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Abstract 

This thesis describes the design procedures for the constructing an object oriented 

simulation. The object oriented programming technique enables simulations of real 

world events to be modeled with ease. The gateway between the internal simulation 

and external user interface is described, and the appearance of the user interface for 

simulati0ns is discussed. A prototype system for designing 2D steel structural frames 
" 

given initial structural engineering constraints has been built and will be reviewed. 

Also, an example simulation of a parallel processing network will be given. 
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Chapter 1 

Introd uct'ion 

1.1 Introduction to Problem 

A systematic approach for designing simulations using object oriented techniques 

encourages the use of abstract data packages for modeling real world occurrences. 

In this thesis, I will discuss the methodologies for creating a dynamic simulation 

package, and apply it to two examples: the simulation of large, steel structures for the 

construction industry, and the simulation of parallel processing networks for computer 

architects. 

Powerful computer workstations are being developed at a rate faster than appli­

cations can be written for these new machines. I will attempt to shed some light on 

the software engineering tasks involved for creating large simulation packages for such 

workstations. 

A new concept of Object Oriented Design is also integrated in this thesis. 

Object orientation implies that Objects in a model contain both data and functions 

for each instance of an object. Classic programming languages, as a reference, only 

provide for data structures and functions which can act on the data. Object oriented 

design has already prove·n useful in prototyping languages, such as SmallTalk, in 

which ideas are .rapidly transformed into an implementation. 

Object Oriented Libraries contain ready-made classes from which a software en­

gineer can derive his object classes. By using abstract data hierarchies, inheritance, 

2 ··-



CHAPTER 1. INTRODUCTION 

polymorphism, and reuse of code, the application's engineer can quickly and power­

fully model his problem using the expertise of the class library's software engineer. 

Object Oriented Programming has been used extensively in industries to prototype 

user interfaces, but I will show that it is also applicable to the modeling of objects 

for simulation purposes. ,, 

1.2 Motivation 

Recently, programming languages have been developed in which powerful functions 

are combined with object oriented capabilities, allowing a researcher to program in 

the problem domain and not the implementation of basic data st~uctures. This thesis 

will describe how tools have been created, harnessing the high computational abilities 

of currently available workstations. 

1.3 Literature Survey on Object Oriented Simu­

lation 

Various progra1nming languages allow for object oriented constructions: C++, Eif­

fel, SmallTalk, Borland's Turbo Pascal v6.0, etc. In addition, there are general 

purpose object oriented libraries containing abstract data type hierarchies available 
I 

for some of these platforms: Texas Instruments' OATH [20] and COOL C++ [35] li-

braries, National Institutes of Health's C++ Class Library [14], ParcPlace Systems' 

SmallTalk class hierarchy [llJ,, Borland's Turbo C++ Libraries [18], etc. 

Other special purpose libraries have also been written: New York University's 

object oriented parallel progra1nming language ALLOY [28], Andrew Grimshaw's 

Mentat [15] runtime system which allow for distributed parallelism and dataflow, 

and ROSE, an object oriented database management system. 

Object oriented graphical libraries, such as Stanford's Inter Views [37] and Cor­

nell's HOOPS are also helpful. 

3 



CHAPTER 1. INTRODUCTION 

1.4 Org~nization of thesis 

This thesis will first cover the theoretical foundations in the use of object oriented 

programming concepts, and the organization of computer-based simulation. The 

Framework for Integrated Design System, (FIDS), a structural engineering simu­

lation package written in C++ using a Sun Spare Workstation, the NIH C++ Class 

Li~rary, and Stanford's InterViews C++ User Interface Routines, is an example of 

one such simulator engineered by the author. ParSim [2], a concept for a paral­

lel processing simulation of parallel interconnection networks, will also be discussed. 

Finally, I will present guidelines for constructing special purpose user interfaces for 
0 computer-based simulations. 

) 
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Chapter 2 

Theoretical Foundations 

2.1 Introduction 

This chapter introduces the reader to the theory behind object oriented design. First, 

the concepts needed to begin object oriented decomposition of a problem are dis­

cussed. Then the relationship between the mechanisms provided in an object oriented 

language and their benefit to the theoretical model of a simulation will be shown. 

Also, the necessary in-depth techniques for designing an object oriented simulation 

package frorn beginning criteria to a finished product are examined. 

2.2 Notion of Abstract Modeling 

Object Oriented Programming ( OOP) relies on the principle that the behavioral and 

physical characteristics of a real-world entity can be conceptualized in an abstract 

model, called the object. The degree to which the abstraction models the entity 

will be directly proportional to the complexity of the simulation. If the problem 

to be simulated can be modeled very precisely, by including a lot o'f detail into the 

representation for each entity, the results will be far more accurate than a simple 

model could provide. The task of designing an object relies on the assumption that 

one knows the behavior of an entity under certain conditions, which is not always 

the case. Also, one might not wish to have such a fine grained simulation. The 

5 



CHAPTER 2. THEORETICAL FOUNDATIONS 

I 
abstraction encapsulates data structures and functions which describe the behavior 

and characteristics of any instance of the entity type involved in the simulation. By 

lumping the data and functionality together, we create a truer sense of an object than 

classical programming techniques, which separate coding into two distinct portions: 

data structures, and functions operating on these data structures. 

In most simulation applications, many entities being simulated are "similar". Fur­

ther, they may be gro\!ped into layers of classes that may be similar themselves. For 

example, for a simulation of a parallel processing environment, one may have entities 

of type ALU (Arithmetic Logic Unit), CL (Control Logic), and memory. The ALU 

and CL together may form the entity called the CPU (Central Processing Unit), and 

the CPU and memory together may form each PU (Processing Unit). It is important 

to note that all the ALU's are similar as are all the CL's or memories. Further, all 

the clusters of these basic units, such as the CPU's or PU's are also similar to others 

of the same kind. 

Object oriented programming successfuJly captures this idea by creating models 

which can have data and functionality for a particular species. In this scheme, objects 

belong to object classes, and these classes are arranged in a hierarchical structure. 

· Each derived class can be inherited from a previously defined base class, and the new 

class provides a superset of the base class' functionality. If such a class hierarchy, 

or class library, is available, the software engineer need not spend his time recreating 

the wheel, per se, or creating the basic data structures for every application but spend 

his valuable time in the problem domain. Reuse of code, due to efficient hierarchical 

schemes, also reduces the number of lines of code an engineer must maintain, and in 

effect, drastically reduces the amount of time the engineer must spend in debugging 

his routines. 

This thesis, although applicable to most object oriented languages, will be pre­

sented with specific references to C++, an object oriented programming language and 

superset of C. 

6 



CHAPTER 2. THEORETICAL FOUNDATIONS 

2.3 Object o·riented Programming Concepts 

2.3.1 an object 

Amongst the new concepts of object oriented languages, the one that is of the most 

fundamental importance is the concept of object classes. Most programming lan­

guages provide the us.er with a selection of fundamental data types (FDT) from 

which all other types can be created. For instance, most languages have predefined 

types for integers, floating point reals and doubles, characters, strings, etc., which 
\ . 

are standards of the language and portable to all hardware platforms for which the 
\ 

language is implemented. In most languages, a software engineer may define new 

types constructed as compounds of the FDT's. Records holding fields of FDT's are 

also standard forms for grouping data. 

In object oriented languages, abstract data types (ADT), called object classes, 

organize both data structures and functions. ~n object class resembles a record, only 

in addition to holding data fields, the object class also holds functions to access and 

modify its data. Each class specifies its relation to existing classes by supplying a 

reference to the base class, or class from which it is derived1. The object class is 

used similar to a conventional type, allowing instances of its class to be instantiated 

at the runtime of the program. 

An object class hierarchy tree grows as new classes are added to the system. 

Since each new class is a superset of its base class, it inherits selected data and 

functions, meaning that the derived class, when given access by the inheritance rules, 

can call any of its base class' functions, or modify any of the data. 

C++ is a strongly typed language, implying that at compile time, every literal in 

the code must know to which type it belongs. For example, the base class can be an 

Animal and it might have derived classes of Mammal and Fish, and Mammal has 

derived classes of Dog, Cat, and Elephant, and the Elephant might have a derived 

class for the Gray Elephant, as in Figure 2.1. Then at compile time, we must know 

what type of Animal an object is (it might just be an Animal). But _at runtime, it 

1See Appendix C and Appendix D for Te~plates provided by the NIH Class Library for designing 
ADT's. 
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CHAPTER 2. THEORETICAL FOUNDATIONS 

G) Cat 

Figure 2.1: Animal Class Hierarchy 

would be nice if we could ask an Animal: "What type are you?" and have it respond 

with "I'm a Cat!" or "I'm a Gray Elephant!" The root of the class hierarchy, (in this 

example, the Animal), must have those unique functions defined to answer all such 

questions for which objects need to respond. Also, functions which affect the entire 

class hierarchy may be implemented in this root class. An example of one type of 

such a function is an overloaded operator which supersedes the previously defined 

functionality for standard operators such as arithmetic, logical, conditional, indexing, 

pointer, and allocation operators. The operator can be given a new implementation 

when called for a specific class with varying arguments, and can be redefined at any 

point lower in the class hierarchy, too. 

When designing an object found in a class library, a software engineer derives 

objects from a predefined class Object. Usually the engineer would like these objects 

to answer cornrnon messages which are not implemented in the library's root Object 

class. In this case, the software engineer should make a derivect class of Object, for 

example: MyObject, and derive all classes from MyObject that would normally be 

8 



CHAPTER 2. THEORETICAL FOUNDATIONS 

Object 

MyObject 

Classl *** ClassN 

Figure 2.2: Derived Class MyObject 

directly derived classes of Object, as shown in Figure 2.2. 

2.3.2 data abstraction 

Before any coding is done, a study must be performed on the entity to,be modeled such 

that its properties are adequately contained in a class representation. The properties 

can be divided into two areas: behavior and physical attributes. Based on the 

behavioral characteristics, this work decomposes Objects into three main types: 

Physical Objects - actual entities being simulated 

Container Objects - dynamic holders for the physical objects 

Process Objects - control and transformation processes on the physical objects 

Various philosophies of programming exist for creating classes. In Top Down 

design, one creates all the classes for these objects, then fills in the functionality 

as needed. In Bottom Up design, the lowest level functions are written and then 

combined to create the classes. In this thesis, I propose that Middle Out design is 
A 

9 



CHAPTER 2. THEORETICAL FOUNDATIONS 

'·--

the only practical method by which a software engineer c~n create an object oriented 

system. Middle Out design is the combination of the two previous methods, whereby 

the designer fleshes out classes as he needs them, sometimes modifying other classes 

when a. better design is discovered. When the designer attempts to think in terms 

of the implementation and begins to write the member functions, he becomes either 

more secure of his original design, or finds that the object class would be better 

suited with some other structure. As one proceeds in this fashion, the object classes 

constantly evolve. 

2.3.3 hie~archy 

The National Institutes of Health's Class Library2 (NIH CL) provides a class Object 

which handles queries on an Object's class, name, initial assignments of all operators 

on the class, etc. so that the properties shared by all objects are represented by 

this class. All object classes are then created as derived classes of this Object class. 

By having a root base class, all instances of all object classes can be passed around 

the code as the type Object, eliminating the restriction of strong type checking for 

C++. Typecasting is a feature that allows a software engineer to explicitly change the 

apparent type of an object to another. This is very useful when the engineer wishes to 

handle objects similarly without knowing the explicit classes of the individual objects. 

At runtime, an object gets allocation of memory space sufficient to hold the class' 

member variables. The pointer to this memory space, however, may be of any type, 

ma.sking the appearance of the object held. Typecasting is merely changing the class 

associated with the pointer without affecting the memory location. Typecasting is 

dangerous, because the engineer may change this pointer to a class other than a base 

class; when an access to the object is made using the pointer, an error will occur. 

For example, referring back to Figure 2.1, one may instantiate a Gray Elephant, 

and pass the Gray Elephant to a routine written for any derived class of Animal. If this 

routine then wishes to call a function only available to Mammals, it must typecast the 

Animal object to a Mammal first. In order to classify the Animal object as a Mammal 

2See Appendix A for the NIH Class Library hierarchy. 
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CHAPTER 2. THEORETICAL FOUNDATIONS 

instead of a Fish, for instance, requires every Animal to know its derived class so that 

the software engineer can check this class and typecast the object accordingly. If the 

engineer mistakenly typecast this Gray Elephant, held as an Animal, as a Fish, the 

routine would fail at runtime. 

2.3.4 inheritance 

In decomposing an entity to be modeled, one must determine the data unique to the 

current object class, and concurrently, find similarities to the other existing object 

classes such that similar, or sibling, object classes can be generalized from a single 

base class containing all of the similarities. From experience in this procedure, sim­

ilarities are found only after the first object class already has been modeled. Then 

a compro1nise is struck to create the object class that can be the abstract base class 

from which the siblings may be derived. An instance of a derived class is also an in­

stance of its base class, holding all the instance variables and functionality associated 

with the base in addition to the newly derived extensions. 

2.3.5 client/ supplier relationships 

An object may contain other objects in any combination of the following methods: 

inheritance and client/supplier relationships. As explained previously, inheritance 

creates a derived class that is a superset of an existing object class. An instance of a 

derived class holds an object from the base class to access the properties and behavior 

of that base class. The second method is via client/supplier relationships, whereby 

an object holds several member variables that are objects from unrelated object 

classes. These member variables are completely contained inside this modeled object. 

When a class is designed, one must determine whether the relationship between 

the class and existing classes is of the inheritance or a client/supplier type. Keith 

Gorlen [14] explains that when a class is inherited from another class, like the Cat 

from the Animal class, it answers the question, "Is a?" as in "The Cat Is an Animal?" 

In client/supplier, the question, "Has a?" is answered. For example, a class is created, 

see Figure 2;3, to hold the Cat's name, call it the Name class, then "The Cat Has 

11 
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CHAPTER 2. THEORETICAL FOUNDATIONS 

Cat 

Member Variables: 

Color 

Name 

Weight 

Figure 2.3: Cat Class Member Variables 

a Name?" 

In certain cases, the determination between these two methods is not as clear, 

such as an example with geometric shapes. If one creates a class for Circles, and 

wishes to create a class for Arcs, "Is an Arc a Circle?" or "Is a Circle an Arc?" Also, 

"An Arc Has a Circle?" and "A Circle Has an Arc?" Clearly, these questions are 

all ambiguous, and the task of choosing the relationship is then left up to the better 

judgment of the designer. 

2.3.6 polymorphism 

One advantage of object oriented programming is that objects can be treated as 

polymorphisms, meaning any object may be referenced or passed by the type of 

any object class above it in the inheritance tree, or, identically, by its actual type. 

For instance, referring back to the animal class hierarchy given in Figure 2.1, a Gray 

Elephant can be passed as a Gray Elephant, an Elephant, or an Animal, and 

a Dog can be passed as an Animal, too. By allowing polymorphism, objects truly 

can be handled without concern for its actual class. Polymorphism can simplify the 

problem of handling the return types of functions which can return objects of more 

12 
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l -· 

Object 

, 

Line 

l 
Arrow 

UpArrow DownArrow 

Figure 2.4: Example of Arrow and Related Class Hierarchy 

.. 

than one type. Every function has a return type, which can be either a fundamental 

data type, or an abstract, or user-defined, data type. Also, this return type may 

require allocated space for the entire structure, or merely a pointer to the correct 

obj~ct. Following the NIH Class Library paradigm, the return types of most functions 

that return other library objects are pointers to the class Object. Tfe burden of 

correctly transforming the pointer to the proper object class (in order for that object's 

methods to be used} is then left to the software engineer. 

2.3. 7 virtual functions 

13 

r 



' ) 

r 

CHAPTER 2. THEORETICAIJ FOUNDATIONS 

Object oriented languages allow derived classes to re-implement a function provided 

by a base class. If the function· is not_ re-implemented, the base class implementation 

is invoked. Virtual functions allow derived classes to re-implement a function, such 

that when the base class' function is invoked, the derived functionality is called. 

Pure virtual functions are virtual functions prototyped in a base class, but no 

implementation is given. An abstract base class is any class with at least one pure 

virtual function, since this class may not be instantiated. 

When handling object_s polymorphically, it is readily apparent that most functions 

in Object need to be pure virtual since the implementation would have no meaning in 

Object and one needs to call the correct derived class' implementation. For example, 

in a graphical package, an Object might have a function to draw itself on the screen, 

but the function in class Object would be a pure virtual function, meaning that it 

is available for all Objects, but no implementation exists for the abstract Object. 

The pure virtual functions must be implemente~ by any derived class that is ·not 

planned to be an abstract base class. For example, as shown in Figure 2.4, a derived 

class of Object called Line would re-implement draw() for a line. If Arrow were a 

derived class of Line, Arrow's draw() function could call the Line's draw() function, 

and then call its own routine to draw the arrowhead. If Arrow had two derived 

classes, UpArrow and DownArrow, and Arrow included directional information 

in its member variables and used this in its draw(). function, neither UpArrow nor 

DownArrow would need to re-implement draw(). Virtual functions are implemented 

only when the characteristics of the function will change in a derived class; otherwise, 

no modifications are necessary. 

2.3.8 reuse of code 

One of the major advantages of object oriented programming is that by using in­

heritance, client/supplier relationships, class hierarchies, virtual functions, and other 

object oriented techniques, the code duplication can be largely avoided. Routines to 

handle algorithms can be programmed once, thoroughly tested and debugged, and 

placed in libraries. A designer then has the task to choose which objects he will build 
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with, but no longer has the burden of recreating the basic data structures and algo­

rithms. Reuse of code implies that less code needs to be compiled, and that existing 

code will have a much shorter debugging period. A software engineer can then spend 

time debugging only conceptual errors in his problem domain, and need not worry 

about the accuracy of memory management, data structures, searching and_ sorting 

algorithms,'itc. In the NIH Class Library, sophisticated dynamic arrays are available 

which allow users to create instances of objects "on the fly"; place them in collections, 

and have the collection automatically grow larger if need be. In the same context, 

graphical object oriented libraries also are available. The reuse of code promotes the 

concept that libraries of objects will become available for all types of applications, 

and the designer of a system no longer needs to "reinvent the wheel." 

2.4 Creating _the Object Oriented Process Model 

The features of objected oriented languages allow one to readily model an entity into 

objects by decomposing the entity's behavior into suitable classes. The next task for 

the object oriented designer is the deco1nposition of a simulation problem into an 

abstract process model. The process model is the environment in which the entities 

interact with each other. Some examples of this include the simulation of a parallel 

computer, in which the participating entities are Nodes, Links, and Messages, and 

the process model is the interconnection network of the Nodes and Links. In the 

simulation of a flight simulator, the entities include the aircrafts, the Earth, the Sun, 

the control tower, etc. and the process model is the atmosphere, wind, light, weather, 

etc. In a simulation of a structure, the entities are the beams and columns, and 

the process model is the space surrounding these members, along with the physical 

phenomena associated with the simulation, such as force~rom wind, gravity, dead 

loads, etc. 

In the object oriented paradigm, the process model is merely another object to be 

abstracted. The state variables of the process are the instances of the modeled entities, 

and the functions are the means by which these objects interact. The behavior of the 

environment then must be abstracted into this process object. One may now conceive 
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of the simulation process as merely another entity, which when initialized properly, 

and told to "GO!" will perform the simulation to completion. 

I 

2.5 Managing .Collections of Objects 

2.5.1 Overview of a Manager 

The abstraction of the problem requires (1) modeling of the objects and specifying 

their interactions; and (2) describing the mechanisms through which the collections 

of such objects can be created, modified, queried, or deleted. The first of these two 

issues were discussed in the two preceding sections. The second issue is the topic of 

the current section. 

In the simulation problem, collections of objects participate by interacting with 

each other. If one can create a smart way to manage these objects such that the 

interaction becomes simpler to implement, one has created the ideal framework for 

simulation. 

The Manager concept may not appear to be object oriented in design. How­

ever, one can consider the Manager to be the state variable of the entire simulation, 

that is, as just another object in the simulation. Often, several Manager classes are 

needed. One Manager class should have the ability to interface with both the external 

simulation representation, and the internal simulation representations, namely, other 

Managers. In this sense, a Manager is an Object Oriented Database (OODB). If one 

decomposes the problem down further, each object of each class can be held in a 

specialized Manager. The sub-Managers are then equivalent to tables in a relational 

database. Managers must then follow extended rules of normal forms for r~lational 

databases. By following these rules, actions presented to the Manager will never 

corrupt the data. 

16 
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2.5.2 Design of a Manager 

Managers must be clever. When objects are entered into the Manager, consistency 

should be maintained with the previously held objects. If the new object is inconsis­

tent, incomplete, or a duplicate, it must be discarded. 

All modeled entities are required to own a unique key, such as a string, used to 

access the object from both internal and external objects. Other entities may use 

this key as a passcard to the manager for retrieving the object associated with that 

particular key. 

Changes to objects held in Managers can be performed by passing the key and 

the updated version of the object. If the key has not changed, all objects holding the 

reference to that object still have a persistent method for access to it. 

An object held in the Manager can be removed by handing its Manager the key for 

that selected object. Deletions, however, require that objects holding a reference to 

the soon-to-be-removed object must either be removed as well, or have their references 

re-attached to persisting objects. Because two way links do not exist between the 

keyed object and all others holding its key, maintaining persistent data is not trivial 

in this case. A brute force approach for propagating the deletion may be implemented 

by searching every entity in the representation of the problem and querying it as to 

whether or not this delete will require subsequent modifications. Other schemes such 

as dependency lists and broadcasts can also be used, but are not within the scope 

of this thesis. 

One must design a Manager around two strategic areas, the internal structure of 

the Manager and the external accesses to the Manager. In order to select a base 

class for an efficient design of the Manager, the objects which it will hold must be 

examined. The following are the types of questions which must be answered: 

, Are the objects homogeneous or heterogeneous? 

• If they are heterogeneous, what is the most explicit class to which all the obje/s 

belong? 

, Are the objects sortable? (i.e. can an object compare itself with another and 
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determine which would come first in a sort?) 

• Do the objects need to be retrieved in any particular order? 

• What will the most common access to an object look. like? 

• What kind of searches need to be performed to locate an object in the collection? 

• Which existing collection do the objects most readily, and naturally fit into? 

( e.g. Set, Bag, Stack, Ordered Collection, BortedCollection, Array, LinkedList, 

Hash Table, Dictionary, KeySortedCollection, etc.) 

By answering these questions, the determination of the Manager's base class will 

be an easy decision3. The chosen container class must be the inherent natural choice 

for holding the specified objects. If more explicit accesses are needed which cannot 

be done optimally on this type of collection, a second auxiliary collection, used as 

a lookup table for these special accesses, may be held as a member variable of the 

Manager. 

The second focus, namely access to these objects through the Manager, is reviewed 

at this point. If a container holds sortable objects, and the Manager is chosen to 

be a sorted collection, one has a problem when one tries to access the collection 

with the key to an object (in the Sorted Collection, the key is the object itself.) In 

this case, as the paragraph above notes, the Manager may hold an instance of a 

KeySortedCollection to manage associations of keys and refer~nces to the objects 

held by the inherent collection. This extra member collection is just another view to 

accessing the data ( of objects) in the Manager. When messages are passed to this 

Manager, it has the choice of whether to use the base container class directly, or to 

use the auxiliary collection as a front-end for accesses to the base cont;ainer class. In 

either case, all of the held collections must be updated whenever an object owned by 

this Manager is modified. 

3See Appendix B for the NIH C++ Library class structure for Collections, as well as short de­
scriptions of the available collections. 
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2.5.3 Functions of Managers 

The Manager has various responsibilities, some of which include: 

• maintaining persistent data objects 

• adhering to insertion, deletion, and modification consistencies· 

• providing adequate access messages for searches 

• printing, storing, and debugging collection onto an output stream or file 

• retrieving contents from an input stream or file 

• iterating through the collection to access each object held 

The Manager's class description included in its header file should contain the 

messages needed to perform all these functions on the collection. By using const 

functions, the software engineer also knows which of these methods will modify the 

collection. 

To the user of a collection, three main types of functions exist: 

• construction ( and destruction) 

• access 

• modification 

The construction ( destruction) functions handle the initialization (finalization) of 

an instance of this Collection class. The accessing methods allow for searches through 

the coll~ction which do not modify the objects contained. The modification messages 

are of the store, remove, and change type. These modifications must perform the 

various function implied or return a token representing the error that might have 

occurred. If the return token is not OK, one should assume that the collection has 

rejected the operation asked of it, and has left the collection in the same state as 

before the message came along. Some other error messages, for example, might be: 

InvalidLabel, DuplicateLab~l, InvalidObject, etc. The calling routine then may 

branch to resolve a specific error condition. At this stage, the user may be queried, 

or a routine may find the resolution to the error. 
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2.5.4 Heterogeneous Collections 

A Manager will function optimally when its base collection holds homogeneous ob­

jects. Because of static type checking, if one knows that a collection holds instances 

of the Widget class, one can directly typecast an element in the container to be a 

widget and query the widget with public widget class member functions. By taking 

advantage of the compare function, the widget will know how to order itself with 

respect to other instances of the same class. Thus, a sorted collection needs to hold 

homogeneous objects. All entities are, in fact, homogeneous to the Object base class . 

.. But by referring to instances as Objects, the public member functions belonging to 

derived classes of this base class become inaccessible. 

Object oriented programming does allow one to hold instances of different classes 

in the same collection. For example, a collection such as a Stack might hold an 

Integer in the first lo~ation, a String in the second, and an Elephant in the third. 

As long as the objects held are derived from the base class (Object, for example), 

specified by the definition of the collection class, polymorphism allows all these het­

erogeneous instances to be held as Objects. 

2.5.5 Polymorphism of Objects 

Polymorphism is the key concept to holding heterogeneous objects. If, for example, 

the Widget class is derived from a base class, say Object, a particular instance of the 

Widget class may be handled as though it were an instance of the base class Object. 

One drawback of this is that only the Object class functions may be accessed for an 

object once it has been handed to a collection for Objects. Other functions for the 

Widget class are not accessible until the Widget instance is typecast to its actual 

class. 

The base class Object should have the necessary functionality available so that 

( at runtime) one can determine the class to which the instance belongs, and then cast 

it to that particular class. A member variable of the base class should hold the class 
,, 

name to which the instance belongs. An Object then has the ability to be cast to 

this class, or have functions from this class invoked. Using a pure virtual function in 
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the base class and requiring derived classes to implement an equivalence operator for 
' . ·1 

that derived class, is one way to handle the testing of a polymorphic object when one 

does not know to which class that instance belongs. 

2.5.6 Memory Allocation 

Creation or modification of objects in a collection cannot be achieved without due 

consideration of its impact on the memory requirements. In classical programming 

techniques, the size of an array must be determined statically at compile time, forcing 

a known limit on the number of objects an array can hold. This limit coexists with 

the limits of free memory allocation to variables and data structures invoked by the 

program at runtime. A software engineer must place knowledgeable upper bounds on 

every array used in the scope of the program. However, these are limits to the overall 

performance of the program. 

With object oriented memory allocations, collections are instantiated at an opti­

mal size, but have the ability to grow or shrink as necessary to accommodate the 

objects held. The expansion and contraction of the container is handled invisibly to 

the user. The design engineer can dictate at compile time the behavior of the col­

lection, for example, whether it will grow by doubling in size, or just adding sixteen 

1nore element positions. All the error checking and dynamic allocation techniques are 

written for this class, and thus, the engineer no longer has this issue to worry about 

or implement. 

2.6 · Problems with C++ 

2.6.1 Using Multiple Libraries 

The stated advantage of object oriented systems, design, and programming is that 

one can work in the problem domain, borrowing existing objects from already com­

plete and streamlined libraries. In practice, linking objects from separate libraries is 

extremely complicated, and further research must take place in this area. Specifically, 

compiling a program that needs objects from two distinct libraries has a chance of 
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running into conflicts between the libraries, such as definitions of what NIL is, or 

class definitions, for example, Object, Point, String, or Set. 

Since every object in a particular program should be polymorphic to a single class, 

such as Object in the NIH Class Library, having different root objects for each library 

conflicts with the theoretical notion of one root object. This problem is evident when 

designing a front-end user interface for the internal objects of a simulation. Every 

entity needs an internal representation which models its behavior in the simulation, 

and an external representation which models its physical display properties for the 

screen. 

Ap.other technical problem encountered when using both the NIH Class Library· 

[13] and InterViews Library [23] is that classes in one can be overwritten by a new 

class definition in the other, with no warning messages produced at compile time. 

For example, a common class called Point is utilized by both of these libraries. 

One dangerous solution to this type of problem would be for a software engineer 

to modify the source code to the library, rp.aking each class name distinct, such as 

changing Point to nihclPoint, etc. This is not a practical solution in cases where 

the library does not include modifiable source code, or the engineer does not have 

the capabilities of recreating the library. Modifying a library can also affect other 

packages previously written for the library. 

Similarly, the concept of NIL is vastly different in available libraries. In NIH 

Class Library, NIL is an Object, whereas in InterViews, NIL is defined to be 0. 

Globally renaming one of these literals is a solution to this problem, however, all the 

complications associated with the last problem are relevant here, too. 

A non-object oriented solution is to maintain a distinction between objects from 

each library, and not to compile two objects from different libraries together in the 

same 1nodule of code. This solution is costly, though, in that it requires objects 

to interface between libraries, which pass data between objects derived from the 

different libraries. Once again, this solution has dangerous side-effects. A header 

file contains the prototypes of classes and the class functions. In the compilation of 

a module of code, one object may handle a second by merely knowing the prototype 

and not the implementation of that second class. The compiler merely leaves enough 

22 



CHAPTER 2. THEORETICAL FOUNDATIONS 

memory space to include the second object when the modules are linked together. 

Inconsistency problems may occur due to the fact that· the interface objects· must 

have two separate header files, one for each side of the interface, and any differences 

in the size allocations of classes represented in these header files will have serious 

repercussions ( via bad pointers) during execution. The interface module will have 

the responsibility of transferring objects to and from fundamental data types, such 

that each header file for each side of the application need not know about any objects 

from the other library. In the implementation of this module, however, objects can 

be passed betw~en the two libraries. An example of this interface will be given in a 

later chapter. 

2.6.2 encapsulation of library objects 

A challenge arises for the library designer to create objects which are fully encap­

sulated, that is, the objects are modular and can be replaced easily with differing 

designs. In theory, a software engineer only needs to know the external fu~ctionality 

of an object, and all internal functions are both hidden and secure from him. The 

engineer need not know or understand the implementation of a library object, and is 

usually discouraged from even viewing it. 

Although encapsulation is sought in libraries, an engineer has the ability to re­

implement functions without realizing that the encapsulated object has been cor­

rupted. Almost all public member functions in the NIH Class Library are imple­

mented as virtual, encouraging the use of polymorphism. Virtual functions are 

necessary if we wish to have derived classes properly respond to a function call when 

the object is held as an instance of the base class. For example, the new implemen­

tation of the function may execute a few new lines of code, and then call the base 

class' function of the same name. The problem with re-implementing these functions 

is that an illegal action in a derived function may cause other base class functions 

which depend on the derived function to behave improperly, ( e.g. in this manner, the 

library objects can never be completed and securely encapsulated.) 
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2.6~3 The need to know .implementation of library objects 

With encapsulation comes the concept that a software engineer need not know the 

implementation of a library object, or any object for that matter, since the interface 

should relay all the relevant information for accessing and modifying an object. 

I disagree that there can ever be this external and limited view of objects in ob­

jected oriented programming. In my experience with the NIH Class Library, one 

constantly needs to examine the implementation of library objects, checking for such 

things as,whether or not a member function modifies its object, how memory man­

agement is attained, formatting for when the object is placed on the output stream, 

garbage collection, etc. These answers can be documented in a manual, but as one 

knows, the only reliable check is by tracing through the implementation. 

As an example, if a software engineer uses a Container to hold objects, and the 

engineer places objects in the Container: 

• Are the objects in the Container identical, or copies, or the placed objects? 
' 

• When an object is retrieved from the Container, will modifications to the object 

or Container affect each other? 

• Does losing scope on the Container or an object lose scope of the objects held? 

• When the destructor is called on the Container, does it destroy all the objects 

it holds? 

These and other similar questions are applicable to most objects. . 

Another issue with library objects is implementational bugs which make function 

calls non-standard. For instance, one would believe that checking to see if a key is 

included in a keyed collection should always return a boolean. However, the NIH 

Collections need an isEmpty() function call first to test if any keys are, in fact, held, 

and then, if true, check for the inclusion of a specific key. 

C++ allows the software engineer to specify functions that are const (constant) . 

. A const function has the property that none of the member variables of the object 

are modified when that particular function is called. Accessing methods are normally 
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constant. Constant functions are verified at compile time, and constant functions may 

only call oth~r constant functions inside the object. This programming notation can 

give an engineer the false sense that a function is safe to execute, but many loopholes 

exist which allow the engineer the latitude to corrupt the object by accident. For 

instance, the NIH sortable objects have a constant function compare which returns 

a -1, 0, or +1 depending on if the second object passed to the first occurs to the left, 

at, or to the right of the current object. In one of my implementations, I mistakenly 

had the compare access the Collection in which the object sat, corrupting a collection 

pointer. When the collection was accessed a second time, the pointer no longer 

held the correct inform~tion. Although the constant function is an easy notation to 

represent functions meant only to access information, the concept gives the engineer 

a false sense of security over data integrity. 

2.6.4 Type Casting 

C++ is a strong typed language. The compiler must know the types of all literals at 

the compile time. Unfortunately, this is a major drawback to pure object oriented 

languages in which type resolutions occur dynamically at run time. C++ requires 

strong type checking because the C++ code is merely transformed into C code, such 

that the standard C compiler and object linker can be used. The C linker requires 

that all function calls are explicitly tied to the matching function at compile time. 

Late binding, as SmallTalk implements, binds the function invocations to their 

routines dynamically at runtime. The only late binding in C++ occurs when virtual 

functions are called, in order to allow an object to invoke the proper derived class 

implementation at runtime. 

As a result of strong typing, the linker must know the class of each object calling a 

function, so that the tie can be established. Some variety exists on the way a function 

is called. For example, Circle is a derived class of Shape. If a Circle is held as a 

Shape, and the Shape is issued the function to compute its area, the Shape will call 

its own area function. However, if the Shape is coerced back into being a Circle, and· 

the same function call is made, the object will respond accordingly. 

When working with a library, one cannot insert virtual functions in the provided 
7 
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base classes without recompiling the library. Without the virtual function provided for 

in the base class, the polymorphic object cannot call the intended function without 

first being typecast to the derived class which contains the desired function. The 

solution would be to make a new abstract class, derived directed from the existing 

root class, an~ in the new class, implement all the problen1-related functionality. For 

example, if the root class is Object, create a derived class called MyObject from 

which all other entities can be modeled [25, p.393]. 

This solution only allows functionality added for Objects descended directly from 

Object. When an object class is derived from any other class, it no longer contains 

the MyObject class information. A creative solution would be to use Multiple 

Inheritance, such that the modeled entity would be derived from whichever existing 

library class, and also from MyObject. Objects constructed via multiple inheritance 

then can access functions from any of the superclasses, provided the compiler can 

resolve the typing sch;-llf Explicit typecasting will tell the compiler that an object 

with pointer "A" might really be of class "B", but if the software engineer is incorrect, 

the program will not function in the desired manner. 
I 

2.6.5 Copying Objects 

The assignment operator = is probably the most used operator, and if one does not 

understand its functionality, objects in memory can be corrupted. The assignment 

operator is used to copy an object, and there are two types of copies: 

shallowCopy - a pointer copy 

deepCopy - a contents copy 

A shallowCopy merely copies a pointer to an area of memory holding the object, so 

that a second pointer has access to the same memory location and functionality. This 

access is useful when a knowledgeable software engineer wants to pass around objects, 

without any modifications, because the shallowCopy can be performed in constant 

· time, with only one pointer of new memory spacerequi-red. Also, the pointer can be 

passed to a function if one wishes to have the function modify the object. By passing 
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only a pointer, the entire object need not be put on the stack, i.e., on the memory 

space provided for passing arguments to functions. 

A deepCopy allocates a block of memory identical in size to the original object, 

and proceeds to hierarchically decompose the object, and reconstruct a copy of it in 

the new location. A deep copy must be aware of circular pointers, so that the copy 

'----) does not wind up in an endless loop. For example, if object B is held as a member 

variable of object A, and object B points back to object A, then a deep copy should 

not get caught in that circularity. Once a deep copy is made, modification to either 

copy will not affect each other. This copying technique is useful when an object needs 

to be passed to a function, and one has no knowledge of the function, but does not 

want the object modified. 

Unless methods are provided, the assignment operator normally performs a shal­

low copy. In C++, by implementing following special constructor: 

X :: X(const X&); 

this function will be called when the assignment operator is used for class X. This 

constructor allows the software engineer to define a unique deep copy for class X. 

2.6.6 Garbage Collection and Memory Management 

Garbage collection and memory management are handled differently in objected 

oriented languages. Memory management refers to allocation and deallocation of 

memory space when objects are constructed and destructed, respectively. Garbage 

collection is the process by where objects are removed from memory when they are 

no longer needed. 

Garbage collection may be implicit, as in SmallTalk, or explicit, as in C++. Theo­

retically, an object can be removed from memory space when no other object needs a 

reference to it. SmallTalk holds a list of pointers to objects, and periodically, or when 

space is needed, the system checks the list against objects in memory. Whenever an 

object exists in memory space without a pointer to it stored in the list, the memory 

space is relinquished to the free memory store. SmallTalk automatically provides this 
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service, however, a price must be paid in performance since the service needs to be 

processed without knowledge of the current state of objects in the system. 

Explicit garbage collection is handled in C++ but having a destructor function 

called either directly in a function call by the software engineer, or inserted by the 

compiler when an object loses scope. The destructor function allows the engineer to. 

explicitly free memory that was allocated by the constructor for that object. The 

engineer must maintain the memory management by remembering to implement the 

requisite destruction routine. 

2.6. 7 Documentation 

Documentation is the key to the usability of object oriented libraries. Although 

a library might contain all the necessary objects and functionality, the library is 

worthless without adequate instructions on the use of these objects. 

The following are means by which a library architect can document his library: 

• User /Reference Manuals 

• Example packages 

• Header files 

• Documented (Implementational) code 

This list is given in increasing closeness to the actual code of the library. In the­

oretical terms, the software engineer should never need to read the library's code; 

the Reference Manual should include all the external functionality of the library's 

objects. For streamlining and debugging of applicational functions, it may become 

necessary to peek into the library for hints and answers to the problem at hand. This 

philosophy, in one sense, violates the notion of information hiding in libraries, but 

adheres to the idea that object oriented programming ne~d not duplicate earlier pro­

gramming.efforts. Re-use of code can only be attained when the engineer has access 

to all the code implementation, from all the applicational routines and algorithms, to 

the lowest levels of the libraries. 
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A good reference manual should contain the following information on every object 

in the library: 

• Object Class 

• Base Class 

• Derived Classes 

• Related Classes 

• Constructors and Destructors 

• Public member variables and functions 

• Behavioral properties of instances of the object class 

• Any related information which is necessary when using instances of the object 

class 

• Examples of instantiating and using the object from the designer's point of 

view. 

Most C++ Libraries currently available do not have coherent documentation. Er­

rors also occur in their examples. The Inter Views package from Stanford [23] is an 

example of a very rich library of objects with poor documentation. 

Some libraries have amazing reference manuals, examples, explanations, docu­

mented code, etc. As an example of this style, I refer to Keith Gorlen's release 3.10 of 

the NIH C++ Class Library reference manual (Draft Copy) [13], along with his book 

on Object Oriented Design [14]. 

Browsing is the key to learning object oriented libraries. Browsing consists of 

a presentation of classes in a fashion such that the engineer can search around for 

objects, messages, or concepts, copy ideas, learn the algorithms used, and gain a 

familiarity with the libraries. SmallTalk has a browser incorporated into its system 

[11], and the quicker one can master the Browser, the faster software development 
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becomes. The reference manual should be a hardcopy of the information one might 
want to know when browsing. 

The information presented leads a software engineer to choose which objects one 
wants to design with. Questions as to inheritance, related structures, public messages 
provided, and behavior are quickly answered so that design can progress as fast as 
possible, with the right design decisions from the start. If one chooses the correct 
objects to begin with, one does not need to waste time redesigning objects created 
from inefficient structures. 

At times, the software engineer wishes to know more about the library objects. 
Also, if the library has an ineffective reference manual, or even worse, does not include 
a reference manual, one must know how to browse the actual code. The reference 
manual should be a readable presentation of the collection of header files to the ob­
jects. By careful review of the header files, the same information can be extracted. 
These files contain the object class definitions, more technically providing the class 
hierarchies, member variables, public messages, etc. Commenting in the files can also 
help in this situation. 

The ultimate source for browsing is the implementation of the object functions. 
Although reading someone else's source code might be difficult, depending on the 
library designer's programming styles and the reader's mastery of the language, this 
will provide examples that use the objects provided, and give insights into algorithms 
available. 

If example programs using the libraries are available, one should refer to these to 
solve specific implementational problems, or even try to master the examples to gain 
expertise with the library. Rewriting an example will also allow a user to better un­
derstand the steps needed in the process of turning one's own code into an executable 
package. 

As an example, reference pages for objects designed for use with Project: FIDS 
are provided in Chapter 3. 
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' 

2. 7 Interface between Simulation and External 

World 

An object oriented simulation contains both the internal objects to perform the simu­

lation and the external user interface. Every action taken by the user must affect the 

simulation as needed, and conversely, the simulation must be correctly portrayed in 

the user's view4
• The interface between these two domains must have this functional­

ity, namely, to process the internal-to-external and external-to-internal handshaking 

of messages, events, and objects. 

The object oriented abstraction of the simulation holds the current state of the 

participating entities. The external user interface may be any modular package which 

allows one to view, or observe, this simulation. For example, the external portion may 

be a powerful X-Windows graphical user interface for a Sun Workstation or a simple 

ASCII text dialog with the user. The interface must provide a protocol for accessing 

and modifying the information held by the simulation. 

One feature of this interface layer is that the designer can create a text-only de­

bugging front-end for the simulation, before a more in-depth graphical representation 

is realized. Also, any graphical user interface is dependent on the computer platform 

currentl-y being used, and although the code for the internal simulation is portable, 

the graphical routines. usually are not. In this case, all the graphics are encapsulated 

· in a section of the project solely responsible for display and disconnected from the 

abstracted entities. When the project is ported to a different platform, or when the 

graphical capabilities are upgraded on the current platform, the task of creating a 

new front-end will not affect the already-working internal objects. 

The interface module links the internal and external representations. Because of 

this property, the internal simulation modules need not be compiled with any knowl­

edge of the external world, and vice versa. Programming tricks may be necessary, 

however, to compile this interface. Modules in C++ include an implementation file as 

well as a file containing the class structures and prototype of the available functions. 

As long as no implementations are given in the header file, one may have several 

4Please refer to Chapter 5 for a discussion of the user interface. 
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header files for the interface module. The complete header file with all functional­

ity may be included when compiling the internal objects; whereas a stripped down 

version containing only the fundamental C++ ~ata types and structures will be used 

when compiling the front-end portion of the project. This solution also eliminates any 

possible class name conflicts between the internal and external libraries by decoupling 

their .compilations. 

'· 
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Chapter 3 

Project: FIDS 

3.1 Overview 

The following chapter presents the reader with an example in object oriented design. 

The project chosen, simulating the Framework for Integrated Design System (FIDS), 

has the task of representing a two-dimensional structural frame, allowing user im­

posed constraints on locations for members, and satisfying all given load events. The 

decomposition of entities participating in this simulation will be discussed, focusing 

on their behavioral characteristics abstracted and encapsulated into object oriented 

models. The physical objects will be presented in the same order as designed, from 

the lowest level conceptual objects needed as base classes and dependent abstract 

member variables, to the objects representing the formal constraints. Next, the Con­

tainer objects for holding these physical objects will be demonstrated. And finally, the 

Process Objects used as glue to mesh the various objects, internally and externally, 

along with the interface to the extern representation, will be presented. 

3.2 Modeled Objects 

The following sections contain the technical descriptions of the entities modeled for 

this project. These descriptions are presented as reference manual pages, for ease 

of use of this simulation library. The pages contain important design specifications 
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along with corresponding solutions to the problems encountered when abstracting 

the models. Each reference page contains the name oft.he object, base class, derived 

classes, related classes, descriptions, constructors ( and destructors ), public access 

functions, and constant objects of that type, such as NIL objects. The description 

section elaborates the design issues for the entity, along with the state variables needed 

to represent the behavioral state of the object . 

.. 
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3.2.1 GridLine 

BASE CLASS 

Object 

DERIVED CLASS 

None 

RELATED CLASSES 

GridHolder, GenericPoint 

DESCRIPTION 

" Grid lines form a two dimensional mesh of reference lines where beams and 

columns are most likely to be placed. 

Typically, A and B represent vertical grid lines, and 1, 2, horizontal grid lines. 

Note that the structure to be analyzed is defined to begin at grid lines A and 1, 

but extended grid lines below and to the left must exist as anchors for the perimeter 

of the structure. The same is true for the right-most vertical and top-most horizontal 

grid lines. 

These grids lines are the most probable locations for beams and columns, but do 

not ensure that a beam or column will actually fall in these locations. 

All objects in a structure are geometrically located via grid lines. Therefore, the 

grid line is the most primitive entity in this simulation model. 

A GridLine has a label, orientation, and distance from the left- or bottom- most 

grid line (for vertical and horizontal, respectively). By changing the spacing between 
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grid lines, the geometry of the resulting structure will be modified accordingly. Areas 

in the grid are all scaled by these distances between grid lines. 

A fixed absolute outside perimeter for a structure must be created. Then grid 

lines may be constructed inside the perimeter. A grid line may be moved, as long as 

it does not cross over another grid line. New grid lines may be added at any location 

in bounds. Grid lines may not be removed if any other ·objects are tied to the grid 

line by its label reference. 

CONSTRUCTORS and DESTRUCTORS 

GridLine( const String& label, const OrientType& orient, 

const Float& dis) 

GridLine( char* label, char* orient, double dis) 

GridLine( char* label, OrientType orient, double dis) 

PUBLIC ACCESS 

String& label() const 

OrientType& orient () const 

Float& distance() const 

bool isNIL() const 

bool isBoundingGridLine() const 

CONSTANT OBJECTS 

GRIDLINENIL = GridLine( "NIL", none, 0) 

BOTTOM GRID LINE = GridLine( "BOTTOM", horiz, 0) 

LEFTGRIDLINE = GridLine("LEFT", vert, 0) 

TOPGRIDLINE. = GridLine( "TOP", horiz, BIGNUM) 

RIGHTGRIDLINE = GridLine( "RIGHT", vert, BIGNUM) 
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3.2.2 GenericPoint 

BASE CLASS 

Object 

DERIVED CLASS 

ClearSpace 

RELATED CLASSES 

Load 

DESCRIPTION 

A GenericPoint specifies the location of an entity in space relative to bounding 

grid lines. By redundancy in the state variables of a generic point, four different types 

of points can be held: Intersection, Vertical Line, Horizontal Line, and Rectangular 

Area. The point also has the ability to be calculated in fixed measurements from the 

surrounding grid lines, or a ratio of the distance between the same grid lines. The 

following are definitions of the GenericPoint 's member variables: 

GenericPoint(gridA, gridB, gridl, grid2, x..start, y ..start, x..stop, y ..stop, 

XJelative, y Jelative) 

gridA and gridB are the labels to the bounding vertical grid lines, and 

gridl and grid2 are the labels to the bounding horizontal grid lines 

xJelative: TRUE => x..start and x..stop are relative measurements 

( 0 < x..start, x..stop < 1) of the distance between grid lines A and B. 

FALSE => x..start and x..stop are fixed distance offsets. 
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y _relative: TRUE => y ..start and y ..stop are relative measurements 

( 0 < y ..start, y ..stop < 1) of the distance between grid lines 1 and 2. 

FALSE => y ..start and y ..stop are fixed distance offsets. 

x..start: a horizontal offset of a point from the given grid crossing in 

either a relative measurement (if x..relative :::} TRUE) or 

a fixed distance (if x..relative => FALSE). 

This is a horizontal starting offset. 

y ..start: a vertical offset of a point from the given grid crossing in 

either a relative measurement (if y ..relative => TRUE) or 

a fixed distance (if y ..relative => FALSE). 

This is a vertical starting offset. 

x..stop: a horizontal offset of a point from the given grid crossing in 

either a relative measurement (if x..relative => TRUE) or 

a fixed distance (if x..relative => FALSE). 

This is a horizontal stopping offset. 

y ..stop: a vertical offset of a point from the given grid crossing in 

either a relative measurement (if y _relative => TRUE) or 

a fixed distance (if y ..relative => FALSE). 

This is a vertical stopping offset. 

The Four classes of points: 

INTERSECTION POINT 

, associated with a connection of two objects, or 

a point in space for another object or force) 

~ Two grid lines given ( A, 1) (grid lines 1 = 2, A = B) 

, ( x..start, y ..start) is the offset from the grid crossing 
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• x..start must equal x..stop 

• y ..start must equal y ..stop 

• getPoint returns coordinate of intersection 

HORIZONTAL LINE 

• associated with a beam or girder object 

• Three grid lines given (A, B, 1) (grid lines 1 = 2) 

• (x..start, y ..start) is the offset from the grid crossing 

• y ..start must equal y ..stop 

• For a complete horizontal grid line segment between vertical grid lines, 

x..start, y ..start, y ..stop = 0 

x..stop = 1, and 

x_relative = TRUE 

• getOrigin returns left coordinate 

• getCorner returns right coordinate 

VERTICAL LINE 

• associated with a column object 

• Three grid lines given (A, 1, 2) (grid lines A = B) 

• ( x..start, y ..start) is the offset from the grid crossing 

• x..start must equal x..stop 

• For a complete vertical grid line segment between horizontal grid lines, 

x..start, x..stop, y ..start = 0 · 

y..stop = 1, and 

y _relative = TRUE 
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• getOrigin returns bottom coordinate 

• getCorner returns top coordinate 

RECTANGULAR AREA 

• associated with a wall-type object 

• Four distinct grid lines given (A, B, 1, 2) 

• Inside rectangle given, XJ3tart, XJ3top represent left/right bounds 

y ...start, y _stop represent bottom/top bounds 

• getOrigin and getCorner messages find absolute coordinates for an area 

CONSTRUCTO.RS and DESTRUCTORS 

GenericPoint( const String& gridA, const String& gridB, 

const String& gridl, const String& grid2, 

Float& x...start, Float& x_.stop, Float& y ...start, Float& y J3top, 

bool x_telative, bool y _relative) 

PUBLIC ACCESS 

String& gridA() const 

String& gridB() const 

String& gridl () const 

String& grid2() const 

Float& x_start() const 

Float& x...stop() const 

Float& y ...start() const 

Float& y ...stop() const 

bool x_rel() const 

bool y _rel() const 
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bool actsOnGrid( const String& gridLabel) const 

void getPoint(Float& x, Float& y) const 

void getOrigin(Float& xO, Float& yO) const 

void getCorner(Float& xl, Float& yl) const 

PointType type() const 

bool good() const 

bool bad() const 

bool isNIL() const 

CONSTANT OBJECTS 

GENERICPOINTNIL = GenericPoint( "NIL" "NIL" "NIL" "NIL") 
' ' ' 
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3.2.3 Compass 

BASE CLASS 

Float 

f 

DERIVED CLASS 

None 

RELATED CLASSES 

Load 

DESCRIPTION 

A Compass is a direction holder. A Compass may be constructed via an enumer­

ated list of directions (for right_dir, up_dir, left_dir, down_dir), or with the enumerator 

"other_dir" and a double precision floating point value for the angle. Compass uses 

a right handed system with right_dir equal to 0° and up_dir equal to 90°. 

CONSTRUC'l'ORS and DESTRUCTORS 

Compass( CompassType, double v) 

PUBLIC ACCESS 

CompassType dir() const · 

bool isNIL() const 

CONSTANT OBJECTS 

COMPASSNIL = Compass(other_dir, 0) 
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3.2.4 Load 

BASE CLASS 

Object 

DERIVED CLASS 

None 

RELATED ~ASSES 

LoadList, LoadEvent, LoadManager 

DESCRIPTION 

All loads can be represented internally as: 

Load(Name, NominalLoadCategory, Location, Magl, Mag2, Direction, 

SupportSurface) 

Constant Loads 

• Location {:: Intersection GenericPoint 

------t load acting on a point 

• Location {:: Line GelliericPoint 
\ 

------t constant load distributed on line 

------t ( must have Magl = Mag2) 

Distributed Loads 

• Location {:: Line GenericPoint 

------t varying load distributed on line 

------t ( must have Magl -:f. Mag2) 
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NominalLoadCategory: represents a type for the load, for example: loads due to 

members in the structure, wind, external loading, etc. A list of standard 

tags and user defined options exist. 

Location: A GenericPoint which is either an Intersection or Line point 

Intersection H Point Load 

Line Point H Load along a surface 

. Magl: Magnitude of force at left or bottom of LinePoint ( or at Intersection) 

Mag2: Magnitude of force at right or top of LinePoint 

Direction: Indicates a Compass direction of force 

SupportSurface: Indicates the surface of a member along a gridline to which the 

load acts on. This is an enumerated list of tags such as top...sur, 

bottom...sur, left...sur, right...sur, and centerline_sur 

CONSTRUCTORS and DESTRUCTORS 

Distributed Load: 

Load(String& name, NominalLoadType& nominalJoad_category, 

GenericPoint& line_point, Float& magnitudel, Float& magnitude2, 

Compass& .dir, SurfaceType& support_surface) 

Point Load: 

Load(String& name, NominalLoadType& nominalJoad_category, 

GenericPoHit& intersection_point, Float& magnitude, 

Compass& dir, SurfaceType& support_surface) 

PUBLIC ACCESS 

String& name() const 

N ominalLoadType& nominalLoad Category() const 
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GenericPoint& linePoint() const 

Float& magl () const 

Float& mag2() const 

Compass& direction() const 

SurfaceType& supportSurface() const 

loadType type() const 

bool isNIL() const 

CONSTANT OBJECTS 

LOAD NIL = GridLine( "NIL", D, GENERICPOINTNIL, 0, 0, 

COMPASSNIL, top..sur) 
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3.2.5 LoadList 

BASE CLASS 

Dictionary 

DERIVED CLASS 

None 

RELATED CLASSES 

LoadEvent 

. DESCRIPTION 

A LoadList is a collection of related loads from a single entity in a structural 

design. The loads are accessible by the load name. A load list has a unique label 

used as a reference when placed in a LoadEvent. 

LoadLists are constructed with only a load list label, but then may have loads 

added, removed, or changed inside the collection. 

CONSTRUCTORS and DESTRUCTORS 

LoadList ( String& label) 

PUBLIC ACCESS 

' 
String& label() const 

bool holds(String& label) const 

ManagerErrors addLoad(Load& aLoad) 

ManagerErrors removeLoadWithLabel(String& label) 
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ManagerErrors changeLoad(String& oldLabel, Load& newLoad) 

int numberOfLoads() const 

Load& getFirstLoad() 

Load& getLoadAfter( String& label) 

bool isNIL() const 

CONSTANT OBJECTS 

LOADLISTNIL = LoadList("NIL") 
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3.2.6 LoadEvent 

BASE CLASS 

Dictionary 

DERIVED CLASS 

None 

RELATED CLASSES 

LoadEventManager 

DESCRIPTION 

A LoadEvent is a collection of LoadLists and other LoadEvents. The LoadEvent 

typically contains all the loads due to a certain physical phenomena. A LoadEvent 

may only be held by one other LoadEvent, and has a reference to this parent. If the 

LoadEvent is not held, the parent reference points to NIL. 

The LoadEvent is comparable to a lookup table with keys and values. Its entries 

are in no particular order, so a Dictionary has been chosen as the base class. A 

LoadEvent is constructed on a key which names that LoadEvent. When adding 

a LoadList to the LoadEvent, an Association between the LoadList label and the 

actual LoadList object are entered into the Dictionary. When a second LoadEvent 

is added to a first LoadEvent, the second LoadEvent gets its parent label set to the 

first, and only a reference to the child is maintained in the parent LoadEvent. 

A LoadEvent may add, remove, or change LoadLists and LoadEvents which it 

contains. 

CONSTRUCTORS and DESTRUCTORS 
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LoadEvent( St~ing& label) 

PUBLIC ACCESS 

String& label() const 

String& parent() const 

void setParent(String& parentLabel) 

LoadManager& allLoads() const 

ManagerErrors addLoadEvent(String& newLoadEventLabel) 

Manager Errors addLoadList(LoadList& newLoadList) 

Manager Errors removeLoadList WithLabel(String& label) 

ManagerErrors removeLoadWithLabel(String& loadListLabel, String& loadLabel) 

ManagerErrors changeLoad(String& loadLabel, Load& newLoad) 

int numberOfLoads() const 

int numberOfLoadLists() const 

int partialNumberOfLoads() const 

int partialNumberOfLoadLists() const 

bool holdsLoadWithLabel(String& loadLabel) const 

bool holdsLoadList WithLabel(String& loadListLabel) const 

bool holdsLoadEvent(String& loadEventLabel) canst 

LoadList& getLoadList WithLabel( String& loadListLabel) 

LoadList& getFirstLoadList() 

LoadList& getLoadListAfter( String& loadListLabel) 

bool isNIL() canst 

CONSTANT OBJECTS 

LOADEVENTNIL = LoadEvent( "NIL") 
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3.2. 7 ClearSpace 

BASE CLASS 

GenericPoint 

DERIVED CLASS 

None 

RELATED CLASSES 

ClearSpaceManager 

DESCRIPTION 

ClearSpace(Label, ClearSpaceTag, AreaPoint) 

A ClearSpace is used to prevent walls and diagonal members from being placed at 

the given AreaPoint location. The Label is a unique string used to access the entity. 

The ClearSpaceTag represents the cause of the ClearSpace, such as a lobby, mod­

ern office, elevator shaft, etc. These tags are kept in a global set from which a 

ClearSpace can select its type, or create a new type. 

init() will clear all the clear space tags. 

CONSTRUCTORS and DESTRUCTORS 

ClearSpace( const String& label, const String& clearSpaceTag, 

const String& gridA, const String& gridB, 

const String& gridl, const String& grid2, 

Float& x..start, FJoat& x..stop, Float& y ..start, Float& y ..stop, 

bool xJelative, bool y Jelative) 

ClearSpac~( const String& label, const String& clearSpaceTag, 

const GenericPoint& anAreaPoint) 
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PUBLIC ACCESS 

String& label() const 

String& tag() const 

Set& getTags() const 

static void init() 

void clear() 

void add Tag( const String&) 

bool isNIL() const 

CONSTANT OBJECTS 

CLEARSPACENIL = ClearSpace( "NIL", "NIL", GENERICPOINTNIL) 
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3.2.8 LOG (List of Objects. on a GridLine) 

BASE CLASS 

SortedCltn 

DERIVED CLASS 

None 

RELATED CLASSES 

LOG Holder 

DESCRIPTION 

LOGs are used to hold a List of Objects along a Grid line. The LOG has a unique 

label equivalent to that of the label of its grid line. The LOG holds sortable objects 

in its inherent sorted collection, but also maintains a lookup table, via a member 

variable which is a key sorted collection, for accesses by key. 

The LOG is a sortable object itself, and its compare() function orders by the 

distance of the related grid line. 

Objects can be stored or removed from the LOG by means of a unique key asso­

ciated with the given object. This key, a String, is utilized as the lookup key. 

CONSTRUCTORS and DESTRUCTORS 

LOG(String& label) 

PUBLIC ACCESS 
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String& label() const 

ManagerErrors storeWithKey(String& key, Object& valueObject) 

ManagerErrors removeObjectWithKey(String& key) 

Object& getObjectWithKey(String& key) 

Object& getObjectAfter(String& key) 

bool holds(String& key) const 

bool isNIL() const 

CONSTANT OBJECTS 

LOG NIL = LOG( "NIL") 
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3.2.9 Offset 

BASE CLASS 

Object 

DERIVED CLASS 

None 

RELATED CLASSES 

Offset Manager 

DESCRIPTION 

Offset(key, gridLabel, bound_l, bound..2, Value, offset..surface) 

An Offset contains a structure's offset along the grid line with label "gridLabel" 

bounded by the grid lines with labels "bound_l" and "bound..2". The Value of this 

offset is a Float. 

The key is a unique string used to reference this offset. 

The variable offset..surface holds a SurfaceType enmnerated type. 

top..sur, bottom..sur, and centerline..sur are used for horizontal members, 

left..sur, right..sur, and centerline..sur are used for vertical members. 

Offsets may check to see if they overlap with another, because overlapping offsets 

are generally disallowed. 

CONSTRUCTORS and DESTRUCTORS 

Offset(String& key, String& gridLabel, String& bound,..1, String& bound_2, 

Float& value, SurfaceType& offset..surface) 
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PUBLIC ACCESS 

String& key() const 

String& grid() const 

String& boundl () const 

String& bound2() const 

Float& value() const 

SurfaceType& offsetSurface() const 

bool overlaps( Offset& anotherOffset) const 

bool isNIL() const 

CONSTANT OBJECTS 

OFFSETNIL = Offset() 
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3.2.10 RelativePosition 

BASE CLASS 

Object 

DERIVED CLASS 

None 

RELATED CLASSES 

RelPosManager 

DESCRIPTION 

A relative position has the following structure: 

RelPos(key, grid_l, grid..2, extent_Start, extent_Stop, 

grid_L.surface, grid..2.Burface, min_max_mode, 

lessJhan, greater_than, equaLto) 

A relative position is used to specify headrooms and widths in the structure. The 

key is a unique String used to access a particular RelPos. The RelPos specifically 

applies to the members which will be attached at locations along grid_l and grid..2. 

The extenLStart and extenLStop are the labels of the grid lines bounding the relative 

position constraint. The variables grid_l.Burface and grid..2.Burface reference the 

surfaces of the members along grid_l and grid_2, respectively, for which the constraint 

applies. 

The min_max_mode is used to toggle between using "<" and ">" constraint values 

or using an explicit "=" valu~. Both data variables are given, but the useful informa-
, 

tion is determined by the state of this mode indicator. In this scheme, one then has 

minimum and maximum position constraints, as well as fixed position requirements. 
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CONSTRUCTORS and DESTRUCTORS 

RelPos( const String& key, 

const String& grid_l, const String& grid..2, 

const String& extentStart, const String& extentStop, 

SurfaceType& grid_l_surface, SurfaceType& grid..2..surface, 
p 

bool min..max_mode, 

Float& lessJhan, Float& greater_than, 

Float& equaLto) 

PUBLIC ACCESS 

String& key() const 

String& gridl () const 

String& grid2() const 

String& extentStart() const 

String& extentStop() const 

SurfaceType& gridlSur() const 

SurfaceType& grid2Sur() const 

bool minmax() canst 

Float& lessThan() canst 

Float& greaterThan() const 

Float& equalTo() const 

GenericPoint& rect() canst 

bool good() canst bool isNIL() const 

CONSTANT OBJECTS 

RELPOSNIL = RelPos( "NIL" "NIL" "NIL" 
' ' ' 

"NIL", "NIL" , top_sur, top_sur) 
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3.3 Managing Objects 

The following sections contain the reference pages for the manager, or container, ob­

jects in the FIDS. Although these objects seem independent, they are the variables 

needed for representing the state of a generic structural frame. The Manager class is 

the one object encompassing all the behavioral characteristic of a single frame prob­

lem. From the outside, this class will manage all accesses to the problem involving the 

entities such as GridLines, Loads, LoadLists, LoadEvents, Offsets, ClearSpaces, Rel­

ativePositions, etc. A diagram representing the theoretical structure of the manager 

is provided in Figure 3 .1. 

The simulation currently treats the sub-managers for the entity objects, such as 

the GridManager, LoadEventManager, and GeometricConstraintManager, as clients 

of the Manager, but a more precise model of this manager would be an object multiply 

inherited from these sub-managers. The Manager then would inherent the function­

ality of each sub-manager. By doing so, the Manager would implicitly accept calls to 

the sub-managers without having to explicitly pass each function call to the correct 

one. This method does give full public access from the sub-managers to the Manager's 

interface. 
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r---------~----------------------
' 

Horizontal Grid Holder Vertical Grid Holder 

Grid Manager 

~--------------------------------

r--------------------------------1 

Load Event Manager 

L--------------------------------1 

Offset 
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Clear Space 
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Relative Position 
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Geometric Constraint Manager 
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The Manager 

Figure 3.1: The Manager Structure 
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3.3.1 Grid Holder 

BASE CLASS 

SortedCltn 

DERIVED CLASS 

None 

RELATED CLASSES 

GridLine, GridManager 

DESCRIPTION 

A GridHolder has the task of holding homogeneous GridLines. A GridLine is 

a sortable object and uses its distance from yither the bottom- or left- most grid 

line, ( for horizontal and vertical grid lines, respectively), as the ordering criteria. All 

GridLines in a GridHolder, then, must have the same orientation, either horiz or vert. 

The GridHolder accesses its GridLines by the GridLine label. GridLines may be 

stored, removed, or changed. Methods also exist for accessing the first, last, current, 

previous, and next GridLines. In order to accomplish these functions, the GridHolder 

maintains a pointer to the last accessed GridLine. Be aware that side effects from 

other objects might affect this position state. 

Note that the getFirst(), getLast(), getPrevious(), and getNext() functions 

are nqt const functions because they modify this position pointer. 
,· 

CONSTRUCTORS and DESTRUCTORS 

GridHolder() 
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PUBLIC ACCESS 

ManagerErrbrs removeAllGrids() 

Manager Errors storeGridLine( GridLine& aGridLine) 

ManagerErrors removeGridLine(String& label) 

Manager Errors changeGridLine(String& oldLabel, GridLine& newGridLine) 

bool holds( String& label) const 

. int numberOfGridLines() const 
I 

GridLine& getFirst() 

GridLine& getCurrent() const 

GridLine& getNext() 

GridLine& getLast() 

GridLine& getPrevious() 

GridLine& getGridLine WithLabel( String& label) 

GridLine& getGridLine WithDistance( const Float& distance) 

GridLine& getGridLineBefore( const Float& distance) 

GridLine& getGridLineAfter( const Float& distance) 

Float& findDistanceBetween(String& labeLl, String& label-2) 

GridHolder& getGridLinesBetween(String& labeLl, String& label-2) const 

CONSTANT OBJECTS 

None 
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3.3.2 Grid Manager 

BASE CLASS 

Object 

DERIVED CLASS 

None 

RELATED CLASSES 

GridHolder 

DESCRIPTION 

The GridManager holds two GridHolders, one for the horizontal grid lines and 

one for the vertical grid lines. When grid lines are handed to and from this Grid­

Manager, it must determine the orientation of the grid line and correctly place it in 

a GridHolder, or retrieve from the right collection. 

Before any GridLines are placed in the GridManager, the message init () must 

be called to set up NIL objects and place in the GridHolders the four bounding 

grid lines: BOTTOMGRIDLINE, TOPGRIDLINE, LEFTGRIDLINE, and RIGHT­

GRIDLINE. The distance of the BOTTOMGRIDLINE and LEFTGRIDLINE are 0, 

and the TOPGRIDLINE and RIGHTGRIDLINE and a "large" distance, representing 

oo. The methods setOrigin(xO, yO) and setCorner(xl, yl) should be called before any 

GridLines are placed in the GridManager. These methods modify the the distances 

of the bounding GridLines to reflect the scale chosen by the user. 

The GridManager also allows access to the public member functions for the Hor­

izontal GridHolder and Vertical GridHolder. 

CONSTRUCTORS and DESTRUCTORS 
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GridManager() 

PUBLIC ACCESS 

ManagerErrors init() 

ManagerErrors clear() 

Manager Errors storeGridLine( GridLine& aGridLine) 

Manager Errors removeGridLine WithLabel( String& label) 

ManagerErrors changeGridLine(String& oldLabel, GridLine& newGridLine) 

bool bothHold(String& label) const 

bool eitherHold(String& label) const 

int numberOfHoriz() const 

int numberOfVert() const 

bool setOrigin(Float& xO, Float& yO) 

bool setCorner(Float& xl, Float& yl) 

GridLine& getFirstHoriz() 

GridLine& getFirstVert() 

GridLine& getLastHoriz() 

GridLine& getLastVert() 

GridLine& getCurrentHoriz() const 

GridLine& get Current Vert() const 

GridLine& geJN extHoriz() 

GridLine& getNextVert() 

GridLine& getPreviousHoriz() 

G ridLine& getPrevious Vert() 

GridLine& getGridLine WithLabel(String& label) 

GridLine& getHorizGridLine WithDistance( const Float& y) 

GridLine& get VertGridLine WithDistance( const Float& x) 

GridLine& getHorizGridLineBefore( const Float& y) 

GridLine& get VertGridLineBefore( const Float& x) 
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GridLine& getHorizGridLineAfter( const Float& y) 

GridLine& getVertGridLineAfter( const Float& x) 

Float& findDistanceBetween(String& labeLl, String& label-2) 

GridHolder& getGridLinesBetween(String& labelJ., String& label.2) const 

CONSTANT OBJECTS 

None 
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3.3.3 LoadEvent Manager 

BASE CLASS 

Dictionary 
.,, 

DERIVED CLASS 

None 

RELATED CLASSES 

Load, LoadList, LoadEvent, LoadManager 

DESCRIPTION 

The LoadEventManager holds a collection of LoadEvents. Since LoadEvents have 

no indigenous order, each is stored in the LoadEventManager as an Association, 

with the LoadEvent label used as the key and the actual object as the value. The 

LoadEvents are then accessible via their label. LoadLists and Loads may also be 

accessed and modified. LoadEvents may be added, removed, or changed inside this 

LoadEventManager. 

Before any LoadEvents are placed in the LoadEventManager, the message init() 

must be called to set up NIL objects. 

CONSTRUCTORS and DESTRUCTORS 

LoadEventManager() 

PUBLIC ACCESS 
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ManagerErrors init() 

ManagerErrors clear() 

Manager Errors remuveAllLoadEvents() 

· Manager Errors addLoadEvent(LoadEvent& aLoadEvent) 

Manager Errors removeLoadEvent WithLabel( String& label) 

Manager Errors changeLoadEvent(String& oldLabel, LoadEvent& newLoadEvent) 

ManagerErrors changeLoad(String& loadLabel, Load& newLoad) 

bool holds( String& label) const 

bool holdsLoadWithLabel(String& label) const 

bool holdsLoadList WithLabel( String& label) const 

int numberOfLoadE~ents() const 

int numberOfLoads() const 

int numberOfLoadLists() const 

LoadEvent& getLoadEventWithLabel(String& label) const 

LoadEventManager& getLoadEventsOnPoint( const GenericPoint& aGP) const 

LoadEventManager& getLoadEventsOnGridLine(String& label) const 

LoadManager& allLoads() 

Load& getLoadWithLabel(String& loadLabel) 

CONSTANT OBJECTS 

None 
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3.3.4 Load Manager 

BASE CLASS 

Dictionary 

DERIVED CLASS 

None 

RELATED CLASSES 

Load 

DESCRIPTION 

The LoadManager holds a collection of Loads. Since Loads are have no specific 

ordering, the LoadManager can hold them in a Dictionary, with the Load label as the 

key, and the Load object as the value. Loads are accessed via their label and may be 

added, removed, or changed inside this collection. 

A LoadManager has no relation to a LoadList or LoadEvent, since the Load­

Manager holds a fiat collection of Loads, (unlike the LoadEventManager, which is 

comprised of a hierarchical tree-like description of loads in Loads in LoadLists and 

LoadEvents.) 

Before any Loads are placed in the LoadManager, the message init () must be 

called to set up NIL objects. 

CONSTRUCTORS and DESTRUCTORS 

LoadManager() 

PUBLIC ACCESS 
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ManagerErrors init() 

ManagerErrors clear() 

Manager Errors removeAllLoads() 

Manager Errors storeLoad(Load& aLoad) 

ManagerErrors removeLoadWithLabel(String& label) 
\.. 

ManagerErrors changeLoad(String& oldLabel, L~ newLoad) 

bool holds(String& label) const 

int numberOfLoads() const 

Load& getLoadWithLabel(String& label) const 

LoadManager& getLoadsOnPoint( const GenericPoint& aGP) const 

LoadManager& getLoadsOnGridLine(String& gridLabel) const 

LoadManager& get Loads WithN ominal Category(N ominalLoadType& 

nominalLoad Category) const 

virtual Collection& add ContentsTo( Collection& cltn) const 

CONSTANT OBJECTS 

None 
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3.3.5 ClearSpace Manager 

BASE CLASS 

Dictionary 

DERIVED CLASS 

None 

RELATED CLASSES 

Cl€arSpace, GeometricManager 

DESCRIPTION 

The ClearSpaceManager holds a collection of ClearSpaces. ClearSpaces are ac­

cessed via their label and may be added, removed, or changed inside this collection. 
( 

Before any ClearSpaces are placed in the ClearSpaceManager, the message init() 

must be called to set up NIL objects. 

CONSTRUCTORS and DESTRUCTORS 

ClearSpaceManager() 

PUBLIC ACCESS 

ManagerErrors init() 

ManagerErrors clear() 

Manager Errors store( Object& aClearSpace) 

Manager Errors storeClearSpace( ClearSpace& aClearSpace) 

Manager Errors remove Wi thLabel( String& label) 

Manager Errors changeClearSpace(String& oldLabel, ClearSpace& newClearSpace) 
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bool holds(String& label) const 

int numberOfClearSpaces() const 

ClearSpace& getClearSpace WithLabel( String& label) const 

ClearSpace& getFirstClearSpace() 

ClearSpace& getClearSpaceAfter(String& lastLabel) 

CONSTANT OBJECTS 

None 
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3.3.6 LOG Holder 

BASE CLASS 

SortedCltn 

DERIVED CLASS 

Offset Manager 

RELATED CLASSES 

LOG 

DESCRIPTION 

The LOGHolder holds a collection of LOGs, (List of Objects along a Grid line). 

LO Gs are accessed via their label ( which is the label of the grid line that the LOG 

attaches to) and may be added, removed, or changed inside this collection. 

Before any LOGs are placed in the LOGHolder, the message init() must be called 

to set up NIL objects. 

The messages holds() and numberOfLOGS () refer to the LOG label and collec­

tion of LO Gs, respectively, while holdsObjectKey( ... ) and numberOfObjects() 

refer to the objects held inside of all the LOGs which are held by this LOGHolder. 

CONSTRUCTORS and DESTRUCTORS 

LOG Holder() 

PUBLIC ACCESS 
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Manager Errors ini t () 

ManagerErrors clear() 

ManagerErrors storeLOG(LOG& aLOG) 

ManagerErrors removeWithLabel(String& labelOfLOG) 

bool holds(String& JabelOfLOG) const 

bool holdsObjectKey(String& objectKey) const 

int numberOfLOGs() const 

int numberOfObjects() const 

LOG& getLOGWithLabel(String& labelOfLOG) const 

LOG& getFirstLOG() 

LOG& getLOGAfter(String& lastLOG.Label) 

CONSTANT OBJECTS 

None 
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3.3. 7 Offset Manager 

BASE CLASS 

LOG Holder 

DERIVED CLASS 

None 

RELATED CLASSES 

GeometricManager 

DESCRIPTION 

The OffsetManager holds a collection of Offsets which are in turn held by LOGs. 

Note that the OffsetManager is a LOG Holder, and a lot of functionality for managing 

Offsets is provided for in the LOGHolder. Offsets may be added, removed, or changed 

inside this collection via their key. 

Before any Offsets are placed in the OffsetMq,nager, the message init () ( found in 
j 

LOG Holder) must be called to set up NIL objects. 

The messages holds() and numberOfLOGS() refer to the LOG label and collec­

tion of LO Gs, respectively, while holdsObjectKey( .. ,) and numberOfObjects() 

refer to the offsets held inside of all the LOGs which are held by this OffsetManager. 

Note that the functions given for the OffsetManager class supplement the functions 

already available in the LOGHolder class. 

CONSTRUCTORS and DESTRUCT.ORS 

Offset Manager(); 
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PUBLIC ACCESS 

Manager Errors store Offset ( Offset& an Offset) 

Manager Errors remove Offset Wi thKey( String& key) 

Manager Errors changeOffset(String& oldLabel, Offset& newOffset) 

int number0f0ffsets() const 

Offset& getFirstOffset() 
l 

Offset& getOffsetAfter(String& lastLabel) 

Offset& getOffsetWithKey(String& key) const 

CONSTANT OBJECTS 

None 
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3.3-.8 RelativePosition Manager 

BASE CLASS 

Dictionary I.. 

DERIVED CLASS 

None 

RELATED CLASSES 

RelPos, GeometricManager 

DESCRIPTION 

The RelPosManager holds a collection of RelPos 's. RelPos 's are accessed via their 

key and may be added, removed, or changed inside this collection. 

Before any RelPos's are placed in the RelPosManager, the message init() must 

be called to set up NIL objects. 

CONSTRUCTORS and DESTRUCTORS 

RelPosManager() 

PUBLIC ACCESS 

ManagerErrors init() 

ManagerErrors clear() 

ManagerErrors store(Object& aRelPos) 

Manager Errors storeRelPos(RelPos& aRelPos) 

Manager Errors remove WithKey( String& key) 

ManagerErrors changeRelPos(String& oldKey, RelPos& newRelPos) 
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bool holds(String& key) const 

int numberOffielPos() const 

RelPos& getFirstRelPos() 

RelPos& getRelPosAfter( String& last Key) 

RelPos& getRelPosWithKey(String& key) con.st 

CONSTANT OBJECTS 

None 
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3.3.9 Geometric Constraint Manager 

BASE CLASS 

Object 

DERIVED CLASS 

None 

RELATED CLASSES 

ClearSpaceManager, Offset Manager, RelPosManager, Manager 

DESCRIPTION 

The Geometric Constraint Manager is a conglomerate of a ClearSpace Manager, 

OffsetManager, and Relative Position Manager. ClearSpaces, Offsets, and RelPos's 

may be added, removed, or changed inside the GeometricManager via their label or 

key. 

Before any Objects are placed in the GeometricManager, the message init() must 

be called to set up NIL objects. 

CONSTRUCTORS and DESTRUCTORS 

GeometricManager() 

PUBLIC ACCESS 

ClearSpaceManager& CSM() const 

OffsetManager& OM() const 

RelPosManager& RPM() const 
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ManagerErrors init() 

ManagerErrors clear() 

Manager Errors store( Object& an Object) 

bool holds(String&.key) const 

int numberOfGeometricConstraints() const 

l\1anagerErrors storeClearSpace( ClearSpace& aClearSpace) 

Manager Errors removeClearSpac_e Wi thLabel( String& label) 

Manager Errors changeClearSpace(String& oldLabel, ClearSpace& newClearSpace) 

ClearSpace& getFirstClearSpace() 

ClearSpace& getClearSpaceAfter(String& lastLabel) 

ClearSpace& getClearSpaceWithLabel(String& label) const 

Manager Errors storeOffset ( Offset& an Offset) 

ManagerErrors removeOffsetWithKey(String& key) 

Manager Errors changeOffset(String& oldKey, Offset& newOffset) 

Offset& getOffsetWithKey(String& key) const 

int numberOfOffsets() const 

LOG& getFirstOffsetLOG() 

LOG& getOffsetLOGAfter(String& lastLOGJrny) 

Offset& get First Offset () 

Offset& getOffsetAfter( String& lastOffsetJrny) 

Manager Errors storeRelPos(RelPos& aRelPos) .11 

ManagerErrors removeRelPosWithKey(String& key) 

Manager Errors changeRelPos(String& oldKey, RelPos& newRelPos) 

RelPos& getFirstRelPos() 

RelPos& getRelPosAfter( String& last Key) 

RelPos& getRelPosWithKey(String& key) const 

CONSTANT OBJECTS 

None 
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3.3.10 Manager 

BASE CLASS 

Object 

DERIVED CLASS 

None 

RELATED CLASSES 

ClearSpaceManager, OffsetManager, RelPosManager, Manager 

DESCRIPTION 

The Manager is a conglomerate of a GridManager, LoadEventManager, and Geo-
, 

metricManager. GridLines (Horizontal and Vertical), LoadEvents (Loads and Load-

Lists), ClearSpaces, Offsets, and RelPos's may be added, removed, or changed inside 

the Manager via their label or key. 

Generally, a getFirstObjec.t returns the first object of that class in the Manager, 

and a getNextObj'ect(label) returns the next object held, given that the last object 

returned had the label ( or key) of label. Also, performing a getNext( "FIRSTTIME") 

is the same as a getFirst(). 

Before any Objects are placed in the Manager, the message init() must be called 

to set up NIL and bounding objects. 

The Manager also may help with the consistency checks of GenericPoint, Load, 

and LoadEvent objects, via the functions checkGP(), checkLoad(), and check-
1 

LoadEvent (), respectively. 

CONSTRUCTORS and DESTRUCTORS 
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Manager() 

Manager( const char* filename) / / create manager from filename ~ 

PUBLIC ACCESS 

void setManagerPointer() 

ManagerErrors init() 

Manager Errors store( Object& anObject) 

Manager Errors remove( Object& anObject) 

ManagerErrors clear() 

OrientType getGridLineOrient(String& label) const 

GenericPoint& getintersectionPoint(Float& x, bool x_rel, 

Float& y , bool y _rel) const 

GenericPoint& getAreaPoint(Float& xO, Float& yO, Float& xl, Float& yl, 

bool x..rel, bool y ..rel) const 

GenericPoint& getLinePoint(Float& xO, Float& yO, Float& xl, Float& yl, 

bool x..rel, bool y ..rel) const 

bool checkGP( GenericPoint& aGenericPoint) const 

bool checkLoad(Load& aLoad) const 

bool checkLoadEvent(LoadEvent& aLoadEvent) const 

GridManager& GM() const 

LoadEventManager& LEM() const 

GeometricManager& GCM() const 

void saveToFile( const char* filena1ne) const 

GridManager Messages: 

GridLine& getGridLineFromUser() const 

Manager Errors GMclear() 

ManagerErrors GMinit() 
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Manager Errors storeGridLine( GridLine& aGridLine) 

ManagerErrors removeGridLineWithLabel(String& label) 

., 

Manager Errors changeGridLine(String& oldLabel, GridLine& newGridLine) 

bool holdsGrid(String& label) const 

int numberOfHoriz() const 

int numberONert() const 

bool setOrigin(Float& xO, Float& yO) 

bool setCorner(Float& xl, Float& yl) 

GridLine& getFirstHoriz() 

GridLine& getFirst Vert() 

GridLine& getLastHoriz() 

GridLine& getLast Vert() 

GridLine& getCurrentHoriz() const 

GridLine& get Current Vert() const 

GridLine& getNextHoriz() 

GridLine& getNextVert() 

GridLine& getPreviousHoriz() 

GridLine& getPreviousVert() 

GridLine& getGridLineWithLabel(String& label) 

GridLine& getHorizGridLine WithDistance( const Float& y) 

GridLine& getVertGridLineWithDistance(const Float& x) 

GridLine& getHorizGridLineBefore( const Float& y) 

GridLine& getVertGridLineBefore( const Float& x) 

GridLine& getHorizGridLineAfter( const Float& y) 

GridLine& get VertGridLineAfter( const Float& x) 

Float& findDistanceBetween(String& labeLl, String& label-2) 

GridHolder& getGridLinesBetween(String& label.1, String& label-2) const 

LoadEventManager Messages: 

ManagerErrors LEMinit() 

ManagerErrors LEMclear() 
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bool holdsLoadEvent(String& label) const 

bool holdsLoadWithLabel(String& label) const 

bool holdsLoadListWithLabel.(String& label) const 

Manager Errors addLoadEvent(LoadEvent& aLoadEvent) 

Manager Errors addLoadEvent( St~ing& loadListLabei, String& loadEventLabel) 

ManagerErrors addLoadList(String& loadEventLabel, String& loadListLabel) 

ManagerErrors addLoad(String& loadEventLabel, String& loadListLabel, 

· Load& aLoad) 

Manager Errors removeAllLoadEvents() 

Manager Errors removeLoadEvent WithLabel( String& label) 

Manager Errors removeLoadEvent WithLabel(String& loadEventParentLabel, 

String& loadEventLabel) 

Manager Errors removeLoadList WithLabel( String& loadEventLabel, 

· String& loadListLabel) 

Manager Errors removeLoadWithLabel( String& loadEventLabel, 

String& loadListLabel, String& loadLabel) 

Manager Errors changeLoadEvent ( String& oldLabel, LoadEvent& new LoadEvent) 

ManagerErrors changeLoad(String& oldLabel, Load& newLoad) 

int numberOfLoadEvents() const 

int numberOfLoads() const 

int numberOfLoadLists() const ) 

LoadEvent& getLoadEventWithLabel(String& label) const 

LoadEventManager& getLoadEventsOnPoint( const GenericPoint& 

aGenericPoint) const 

LoadEventManager& getLoadEventsOnGridLine(String& label) const 

LoadManager& allLoads() 

Load& getNextLoad(String& lastLoadEventLabel, String& lastLoadListL~bel, 

String& lastLoadLabel) 

Load& getLoadWithLabel(String& label) 

GeometricManager Messages: 
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ManagerErrors GCMinit() 

ManagerErrors GCMclear() 

int numberOfGeometricConstraints() const 

bool holdsGeometricWithLabel(String& label) const 

Manager Errors storeClearSpace( ClearSpace& aClearSpace) 

Manager Errors removeClearSpace WithLabel( String& label) 

Manager Errors changeClearSpace(String& oldLabel, ClearSpace& newClearSpace) 

ClearSpace& getClearSpace WithLabel( String& label) const 

ClearSpace& getFirstClearSpace() 

ClearSpace& getNextClearSpace(String& lastLabel) 

Manager Errors storeOffset ( Offset& an Offset) 

Manager Errors removeOffset WithKey(String& key) 

Manager Errors changeOffset(String& oldKey, Offset& newOffset) 

Offset& getOffsetWithKey(String& key) const 

int numberOfOffsets() const 

LOG& getFirstOffsetLOG() 

LOG& getOffsetLOGAfter(String& lastLOGJabel) 

Offset& getFirstOffset() 

Offset& getNextOffset(String& lastKey) 

Manager Errors storeRelPos(RelPos& aRelPos) 

Manager Errors removeRelPos Wi thKey( String& key) 

Man~er Errors changeRelPos( String& oldKey, RelPos& new RelPos) 

RelPos& getRelPosWithKey(String& key) const 

RelPos& getFirstRelPos() 

RelPos& getN extRelPos( String& last Key) 

CONSTANT OBJECTS 

None 
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Internal External 

Generic Frame 
PF Interface 

i 
User Interface 

Manager 

Figure 3.2: Problem Formulation Interface 

3.4 Problem Formulation 

Problem Formulation (PF) is the first stage of development in the FIDS simulation, 

whereby a user, or other computational front.:.end package, has the ability to modify 

the contents of the Generic Frame representation. As shown previously, we have the 
' 

representation for a Generic Frame's state held in the Manager object which then can 

be handed off to a Specific Frame's Problem Development (PD) phase. In Problem 

Development, the explicit frame layout and materials are selected that satisfy the 

constraints of the problem formulation held in the Manager. 

This section will discuss the explicit module called PF used to connect the simu­

lation to a front-end. 11 

3.4.1 Interface between Manager and User Interface 

As shown in Figure 3.2, the PF interface links the Generic Fra~e Manager to the 

User Interface. This channel has a specific and narrow protocol for messages and 

objects to be relayed between the internal and external portions of the simulation. 
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3.4.2 Stripped Problem Formulation Interface 

Since we wish to decouple the compilations of the simulation engine from the front-

end, all messages and objects passed across the interface need to be fundamental 
'' 

I 

classes, or classes rooted with a fundamental base class, i.e. no object traveling across 

PF is derived from objects in other libraries such as the NIH C++ Class Library or 

the InterViews Graphical Library. To accomplish this task, we have created a series 

of "fundamental" objects which only represent the current state of the corresponding 

abstract class, and contain no functionality, other than constructors. A fundamental 

object should be constructible from the following objects: 

a nil - to allocate space for the fundamental object 

fundamental data arguments - allowing the front-end to create an object from 

the user specified state 

the corresponding abstract object - allowing the engine to pass the state of an 

object to the front-end. 

For example, the GridLine class has the following fundamental structure: 

class xGridLine { 

public: 

}; 

char* label; 

OrientType orient; 

double distance; 

xGridLine(); / / nil constructor 

xGridLine( char*, OrientType, double); // fundamental constructor 

xGridLine( GridLine&); / / abstract constructor 

In addition, the interface must have specific messages to cqnvert the fundamental 

object into its related abstract object: 1 
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GridLine& PF: :convertGridLine( xGridLine&); 

Note that this function is included in the PF object, and could be a private member 

function, since this type of conversion is normally used internally to PF when con­

verting the fundamental object passed in from the front-end to the abstract object 

handed off to the internal Manager. 

As shown for GridLines, the interface will also handle the conversion of other sim­

ulation '1}ased objects, including the lower-level building blocks of objects (e.g. such as 

GenericPoints used for geometric location). Also, all relevant access or modification 
' 

queries on the Manager should be available from the interface. 

As discussed in Section 2.7, the Problem Formulation object contains the two 

header files, (1) a complete prototype of all functions, and (2) }he stripped down 

version with no library dependencies. Please refer to Appendix E for the complete 

header, and Appendix F for the stripped. Comparing these two modules will illustrate 

this concept. 
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Parallel Simulator 

4.1 Overview 

ParSim · [2], a simulator for designing parallel algorithms and architectures, is an 

interactive tool used for studying the performance of parallel algorithms on various . 

parallel architectures. ParSim allows the user to loosely or strictly map the data 

flow graph of a static algorithm to an existing parallel topology or a user-created 

connectivity. The algorithm then can be simulated until conclusion, and the times of 

execution compared. The ParSim definition language allows for diverse specifications 

·of the data flow graph and destination parallel architecture. This tool includes so­

phisticated algorithms for automatically generating Connectivity Matrices1 for kn?wn 

parallel topologies, and for finding the optimal mapping from a data flow graph. 

4.2 Introduction to Parallel Computation 

In studying parallel computations, performance is a crucial issue. Deciding which 

parallel topology best suits a parallel algorithm class, the critical number of Processing 

Elements (PE's) needed in the parallel architecture, or how to optimize an algorithm 

for a specific topology, are critical design issues for parallel computations. ParSim was 

created as a modular program which allows a user to specify the Data Flow Graphs 

1 Connectivity Matrices are discussed in Subsection 4.3.2. 
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and realistic Parallel Topologies for static simulations of parallel algorithms. 

A Connectivity Matrix holds the interconnection pattern <?f both the data flow 

graph and the parallel architecture. ParSim generates connectivity matrices for 

topologies given the number of Processing Elements in that architecture. ParSim 

then applies the data flow graph to a parallel architecture. This mapping can be 

loose (ParSim is free to make all placement decisions), or strict ( the user specifies a 

set of nodes from the data flow graph that must be placed on specific PE's in the 

parallel architecture). Mappings are optimized by having the smallest total sum of 

dilations across the links of the data flow graph. 

ParSim also incorporates tools for analyzing parallel architectures. ParSim finds 

the minimum distance between PE's and proves the correctness by showing the path. 

ParSim also finds the Mutual Partition Set of an architecture - namely, the set of all 

subsets of PE's of the architecture which are fully connected among themselves. 

Users can run ParSim interactively via a menu system, or create a ParSim network 

file, to simulate parallel computations. A Parallel Processing Definition Language has 

been developed in this research to specify all the needed attributes of the data flow 

graph and parallel topology .. 

ParSim was originally designed in the Pascal programming language, but ran into 

restrictions with its data structures, for example, limiting the number of nodes or 

PE's addressable2. In converting ParSim to an object oriented language such as C++, 

these constraints no longer exist. 

Please note that ParSim models static parallel networks through their connectivity 

schemes only. 

2 A limit of 256 arises due to the maximum size of a Set in Borland's Turbo Pascal ver. 5.0. 
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P(O) P(j) P(n-1) __________ __... 

1 if P(i).. ~ P(j) (connects) 

P(i) * 0 if P(i)+-11-+- P(j) (no link) 

P(n-1) e 

Figure 4.1: Connectivity Matrix 

4.3 ParSim Engine Description 
t. 

4.3.1 Activities Menu 

Show Arch View a Connectivity Matrix on the screen 
Connect Arch Create a C.M. from known connectivities 
Read Arch from text file Restore a C.M. from a C.M. File 
Write Arch to text file Save a Connectivity Matrix to a C.M. File 
Enter unique Arch Create a Connectivity Matrix interactively 
Mappings Map a source C.M. to a destination C.M. 
Find minimum distances Find the shortest paths between all or some PE's 
Mutual Partitions Find all sets of PE's totally connected 

Table 4.1: ParSim Activity Menu 

Given above are the valid simulation actions in ParSim.3 

4.3.2 Connectivity Matrix 

A Connectivity Matrix of dimension 'n x n' is shown in Figure 4.1 .. 

3Note that C.M. ~ Connectivity Matrix. 
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4.3.3 Connectivity Matrix File 

A Connectivity Matrix File has the following structure: 

Line 1 contains Connectivity Name 

Line 2 contains an Integer number of processors 

The remaining lines have the following structure: 

I: A B C D 

where I is a processor connected to P(A), P(B), P(C), and P(D). 

Note that since a Connectivity Matrix is obviously symmetric, all symmetric 

connections are automatically included. Also, the diagonal entries are all '1' since 

P(X) ~ P(X). · 

4.3.4 A Sample Connectivity Matrix File 

Linear Array 

4 

0: 0 1 

1: 0 1 2 

2: 1 2 3 

3: 2 3 

yields the following connectivity matrix: 

II 0 1 2 3 

0 1 1 0 0 

1 1 1 1 0 

2 0 1 1 1 

3 0 0 1 1 

Th~ connectivity of a Linear Array with four processing elements is given in Figure 4.2. 
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. Figure 4.2: Linear Array with 4 PE's 

4.3.5 Topologies of Connectivity Networks 

Topologies of Connectivity Networks that can be algorithmically generated by Par­

Sim, given the number of PE's, are provided in Table 4.2. 

I ArchNum I Connectivity I P(i) {::::} P(j) if: 

1 Linear Array P(i) next to P(j) numerically 

2 Ring P(i) and P(j) next to each other modulus n 

3 Star All PE's connected to P(O) 

4 Binary Tree Single Rooted Binary Tree 

5 Illiac Mesh Wrap-around mesh with dimension 4 

6 Cylindrical Systolic Array 

7 Completely Connected All PE's connected to All other PE's 

8 Chordal Ring Ring w / added connections of chords = {n 
9 HyperCube (i EB j) = 1 
10 Barrel Shifter j = i ± 2K mod n 

11 ±1, ±3, ±5 Ring Chordal ring w / odd near-nbr connections 

Table 4.2: Algorithmically generatable topologies 

4.4 Algorithms used in ParSim 

The following section discusses the algorithms which have been written for and incor­

porated into ParSim. These routines include the creating a connectivity matrix, map­

ping a data flow specification to a given parallel architecture, finding the minimum 

distances and paths between processing elements, and finding the mutual partition 

set of an architecture. 

4.4.1 Runtime Creation of a ·Connectivity Matrix 

This program has two basic algorithms for defining the Connectivity Matrix: 
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Brute ·Force,_ lJ.se the criterion given in Table 4.2 for determining connectivity at 

every node. This method is useful when no regular pattern can be seen in the 

Connectivity Matrix. 

Connect and Rotate - Because of $ymmetry in the connectivity, only the connec­

tions to P(O) are computed in the first phase. For every remaining PE, the row 

above in the Connectivity Matrix is carried down and shifted once to the right. 

(i.e. P(i) --+ P(i+ 1)) but no wrap around occurs; in fact, P(O) ~ P(j), 

i.e. checking to see if P(O) connects to P(j), is the only PE test computed for 

each row. 

The following topologies take advantage of the Connect and Rotate algorithm 

in· their generation: 

• Linear Array, 

• Ring, 

• Illiac Mesh, 

• Chordal Ring, 

• Barrel Shifter, and 

• ±1, ±3, ±5 Chordal Ring. 

4.4.2 Mapping Algorithm 

A greedy algorithm for mapping the given data flow structure into a connectivity 

architecture is impJemented. All pre-decided mapping constraints are set first, then 

all remaining nodes try to get mapped to all permutations of remaining PE's making 

sure that any links between two of these such nodes has dilation 1 in the mapped 

structure. As soon as the algorithm finds one mapping that fits the criteria, the 

process is over. Otherwise, the mapping routine recursively calls itself with more 

PE's available to be mapped to. 
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. \ 

4.4.3 Finding the Minimum Distance/Paths between two 

PE's, 

The searchin~. algorithm contains two passes: 

• On the first pass, ALL unique connectivity paths between P(i) and P(j) are 

located, and the smallest path distance is stored. 

• On the second pass, ( if all the paths of minimum distance are required) a search 

identical to the first pass takes place, but this pass prints out the necessary 

distinct paths. 

The recursive algorithm to find the distance and path from P(i) to P(j) starts 

with a set containing i and all the processors connected to i. If j is in the set, then 

it is fin_ished with that path. Otherwise, a loop through every element in this first 

set is initiated, and with each PE pointed to, the union of its connection set with 

the first set is individually found. If the new set is equivalent to the first set, a dead 

end in the path has occurred. If the new set is larger, it gets sent into this algorithm 

recursively. 

4.4.4 Mutual Partitions 

Mutual Partitions are subsets of the architecture which are fully connected. 

For example, in the following Connectivity Matrix: 

II o 1 2 3 

0 1 0 1 1 

1 0 1 0 1 

2 1 0 1 1 

3 1 1 1 1 

the mutual partitions are: {(0,2,3), (0,2), (0,3), (1,3), (2,3)}. 

The algorithm used to find the mutual partitions takes the Connectivity Matrix 

row by ~ow and creates a possibility set by putting each index of a '1' to the right of 
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the diagonal in a set. (Since the Connectivity Matrix is symmetric, this will eliminate 

duplication by finding all partitions containing P(O), then all containing P.(1). but not 

P(O), then all containing P(2) but not P(l) nor P(O), etc .. ) Now ~ach row possibility 

set cannot· contain PE 's numbered less than the current row. Therefore, we will find 

all of P'(O)'s subsets, then P(l)'s, etc. All subsets of the possibility set are created by 

counting in binary with a string the length of the cardinality of the set and masking 

that with the ~et. Each subset is then checked for the mutual property, namely, that 

ali PE's present are directly connected. 

4.5 General Execution Steps of Simulation 

The following is the order of events in a ParSim simulation: 

1. Input user's network 

2. Create a model and define/ determine parameters, modes, etc. 

3. Map model into structure 

4. Run simulation in time increments 

4.5.1 Example of Data Flow Simulation 

An example run of ParSim, consisting of data flow and topology, is shown in Fig­

ure 4.3. 
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11 

14 (200) 

15 , (50) 

Figure 4.3: Example Data Flow Network 
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* Example Network Description File 

Ni 3 C 

N2 s C 

N3 7 s 
N4 10 C 

NS s s 
N6 10 C 

Li N2 N3 100 2 3 can be used instead of N2 N3 here 

L2 Ni N3 300 

L3 N3 NS 200 

L4 N4 NS 200 

LS NS N6 50 

.MAP 

Ni P3 

N3 P7 

N4 PS 

N6 Pi 

.map end 

.linkwts auto 

.arch 5 8 Illiac Mesh with 8 PE's 

.END 
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NETSIM Log File for example.net 

Run Date: 4-10-1990 

Run Time: 21:02:28.68 

1 * Example Network Description File 

2 

3 Ni 3 C 

4 N2 5 C 

5 N3 7 s 
6 N4 10 C 

7 NS 5 s 
8 N6 10 C 

9 11 N2 N3 100 2 3 can be used ... 

10 12 N1 N3 300 

11 13 N3 NS 200 

12 14 N4 NS 200 

13 15 NS N6 50 

14 .MAP 

15 N1 P3 

16 N3 P7 

17 N4 PS 

18 N6 P1 

19 .map end 

20 .linkwts auto 

21 .arch 5 8 Illiac Mesh with 8 PE's 

22 .END 

97 



I 

CHAPTER4. PARALLELSIMULATOR 

***Mapping*** 

Source Arch: 

Example Network Description Network with 6 processors 

connectivity map: 

p 0 101000 

p 1 011000 

p 2 111010 

p 3 000110 

p 4 001111 

p s 000011 

Dest Arch: 

Illiac Mesh Network with 8 processors connectiv~ty map: 

p 0 11010101 

p 1 11101010 

p 2 01110101 

p 3 10111010 

p 4 01011101 

p s 10101110 

p 6 01010111 

p 7 10101011 

Ni mapped to P3 

N2 mapped to PO 

N3 mapped to P7 
r 

N4 mapped to PS 

NS mapped to P2 

N6 mapped to Pi 
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*** Link Weights*** · 

Li from N2 to N3 [wt: 1] 

L2 from Ni to N3 [wt: 2] 

L3 from N3 to N5 [wt: 1] 

L4 from N4 to N5 [wt: 1] 

L5 from NS to N6 [wt: 1] 

( 
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4.6 Controller Object 

The Controller object is the representation of a manager in a parallel computation 

simulation. The controller is responsible for the promotion through the simulation 

steps outlined in Section 4.5. 

The controller must first parse an input file, which might be from standard input 

( the keyboard), containing the user's representation of the Data Flow network repre­

senting the static algorithm to be simulated. Appendix G contains the reference list 

of directives available in the ParSim Definition Language. A DataFlow object 

is thus constructed and represents all aspects of the input. This DataFlow object 

contains a connectivity matrix with Node objects at each index, and Link objects 

created for '1' that would appear in the matrix. 

The controller also holds an Architecture object, representing the physical con­

nectivity network of PE's to which the DataFlow object has been applied. 

Other responsibilities of the controller are: 

• Hold statistics for the simulation, such as the goodness of fit of the mapping, 

simulation mode states specified by the user, a time counter, the current state 

of modeling and simulation, etc. 

, Orchestrate the Mapping from the DataFlow object to the Architecture object 

• Perform the analysis algorithms listed in Section 4.4 

• Maintain a global clock and watch over the simulation, and report the results 

when the algorithm has run to completion. 
,,,. 

• Report any errors encountered in the simulation 

4.7 Nodes 

A Node object represents a computational node in the data fl.ow graph of the algo­

rithm. A Node has label a~d holds a computation time for one block of data. The 
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Node may either operat.e in the "Compute first, then transmit results" mode, or the 

"Simult3'.neous computation and transmission" mode. 

A Node maintains a queue for the Message packets which are incoming or outgoing, 

and processes them as the time counter allows. 

The Node also has a reference to the processing element it will be directly mapped 
.. 

to in the architecture, so that at simulation time, a quick cross-reference between 

algorithm and architecture may take place. 

t 4.8 Links 

The Link object represents the connections between nodes of the data flow graph. A 

Link has a unique label and holds a Units measurement, representing the capacity 

of this Link. A Link holds the Node labels for the two Node objects which are at its 

origination and destination. A multiplier, called Weight, for a Link represents the 

time delay factor a Message will have when traveling across this path. 

Normally, the Weight is a measure of the dilation of a Link after the algorithm has 

been mapped to a real network topology. For example, a Weight of '1' implies that the 

nodes at the endpoints of a Link are directly connected in the associated architecture. 

A Weight of '2' implies that there is one intermediate processing element along the 

path of this link, and appropriate message passing techniques must be employed, with 

the overhead time delays calculated in the analysis as well. 

4.9 Message 

A Message object is a token for a block of data which occupies computational time 

in a Node, and then must be transmitted down the Link in the computational graph. 

Messages may be of any size and are queued at the input and output of Nodes. 

Messages are transferred between the Nodes by Links, but only when the resources 

are available. A Message-knows how long it has been i~ the system, its Node of origin, 

and Node of destination. 
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4.10 Architecture 

The Architecture object is another connectivity matrix, with processing elements 

along the diagonal, numbered according to the diagonal index, and connections in the 

matrix where PE's connect. The architecture may be constructed on. an index from 

Table 4.2, and the number of PE's for that instance of a topology. 

4.11 Mapper 

The Mapper object participates with the Controller by accepting the DataFlow 

and Architecture objects and creating the optimal mapping, as explained in Subsec­

tion 4.4.2. 

4.12 Conclusions 

By taking advantage of object oriented techniques, a parallel processing simulation 

is easily decomposed into functional objects. A distinction is made between the 

original entities represented in the description of the static algorithm and the physical 

elements and connections of the architecture. By doing this, a controller may keep 

employing the mapper to overlay the algorithm on several architectures, or even a 

single architecture of various dimensionalities. 

Analyzing these results will prove useful for finding the best architectures for cer­

tain classes of parallel processing algorithms, without having any parallel hardwares 

available. The computational times are normalized to unit blocks of data, and a unit 

time clock, which may be manipulated for the different simulation runs. 

The front-end for ParSim bears no effect on the actual simulation engine described 

in this chapter. Refer to Chapter 5 for an outline of the techniques needed when 

designing a graphical user interface for the ParSim package. 
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User Interface 

As explained in Section 2.7, a user normally wishes to inspect the current state of an 

object oriented simulation through a concise and accurate graphical front-end. This 

Graphical User Interface ( GUI) is the user's view to the internal representation. 

The GUI must dynamically 9hange as the user progresses through the simulation; 

from formulating the problem to developing the solutions. 

The GUI has the task of controlling the flow of events in the simulation. Every 

user action, such as a mouse click or key stroke, directly associates with either a 

function call to the internal manager or a modification of the view. This chapter will 

discuss the basic properties of this user interface. 

In the FIDS simulation, the InterViews Graphical Library [23] was used to imple­

ment the GUI. However, any package or library of routines for displaying graphics on 

the screen and interacting with a user may be a sufficient starting point for the GUI. 

5.1 Accessing the interface 

When interacting with the manager, the front-end, or GUI, must follow the protocol, 

as outlined in Section 3.4, concerning the interface between the internal and external 

modules. 

In the FIDS Project, the GUI maintains the top level control of the simulation. 

The reason that we place this responsibility on the GUI is to enable the user to control 
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the simulation. The simulation sits idle until the user triggers an action through an 

event, such as placing the mouse at a location, clicking a button, or stroking a key. 

The GUI must have access to the manager via the interface. From a systems point 

of view, the GUI holds an instance of the interface, which in turn, holds an instance 

of the manager. All messages travel across this interface. Thus, the interface has full 

control over its instance of the manager, while the GUI calls the appropriate interface 

messages to accomplish its tasks. The interface should have an function available 

for every action required by the GUI. For example, if the user wishes to refresh the 

display, the GUI then asks the .interface for the objects that the manager is holding, 

object by object, displaying the graphical representation for each object as it goes, 

until no more are left. When the manager has returned the last, it will pass a flag to 

the interface denoting that the end has been reached. 

The GUI is responsible for telling the interface that a new simulation is about 

to be created, and that the manager should be initialized. Then when a user asks 

the GUI to construct a new entity for that simulation, the GUI will popup a form 

with the object's state variables, allowing the user to make any necessary changes 

in the description. From this information, the GUI will call the object constructor 

ass·ociated with the given entity, as described in Subsection 3.4.2. This new object 

is then handed over to the interface with as an argument in the function call to add 

or modify an object in the manager. The GUI normally will hold only the key, as 

described in Subsection 2.5.2, to refer back to that object once it has been entered 

into the manager. By using the key and the interface query functions, the GUI will 

have access to sufficient geometrical information for representing the object on the 

display. 

5.2 Layout of workspace 

The workspace needs to adapt to the current state of the simulation. The majority 

of the space will hold the graphical representation of the problem. Along the top 

border, pulldown menus for requesting a service are placed, and the right border 

will allow toggle buttons representing the state of various objects to be drawn, such 
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Figure 5.1: FIDS-GUI File Menu 

as an orientation toggle for GridLines, Offsets, and Relative Positions in the FIDS 

simulation. Also, exact simulation coordinates of the mouse's current location should 

be available. The workspace should have slider bars, or a panner, and zoom factors 

for inspecting large projects. 

The workspace for a simulation is initially clear. The user may pull down the 

various menus, such as a File menu, shown in Figure 5J, to store, retrieve, and 

refresh the objects, or a Tools menu, shown in Figure 5.2, to create an entity of 

a given class, select an entity on the display (and possibly modify it), remove an 

entity, or move an entity to a new location. 

When an entity is created or selected, a popup form for that class appears on 

the display, showing all the state variables which may be altered by the user. A 

GridLine object is shown in Figure 5.3, a RelativePosition in Figure 5.5, an Offset 

in Figure 5.6, a ClearSpace in Figure 5.7, a DistributedLoad in Figure 5.8, and a 

PointLoad in Figure 5.9. The user also has the choice of accepting the changes, 

canceling the form, or removing the object from the simulation. After this object has 
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Figure 5.2: FIDS-GUI Activity /Tools Menu 

been constructed and passed to the interface, the manager might find an inconsistency 

and return an error flag accordingly, alerting the GUI to pop up a window with the 

corresponding error message. An example of this is given in Figure 5.4, where the 

user has attempted to store a grid line with a label identical to the label of a grid 

line already held in the Manager. The user then must acknowledge the error response 

before continuing. The system then allows the user to fix any errors specified on the 
, .. 

popup form. 
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Figure 5.8: FIDS-GUI Distributed Load Form 
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Figure 5.9: FIDS-GUI Point Load Form 
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5.3 Getting input from user 

The user has control over the GUI through the mouse and keyboard. The mouse 

has the capability of selecting a location on the display, dragging a selection bar on 

a pulldown menu, highlighting text, etc. The keyboard should be able to mimic the 

same functions available to ~he mouse. Obviously the mouse will be a lot less tedious 

to use. In addition, the keyboard is also used for entering numbers and filling in 

labels for objects . 
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Conclusions 

In this thesis, I have discussed important aspects of designing an object oriented simu­

lation; from the simulation engine to the front-end user interface. From the examples 

in two engineering disciplines, namely, structural design and parallel processing, one 

can readily see that the techniques outlined here apply to a variety of such systems. 

Object priented programming allows modular libraries to be constructed, and then 

used by packages needing similar designs. The decomposition of a simulation into 

objects and managers also becomes fairly straightforward after learning the concepts 

of abstract object construction. 

The Framework for Integrated Design System, which is a prototype structural 

design analysis system, shows the usefulness of the object oriented approach. With 

the aid of object libraries, the design of this simulation has been developed. In essence, . 

one strives to create a simulation in the problem domain, theoretically distancing the 

engineer from the low level computer programming layer. 

The FIDS package has been designed for future expansion. The front-end of an 

object oriented simulation system may be modular. Conceptually, and in actuality, 

one )nay easily unplug the current GUI of the FIDS, and replace it with an improved 

GUI, or some other input/output device not yet realized. For an example, Virtual 

Reality GUI's [21] are currently being researched and developed where a user is 

attached to a simulation via body sensors, and a helmet with three dimensional 

graphical perspectives. 
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This thesis decomposes the ParSim parallel processing simulator into an object 

oriented simulation. Computer engineering researchers have found ParSim to be 

useful in determining parallel computation statistics for static algorithms. Because 

of object oriented design, the simulation is open for future enhancements, such as' 

replacing the existing.Node object with.one that can simulate more detailed processing 

capabilities, or allowing dynamic algorithm simulation. 

One feature of object oriented decomposition of a simulation is that as computer 

platforms are changed, minimal work is needed to re-create the simulation package. 

The language of C++ is in the process of being standardized, so that porting, or 

transferring, the code between platforms, or to a new release of the language and/ or 

operating system, will only cause minor changes, e.g., merely changing the compiler 

options at compile time. 

The C++ hierarchical class and graphical libraries are young, as is the language of 

C++. With time, more complete and coherent documentation will become available. 

Debugging software packages will move towards a more integrated environment, al­

lowing more informative error detection schemes, and possibly autmnatic correction 

of these mistakes. Also, dedicated compilers and linkers for object oriented languages 

( rather than front-end translators) will be developed. For example, the standard C 

programming language preprocessor, compiler, and linker is currently used to· create 

C++ executable code on most workstation platforms. The development of dedicated 

compilers and linkers will mean faster running applications, as well as quicker design 

time, since intelligent compilations with dependency information will be performed. 

Future work needs to be done in using multiple libraries in one package. Although 

this thesis describes a method for creating an interface which decouples libraries at 

compile time, a better approach needs to be found which would allow objects in 

libraries to be used interchangeably. 

Object oriented systems are shown to be beneficial and are quickly becoming the 

preferred method of designing large packages. The future task of software engineers 

will be to create the basic object libraries necessary for implementing. any common 

application. 

116 



Appendix A 

The NIH c++ Class Library 

Hierarchy 

Version 3.0 of the NIH Class Library [14, Appendix A] contains the following classes: 

NIHCL---Library Static Member Variables and Functions 

Object~--Root of the NIH Class Library Inheritance Tree 

Bitset---Set of Small Integers (like Pascal's type Set) 

Class---Class Descriptor 
Collection---Abstract Class for Collections 

Arraychar---Byte Array 
ArrayOb---Array of Object Pointers 
Bag---Unordered Collection of Objects 
SeqCltn---Abstract Class for Ordered, Indexed Collections 

Heap---Min-Max Heap of Object Pointers 
LinkedList---Singly-Linked List 
OrderedCltn---Ordered Collection of Object Pointers 

SortedCltn---Sorted Collection 
l KeySortCltn---Keyed Sorted Collection 

Stack---Stack of Object Pointers 
Set---Unordered Collection of Non-Duplicate Objects 

Dictionary---Set of Associat~ons 
IdentDict---Dictionary Keyed by Object Address 

IdentSet---Set Keyed by Object Address 
Date-~-Gregorian Calendar Date 
FDSet---Set of File Descriptors for Use with 

select(2) System Call 
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Float---Floating Point Number 
Fraction---Rational Arithmetic 
Integer---Integer. Number Object 
Iterator---Collection Iterator 
Link---Abstract Class for LinkedList Links 

LinkOb---Link Containing Object Pointer 
Process---Co-routine Process Object 

HeapProc---Process with Stack in Free Store 
StackProc---Process with Stack on main() Stack 

LookupKey---Abstract Class for Dictionary Associations 
A~soc---Association of Object Pointers 
Assocint---Association of Object Pointer with Integer 

Nil---The Nil Object 
Point---X-Y Coordinate Pair 
Random---Random Number Generator 
Range---Range of Integers 
Rectangle---Rectangle Object 
Scheduler---Co-routine Process Scheduler 
Semaphore---Process Synchronization 
SharedQueue---Shared Queue of Objects 
String---Character String 

Regex---Regular Expression 
Time---Time of Day 
Vector---Abstract Class for Vectors 

BitVec---Bit Vector 
ByteVec---Byte Vector 
ShortVec---Short Integer Vector 
IntVec---Integer Vector 
LongVec---Long Integer Vector 
FloatVec---Floating Point Vector 
DoubleVec---Double-Precision Floating Point Vector 
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OIOifd---File·oescriptor Object I/0 readFrom() Formatting 
OI0in---Abstract Class for Object I/0.readFrom() Formatting 

OI0istream---Abstract Class for Stream Object I/0 readFrom() 
Formatting 

OIOnihin---Stream Object I/0 readFrom() Formatting 
OIOofd---File Descriptor Object I/0 storeOn() Formatting 
OIOout---Abstract Class for Object I/0 storeOn() Formatting 

OIOostream---Abstract Class for Stream Object I/0 storeOn() 
Formatting 

/ 

OIDnihout---Stream Object !/0 storeOn() Formatting 
ReadFromTbl---Tables used by Object I/0 readFrom() 
StoreOnTbl---Tables used by Object I/0 storeOn() 
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The NIH c++ Collections 

This Appendix is comprised of comments taken from the NIH Class Library Imple­

mentations [13]. 

Collection---Abstract Class for Collections 

Arraychar---Byte Array 

ArrayOb---Array of Object Pointers 

Bag---Unordered Collection of Objects 

SeqCltn---Abstract Class for Ordered, Indexed Collections 

Heap---Min-Max Heap of Object Pointers 

LinkedList---Singly-Linked List 

OrderedCltn---Ordered Collection of Object Pointers 

SortedCltn---Sorted Collection 

KeySortCltn---Keyed Sorted Collection 

Stack---Stack of Object Pointers 

Set---Unordered Collection of Non-Duplicate Objects 

Dictionary---Set of Associations 

IdentDict---Dictionary Keyed by Object Address 

IdentSet---Set Keyed by Object Address 
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Collection.c - implementation of abstract Collection class 

Collection is an_ abstract class that actually implements only the addAll, removeAll, 
,. 

includes, isEmpty, and Collection conversion functions. Note that the functions Col-

lection::asBag, asOrderedCltn, asSet, and asSortedCltn are defined in the file that 

implements the respective target Collection so that all of these classes are not loaded 

whenever any one Collection is used. 

ArrayOb.c - member functions of class ArrayOb 

Member function definitions for class ArrayOb (Array of Object*). Objects of class 

ArrayOb are used in the implementations of several other Collection classes such as: 

Bag, Dictionary, Set, and OrderedCltn. Note that the ArrayOb constructor initializes 

the array with pointers to the nil object. 

Bag.c - implementation of a Set of Objects with possible duplicates 

A Bag is like a Set, except Bags can contain multiple occurrences of equal objects. 

Bags are implemented by using a Dictionary to associate each object in the Bag with 

its number of occurrences. 

SeqCltn.c - implementation of abstract sequential collections 

SeqCltn is an abstract class representing collections whose elements are ordered and 

are externally named by integer indices. 

Heap.c - implementation of abstract Heap class 

The Min-Max Heap is implemented as described by Atkinson, Sack, Santoro, and 

Strothotte (1986). Objects may be added; the min or max may be accessed with first() 

or last(), respectively, or removed with removeFirst() or removeLast(), respectively. 
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LinkedList.c - implementation of singly-linked list 

. LinkedLists are ordered by the sequence in which objects are added and removed 

from them. Object elements are accessible by index. 

OrderedCltn.c - implementation of abstract ordered collections 

OrderedCltns are ordered by the sequence in which objects are added and removed 

from them. Object elements are accessible by index. 

SortedCltn.c - implementation of sorted collection 

A SortedCltn is a Collection of objects ordered as defined by the virtual function 

"compare", which the objects must implement. The "add" function locates the po­

sition at which to insert the object by performing a binary search, then invokes the 

private function "OrderedCltn::addAtlndex" to insert the object after shifting up all 

the objects after it in the array; therefore, a SortedCltn is not efficient for a large 

number of objects. 

Stack.c - implementation of class Stack 

Member function definitions for class Stack. 

Set.c - implemenation of hash tables 

A Set is an unordered collection of objects in which no object is duplicated. Duplicate 

objects are defined by the function isEqual. Sets are implemented using a hash table. 

The capacity() function returns the 1 /2 the capacity of the hash table and the size() 

function returns the number of objects currently in the Set. For efficiency, the capacity 

is always a power of two and is doubled whenever the table becomes half full. 

Dictionary.c - implementation of Set of Associations 

A Dictionary is a Set of Associations. A Dictionary returns the value of an association 

given its key. 
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ldentDict.c - implementation of Identifier Dictionary 

An IdentDict is like a Dictionary, except keys are compared using isSame() rather 
' 

than isEqual(). 

ldentSet.c - implementation of Identity Set. 

An IdentSet is like a Set, except keys are compared using isSame() rather than isE­

qual(). 

LookupKey.c - implementation of Dictionary LookupKey 

LookupKey is an abstract class for managing the key object of an Assoc. It is used 

to implement class Dictionary. 

Assoc.c - implementation of key-value association 

Objects of class Assoc associate a key object with a value object. They are used to 
' 

implement Dictionaries, which are Sets of Associations. 

Assoclnt.c - implementation of key-Integer association 

Objects of class Assoclnt associate a key object with an Integer value object. They 

are used to implement Bags, which use a Dictionary to associate objects with their 

occurrence counts. 
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NIH Template header file 

#ifndef THIS_CLASS_H 
#define THIS_CLASS_H 

/*$Header: ... *I 

I* Template.h -- example header file for an NIH Library class 

THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A 
"UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE 

·AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT 
CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE 
PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO 
RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY. 

Author: 
K. E. Gorlen 
Computer Systems Laboratory, DCRT 
National Institutes of Health 
Bethesda, MD 20892 

Modification History: 

$Log: Template_h,v $ 
# Revision 3.0 90/05/20 00:21:43 kgorlen 
# Release for 1st edition. 
# 
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// Define "MI" if this class uses multiple inheritance: 
//#ifndef MI 
//#define MI 
//#endif 

#include 11 BASE_CLASS.h 11 

// #include .h files for other classes used 
// Insert only class declarations for classes accessed 
// by pointer and reference ONLY 

// If BASE_CLASS is Object: 
// class THIS_CLASS: public VIRTUAL Object { 

class THIS_CLASS: public BASE_CLASS { 
DECLARE_MEMBERS(THIS_CLASS); 
// member variables here 
protected: // sto~er() functions for object I/0 
virtual void storer(OI0ofd&) const; 
v.irtual void storer(OIOout&) const; 
public: 
bool operator==(const THIS_CLASS&) const; 
bool operator!=(const THIS_CLASS& a) const 
{ return !(*this==a); } 
virtual int compare(const Object&) const; 
virtual Object* copy() const; // shallowCopy() default 

virtual void deepenShallowCopy(); 
virtual unsigned hash() const; 
virtual bool isEqual(const Object&) const; 
virtual void printOn(ostream& strm =cout) const; 
virtual const Class* species() const; 
}; 

#endif 
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NIH Template implementation file 

I* Template.c -- example implementation of an NIH Library class 

THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A 
"UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE 
AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT 
CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE 
PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO 
RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY. 

Author: 
K. E. Gorlen 

1Bg. 12A, Rm. 2033 
Computer Systems Laboratory 
Division of Computer Research and Technology 
National Institutes of Health 
Bethesda, Maryland 20892 
Phone: (301) 496-1111 
uucp: uunet!nih-csl!kgorlen 
Internet: kgorlen©alw.nih.gov 
February, 1987 

Function: 

Modification History: 

$Log: Template_c,v $ 

126 



APPENDIX D. NIH TEMPLATE IMPLEMENTATION FILE 

# Revision 3.0 90/05120 00:21:40 kgorleri 
# Release for 1st edition. 
# 

*I 

#include "THIS_CLASS.h" 
#include "nihclIO.h" 
II #include .h files for other classes used 

#define THIS THIS_CLASS 
II Define BASE only for classes with one base class 
#define BASE BASE_CLASS 
II Define list of addresses of descriptors of all base classes: 
#define BASE_CLASSES BASE: :desc() 
II Define list of addresses of descriptors of all member classes: 
#define MEMBER_CLASSES 
II Define list of addresses of descriptors of all virtual base 
II classes: 
#define VIRTUAL_BASE_CLASSES 

DEFINE_CLASS(THIS_CLASS,1, "$Header: ... ",NULL,NULL); 
II For abstract classes: 
IIDEFINE_ABSTRACT_CLASS(THIS_CLASS,1," ... ",NULL,NULL); 
II For non-abstract classes with multiple base classes: 
IIDEFINE_CLASS_MI(THIS_CLASS,1," ... ",NULL,NULL); 
II For abstract classes with multiple base classes: 
IIDEFINE_ABSTRACT_CLASS_MI(THIS_CLASS,1," ... 11 ,NULL,NULL); 

extern const int// error codes 

I* _castdown() for classes with multiple base classes: 

void* THIS_CLASS: :_castdown(const Class& target) const 
II (Probably a good candidate for memorization.) 
{ 

if (&target== desc()) return (void*)this; 
void* p = BASE1: :_castdown(target); 
void* q = p;_ 
if (p = BASE2: :_castdown(target)) ambigCheck(p,q, target); 
II 
if (p = BASEn::_castdown(target)) ambigCheck(p,q,target); 
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return q; 
} 

bool THIS_CLASS: :operator==(const THIS_CLASS& a) const 
// Test two instances of THIS_CLASS for equality 
{ 

} 

const Class* THIS_CLASS: :species() const 
// Return a pointer to the descriptor of the species of this class 
{ 

return &classDesc; 
} 

bool THIS_CLASS: :isEqual(const Object& p) const 
// Test two objects for equality 
{ 

return p.isSpecies(classDesc) && *this==castdown(p); 
} 

unsigned THIS_CLASS: :hash() const 
// If two objects are equal (i.e., isEqual) they must have 
// the same hash 
{ 
} 

int THIS_CLASS::compare(const Object& p) const 
II Compare two objects. If *this> p return >O, 
II *this== p return 0, and if *this< p return <O. 
{ 

assertArgSpecies(p,classDesc,"compare"); 
} 

void THIS_CLASS: :deepenShallowCopy() 
// Called by deepCopy() to convert a shallow copy to a deep copy. 
// deepCopy() makes the shallow copy by calling the copy 
II constructor. 
{ 

I* 
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Deepen base classes in order specified in class declaration. 

Deepen virtual base classes (VBase): 
VBase: :deepenVBase(); // do not do this for class Object 

Deepen non-virtual base classes (BASE): 
BASE: :deepenShallowCopy(); // do not do this for class Object 

Nothing need be done for member variables that are fundamental 
types. Copy a member variable o that is an NIHCL object: 
o.deepenShallowCopy(); 

Copy a member variable p that 1s a pointer to an NIHCL object of 
class CLASS: 
p = (CLASS*)p->deepCopy(); 
*I 

(J } 

void THIS_CLASS: :printOn(ostream& strm) canst 
// Print this object on an ostream 
{ 

} 

// Object I/0 

I* 
Member class instances are constructed in the order they are 
declared in the class declaration, regardless of the order they 
appear in the constructor initialization list, so they must be 
stored in this order. Note that member class instances are 
constructed before body of constructor is executed. 

*I 

// Construct an object from OI0in "strm". 
THIS_CLASS::THIS_CLASS(OIOin& strm) 

#ifdef MI 
Object(strm), 
#endif 
I* 
Call readFrom() constructors of all ancestor virtual base classes: 
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VBase(strm), 
*I 
BASE(strm) 
I* 
Read a member variable o that is an instance of an NIHCL class: 
o(strm) 
{ 

Read a member variable f that 1s a fundamental type using ">>": 
strm >> f; 

Read a member variable p that 1s a pointer to an instance of 
the NIHCL class CLASS: 
p = CLASS: :readFrom(strm); 

Read member variables in the same order that they are stored. 
*I 
} 

void THIS_CLASS: :storer(OIOout& strm) const 
// Store the member variables of this object on OIOout "strm". 
{ 

I* 
Store virtual base classes (VBase) 1n inheritance DAG order: 
VBase: :storeVBaseDn(strm); 

Store non-virtual base classes in order specified 1n class 
declaration: 
BASE: :storer(strm); 

Store a member variable f that 1s a fundamental type using 11 << 11
: 

strm << f; 

Store a member variable o that 1s an instance of the NIHCL class 
CLASS: 
o.storeMemberOn(strm); 

Store a member variable p that 1s a pointer to an instance of an 
NIHCL class: 
p->storeOn(strm); 

Store member variables in the same order that they are read. 
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*I 
} 

// Construct an object from file descriptor "fd". 
THIS_CLASS: :THIS_CLASS(OIOifd& fd) 

#ifdef MI 
Object(fd), 
#endif 
I* 
Call readFrom() constructors of all ancestor virtual base classes: 
VBase(fd), 
*I 
BASE(fd) 
I* 
Read a member variable o that is ·an 'instance of an NIHCL class: 
o(fd) 
{ 

Read a member variable f that 1s a fundamental type: 
fd >> f; 

Read a member variable a that 1s a pointer to an array of length 1: 
fd.get(a,l); 

Read a member variable p that 1s a pointer to an inst~nce of the 
NIHCL class CLASS: 
p = CLASS: :readFrom(fd); 

. Read member variables in the same order that they are stored. 
*I 
} 

void THIS_CLASS: :storer(OIOofd& fd) canst 
// Store an object on file descriptor "fd". 
{ 

I* 
Store virtual base classes (VBase) in inheritance DAG order: 
VBase: :storeVBaseOn(fd); 

Store non-virtual base classes in order specified in .class 
declaration: 
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BASE::storer(fd); 

Store a member variable f that is a fundamental type: 
fd << f; 

Store a member variable a that is a ·pointer to an array _ 
of length 1: 
fd.put(a,l); 

Store a member variable o that is an instance of the NIHCL class 
CLASS: 
o.storeMemberOn(fd); 

Store a member variable p that is a pointer to an instance of an 
NIHCL class: 
p->storeDn(fd); 

Store member variables in the same order that they are read. 
*I 
} 
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Complete PF Header File (PF.h) 

#if ndef PF _H 
#define PF _H 

#include "GridLine. h" / / break the include nesting tree length 

#include "Manager. h" 

class xGridLine { 
public: 

char* label; 
OrientType orient; 
double distance; 

xGridLine( char*, Orient Type, double); 
xGridLine( GridLine&); 

}; 

class xGenericPoint { 
public: 

char* gA; 
char* gB; 
char* gl; 
char* g2; 
double x..st, x..sp, y ..st, y ..sp; 
int x..rl, y ..rl; 
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}; 

xGenericPoint(); 
xGenericPoint( char*, char*, char*, char*, 

double xst =0, double xsp =0, double yst =0, double ysp =0, 
int xr =1, int yr =1); 

xGenericPoint( GenericPoint& ); 
xGenericPoint(xGenericPoint* ); 

class xCompass { 
public: 

}; 

CompassType dir; 
double val; 

xCompass(); 
xCompass( CompassType, double); 
xCompass(xCompass* ); 
xCompass( Compass&); 

class xLoad { 
public: 

}; 

char* name; 
N ominalLoadType nominalLoad Category; 
xGenericPoint* linePoint; 
double magl, mag2; 
xCompass* direction; 
SurfaceType supportSurface; 

xLoad(); 
xLoad( char*, NominalLoadType, xGenericPoint*, 

double, double, xCompass*, SurfaceType); 
xLoad(Load&); 

class xClearSpace : public xGenericPoint { 
public: 

char* label; 
char* tag; 

xClearSpace(); 
xClearSpace( char*, char*, xGenericPoint* ); 
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xClearSpace( ClearSpace&); 
}; 

class xOffset { 
public: 

char* key; 
char* grid; 
char* boundl; 
char* bound2; 
double val; 
SurfaceType offsetSurface; 

xOffset(); 
xOffset( char*, char*, char*, char*, double, SurfaceType ); 
xOffset (Offset&-); 

}; 

class xRelPos { 
public: 

char* key; 
char* gridl; 
char* grid2; 
char* extentStart; 
char* extentStop; 
SurfaceType grid1Sur, grid2Sur; 
int minmax; 
double lessThan, greaterThan; 
double equalTo; 

xRelPos(); 
xRelPos( char*, char*, char*, char*, char*, SurfaceType, SurfaceType, int, 

double, double, double); 
xRelPos(RelPos&); 

}; 

extern double toDouble(Float&); 
extern char* to Char( String&); 

class PF { 
int dirtyHorizGrid; 
int dirtyVertGrid; 
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Manager aManager; 

public: 
GridLine& convertGridLine( xGridLine&); 
GenericPoint& convertGenericPoint( xGenericPoint*); 
Compass& convertCompass(xCompass* ); 
Load& convertLoad(xLoad* ); 
ClearSpace& convert ClearSpace( xClearSpace*); 
Offset& convertOffset(xOffseh ); 
RelPos& convertRelPos( xRelPos*); 

xGenericPoinh getintersectionPoint(int, double, double); 
xGenericPoinh getLinePoint(int, double, double, double, double); 
xGenericPoinh getAreaPoint(int, double, double, double, double); 

xGenericPoinh getintersectionPointJixed( double, double); 
xGenericPoint* getLinePointJixed( double, double, double, double); 
xGenericPoinh getAreaPointJixed( double, double, double, double); 

xGenericPoinh getlntersectionPoinLrel( double, double); 
xGenericPoint* getLinePointJel( double, double, double, double); 
xGenericPoint* getAreaPointJel( double, double, double, double); 

loadType xLoadType(xLoad* ); 

void init(); 
void clear(); 
int openFile( const char*); 
int saveFile( const char*); 

int holdsGridLabel( const char*); 
void initGrid(); 
void initHorizGrid(); 
void initVertGrid(); 
int numberOfHoriz(); 
int numberOfVert(); 
int numberOfGrids(); 
int getN extHorizGrid( xGridLine&); 
int getNextVertGrid(xGridLine&); 
int getN ext Grid( xGridLine&); 
xGridLine* getGridWithLabel( const char*); 
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char* getHorizGridLineBefore( double); 
char* get VertGridLineBefore( double); 
char* getHorizGridLineAfter( double); 
char* get VertGridLineAfter( double); 
Manager Errors storeGrid( xGridLine&); 
Manager Errors removeGrid( const char*); 
Manager Errors changeGrid( const char*, xGridLine&); 

"---

void get Origin( double&,double& ); 
int setOrigin( double,double ); 
void get Corner( double&,double&); 
int set Corner( double,double); 

void getPoint(xGenericPoinh, double&, double&); 
void getLinePoint(xGenericPoint*, double&, double&, double&, double&); 
void getOrigin(xGenericPoinh, double&, double&); 
void getCorner(xGenericPoinh, double&, double&); 

xLoad* getLoadWithLabel( const char*); 
ManagerErrors addLoadEvent( const char*); I I (LEJabel) 
Manager Errors addLoadEvent( const char*, const char*); 

I I (LE_parent,LE_child) , 
Manager Errors addLoadList( const char*, const char*); I I (LEJabel, LLJabel) 
Manager Errors addLoad( const char*, const char*, xLoad* ); I I (LE, LL, L) 
ManagerErrors removeLoadEvent( const char*); I I (LEJabel) 
ManagerErrors removeLoadEvent( const char*, const char*); 

I I {LE_par,LE_child) 
ManagerErrors removeLoadList(const char*, const char*); I I (LEJab, LLJab) 
Manager Errors removeLoad( const char*, const char*, const char*); 
Manager Errors changeLoad( const char*, xLoad* ); 
int getFirstLoad(char*, char*&, xLoad&); I/ {LE, XX, X) -> (LE, LL, L) 
int getNextLoad( char*, char*&, xLoad&); I/ last {LE,LL,L) -> next (LE,LL,L) 

int numberOfLoads(); I I in all LEs 
int numberOfLoadLists(); I I in all LEs 
int holdsLoadWithLabel( const char*); I I in all LEs 
int holdsLoadList WithLabel( const char*); I/ in all LEs 

int holdsGeometric WithLabel( const char*); 
int numberOfGeometrics(); 
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}; 

xClearSpace* getClearSpace WithLabel( const char*); 
Manager Errors storeClearSpace( xClearSpace*); 
ManagerErrors removeClearSpace( const char*); 
Manager Errors changeClearSpace( const char*, xClearSpace*); 
int getFirstClearSpace( xClearSpace&); 
int getN extClearSpace( xClearSpace&); 

Manager Errors storeOffset(xOffset* ); 
Manager Errors remove Offset Wi thKey( const char*); 
Manager Errors changeOffset( const char*, xOffset* ); 
xOffset* getOffsetWithKey( const char*); 
int getFirstOffset( xOffset&); 
int getNextOffset(xOffset& ); 

Manager Errors storeRelPos(xRelPos*); 
Manager Errors removeRelPosWithKey( const char*); 
Manager Errors changeRelPos( const char*, xRelPos* ); 
xRelPos* getRelPos WithKey( const char*); 
int getFirstRelPos( xRelPos&); 
int getNextRelPos(xRelPos& ); 

#endif 
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Stripped PF Header File (PF .g) 

#ifndef PF _G 
#define PF _G 

#include "enum_types. h" 

class xGridLine { 
public: 

char* label; 
OrientType orient; 
double distance; 

xGridLine( char*, OrientType, double); 
}; . 

class xGenericPoint { 
public: 

char* gA; 
char* gB; 
char* gl; 
char* g2; 
double x..st, x..sp, y..st, y..sp; 

0 int XJl y_rl' 
' ' 

xGenericPoint(); 
xGenericPoint( char*, char*i char*, char*, 

double xst =0, double xsp =0, double yst =0, double ysp =0, 
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}; 

int xr =1, int yr =1 ); 
xGenericPoint(xGenericPoint* ); 

class xCompass { 
public: 

}; 

CompassType dir; 
double val; 

xCompass(); 
xCompass(CompassType, double); 
xCompass(xCompass* ); 

class xLoad { 
public: 

char* name; 
N ominalLoadType nominalLoad Category; 
xGenericPoint* linePoint; 

}; 

double magl, mag2; 
xCompass* direction; 
SurfaceType supportSurface; 

xLoad(); 
xLoad( char*, NominalLoadType, xGenericPoinh, 

double, double, xCompass*, SurfaceType); 

class xClearSpace : public xGenericPoint { 
public: 

char* label; 
char* tag; 

xClearSpace(); 
xClearSpace( char*, char*, xGenericPoinh ); 

}; 

class xOffset { 
public: 

char* key; 
char* grid; 
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}; 

char* boundl; 
char* bound2; 
double val; 
SurfaceType offsetSurface; 

xOffset(); 
xOffset( char*, char*, char*, char*, double, SurfaceType); 

class xRelPos { 
public: 

}; 

char* key; 
char* gridl; 
char* grid2; 
char* extentStart; 
char* extentStop; 
SurfaceType grid1Sur, grid2Sur; 
int minmax; 
double lessThan, greaterThan; 
double equalTo; 

xRelPos(); 
xRelPos( char*, char*, char*, char*, char*, SurfaceType, SurfaceType, int, 

double, double, double); 

class PF { 
public: 

.void init(); 
void clear(); 

xGenericPoint* getlntersectionPoint(int, double, double); 
xGenericPoint* getLinePoint(int, double, double, double, double); 
xGenericPoint* getAreaPoint(int, double, double, double, double); 

\ 

xGenericPoint* getlntersectionPointJixed( double, double); 
xGenericPoint* getLinePointJixed( double, double, double, double); 
xGenericPoint* getAreaPointJixed( double, double, double, double); 

xGenericPoint* getintersectionPoint_rel( double, double); 
xGenericPoint* getLinePointJel( double, double, double, double); 
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xGenericPoinh getAreaPoinLrel(double, double, double, double); 

loadTyp·e xLoadType(xLoad* ); 
int holdsGridLabel( const char*); 
int open File( const char*); 
int saveFile( const char*); 
void initGrid(); 
void init_HorizGrid(); 
void initVertGrid(); 
int numberOfHoriz(); 
int numberOfVert(); 
int numberOfGrids(); 
int getNextHorizGrid(xGridLine& ); 
int getNext VertGrid(xGridLine& ); 
int getNextGrid(xGridLine&); 
xGridLine* getGridWithLabel( const char*); 
char* getHorizGridLineBefore( double); 
char*. get VertGridLineBefore( double); 
char* getHorizGridLineAfter( double); 
char* getVertGridLineAfter( double); 
Manager Errors store Grid( xGridLine&); 
Manager Errors removeGrid( const char*); 
Manager Errors changeGrid( const char*, xGridLine& ); 

void get Origin( double&,double& ); 
int set Origin( double,double); 
void get Corner( doubie&,double& ); 
int set Corner( double,double); 

I 

void getPoint(xGenericPoint*, double&, double&); 
void getLinePoint(xGenericPoint*, double&, double&, double&, double&); 
void getOrigin(xGenericPoint*, double&, double&); 
void getCorner(xGenericPoint*, double&, do~ble& ); 

xLoad* getLoadWithLabel( const char*); 
ManagerErrors addLoadEvent.( const char*); I I (LEJabel) 
Manager Errors addLoadEvent( const char*, const char*); 

I I {LE_parent,LE_child} 
ManagerErrors addLoadList( const char*, const char*); I I {LEJabel, LLJabel) 
ManagerErrors addLoad(const char*, const char*, xLoad*); I I {LE, LL, L} 
Manager Errors removeLoadE_vent( const char*); I I (LEJabel) 
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Manager Errors removeLoadEvent( const char*, const char*); 
I I {LE_par,LE_child) 

}; 

Manager Errors removeLoadList( const char*, const char*); I/ {LEJab, LLJab) 
Manager Errors rerrioveLoad( const char*, const char*, const char*); 
Manager Errors changeLoad( const char*, xLoad* ); 
int getFirstLoad(char*, char*&, xLoad&); // {LE, XX, X) -> (LE, LL, L) 
int getNextLoad(char*, char*&, xLoad&); // last (LE,LL,L) -> next (LE,LL,L) 

int numberOfLoads(); / / in all LEs 
int numberOfLoadLists(); // in all LEs 
int holdsLoadWithLabel( const char*); // in all LEs 
int holdsLoadList WithLabel( const char*); / / in all LEs 

int holds Geometric WithLabel( const char*); 
int numberOfGeometrics(); 

xClearSpace* getClearSpace WithLabel( const char*); 
Manager Errors storeClearSpace( xClearSpace*); 
Manager Errors removeClearSpace( const char*); 
Manager Errors changeClearSpace( const char*, xClearSpace* ); 
int getFirstClearSpace( xClearSpace&); 
int getN extClearSpace( xClearSpace&); 

Manager Errors storeOffset ( xOffseh); 
Manager Errors removeOffset Wi thKey( const char*); 
ManagerErrors changeOffset( const char*, xOffseh ); 
xOffseh getOffsetWithKey( const char*); 
int getFirstOffset( xOffset&); 

\ 

int getNextOffset(xOffset& ); 

Manager Errors storeRelPos( xRelPos*); 
Manager Errors removeRelPosWithKey( const char*); 
Manager Errors changeRelPos( const char*, xRelPos* ); 
xRelPos* getRelPosWithKey( const char*); 
int getFirstRelPos( xRelPos&); 
int getN extRelPos( xRelPos&); 

#endif 

143 

/ 



Appendix G 

ParSim Definition Language 

Overview 

Processor Description 

N..LABEL Proc_Time {CIS} 

Each node in the algorithmic representation has a distinguishing label, namely 
N..LABEL. A node has a real time, Proc_Time, associated with computation 
for a single data block. Two modes of operation exist for a node, either sequ1ntial 
computation followed by a communications phase, or concurrent computation and 
communication. A flag can be set where 

C = Compute first, then transmit, 
S = Simultaneous Computations and Communications. 

Link Description 

L..LABEL N__FROM N_TO LENGTH {LINK_WEIGHT} 

describes a directed link from the node N_FROM to node N_TO. 
The LENGTH of a link describes the capacity of a<link. The relative delay, 
LINK_WEIGHT, in communicating a message along the link can be manually 
assigned. (See .LINKWTS in Compiler Directives) 
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APPENDIX G. PARSIM DEFINITION LANGUAGE OVERVIEW 

Compiler Directives 

.MAP {ONIAUTOIEND} 

The .MAP directive begins the mapping mode until map mode end, 
.MAP END, is reached. 

The directive .MAP AUTO causes the simulator to create the mapping. 

The default of .MAP is .MAP ON and if no .MAP directive is given, 
.MAP AUTO is assumed. 

Example: 

.MAP 

Nl P3 

N3 P7 

N4 P5 
I 
;: N6 Pl 

.MAP END 
\, ,,, 

.LINKWTS {AUTO} 

This directive will weight each link by a constant proportional to the mapped 
PE's shortest path length. Default of .LINKWTS is .LINKWTS AUTO. If no 
directive is given, the simulator will prompt the user for Link Weights. 
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APPENDIX G. PARSIM DEFINITION LANGUAGE OVERVIEW 

.ARCH ArchNum Number_of_PE's 

Create a destination architecture with connectivity given in the following table 
for a given Number_oLPE~s: 

1 

I ArchNum ·I Connectivity· I P(i) {:::::> P(j) if: 

1 Linear Array P(i) next to P(j) numerically 

2 Ring P(i) and P(j) next to each other modulus n 

3 Star All PE's connected to P(O) 

4 Binary Tree Single Rooted Binary Tree 
., 

5 Illiac Mesh Wrap-around mesh with dim~nsion 4 

6 Cylindrical Systolic Array 

7 Completely Connected All PE's connected to All other PE's 

8 Chordal Ring Ring w/ added connections of chords = fa 
g HyperCube (i EB j) = 1 

10 Barrel Shifter j = i ± 2K mod n 

11 ±1, ±3, ±5 Ring Chordal ring w / odd near-nbr connections 

.END 

Label to mark the end of an input file. 

{Statement} ;COMMENTS 

Commenting on a statement line. 

* COMMENTS 

Commenting on a separate line. 

) 
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So, Bessy, C++ *is* a great tool 
for designing object-oriented 
simulations. 
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