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ABSTRACT

The process of inspecting opthalmic needles for flaws makes demands that no human inspector can
easily fulfill: visual acuity varies by the hour, peripheral concerns distort judgement, and repeated
appraisals made on the fly tend to become erratic and unreliable. The application of machine vision
technology on the manufacturing line inspection station to solve these problems is presented in this thesis.
The result is improved quality control and increased product yields due to elimination of inconsistencies.

A specific sequence of techniques in image processing have been developed that bring out the edge
detail of the tips and channels of the needles by enhancement and segmentation. These techniques are
invariant to rotation and translation of the needle under inspection, thus providing the necessary flexibility
in material handling.

Specific methods have been also developed to analyze the shapes of tips and channels that do not use
model-matching. Model matching involves comparing the given object with a reference standard. A slight
misalignment between the observed image and reference can lead to wrong results. A more flexible
approach is shown that involves measuring a set of properties of the image and comparing the measured

'values with the corresponding expected values, in order to make a good/bad decision on the quality of the

needle.




CHAPTER 1

INTRODUCTION

Machine vision systems - computers that can see and recognize have applications in virtually every
branch of manufacturing. A broad domain of application is in inspection and quality control. The use of
machine vision for in-process manufacturing verification and reduction of product cost reflects the quality
control demand for reliable and consistent end product. Quality assurance can be defined as the level of
reliability or repeatability that can be expected from a product. While random inspection can provide a
reasonably high level of product quality; quality can best be verified through a‘process of 100 percent
inspection, using machine vision.

Detecting defects on the tips and channels of opthalmic needles ,manually, through microscopes is very
stressful and unreliable. Machine vision can be applied to automate this task. This is the topic of Chapter
2, where the input and output requirements of the system are discussed.

To detect the profiles of the tips and channels of the needles we must be able to distinguish them from
the background. In order to increase the accuracy of edge detection, it is useful to enhance the contrast
of the image. Then, suitable high pass filters can be applied to the image to enhance the edge-detail.
Finally, the edges can be extracted sequentially from the sketch, in order to analyze their shape. All this
is discussed in Chapters-3 and 4.

The analysis of the shape of tips and channels is the basis for making good/bad decisions. A method
that finds corners on digital patterns is helpful in segmenting curves and locating features of interest in the
image. Tips can be associated with a set of attributes using statistical tools and coordinate geometry.
Fractal geometry can be used to characterize the shape of channels. This is the topic of Chapter 5.

The speed at which this inspection is desired requires dedicated hardware which is discussed in Chapter

6. The application of the methods developed in image enhancement, segmentation and analysis are

illustrated on the tips and channels of good and bad samples of tips/channels in Chapter 7.
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CHAPTER 2

SYSTEM REQUIREMENTS

2.1) INTRODUCTION

Automation has been a vital ingredient of computer integrated manufacturing because it strives for a
smooth and continuous manufacturing process with minimum human tending and intervention. It can be
very beneficial in areas where extreme care has to be taken in handling the product due to its fragile nature
and microscopic dimensions. One such product is an opthalmic needle.

Opthalmic needles are used in performing surgical ()pex'ztfi()ns of the eye. On one end, the needle tapers
to form the tip and .the other end of the needle is called the ‘cut-off’ region. This is because the needle
was cut off at this location from a wire to form the channel. The channel is a hollow region that extends
a short distance into the needle. The sutures are attached to the needles by inserting them into this hollow
region and then cnmping the channel to hold the suture. One of the final stages of the manufacturing
process of these ngedles is the *cut-oft> followed by their inspection for manufacturing defects. The needles
are cut from wires ranging from 4 thousandths to 20 thousandths of an inch in diameter. Traditionally,
the needles are handled individually by & pair of tweezers and placed into the slot.in the die-set, ready to
be cut. The machine is manually driven by a clutch to bring the punch down to cut the needle. The
pressure applied to the clutch and the tensions acting on the needle while 1t 1s held by the tweezers in the
slot determines the quality of the cut-off. It is a sensitive operation and requires a great deal of precision.
One of the common defects that occur during this cut-oft process are “burrs’ on the cut-off region. They
can be caused if the needle is not seated properly in the slot. Burrs can also occur if the punch used to
cut the needle is worn. Burrs can cut or weaken the suture. They can also tear the skin during surgery.
Since defective cut-offs can be very damaging to the eye, the detection of these burrs during inspection,

which is the next stage of the process, is very crucial.




The inspection process involves the detection of defects on two regions of the needle - tips and cut-off
region. Conventionally, the inspection of the needles is done manually through microscopes. A tray
containing a set of needles is scanned visually by moving it under the microscope. On the cut-off region,

the human inspector looks for burrs and dirt. On the other end of the needles, he looks for bent, smashed

or deformed tips and dirt.

2.2) HUMAN VISION vs MACHINE VISION

The objective of the automated system is to automate the two stages of the manufacturing process of
the needles - cutting and inspection, as described above. The automation of the inspection process to detect
defects on the needles using machine vision technology will be the focus of this thesis. We will first
compare machine vision to human vision on the basis of the following functional parameters which are

applicable to the inspection of needles.| 1]

Adaptability

This is the capability of the system to automatically adjust or modify its operations aécording_ to
environmental parameters to achieve a desired result. An example of adaptability is the ability of an
individual to take a secosn'd look at an object in order to make decision if there is uncertainty about a detail
due to poor seeing conditions.

Human vision is much more adaptable than machine vision. Since manufacturing costs are directly
affected by the ’tightness of requirements,” it is desirable to make measurements to the necessary level of
precision with a high degree of certainty. The nonadaptable characteristic of machine vision systems can
be.an advantage in industrial vision applications involving performance of identical processes on parallel

manufacturing lines since it provides a high degree of measurement certainty.




Decision Making

The human vision systems can be effective in making value judgements for inspection tasks involving
features such as color, shape, or odor since it has perceptional and interpretational capabilities. Machine
vision $ystems require the quantification of the measurable parameters utilized in the decision making

process. Machine vision systems will be more consistent than human vision systems for factual-based

decisions.

‘Quality of Measurements

Consistency of results and level of precision are two main factors in the quality of measurements.
Machine vision systems are clearly superior to human vision systems in the case of applications where the
measurement is based on quantified input data. In addition, looking at needles manually through
microscopes can be very stressful. The performance of human vision systems. will vary over time due to
such factors as fatigue, environmental condition, or distraction from other individuals in the work-force.
The machine vision system has no random errors due to human fatigue or distraction and th’¢ established

level of performance will be constunt for all practical purposes, through the operating life of the equipment.

Speed of Response

A machine vision system’s- image acquistion time depends on the size of the image matrix, the
processing time of the frame grabbinyg ¢lectronics, and the type of camera. The speed of image acquisition
using machine vision systems is much greater than that of the human vision sytems. The ratio of the speed

of machine vision to the speed of human vision is increasing with time as the state of the art in electronics

improves.
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Economic Considerations

The economics of using machine vision for an industrial application include both a capabilities
enhancement factor and a direct manufacturing productivity cost factor. Providing the capability to
manufacture superior quality products by performing 100% inspection to insure that every item meets
specifications is an example of improved capability factor. At the same time, it can also result in increased
productivity and reduced unit cost. There are significant savings in replacing-a human inspector with an

automated vision inspection station.

Taking all these factors into account, the vision system can pay for itself within a short period of time.
Therefore, it’s not hard to sec why vision offers a number of significant advantages. In the next section,
we will discuss the requirements of the overall automated system and then focus on the requirements of

the machine vision systen.

2.3) SYSTEM REQUIREMENTS
In this section, we will specity the-basic input and output requirements of the system whose objective

is to cut, inspect and sort the needles automatically.

Input Requirements
The system will be presented with carriers, each loaded with a set of needles which are ready to be
cut-off and inspected. The needles have to be equally spaced in the carriers within a certain tolerance.

The system is capable of holding several carriers at a time, that are stacked on top of each other.

Output Requirements

The system is required to place the needles into appropriate sets of trays labelled good, bad or unknown

after they have been cut and inspected in real time. The needles in each tray have to be arranged in an

orderly fashion (by rows and columns).




Control Requirements

Here we will briefly describe the sequence of tasks involved in the process of automating the cutting
and inpection of needles. The operations are performed sequentially in a specific order. The needle is first
positioned to be cut to length. After being cut, the first gripper holding the needle presents it to Camera
1 for channel inspection. After the channel is inspected by the vision system, the first gripper hands off
the needle to a second gripper. The second gripper presents the_needle to Camera 2 for the tip inspection.
After the tip is inspected, the needle is placed in the appropriate tray based on the inspection results of the

tips/channels and the cycle is repeated.

2.4) MACHINE VISION REQUIREMENTS

Here we will look at the input and output requirements of the machine vision system.

Input Requirements

Since the vision system 1s using a fixed window, each needle presented under the camera must be
correctly oriented with its tip or channel in the field of view of the camera. The subjects should also be
in focus. The background should l/)e noise-tree providing good contrast and the illumination should be

uniform across the field of view. There should be no vibration affecting the needles during the acquisition

of the image by the vision system.
Output Requirements
After the vision system has analyzed the image, it should output a good, bad, or unknown signal based

on the result of the analysis.

The techniques used in processing the images and analyzing the shapes of the features in order to determine

the quality of the tips and channels of the needles will be the subject of the following chapters.




CHAPTER 3

IMAGE ENHHANCEMENT

3.1) INTRODUCTION & BACKGROUND:

Image Enhancement techniques are designed to improve image quality, based on the desires or
requirements of the user. The principal objective of these techniques is to process a given image so that
the result is more suitable than the original image for 4 specific application. The techniques that are used
for image enhancement are very much problem - oriented. They are dependant on the kind of features that
one is trying to extract from the image.

When an image is processed for visual interpretation, the viewer is the ultimate judge of how well a
particular method works. This makes the definition of a good image harder to compare with algorithm
performance. When the problem is to process images for machine perception, the evaluation task is a little
easier. For example, if one were dealing with a character recognition application, the best image
processing method would be the one yielding the best machine recognition results.

Therefore, it is important to emphasize that there is no general theory of image enhancement. Even
in situations where a clear-cut method of performance can be imposed on the problem, one usually is still
faced with a certain amount of trial and error before being able to séttle on a_particular ima_’ge processing
‘approach.

Image enhancement operations can be broken into two categories: subjective enhancement and objectivé
enhancement. Before enhancing an image, the question to ask is: are we enhancing the image for an
apparent increased quality (subjective) or correcting it for some known degradation (objective)? In the first
case, the attempt 1s made to derive more-visual knowledge from the image as it stands, and the operations
are applied at the viewer's discretion.

Objective enhancement attempts to correct some known degradation that the image has encountered and

hence does not necessarily strive for a more appealing image. For instance, if the original image was of




low contrast, then it may very well be the goal of an objective enhancement to recover the image as it
originally existed-- low contrast. The following operations may be applied to either subjective or objective

enhancement without distinction other than to its application.

3.2) CONTRAST ENHANCEMENT:

The most basic operation applied to any digital image 1s that of contrast enhancement. In its most basic
form, this class of operations allows an image’s gray scale occupancy to be altered. An important image
analysis tool is the image histogram. The histogram gives a graphic display of the gray scale occupancy
of an image. The two axes are lubeled brightness and number of pixels, where the units of brightness
range from 0 to 255 in the case of an 8-bit gray scale. This graph allows us to view an image’s brightness
distribution, helping in the application of an appropriate brightness redistribution technique to increase the
contrast of the image.

In any given image, however, pixel brightness may not span the entire available gray scale range (from
0 to 255 for 8-bit pixel). This is often the case when imaging low contrast scenes. For instance, an image
with the gray scale distribution lumped in the center of-the available gray scale indicates low contrast. The
histogram has to be stretched over the entire range of the gray scale in order to improve the contrast. This
can be done by a technique known as histogram equalization (or stretching) that is based upon a mapping

of the gray levels to achieve a uniform distribution, which is the topic of the following discussion.

Foundation ;o

Let the random variable r represent the gray level of the pixels in the image to be enhanced. For
simplicity, it will be assumed in the following discussion that the pixel values have been normalized so that

they lie in the range




Os<srsgl (3-1)

where r=0 representing black and r=1 representing white in the gray scale. For any r in the interval

[0,1], the following transformation will produce a level s for every pixel value r in the original image:

(3-2
s=1(r), (-2)

It is assumed that the transformation function given in Eq. (3-2) satisfies the following conditions:

(a) T(r) is single-valued monotonically increasing in the interval 0 < r < 1, and

®O0<sTrH) slfor0<srs |,

Condition (a) preserves the (;x'der from black to white in the gray scale, while condition (b) guarantees a
mapping that is consistent with the allowed range of pixel values. A transformation function satisfying

these conditions is illustrated in Figure 3. 1.

4

Figure 3.1 A gray-level transformation function
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The inverse trunsformation from s back to'r will be denoted by

3-3
r=TY(s) Osss<l, 5-9)

where it is assumed that T''(s) also satisfies conditions (a) and (b) with respect to the variable s.

The gray levels in an image are random quantities in the interval [0,1]. Assuming for a moment that
they are continuous variables, the original and transformed gray levels can be characterized by their
probability density functions p(r) and p(s), respectively. One can determine the general characteristics of
an image from the density function of its gray values. For example, an image whose gray levels have a
density function shown in Figure 3.2a would have fairly dark characteristics since most of the levels are
concentrated in the dark region of the grey scale. On the other hand, an image with a density function

shown in Figure-3.2b would be bright since majority of its pixels are in the light region of the grey scale.

”
. *(r)
P ) A
N
N S5+
o | 5 0 '

@ (%

Figure 3.2 Gray level probability density functions of (a) a 'dark’ image and (b) a 'light’ image




Elementary prabability theory can be used to show that if p(r) and T(r) are known, and T(s) satisfies
condition (a) , then the probability density function (pdf) of the transformed gray levels is given by the

e

relation

N ead (3-4)
PS(S) :[pr(r)f'a,—;'],zr'l(;g)

Therefore, T(r) provides a way to modify the pdf of the input image intensities which leads to

histogram equalization.

Histogram Equalization

Normally, if the nonzero values of p(r) are clustered about small values of r, it would indicate that the
image is excessively darkened and will not provide adequate contrast for further processing. The darkness
in the image could be due to insutficient light being used to illuminate the object. A shadow that is
overcast on the object under view could also contribute to this problem. On the other hand, if the nonzero
values of p(r) are clustered around larger values of r, it would indicate that the image 1s excessively bright
which would also ham'per further extraction of useful information from the image. b'n'e of the factors that’
could contribute to this problem is the use of a light source which is set at a higher intensity level than
required for the given magnification. This results in a "washed out’ image. Also excessive glare from
the surface of the object or background cun add to this problem. An incorrect setting of the sensitivity
level of the sensor (camera) can be the cause to either cases. Neither of these cases 1s desirable for further
image processing, since the range of the image intensities are quite narrow and therefore the perceived
image contrast is poor. Thus an approximately unitorm pdf is most desirable because it provides maximum

contrast and utilizes the dynamic range of the sensor and display equipment.

12




Considering the gray-level transtormation function

s=T(r) =/p(u_)du O<r<l, (3-5)
0

‘where u 1s a dummy 'v.ar‘ia'ble of integration. The right side of the Eq. (3-5) is recognized as the
cumulative distribution function (CDF) of the random variable r. This transformation function s'at.isﬁes the
two conditions that were describer carlier for Eq. (3-2).

Differentiation of Eq. (3-5) with respect to r using Liebnitz’s rule yields t

ds
—— :D 3'6

Thus the pdf of a random variable 1 is the derivative of the cumulative distribution function, s or T(r).

Substituting dr/ds into Eq. (3-4) vields

1

(s) =[p(r)—=1, -1,

p(s) [Prp(r) T\(s) 37
=[],
=1 O<s<l

which is a uniform density in the interval of definition of the transformed variable s.[2] [3]
The above development indicates that using a transformation function equal to the cumulative
distribution of r produces an imuge whose gray- levels have a uniform density. The end result is an

increase in the dynamic range of the pixels which has a considerable effect on the appearance of an image.

In order to be useful tor digitul image processing, the concepts developed above must be formulated




in discrete form. For gray levels that assume discrete. values,

Ly O<r <1 3.8
PAI= k=0,1,...,L-1 (2-5)

where L is the number of levels, p,(r,) is the probability of the kth gray level, n, is the number of times
this level appears in the image, and n is the total number of pixels in the image. A plot of p(r,) versus

r is usually called a histogram.

The discrete form of Eq. (3-3) is given by the relation

gy

Sk.=.T(.rk)=Z "
=0 (3-9)
k . .

) 7 )0_<.rksl
2P k=0,1,..,L-1
J
The inverse transformation is denoted by
.
r=T7'(s) O<s<l, (3-10)

where both T(r) and T'(s,) are assumed to salisfy conditions (a) and (b) of Eq. (3-2).

Since a histogram is an approximation.to a probubility density function, perfectly flat results are seldom
obtained when working with discrete levels, While the equalized histogram is, as expected, not perfectly
flat throughout the full range of gray levels, consideruble improvement over the original image can be

achieved by the spreading effect of the histogram-equalization technique.
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CHAPTER 4

IMAGE SEGMENTATION

Segmentation is the process that subdivides an image into its constituent parts or objects. Segmentation
is a very important step in automated .image analysis because it is during this stage that the vfeatures of
interest are extracted from an image for subsequent processing. A key element in the task of locating
features is that of identifying the location of edges. The algorithms are based on a very basic property of
gray values, namely discontinuity. The segmentation operation depends on the capability of the machine
vision system to detect the edge or an abrupt change in the gray level value associated with the pixels

where the edge is located.

4.1) EDGE ENHANCEMENT

Of geat importance to muchine vision systems is the ability to bring out the edge detail in an image.
Edges are vital features of an image because they convey central information about the size and shape of
objects. Edge enhancement can allow the image processing system to make edge-to-edge boundary distance
measurements as well as provide the base of information necessary for automated image understanding.

Thus a reliable and accurate technique for detecting edges is crucial to further processing of an image.

Basic Formulation

We define an edge as the boundary between two regions with relatively distinct gray-level properties.
Ina continuous image, a sharp intensity transition between neighboring pixels would be considered an edge.
Basically, the idea underlying most edge-detection techniques is the computation of a local derivative
operator. This concept can be illustrated by examining Figure 4.1. Part (a) of this figure shows an image
of a simple light object on a dark background. Proceeding downwards it shows the gray level profile along
a horizontal scan line of the image, and the first and second derivatives of the profile. From the profile,

an edge is modeled as a ramp, rather'than as an abrupt change of gray level. This model indicates the fact




that edges in digital images are always slightly blurred due to sampling.
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Figure 4.1 Elements of edge detection by derivative operator
(a) Light object on a dark background "
(b) Dark object on a light background
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The first derivative of an edge modeled in this manner 1s 0 in all regions of constant gray level, and
assumes a constant value during a gray-level transition. The second derivative, on the other hand, is 0 in
all locations, except at the_ onset and termination of a gray level transition. Based on these remarks and
the concepts illustrated in Figure 4.1, it is evident that the magnitude of the first derivative can be used
to detect the presence of an edge, while the sign of the second derivative can be used to determine whether
an edge pixel lies on the dark (background) or light (object) side of an edge.. The sign of the second
derivative in Fig 1 Part(a) , for example, is positive for pixels lying on the dark side of both the leading
and trailing edges of the object, while the sign is negative for pixels on the light side of these edges.
Similar comments apply to the case of a dark object on a light background, as shown in Fig 1. Part (b).

Although the discussion thus far has been limited to d one-dimensional horizontal profile, a similar

¢
argument applies to an edge of any orientation in an image. We simply. define a profile perpendicular to
the edge direction at any given point and interpret the results as in the preceding discussion. From

experimenting with the first derivative and second derivative operators on images, we observe that the.

]
*

edges are much thicker on the images from the first derivative operators. The edges produced from the
application of the second derivative operator are much sharper. It is difficult to work with thick edges
especially when one is measuring the irregularity or smoothness of a boundary. If the edge is spread over
more than two pixels, an irrégularify that is smaller than this Will 20 unnoticed. Sharper edges are always
desirable in applications dealing with great precision. Therefore, we restrict our discussion to the methods
related to the second derivative operations namely Laplacian. Before we do this we will introduce the

concept of spatial filtering. This is the tool used to apply derivative operators.

Spatial Filtering

The term spatial domain refers to the aggregate of pixels composing an image, and spatial-domain

méthods are procedures that operate directly on these pixels. Image processing functions in the spatial

-,

domain may be expressed as

17




| gy =TRxyl, ‘ (4-1)

where f(x,y) is the input image, g(x,y) is the processed image, and T is an operator on f, defined over

some neighborhood of (x,y).

Spatial filters are operations that create an output image based on the spatial frequency content of the
input image. An image may be represented as an array of two-dimensional frequency components of
varying amplitudes and phases. This representation is known as a Fourier dec_o_mpositiori. Spatial filtering
dllows the separation of these components in an image. On a pixel-by-pixel basis, an output image is
generated. based on a pixel's brightncss‘ relative to its immediately neighboring pixels. Where a
neighborhood’s pixel brightness makes rapid transitions from light to dark or vice versa, the image is said
to contain high frequency components. A neighborhood of slowly varying pixel
brightnesses represents low-frequency components.

A spatial filter attenuates or accentuates the two-dimensional frequency content of an image. These
operations may be used to accentuate an im:ge's high-frequency details (edges), yielding a sharper image.
Alternatively, the high-frequency details may be attenuated, yielding a low-passed image of little detail.

Spatial filtering is carried out using spatial convolution, an .}adaptati_on to two dimensions of the
convolution techniques used in signal processing theory. For each input pixel within an image one
calculates an output pixel based on the weighted average of it and its surrounding neighbors. Typically,
a three pixel by three pixel! neighborhood is used for this calculation although larger
neighborhoods may be used for added flexibility. With the correct selection of weighting coefficients, we
can form highpass, lowpass, and. various edge enhancement filters.

The general approach in reference to Figures 4.2 and 4.3 is to let the values of f.in a predefined
neighborhood of (x,y) determine the value of ¢ at those coordinates. One of the principal approaches in
this

formulation is based on the use of so called masks (also called windows, templates, filters). Basically, a

e
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mask is a small (eg. 3 X 3) two di‘n1ensiQnal array, as shown in Figure 4.2, whose coefficients are chosen
to detect a given property in an image. Ir.l carrying out a spatial convolution for this array, nine weighting
coefficients are defined and labeled w1, w2, w3 .... w9. The center of the mask (labeled wS) is moved
around the image, as indicated in Figure 4.3. At each pixel position in the image, we multiply every pixel
that is contained withih the mask area by the corresponding mask coefficient. The results of these njne
multiplications are then summed, producing « new, spatially filtered output pixel brightness. This operation

is systematically applied to each pixel in the input image,

— o
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Figure 4.2 A general 3X3 mask showing coefficients and corrvesponding image pixel locations.
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Figure 4.3 A 3X3 neighborhood about a point (x,y) in an image.
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We may generalize the preceding discussion as performing the following operation :

TIRx]=w flx-Ly-1)+wRx-1Ly)+wflx-1,y+1)+
w fx,y~1) +w5Rx,y) +w6flx,y+1) + (4-2)
w1,y -1) 1 weflx+ Ly) +wyflix +1,y+1)

A 3 X 3 neighborhood of (x,y) is assumed. Larger masks are formed in a similar manner.
Now with a background on spatial convolution, we are ready to discuss the application of the second-

derivative. The Laplacian operator as mentioned earlier will be used to enhance the edges in an image.

Laplacian Edge Enhancement Operator

The Laplacian operator used in image processing is based on the mathematical second partial derivative

Laplacian expression in continuous functions.

vy-91, 97 (4-3)
ox? oy’

This continuous mathematical expression can be approximated by the difference operators in the discrete
matching vision digital processing application. The rotationally insensitive Laplacian operator process

essentially determines the change in slope of the intensity at the pixel in the x ‘and y directions.[4]

LG j)=Vp(i j) =Ax2p(i j) + Ay?p(i) (4-4)

where




Ax*=[p(i~ 1) ~p(iN]-[pG) -p(i+1,)] (4-5)

Ay*=[p(ij+1))-p(i )] -[p()-plig-1)] (4-6)
ra b c—q
d e f Ax*= [ d-e ] -[e~-f)
g h 1 .
—a b c—
d e f Ay = [ h-e)]~-[e=b]
g h 1

The collection of terms will result in the following expression for the Laplacian operator.

L(ij)=b+d+f+h-4e (4-7)

The Laplacian L(i,j) can be reduced to the mask

0 +1 0
+1 -4 +1
0 +1 0




In summary, the Laplacian operator computes the difference between the gray level of the center pixel
and the average of the-gray levels of the four adjacent pixels in the horizontal and vertical directions. It

is a high pass filter because the sum of the coefficients is zero, and it contains both positive and negative

coefficients.

4.2) SEQUENTIAL SEGMENTATION

In the segmentation methods described up to now, the processing that was done at each point of the
picture did not depend on results obtained at other points. Thus, these methods can be regarded as
operating on the picture "in parallel”, ie, at all points simultaneously. They are implemented very
efficiently on a suitable computer with a parallel architecture.  This section deals withe segmentation
methods in which we take advantage of the results obtained at-previously processed points, in processing
of a current poin{. In these inherently sequential methods, the processing that is performed at a point, and
the criteria for accepting it as part of an object, cun depend on information obtained from earlier processing
of other points, and in particuluar, on the nutures and locations of the points already accepted as parts of
the object.

Sequential segmentation methods hate a potential advantage over parallel methods, with respect to their
computational cost on a conventional, sequential computer.  In the parallel approach, the same
computations must be performed at every point of the picture, since our only basis for accepting or
rejecting a given point is the result of its own local computation. If we want our segmentation process to
be reliable, these computations may huve to be relatively complex. When using the sequential approach,
on the other hand, we can often use simple, inexpensive computations to detect possible: object points.
Once some such points have been detected, more complex computations can-be used to extend or track the

object(s). The latter computations need not be performed at every picture point, but only at points that
~r

extend objects that have already been detected by the previous parallel segmentation methods.
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EDGE AND CURVE TRACKING

Sequential methods are very flexible and can be defined in many ways. We will start by discussing

A

the raster tracking method.

Raster Tracking

Suppose that the objects to be extracted from the given picture are thin, dark, coptinuous curves whose
slopes never differ greatly from 90°. In this case, we can-extract the objects by tracking them from row
to row of the picture, as we scan the picture row. by row in the manner of a TV raster. Specifically, in
each row we accept any point whose gray level exceeds some relatively high threshold d; this-is our
detection: criterion. In addition, once @ point(x.y) on the yth row has been accepted, we accept any
neighbor of (x,y) on the (y-1)st rew, i¢., we accept any of the points (x-1,y-1), (x,y-1), and (x+1,y-1),
provided that the accepted points have gray level above some lower threshold t; this is our tracking
criterion.

If we used the d threshold (detection) alone, or the t threshold (tracking) alone, the curves would not
be extracted correctly; but when we combine the two thresholds, in conjunction with row-by-row tracking,
we are able to extract the curves.

There are many modifications or extensions to this method. The detection and tracking acceptance
criteria can involve local property values othier than gray level. For example, they can be based on local
contrast, as measured, for example. by the value of some derivative operator such as the gradient. The
gradient defines not only a degree of contrast, but also a direction (of highest rate of change of gray level
at the point). In tracking, one could look for successor points along the perpendicular direction, which
should be the direction "along" the curve being tracked. The tracking criterion could ‘also depend on a
comparison between the current point (x;y) and its candidate neighbors, so as to discriminate against

candidates whose gray levels, ete, do not "resemble” that of ('x,y').




In some cases, we may want to accept all candidate points that satisfy the tracking criterion. In other
cases, however, it may be preferable only to accept the best one(s).  For example, it may turn out that
accepting all of them would muke a curve thick, which contradicts our a priori knowledge that curves are
thin.

The tracking criterion should, in general, apply to some region below each currently accepted point
(x,y), rather than just to the point’s immediate neighbors on the row below it. Moreover, the criterion can
depend on the candidate point’s position in this region. For example, it can be more stringent for points
that are farther from (x,y), so as to discriminate against large gaps in the curves, or it can be more
stringent for points that are less directly below (x,y), s0 as to discriminate against obliquity.

<Similarly, the tracking criterion should depend not just on a single currently accepted point (X,y), but
on a set A of already accepted points. This makes it possible, for example, to fit a line.or curve to the
points in A, and make the criterion more stringent for candidate points that are far from this curve. In this
way, we can discriminate against curves that make sharp turns. [f desired, we can give greater weight to

the more recently accepted points of A thun o the "older” points.

Omnidirectional tracking

Up to now we have talked about tracking methods based on a single raster scan. This has the
disadvantage that the results depend on the orientation of the raster, and the direction in which it is
scanned. For example, if a strong curve gradually becomes weaker (Lighter, lower contrast, etc.) as we
move from row to row, our tracking scheme may be able to-follow it, since the acceptance criteria for a
curve that is already being tracked are rélatively permissive; but if we were scanning in the opposite
direction, so that the curve Sizll’ts out weak and gets stronger, we might not detect it for quite a while, since

7

our detection criteria are relatively stringent. We can overcome this problem by scanning the picture in

both -directions, carrying out our tracking procedure for each of the scans independently, and combining

the results, but this doubles the computational cost, and the results may not "fit" well.




Further, raster tracking has the disadvantage that it breaks down for curves that are very oblique to
the raster lines. For example, il we scan row by row, we cannot track curves that are nearly horizontal,
since the crossings of successive rows by such a curve are many columns apart. One way to overcome
this problem is to use two perpendicular rasters, eg., the rows and the columns, so that any curve meets
at least one of the rasters at an angle between 45° and 135°. If we carry out detection and tracking
indepéndently for the two rasters, and combine the results, we should be able to track every part of the
curve using at-least one of the rusters. Not only does this approach double the computational cost, but it
may also cause us fo miss parts ol the curve, since when it becomes too oblique to be traced by one raster,
it will be picked. up by the other raster only it it meets the more stringent detection criteria.

These directionali ty problems cai be largely avoided 1f we use omni-directional curve-following, rather
than raster tracking. Given the current point (x,y) on a curve that is being tracked, a curve-following
algorithm examines a neighborhood of (x,y) , and picks a candidate for the next point. If the curves being
tracked can branch or cross, it muay be necessury to pick more than one next
point; in that case, all but one of the chosen pomts ure stored for later investigation, and the tracking
proceeds with one remaining point as next-point,

) The candidates for next point are evaluated on the basis of their satistying a tracking criterion for
acceptance (dark, high contrast, et). They need not be immediate neighbors of (x,y), since we want to
be able to tolerate small gaps in curves: but the tracKing criterion should discériminate against points far
from (x,y), since a connected curve would normally be preferable to one with gaps. They need not lie on
the side of (x,y) directly opposite the already accepted points, since our crves need not be straight lines;

;
but the criterion should discriminate ayainst points that deviate too much from this direction, since a smooth
curve is normally preferable to one that makes sharp turns,  All of this is, of course, analogous to the
raster tracking case, except that all the neighbors of the current point, not just those on some "next row, "

are candidates for being the next pomnt.
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At any stage, the next point must not be a point that has already been accepted at a previous stage.
If .tﬁere are no candidates that have not already been accepted, the tracking terminates. We can now go
back to any points that were stored for later investigation, and resume tracking these, to find other curve
branches. In particular, when we first detect a curve point, we track that curve in one direction until it
terminates, and then go back if possible.  When no points remain to be investigated, we can resume.
These points must be on curves that do not cross the curves that we have already tracked. In principal,
tracked edges should never branch. and should never terminate except by returning to the starting point or
running off the edge of the picture.

a

Omnidirectional tracking. as scen, is much more flexible than raster tracking, but it has the
disadvantage that it requires access to the points of the picture in a nonprespecitied order, as determined
by the shapes of the edges or curves being tracked. [Uis sensitive to noise and does not fail in a graceful
way.[5]

Before we end the discussion on sequential segmentation, we introduce a more compact form of

representing the boundary pixels, namely chain coding.

Chain codes

A curve in a digital picture can be represented by a sequence of points {(xi,yi)} or, more compactly,
by its chain code. The chain code is a slope mtrinsic representation for the curve. Typically, this
representation is based on the 8-connectivity of the segments, where the direction of each segment is coded
using a numbering scheme such as one shown m Figure 4.4, Given any pair.of consecutive points on the
curve, (X,Y.), (X, 1»Yi: 1), there arc only cight possible locations tor (x;, Y. ,) relative to (x;,y;), so that the
curve can be represented by a sequence of direction changes.  An example of a digital curve and its
corresponding chain code is illustrated in Figure 4.5. The starting point is circled and the digital pattern
is scanned clockwise to obtain the chain code. The series of coordinates can be obtained back from the

chain code without any loss of accuracy.




Figure 4.4  Numbering scheme for the chain code
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CHAIN CODE: 10006655600664444322212
Figure 4.5 Digital curve along with its chain code
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CHAPTER 5

SHAPE ANALYSIS -

‘The analysis of the shape of features is the basis for recognizing objects or in making measurements
of their sizes and shapes. The boundary of a feature is the best known representation of the shape of an
object. The purpose.of all the previous methods was to extract the borders of the object(s) of interest from
the given image. Therefore, the following material assumes that the given digital curve or border is
specified by either a series of coordinates or a chain-code. All of the following discussion 1s aimed. at
getting a measure of shape. We will start with some properties involving slope and curvature of digital

curves, which will be used later in the discussion involving curve segmentation.
5.1) CORNER DETECTION ON DIGITAL CURVES

Slope and Curvature

The shape of a border can be analyzed by examining the turns it makes as we move along it. When
we follow a border, we are always moving at an angle that is a multiple of 45°, which is the slope of a
chain code at any point. In order to measure a more continuous range of slopes, we must use some type
of smoothing. We can define the left and right k-slopes at a point P as the slopes of the lines joining P
to the points k steps away along the curve on each side.

Curvature is ordinarily defined as rate of change of slope. Here again.if we use difference of
successive unit slopes, we always have a multiple of 45° for a chain code. To obtain a more continuous
range of values, we must again use smoothing. We can define the k-curvature of P as the difference
between its left and right k-slopes. Ofcourse, k-slope is not defined if P is less than k away from an end

~

of an arc. The choice of k depends on the application.
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As an example, consider the arc in Figure 5.1 and assume it to be continued indefinitely in both
directions. Here the right 1-slope is 0° at some pcints and:45° at others, but the right 3-slope is tan'(1/3)
at every point (this is because the arc is periodic with period 3). Fork > 3, the right k-slopes are not all
equal, but as k increases, they all approach tan’'(1/3). Similarly tﬁe k-curvature fluctuates for small k

(except that they are all O for k = 3) and approach O as k gets large.

[ PR U

Figure 5.1 Arc showing digital straightness

Curve Segmentation

An important visual descriptor of object shape is the corners the feature shows. Simplified line
drawings in which all corners are preserved, but are joined by straight line segments, seem to convey much
the same information as the original drawings. This tells us that corners tend to be significant information
conveyors:in images. Sharp corners are often associated with man-made objects - a road intersection, a,
house, a cultivated field, but in natural scenes, corners reveal intersections between different objects or
surfaces. For this réason, it is interesting to attempt to characterize shape by the corners it possesses.
First we will briefly talk about other less common tools in conriection with curve segmentation.

The slope histogram of a curve tells us how often each slope occurs on the curve. Ofcourse, it does

not tell us-how these slopes are arranged along the curve. A squiggle consisting of equal number of
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A

horizontal and vertical segments may have the same slope histogram as a square. However, for
noncomplex curves it is reasonable to assume that a'peak on the slope histogram provides information about

overall orientation. Figure 5.2 shows a closed curve along with its chain code. Figure 5.3 shows this
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Chain Code: (starting point is circled , scanning anticlockwise)
: J
35656 70211 21111 10110 10224 45455

42212 12345 55655 55555 55671 10100

Fi:gure-5.2 Closed curve along with its chain code

Information about the wiggliness of a curve can be obtained from its curvature histogram. For a
smooth curve, the curvatures will be concentrated near 0, whereas for a wiggly curve they will be more

spread out. The 1-curvature hisfogram for Figure 5.2 is shown in Figure 5.4.
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Slope : 01 2 3 4 5 6 7

Fequency: 7 15 8 1 5 18 4 2

Figure 5.3  Histogram of 1-slopes for the curve in Figure 5.2

Difference: -3 -2 -1 0 +1 +2 +3

Frequency : 1 1 13 23 18 4 0
Figure 5.4 Histogram of I-curvatures fo; the curve in Figure 5.2

The slope histogram and the curvature histogram described above can be used to obtain some
knowledge about the complexity of the shape of an object. They give no specific information about the
locations and hence cannot be used alone in segmenting a curve. The idea behind segmenting a curve is
to locate portions of the object’s shape on its periphery whose properties are already known. Once located,
these portions and their neighborhoods can be further analyzed to get a measure of the orientation of the
object in the image or to see if it is of acceptable quality as required by the application. Locating corners
is a good starting point.. Therefore, it is important to have a reliable technique that finds corners on digital
patterns which is the topic of the following discussion.

Information on a contour is concentrated at points having high curvature. Any computer model of
shape perception should include a component that detects angles. A digital model for detecting and locating
points of high curvature on a digital curve is essential. By a ‘comer’ we mean the chain node with which

we can associate an identifiable discontinuity in the mean curvature of the curve. The detection of a corner
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is a function of the magnitude of the disContinuity, its abrptness, and the curve regions on either side of
it over which the mean ciirvature ¢an be considered to be uniform and tree of discontinuities.
In the real Euclidean plane, curvuture is-defined as the rate of change of slope as a function of arc

length. For the curve y = f(x), this can be expressed in terms of derivates as

dx® (5-1)
3
Lo dyoan
[+(=2)%)?
) (I+( d.\')) |

If we deal with digital curves, however, it is not immediately clear how to define-a discrete analog. of
curvature. Suppose that a digital curve is defined as a sequence of integer coordinate points p;, pa, -.v.v,
< i £ nund n representing the total number of points

P., Where p, ., is a neighborhood of p; (modulon), | <1 <

X, - X;, ] and |y, - yi,,] , both less

deﬁn"ing the perimeter of the curve. Thus il p, = (X, y;), we have .
than or equal to | ; but-not both- 0. 1t we define the curvature at pi by simply replacing the derivatives
in Eq. (5-1) by differences, the difticulty arises that successive slope angles on the digital curve can only
differ by multiple of 45°, so that small chunges in slope are impossible,

Most features observed in real imuges have ‘corners’ that are quite variable. Some measure of how
prominent a corner is must be used along wigh the means of detecting them., This difficulty can be reduced
by using a smoothed slope meusurenient, e, defining the slope at pyas (y;. - y)/(%;., - x,) for some

k > 1, rather than simply using the first difference (ie k=1). But it is not clear how to choose the

smoothing factor k.
We describe a procedure for defininy significant curvature maxima (and possibly also points of
inflection) on a digital curve, usimy i varisble degred of smoothing, This is a “parallel” procedure in the

"senise that the results at each point.do not depend on results previously obtained at other points.[6] [7]




We define the k-vectors at p, as
A = (X~ X ¥i - Yied)
by = (X, - X ¥i - Vi)

and the k-cosine at p; as

_ (@y-by)

Cp= (5-2)
“layl bl

This ¢, is the cosine of the angle between a, and b,. Thus -1 < ¢, < 1, where cik is close to 1 if a,
and b, make an angle near 0°, and ¢, is close to -1 if a;, and b;, make an angle near 180°; in other words,
¢, 1s larger when the-curve 1s turning rapidly, and smaller when the curve is relatively straight.

We next describe how to select an appropriate value of k at each point p, of the curve. We begin by
computing ¢;;, Cis, ..., C;,, Where m can be arbitrarily chosen to be n/10, ie 1/10 of the perimeter of the
curve. This choice can vary depending on the application. Let h be such that

c.. < T

im i,m-l

< <oy 1 Gy
(where we can define ¢, = -1 to insure that there always is such an h between m and 1). We call cih the
cosine at p;, and denote it by ¢,. Finally , we say there is a. curvature maximum at p, if

c; = ¢ for all j such that |i-j| < W2.

1. =

This results of applying this procedure can be seen in Figure 5.5. The corners on the digital pattern of

the chromosome are indicated by arrows.
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Figure 5.5 Digital Pattern of a chromosome showing the corners detected (indicared by arrows)

5.2) SHAPE REPRESENTATION OF TIPS

It is necessary to represent the shape of a tip by a set of numbers, in order to arrive at a conclusion

about the quality of the tip. This is done through attribute measurement. The goal is to define a specific
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set of attributes which will distinguish good tips from bad ones. These attributes are constructed by
experimenting with needles which are known to have good or bad tips. By examining the data results from
each attribute, its effectiveness in detecting bad tips can be analyzed. Some attributes work better than
others in detecting certain type of defects. Based on the frequency of occurrence of particular defects, the
order of applying each attribute can be prioritized. It is advantageous to first apply those attributes that
identify the more common defects, particularly if their calculations are complex or require a lot of
computation time. Speed of response from an inspection system is very critical in real-time ‘applications.
By calculating and comparing the attribute values for the tip under inspection with predefined values, an
accept or reject signal can be given. Before we start defining the set of attributes used for the tips, we will

first describe a statistical tool used to fit straight lines through a set of data points.

Regression

Regression analysis is typically 'perf()rmed' by means of the least-square technique. It is used to
determine a linear relationship between two variables x and y. In our application, this data represents the
series of coordinate pixels along the boundary of a feature outline. Consider the sample data in Figure 5.6.
The linear relationship between x and y is determined by finding the straight line that best fits the set of
data presented in this figure. One way to do this would be to fit the line to the data 'bye eye’. Different
analysts would come up with different lines. To overcome this variation in judgement, we use the least
squares criterion. This criterion states that the "best fit" is the line that minimizes the sum of the squared

errors between data points and the line. To elucidate this statement; the equation for a straight line is

y = A + Bx

where B = a constant.represerniting the slope of the line

A = a constant representing the intercept of the line with the y-axis (at x = 0)
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Figure 5.6 Plot showing "best-fit" line through set of data points

One possible line that follows this general equation is shown in Figure 5.6. The vertical distance between.

the straight line and any given data point (defined by x,,y;) is termed the error . That is,

e;=y,~(A+Bx) (5-3)

Mathematically expressing the criterion of least squares, the objective is to find values of A and B that

.,

minimize Y 2=y [y,~(A+Bx)J’ 5-4)
i<l inl

where n is the number of points in the data set.

To find the values of A and B that satisfy this objective, the partial derivatives of Eq. (5-4) with

respect to. A and B can be found and set equal to zero.
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(5-5a)

il
o

2y [y;~(A+Bx))(-1)
i=1

(5-5Db)

)]
o

22 [)’,~ _(A +Bx,‘)]( —xi)
i-1

These equations can be written in a more convenient form by separating the terms being summed as

follows:

Y y,=An+B)Y_ x, (5-62)
i=1 i=1

Z x,.yl.=AZ X, +BE )ci2 (5"6b)
i=1 i=1 i=1

Equations (5-6a) and (5-6b) are called the normal equations. By solving these two equations
simultaneously, the values of A and B can be computed which provide the "best fit" to the data by the
least-squares criterion. It is desiruble to examine some of the statistical characteristics of the regression
equation which indicate how good the relationship is. Among these characteristics is the standard error
of estimate (se) .

The se statistic for a regression equation gives the average value of the e errors. Itis notan arithmetic

average, but rather a root-mean-square average corrected for the number of degrees of freedom. It is

defined as
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Yol | Doréssnr (5-7)
\ n-2 \ n-2

Se=

The squared term inside the radical sign shows the root-mean-square averaging process. The (n-2) term

is the number of degrees of freedom. A more convenient way of representing se for calculation is given

by:

: _SxA'Syyf(ng)z (5-8)
n(n-2)S_,

where

Sxxznz xi2 —(Z xi)2
i=1 i=1
Syy:n; y,'z_(lzzl: yi)2

Sxyznz xiyi_(z xi)(z yz)
i=1 i=1 i=1

The sign of a "good fit" is when the value of se is low relative to the values of y in the data set. If

se = 0, this indicates that the equation fits the data perfectly.
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SHAPE ATTRIBUTES FOR TIPS
As we mentioned in the beginning of this section, each tip under inspection will be associated with a

set of attributes whose values will indicate the quality of that tip. We will define and analyze each

attribute.

Linearity of tip edges

Ideally the two edges that taper to form the tip should be straight lines. This attribute checks to see
if there are any abnormalities along a-portion of the edges on either side of the tip. Any sharp nicks, cuts
or dents on the edges will affect the linearity of the lines. The procedure is to take (n) of points on either
side of the tip. So we will have two sets of data points, one for the top edge { (x,,¥y) (X2Yi2) - (xg,,y;)}
and one for the bottom edge { (X,,Yu) (Xe2»Ys2) -+ (XpmYen) }- The value of n can be chosen according
to the size of the tip or its magnification. The first point in both the above sets is the same since it
represents the coordinate of the tip pixel. Therefore, X, = Xy, and y, = y,. Next, using Eq. (5-8), we
find the standard error of estimate of the top edge (se,,) for the n points of the bottom data set. We also
find the standard error of estimate of the top edge (se,,) for.:the n points of the bottom data set. Next, S€icp

is compared with y,,.. and sebot is compared with y, .

where
n
Z Yii
i=1
) —
avg n
and
n
Z Ybi
=1
ybavg—

n
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To make this comparison task easier and to arrive at a single value for-the linearity of the edges, we find
the percentages (T,,, and B,,,) of the star;dard error of estimates (se,,, and s,,,) with respect to the average
value of ¥ (Vg 8Nd Yy,,) as follows

T, = (s6p X 100) / Yy,

B, = (seyu X 100) / Youy,

Finally, T, and B,,, give a measure of the "goodness of fit" of the straight lines through the two data sets.
If T, and B, are high, this indicates that there are some imperfections along the edges. ‘If the top edge

is not linear, T,,, will be high. If the bottom edge is not linear, By, will be high.

Tip Offset

Here we will predict the location of the tip pixel by assuming that it is a perfect tip. Then the
deviation of this predicted location of the tip pixel from the actual location will be given by the tip offset.
By examining the bent tip in Figure 5.7 , it can be seen that the value of this offset should be higher for

a bent tip relative to a good tip.

Figure 5.7 Bent tip illustrating the calculation of tip offset

40




The procedure is to take n points starting trom the kth point. on either side of the tip ( k should be
chosen large enough to ensure that it does not fall in the defective area of the tip). Using Equations (5-6a)
and (5-6b), we ’best fit” straight lines to both the data sets that correspond to the top and bottom edges.
Let the equation of the top fitted straight line be given by

Yp = A + Bx (5-94)
and the one for the bottom line be given by
You = C + Dx (5-9b)
The predicted location of thé tip is the intersection of the two lines in Equations (5-9a) and (5-9b). The
coordinate of the predicted tip (X,;,. Y i) Can be calculated as follows
Xpp = (C-A )/ (B-D)

yplip=A+Bx

plip

Assuming that the coordinate of the actual location of the tip under inspection 15 (Xyp Yap)» the offset 1s

given by

| 2 : (5-10)
offset=) (X i, %) * Oraip =Y i)

The value of this offset will be higher for bent tips relative to the offset for good tips.

Measure of the bend angle

If we examine the bent tip in Figure 5.8, it is seen that each line on either side of the tip, instead of
being straight, makes an angle which is less than 180° at some point. The value of this angle 1s another
indication of the magnitude of the defect. The procedure to detect this angle is the same for the top and

bottom edges of the tip. The angles whose values are to be-found are indicated by alpha and beta in Figure

5.8.
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We take (n) points starting from the tip coordinate. Using Equations (5-6a) and (5-6b), we best-fit a
straight line through these points and ge.t vector a pointing towards the tip, as shown in Figure 5.8. We
repeat this procedure for another (x) points starting from the kth point and get vector b pointing away from

the tip ( again k should be chosen large enough to avoid the defective region; the choice of n and x is

Figure 5.8 Bent tip illustrating the measure of bend. angle

dictated by the size of the tip, type of defects and magnification). Then, the cosine of the angle between

these two vectors can be found as follows:

(a.b) |
jal.|b]

cosine=

where 1 < cosine < 1. The valus of cosine gives a measure of the amount of bend on the edges. If

the value of the cosine is close to -1, it indicates there is no angle smaller than 180° and the edges are

straight.
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Defective Pixel Count

Last but not least, is an extension to. the procedure described earlier in calculating the attribute - tip
offset. First, we “best-fit" straight lines to the top and bottom edges that join to form the predicted location
of the tip. Then we look for the area that lies outside the region enclosed by these two "best-fit" lines.
By examining Figure 5.9, it is seen that if a tip is defective there will always be a region lying outside the
two lines thaf join to form the predicted tip location. The shaded portions the defective tips 'showﬁ in
Figure 5.9 represent the defective areas that we are looking for. By counting the edge pixels of the tip that
fall in these defective regions, we get a good measure of the degree of deformity of the tip. This

procedure is described in the following paragraph.

Figure 5.9 Deformed tips illustrating the calculation of Defective Pixel Count

We arrive at Equations (5-9a) and (5-9b) representing the top and bottom "best-fit" lines similarly as
described in the procedure for calculating the tip offset. Our task now is to count the number of edge

pixels that fall outside the area enclosed by the two lines in Equations (5-9a) and (5-9b). This means that,
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‘starting from the actual tip pixel (X, Y.q,), we scan n edge points on either side of the tip to see if they
lie outside the region enclosed by the predicted lines. We count the number of edge - points that lie above
the line in Eq. (5-9a), representing the top edge. We also count the number of edge pixels that lie below
the line in Eq. (5-9b), representing the bottom edge. The total count will be higher for a deformed tip

relative to the count for a good tip. The value of the count is dependant on the size of the deformity.

5.3) FRACTAL DIMENSIONS

In applications involving inspection, it is often necessary to determine the amount of roughness or
irregularity on feature profiles. The roughness on profiles could be a result of certain type of defects
occurring on the objects undergoing inspection that have to be detected. The use of fractal geometry for
describing irregular shaped objects in automated image analysis will be discussed in this section. In order

to understand the concept of fractal dimensions, we will first talk briefly about self-similarity.

Self-Similarity

In nature, most boudaries are not straight lines forming a polygon, or simple smooth. curves, but are
instead rough and irregular. Furthermore, the amount of roughness and irregularity that we see 1s
generally limited by our image resolution, and if we could increase the magnification, the amount of
perimeter we would see in the image would increase. There seems to be no limit to the increase in detail
made visible through increased magnification. This particular type of behaviour that is of most interest
to us here has a peculiar form called self-similarty.

Self-similarity simply means that at any magnification at which we view a line or surface, it looks the
same. Whatever measureménts we can make to describe the roughness and its scale will be independant
of the scale. Another way of understanding this is if one were to take a portion of the perimeter of a

feature and look at it under a microscope, the magnitied portion would look exactly the same as the original
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large part of the boundary. This niczurs that tf we were o ok st a picture of a portion of an ideal fractal
boundary, we would not know the mugnification ol the photograph froni the ruggedness. of the boundary,
since it always looks the sume at esery maygstcation. This "look dlike” feature of un 1deal fractal boundary
at ‘various magnilications is described asoselt-similarity. When the. complexity of the structure increases
with ‘magnification, it is useiul o use ITractal dinensions (o describe the structure of the particl‘re.
Therefore, the procedure for determining, the fractul dimension of a feattre outline will be the subject of

the following discussion.[8] [Y]

Concept

The length of the bounduiy 14 detcrmined by swinging alony the boundary with dividers set at some
arbitrary distance.  Then if the divider distunce, o stide lendth, is reduced, and the same operation
repeated, the méusured length s drenler becuiise the mewsurement s able o follow more of the
irregularities of the protile. Repoutinge i operabion witds finer and finer steps will cause the length to
continuously increase, so that m crtect, the Teneth ol e outline would be expected to become infinity at
a fine enough scale. Furthermoe, 1t is noed that over i considesble range ol stride lengths, and for a
variety of borders, the slope 6t the plovotsicasured length versus stride length is constant on a log scale.
If the increase in measured lenyth with improvement o maasuring resolution s uniform ( a straight line
on a log plot), the feature is suid to be seli=sumlar. Thie fractad dunension is then obtained tfrom the slope
of this plot. This procedure can be- illustiited by eXploring the simpler, randomly drawn rugged profile

shown in Figuie 5. 10.

Hlustration

A pair of compasses is uscd (o constract a polyvon of side feneth (A) by walking the compasses around
the profile. Thus, as a stirt of the provedire the vongrss pulilis phicéd atpoint A, One now swings the
compasses from outside of the puonite ant o makes contet with the profile. This contact point becomes

the reference point for drawing wsteaght L of fength (N The comipass point is then moved to put the

a
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pivot on point B, and the next stride is tuken along the outline to make contact at point C. One now
*walks’ around the profile until one is now almost back at the starting point. Usually, the perimeter thus
measured is not a perfect integral multiple of the stride length, and some partial length is left over at the
end. A simple and unbiased method of completing the polygon is to join the point representing the last
complete stride to the starting point. The length of this short side needed to complete the polygon is then
taken to be a fraction (a) of the stride length (A). The polygon drawn around the profile is now taken to

be the estimate of the perimeter P, at the resolution (N).

P=nA+a i (5-11)

When plotting graphs from the data generated in exploring the profile, it is useful to convert the
perimeter P and the stride length (\) to a dimensionless form by dividing both by some reference length.
One useful reference length for converting the perimeter and stride length used to explore the rugged
profile to a dimensionless form is the maximum projected length of the profile ( L ). This quantity.-is
shown in Figure (5.10). This process of converting quantities such as 'length of a profile’ into
dimensionless form by dividing by a reference length is described as normalization of the variable. Once
we have normalized the perimeter and stride lengths, we can compare the shapes of different profiles
without being worried about the actual units. It the perimeters (P) are plotted against the stride lengths
(M) on a log-log scales, we obtain the plot shown in Figure 5.11. Once the log plot has been obtained, the

fractal dimension (8) of the boundary is obtained from m, the slope of the linear portion of the plot as

d=1+|m| - G-12)
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The quantitative evaluation of boundaries is a complex problem which involves not only the magnitude
of the fractal dimension (8) used to descibe the system but also the range of resolution (\) over which that
fractal dimension is an operative description parameter. Usually the magnitude of the fractal dimension
increases with roughness, ie the slope of the plot is higher for rougher profiles. Thus, keeping the same
magnification, the fractal dimension can be used to characterize the complexity of the profiles which in turn

is useful in determining the quality of the object under inspection.

e
Ty

Figure 5.10 Rugged profile to illustrate the calculation of fractal dimension
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Figure 5.11  Plot of stride length vs perimeter
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CHAPTER 6

HARDWARE OVERVIEW OF THE AUTOMATED SYSTEM

6.1) MACHINE VISION HARDWARE

A machine vision system is comprised of all the elements necessary to obtain a digital representation
of a visual image, to modify the data, and to present the digital image data to the external world. Figure
6.1 shows the block diagram of the hardware components of a machine vision system. Each one of these

components will be discussed in this section. [10]

1llumination

Lighting is a critical aspect of any machine vision application. Choosing the proper lighting scheme
can result in increased accuracy, system reliability and response time. A poorly designed illumination
‘system can produce glare which may saturate the camera, shawdows which may hide defects, low contrast
or uneven illumination making the inspection task unnecessarily difficult to perform. The four most
commonly used forms of vision system lighting are back lighting, front lighting, structured lighting and
strobe lighting. Our application used ring light front lighting. Front lighting employs light reflected from
the object. The illumination source and the camera are both on the same side of the object. Ringlights
provide intense shadow-free lighting and are especially useful when imaging specular (shiny) objects like

needles.

Sensor

In the context of machine vision systems, a sensor refers to an electro-optical device which converts
an optical image to a video signal. A charge couple device (CCD) was used for our application, which
is a type of solid-state matrix camera. It is composed of multiple rows and columns of photosites. It can

thus produce two dimensional images. The basic concept underlying solid state image sensors is that a
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separate electrical signal is produced for each pixel or area in the sensor.

Vision Optics

The image of a part is formed on the sensor with the aid of a lens or lens system. Four important
parameters associated with optical lens of the vision systems are magnification, focal length, depth of field
and lens mounting. Our lens system was equipped with a zoom _confrol which changed the magnification
(focal length) of the lens between two finite limits. The zoom lens offered most flexibility by adjusting
the magnification based on the size of the needle under inspection (8 wire - 20 wire). The space above
and below the object plane where the lens maintains the focus of the image within acceptable limits is the
depth of field. The depth of field was an important optical consideration in our application. A lens system
with a greatest depth of field “was desired since we were looking at the needles with very high
magnifications ( 250X - 350X). The depth of field would correct for slight variations in positions during
fixturing (due to mechanical tolerances of the grippers and arms) by keeping the needles in focus. The lens

had a C-mount which attached the CCD camera.

Vision Processing Hardware

The image processing architecture includes a high speed pipelined digital processor. Pixels are
processed at a rate of 10 MHz (100 nanoseconds/pixel). The processor can perform two look-up table
transforms, a multi'plication, a logical or arithmetic operation, and data normalization to all 262,144 pixels
512 X '5'12) in an entire frame in real-time (1/30th second). Several processing elements are connected
via a software controllable data flow architecture (Pipelined Pixel Processor), giving maximum power and
applications range to a single image processing system. The image processor contains A/D and D/A
converters for analog video signal 1/0. Up to four video cameras, VCR’s, or other RS-170 standard video
devices can be connected to the processor. (2 camera inputs were used, one CCD for th¢ tips and the other
CCD for channels). Ultra-stable phase lock loop circuitry insures reliable locking the video input signal,

which is low-pass filtered and digitized to 8-bit resolution (256 grey levels) at a 10 MHz rate. Up to three
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full 512 X 512 X 8-bit images can be simultaneously stored in the internal frame buffers of the processor.
This triple image memory supports.the data recirculation techniques which are so vital to high speed image
processing. Two memories can be combined to store a 16-bit deep processed image. The vision-system
is designed to be connected to an AT-compatible host computer. An AT with a 33 MHz clock rate was

s

used. The software that drives the entire vision system is resident in this host computer.

Sec 6.2 OVERALL SYSTEM HARDWARE

In Sec 2.3 of Chap 2, we listed. the sequence of tasks involved in automating the cutting and inspection
of needles. Here we will biriefly list and describe the function of the hardware components used in the
automated system. Figure 6.2 shows a block diagram of the main components and how they are connected
to each other.

A programmable logic controller (PLC) is an assemibly of solid-state digital logic elements designed
to make logical decisions and provide outputs. Push buttons at the control panel are used to power up,
start, home or stop the system. The opening and closing of grippers, the lowering of the punch, the
movement of the rotary actuators are all controlled by the PLC through solenoids, whose valves are
connected to air cylinders. The PLC sends an output to turn on a solenoid which moves the piston that
causes an action to take place. The PLC also-senses inputs from various locations such as grippers, rotary
actuators, die-set punch etc. These sensors inform the PLC that the current task has been completed (the
grippers has been shut, the punch has been lowered, etc) and it can proceed to. the next sequential task.
The PLC also sends and receives signals from motor controllers. Motor controller 1 1s used to push the
carrier containing the needles that are ready to be \cu_'t. Motor controller 2 positions the X-Y table on which
the inspected needles are placed. Proximity limit switches are used to govern the starting, stopping and

reversal of motors. They sense the presence or absence of metal objects without physical contact.
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Vision Interface

The vision system host computer is interfaced with the PLC via an 8255 parallel interface adapter.
The host computer receives signals from PLC that tell it to start the image acquistion on camera 1 or
camera 2. The vision computer sends signals back to the PLC with the inpection results for camera

1(channels) or camera 2 (tips).

VisStionN
Ploce ccoR

Liging |
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Figure 6.1 Hardware components of a machine-vision system
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Figure 6.2 Block diagram of the main hardware components of the overall automated system
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CHAPTER 7

APPLICATION AND ANALYSIS OF THE TECHNIQUES

In this chapter we will demonstrate the specific techniques applied to extract the edges of the
tips/channels and analyze their shapes, using the methods developed in the previous chapters. We will start

¥,
by going through the operations involved in extracting the edges.

7.1) EDGE DETECTION OF TIPS/CHANNELS

The .imaging workstation can be used not only to digitze an image, but to extract only the edge
information, leaving a result suitable for computer analysis of the shape. Here we will show how to
capture a picture, enhance the contrast, find the edges, and eliminate all non-edge information, leaving a
sketch-outline of the object. The sequence of operations performed in obtaining the profile is the same for
the tips and channels.

Plate 1.0 shows an original frame of a sample tip that has been acquired. A fragment of this image
is also indicated in this plate by a small rectangle, that partly overlaps the tip surface. This fragment spans
a small area of the image with rows ranging from 254 to 263 and columns ranging from 295 to 306, out
of a total of 512 X 512 rows and columns. This fragment is chosen to illustrate the changes in the gray
values of the pixels after each step of the process. Table 1.1 lists the gray values of all the 120 pixels (10
rows X 12 columns), occuring within this fragment of the original image of Plate 1.0. The gray values
range from 0. to 255 (8-bit-grey scale resolution). The gray values occuring in the top half of Table 1.1 are
close to 255 and correspond to the white background area within the fragment. The gray values occuring
in the bottom half are 'mgch lower that correspond to the darker region on the needle surface within the
fragment. Each step of the edge-detection process operates on the gray values of the image. After each

operation, the new image will be shown in the plates. A table containing the new gray values occuring

within the. fragment will also be shown after each operation. The location of the fragment will remain




fixed. The plates will help to visualize the-effect of each operation on the appearance of the image. The
\>V€ . . . . . - . EE p
corresponding tables will indicate the effect of the operation on the gray values of the image. As we follow

each of the following steps, we will see how the sketch of the tip of Plate 1.0 finally emerges.

Step I Contrast Enhancement

As discussed in Chap 3, contrast enhancement is done by ’stretching’ or "equalizing’ the histogram.
This step will increase the magnitude of all the edges in the picture, making it easier to detect the edges
later. The mechanism is to make a histogram that counts the number of pixels at each possible grey level,
then fo integrate that curve, and use the resulting cumulative distribution as a grey-scale look-up table.
This results in a picture that has, as closely as possible, equal numbers of pixels at each possible grey level.
Plate 1.1 shows the picture of the same original image in Plate 1.0, along with a graph of the cumulative
distribution function (CDF) of all the image values. The input values of the function cover the range of
grey scale values of the image (0 to 255). The output value of the function is the percentage of the image
that has an intensity equal to or below the input value. Plate 1.2 shows the image after contrast
enhancement, along with the graph of the CDF. The transformed image has a more uniform CDF
compared to the CDF in Plate 1.1, resulting in increased contrast. Table 1.2 lists the gray values of the

fragment in Plate 1.2., that have a uniform density.

Step Il Edge Detection

Next, the edges of the object should be isolated from the rest of the picture. This is accomplished with
a non-directional edge detection convolution, as discussed in Sec 4.1. It gives rieutral gray output on
solidly colored areas, and brightest possible output for isolated black spots. Its effect on edges is to turn

each one into a black line immediately adjacent to a white line as seen in Plate 1.3.




The following 3X3 spatial high pass filter is applied to the image using the method of spatial

filtering discussed in Sec 4.1.

-1 -1 -1
-1 8 -1
-1 =1 -1

The result-of applying this mask- to the gray values in Table 1.2 is shown in Table 1.3. It produces a 16-
bit signed image. Table 1.3a lists the least significant byte of the 16 bit value of each pixel. The negative
gray values adjacent to positive ones reflect the appearance of the black line adjacent to white ones. Table

1.3b contains the most significant byte of the 16 bit value of each pixel.

Step 1l Edge Selection

Since we only need one line for each edge, we choose to eliminate the black lines. All values below
zero 'in the image are immediately clipped to 0, leaving greys and whites, but eliminating blacks. Plate
1.4 shows the result of this clipping. Table 1.4 shows the fragment values of Plate 1.4. It can be seen
that there is only one line for the edge in Plate 1.4.

‘To increase the dynamic range, now is a good time to change the image to an unsigned image, mapping
neutral gray (signed 0) to black (unsigned 0). This is accomplished by taking the absolute value of the

frame of Plate 1.4. The result is shown in Plate 1.5. Table 1.5 shows the fragment values of Plate 1.5.

Step IV Edge Amplification

The edges of the image are now seen as light-colored pixels. Ideally, they should be totally white, with
the background‘\totally black. The first step towards this goal is to square all pixel values, to heighten the
contrast. The result of this operation is shown in Plate 1.6. Table 1.6a lists the least significant byte of
the 16 bit result. Table 1.6b lists the most significant byte of the 16 bit result.

Any values that went over 255 upon being squared are brought back into range by high clipping the.

16 bit frame of Plate 1.6 to the value of 255. Plate 1.7 show the resultant image. This frame now
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contains 255 where the original image had an edge. Table 1.7 shows its fragment values. Plate 1.7 also
shows some low frequency noise at the top left of the tip. Apparently, the edge-detection steps have
enhanced the noise which can be seen as a blob. The sources of these noise components could be dirty
lenses, non-uniform illumination or shadows. They should be avoided as far as possible since they can

interfere with the edge-extraction and give wrong results.

Step V. Sequential Edge extraction

From the edge map of Plate 1.7, the coordinates of the edge pixels are extracted sequentially using the
method of omnidirectional tracking discussed in Sec 4.3. Column 400 is scanned downwards-to find a edge
pixel with a gray value of 255, which will be the starting point of the tracking procedure. Once a starting
point is located its 8 immediate neighbors are scanned for the next edge pixel.
7.2) SHAPE ANALYSIS -OF TIPS AND CHANNELS

In this section, we will see the results of applying the techniques of Chap 5. to distinguish good
tips/channels from bad ones. We will start by examining samples of tips, whose edges have already been

extracted.

Analysis of Tips
Plate 3.0 shows the sequentially extracted edge image of a good tip sample. The first step is to locate:
the tip in this image. To do this, we first find all the corners using the corner-detection algorithm
discussed in Sec 5.1. The detected corners are highlighted in Plate 3.1. The corners are number
-anticlockwise starting from the top rightmost.corner. The tip is picked from these corners by its sharpness.
Once the tip is located, the next step is to measure the attributes used to distinguish good tips from bad
.ones as discussed in Sec 5.2. Next. we will list the attribute values calculated for three samples of tips

(one good and two defective).




A set of 4 attributes will be associated to the tlps The- first attribute is the Linearity of the tip edges
( A) that indicates how well we can fit straight lines on either side of the tip. We will calculate T, and
B, (percentages of the standard error of estimate relative to the average value of y) for each tip. The
second attribute is the Tip Offset (B) whfch gives the deviation of the predicted location of the tip from the
actual location. The third attribute is Measure of Bend Angle (C) that gives the cosine of the bend angle
of the top and bottom edges. The fourth attiibute is the Defective Pixel Count that gives the number of
edge pixels that fall in the defective region of the tip. The values of these four attributes will follow for

the samples of tips(one good and two defective).

1. Attribute values for the good tip shown in Plate 3.2
A> Linearity of tip edges: T, - 0.150763 %

B, - 0.141589 %

B>  Tip Offset: 1.854760
C> Measure of Bend Angle @ top-cosine -0.999291 bottom-cosine -0.999946

D>  Defective Pixel Count : O .

2. Attribute values for defective tip shown in Plaie 4.2 whose profile is shown in Plate 4.0. Plate 4.1 gives

a visual illustration of the atribures.

A> T, -0.212326 % B, - 0.182130 %
B> Tip Offset: 6.934889
C> Measure of Bend Angle: top-cosine -0.855324 bottom-cosine -0.890671

D> Defective Pixel Count: 10
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3. Attribute values for the defective tip shown in Plare 5.0. Plate 5.1 gives a visual illustration of the
attributes.

A> T 0.238847 % B, 0.887841 %

per per

B> Tip Offset 6.314860

C> Measure of Bend Angle top-cosine -0.963432  bottom-cosine -0.927521

D> Defective Pixel Count 7

By examining the values of the attributes of the three tips, it.can be seen that the tip in Plate 4.2

possesses the highest magnitude of defect. The tip in Plate 5.0 is defective to a lesser degree compared with
the tip in Plate 4.2. If we compare the attributes for the detective tips in Plates 4.2 and 5.0-with those of
the good tip in Plate 3.2, there i1s-a large difference in the values. Attribute D (Defective Pixel Count)
seems to be the most reliable and powertul in distinguishing good tips from bad ones. The effectiveness
of the other attributes vary depending on the magnitude and type of defect. By examining the attribute
values for a larger number of good and bad samples,. we can deduce a threshold value for each attribute
which will be used to label the tips as good or bad. We arrived at the following threshold values for the
four attributes, but they are ‘based on a specific type of needles and can vary with the size and the

ma_gnitude of defect.

Threshold Values for the Atrributes:

A> Tper = Bper = 0.17 %

B> Tip Offset = 2

C> Measure of Bend Angle: top-cosine = bottom-cosine = -0.98

D > Defective Pixel Count 2
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Analysis | of Channels

Here we will discuss two approaches used to distinguish good channels from bad ones. The first
approach is based on the corner -detection algorithm discussed in Sec 5.1. The second approach uses the

concept of fractal dimensions discussed in Sec 3.3.

Approach 1.

The idea behind this approach is that it a defect occurs on the channels, there will be points of high
curvature on the profile of the channel. The corner-detection algorithm will be able to pick these defect
points on the curve. Then the local angle at these points can give us further information on the curvature
at that point. Plate 6.0 shows an example of a good channel. Its profile is shown in Plate 6.1. The first
step is to find all the corners using the corner-detection algorithm discussed in Sec 5.1. The smoothing
factor of the corner-detection algorithm was adjusted for the shape of channels so that it detects very
prominent corners. The detected corners are highlighted in Plate 6.1. Next, the local angle at each corner
is found. Although the channel makes a circular turn, the local angles should be more or less straight
lines. The low values of the angle reflect the defects occuring on the channels. We will list the local angle
values for three samples of channels (one vood and two defective).

Note: Corners are numbered anti clockwise and the two rigtmost corners. of the channels are not

considered.

1. Local angle values of the detecied corners for the good channel in Plate 6.0, whose profile is in Plate
6.1:
Corner 0 : 174.39°
Corner 1: 164.51°
Corner 2 : 167.79°
Corner 3 : 160.47°

Four corners were detected, whose values are close to 180°. This indicates that the channel is good.
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2. Local angle values for the defective channel in Plate 7.0, whose pr>ﬂle is in Plare 7.1 :
Corner 0 : 171.65°
Corner 1 : 51.17°

Corner 2 : 41.19°

Three corners were detected. Corner 1 and 2 have very low values which indicates that there is a-defect.

3. Local angle values for the defective channel in- Plate 8.0, whose profile is in Plate 8.1 :
Corner 0: 117.30°
Corner 1: 78.53° ’
Corner 2: 164.91°

Three corners were detected. Corner 1| has a low value indicating a defect.

Approach 2

This approach uses the concept of fractal dimensions to give an estimate of the roughness of the
channel profiles. The stride length is varied and the perimeter is calculated for each value of the stride
length. The fractal dimension is found from the slope of the plot (stride length vs perimeter). Plates 9
and 10 demonstrate the use of tractal dimensions, discussed in Sec 5.3, to distinguish good channels from
bad ones. Plate 9 shows a profile of a good channel, along with a fractal plot at the top left corner. Plate
10 shows.a profile of a bad channel along with the fractal dimension plot. [t can be seen that the slope

of the bad channel plot in Plate 10 is much higher than that of the good channel plot in Plate 9.

CONCLUSION
This effectiveness of the tcchxii'qucs developed to detect edges depend on the quality of the original
image. They have performed very well under the conditions used to inspect the tips and channels of the

needles as demonstrated by the pictures. Some of the operations involved in the edge enhancement and




detection process can be fine tuned to the conditions of the application. The techniques developed to
analyze the tips and channels have also been satisfactory in distinguishing good parts from bad ones. They

can also be fine tuned according to the size and shape of the profile under analysis.
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