblings may be derived. An instance of a derived class is also an in­

stance of its base class, holding all the instance variables and functionality associated

with the base in addition to the newly derived extensions.

2.3.5 client/ supplier relationships

An object may contain other objects in any combination of the following methods:

inheritance and client/supplier relationships. As explained previously, inheritance

creates a derived class that is a superset of an existing object class. An instance of a

derived class holds an object from the base class to access the properties and behavior

of that base class. The second method is via client/supplier relationships, whereby

an object holds several member variables that are objects from unrelated object

classes. These member variables are completely contained inside this modeled object.

When a class is designed, one must determine whether the relationship between

the class and existing classes is of the inheritance or a client/supplier type. Keith

Gorlen [14] explains that when a class is inherited from another class, like the Cat

from the Animal class, it answers the question, "Is a?" as in "The Cat Is an Animal?"

In client/supplier, the question, "Has a?" is answered. For example, a class is created,

see Figure 2;3, to hold the Cat's name, call it the Name class, then "The Cat Has

11

4

CHAPTER 2. THEORETICAL FOUNDATIONS

Cat

Member Variables:

Color

Name

Weight

Figure 2.3: Cat Class Member Variables

a Name?"

In certain cases, the determination between these two methods is not as clear,

such as an example with geometric shapes. If one creates a class for Circles, and

wishes to create a class for Arcs, "Is an Arc a Circle?" or "Is a Circle an Arc?" Also,

"An Arc Has a Circle?" and "A Circle Has an Arc?" Clearly, these questions are

all ambiguous, and the task of choosing the relationship is then left up to the better

judgment of the designer.

2.3.6 polymorphism

One advantage of object oriented programming is that objects can be treated as

polymorphisms, meaning any object may be referenced or passed by the type of

any object class above it in the inheritance tree, or, identically, by its actual type.

For instance, referring back to the animal class hierarchy given in Figure 2.1, a Gray

Elephant can be passed as a Gray Elephant, an Elephant, or an Animal, and

a Dog can be passed as an Animal, too. By allowing polymorphism, objects truly

can be handled without concern for its actual class. Polymorphism can simplify the

problem of handling the return types of functions which can return objects of more

12

CHAPTER 2. THEORETICAL FOUNDATIONS
l -·

Object

,

Line

l
Arrow

UpArrow DownArrow

Figure 2.4: Example of Arrow and Related Class Hierarchy

..

than one type. Every function has a return type, which can be either a fundamental

data type, or an abstract, or user-defined, data type. Also, this return type may

require allocated space for the entire structure, or merely a pointer to the correct

obj~ct. Following the NIH Class Library paradigm, the return types of most functions

that return other library objects are pointers to the class Object. Tfe burden of

correctly transforming the pointer to the proper object class (in order for that object's

methods to be used} is then left to the software engineer.

2.3. 7 virtual functions

13

r

')

r

CHAPTER 2. THEORETICAIJ FOUNDATIONS

Object oriented languages allow derived classes to re-implement a function provided

by a base class. If the function· is not_ re-implemented, the base class implementation

is invoked. Virtual functions allow derived classes to re-implement a function, such

that when the base class' function is invoked, the derived functionality is called.

Pure virtual functions are virtual functions prototyped in a base class, but no

implementation is given. An abstract base class is any class with at least one pure

virtual function, since this class may not be instantiated.

When handling object_s polymorphically, it is readily apparent that most functions

in Object need to be pure virtual since the implementation would have no meaning in

Object and one needs to call the correct derived class' implementation. For example,

in a graphical package, an Object might have a function to draw itself on the screen,

but the function in class Object would be a pure virtual function, meaning that it

is available for all Objects, but no implementation exists for the abstract Object.

The pure virtual functions must be implemente~ by any derived class that is ·not

planned to be an abstract base class. For example, as shown in Figure 2.4, a derived

class of Object called Line would re-implement draw() for a line. If Arrow were a

derived class of Line, Arrow's draw() function could call the Line's draw() function,

and then call its own routine to draw the arrowhead. If Arrow had two derived

classes, UpArrow and DownArrow, and Arrow included directional information

in its member variables and used this in its draw(). function, neither UpArrow nor

DownArrow would need to re-implement draw(). Virtual functions are implemented

only when the characteristics of the function will change in a derived class; otherwise,

no modifications are necessary.

2.3.8 reuse of code

One of the major advantages of object oriented programming is that by using in­

heritance, client/supplier relationships, class hierarchies, virtual functions, and other

object oriented techniques, the code duplication can be largely avoided. Routines to

handle algorithms can be programmed once, thoroughly tested and debugged, and

placed in libraries. A designer then has the task to choose which objects he will build

CHAPTER 2. THEORETIC:AL FOUNDATIONS

with, but no longer has the burden of recreating the basic data structures and algo­

rithms. Reuse of code implies that less code needs to be compiled, and that existing

code will have a much shorter debugging period. A software engineer can then spend

time debugging only conceptual errors in his problem domain, and need not worry

about the accuracy of memory management, data structures, searching and_ sorting

algorithms,'itc. In the NIH Class Library, sophisticated dynamic arrays are available

which allow users to create instances of objects "on the fly"; place them in collections,

and have the collection automatically grow larger if need be. In the same context,

graphical object oriented libraries also are available. The reuse of code promotes the

concept that libraries of objects will become available for all types of applications,

and the designer of a system no longer needs to "reinvent the wheel."

2.4 Creating _the Object Oriented Process Model

The features of objected oriented languages allow one to readily model an entity into

objects by decomposing the entity's behavior into suitable classes. The next task for

the object oriented designer is the deco1nposition of a simulation problem into an

abstract process model. The process model is the environment in which the entities

interact with each other. Some examples of this include the simulation of a parallel

computer, in which the participating entities are Nodes, Links, and Messages, and

the process model is the interconnection network of the Nodes and Links. In the

simulation of a flight simulator, the entities include the aircrafts, the Earth, the Sun,

the control tower, etc. and the process model is the atmosphere, wind, light, weather,

etc. In a simulation of a structure, the entities are the beams and columns, and

the process model is the space surrounding these members, along with the physical

phenomena associated with the simulation, such as force~rom wind, gravity, dead

loads, etc.

In the object oriented paradigm, the process model is merely another object to be

abstracted. The state variables of the process are the instances of the modeled entities,

and the functions are the means by which these objects interact. The behavior of the

environment then must be abstracted into this process object. One may now conceive

15

-

CHAPTER 2. THEORETICAL FOUNDATIONS

of the simulation process as merely another entity, which when initialized properly,

and told to "GO!" will perform the simulation to completion.

I

2.5 Managing .Collections of Objects

2.5.1 Overview of a Manager

The abstraction of the problem requires (1) modeling of the objects and specifying

their interactions; and (2) describing the mechanisms through which the collections

of such objects can be created, modified, queried, or deleted. The first of these two

issues were discussed in the two preceding sections. The second issue is the topic of

the current section.

In the simulation problem, collections of objects participate by interacting with

each other. If one can create a smart way to manage these objects such that the

interaction becomes simpler to implement, one has created the ideal framework for

simulation.

The Manager concept may not appear to be object oriented in design. How­

ever, one can consider the Manager to be the state variable of the entire simulation,

that is, as just another object in the simulation. Often, several Manager classes are

needed. One Manager class should have the ability to interface with both the external

simulation representation, and the internal simulation representations, namely, other

Managers. In this sense, a Manager is an Object Oriented Database (OODB). If one

decomposes the problem down further, each object of each class can be held in a

specialized Manager. The sub-Managers are then equivalent to tables in a relational

database. Managers must then follow extended rules of normal forms for r~lational

databases. By following these rules, actions presented to the Manager will never

corrupt the data.

16

I ·t .

CHAPTER 2. THEORETICAL FOUNDATIONS

2.5.2 Design of a Manager

Managers must be clever. When objects are entered into the Manager, consistency

should be maintained with the previously held objects. If the new object is inconsis­

tent, incomplete, or a duplicate, it must be discarded.

All modeled entities are required to own a unique key, such as a string, used to

access the object from both internal and external objects. Other entities may use

this key as a passcard to the manager for retrieving the object associated with that

particular key.

Changes to objects held in Managers can be performed by passing the key and

the updated version of the object. If the key has not changed, all objects holding the

reference to that object still have a persistent method for access to it.

An object held in the Manager can be removed by handing its Manager the key for

that selected object. Deletions, however, require that objects holding a reference to

the soon-to-be-removed object must either be removed as well, or have their references

re-attached to persisting objects. Because two way links do not exist between the

keyed object and all others holding its key, maintaining persistent data is not trivial

in this case. A brute force approach for propagating the deletion may be implemented

by searching every entity in the representation of the problem and querying it as to

whether or not this delete will require subsequent modifications. Other schemes such

as dependency lists and broadcasts can also be used, but are not within the scope

of this thesis.

One must design a Manager around two strategic areas, the internal structure of

the Manager and the external accesses to the Manager. In order to select a base

class for an efficient design of the Manager, the objects which it will hold must be

examined. The following are the types of questions which must be answered:

, Are the objects homogeneous or heterogeneous?

• If they are heterogeneous, what is the most explicit class to which all the obje/s

belong?

, Are the objects sortable? (i.e. can an object compare itself with another and

17

CHAPTER 2. THEORETICAL FOUNDATIONS

determine which would come first in a sort?)

• Do the objects need to be retrieved in any particular order?

• What will the most common access to an object look. like?

• What kind of searches need to be performed to locate an object in the collection?

• Which existing collection do the objects most readily, and naturally fit into?

(e.g. Set, Bag, Stack, Ordered Collection, BortedCollection, Array, LinkedList,

Hash Table, Dictionary, KeySortedCollection, etc.)

By answering these questions, the determination of the Manager's base class will

be an easy decision3. The chosen container class must be the inherent natural choice

for holding the specified objects. If more explicit accesses are needed which cannot

be done optimally on this type of collection, a second auxiliary collection, used as

a lookup table for these special accesses, may be held as a member variable of the

Manager.

The second focus, namely access to these objects through the Manager, is reviewed

at this point. If a container holds sortable objects, and the Manager is chosen to

be a sorted collection, one has a problem when one tries to access the collection

with the key to an object (in the Sorted Collection, the key is the object itself.) In

this case, as the paragraph above notes, the Manager may hold an instance of a

KeySortedCollection to manage associations of keys and refer~nces to the objects

held by the inherent collection. This extra member collection is just another view to

accessing the data (of objects) in the Manager. When messages are passed to this

Manager, it has the choice of whether to use the base container class directly, or to

use the auxiliary collection as a front-end for accesses to the base cont;ainer class. In

either case, all of the held collections must be updated whenever an object owned by

this Manager is modified.

3See Appendix B for the NIH C++ Library class structure for Collections, as well as short de­
scriptions of the available collections.

18

CHAPTER 2. THEORETICAL FOUNDATIONS

2.5.3 Functions of Managers

The Manager has various responsibilities, some of which include:

• maintaining persistent data objects

• adhering to insertion, deletion, and modification consistencies·

• providing adequate access messages for searches

• printing, storing, and debugging collection onto an output stream or file

• retrieving contents from an input stream or file

• iterating through the collection to access each object held

The Manager's class description included in its header file should contain the

messages needed to perform all these functions on the collection. By using const

functions, the software engineer also knows which of these methods will modify the

collection.

To the user of a collection, three main types of functions exist:

• construction (and destruction)

• access

• modification

The construction (destruction) functions handle the initialization (finalization) of

an instance of this Collection class. The accessing methods allow for searches through

the coll~ction which do not modify the objects contained. The modification messages

are of the store, remove, and change type. These modifications must perform the

various function implied or return a token representing the error that might have

occurred. If the return token is not OK, one should assume that the collection has

rejected the operation asked of it, and has left the collection in the same state as

before the message came along. Some other error messages, for example, might be:

InvalidLabel, DuplicateLab~l, InvalidObject, etc. The calling routine then may

branch to resolve a specific error condition. At this stage, the user may be queried,

or a routine may find the resolution to the error.

19

CHAPTER 2. THEORETICAL FOUNDATIONS

2.5.4 Heterogeneous Collections

A Manager will function optimally when its base collection holds homogeneous ob­

jects. Because of static type checking, if one knows that a collection holds instances

of the Widget class, one can directly typecast an element in the container to be a

widget and query the widget with public widget class member functions. By taking

advantage of the compare function, the widget will know how to order itself with

respect to other instances of the same class. Thus, a sorted collection needs to hold

homogeneous objects. All entities are, in fact, homogeneous to the Object base class .

.. But by referring to instances as Objects, the public member functions belonging to

derived classes of this base class become inaccessible.

Object oriented programming does allow one to hold instances of different classes

in the same collection. For example, a collection such as a Stack might hold an

Integer in the first lo~ation, a String in the second, and an Elephant in the third.

As long as the objects held are derived from the base class (Object, for example),

specified by the definition of the collection class, polymorphism allows all these het­

erogeneous instances to be held as Objects.

2.5.5 Polymorphism of Objects

Polymorphism is the key concept to holding heterogeneous objects. If, for example,

the Widget class is derived from a base class, say Object, a particular instance of the

Widget class may be handled as though it were an instance of the base class Object.

One drawback of this is that only the Object class functions may be accessed for an

object once it has been handed to a collection for Objects. Other functions for the

Widget class are not accessible until the Widget instance is typecast to its actual

class.

The base class Object should have the necessary functionality available so that

(at runtime) one can determine the class to which the instance belongs, and then cast

it to that particular class. A member variable of the base class should hold the class
,,

name to which the instance belongs. An Object then has the ability to be cast to

this class, or have functions from this class invoked. Using a pure virtual function in

20

I
CHAPTER 2. THEORETICAL FOUNDATIONS

the base class and requiring derived classes to implement an equivalence operator for
' . ·1

that derived class, is one way to handle the testing of a polymorphic object when one

does not know to which class that instance belongs.

2.5.6 Memory Allocation

Creation or modification of objects in a collection cannot be achieved without due

consideration of its impact on the memory requirements. In classical programming

techniques, the size of an array must be determined statically at compile time, forcing

a known limit on the number of objects an array can hold. This limit coexists with

the limits of free memory allocation to variables and data structures invoked by the

program at runtime. A software engineer must place knowledgeable upper bounds on

every array used in the scope of the program. However, these are limits to the overall

performance of the program.

With object oriented memory allocations, collections are instantiated at an opti­

mal size, but have the ability to grow or shrink as necessary to accommodate the

objects held. The expansion and contraction of the container is handled invisibly to

the user. The design engineer can dictate at compile time the behavior of the col­

lection, for example, whether it will grow by doubling in size, or just adding sixteen

1nore element positions. All the error checking and dynamic allocation techniques are

written for this class, and thus, the engineer no longer has this issue to worry about

or implement.

2.6 · Problems with C++

2.6.1 Using Multiple Libraries

The stated advantage of object oriented systems, design, and programming is that

one can work in the problem domain, borrowing existing objects from already com­

plete and streamlined libraries. In practice, linking objects from separate libraries is

extremely complicated, and further research must take place in this area. Specifically,

compiling a program that needs objects from two distinct libraries has a chance of

21

I

, CHAPTER 2. THEORETICAL FOUNDATIONS

running into conflicts between the libraries, such as definitions of what NIL is, or

class definitions, for example, Object, Point, String, or Set.

Since every object in a particular program should be polymorphic to a single class,

such as Object in the NIH Class Library, having different root objects for each library

conflicts with the theoretical notion of one root object. This problem is evident when

designing a front-end user interface for the internal objects of a simulation. Every

entity needs an internal representation which models its behavior in the simulation,

and an external representation which models its physical display properties for the

screen.

Ap.other technical problem encountered when using both the NIH Class Library·

[13] and InterViews Library [23] is that classes in one can be overwritten by a new

class definition in the other, with no warning messages produced at compile time.

For example, a common class called Point is utilized by both of these libraries.

One dangerous solution to this type of problem would be for a software engineer

to modify the source code to the library, rp.aking each class name distinct, such as

changing Point to nihclPoint, etc. This is not a practical solution in cases where

the library does not include modifiable source code, or the engineer does not have

the capabilities of recreating the library. Modifying a library can also affect other

packages previously written for the library.

Similarly, the concept of NIL is vastly different in available libraries. In NIH

Class Library, NIL is an Object, whereas in InterViews, NIL is defined to be 0.

Globally renaming one of these literals is a solution to this problem, however, all the

complications associated with the last problem are relevant here, too.

A non-object oriented solution is to maintain a distinction between objects from

each library, and not to compile two objects from different libraries together in the

same 1nodule of code. This solution is costly, though, in that it requires objects

to interface between libraries, which pass data between objects derived from the

different libraries. Once again, this solution has dangerous side-effects. A header

file contains the prototypes of classes and the class functions. In the compilation of

a module of code, one object may handle a second by merely knowing the prototype

and not the implementation of that second class. The compiler merely leaves enough

22

CHAPTER 2. THEORETICAL FOUNDATIONS

memory space to include the second object when the modules are linked together.

Inconsistency problems may occur due to the fact that· the interface objects· must

have two separate header files, one for each side of the interface, and any differences

in the size allocations of classes represented in these header files will have serious

repercussions (via bad pointers) during execution. The interface module will have

the responsibility of transferring objects to and from fundamental data types, such

that each header file for each side of the application need not know about any objects

from the other library. In the implementation of this module, however, objects can

be passed betw~en the two libraries. An example of this interface will be given in a

later chapter.

2.6.2 encapsulation of library objects

A challenge arises for the library designer to create objects which are fully encap­

sulated, that is, the objects are modular and can be replaced easily with differing

designs. In theory, a software engineer only needs to know the external fu~ctionality

of an object, and all internal functions are both hidden and secure from him. The

engineer need not know or understand the implementation of a library object, and is

usually discouraged from even viewing it.

Although encapsulation is sought in libraries, an engineer has the ability to re­

implement functions without realizing that the encapsulated object has been cor­

rupted. Almost all public member functions in the NIH Class Library are imple­

mented as virtual, encouraging the use of polymorphism. Virtual functions are

necessary if we wish to have derived classes properly respond to a function call when

the object is held as an instance of the base class. For example, the new implemen­

tation of the function may execute a few new lines of code, and then call the base

class' function of the same name. The problem with re-implementing these functions

is that an illegal action in a derived function may cause other base class functions

which depend on the derived function to behave improperly, (e.g. in this manner, the

library objects can never be completed and securely encapsulated.)

23

/

CHAPTER 2. THEORETICAL FOUNDATIONS

2.6~3 The need to know .implementation of library objects

With encapsulation comes the concept that a software engineer need not know the

implementation of a library object, or any object for that matter, since the interface

should relay all the relevant information for accessing and modifying an object.

I disagree that there can ever be this external and limited view of objects in ob­

jected oriented programming. In my experience with the NIH Class Library, one

constantly needs to examine the implementation of library objects, checking for such

things as,whether or not a member function modifies its object, how memory man­

agement is attained, formatting for when the object is placed on the output stream,

garbage collection, etc. These answers can be documented in a manual, but as one

knows, the only reliable check is by tracing through the implementation.

As an example, if a software engineer uses a Container to hold objects, and the

engineer places objects in the Container:

• Are the objects in the Container identical, or copies, or the placed objects?
'

• When an object is retrieved from the Container, will modifications to the object

or Container affect each other?

• Does losing scope on the Container or an object lose scope of the objects held?

• When the destructor is called on the Container, does it destroy all the objects

it holds?

These and other similar questions are applicable to most objects. .

Another issue with library objects is implementational bugs which make function

calls non-standard. For instance, one would believe that checking to see if a key is

included in a keyed collection should always return a boolean. However, the NIH

Collections need an isEmpty() function call first to test if any keys are, in fact, held,

and then, if true, check for the inclusion of a specific key.

C++ allows the software engineer to specify functions that are const (constant) .

. A const function has the property that none of the member variables of the object

are modified when that particular function is called. Accessing methods are normally

\ 24

..'.i

CHAPTER 2. THEORETICAL FOUNDATIONS

constant. Constant functions are verified at compile time, and constant functions may

only call oth~r constant functions inside the object. This programming notation can

give an engineer the false sense that a function is safe to execute, but many loopholes

exist which allow the engineer the latitude to corrupt the object by accident. For

instance, the NIH sortable objects have a constant function compare which returns

a -1, 0, or +1 depending on if the second object passed to the first occurs to the left,

at, or to the right of the current object. In one of my implementations, I mistakenly

had the compare access the Collection in which the object sat, corrupting a collection

pointer. When the collection was accessed a second time, the pointer no longer

held the correct inform~tion. Although the constant function is an easy notation to

represent functions meant only to access information, the concept gives the engineer

a false sense of security over data integrity.

2.6.4 Type Casting

C++ is a strong typed language. The compiler must know the types of all literals at

the compile time. Unfortunately, this is a major drawback to pure object oriented

languages in which type resolutions occur dynamically at run time. C++ requires

strong type checking because the C++ code is merely transformed into C code, such

that the standard C compiler and object linker can be used. The C linker requires

that all function calls are explicitly tied to the matching function at compile time.

Late binding, as SmallTalk implements, binds the function invocations to their

routines dynamically at runtime. The only late binding in C++ occurs when virtual

functions are called, in order to allow an object to invoke the proper derived class

implementation at runtime.

As a result of strong typing, the linker must know the class of each object calling a

function, so that the tie can be established. Some variety exists on the way a function

is called. For example, Circle is a derived class of Shape. If a Circle is held as a

Shape, and the Shape is issued the function to compute its area, the Shape will call

its own area function. However, if the Shape is coerced back into being a Circle, and·

the same function call is made, the object will respond accordingly.

When working with a library, one cannot insert virtual functions in the provided
7

25

CHAPTER 2. THEORETICAL FOUNDATIONS

base classes without recompiling the library. Without the virtual function provided for

in the base class, the polymorphic object cannot call the intended function without

first being typecast to the derived class which contains the desired function. The

solution would be to make a new abstract class, derived directed from the existing

root class, an~ in the new class, implement all the problen1-related functionality. For

example, if the root class is Object, create a derived class called MyObject from

which all other entities can be modeled [25, p.393].

This solution only allows functionality added for Objects descended directly from

Object. When an object class is derived from any other class, it no longer contains

the MyObject class information. A creative solution would be to use Multiple

Inheritance, such that the modeled entity would be derived from whichever existing

library class, and also from MyObject. Objects constructed via multiple inheritance

then can access functions from any of the superclasses, provided the compiler can

resolve the typing sch;-llf Explicit typecasting will tell the compiler that an object

with pointer "A" might really be of class "B", but if the software engineer is incorrect,

the program will not function in the desired manner.
I

2.6.5 Copying Objects

The assignment operator = is probably the most used operator, and if one does not

understand its functionality, objects in memory can be corrupted. The assignment

operator is used to copy an object, and there are two types of copies:

shallowCopy - a pointer copy

deepCopy - a contents copy

A shallowCopy merely copies a pointer to an area of memory holding the object, so

that a second pointer has access to the same memory location and functionality. This

access is useful when a knowledgeable software engineer wants to pass around objects,

without any modifications, because the shallowCopy can be performed in constant

· time, with only one pointer of new memory spacerequi-red. Also, the pointer can be

passed to a function if one wishes to have the function modify the object. By passing

26

CHAPTER 2. THEORETICAL FOUNDATIONS

only a pointer, the entire object need not be put on the stack, i.e., on the memory

space provided for passing arguments to functions.

A deepCopy allocates a block of memory identical in size to the original object,

and proceeds to hierarchically decompose the object, and reconstruct a copy of it in

the new location. A deep copy must be aware of circular pointers, so that the copy

'----) does not wind up in an endless loop. For example, if object B is held as a member

variable of object A, and object B points back to object A, then a deep copy should

not get caught in that circularity. Once a deep copy is made, modification to either

copy will not affect each other. This copying technique is useful when an object needs

to be passed to a function, and one has no knowledge of the function, but does not

want the object modified.

Unless methods are provided, the assignment operator normally performs a shal­

low copy. In C++, by implementing following special constructor:

X :: X(const X&);

this function will be called when the assignment operator is used for class X. This

constructor allows the software engineer to define a unique deep copy for class X.

2.6.6 Garbage Collection and Memory Management

Garbage collection and memory management are handled differently in objected

oriented languages. Memory management refers to allocation and deallocation of

memory space when objects are constructed and destructed, respectively. Garbage

collection is the process by where objects are removed from memory when they are

no longer needed.

Garbage collection may be implicit, as in SmallTalk, or explicit, as in C++. Theo­

retically, an object can be removed from memory space when no other object needs a

reference to it. SmallTalk holds a list of pointers to objects, and periodically, or when

space is needed, the system checks the list against objects in memory. Whenever an

object exists in memory space without a pointer to it stored in the list, the memory

space is relinquished to the free memory store. SmallTalk automatically provides this

27

CHAPTER 2 . . THEORETICAL FOUNDATIONS

service, however, a price must be paid in performance since the service needs to be

processed without knowledge of the current state of objects in the system.

Explicit garbage collection is handled in C++ but having a destructor function

called either directly in a function call by the software engineer, or inserted by the

compiler when an object loses scope. The destructor function allows the engineer to.

explicitly free memory that was allocated by the constructor for that object. The

engineer must maintain the memory management by remembering to implement the

requisite destruction routine.

2.6. 7 Documentation

Documentation is the key to the usability of object oriented libraries. Although

a library might contain all the necessary objects and functionality, the library is

worthless without adequate instructions on the use of these objects.

The following are means by which a library architect can document his library:

• User /Reference Manuals

• Example packages

• Header files

• Documented (Implementational) code

This list is given in increasing closeness to the actual code of the library. In the­

oretical terms, the software engineer should never need to read the library's code;

the Reference Manual should include all the external functionality of the library's

objects. For streamlining and debugging of applicational functions, it may become

necessary to peek into the library for hints and answers to the problem at hand. This

philosophy, in one sense, violates the notion of information hiding in libraries, but

adheres to the idea that object oriented programming ne~d not duplicate earlier pro­

gramming.efforts. Re-use of code can only be attained when the engineer has access

to all the code implementation, from all the applicational routines and algorithms, to

the lowest levels of the libraries.

28

CHAPTER 2.' THEORETICAL FOUNDATIONS

A good reference manual should contain the following information on every object

in the library:

• Object Class

• Base Class

• Derived Classes

• Related Classes

• Constructors and Destructors

• Public member variables and functions

• Behavioral properties of instances of the object class

• Any related information which is necessary when using instances of the object

class

• Examples of instantiating and using the object from the designer's point of

view.

Most C++ Libraries currently available do not have coherent documentation. Er­

rors also occur in their examples. The Inter Views package from Stanford [23] is an

example of a very rich library of objects with poor documentation.

Some libraries have amazing reference manuals, examples, explanations, docu­

mented code, etc. As an example of this style, I refer to Keith Gorlen's release 3.10 of

the NIH C++ Class Library reference manual (Draft Copy) [13], along with his book

on Object Oriented Design [14].

Browsing is the key to learning object oriented libraries. Browsing consists of

a presentation of classes in a fashion such that the engineer can search around for

objects, messages, or concepts, copy ideas, learn the algorithms used, and gain a

familiarity with the libraries. SmallTalk has a browser incorporated into its system

[11], and the quicker one can master the Browser, the faster software development

29 ·

CHAPTER 2. THEORETICAL FOUNDATIONS

becomes. The reference manual should be a hardcopy of the information one might
want to know when browsing.

The information presented leads a software engineer to choose which objects one
wants to design with. Questions as to inheritance, related structures, public messages
provided, and behavior are quickly answered so that design can progress as fast as
possible, with the right design decisions from the start. If one chooses the correct
objects to begin with, one does not need to waste time redesigning objects created
from inefficient structures.

At times, the software engineer wishes to know more about the library objects.
Also, if the library has an ineffective reference manual, or even worse, does not include
a reference manual, one must know how to browse the actual code. The reference
manual should be a readable presentation of the collection of header files to the ob­
jects. By careful review of the header files, the same information can be extracted.
These files contain the object class definitions, more technically providing the class
hierarchies, member variables, public messages, etc. Commenting in the files can also
help in this situation.

The ultimate source for browsing is the implementation of the object functions.
Although reading someone else's source code might be difficult, depending on the
library designer's programming styles and the reader's mastery of the language, this
will provide examples that use the objects provided, and give insights into algorithms
available.

If example programs using the libraries are available, one should refer to these to
solve specific implementational problems, or even try to master the examples to gain
expertise with the library. Rewriting an example will also allow a user to better un­
derstand the steps needed in the process of turning one's own code into an executable
package.

As an example, reference pages for objects designed for use with Project: FIDS
are provided in Chapter 3.

30

CHAPTER 2. THEORETICAL FOUNDATIONS

'

2. 7 Interface between Simulation and External

World

An object oriented simulation contains both the internal objects to perform the simu­

lation and the external user interface. Every action taken by the user must affect the

simulation as needed, and conversely, the simulation must be correctly portrayed in

the user's view4
• The interface between these two domains must have this functional­

ity, namely, to process the internal-to-external and external-to-internal handshaking

of messages, events, and objects.

The object oriented abstraction of the simulation holds the current state of the

participating entities. The external user interface may be any modular package which

allows one to view, or observe, this simulation. For example, the external portion may

be a powerful X-Windows graphical user interface for a Sun Workstation or a simple

ASCII text dialog with the user. The interface must provide a protocol for accessing

and modifying the information held by the simulation.

One feature of this interface layer is that the designer can create a text-only de­

bugging front-end for the simulation, before a more in-depth graphical representation

is realized. Also, any graphical user interface is dependent on the computer platform

currentl-y being used, and although the code for the internal simulation is portable,

the graphical routines. usually are not. In this case, all the graphics are encapsulated

· in a section of the project solely responsible for display and disconnected from the

abstracted entities. When the project is ported to a different platform, or when the

graphical capabilities are upgraded on the current platform, the task of creating a

new front-end will not affect the already-working internal objects.

The interface module links the internal and external representations. Because of

this property, the internal simulation modules need not be compiled with any knowl­

edge of the external world, and vice versa. Programming tricks may be necessary,

however, to compile this interface. Modules in C++ include an implementation file as

well as a file containing the class structures and prototype of the available functions.

As long as no implementations are given in the header file, one may have several

4Please refer to Chapter 5 for a discussion of the user interface.

31

CHAPTER 2. THEORETICAL FOUNDATIONS

header files for the interface module. The complete header file with all functional­

ity may be included when compiling the internal objects; whereas a stripped down

version containing only the fundamental C++ ~ata types and structures will be used

when compiling the front-end portion of the project. This solution also eliminates any

possible class name conflicts between the internal and external libraries by decoupling

their .compilations.

'·

32

Chapter 3

Project: FIDS

3.1 Overview

The following chapter presents the reader with an example in object oriented design.

The project chosen, simulating the Framework for Integrated Design System (FIDS),

has the task of representing a two-dimensional structural frame, allowing user im­

posed constraints on locations for members, and satisfying all given load events. The

decomposition of entities participating in this simulation will be discussed, focusing

on their behavioral characteristics abstracted and encapsulated into object oriented

models. The physical objects will be presented in the same order as designed, from

the lowest level conceptual objects needed as base classes and dependent abstract

member variables, to the objects representing the formal constraints. Next, the Con­

tainer objects for holding these physical objects will be demonstrated. And finally, the

Process Objects used as glue to mesh the various objects, internally and externally,

along with the interface to the extern representation, will be presented.

3.2 Modeled Objects

The following sections contain the technical descriptions of the entities modeled for

this project. These descriptions are presented as reference manual pages, for ease

of use of this simulation library. The pages contain important design specifications

33

CHAPTER 3. PROJECT:,FIDS

along with corresponding solutions to the problems encountered when abstracting

the models. Each reference page contains the name oft.he object, base class, derived

classes, related classes, descriptions, constructors (and destructors), public access

functions, and constant objects of that type, such as NIL objects. The description

section elaborates the design issues for the entity, along with the state variables needed

to represent the behavioral state of the object .

..

34

CHAPTER 3. PROJECT: FIDS

3.2.1 GridLine

BASE CLASS

Object

DERIVED CLASS

None

RELATED CLASSES

GridHolder, GenericPoint

DESCRIPTION

" Grid lines form a two dimensional mesh of reference lines where beams and

columns are most likely to be placed.

Typically, A and B represent vertical grid lines, and 1, 2, horizontal grid lines.

Note that the structure to be analyzed is defined to begin at grid lines A and 1,

but extended grid lines below and to the left must exist as anchors for the perimeter

of the structure. The same is true for the right-most vertical and top-most horizontal

grid lines.

These grids lines are the most probable locations for beams and columns, but do

not ensure that a beam or column will actually fall in these locations.

All objects in a structure are geometrically located via grid lines. Therefore, the

grid line is the most primitive entity in this simulation model.

A GridLine has a label, orientation, and distance from the left- or bottom- most

grid line (for vertical and horizontal, respectively). By changing the spacing between

35

CHAPTER 3. PROJECT: FIDS

grid lines, the geometry of the resulting structure will be modified accordingly. Areas

in the grid are all scaled by these distances between grid lines.

A fixed absolute outside perimeter for a structure must be created. Then grid

lines may be constructed inside the perimeter. A grid line may be moved, as long as

it does not cross over another grid line. New grid lines may be added at any location

in bounds. Grid lines may not be removed if any other ·objects are tied to the grid

line by its label reference.

CONSTRUCTORS and DESTRUCTORS

GridLine(const String& label, const OrientType& orient,

const Float& dis)

GridLine(char* label, char* orient, double dis)

GridLine(char* label, OrientType orient, double dis)

PUBLIC ACCESS

String& label() const

OrientType& orient () const

Float& distance() const

bool isNIL() const

bool isBoundingGridLine() const

CONSTANT OBJECTS

GRIDLINENIL = GridLine("NIL", none, 0)

BOTTOM GRID LINE = GridLine("BOTTOM", horiz, 0)

LEFTGRIDLINE = GridLine("LEFT", vert, 0)

TOPGRIDLINE. = GridLine("TOP", horiz, BIGNUM)

RIGHTGRIDLINE = GridLine("RIGHT", vert, BIGNUM)

36

I

I

CHAPTER 3. PROJECT: FIDS

3.2.2 GenericPoint

BASE CLASS

Object

DERIVED CLASS

ClearSpace

RELATED CLASSES

Load

DESCRIPTION

A GenericPoint specifies the location of an entity in space relative to bounding

grid lines. By redundancy in the state variables of a generic point, four different types

of points can be held: Intersection, Vertical Line, Horizontal Line, and Rectangular

Area. The point also has the ability to be calculated in fixed measurements from the

surrounding grid lines, or a ratio of the distance between the same grid lines. The

following are definitions of the GenericPoint 's member variables:

GenericPoint(gridA, gridB, gridl, grid2, x..start, y ..start, x..stop, y ..stop,

XJelative, y Jelative)

gridA and gridB are the labels to the bounding vertical grid lines, and

gridl and grid2 are the labels to the bounding horizontal grid lines

xJelative: TRUE => x..start and x..stop are relative measurements

(0 < x..start, x..stop < 1) of the distance between grid lines A and B.

FALSE => x..start and x..stop are fixed distance offsets.

37

CHAPTER 3. PROJECT: FIDS

y _relative: TRUE => y ..start and y ..stop are relative measurements

(0 < y ..start, y ..stop < 1) of the distance between grid lines 1 and 2.

FALSE => y ..start and y ..stop are fixed distance offsets.

x..start: a horizontal offset of a point from the given grid crossing in

either a relative measurement (if x..relative :::} TRUE) or

a fixed distance (if x..relative => FALSE).

This is a horizontal starting offset.

y ..start: a vertical offset of a point from the given grid crossing in

either a relative measurement (if y ..relative => TRUE) or

a fixed distance (if y ..relative => FALSE).

This is a vertical starting offset.

x..stop: a horizontal offset of a point from the given grid crossing in

either a relative measurement (if x..relative => TRUE) or

a fixed distance (if x..relative => FALSE).

This is a horizontal stopping offset.

y ..stop: a vertical offset of a point from the given grid crossing in

either a relative measurement (if y _relative => TRUE) or

a fixed distance (if y ..relative => FALSE).

This is a vertical stopping offset.

The Four classes of points:

INTERSECTION POINT

, associated with a connection of two objects, or

a point in space for another object or force)

~ Two grid lines given (A, 1) (grid lines 1 = 2, A = B)

, (x..start, y ..start) is the offset from the grid crossing

38

J

CHAPTER 3. PROJECT: FIDS

• x..start must equal x..stop

• y ..start must equal y ..stop

• getPoint returns coordinate of intersection

HORIZONTAL LINE

• associated with a beam or girder object

• Three grid lines given (A, B, 1) (grid lines 1 = 2)

• (x..start, y ..start) is the offset from the grid crossing

• y ..start must equal y ..stop

• For a complete horizontal grid line segment between vertical grid lines,

x..start, y ..start, y ..stop = 0

x..stop = 1, and

x_relative = TRUE

• getOrigin returns left coordinate

• getCorner returns right coordinate

VERTICAL LINE

• associated with a column object

• Three grid lines given (A, 1, 2) (grid lines A = B)

• (x..start, y ..start) is the offset from the grid crossing

• x..start must equal x..stop

• For a complete vertical grid line segment between horizontal grid lines,

x..start, x..stop, y ..start = 0 ·

y..stop = 1, and

y _relative = TRUE

39

CHAPTER 3. PROJECT: FIDS

• getOrigin returns bottom coordinate

• getCorner returns top coordinate

RECTANGULAR AREA

• associated with a wall-type object

• Four distinct grid lines given (A, B, 1, 2)

• Inside rectangle given, XJ3tart, XJ3top represent left/right bounds

y ...start, y _stop represent bottom/top bounds

• getOrigin and getCorner messages find absolute coordinates for an area

CONSTRUCTO.RS and DESTRUCTORS

GenericPoint(const String& gridA, const String& gridB,

const String& gridl, const String& grid2,

Float& x...start, Float& x_.stop, Float& y ...start, Float& y J3top,

bool x_telative, bool y _relative)

PUBLIC ACCESS

String& gridA() const

String& gridB() const

String& gridl () const

String& grid2() const

Float& x_start() const

Float& x...stop() const

Float& y ...start() const

Float& y ...stop() const

bool x_rel() const

bool y _rel() const

40

· CHAPTER 3. PROJECT: FIDS

bool actsOnGrid(const String& gridLabel) const

void getPoint(Float& x, Float& y) const

void getOrigin(Float& xO, Float& yO) const

void getCorner(Float& xl, Float& yl) const

PointType type() const

bool good() const

bool bad() const

bool isNIL() const

CONSTANT OBJECTS

GENERICPOINTNIL = GenericPoint("NIL" "NIL" "NIL" "NIL")
' ' '

41

• I

CHAPTER 3. PROJECT: FIDS

3.2.3 Compass

BASE CLASS

Float

f

DERIVED CLASS

None

RELATED CLASSES

Load

DESCRIPTION

A Compass is a direction holder. A Compass may be constructed via an enumer­

ated list of directions (for right_dir, up_dir, left_dir, down_dir), or with the enumerator

"other_dir" and a double precision floating point value for the angle. Compass uses

a right handed system with right_dir equal to 0° and up_dir equal to 90°.

CONSTRUC'l'ORS and DESTRUCTORS

Compass(CompassType, double v)

PUBLIC ACCESS

CompassType dir() const ·

bool isNIL() const

CONSTANT OBJECTS

COMPASSNIL = Compass(other_dir, 0)

42

CHAPTER 3. PROJECT: FIDS

3.2.4 Load

BASE CLASS

Object

DERIVED CLASS

None

RELATED ~ASSES

LoadList, LoadEvent, LoadManager

DESCRIPTION

All loads can be represented internally as:

Load(Name, NominalLoadCategory, Location, Magl, Mag2, Direction,

SupportSurface)

Constant Loads

• Location {:: Intersection GenericPoint

------t load acting on a point

• Location {:: Line GelliericPoint
\

------t constant load distributed on line

------t (must have Magl = Mag2)

Distributed Loads

• Location {:: Line GenericPoint

------t varying load distributed on line

------t (must have Magl -:f. Mag2)

43

CHAPTER 3. PROJECT: FIDS

NominalLoadCategory: represents a type for the load, for example: loads due to

members in the structure, wind, external loading, etc. A list of standard

tags and user defined options exist.

Location: A GenericPoint which is either an Intersection or Line point

Intersection H Point Load

Line Point H Load along a surface

. Magl: Magnitude of force at left or bottom of LinePoint (or at Intersection)

Mag2: Magnitude of force at right or top of LinePoint

Direction: Indicates a Compass direction of force

SupportSurface: Indicates the surface of a member along a gridline to which the

load acts on. This is an enumerated list of tags such as top...sur,

bottom...sur, left...sur, right...sur, and centerline_sur

CONSTRUCTORS and DESTRUCTORS

Distributed Load:

Load(String& name, NominalLoadType& nominalJoad_category,

GenericPoint& line_point, Float& magnitudel, Float& magnitude2,

Compass& .dir, SurfaceType& support_surface)

Point Load:

Load(String& name, NominalLoadType& nominalJoad_category,

GenericPoHit& intersection_point, Float& magnitude,

Compass& dir, SurfaceType& support_surface)

PUBLIC ACCESS

String& name() const

N ominalLoadType& nominalLoad Category() const

44

I •.

CHAPTER 3. PROJECT: FIDS

GenericPoint& linePoint() const

Float& magl () const

Float& mag2() const

Compass& direction() const

SurfaceType& supportSurface() const

loadType type() const

bool isNIL() const

CONSTANT OBJECTS

LOAD NIL = GridLine("NIL", D, GENERICPOINTNIL, 0, 0,

COMPASSNIL, top..sur)

45

CHAPTER 3. PROJECT: FIDS

3.2.5 LoadList

BASE CLASS

Dictionary

DERIVED CLASS

None

RELATED CLASSES

LoadEvent

. DESCRIPTION

A LoadList is a collection of related loads from a single entity in a structural

design. The loads are accessible by the load name. A load list has a unique label

used as a reference when placed in a LoadEvent.

LoadLists are constructed with only a load list label, but then may have loads

added, removed, or changed inside the collection.

CONSTRUCTORS and DESTRUCTORS

LoadList (String& label)

PUBLIC ACCESS

'
String& label() const

bool holds(String& label) const

ManagerErrors addLoad(Load& aLoad)

ManagerErrors removeLoadWithLabel(String& label)

46

-
CHAPTER 3. PROJECT: FIDS

ManagerErrors changeLoad(String& oldLabel, Load& newLoad)

int numberOfLoads() const

Load& getFirstLoad()

Load& getLoadAfter(String& label)

bool isNIL() const

CONSTANT OBJECTS

LOADLISTNIL = LoadList("NIL")

47

CHAPTER 3. PROJECT: FIDS

3.2.6 LoadEvent

BASE CLASS

Dictionary

DERIVED CLASS

None

RELATED CLASSES

LoadEventManager

DESCRIPTION

A LoadEvent is a collection of LoadLists and other LoadEvents. The LoadEvent

typically contains all the loads due to a certain physical phenomena. A LoadEvent

may only be held by one other LoadEvent, and has a reference to this parent. If the

LoadEvent is not held, the parent reference points to NIL.

The LoadEvent is comparable to a lookup table with keys and values. Its entries

are in no particular order, so a Dictionary has been chosen as the base class. A

LoadEvent is constructed on a key which names that LoadEvent. When adding

a LoadList to the LoadEvent, an Association between the LoadList label and the

actual LoadList object are entered into the Dictionary. When a second LoadEvent

is added to a first LoadEvent, the second LoadEvent gets its parent label set to the

first, and only a reference to the child is maintained in the parent LoadEvent.

A LoadEvent may add, remove, or change LoadLists and LoadEvents which it

contains.

CONSTRUCTORS and DESTRUCTORS

48

CHAPTER 3. PROJECT: FIDS

LoadEvent(St~ing& label)

PUBLIC ACCESS

String& label() const

String& parent() const

void setParent(String& parentLabel)

LoadManager& allLoads() const

ManagerErrors addLoadEvent(String& newLoadEventLabel)

Manager Errors addLoadList(LoadList& newLoadList)

Manager Errors removeLoadList WithLabel(String& label)

ManagerErrors removeLoadWithLabel(String& loadListLabel, String& loadLabel)

ManagerErrors changeLoad(String& loadLabel, Load& newLoad)

int numberOfLoads() const

int numberOfLoadLists() const

int partialNumberOfLoads() const

int partialNumberOfLoadLists() const

bool holdsLoadWithLabel(String& loadLabel) const

bool holdsLoadList WithLabel(String& loadListLabel) const

bool holdsLoadEvent(String& loadEventLabel) canst

LoadList& getLoadList WithLabel(String& loadListLabel)

LoadList& getFirstLoadList()

LoadList& getLoadListAfter(String& loadListLabel)

bool isNIL() canst

CONSTANT OBJECTS

LOADEVENTNIL = LoadEvent("NIL")

49

CHAPTER 3. PROJECT: FIDS

3.2. 7 ClearSpace

BASE CLASS

GenericPoint

DERIVED CLASS

None

RELATED CLASSES

ClearSpaceManager

DESCRIPTION

ClearSpace(Label, ClearSpaceTag, AreaPoint)

A ClearSpace is used to prevent walls and diagonal members from being placed at

the given AreaPoint location. The Label is a unique string used to access the entity.

The ClearSpaceTag represents the cause of the ClearSpace, such as a lobby, mod­

ern office, elevator shaft, etc. These tags are kept in a global set from which a

ClearSpace can select its type, or create a new type.

init() will clear all the clear space tags.

CONSTRUCTORS and DESTRUCTORS

ClearSpace(const String& label, const String& clearSpaceTag,

const String& gridA, const String& gridB,

const String& gridl, const String& grid2,

Float& x..start, FJoat& x..stop, Float& y ..start, Float& y ..stop,

bool xJelative, bool y Jelative)

ClearSpac~(const String& label, const String& clearSpaceTag,

const GenericPoint& anAreaPoint)

50

(

·CHAPTER 3. PROJECT: FIDS

PUBLIC ACCESS

String& label() const

String& tag() const

Set& getTags() const

static void init()

void clear()

void add Tag(const String&)

bool isNIL() const

CONSTANT OBJECTS

CLEARSPACENIL = ClearSpace("NIL", "NIL", GENERICPOINTNIL)

51

CHAPTER 3. PROJECT: FIDS

3.2.8 LOG (List of Objects. on a GridLine)

BASE CLASS

SortedCltn

DERIVED CLASS

None

RELATED CLASSES

LOG Holder

DESCRIPTION

LOGs are used to hold a List of Objects along a Grid line. The LOG has a unique

label equivalent to that of the label of its grid line. The LOG holds sortable objects

in its inherent sorted collection, but also maintains a lookup table, via a member

variable which is a key sorted collection, for accesses by key.

The LOG is a sortable object itself, and its compare() function orders by the

distance of the related grid line.

Objects can be stored or removed from the LOG by means of a unique key asso­

ciated with the given object. This key, a String, is utilized as the lookup key.

CONSTRUCTORS and DESTRUCTORS

LOG(String& label)

PUBLIC ACCESS

52

CHAPTER 3. PROJECT: FIDS

String& label() const

ManagerErrors storeWithKey(String& key, Object& valueObject)

ManagerErrors removeObjectWithKey(String& key)

Object& getObjectWithKey(String& key)

Object& getObjectAfter(String& key)

bool holds(String& key) const

bool isNIL() const

CONSTANT OBJECTS

LOG NIL = LOG("NIL")

53

p

CHAPTER 3. PROJECT: FIDS

3.2.9 Offset

BASE CLASS

Object

DERIVED CLASS

None

RELATED CLASSES

Offset Manager

DESCRIPTION

Offset(key, gridLabel, bound_l, bound..2, Value, offset..surface)

An Offset contains a structure's offset along the grid line with label "gridLabel"

bounded by the grid lines with labels "bound_l" and "bound..2". The Value of this

offset is a Float.

The key is a unique string used to reference this offset.

The variable offset..surface holds a SurfaceType enmnerated type.

top..sur, bottom..sur, and centerline..sur are used for horizontal members,

left..sur, right..sur, and centerline..sur are used for vertical members.

Offsets may check to see if they overlap with another, because overlapping offsets

are generally disallowed.

CONSTRUCTORS and DESTRUCTORS

Offset(String& key, String& gridLabel, String& bound,..1, String& bound_2,

Float& value, SurfaceType& offset..surface)

54

CHAPTER 3. PROJECT: FIDS

PUBLIC ACCESS

String& key() const

String& grid() const

String& boundl () const

String& bound2() const

Float& value() const

SurfaceType& offsetSurface() const

bool overlaps(Offset& anotherOffset) const

bool isNIL() const

CONSTANT OBJECTS

OFFSETNIL = Offset()

55

CHAPTER 3. PROJECT: FIDS

3.2.10 RelativePosition

BASE CLASS

Object

DERIVED CLASS

None

RELATED CLASSES

RelPosManager

DESCRIPTION

A relative position has the following structure:

RelPos(key, grid_l, grid..2, extent_Start, extent_Stop,

grid_L.surface, grid..2.Burface, min_max_mode,

lessJhan, greater_than, equaLto)

A relative position is used to specify headrooms and widths in the structure. The

key is a unique String used to access a particular RelPos. The RelPos specifically

applies to the members which will be attached at locations along grid_l and grid..2.

The extenLStart and extenLStop are the labels of the grid lines bounding the relative

position constraint. The variables grid_l.Burface and grid..2.Burface reference the

surfaces of the members along grid_l and grid_2, respectively, for which the constraint

applies.

The min_max_mode is used to toggle between using "<" and ">" constraint values

or using an explicit "=" valu~. Both data variables are given, but the useful informa-
,

tion is determined by the state of this mode indicator. In this scheme, one then has

minimum and maximum position constraints, as well as fixed position requirements.

56

Ii

CHAPTER 3. PROJECT: FIDS

CONSTRUCTORS and DESTRUCTORS

RelPos(const String& key,

const String& grid_l, const String& grid..2,

const String& extentStart, const String& extentStop,

SurfaceType& grid_l_surface, SurfaceType& grid..2..surface,
p

bool min..max_mode,

Float& lessJhan, Float& greater_than,

Float& equaLto)

PUBLIC ACCESS

String& key() const

String& gridl () const

String& grid2() const

String& extentStart() const

String& extentStop() const

SurfaceType& gridlSur() const

SurfaceType& grid2Sur() const

bool minmax() canst

Float& lessThan() canst

Float& greaterThan() const

Float& equalTo() const

GenericPoint& rect() canst

bool good() canst bool isNIL() const

CONSTANT OBJECTS

RELPOSNIL = RelPos("NIL" "NIL" "NIL"
' ' '

"NIL", "NIL" , top_sur, top_sur)

57

CHAPTER 3. PROJECT: FIDS

3.3 Managing Objects

The following sections contain the reference pages for the manager, or container, ob­

jects in the FIDS. Although these objects seem independent, they are the variables

needed for representing the state of a generic structural frame. The Manager class is

the one object encompassing all the behavioral characteristic of a single frame prob­

lem. From the outside, this class will manage all accesses to the problem involving the

entities such as GridLines, Loads, LoadLists, LoadEvents, Offsets, ClearSpaces, Rel­

ativePositions, etc. A diagram representing the theoretical structure of the manager

is provided in Figure 3 .1.

The simulation currently treats the sub-managers for the entity objects, such as

the GridManager, LoadEventManager, and GeometricConstraintManager, as clients

of the Manager, but a more precise model of this manager would be an object multiply

inherited from these sub-managers. The Manager then would inherent the function­

ality of each sub-manager. By doing so, the Manager would implicitly accept calls to

the sub-managers without having to explicitly pass each function call to the correct

one. This method does give full public access from the sub-managers to the Manager's

interface.

58

CHAPTER 3. PROJECT: FIDS

r---------~----------------------
'

Horizontal Grid Holder Vertical Grid Holder

Grid Manager

~--------------------------------

r--------------------------------1

Load Event Manager

L--------------------------------1

Offset
Manager

Clear Space
Manager

Relative Position
Manager

Geometric Constraint Manager
L--------------------------------

The Manager

Figure 3.1: The Manager Structure

59

CHAPTER 3. PRbJECT: FIDS

3.3.1 Grid Holder

BASE CLASS

SortedCltn

DERIVED CLASS

None

RELATED CLASSES

GridLine, GridManager

DESCRIPTION

A GridHolder has the task of holding homogeneous GridLines. A GridLine is

a sortable object and uses its distance from yither the bottom- or left- most grid

line, (for horizontal and vertical grid lines, respectively), as the ordering criteria. All

GridLines in a GridHolder, then, must have the same orientation, either horiz or vert.

The GridHolder accesses its GridLines by the GridLine label. GridLines may be

stored, removed, or changed. Methods also exist for accessing the first, last, current,

previous, and next GridLines. In order to accomplish these functions, the GridHolder

maintains a pointer to the last accessed GridLine. Be aware that side effects from

other objects might affect this position state.

Note that the getFirst(), getLast(), getPrevious(), and getNext() functions

are nqt const functions because they modify this position pointer.
,·

CONSTRUCTORS and DESTRUCTORS

GridHolder()

60

CHAPTER 3. PROJECT: FIDS

PUBLIC ACCESS

ManagerErrbrs removeAllGrids()

Manager Errors storeGridLine(GridLine& aGridLine)

ManagerErrors removeGridLine(String& label)

Manager Errors changeGridLine(String& oldLabel, GridLine& newGridLine)

bool holds(String& label) const

. int numberOfGridLines() const
I

GridLine& getFirst()

GridLine& getCurrent() const

GridLine& getNext()

GridLine& getLast()

GridLine& getPrevious()

GridLine& getGridLine WithLabel(String& label)

GridLine& getGridLine WithDistance(const Float& distance)

GridLine& getGridLineBefore(const Float& distance)

GridLine& getGridLineAfter(const Float& distance)

Float& findDistanceBetween(String& labeLl, String& label-2)

GridHolder& getGridLinesBetween(String& labeLl, String& label-2) const

CONSTANT OBJECTS

None

61

CHAPTER 3. PROJECT: FIDS

3.3.2 Grid Manager

BASE CLASS

Object

DERIVED CLASS

None

RELATED CLASSES

GridHolder

DESCRIPTION

The GridManager holds two GridHolders, one for the horizontal grid lines and

one for the vertical grid lines. When grid lines are handed to and from this Grid­

Manager, it must determine the orientation of the grid line and correctly place it in

a GridHolder, or retrieve from the right collection.

Before any GridLines are placed in the GridManager, the message init () must

be called to set up NIL objects and place in the GridHolders the four bounding

grid lines: BOTTOMGRIDLINE, TOPGRIDLINE, LEFTGRIDLINE, and RIGHT­

GRIDLINE. The distance of the BOTTOMGRIDLINE and LEFTGRIDLINE are 0,

and the TOPGRIDLINE and RIGHTGRIDLINE and a "large" distance, representing

oo. The methods setOrigin(xO, yO) and setCorner(xl, yl) should be called before any

GridLines are placed in the GridManager. These methods modify the the distances

of the bounding GridLines to reflect the scale chosen by the user.

The GridManager also allows access to the public member functions for the Hor­

izontal GridHolder and Vertical GridHolder.

CONSTRUCTORS and DESTRUCTORS

62

CHAPTER 3. PROJECT: FIDS

GridManager()

PUBLIC ACCESS

ManagerErrors init()

ManagerErrors clear()

Manager Errors storeGridLine(GridLine& aGridLine)

Manager Errors removeGridLine WithLabel(String& label)

ManagerErrors changeGridLine(String& oldLabel, GridLine& newGridLine)

bool bothHold(String& label) const

bool eitherHold(String& label) const

int numberOfHoriz() const

int numberOfVert() const

bool setOrigin(Float& xO, Float& yO)

bool setCorner(Float& xl, Float& yl)

GridLine& getFirstHoriz()

GridLine& getFirstVert()

GridLine& getLastHoriz()

GridLine& getLastVert()

GridLine& getCurrentHoriz() const

GridLine& get Current Vert() const

GridLine& geJN extHoriz()

GridLine& getNextVert()

GridLine& getPreviousHoriz()

G ridLine& getPrevious Vert()

GridLine& getGridLine WithLabel(String& label)

GridLine& getHorizGridLine WithDistance(const Float& y)

GridLine& get VertGridLine WithDistance(const Float& x)

GridLine& getHorizGridLineBefore(const Float& y)

GridLine& get VertGridLineBefore(const Float& x)

63

CHAPTER 3. PROJECT: FIDS

GridLine& getHorizGridLineAfter(const Float& y)

GridLine& getVertGridLineAfter(const Float& x)

Float& findDistanceBetween(String& labeLl, String& label-2)

GridHolder& getGridLinesBetween(String& labelJ., String& label.2) const

CONSTANT OBJECTS

None

64

CHAPTER 3. PROJECT: FIDS

3.3.3 LoadEvent Manager

BASE CLASS

Dictionary
.,,

DERIVED CLASS

None

RELATED CLASSES

Load, LoadList, LoadEvent, LoadManager

DESCRIPTION

The LoadEventManager holds a collection of LoadEvents. Since LoadEvents have

no indigenous order, each is stored in the LoadEventManager as an Association,

with the LoadEvent label used as the key and the actual object as the value. The

LoadEvents are then accessible via their label. LoadLists and Loads may also be

accessed and modified. LoadEvents may be added, removed, or changed inside this

LoadEventManager.

Before any LoadEvents are placed in the LoadEventManager, the message init()

must be called to set up NIL objects.

CONSTRUCTORS and DESTRUCTORS

LoadEventManager()

PUBLIC ACCESS

65

\

CHAPTER 3. PROJECT: FIDS

ManagerErrors init()

ManagerErrors clear()

Manager Errors remuveAllLoadEvents()

· Manager Errors addLoadEvent(LoadEvent& aLoadEvent)

Manager Errors removeLoadEvent WithLabel(String& label)

Manager Errors changeLoadEvent(String& oldLabel, LoadEvent& newLoadEvent)

ManagerErrors changeLoad(String& loadLabel, Load& newLoad)

bool holds(String& label) const

bool holdsLoadWithLabel(String& label) const

bool holdsLoadList WithLabel(String& label) const

int numberOfLoadE~ents() const

int numberOfLoads() const

int numberOfLoadLists() const

LoadEvent& getLoadEventWithLabel(String& label) const

LoadEventManager& getLoadEventsOnPoint(const GenericPoint& aGP) const

LoadEventManager& getLoadEventsOnGridLine(String& label) const

LoadManager& allLoads()

Load& getLoadWithLabel(String& loadLabel)

CONSTANT OBJECTS

None

66

CHAPTER 3. PROJECT: FIDS

3.3.4 Load Manager

BASE CLASS

Dictionary

DERIVED CLASS

None

RELATED CLASSES

Load

DESCRIPTION

The LoadManager holds a collection of Loads. Since Loads are have no specific

ordering, the LoadManager can hold them in a Dictionary, with the Load label as the

key, and the Load object as the value. Loads are accessed via their label and may be

added, removed, or changed inside this collection.

A LoadManager has no relation to a LoadList or LoadEvent, since the Load­

Manager holds a fiat collection of Loads, (unlike the LoadEventManager, which is

comprised of a hierarchical tree-like description of loads in Loads in LoadLists and

LoadEvents.)

Before any Loads are placed in the LoadManager, the message init () must be

called to set up NIL objects.

CONSTRUCTORS and DESTRUCTORS

LoadManager()

PUBLIC ACCESS

67

CHAPTER 3. PROJECT: FIDS

ManagerErrors init()

ManagerErrors clear()

Manager Errors removeAllLoads()

Manager Errors storeLoad(Load& aLoad)

ManagerErrors removeLoadWithLabel(String& label)
\..

ManagerErrors changeLoad(String& oldLabel, L~ newLoad)

bool holds(String& label) const

int numberOfLoads() const

Load& getLoadWithLabel(String& label) const

LoadManager& getLoadsOnPoint(const GenericPoint& aGP) const

LoadManager& getLoadsOnGridLine(String& gridLabel) const

LoadManager& get Loads WithN ominal Category(N ominalLoadType&

nominalLoad Category) const

virtual Collection& add ContentsTo(Collection& cltn) const

CONSTANT OBJECTS

None

68

CHAPTER 3. PROJECT: FIDS

3.3.5 ClearSpace Manager

BASE CLASS

Dictionary

DERIVED CLASS

None

RELATED CLASSES

Cl€arSpace, GeometricManager

DESCRIPTION

The ClearSpaceManager holds a collection of ClearSpaces. ClearSpaces are ac­

cessed via their label and may be added, removed, or changed inside this collection.
(

Before any ClearSpaces are placed in the ClearSpaceManager, the message init()

must be called to set up NIL objects.

CONSTRUCTORS and DESTRUCTORS

ClearSpaceManager()

PUBLIC ACCESS

ManagerErrors init()

ManagerErrors clear()

Manager Errors store(Object& aClearSpace)

Manager Errors storeClearSpace(ClearSpace& aClearSpace)

Manager Errors remove Wi thLabel(String& label)

Manager Errors changeClearSpace(String& oldLabel, ClearSpace& newClearSpace)

69

CHAPTER 3. PROJECT: FIDS

bool holds(String& label) const

int numberOfClearSpaces() const

ClearSpace& getClearSpace WithLabel(String& label) const

ClearSpace& getFirstClearSpace()

ClearSpace& getClearSpaceAfter(String& lastLabel)

CONSTANT OBJECTS

None

70

-,n

CHAPTER 3. PROJECT: FIDS

3.3.6 LOG Holder

BASE CLASS

SortedCltn

DERIVED CLASS

Offset Manager

RELATED CLASSES

LOG

DESCRIPTION

The LOGHolder holds a collection of LOGs, (List of Objects along a Grid line).

LO Gs are accessed via their label (which is the label of the grid line that the LOG

attaches to) and may be added, removed, or changed inside this collection.

Before any LOGs are placed in the LOGHolder, the message init() must be called

to set up NIL objects.

The messages holds() and numberOfLOGS () refer to the LOG label and collec­

tion of LO Gs, respectively, while holdsObjectKey(...) and numberOfObjects()

refer to the objects held inside of all the LOGs which are held by this LOGHolder.

CONSTRUCTORS and DESTRUCTORS

LOG Holder()

PUBLIC ACCESS

71

(

CHAPTER 3. PROJECT: FIDS

Manager Errors ini t ()

ManagerErrors clear()

ManagerErrors storeLOG(LOG& aLOG)

ManagerErrors removeWithLabel(String& labelOfLOG)

bool holds(String& JabelOfLOG) const

bool holdsObjectKey(String& objectKey) const

int numberOfLOGs() const

int numberOfObjects() const

LOG& getLOGWithLabel(String& labelOfLOG) const

LOG& getFirstLOG()

LOG& getLOGAfter(String& lastLOG.Label)

CONSTANT OBJECTS

None

72

CHAPTER 3. PROJECT: FIDS

3.3. 7 Offset Manager

BASE CLASS

LOG Holder

DERIVED CLASS

None

RELATED CLASSES

GeometricManager

DESCRIPTION

The OffsetManager holds a collection of Offsets which are in turn held by LOGs.

Note that the OffsetManager is a LOG Holder, and a lot of functionality for managing

Offsets is provided for in the LOGHolder. Offsets may be added, removed, or changed

inside this collection via their key.

Before any Offsets are placed in the OffsetMq,nager, the message init () (found in
j

LOG Holder) must be called to set up NIL objects.

The messages holds() and numberOfLOGS() refer to the LOG label and collec­

tion of LO Gs, respectively, while holdsObjectKey(.. ,) and numberOfObjects()

refer to the offsets held inside of all the LOGs which are held by this OffsetManager.

Note that the functions given for the OffsetManager class supplement the functions

already available in the LOGHolder class.

CONSTRUCTORS and DESTRUCT.ORS

Offset Manager();

73

r--..

CHAPTER 3. PROJECT: FIDS

PUBLIC ACCESS

Manager Errors store Offset (Offset& an Offset)

Manager Errors remove Offset Wi thKey(String& key)

Manager Errors changeOffset(String& oldLabel, Offset& newOffset)

int number0f0ffsets() const

Offset& getFirstOffset()
l

Offset& getOffsetAfter(String& lastLabel)

Offset& getOffsetWithKey(String& key) const

CONSTANT OBJECTS

None

74

\

CHAPTER 3. PROJECT: FIDS

3.3-.8 RelativePosition Manager

BASE CLASS

Dictionary I..

DERIVED CLASS

None

RELATED CLASSES

RelPos, GeometricManager

DESCRIPTION

The RelPosManager holds a collection of RelPos 's. RelPos 's are accessed via their

key and may be added, removed, or changed inside this collection.

Before any RelPos's are placed in the RelPosManager, the message init() must

be called to set up NIL objects.

CONSTRUCTORS and DESTRUCTORS

RelPosManager()

PUBLIC ACCESS

ManagerErrors init()

ManagerErrors clear()

ManagerErrors store(Object& aRelPos)

Manager Errors storeRelPos(RelPos& aRelPos)

Manager Errors remove WithKey(String& key)

ManagerErrors changeRelPos(String& oldKey, RelPos& newRelPos)

75

CHAPTER 3. PROJECT: FIDS

bool holds(String& key) const

int numberOffielPos() const

RelPos& getFirstRelPos()

RelPos& getRelPosAfter(String& last Key)

RelPos& getRelPosWithKey(String& key) con.st

CONSTANT OBJECTS

None

76

I

,/

CHAPTER 3. PROJECT: FIDS

3.3.9 Geometric Constraint Manager

BASE CLASS

Object

DERIVED CLASS

None

RELATED CLASSES

ClearSpaceManager, Offset Manager, RelPosManager, Manager

DESCRIPTION

The Geometric Constraint Manager is a conglomerate of a ClearSpace Manager,

OffsetManager, and Relative Position Manager. ClearSpaces, Offsets, and RelPos's

may be added, removed, or changed inside the GeometricManager via their label or

key.

Before any Objects are placed in the GeometricManager, the message init() must

be called to set up NIL objects.

CONSTRUCTORS and DESTRUCTORS

GeometricManager()

PUBLIC ACCESS

ClearSpaceManager& CSM() const

OffsetManager& OM() const

RelPosManager& RPM() const

77

CHAPTER 3. PROJECT: FIDS

ManagerErrors init()

ManagerErrors clear()

Manager Errors store(Object& an Object)

bool holds(String&.key) const

int numberOfGeometricConstraints() const

l\1anagerErrors storeClearSpace(ClearSpace& aClearSpace)

Manager Errors removeClearSpac_e Wi thLabel(String& label)

Manager Errors changeClearSpace(String& oldLabel, ClearSpace& newClearSpace)

ClearSpace& getFirstClearSpace()

ClearSpace& getClearSpaceAfter(String& lastLabel)

ClearSpace& getClearSpaceWithLabel(String& label) const

Manager Errors storeOffset (Offset& an Offset)

ManagerErrors removeOffsetWithKey(String& key)

Manager Errors changeOffset(String& oldKey, Offset& newOffset)

Offset& getOffsetWithKey(String& key) const

int numberOfOffsets() const

LOG& getFirstOffsetLOG()

LOG& getOffsetLOGAfter(String& lastLOGJrny)

Offset& get First Offset ()

Offset& getOffsetAfter(String& lastOffsetJrny)

Manager Errors storeRelPos(RelPos& aRelPos) .11

ManagerErrors removeRelPosWithKey(String& key)

Manager Errors changeRelPos(String& oldKey, RelPos& newRelPos)

RelPos& getFirstRelPos()

RelPos& getRelPosAfter(String& last Key)

RelPos& getRelPosWithKey(String& key) const

CONSTANT OBJECTS

None

78

. I

·CHAPTER 3. PROJECT: FIDS

3.3.10 Manager

BASE CLASS

Object

DERIVED CLASS

None

RELATED CLASSES

ClearSpaceManager, OffsetManager, RelPosManager, Manager

DESCRIPTION

The Manager is a conglomerate of a GridManager, LoadEventManager, and Geo-
,

metricManager. GridLines (Horizontal and Vertical), LoadEvents (Loads and Load-

Lists), ClearSpaces, Offsets, and RelPos's may be added, removed, or changed inside

the Manager via their label or key.

Generally, a getFirstObjec.t returns the first object of that class in the Manager,

and a getNextObj'ect(label) returns the next object held, given that the last object

returned had the label (or key) of label. Also, performing a getNext("FIRSTTIME")

is the same as a getFirst().

Before any Objects are placed in the Manager, the message init() must be called

to set up NIL and bounding objects.

The Manager also may help with the consistency checks of GenericPoint, Load,

and LoadEvent objects, via the functions checkGP(), checkLoad(), and check-
1

LoadEvent (), respectively.

CONSTRUCTORS and DESTRUCTORS

79

/:

CHAPTER 3. PROJECT: FIDS

Manager()

Manager(const char* filename) / / create manager from filename ~

PUBLIC ACCESS

void setManagerPointer()

ManagerErrors init()

Manager Errors store(Object& anObject)

Manager Errors remove(Object& anObject)

ManagerErrors clear()

OrientType getGridLineOrient(String& label) const

GenericPoint& getintersectionPoint(Float& x, bool x_rel,

Float& y , bool y _rel) const

GenericPoint& getAreaPoint(Float& xO, Float& yO, Float& xl, Float& yl,

bool x..rel, bool y ..rel) const

GenericPoint& getLinePoint(Float& xO, Float& yO, Float& xl, Float& yl,

bool x..rel, bool y ..rel) const

bool checkGP(GenericPoint& aGenericPoint) const

bool checkLoad(Load& aLoad) const

bool checkLoadEvent(LoadEvent& aLoadEvent) const

GridManager& GM() const

LoadEventManager& LEM() const

GeometricManager& GCM() const

void saveToFile(const char* filena1ne) const

GridManager Messages:

GridLine& getGridLineFromUser() const

Manager Errors GMclear()

ManagerErrors GMinit()

80

CHAPTER 3. PROJECT: FIDS

Manager Errors storeGridLine(GridLine& aGridLine)

ManagerErrors removeGridLineWithLabel(String& label)

.,

Manager Errors changeGridLine(String& oldLabel, GridLine& newGridLine)

bool holdsGrid(String& label) const

int numberOfHoriz() const

int numberONert() const

bool setOrigin(Float& xO, Float& yO)

bool setCorner(Float& xl, Float& yl)

GridLine& getFirstHoriz()

GridLine& getFirst Vert()

GridLine& getLastHoriz()

GridLine& getLast Vert()

GridLine& getCurrentHoriz() const

GridLine& get Current Vert() const

GridLine& getNextHoriz()

GridLine& getNextVert()

GridLine& getPreviousHoriz()

GridLine& getPreviousVert()

GridLine& getGridLineWithLabel(String& label)

GridLine& getHorizGridLine WithDistance(const Float& y)

GridLine& getVertGridLineWithDistance(const Float& x)

GridLine& getHorizGridLineBefore(const Float& y)

GridLine& getVertGridLineBefore(const Float& x)

GridLine& getHorizGridLineAfter(const Float& y)

GridLine& get VertGridLineAfter(const Float& x)

Float& findDistanceBetween(String& labeLl, String& label-2)

GridHolder& getGridLinesBetween(String& label.1, String& label-2) const

LoadEventManager Messages:

ManagerErrors LEMinit()

ManagerErrors LEMclear()

81

I

CHAPTER 3. PROJECT: FIDS

bool holdsLoadEvent(String& label) const

bool holdsLoadWithLabel(String& label) const

bool holdsLoadListWithLabel.(String& label) const

Manager Errors addLoadEvent(LoadEvent& aLoadEvent)

Manager Errors addLoadEvent(St~ing& loadListLabei, String& loadEventLabel)

ManagerErrors addLoadList(String& loadEventLabel, String& loadListLabel)

ManagerErrors addLoad(String& loadEventLabel, String& loadListLabel,

· Load& aLoad)

Manager Errors removeAllLoadEvents()

Manager Errors removeLoadEvent WithLabel(String& label)

Manager Errors removeLoadEvent WithLabel(String& loadEventParentLabel,

String& loadEventLabel)

Manager Errors removeLoadList WithLabel(String& loadEventLabel,

· String& loadListLabel)

Manager Errors removeLoadWithLabel(String& loadEventLabel,

String& loadListLabel, String& loadLabel)

Manager Errors changeLoadEvent (String& oldLabel, LoadEvent& new LoadEvent)

ManagerErrors changeLoad(String& oldLabel, Load& newLoad)

int numberOfLoadEvents() const

int numberOfLoads() const

int numberOfLoadLists() const)

LoadEvent& getLoadEventWithLabel(String& label) const

LoadEventManager& getLoadEventsOnPoint(const GenericPoint&

aGenericPoint) const

LoadEventManager& getLoadEventsOnGridLine(String& label) const

LoadManager& allLoads()

Load& getNextLoad(String& lastLoadEventLabel, String& lastLoadListL~bel,

String& lastLoadLabel)

Load& getLoadWithLabel(String& label)

GeometricManager Messages:

82

J

(

CHAPTER 3. PROJECT: FIDS

ManagerErrors GCMinit()

ManagerErrors GCMclear()

int numberOfGeometricConstraints() const

bool holdsGeometricWithLabel(String& label) const

Manager Errors storeClearSpace(ClearSpace& aClearSpace)

Manager Errors removeClearSpace WithLabel(String& label)

Manager Errors changeClearSpace(String& oldLabel, ClearSpace& newClearSpace)

ClearSpace& getClearSpace WithLabel(String& label) const

ClearSpace& getFirstClearSpace()

ClearSpace& getNextClearSpace(String& lastLabel)

Manager Errors storeOffset (Offset& an Offset)

Manager Errors removeOffset WithKey(String& key)

Manager Errors changeOffset(String& oldKey, Offset& newOffset)

Offset& getOffsetWithKey(String& key) const

int numberOfOffsets() const

LOG& getFirstOffsetLOG()

LOG& getOffsetLOGAfter(String& lastLOGJabel)

Offset& getFirstOffset()

Offset& getNextOffset(String& lastKey)

Manager Errors storeRelPos(RelPos& aRelPos)

Manager Errors removeRelPos Wi thKey(String& key)

Man~er Errors changeRelPos(String& oldKey, RelPos& new RelPos)

RelPos& getRelPosWithKey(String& key) const

RelPos& getFirstRelPos()

RelPos& getN extRelPos(String& last Key)

CONSTANT OBJECTS

None

83

CHAPTER 3. PROJECT: FIDS

Internal External

Generic Frame
PF Interface

i
User Interface

Manager

Figure 3.2: Problem Formulation Interface

3.4 Problem Formulation

Problem Formulation (PF) is the first stage of development in the FIDS simulation,

whereby a user, or other computational front.:.end package, has the ability to modify

the contents of the Generic Frame representation. As shown previously, we have the
'

representation for a Generic Frame's state held in the Manager object which then can

be handed off to a Specific Frame's Problem Development (PD) phase. In Problem

Development, the explicit frame layout and materials are selected that satisfy the

constraints of the problem formulation held in the Manager.

This section will discuss the explicit module called PF used to connect the simu­

lation to a front-end. 11

3.4.1 Interface between Manager and User Interface

As shown in Figure 3.2, the PF interface links the Generic Fra~e Manager to the

User Interface. This channel has a specific and narrow protocol for messages and

objects to be relayed between the internal and external portions of the simulation.

84

CHAPTER 3. PROJECT: FIDS

3.4.2 Stripped Problem Formulation Interface

Since we wish to decouple the compilations of the simulation engine from the front-

end, all messages and objects passed across the interface need to be fundamental
''

I

classes, or classes rooted with a fundamental base class, i.e. no object traveling across

PF is derived from objects in other libraries such as the NIH C++ Class Library or

the InterViews Graphical Library. To accomplish this task, we have created a series

of "fundamental" objects which only represent the current state of the corresponding

abstract class, and contain no functionality, other than constructors. A fundamental

object should be constructible from the following objects:

a nil - to allocate space for the fundamental object

fundamental data arguments - allowing the front-end to create an object from

the user specified state

the corresponding abstract object - allowing the engine to pass the state of an

object to the front-end.

For example, the GridLine class has the following fundamental structure:

class xGridLine {

public:

};

char* label;

OrientType orient;

double distance;

xGridLine(); / / nil constructor

xGridLine(char*, OrientType, double); // fundamental constructor

xGridLine(GridLine&); / / abstract constructor

In addition, the interface must have specific messages to cqnvert the fundamental

object into its related abstract object: 1

85

CHAPTER 3. PROJECT~ FIDS

GridLine& PF: :convertGridLine(xGridLine&);

Note that this function is included in the PF object, and could be a private member

function, since this type of conversion is normally used internally to PF when con­

verting the fundamental object passed in from the front-end to the abstract object

handed off to the internal Manager.

As shown for GridLines, the interface will also handle the conversion of other sim­

ulation '1}ased objects, including the lower-level building blocks of objects (e.g. such as

GenericPoints used for geometric location). Also, all relevant access or modification
'

queries on the Manager should be available from the interface.

As discussed in Section 2.7, the Problem Formulation object contains the two

header files, (1) a complete prototype of all functions, and (2) }he stripped down

version with no library dependencies. Please refer to Appendix E for the complete

header, and Appendix F for the stripped. Comparing these two modules will illustrate

this concept.

86

\

\

Chapter 4

Parallel Simulator

4.1 Overview

ParSim · [2], a simulator for designing parallel algorithms and architectures, is an

interactive tool used for studying the performance of parallel algorithms on various .

parallel architectures. ParSim allows the user to loosely or strictly map the data

flow graph of a static algorithm to an existing parallel topology or a user-created

connectivity. The algorithm then can be simulated until conclusion, and the times of

execution compared. The ParSim definition language allows for diverse specifications

·of the data flow graph and destination parallel architecture. This tool includes so­

phisticated algorithms for automatically generating Connectivity Matrices1 for kn?wn

parallel topologies, and for finding the optimal mapping from a data flow graph.

4.2 Introduction to Parallel Computation

In studying parallel computations, performance is a crucial issue. Deciding which

parallel topology best suits a parallel algorithm class, the critical number of Processing

Elements (PE's) needed in the parallel architecture, or how to optimize an algorithm

for a specific topology, are critical design issues for parallel computations. ParSim was

created as a modular program which allows a user to specify the Data Flow Graphs

1 Connectivity Matrices are discussed in Subsection 4.3.2.

87 -·

.,

CHAPTER 4. PARALLEL SIMULATOR

and realistic Parallel Topologies for static simulations of parallel algorithms.

A Connectivity Matrix holds the interconnection pattern <?f both the data flow

graph and the parallel architecture. ParSim generates connectivity matrices for

topologies given the number of Processing Elements in that architecture. ParSim

then applies the data flow graph to a parallel architecture. This mapping can be

loose (ParSim is free to make all placement decisions), or strict (the user specifies a

set of nodes from the data flow graph that must be placed on specific PE's in the

parallel architecture). Mappings are optimized by having the smallest total sum of

dilations across the links of the data flow graph.

ParSim also incorporates tools for analyzing parallel architectures. ParSim finds

the minimum distance between PE's and proves the correctness by showing the path.

ParSim also finds the Mutual Partition Set of an architecture - namely, the set of all

subsets of PE's of the architecture which are fully connected among themselves.

Users can run ParSim interactively via a menu system, or create a ParSim network

file, to simulate parallel computations. A Parallel Processing Definition Language has

been developed in this research to specify all the needed attributes of the data flow

graph and parallel topology ..

ParSim was originally designed in the Pascal programming language, but ran into

restrictions with its data structures, for example, limiting the number of nodes or

PE's addressable2. In converting ParSim to an object oriented language such as C++,

these constraints no longer exist.

Please note that ParSim models static parallel networks through their connectivity

schemes only.

2 A limit of 256 arises due to the maximum size of a Set in Borland's Turbo Pascal ver. 5.0.

88

CHAPTER 4. PARALLEL SIMULATOR

P(O) P(j) P(n-1) __________ __...

1 if P(i).. ~ P(j) (connects)

P(i) * 0 if P(i)+-11-+- P(j) (no link)

P(n-1) e

Figure 4.1: Connectivity Matrix

4.3 ParSim Engine Description
t.

4.3.1 Activities Menu

Show Arch View a Connectivity Matrix on the screen
Connect Arch Create a C.M. from known connectivities
Read Arch from text file Restore a C.M. from a C.M. File
Write Arch to text file Save a Connectivity Matrix to a C.M. File
Enter unique Arch Create a Connectivity Matrix interactively
Mappings Map a source C.M. to a destination C.M.
Find minimum distances Find the shortest paths between all or some PE's
Mutual Partitions Find all sets of PE's totally connected

Table 4.1: ParSim Activity Menu

Given above are the valid simulation actions in ParSim.3

4.3.2 Connectivity Matrix

A Connectivity Matrix of dimension 'n x n' is shown in Figure 4.1 ..

3Note that C.M. ~ Connectivity Matrix.

89

CHAPTER 4. PARALLEL SIMULATOR

4.3.3 Connectivity Matrix File

A Connectivity Matrix File has the following structure:

Line 1 contains Connectivity Name

Line 2 contains an Integer number of processors

The remaining lines have the following structure:

I: A B C D

where I is a processor connected to P(A), P(B), P(C), and P(D).

Note that since a Connectivity Matrix is obviously symmetric, all symmetric

connections are automatically included. Also, the diagonal entries are all '1' since

P(X) ~ P(X). ·

4.3.4 A Sample Connectivity Matrix File

Linear Array

4

0: 0 1

1: 0 1 2

2: 1 2 3

3: 2 3

yields the following connectivity matrix:

II 0 1 2 3

0 1 1 0 0

1 1 1 1 0

2 0 1 1 1

3 0 0 1 1

Th~ connectivity of a Linear Array with four processing elements is given in Figure 4.2.

90

I'

CHAPTER 4. PARALLEL SIMULATOR·

. Figure 4.2: Linear Array with 4 PE's

4.3.5 Topologies of Connectivity Networks

Topologies of Connectivity Networks that can be algorithmically generated by Par­

Sim, given the number of PE's, are provided in Table 4.2.

I ArchNum I Connectivity I P(i) {::::} P(j) if:

1 Linear Array P(i) next to P(j) numerically

2 Ring P(i) and P(j) next to each other modulus n

3 Star All PE's connected to P(O)

4 Binary Tree Single Rooted Binary Tree

5 Illiac Mesh Wrap-around mesh with dimension 4

6 Cylindrical Systolic Array

7 Completely Connected All PE's connected to All other PE's

8 Chordal Ring Ring w / added connections of chords = {n
9 HyperCube (i EB j) = 1
10 Barrel Shifter j = i ± 2K mod n

11 ±1, ±3, ±5 Ring Chordal ring w / odd near-nbr connections

Table 4.2: Algorithmically generatable topologies

4.4 Algorithms used in ParSim

The following section discusses the algorithms which have been written for and incor­

porated into ParSim. These routines include the creating a connectivity matrix, map­

ping a data flow specification to a given parallel architecture, finding the minimum

distances and paths between processing elements, and finding the mutual partition

set of an architecture.

4.4.1 Runtime Creation of a ·Connectivity Matrix

This program has two basic algorithms for defining the Connectivity Matrix:

91

~ .
. ,

/'

CHAPTER 4. PARALLEL SIMULATOR

Brute ·Force,_ lJ.se the criterion given in Table 4.2 for determining connectivity at

every node. This method is useful when no regular pattern can be seen in the

Connectivity Matrix.

Connect and Rotate - Because of $ymmetry in the connectivity, only the connec­

tions to P(O) are computed in the first phase. For every remaining PE, the row

above in the Connectivity Matrix is carried down and shifted once to the right.

(i.e. P(i) --+ P(i+ 1)) but no wrap around occurs; in fact, P(O) ~ P(j),

i.e. checking to see if P(O) connects to P(j), is the only PE test computed for

each row.

The following topologies take advantage of the Connect and Rotate algorithm

in· their generation:

• Linear Array,

• Ring,

• Illiac Mesh,

• Chordal Ring,

• Barrel Shifter, and

• ±1, ±3, ±5 Chordal Ring.

4.4.2 Mapping Algorithm

A greedy algorithm for mapping the given data flow structure into a connectivity

architecture is impJemented. All pre-decided mapping constraints are set first, then

all remaining nodes try to get mapped to all permutations of remaining PE's making

sure that any links between two of these such nodes has dilation 1 in the mapped

structure. As soon as the algorithm finds one mapping that fits the criteria, the

process is over. Otherwise, the mapping routine recursively calls itself with more

PE's available to be mapped to.

92

- L

CHAPTER 4. PARALLEL SIMULATOR

. \

4.4.3 Finding the Minimum Distance/Paths between two

PE's,

The searchin~. algorithm contains two passes:

• On the first pass, ALL unique connectivity paths between P(i) and P(j) are

located, and the smallest path distance is stored.

• On the second pass, (if all the paths of minimum distance are required) a search

identical to the first pass takes place, but this pass prints out the necessary

distinct paths.

The recursive algorithm to find the distance and path from P(i) to P(j) starts

with a set containing i and all the processors connected to i. If j is in the set, then

it is fin_ished with that path. Otherwise, a loop through every element in this first

set is initiated, and with each PE pointed to, the union of its connection set with

the first set is individually found. If the new set is equivalent to the first set, a dead

end in the path has occurred. If the new set is larger, it gets sent into this algorithm

recursively.

4.4.4 Mutual Partitions

Mutual Partitions are subsets of the architecture which are fully connected.

For example, in the following Connectivity Matrix:

II o 1 2 3

0 1 0 1 1

1 0 1 0 1

2 1 0 1 1

3 1 1 1 1

the mutual partitions are: {(0,2,3), (0,2), (0,3), (1,3), (2,3)}.

The algorithm used to find the mutual partitions takes the Connectivity Matrix

row by ~ow and creates a possibility set by putting each index of a '1' to the right of

93

·· CHAPTER 4. PARALLEL SIMULATOR

the diagonal in a set. (Since the Connectivity Matrix is symmetric, this will eliminate

duplication by finding all partitions containing P(O), then all containing P.(1). but not

P(O), then all containing P(2) but not P(l) nor P(O), etc ..) Now ~ach row possibility

set cannot· contain PE 's numbered less than the current row. Therefore, we will find

all of P'(O)'s subsets, then P(l)'s, etc. All subsets of the possibility set are created by

counting in binary with a string the length of the cardinality of the set and masking

that with the ~et. Each subset is then checked for the mutual property, namely, that

ali PE's present are directly connected.

4.5 General Execution Steps of Simulation

The following is the order of events in a ParSim simulation:

1. Input user's network

2. Create a model and define/ determine parameters, modes, etc.

3. Map model into structure

4. Run simulation in time increments

4.5.1 Example of Data Flow Simulation

An example run of ParSim, consisting of data flow and topology, is shown in Fig­

ure 4.3.

94

' CHAPTER 4. PARALLEL SIMULATOR

11

14 (200)

15 , (50)

Figure 4.3: Example Data Flow Network

95

CHAPTER 4. PARALLEL SIMULATOR

* Example Network Description File

Ni 3 C

N2 s C

N3 7 s
N4 10 C

NS s s
N6 10 C

Li N2 N3 100 2 3 can be used instead of N2 N3 here

L2 Ni N3 300

L3 N3 NS 200

L4 N4 NS 200

LS NS N6 50

.MAP

Ni P3

N3 P7

N4 PS

N6 Pi

.map end

.linkwts auto

.arch 5 8 Illiac Mesh with 8 PE's

.END

96

· CHAPTER 4. PARALLEL SIMULATOR

NETSIM Log File for example.net

Run Date: 4-10-1990

Run Time: 21:02:28.68

1 * Example Network Description File

2

3 Ni 3 C

4 N2 5 C

5 N3 7 s
6 N4 10 C

7 NS 5 s
8 N6 10 C

9 11 N2 N3 100 2 3 can be used ...

10 12 N1 N3 300

11 13 N3 NS 200

12 14 N4 NS 200

13 15 NS N6 50

14 .MAP

15 N1 P3

16 N3 P7

17 N4 PS

18 N6 P1

19 .map end

20 .linkwts auto

21 .arch 5 8 Illiac Mesh with 8 PE's

22 .END

97

I

CHAPTER4. PARALLELSIMULATOR

Mapping

Source Arch:

Example Network Description Network with 6 processors

connectivity map:

p 0 101000

p 1 011000

p 2 111010

p 3 000110

p 4 001111

p s 000011

Dest Arch:

Illiac Mesh Network with 8 processors connectiv~ty map:

p 0 11010101

p 1 11101010

p 2 01110101

p 3 10111010

p 4 01011101

p s 10101110

p 6 01010111

p 7 10101011

Ni mapped to P3

N2 mapped to PO

N3 mapped to P7
r

N4 mapped to PS

NS mapped to P2

N6 mapped to Pi

98

CHAPTER 4. PARALLEL SIMULATOR

*** Link Weights*** ·

Li from N2 to N3 [wt: 1]

L2 from Ni to N3 [wt: 2]

L3 from N3 to N5 [wt: 1]

L4 from N4 to N5 [wt: 1]

L5 from NS to N6 [wt: 1]

(

99

CHAPTER 4. PARALLEL SIMULATOR

4.6 Controller Object

The Controller object is the representation of a manager in a parallel computation

simulation. The controller is responsible for the promotion through the simulation

steps outlined in Section 4.5.

The controller must first parse an input file, which might be from standard input

(the keyboard), containing the user's representation of the Data Flow network repre­

senting the static algorithm to be simulated. Appendix G contains the reference list

of directives available in the ParSim Definition Language. A DataFlow object

is thus constructed and represents all aspects of the input. This DataFlow object

contains a connectivity matrix with Node objects at each index, and Link objects

created for '1' that would appear in the matrix.

The controller also holds an Architecture object, representing the physical con­

nectivity network of PE's to which the DataFlow object has been applied.

Other responsibilities of the controller are:

• Hold statistics for the simulation, such as the goodness of fit of the mapping,

simulation mode states specified by the user, a time counter, the current state

of modeling and simulation, etc.

, Orchestrate the Mapping from the DataFlow object to the Architecture object

• Perform the analysis algorithms listed in Section 4.4

• Maintain a global clock and watch over the simulation, and report the results

when the algorithm has run to completion.
,,,.

• Report any errors encountered in the simulation

4.7 Nodes

A Node object represents a computational node in the data fl.ow graph of the algo­

rithm. A Node has label a~d holds a computation time for one block of data. The

100

CHAPTER4. PARALLELSIMULATOR

Node may either operat.e in the "Compute first, then transmit results" mode, or the

"Simult3'.neous computation and transmission" mode.

A Node maintains a queue for the Message packets which are incoming or outgoing,

and processes them as the time counter allows.

The Node also has a reference to the processing element it will be directly mapped
..

to in the architecture, so that at simulation time, a quick cross-reference between

algorithm and architecture may take place.

t 4.8 Links

The Link object represents the connections between nodes of the data flow graph. A

Link has a unique label and holds a Units measurement, representing the capacity

of this Link. A Link holds the Node labels for the two Node objects which are at its

origination and destination. A multiplier, called Weight, for a Link represents the

time delay factor a Message will have when traveling across this path.

Normally, the Weight is a measure of the dilation of a Link after the algorithm has

been mapped to a real network topology. For example, a Weight of '1' implies that the

nodes at the endpoints of a Link are directly connected in the associated architecture.

A Weight of '2' implies that there is one intermediate processing element along the

path of this link, and appropriate message passing techniques must be employed, with

the overhead time delays calculated in the analysis as well.

4.9 Message

A Message object is a token for a block of data which occupies computational time

in a Node, and then must be transmitted down the Link in the computational graph.

Messages may be of any size and are queued at the input and output of Nodes.

Messages are transferred between the Nodes by Links, but only when the resources

are available. A Message-knows how long it has been i~ the system, its Node of origin,

and Node of destination.

101

CHAPTER 4. PARALLEL SIMULATOR

4.10 Architecture

The Architecture object is another connectivity matrix, with processing elements

along the diagonal, numbered according to the diagonal index, and connections in the

matrix where PE's connect. The architecture may be constructed on. an index from

Table 4.2, and the number of PE's for that instance of a topology.

4.11 Mapper

The Mapper object participates with the Controller by accepting the DataFlow

and Architecture objects and creating the optimal mapping, as explained in Subsec­

tion 4.4.2.

4.12 Conclusions

By taking advantage of object oriented techniques, a parallel processing simulation

is easily decomposed into functional objects. A distinction is made between the

original entities represented in the description of the static algorithm and the physical

elements and connections of the architecture. By doing this, a controller may keep

employing the mapper to overlay the algorithm on several architectures, or even a

single architecture of various dimensionalities.

Analyzing these results will prove useful for finding the best architectures for cer­

tain classes of parallel processing algorithms, without having any parallel hardwares

available. The computational times are normalized to unit blocks of data, and a unit

time clock, which may be manipulated for the different simulation runs.

The front-end for ParSim bears no effect on the actual simulation engine described

in this chapter. Refer to Chapter 5 for an outline of the techniques needed when

designing a graphical user interface for the ParSim package.

102

Chapter 5

User Interface

As explained in Section 2.7, a user normally wishes to inspect the current state of an

object oriented simulation through a concise and accurate graphical front-end. This

Graphical User Interface (GUI) is the user's view to the internal representation.

The GUI must dynamically 9hange as the user progresses through the simulation;

from formulating the problem to developing the solutions.

The GUI has the task of controlling the flow of events in the simulation. Every

user action, such as a mouse click or key stroke, directly associates with either a

function call to the internal manager or a modification of the view. This chapter will

discuss the basic properties of this user interface.

In the FIDS simulation, the InterViews Graphical Library [23] was used to imple­

ment the GUI. However, any package or library of routines for displaying graphics on

the screen and interacting with a user may be a sufficient starting point for the GUI.

5.1 Accessing the interface

When interacting with the manager, the front-end, or GUI, must follow the protocol,

as outlined in Section 3.4, concerning the interface between the internal and external

modules.

In the FIDS Project, the GUI maintains the top level control of the simulation.

The reason that we place this responsibility on the GUI is to enable the user to control

103

CHAPTER 5. USER INTERFACE

the simulation. The simulation sits idle until the user triggers an action through an

event, such as placing the mouse at a location, clicking a button, or stroking a key.

The GUI must have access to the manager via the interface. From a systems point

of view, the GUI holds an instance of the interface, which in turn, holds an instance

of the manager. All messages travel across this interface. Thus, the interface has full

control over its instance of the manager, while the GUI calls the appropriate interface

messages to accomplish its tasks. The interface should have an function available

for every action required by the GUI. For example, if the user wishes to refresh the

display, the GUI then asks the .interface for the objects that the manager is holding,

object by object, displaying the graphical representation for each object as it goes,

until no more are left. When the manager has returned the last, it will pass a flag to

the interface denoting that the end has been reached.

The GUI is responsible for telling the interface that a new simulation is about

to be created, and that the manager should be initialized. Then when a user asks

the GUI to construct a new entity for that simulation, the GUI will popup a form

with the object's state variables, allowing the user to make any necessary changes

in the description. From this information, the GUI will call the object constructor

ass·ociated with the given entity, as described in Subsection 3.4.2. This new object

is then handed over to the interface with as an argument in the function call to add

or modify an object in the manager. The GUI normally will hold only the key, as

described in Subsection 2.5.2, to refer back to that object once it has been entered

into the manager. By using the key and the interface query functions, the GUI will

have access to sufficient geometrical information for representing the object on the

display.

5.2 Layout of workspace

The workspace needs to adapt to the current state of the simulation. The majority

of the space will hold the graphical representation of the problem. Along the top

border, pulldown menus for requesting a service are placed, and the right border

will allow toggle buttons representing the state of various objects to be drawn, such

104

CHAPTER 5. USER INTERFACE

Figure 5.1: FIDS-GUI File Menu

as an orientation toggle for GridLines, Offsets, and Relative Positions in the FIDS

simulation. Also, exact simulation coordinates of the mouse's current location should

be available. The workspace should have slider bars, or a panner, and zoom factors

for inspecting large projects.

The workspace for a simulation is initially clear. The user may pull down the

various menus, such as a File menu, shown in Figure 5J, to store, retrieve, and

refresh the objects, or a Tools menu, shown in Figure 5.2, to create an entity of

a given class, select an entity on the display (and possibly modify it), remove an

entity, or move an entity to a new location.

When an entity is created or selected, a popup form for that class appears on

the display, showing all the state variables which may be altered by the user. A

GridLine object is shown in Figure 5.3, a RelativePosition in Figure 5.5, an Offset

in Figure 5.6, a ClearSpace in Figure 5.7, a DistributedLoad in Figure 5.8, and a

PointLoad in Figure 5.9. The user also has the choice of accepting the changes,

canceling the form, or removing the object from the simulation. After this object has

105

CHAPTER 5. USER INTERFACE

j 1 I I 1 1 I : :

01 Po!nti.o~:
O: DistribOU!d Loatl • • •
: : : : '. : : .

0: : Clears • ace : : : : : : p:.
: : : . : . . : . .

~) Offset (Dimction] •

•: : ;

bReiative.Pos. Direction•

® GridUne (i>lrecti~n J •

()Move
i: :
bRemove

()Select
((: ..

~· .·

~ .. i ... :...:. •. : : ... : .. :...T :fJ

Figure 5.2: FIDS-GUI Activity /Tools Menu

been constructed and passed to the interface, the manager might find an inconsistency

and return an error flag accordingly, alerting the GUI to pop up a window with the

corresponding error message. An example of this is given in Figure 5.4, where the

user has attempted to store a grid line with a label identical to the label of a grid

line already held in the Manager. The user then must acknowledge the error response

before continuing. The system then allows the user to fix any errors specified on the
, ..

popup form.

106 ..

CHAPTER 5. USER INTERFACE

. . .

()ffsel • ('*'8!:lfiln]

Direction

Figure 5.3: FIDS-GUI GridLine Form

107

x:024213 ·
y: O.Z32443 •

. . ' .

.

Gr1ilr.inli: Horizontal

Offset: Horlzontol
Roi Fosi Hintzontal

CHAPTER 5. USER INTERFACE

- .
P®'i.Mfft.@MW.W.NiJ.@JAMt.MW.Mf&.W&.rtitJ.W@NiMJ.@ffliWJ.Wi!W@MirillMWW.M.f.Uffirtht.iMfarill¥.&W@@f(@¥.@t.W.Wffi.@JJ.@@@iMW.Mt.tYffi.MJ.@.W.¥.t.M(£l!i@f.t.
Aki Etlt Tooll • . • •
. . .

I

•

:Grli!Uiie.

[Ouplcate Label •

• • •

• ·iu.@PJ.ffilt!BW.JB@f
.

O l'olntl.oad
•·

b illlitributed tiJad
i' . •
O aearspace ·

b Offset : (Direction J

b RelaUve l'lls [Direction

~ GrldUne (DIJ'ectm]
Jt----,-,.-,----------,------,----,--f; •t-..,.,.--,---,--t•

[Grld_1 !

'.iOKl
Qt,Ccive

OReinove

.... ---......... -------------------------~-------~·oselect -
·~ . -·································'

Figure 5.4: FIDS-GUI Duplicate Label Error Window

108

.
~: Q,21;8$6$
y: 0.304)98

Gr1d~e; l!ortzoo~

Of(set: Holtzonlal

Rel Pos: Horllontal

(Rx/Rel) Position : RelaUve

CHAPTER 5. USER INTERFACE

,w JWMWP¥W&WJW@if&it4M@iillfilf4,Y;0WYrlU1iliNMMf®iiiillffili¥1WW&#~Wfilllfi¥¥il@@1W.ffift&~llillf®l:&lM$&f1@&&WllM~mmwiwu&ilffffjb
FIie • Edit: Tool!I

Gr1d1 surlace -•
. .
GrldZ surlace a>

Figure 5.5: FIDS-GUI Relative Position Form

109

M: 0.226244 •
y: 0.333963

i;,timne: \ierlJcal

Offset: Horizontal·

Rei l'os: Hortzonlal

(Ric/Rel] Poslllon : Relallva

Offset (Dt111clloh)

Relative Pos . (Dl111i:Uon ~ •
GrldUne (Dlrectlori] . •

CHAPTER 5. USER INTERFACE

.

• x: 0.4411529 •
• y: 0,11i5267

• Grtdl..i111: Vertlciil
. . .

oriset: Horizontal
. . .

Rel Pils: Hortzolltal •

(fqc~] l'osltlon: f!ehltlva

'I

.Ol)ls~L.oad

0 orrset (Dnctlon l i
• RefaUVe Fos · (Dlmctlon j •

. : ' .. :·

~: ..

Figure 5.6: FIDS-GUI Offset Form

110

CHAPTER 5. USER INTERFACE

::;i&'JlPWWWWffiW%MiW4lf#@filif.@¥1MMWWW!11MiiiW%0MllWfJlfiW.Jm@mmn[l@fiHf#NllMW&tMif#MimWMf$filWJillffilliMfilllMllMllWJ&NllMWJMMmMf
Fila • Edit Toi>ls

.,

Figure 5.7: FIDS-GUI ClearSpace Form

111

x: 0.359163
y: 0.056870

Gr1dl.ln8: Vet1lcal
Offset: Hortzonlal

Rel Fils: Horizontal

(Fix/Rel) PoslUon : Relative

• :0 Distributed l.Qail

• !<)OearSpace

k) Off Set (Dlnlctloo l

·CHAPTER 5. USER INTERFACE

Figure 5.8: FIDS-GUI Distributed Load Form

112

ii: o.JZ3iiz9 ·
y: iJ.417939 •

Grldline: VertJcaJ

Offsal: Horlmntal

Rei Piis: Horizontal

(Fix/Rel J PoslUiln : RalaUve

· b Offset (Dll9ctlm]

f llelaUite Pas (Direction }

(Qncllon l

............................. ,;

CHAPTER 5. USER INTERFACE

SUrface Type -•

Fixed/Rel ->

left

:relative

Figure 5.9: FIDS-GUI Point Load Form

113

x: 0.382353
y: 0.266031

Grldl..lne: Verik:al

Offset: Horizontal

Rel Plls: Hortzonlal

J

...J

CHAPTER 5. USER INTERFACE

5.3 Getting input from user

The user has control over the GUI through the mouse and keyboard. The mouse

has the capability of selecting a location on the display, dragging a selection bar on

a pulldown menu, highlighting text, etc. The keyboard should be able to mimic the

same functions available to ~he mouse. Obviously the mouse will be a lot less tedious

to use. In addition, the keyboard is also used for entering numbers and filling in

labels for objects .

114

Chapter 6

Conclusions

In this thesis, I have discussed important aspects of designing an object oriented simu­

lation; from the simulation engine to the front-end user interface. From the examples

in two engineering disciplines, namely, structural design and parallel processing, one

can readily see that the techniques outlined here apply to a variety of such systems.

Object priented programming allows modular libraries to be constructed, and then

used by packages needing similar designs. The decomposition of a simulation into

objects and managers also becomes fairly straightforward after learning the concepts

of abstract object construction.

The Framework for Integrated Design System, which is a prototype structural

design analysis system, shows the usefulness of the object oriented approach. With

the aid of object libraries, the design of this simulation has been developed. In essence, .

one strives to create a simulation in the problem domain, theoretically distancing the

engineer from the low level computer programming layer.

The FIDS package has been designed for future expansion. The front-end of an

object oriented simulation system may be modular. Conceptually, and in actuality,

one)nay easily unplug the current GUI of the FIDS, and replace it with an improved

GUI, or some other input/output device not yet realized. For an example, Virtual

Reality GUI's [21] are currently being researched and developed where a user is

attached to a simulation via body sensors, and a helmet with three dimensional

graphical perspectives.

115

--,

CHAPTER 6. CONCLUSIONS

This thesis decomposes the ParSim parallel processing simulator into an object

oriented simulation. Computer engineering researchers have found ParSim to be

useful in determining parallel computation statistics for static algorithms. Because

of object oriented design, the simulation is open for future enhancements, such as'

replacing the existing.Node object with.one that can simulate more detailed processing

capabilities, or allowing dynamic algorithm simulation.

One feature of object oriented decomposition of a simulation is that as computer

platforms are changed, minimal work is needed to re-create the simulation package.

The language of C++ is in the process of being standardized, so that porting, or

transferring, the code between platforms, or to a new release of the language and/ or

operating system, will only cause minor changes, e.g., merely changing the compiler

options at compile time.

The C++ hierarchical class and graphical libraries are young, as is the language of

C++. With time, more complete and coherent documentation will become available.

Debugging software packages will move towards a more integrated environment, al­

lowing more informative error detection schemes, and possibly autmnatic correction

of these mistakes. Also, dedicated compilers and linkers for object oriented languages

(rather than front-end translators) will be developed. For example, the standard C

programming language preprocessor, compiler, and linker is currently used to· create

C++ executable code on most workstation platforms. The development of dedicated

compilers and linkers will mean faster running applications, as well as quicker design

time, since intelligent compilations with dependency information will be performed.

Future work needs to be done in using multiple libraries in one package. Although

this thesis describes a method for creating an interface which decouples libraries at

compile time, a better approach needs to be found which would allow objects in

libraries to be used interchangeably.

Object oriented systems are shown to be beneficial and are quickly becoming the

preferred method of designing large packages. The future task of software engineers

will be to create the basic object libraries necessary for implementing. any common

application.

116

Appendix A

The NIH c++ Class Library

Hierarchy

Version 3.0 of the NIH Class Library [14, Appendix A] contains the following classes:

NIHCL---Library Static Member Variables and Functions

Object~--Root of the NIH Class Library Inheritance Tree

Bitset---Set of Small Integers (like Pascal's type Set)

Class---Class Descriptor
Collection---Abstract Class for Collections

Arraychar---Byte Array
ArrayOb---Array of Object Pointers
Bag---Unordered Collection of Objects
SeqCltn---Abstract Class for Ordered, Indexed Collections

Heap---Min-Max Heap of Object Pointers
LinkedList---Singly-Linked List
OrderedCltn---Ordered Collection of Object Pointers

SortedCltn---Sorted Collection
l KeySortCltn---Keyed Sorted Collection

Stack---Stack of Object Pointers
Set---Unordered Collection of Non-Duplicate Objects

Dictionary---Set of Associat~ons
IdentDict---Dictionary Keyed by Object Address

IdentSet---Set Keyed by Object Address
Date-~-Gregorian Calendar Date
FDSet---Set of File Descriptors for Use with

select(2) System Call

117

APPENDIX A. THE NIH C++ CLASS LIBRARY HIERARCHY

Float---Floating Point Number
Fraction---Rational Arithmetic
Integer---Integer. Number Object
Iterator---Collection Iterator
Link---Abstract Class for LinkedList Links

LinkOb---Link Containing Object Pointer
Process---Co-routine Process Object

HeapProc---Process with Stack in Free Store
StackProc---Process with Stack on main() Stack

LookupKey---Abstract Class for Dictionary Associations
A~soc---Association of Object Pointers
Assocint---Association of Object Pointer with Integer

Nil---The Nil Object
Point---X-Y Coordinate Pair
Random---Random Number Generator
Range---Range of Integers
Rectangle---Rectangle Object
Scheduler---Co-routine Process Scheduler
Semaphore---Process Synchronization
SharedQueue---Shared Queue of Objects
String---Character String

Regex---Regular Expression
Time---Time of Day
Vector---Abstract Class for Vectors

BitVec---Bit Vector
ByteVec---Byte Vector
ShortVec---Short Integer Vector
IntVec---Integer Vector
LongVec---Long Integer Vector
FloatVec---Floating Point Vector
DoubleVec---Double-Precision Floating Point Vector

118

APPENDIX A. THE NIH C++ CLASS LIBRARY HIERARCHY

OIOifd---File·oescriptor Object I/0 readFrom() Formatting
OI0in---Abstract Class for Object I/0.readFrom() Formatting

OI0istream---Abstract Class for Stream Object I/0 readFrom()
Formatting

OIOnihin---Stream Object I/0 readFrom() Formatting
OIOofd---File Descriptor Object I/0 storeOn() Formatting
OIOout---Abstract Class for Object I/0 storeOn() Formatting

OIOostream---Abstract Class for Stream Object I/0 storeOn()
Formatting

/

OIDnihout---Stream Object !/0 storeOn() Formatting
ReadFromTbl---Tables used by Object I/0 readFrom()
StoreOnTbl---Tables used by Object I/0 storeOn()

119

Appendix B

The NIH c++ Collections

This Appendix is comprised of comments taken from the NIH Class Library Imple­

mentations [13].

Collection---Abstract Class for Collections

Arraychar---Byte Array

ArrayOb---Array of Object Pointers

Bag---Unordered Collection of Objects

SeqCltn---Abstract Class for Ordered, Indexed Collections

Heap---Min-Max Heap of Object Pointers

LinkedList---Singly-Linked List

OrderedCltn---Ordered Collection of Object Pointers

SortedCltn---Sorted Collection

KeySortCltn---Keyed Sorted Collection

Stack---Stack of Object Pointers

Set---Unordered Collection of Non-Duplicate Objects

Dictionary---Set of Associations

IdentDict---Dictionary Keyed by Object Address

IdentSet---Set Keyed by Object Address

120
J

APPENDIX B. THE NIH C++ COLLECTIONS

Collection.c - implementation of abstract Collection class

Collection is an_ abstract class that actually implements only the addAll, removeAll,
,.

includes, isEmpty, and Collection conversion functions. Note that the functions Col-

lection::asBag, asOrderedCltn, asSet, and asSortedCltn are defined in the file that

implements the respective target Collection so that all of these classes are not loaded

whenever any one Collection is used.

ArrayOb.c - member functions of class ArrayOb

Member function definitions for class ArrayOb (Array of Object*). Objects of class

ArrayOb are used in the implementations of several other Collection classes such as:

Bag, Dictionary, Set, and OrderedCltn. Note that the ArrayOb constructor initializes

the array with pointers to the nil object.

Bag.c - implementation of a Set of Objects with possible duplicates

A Bag is like a Set, except Bags can contain multiple occurrences of equal objects.

Bags are implemented by using a Dictionary to associate each object in the Bag with

its number of occurrences.

SeqCltn.c - implementation of abstract sequential collections

SeqCltn is an abstract class representing collections whose elements are ordered and

are externally named by integer indices.

Heap.c - implementation of abstract Heap class

The Min-Max Heap is implemented as described by Atkinson, Sack, Santoro, and

Strothotte (1986). Objects may be added; the min or max may be accessed with first()

or last(), respectively, or removed with removeFirst() or removeLast(), respectively.

121

APPENDIX B. THE NIH- C++ COLLECTIONS

LinkedList.c - implementation of singly-linked list

. LinkedLists are ordered by the sequence in which objects are added and removed

from them. Object elements are accessible by index.

OrderedCltn.c - implementation of abstract ordered collections

OrderedCltns are ordered by the sequence in which objects are added and removed

from them. Object elements are accessible by index.

SortedCltn.c - implementation of sorted collection

A SortedCltn is a Collection of objects ordered as defined by the virtual function

"compare", which the objects must implement. The "add" function locates the po­

sition at which to insert the object by performing a binary search, then invokes the

private function "OrderedCltn::addAtlndex" to insert the object after shifting up all

the objects after it in the array; therefore, a SortedCltn is not efficient for a large

number of objects.

Stack.c - implementation of class Stack

Member function definitions for class Stack.

Set.c - implemenation of hash tables

A Set is an unordered collection of objects in which no object is duplicated. Duplicate

objects are defined by the function isEqual. Sets are implemented using a hash table.

The capacity() function returns the 1 /2 the capacity of the hash table and the size()

function returns the number of objects currently in the Set. For efficiency, the capacity

is always a power of two and is doubled whenever the table becomes half full.

Dictionary.c - implementation of Set of Associations

A Dictionary is a Set of Associations. A Dictionary returns the value of an association

given its key.

122

APPENDIX B. THE NIH C++ COLLECTIONS

ldentDict.c - implementation of Identifier Dictionary

An IdentDict is like a Dictionary, except keys are compared using isSame() rather
'

than isEqual().

ldentSet.c - implementation of Identity Set.

An IdentSet is like a Set, except keys are compared using isSame() rather than isE­

qual().

LookupKey.c - implementation of Dictionary LookupKey

LookupKey is an abstract class for managing the key object of an Assoc. It is used

to implement class Dictionary.

Assoc.c - implementation of key-value association

Objects of class Assoc associate a key object with a value object. They are used to
'

implement Dictionaries, which are Sets of Associations.

Assoclnt.c - implementation of key-Integer association

Objects of class Assoclnt associate a key object with an Integer value object. They

are used to implement Bags, which use a Dictionary to associate objects with their

occurrence counts.

123

Appendix C

NIH Template header file

#ifndef THIS_CLASS_H
#define THIS_CLASS_H

/*$Header: ... *I

I* Template.h -- example header file for an NIH Library class

THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A
"UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE

·AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT
CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE
PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO
RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY.

Author:
K. E. Gorlen
Computer Systems Laboratory, DCRT
National Institutes of Health
Bethesda, MD 20892

Modification History:

$Log: Template_h,v $
Revision 3.0 90/05/20 00:21:43 kgorlen
Release for 1st edition.

124

APPENDIX C. NIH TEMPLATE HEADER FILE

// Define "MI" if this class uses multiple inheritance:
//#ifndef MI
//#define MI
//#endif

#include 11 BASE_CLASS.h 11

// #include .h files for other classes used
// Insert only class declarations for classes accessed
// by pointer and reference ONLY

// If BASE_CLASS is Object:
// class THIS_CLASS: public VIRTUAL Object {

class THIS_CLASS: public BASE_CLASS {
DECLARE_MEMBERS(THIS_CLASS);
// member variables here
protected: // sto~er() functions for object I/0
virtual void storer(OI0ofd&) const;
v.irtual void storer(OIOout&) const;
public:
bool operator==(const THIS_CLASS&) const;
bool operator!=(const THIS_CLASS& a) const
{ return !(*this==a); }
virtual int compare(const Object&) const;
virtual Object* copy() const; // shallowCopy() default

virtual void deepenShallowCopy();
virtual unsigned hash() const;
virtual bool isEqual(const Object&) const;
virtual void printOn(ostream& strm =cout) const;
virtual const Class* species() const;
};

#endif

125

// if not defined

Appendix D

NIH Template implementation file

I* Template.c -- example implementation of an NIH Library class

THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A
"UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE
AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT
CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE
PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO
RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY.

Author:
K. E. Gorlen

1Bg. 12A, Rm. 2033
Computer Systems Laboratory
Division of Computer Research and Technology
National Institutes of Health
Bethesda, Maryland 20892
Phone: (301) 496-1111
uucp: uunet!nih-csl!kgorlen
Internet: kgorlen©alw.nih.gov
February, 1987

Function:

Modification History:

$Log: Template_c,v $

126

APPENDIX D. NIH TEMPLATE IMPLEMENTATION FILE

Revision 3.0 90/05120 00:21:40 kgorleri
Release for 1st edition.

*I

#include "THIS_CLASS.h"
#include "nihclIO.h"
II #include .h files for other classes used

#define THIS THIS_CLASS
II Define BASE only for classes with one base class
#define BASE BASE_CLASS
II Define list of addresses of descriptors of all base classes:
#define BASE_CLASSES BASE: :desc()
II Define list of addresses of descriptors of all member classes:
#define MEMBER_CLASSES
II Define list of addresses of descriptors of all virtual base
II classes:
#define VIRTUAL_BASE_CLASSES

DEFINE_CLASS(THIS_CLASS,1, "$Header: ... ",NULL,NULL);
II For abstract classes:
IIDEFINE_ABSTRACT_CLASS(THIS_CLASS,1," ... ",NULL,NULL);
II For non-abstract classes with multiple base classes:
IIDEFINE_CLASS_MI(THIS_CLASS,1," ... ",NULL,NULL);
II For abstract classes with multiple base classes:
IIDEFINE_ABSTRACT_CLASS_MI(THIS_CLASS,1," ... 11 ,NULL,NULL);

extern const int// error codes

I* _castdown() for classes with multiple base classes:

void* THIS_CLASS: :_castdown(const Class& target) const
II (Probably a good candidate for memorization.)
{

if (&target== desc()) return (void*)this;
void* p = BASE1: :_castdown(target);
void* q = p;_
if (p = BASE2: :_castdown(target)) ambigCheck(p,q, target);
II
if (p = BASEn::_castdown(target)) ambigCheck(p,q,target);

127

APPENDIX D. NIH TEMPLATE IMPLEMENTATION FILE

return q;
}

bool THIS_CLASS: :operator==(const THIS_CLASS& a) const
// Test two instances of THIS_CLASS for equality
{

}

const Class* THIS_CLASS: :species() const
// Return a pointer to the descriptor of the species of this class
{

return &classDesc;
}

bool THIS_CLASS: :isEqual(const Object& p) const
// Test two objects for equality
{

return p.isSpecies(classDesc) && *this==castdown(p);
}

unsigned THIS_CLASS: :hash() const
// If two objects are equal (i.e., isEqual) they must have
// the same hash
{
}

int THIS_CLASS::compare(const Object& p) const
II Compare two objects. If *this> p return >O,
II *this== p return 0, and if *this< p return <O.
{

assertArgSpecies(p,classDesc,"compare");
}

void THIS_CLASS: :deepenShallowCopy()
// Called by deepCopy() to convert a shallow copy to a deep copy.
// deepCopy() makes the shallow copy by calling the copy
II constructor.
{

I*

128

APPENDIX D. NIH TEMPLATE IMPLEMENTATION FILE

Deepen base classes in order specified in class declaration.

Deepen virtual base classes (VBase):
VBase: :deepenVBase(); // do not do this for class Object

Deepen non-virtual base classes (BASE):
BASE: :deepenShallowCopy(); // do not do this for class Object

Nothing need be done for member variables that are fundamental
types. Copy a member variable o that is an NIHCL object:
o.deepenShallowCopy();

Copy a member variable p that 1s a pointer to an NIHCL object of
class CLASS:
p = (CLASS*)p->deepCopy();
*I

(J }

void THIS_CLASS: :printOn(ostream& strm) canst
// Print this object on an ostream
{

}

// Object I/0

I*
Member class instances are constructed in the order they are
declared in the class declaration, regardless of the order they
appear in the constructor initialization list, so they must be
stored in this order. Note that member class instances are
constructed before body of constructor is executed.

*I

// Construct an object from OI0in "strm".
THIS_CLASS::THIS_CLASS(OIOin& strm)

#ifdef MI
Object(strm),
#endif
I*
Call readFrom() constructors of all ancestor virtual base classes:

129

APPENDIX D. NIH TEMPLATE IMPLEMENTATION FILE

VBase(strm),
*I
BASE(strm)
I*
Read a member variable o that is an instance of an NIHCL class:
o(strm)
{

Read a member variable f that 1s a fundamental type using ">>":
strm >> f;

Read a member variable p that 1s a pointer to an instance of
the NIHCL class CLASS:
p = CLASS: :readFrom(strm);

Read member variables in the same order that they are stored.
*I
}

void THIS_CLASS: :storer(OIOout& strm) const
// Store the member variables of this object on OIOout "strm".
{

I*
Store virtual base classes (VBase) 1n inheritance DAG order:
VBase: :storeVBaseDn(strm);

Store non-virtual base classes in order specified 1n class
declaration:
BASE: :storer(strm);

Store a member variable f that 1s a fundamental type using 11 << 11
:

strm << f;

Store a member variable o that 1s an instance of the NIHCL class
CLASS:
o.storeMemberOn(strm);

Store a member variable p that 1s a pointer to an instance of an
NIHCL class:
p->storeOn(strm);

Store member variables in the same order that they are read.

130

Q

APPENDIX D. NIH 1JEMPLATE IMPLEMENTATION FILE

*I
}

// Construct an object from file descriptor "fd".
THIS_CLASS: :THIS_CLASS(OIOifd& fd)

#ifdef MI
Object(fd),
#endif
I*
Call readFrom() constructors of all ancestor virtual base classes:
VBase(fd),
*I
BASE(fd)
I*
Read a member variable o that is ·an 'instance of an NIHCL class:
o(fd)
{

Read a member variable f that 1s a fundamental type:
fd >> f;

Read a member variable a that 1s a pointer to an array of length 1:
fd.get(a,l);

Read a member variable p that 1s a pointer to an inst~nce of the
NIHCL class CLASS:
p = CLASS: :readFrom(fd);

. Read member variables in the same order that they are stored.
*I
}

void THIS_CLASS: :storer(OIOofd& fd) canst
// Store an object on file descriptor "fd".
{

I*
Store virtual base classes (VBase) in inheritance DAG order:
VBase: :storeVBaseOn(fd);

Store non-virtual base classes in order specified in .class
declaration:

131

C

APPENDIX D. NIH TEMPLATE IMPLEMENTATION FILE

BASE::storer(fd);

Store a member variable f that is a fundamental type:
fd << f;

Store a member variable a that is a ·pointer to an array _
of length 1:
fd.put(a,l);

Store a member variable o that is an instance of the NIHCL class
CLASS:
o.storeMemberOn(fd);

Store a member variable p that is a pointer to an instance of an
NIHCL class:
p->storeDn(fd);

Store member variables in the same order that they are read.
*I
}

132

Appendix E

Complete PF Header File (PF.h)

#if ndef PF _H
#define PF _H

#include "GridLine. h" / / break the include nesting tree length

#include "Manager. h"

class xGridLine {
public:

char* label;
OrientType orient;
double distance;

xGridLine(char*, Orient Type, double);
xGridLine(GridLine&);

};

class xGenericPoint {
public:

char* gA;
char* gB;
char* gl;
char* g2;
double x..st, x..sp, y ..st, y ..sp;
int x..rl, y ..rl;

133

APPENDIX E. COMPLETE PF HEADER FILE (PF.HJ

};

xGenericPoint();
xGenericPoint(char*, char*, char*, char*,

double xst =0, double xsp =0, double yst =0, double ysp =0,
int xr =1, int yr =1);

xGenericPoint(GenericPoint&);
xGenericPoint(xGenericPoint*);

class xCompass {
public:

};

CompassType dir;
double val;

xCompass();
xCompass(CompassType, double);
xCompass(xCompass*);
xCompass(Compass&);

class xLoad {
public:

};

char* name;
N ominalLoadType nominalLoad Category;
xGenericPoint* linePoint;
double magl, mag2;
xCompass* direction;
SurfaceType supportSurface;

xLoad();
xLoad(char*, NominalLoadType, xGenericPoint*,

double, double, xCompass*, SurfaceType);
xLoad(Load&);

class xClearSpace : public xGenericPoint {
public:

char* label;
char* tag;

xClearSpace();
xClearSpace(char*, char*, xGenericPoint*);

134

I

APPENDIX E. COMPLETE PF HEADER FILE (PF.HJ

xClearSpace(ClearSpace&);
};

class xOffset {
public:

char* key;
char* grid;
char* boundl;
char* bound2;
double val;
SurfaceType offsetSurface;

xOffset();
xOffset(char*, char*, char*, char*, double, SurfaceType);
xOffset (Offset&-);

};

class xRelPos {
public:

char* key;
char* gridl;
char* grid2;
char* extentStart;
char* extentStop;
SurfaceType grid1Sur, grid2Sur;
int minmax;
double lessThan, greaterThan;
double equalTo;

xRelPos();
xRelPos(char*, char*, char*, char*, char*, SurfaceType, SurfaceType, int,

double, double, double);
xRelPos(RelPos&);

};

extern double toDouble(Float&);
extern char* to Char(String&);

class PF {
int dirtyHorizGrid;
int dirtyVertGrid;

135

;

APPENDIX E. COMPLETE PF HEADER FILE (PF.HJ

Manager aManager;

public:
GridLine& convertGridLine(xGridLine&);
GenericPoint& convertGenericPoint(xGenericPoint*);
Compass& convertCompass(xCompass*);
Load& convertLoad(xLoad*);
ClearSpace& convert ClearSpace(xClearSpace*);
Offset& convertOffset(xOffseh);
RelPos& convertRelPos(xRelPos*);

xGenericPoinh getintersectionPoint(int, double, double);
xGenericPoinh getLinePoint(int, double, double, double, double);
xGenericPoinh getAreaPoint(int, double, double, double, double);

xGenericPoinh getintersectionPointJixed(double, double);
xGenericPoint* getLinePointJixed(double, double, double, double);
xGenericPoinh getAreaPointJixed(double, double, double, double);

xGenericPoinh getlntersectionPoinLrel(double, double);
xGenericPoint* getLinePointJel(double, double, double, double);
xGenericPoint* getAreaPointJel(double, double, double, double);

loadType xLoadType(xLoad*);

void init();
void clear();
int openFile(const char*);
int saveFile(const char*);

int holdsGridLabel(const char*);
void initGrid();
void initHorizGrid();
void initVertGrid();
int numberOfHoriz();
int numberOfVert();
int numberOfGrids();
int getN extHorizGrid(xGridLine&);
int getNextVertGrid(xGridLine&);
int getN ext Grid(xGridLine&);
xGridLine* getGridWithLabel(const char*);

136

,/

APPENDIX E. COMPLETE PF HEADER FILE (PF.HJ

char* getHorizGridLineBefore(double);
char* get VertGridLineBefore(double);
char* getHorizGridLineAfter(double);
char* get VertGridLineAfter(double);
Manager Errors storeGrid(xGridLine&);
Manager Errors removeGrid(const char*);
Manager Errors changeGrid(const char*, xGridLine&);

"---

void get Origin(double&,double&);
int setOrigin(double,double);
void get Corner(double&,double&);
int set Corner(double,double);

void getPoint(xGenericPoinh, double&, double&);
void getLinePoint(xGenericPoint*, double&, double&, double&, double&);
void getOrigin(xGenericPoinh, double&, double&);
void getCorner(xGenericPoinh, double&, double&);

xLoad* getLoadWithLabel(const char*);
ManagerErrors addLoadEvent(const char*); I I (LEJabel)
Manager Errors addLoadEvent(const char*, const char*);

I I (LE_parent,LE_child) ,
Manager Errors addLoadList(const char*, const char*); I I (LEJabel, LLJabel)
Manager Errors addLoad(const char*, const char*, xLoad*); I I (LE, LL, L)
ManagerErrors removeLoadEvent(const char*); I I (LEJabel)
ManagerErrors removeLoadEvent(const char*, const char*);

I I {LE_par,LE_child)
ManagerErrors removeLoadList(const char*, const char*); I I (LEJab, LLJab)
Manager Errors removeLoad(const char*, const char*, const char*);
Manager Errors changeLoad(const char*, xLoad*);
int getFirstLoad(char*, char*&, xLoad&); I/ {LE, XX, X) -> (LE, LL, L)
int getNextLoad(char*, char*&, xLoad&); I/ last {LE,LL,L) -> next (LE,LL,L)

int numberOfLoads(); I I in all LEs
int numberOfLoadLists(); I I in all LEs
int holdsLoadWithLabel(const char*); I I in all LEs
int holdsLoadList WithLabel(const char*); I/ in all LEs

int holdsGeometric WithLabel(const char*);
int numberOfGeometrics();

137

APPEN1JIX E. COMPLETE PF HEADER FILE (PF.HJ

};

xClearSpace* getClearSpace WithLabel(const char*);
Manager Errors storeClearSpace(xClearSpace*);
ManagerErrors removeClearSpace(const char*);
Manager Errors changeClearSpace(const char*, xClearSpace*);
int getFirstClearSpace(xClearSpace&);
int getN extClearSpace(xClearSpace&);

Manager Errors storeOffset(xOffset*);
Manager Errors remove Offset Wi thKey(const char*);
Manager Errors changeOffset(const char*, xOffset*);
xOffset* getOffsetWithKey(const char*);
int getFirstOffset(xOffset&);
int getNextOffset(xOffset&);

Manager Errors storeRelPos(xRelPos*);
Manager Errors removeRelPosWithKey(const char*);
Manager Errors changeRelPos(const char*, xRelPos*);
xRelPos* getRelPos WithKey(const char*);
int getFirstRelPos(xRelPos&);
int getNextRelPos(xRelPos&);

#endif

138

Appendix F

Stripped PF Header File (PF .g)

#ifndef PF _G
#define PF _G

#include "enum_types. h"

class xGridLine {
public:

char* label;
OrientType orient;
double distance;

xGridLine(char*, OrientType, double);
}; .

class xGenericPoint {
public:

char* gA;
char* gB;
char* gl;
char* g2;
double x..st, x..sp, y..st, y..sp;

0 int XJl y_rl'
' '

xGenericPoint();
xGenericPoint(char*, char*i char*, char*,

double xst =0, double xsp =0, double yst =0, double ysp =0,

139

APPENDIX F. STRIPPED PF HEADER FILE (PF.G)

};

int xr =1, int yr =1);
xGenericPoint(xGenericPoint*);

class xCompass {
public:

};

CompassType dir;
double val;

xCompass();
xCompass(CompassType, double);
xCompass(xCompass*);

class xLoad {
public:

char* name;
N ominalLoadType nominalLoad Category;
xGenericPoint* linePoint;

};

double magl, mag2;
xCompass* direction;
SurfaceType supportSurface;

xLoad();
xLoad(char*, NominalLoadType, xGenericPoinh,

double, double, xCompass*, SurfaceType);

class xClearSpace : public xGenericPoint {
public:

char* label;
char* tag;

xClearSpace();
xClearSpace(char*, char*, xGenericPoinh);

};

class xOffset {
public:

char* key;
char* grid;

140
r,

,,

APPENDIX F. STRIPPED PF HEADER FILE (PF.G)

};

char* boundl;
char* bound2;
double val;
SurfaceType offsetSurface;

xOffset();
xOffset(char*, char*, char*, char*, double, SurfaceType);

class xRelPos {
public:

};

char* key;
char* gridl;
char* grid2;
char* extentStart;
char* extentStop;
SurfaceType grid1Sur, grid2Sur;
int minmax;
double lessThan, greaterThan;
double equalTo;

xRelPos();
xRelPos(char*, char*, char*, char*, char*, SurfaceType, SurfaceType, int,

double, double, double);

class PF {
public:

.void init();
void clear();

xGenericPoint* getlntersectionPoint(int, double, double);
xGenericPoint* getLinePoint(int, double, double, double, double);
xGenericPoint* getAreaPoint(int, double, double, double, double);

\

xGenericPoint* getlntersectionPointJixed(double, double);
xGenericPoint* getLinePointJixed(double, double, double, double);
xGenericPoint* getAreaPointJixed(double, double, double, double);

xGenericPoint* getintersectionPoint_rel(double, double);
xGenericPoint* getLinePointJel(double, double, double, double);

141

',

APPENDIX F. STRIPPED PF HEADER FILE (PF.G)

xGenericPoinh getAreaPoinLrel(double, double, double, double);

loadTyp·e xLoadType(xLoad*);
int holdsGridLabel(const char*);
int open File(const char*);
int saveFile(const char*);
void initGrid();
void init_HorizGrid();
void initVertGrid();
int numberOfHoriz();
int numberOfVert();
int numberOfGrids();
int getNextHorizGrid(xGridLine&);
int getNext VertGrid(xGridLine&);
int getNextGrid(xGridLine&);
xGridLine* getGridWithLabel(const char*);
char* getHorizGridLineBefore(double);
char*. get VertGridLineBefore(double);
char* getHorizGridLineAfter(double);
char* getVertGridLineAfter(double);
Manager Errors store Grid(xGridLine&);
Manager Errors removeGrid(const char*);
Manager Errors changeGrid(const char*, xGridLine&);

void get Origin(double&,double&);
int set Origin(double,double);
void get Corner(doubie&,double&);
int set Corner(double,double);

I

void getPoint(xGenericPoint*, double&, double&);
void getLinePoint(xGenericPoint*, double&, double&, double&, double&);
void getOrigin(xGenericPoint*, double&, double&);
void getCorner(xGenericPoint*, double&, do~ble&);

xLoad* getLoadWithLabel(const char*);
ManagerErrors addLoadEvent.(const char*); I I (LEJabel)
Manager Errors addLoadEvent(const char*, const char*);

I I {LE_parent,LE_child}
ManagerErrors addLoadList(const char*, const char*); I I {LEJabel, LLJabel)
ManagerErrors addLoad(const char*, const char*, xLoad*); I I {LE, LL, L}
Manager Errors removeLoadE_vent(const char*); I I (LEJabel)

142

/

APPENDIX F. STRIPPED PF HEADER FILE (PF.G)

Manager Errors removeLoadEvent(const char*, const char*);
I I {LE_par,LE_child)

};

Manager Errors removeLoadList(const char*, const char*); I/ {LEJab, LLJab)
Manager Errors rerrioveLoad(const char*, const char*, const char*);
Manager Errors changeLoad(const char*, xLoad*);
int getFirstLoad(char*, char*&, xLoad&); // {LE, XX, X) -> (LE, LL, L)
int getNextLoad(char*, char*&, xLoad&); // last (LE,LL,L) -> next (LE,LL,L)

int numberOfLoads(); / / in all LEs
int numberOfLoadLists(); // in all LEs
int holdsLoadWithLabel(const char*); // in all LEs
int holdsLoadList WithLabel(const char*); / / in all LEs

int holds Geometric WithLabel(const char*);
int numberOfGeometrics();

xClearSpace* getClearSpace WithLabel(const char*);
Manager Errors storeClearSpace(xClearSpace*);
Manager Errors removeClearSpace(const char*);
Manager Errors changeClearSpace(const char*, xClearSpace*);
int getFirstClearSpace(xClearSpace&);
int getN extClearSpace(xClearSpace&);

Manager Errors storeOffset (xOffseh);
Manager Errors removeOffset Wi thKey(const char*);
ManagerErrors changeOffset(const char*, xOffseh);
xOffseh getOffsetWithKey(const char*);
int getFirstOffset(xOffset&);

\

int getNextOffset(xOffset&);

Manager Errors storeRelPos(xRelPos*);
Manager Errors removeRelPosWithKey(const char*);
Manager Errors changeRelPos(const char*, xRelPos*);
xRelPos* getRelPosWithKey(const char*);
int getFirstRelPos(xRelPos&);
int getN extRelPos(xRelPos&);

#endif

143

/

Appendix G

ParSim Definition Language

Overview

Processor Description

N..LABEL Proc_Time {CIS}

Each node in the algorithmic representation has a distinguishing label, namely
N..LABEL. A node has a real time, Proc_Time, associated with computation
for a single data block. Two modes of operation exist for a node, either sequ1ntial
computation followed by a communications phase, or concurrent computation and
communication. A flag can be set where

C = Compute first, then transmit,
S = Simultaneous Computations and Communications.

Link Description

L..LABEL N__FROM N_TO LENGTH {LINK_WEIGHT}

describes a directed link from the node N_FROM to node N_TO.
The LENGTH of a link describes the capacity of a<link. The relative delay,
LINK_WEIGHT, in communicating a message along the link can be manually
assigned. (See .LINKWTS in Compiler Directives)

144

~.

'•/ I

-
APPENDIX G. PARSIM DEFINITION LANGUAGE OVERVIEW

Compiler Directives

.MAP {ONIAUTOIEND}

The .MAP directive begins the mapping mode until map mode end,
.MAP END, is reached.

The directive .MAP AUTO causes the simulator to create the mapping.

The default of .MAP is .MAP ON and if no .MAP directive is given,
.MAP AUTO is assumed.

Example:

.MAP

Nl P3

N3 P7

N4 P5
I
;: N6 Pl

.MAP END
\, ,,,

.LINKWTS {AUTO}

This directive will weight each link by a constant proportional to the mapped
PE's shortest path length. Default of .LINKWTS is .LINKWTS AUTO. If no
directive is given, the simulator will prompt the user for Link Weights.

145

APPENDIX G. PARSIM DEFINITION LANGUAGE OVERVIEW

.ARCH ArchNum Number_of_PE's

Create a destination architecture with connectivity given in the following table
for a given Number_oLPE~s:

1

I ArchNum ·I Connectivity· I P(i) {:::::> P(j) if:

1 Linear Array P(i) next to P(j) numerically

2 Ring P(i) and P(j) next to each other modulus n

3 Star All PE's connected to P(O)

4 Binary Tree Single Rooted Binary Tree
.,

5 Illiac Mesh Wrap-around mesh with dim~nsion 4

6 Cylindrical Systolic Array

7 Completely Connected All PE's connected to All other PE's

8 Chordal Ring Ring w/ added connections of chords = fa
g HyperCube (i EB j) = 1

10 Barrel Shifter j = i ± 2K mod n

11 ±1, ±3, ±5 Ring Chordal ring w / odd near-nbr connections

.END

Label to mark the end of an input file.

{Statement} ;COMMENTS

Commenting on a statement line.

* COMMENTS

Commenting on a separate line.

)

146

·,

Bibliography

[1] Selim G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall,

Englewood Cliffs, NJ, 1989.

[2] David A. Bader. PARSIM: A simulator for designing parallel algorithms and

architectures. Technical Report CSEE-TR-90-07, Lehigh University, Bethlehem,

Pa., 1990.

[3] Alan A. Bertocci and Maurizio A. Bonuccelli. Some parallel algorithms on inter­

val graphs. Discrete Applied Mathematics for combinatorial operations research,
I

16(2):101-111, February 1987.

[4] Gilles Brassard and _Paul Bratley. Algorithms: Theory and Practice. Prentice-

Hall, Englewood Cliffs, NJ, 1988. ..

•.

[5] Thomas Braunl. A specification language for parallel architectures and algo­

rithms. In Fifth International Workshop on Software Specifications and Design, .

pages 49-51, Pittsburgh, Pennsylvania, Ma,.y 1989.

[6] Marina C. Chen. A design methodology for synthesizing parallel algorithms

and architectures. Journal of Parallel and Distributed Computing, 3(4):461-491,

December 1986.

[7] Brad J. Cox. Object Oriented Programming: An Evolutionary Apprdach.

Addison-Wesley, Reading, Massachusetts, 1986. \, \ . \

[8] Kshitij A. Doshi and Peter J. Yarman. Optimal graph algorithms on a fixed~s~~\
I

'
lil}ear array. IEEE Transactions on Computers, C-36(4):460-470, April 198r

147

{ .

•
. .

'BIBLIOGRAPHY .

[9] Tse-yun Feng. A survey of interconnection networks. Computer, 14(12):12-27,

December 1981.

-~

[10] Joydeep Ghosh and Kai Hwang. Mapping neural networks onto message-passing

multicomputers. Journal of Parallel and Distributed Computing, 6(2):291-330,
... .

April 1989.

[11] Adele Goldberg. Smalltalk-BO: The Interactive Programming Environment.

Addison-Wesley, Reading, Massachusetts, 1984.

[12] Keith E. Gorlen. An object-oriented class library for C++ programs. Software -

Practice and Experience, 17(12):899-922, December 1987.

[13] Keith E. Gorlen. NIH Class Library Reference Manual. National Institutes of

Health, Bethesda, Maryland, revision 3.10 DRAFT edition, April 1990. ,

[14] Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico. Data Abstraction and

Object-Oriented Programming in C++. John Wiley & Sons Ltd., West Sussex,

England, October 1990.

[15] Andrew Grimshaw. Mentat: A computation model for parallel software prob­

lems. Technical report, University of Virginia, 1991.

[16] Kai Hwang and Faye A. Briggs. Computer Architecturpe and Parallel Processing.

McGraw-Hill Book Company, New York, 1984.

[17] Kai Hwang,· Ping-Sheng Tseng, and Dongseung Kim. An orthogonal multiproces­

sor for parallel and scientific computations. IEEE Transactions on Computers,

38(1):47-61, January 1989.

[18] Borland International. Turbo C++ Reference Manual. Scotts Valley, California,

1990.

[19] Yehuda E. Kalay. Worldview: An integrated geometric-modeling/drafting sys­

tem. IEEE Computer Graphics and Applications, 7(2):36-46, February 1987.

148

I,
r
(
\:
'' '"" .. :

. . '· : \,, ,,

\
'l ·

\I.
I • '

',~ '. I,
' ,.

BIBLIOGRAPHY

[20] Brian· M. ~
1
ennedy. The _featur~s of the object-oriented a?stract type hierarc~y

(OATH}. Te~enical report,.._ Computer Science Center, Texas Instruments, August
1991. · ·i.~\ . , I

\. ~
[21] Myron W. Kr~~ger. Artificial Reality II. Addison-Wesley, Reading, Mas-

,

sachusetts, 1~91.

[22] Wilf R. LaLonde and John R. Pugh. Inside Smalltalk, volume 1. Prentice Hall,

Englewood. Cliffs, NJ, 1990.

[23] Mark A. Linton, Paul R. Calder, and John M. Vlissides. Inter Views Reference

Manual. Stanford University, Ver. 3.0 draft edition, March 1991.

[24]

[25]

G. Jack Lipovski and Miroslaw Malek, editors. Parallel Computing: Theory and

Compari),· fsons. John Wiley & Sons Ltd., New York, 1987.
'('

Stanley B. Lippman. C++ Primer 2nd Edition. Addison-Wesley, Reading, Mas-

sachusetts, 1991.

[26] Kirk MLini and Graham H. Powell. Geometric modeling requirements for struc­

tured design. Engineering with Computers, 6(2):93-102, April 1990.

[27] R. D. McLeod and J. J. Schnellenberg. Percolation and anomalous transport

as tools in analyzing parallel processing interconnection networks. Journal of

Parallel and Distributed Computing, 8(4):376-387, April 1990.

[28] Thanasis Mitsolides and Malcolm Harrison. Generators and the replicator control

structure in the parallel environment of ALLOY. In ACM SIGPLAN '90 Con­

ference on Programming Language Design and Implementation, pages 189-196,

White Plains, NY, June 1990.

[29] Michael J. Quinn and N arsingh Deo. Parallel graph algorithms. Computing

Surveys, 16(3):319-348, September 1984.
v

' [30] Richard Sause. A Model of the Design Process for Computer Integrated Structv,ral

Engineering. Ph.D. Dissertation, Unive~sity of California, Berkeley, 1989.

149

,.

BIBLIOGRAPHY

,_

[31] Richard Sause. Towards management of design alt,ernatives in object oriented

databases. Lehigh University, 1991.

[32] Richard Sause and Graham H. Powell. A design process. model for computer

integrated structural engineering. Engineering with Computers, 6(3):129-143,
July 1990.

1, •

[33] Richard Sause and Graham H. Powell. A design process model for computer

integrated structural engineering: Design phases and tasks. Engineering with

Computers, 1990. (In Press).
' "'

[34] David B. Skillcorn and William Kocay. A global measure of network connectivity.

Journal of Parallel and Distributed Computing, 7(1):165-177, August 1989·.

[35] Dan Stenger. C++ object-oriepted library (COOL)., 'I'echnical report, Informa­

tion Technology Group, Texas Instruments, September 1991.

[36) Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

Massachusetts, 1986.

' [37) John M. Vlissides and Mark A. ~inton. Applying object-oriented design to

structured graphics. In Proceedings of the USENIX C++ Conference, Denver,

Colorado, October 1988.

[38] Chuan-lin Wu and Tse-yun Feng, editors. Tuf~rial: Interconnection Networks for

parallel and distributed processing. IEEE Computer Society Press, Silver Spring,

MD, 1984.

[39) Zhiwei Xu and Kai Hwang. Molecule: A language construct for layered de­

velopment of parallel programs. IEEE Transactions on Software Engineering,
15(5):587-599, May 1989.

150

•'""·

Vita

David A. Bader was born a 4 pound, 4 ounce baby boy at 4:44 AM on May 4,

· 1969, in Bethlehem, Pennsylvania, to his proud parents, Dr. Morris Bader and Sophie

Karen Bader, of Bethlehem, Pa. In June 1987, David graduated from Liberty High

School, Bethlehem, Pa., and in June 1990, graduated Magna Cum Laude from Lehigh

University, Bethlehem, Pa., with his Bachelor of Science in Computer Engineering.

David was awarded an Honorable Mention in the 1991 National Science Founda-:

tion (NSF) Graduate Fellowship search. In June 1990, David received the Elizabeth

Major Nevius Award from Lehigh University for outstanding leadership, scholarship,,

and citizenship. He has received an ATLSS Center Graduate Research Fellowship

from Lehigh University for 1990- 91. David is a member of Tau Beta Pi, the National

Engineering Honor Society, and EtfRappa Nu, the Electrical Engineering Honor So­

ciety. He has earned the rank of Eagle Scout in the Boy Scouts of America, and has

attained the Vigil Honor in the Order of the Arrow, B.S.A. David has also received

a Morning Call Newspapers Scholarship, is listed in Who's Who Among American

Universities for 1990, and is a National Merit Commended Student. Currently, he is

a student member of IEEE and the IEEE Computer Society.

As a graduate student at Lehigh University, David has been a Research Assistant

for a National Science Foundation (NSF) funded project investigating object oriented

simulations in C++, and also in algorithms to enhance and detect edges with reliability

in video scans of barcodes. As an undergraduate, he participated in an NSF Research

Experience for Undergraduates in error - correcting codes and data security. David

has had several computer oriented jobs, such as Student Technician for the University

151

"\},,.

. Microcomputer Store and Computer Specialist for Lehigh University's Vice-President

of Research. ·

David has published the following technical reports at Lehigh University: "PAR­

SIM: A Simulator for Designing Parallel Algorithms and Architectures," and "Table

of Lower Bounds on the Minimum Distance of Cyclic and BCH Codes." The latter

report has been referenced in at least four papers published in the IEEE Transactions

on Information Theory or presented at the 1990 IEEE International Symposium on

Information Theory.

\

1µ2

· ... ·' .. ,. .

"

So, Bessy, C++ *is* a great tool
for designing object-oriented
simulations.

\
\

(__) (__)
(oo)
\I

I----\
II I\

,. I I "
I I
/----\

I \ \
* ,.

(oo)
\I

/----\
/I I\

,. I I "---+
I I IC++I
/----\ +---+

I \ \
* ,.

QUICK, ONE'S COMING ! !!
\
\
(__)
(oo)

\/
I----\

II I\
,. I I ,.

I I
/----\

I \ \
* ,.

MOO Oh, how bo?ting it must
/ be to be a cow.

(__) (__) \ (__)
(oo) (oo) ------- (oo)

1-------\I \/-------\ II I I\\ \/-------\
I I 11 11 I \ _____ II ___ I I_\ ___ 11 I \

* I 1----11 11----11 *) _ \ 11----11 *
,.,. ,.,. ,.,. I_/ \ ________ I \ ___ I ,.,. ,.,.

___________________________________ _/ ________ _/ _______________ , - ___ _
/ . ~

153·

'

\ \

~

Please Recycle.

L~
Peace.

. .

. 154

	Lehigh University
	Lehigh Preserve
	1992

	Object oriented simulation of systems with examples in structural design and parallel processing
	David A. Bader
	Recommended Citation

	tmp.1551882614.pdf.BhJyg

