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ABSTRACT 

Every lineai error-correcting code possesses a number of 

.subcodes. These subcodes have parameters that are able to predict the 

performance of that code in certain crytographic applicatibns. These 

parameters include the minimum distance which determines the 

error-correcting capability of the subcode. ijy determining the 

general.ized Hamming weights of the subcodes, the weight hierarchy· ·of 

·the linear code can be constructed. The weight hierarchies can be 

used to determ·ine security curves, which are useful for characterizing 

th~ performance of a code along wire-tap channels and fort-resilient 

functions. This thesis discus~es a new method of bounding the 

generalized Hamming weights for cyclic codes which increases the 

usefulness of their corresporiding weight hierarchies. Previous work 

in this area is presented along· ~ith several extensions which offer 

new results that are useful to the study of generalized Hamming 

weights of cyclic codes. 
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I. INTRODUCTION 

Weight hierarchies of error-correcting codes are capable of 

characterizing the performance of a particular code used on a wire tap 

channel. Movitated by this applitation, this thesis discusses the 

determination of such weight hierarchies and how these parameters are 

important in related cryptographical applications. 

Generalized Hamtning weights used to construct weight hierarchies 

of linear codes is a relatively new idea introduced by Wei [18], where 

weight hierarchies of several classes of codes were determined. In 

[SJ, some general ideas were introduced concerriing cyclic codes, in 

particular double and triple-error-correcting cyclic codes .along with 

complete weight hierarchies for several double-error-correcting 

primitiv~ BCH codes were presented. 

The focus of this thesis will be to present a comprehensive look 

at the generation of r-th generalized Hamming weights for several 

types of cyclic codes. Previous work that has investigated the bounds 

for such codes, particu~arly [4,5,8,18]·, will be presented in a 

logical order. This thesis will tontribute to this area of data 

communications by extending the results from the cited papers and· 

introduce algebraic insight to the construction and application of 

weight hierarchies of cyclic codes. 

This thesis begins by introducing the backgroun~ information that. 

1.s required to understand the idea of generalized Hamming weights. 

First, the study of error-control codes is presente~ which leids to a 

discussion of the major classes of codes, which includes cyclic codes. 
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The parameters and method of generation for three cyclic codes are 

highlighted. 

This information sets the foundation for the discussion of 

generalized Hamming weights. Several definitions and fundamental 

properties are presented from several papers, including two important 

theorems that place upper and lower bounds on the values of 

generalized Hamming weights. Recently, a method was introduced that 

improves. the lower bounds of these values for certain types of cyclic 

codes; therefore, reducing the possible range of values. This thesis 

extends this method to other types of cyclic codes and offers some 

insight to the determination of their corresponding weight 

hierarchies~ The distribution of the new lower bounds is also 

investigated, which aids in the construction of complete weight 

hierarchies for primitive SCH codes. 

The usefulness of weight hierarchy principles is presented for 

two different cryptographical applications. Finally, the key ideas 

including the new results presented in this thesis are summarized, 

conclusions are drawn, and further research areas are discussed. 

For further information concerning error-control codes, the 

reader is referred to sources [9,10,12,13,14]. Also, sources 

[3,11,16,18) contain further information regarding applications of 

error-control codes. 
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II. PRELIMINARIES 

First, the backgrourid necessary to understand the ideas presented 

in this thesis will be introduced. This chapter is designed to 

provide this information in three related topics. The first section 

introduces error-control codes and the basic motive for research in 

this field. Se~tion two discusses linear block codes which are used 

by most digital computer and communication systems. Since this thesis 

emphasizes cyclic ~odes, a subclass of linear block codes, section 

three presents three important types of cyclic codes along with their 

parameters, general structure, and methods to generate them. 

II.I Fundamentals of Error-Control Codes 

Error-control codes address the engineering problem of designing 

and implementing a channel encoder/decoder pair such that information 

can be transmitted across a noisy· channel, then r.eliably reproduced by 

the receiver. Error-correcting or error-control codes provide the 

ability to detect and correct errors that occur along the channel due 

to noise. A simplified model of a coded communication sy.stem is shown 

in Figure 2.1. 

Two different types of codes are commonly used today, block and 

convolutional codes. Block codes encode each k-bit message u 

independently into an n-bit codeword, or n-tuple, v. En.coders for 

block codes are memoryless, therefore they can be implemented using 

combinatorial logic circuits. Convolutibnal codes .require encoders 
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Figure 2.1 Simplified Communication System 

that contain memory, since the generation of any codeword depends not 

only on the current k-bit message but the previous m input messages; 

thus, convolutional encoders must be implemented using sequential 

circuits. 

Generally, block codes are preferred due to their ease of 

encoding and decoding. Block codes consist of two categories, linear 

and non-linear codes. To simplify code implementation and synthesis, 

this discussion is limited to linear block codes of which cyclic codes 

are a subclass. 

II.2 Linear Block Codes 

Linear block codes form a important class of error-correcting 

codes used by most digital computers and digital data communications 

systems. A linear block code C = ( n ,-k) over GF(q) c·ontains 
k 

q 

codewords, each- 6f length n, which form a k-dimensional subspace of 

the vector space of all then-tuples over GF(q). If a binary field is 

considered then q = 2. 
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By choosing k linearly independent codewords a k x n matrix can 

be form~d which is called the generator matrix, o. By positioning G 

in systematic form, namely [P Ik], the (n-~) x n parity check matrix, 

T H can be obtained which is of the form [I k P )~ Hence the following n-

relationship can be defined: An n-tuple v i.s a code·w6rd in the code 

generat~d by o if and only if v * T 
H = 0. The 

n-k 
q codewords 

generated by H form an (n,n-kr linear code c-1- which is called the dual 

code of C. 

After g~nerating a code C, the minimum distanced . ~nd minimum 
m1.n 

weight w. can be determined. Given C with codewords v and w, d . m1.n m1.n 

= min { d(v,w) v = w} where d(v,w) is the number of places in which 

v and w differ~ Similarly, w. = min { w(v) 
m1.n 

defined as the number of nonzero places in v. 

d(v,w) = d(v-w,O) = d(v-w); therefore d. = w . 
m1.n .m1.n 

v = 0} where w(v) is 

For linear codes, 

In general, a linear block code has the ability to detects 

errors and simultaneously correct terrors wher~ the minimum distance 

d . > t+s+l ands> t. The code can correct error patterns with a m1.n 

maximum of l(d . -1) /2J or fewer errors, while it can detect error m1.n 

patterns with a maximum of d. -1 or fewer errors. For the remainder m1.n 

of this thesis the value oft will be very important. 

II.j Cyclic Codes 

Cyclic codes form an attractive subclass· of linear block codes 

that possess an algebraic structure that makes it possible to apply 

numerous practical decod~ng methdds. An (n,k) code C is a cyclic code 
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if every cyclic shift of a codeword prpduces another codeword inc. 

Therefore, given v = ( V IV I ••• IV ) where V 0 1 n-1 l.9 a member of C, 

cyclically shifting v once to the right yields V 
( 1 ) 

v ) such that v(l) is a codeword inc~ n~2 

By obtaining a polynomial g(X) of degree n-k which is a factor of 

n 
X -1, g(X) generates an (n,k) cyclic code. The k x n generator matrix 

G is formed by cyclically shifting g(X) once to the right k times. 

Since the parity check polynomial h(X) 
n 

= (X -1)/g(X), cyclically 

shifting h(X) once to the right n-k times produces an (n-k) x n parity 

check matrix H. 

Although there exist several variations of cyclic codes, this 

thesis concentrates on three import~nt types of such codesi The 

details concerning each of them are presented in the following three 

subsections. 

1. BCH Codes 

A powerful subclass ·of multiple-error-correcting cyclic codes are 

known as BCH (Bose, Chaudhuri, and Hocquenghem) codes. To define a 

BCH code, begin with an element f3 in 
m 

GF(q) and any nonnegative 

integer 1, then the polynomial of minimum degree is the generator 

polynomial g(X) if it has as roots 

i+l 
J3 ' ••• ' 

where d is the designed distance of the 
. 

polynomial of 
. J 

and is the order of f3 n. 
J 

i+d-2 
f3 

code. 

·+ . !31. J 

where i = 0, yields a BCH code with length 

7 

(2.1) 

If ·0. ( X) is a minimum 
J 

where 0 < j < d-1, then -

(2.2) 



n = LCM { n
0

, n
1

, ... , nd_
2 

}. (2.3) 

This code has m(d-1) or less parity check digits and is capable of 

correcting I (d-l)/2j or fewer errors. Since the generator polynomial 

g(X) has d-1 consecutive powers of field element Bas roots, the code 

has d . > d which is known as the BCH bound. In a finite field 
m1.n 

m 
GF(q ), a nonzero element Bis said to be primitive if fi has order 

m 
q . Therefore, i:f B is a primitive element in GF(qm), the code 1.s 

known as at-error-correcting primitive BCH code. 

2. Reversible Cyclic Codes 

Another type of multiple-error-correcting code, known as a 

reversible cyclic code, is generated like a BCH code; however, it can 

not be classified as a BCH code. A reversible cyclic code C possesses 

the 
. r 

property that if C contains a codeword v = (v
1

,v
2

, .... ,vn) then v 

= (v ,v 
1

, ... ,v
1

) must also be a codeword in C. n n-
The generator 

polynomial for reversible cyclic codes has the following form, 

g ( X) = LCM { 0 O ( X) , 0 ± l ( X) , ... , 0 ± [ { d-:2 ) / 2 ] ( X) } · (2.4) 

One obvious characteristic of reversible cyclic codes is that ~hey .can 

be encoded and decoded from ~ither end of the message block. For 

certain coded communication systems and applications, this property 

maybe extremely beneficial. 

3. Cyclic Product Codes 

Given two cyclic codes, c
1 

and c
2 

with relatively prime lengths 

n
1 

and n
2

, a cyclic product codec= _c
1 

X c
2 

can be formed. A 

two-dimensional product code c is usually characterized by a 
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rectangular array in wbich each row and column vector is a codeword in 

component code c
1 

and c
2 

respectively. If C = ( k d ) and C 1 n 1' l' l · 2 

then the product code C = X c
2 

has parameters 

Clearly, C is capable of correcting any combination of 

L( d
1 

d
2 

-1) /2J or less random or burst-errors. However, product codes 

can be used for simultaneous random-error and burst-error correction. 

In (2), it was shown that it i~ possible that a product code c
1 

X c
2 

is· capable of correcting any combination of I (d
1

d
2
-1)/2j or fewer 

random-errors while simultaneously correcting any burst-error of 

and are the error correcting 

c~p~~ilities of codes c
1 

and c
2 

respectively. 

Cyclic product codes are attractive not only for their 

simtiltaneous random-error and burst-error capablities, but their 

structure offers unlimited inventive methods for decoding them. 
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III. GENERALIZED HAMMING WEIGHTS AND WEIGHT HIERARCHIES 

This chapter preBents the development of weight hierarchies for 

cyclic codes by compiling previous results from several papers and 

introducing several extensions and generalizations to the existing 

results. Since the idea of generalized Hamming weights is relatively 

new, only a few papers have been devoted to this subject. However, it 

will be shown that the weight hierarchies of cyclic codes possess 

algebraic structtires that are analogous to other error-control coding 

concepts. 

The basic terrnino.logy used to introduce generalized Hamming 

weights is presented in section one. The -results from previous papers 

including several theorems and cbncepts related to the determination 

of weight hierarchi~s are also discussed in section one along with 

illustrative examples. seetiori two discusses the importance of 

bounding the individual generatized Hamming weights of a linear code. 

Two important bounds, the generalized Singleton bound and Gtiesmer 

bound, are described along with an example to show how both are 

calculated. 

Section three restates a method that determines a better lower 

bound than the Griesrner bound for double and triple-error correcting 

cyclic codes. This section coricludes with a discussion on the 

determination of generalized Hamming weights for cyclic product codes. 

In the next section, this method i~ extended to tjetermine better 

bounds fort-error-correcting cyclic codes where t > 3. By improving 

the classic bounds, the determination of a code's weight hierarchy 

10 



becomes more complete. To illustrate this, several tables of wei_ght 

hierarchies of primitive BCH code~ are given. Finally, this section 

concludes by generalizing the re~ults presented in this chapter·. This 

offers some insight into the algebraic structure of the weight 

hierarchies for cyclic codes, especially primitive BCH codes. 

III.1 Basic Definitions and Concepts 

Several definitions are necessary to introduce the idea of using 

generalized Hamming weights to construct weight hierarchies of linear 

codes. 

Given an (n,k) linear code C., the following terms can be defined. 

DEF 3-1: The s~pport set of C denoted as "'X(~) is defined as { i I x. 
l. 

= 0 for some (xl, x2' ... ' X ) in C } . + n 

DEF 3-2: An (n,r) code D is de.fined as a subcode of C where 1 < r < - -

k. + 
DEF 3-3: Given a subcode o, the r-th generalized Hamming weight of C 

is defined as d (C) = min l~{C) I where 1 < r < k. 
r + 

DEF 3-4: The complete set of generalized :Hamming weights { d {C) I 1 
r 

< r < k} defines the weight hierarchy of C. + 
~ simple example to illustrate the above definitions is now 

presented. 

EXAMPLE 3-1: Given a (4,2) linear co.de, C = { 0000, 0101, 1010, 1111 

} . { C) = { 1, 2, 3, 4 } , hence d
2 

( c) = 1-X.( C) I = 4. There exist 

three (4,1) subcodes: 

follows: 

o
1

, o
2

, and o
3 

.. They are defined as 

11 



Dl = { 0000, 0101 }, °X(Dl) = { 2·, 4 } ' 80 l°X(Dl) I 2. 

D2 = { 0000, 1010 } ' ""X.( D2) = { 1,3 } ' so l'k( D 2) I = 2. 

D.3 = { 0000, 1111 },"X.(D3) = { 1,2,3,4 } ' so IX(D3) I = 4. 

So, d
1

(C) = 2, and the weight hierarchy of C is { 2,4 } . + 
Previous papers, namely [4,5,8,18], that introduced how to 

determine _generalized Hamming weights derived several basic, but 

important properties. Those theorems that are essential to the 

development of this thesis are restated from the cited papers .. For 

simplicity, this thesis is restricted to binary linear codes, although 

most of the concepts that are presented in this section ean be 

modified for nonbinary codes. 

A basic property of r....;th generalized Hamming weights, usually 

referred. to as monoton1city, is presented in the following theorem 

f ram Wei ( 18] . 

THEOREM 3-1: Given an (n,k) linear code C with k > 0, then 

1 < d
1

(C) < d
2

(C) < ... < dk(C} < n. 

Another important property associated· with the study of weight 

hierarchies, involves the relationship of a coda C with its dual code 

c-1-. This property, derived from the Macwilliams identity by Wei, 

states that if the wei~ht hierarchy of a code's dual is known, then 

the weight hierarchy for code C can be easily determined. This 

relationship is restated in Theorem 3-2 from Wei [18}. 

THEOREM 3-2: Given an (n,k) linear code C and the weight hierarchy of 

its dual code c-1-, then the weight hierarchy of c is· the set { 

{ 1, 2, ... , n. } - { n+ 1-d r ( c-1i } for 1 < r < n } . + 
The proof~ for Thecirems 3-1 and 3-2 al-o appear in Wei [18]. The 
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following example illustrates the application of Theorem J-2. 

EXAMPLE 3-2: Suppose the weight hierarchy of a (7,3) linear code 1s { 

4,6,7 }. Since a (7,3) code is the dual of a (7,4) code, 

Theorem 3-2 can be used to find the weight hierarchy of the 

(7,4) code as follows: 

{ .{ 1,2, ... ,7 } - { 7 + 1 - { 4,6,7} } } = 

{ { 1,2, ... ,7} - { 4,2,1} = { 3,5,6,7 }. 

Thus, { 3,5,6,7} is the weight hierarchy for a (7,4) code. + 
Feng, Tzeng, and ~ei realized that by examining the parity check 

matrix Hof a linear code, its unde~lying algebraic structure can be 

useful in the determination of the r-th generalized Hamming weights. 

Theorem 2 in [5] generalized their .r~sults which is restated here as 

Theorem 3-3 alon~ with its proof. 

THEOREM 3"".'3: Given an (n,k) code C with its parity check matrix H, 

then the following applies. 

(i) If any d-1 columns of H have rank d-i or more, then 

d (C) > d for 1 < r < k. 
r 

(ii) If any d columns of H have rank d-r then 

1 < r < k. 

d (C) = d for 
r 

+ 
Proof of Theorem 3-3: For ("i), given any subset I of the set { 

1,2, ... ,n} with jrj = d-1, rank([ H. Ii is an el~ment in I ]) = 
1. 

rank(S(I)) > d-r, since any d-1 columns of H have rank d-r or more. 

By obtaining jrj ~ rank(S(I}) < d-1-(d-r) = r-1 < r, ·it follows that 

there exists no d-1 columns of H such that 1rl ~ a~1 and jrj -

rank ( S (I) ) > r. 

For (ii), gi~en jrj = d and allowlng D to be a subcode of C, 
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~ank(D) = r with support d. This is equivalent to a code C' with 

length n - d and parity check matrix H' = D; hence, C' also has 

support d and di~ension r. It then follows that d > d (C); however, 
r 

Q.E.D. 

The new perspective given in th~ above property allows fcir the 

development of several theorems that improve the lower bound for 

d (C), the r-th generalized Hanuning weight. This method is formally r . 

presented in section three of this chapter. 

III.2 Classical Bounds 

Now that the background information involving weight hierarchies 

has been presented, this discussion now turns to the actual 

determination of the generalized Hamming weights of an (n,k,d) linear 

codec. In this case~ dis defined as d
1

(C), also known as the BCH 

bound. 

Determining the possible _generalized Hamming weights for a linear 

code C begins by deriving tight upper and lower bounds for them. Two 

such bounds exist which provide these parameters .. They are the 

generalized Singleton upper botind and the Griesmer lower bound. 

1. General~zed Singleton Bound 

The generalized Singleton is formally presented in the following 

theorem. 

THEOREM 3-4: Given an (n,k) linear codec, d ·(C) < n-k+r. . r + 

14 



This theorem clearly shows that the range of· upper bounds for the 

gene.realized Harruning weights of C is { n-k+l,n-k+2, ... ,n} for 1 < r < 

k. 

Given a BCH code C with dual code c-1 where· t > 1 and tJ_ > 1, 

d (C) = n and d (C) = n-1 can be proven. 
k k-1 · 

By applying Theorem 3-2 
' 

the weight hierarchy of C = { { 1,2, .•. n} - { n+l-d (c-1, } } .. Since 
r 

d
1 
(M > 2tj_ +l > 3 and using Theorem 3-1., { n+l-dr(c-1, } < n-2 fqr 1 

< r < k. Therefore the weight hierarchy of C must include the weights. 

n and n-1, thus dk(C) = n and dk_
1

(C) = n-1. If t > 1 for code c, 

then it follows ·that dk·(~ = n and dk-l (c1-) = n-1. Since both codes, 

C and ~' have no all z~ro-bit columns among the n-bit positions., they 

are referred to as non-degenerate codes. Only non-degenerate codes 

will be discussed for the rem~inder of this thesis. 

2. Griesmer Bound 

The Griesmer bound appropriately places a lower bound on the 

maximal .possible generalized weights for a code C. This bound is 

formally described in Theorem 3-5. 

THEOREM 3-5: For an (n,k) linear code C with 1 < r < k 

The proof of Theorem 3~5, which is very complex, is provided in 

[ 10] • The following example illustrates the determinatio·n of both 

bounds. 

EXAMPLE 3-3: Given a BCH code C = (15,7) with d
1

(C) = 5, the Griesmer 

and general Singleton bounds can be calc~lated and are 

displayed in the following table. 

15 



r 1 2 3 4 5 6 7 

Griesmer 5 8 10 11 12 13 14 
Singleton 9 10 11 12 13 14 15 

+ 
It is important to improve these bounds so as to obtain a smaller 

range of possible values of the generalized Hamming weights. The next 

section presents such a metho~ that can be applied to non-degenerate 

primitive BCH codes. 

In [ 8), both the G·riesmer and Generalized Singleton bounds were 

extensively investigated. Several useful generalizations were 

presented; however, no improvements for these bounds ·were determined. 

Since this thesis concentrates on improving the~e bounds, the methods 

and results. discussed mainly in [5,18] were the motives for the 

content of this paper. 
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III.3 Bounds on Cyclic Codes 

The first important contribution for improving the r-th 

generalized Hamming weights for cyclic codes came from Feng,. Tzeng, 

and Wei ( 5). They proved that for a primitive binary 

double-error-correcting (d-e-c) BCH codec, d
2

(C) = 8. Previously, 

the Griesmer bound determined that d
2

(C) > 8. It is worth noting that 

d
2

(C) = 8 was also found in (4) using a different method than that in 

(5). This realization led to t~e development of several theorems that 

generally increase the lowest possible values of the r-th generalized 

Hamming weights, which in turn decreases the r~nge of values t~ey can 

have. For the following sections, italicized subscripts indicate 

super-subscripts or raised-subscripts. 

1. Double Error-Correcting Codes 

Consider a primitive binary double-error-correcting (d~e-c) BCH 

code C with length n = By equ~tion (2.2), the generator 

polynomial for C is ·clearly g(X) = LCM { 0
1

(X), 0
3

(X) }. The defining 

1 2 4 q 
set A is defined by { B ,B ,B , ... ,B } and { 

3 6 12 3q 
B , B , B , ... ,B } 

where q = m-1 
2 • Knowing that B3q ·= Bq+l, the complete defining set 

for code C becomes 

A= { B1 ,B2 ,B3,B4 ,B6 ,B8 , ... ,Bq,Bq+l, ... } 

or A= { Bis s = 1,2,3, .. ~,~m }, 

where, i
1 

= 1, i
2 

=2, i
3 

= 3., i
4 

= 4, i
5 

= 6, 1.6 = 8, etc. The 

following theorem from Feng, Tzengi and Wei (5) determines an 

interesting relationship within the structure of the primitive binary 
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d--e-c BCH code. 

Theorem 3-6: Let C be a primitive d~e-c BCH code with n m 
= 2 -1, then 

d. (C) > i +2 for 5 .< p < 2m-2. 
1.p-p+l p + 

Proof of Theorem 3-6: By Theorem 3-3, if any d-1 columns of H have 

rank d-r or more then dr(C) > d. In this case, d = i +2 and d-r = 
p 

i +2-i +p~l = p+l. 
p p 

Therefore, it needs to be proven that if any i +l 
p 

columns of H have ran~ p+l or more, then dr(C) > ip+2. 

To procede with a proof by contradiction, assume there are i +l 
p 

columns of H having rank p. Allow the first row of a submatrix H' I 

which 1..s formed by the i +l columns of H, to have distinct locator~ 
p 

x
1

,x
2

, ... ,xip+l· In order to have rank p (ie. > 5), the first p rows 

must be linearly independent. Therefore, th~ rows corresponding to nq 

and 
q+l 

n where q 
m-1 

= 2 must be linearly dependent on the first p 

rows. The equations_ for rows 

respectively are 

q ip ip-1 
X + a X + a X 

ip ip-1 
+ .•• + 

and q+l b ip b ip-1 
X + , X + . 

1
x 

1.p 1.p-

and 
q-1 n with common 

= 0' 

= o. 

roots 

(3.1) 

(3.2) 

q q+l 
Now to eliminate the x and x terms, perform (3.l)x-(3.2) to· 

obtain 

ip+l b ip 
a X - X + 
ip ip 

ip-1+1 
a. 

1
x 

1.p-
il + 1 il 

.•. + ailx - bilx 

ip-1 
- b. 

1
x + 

1.p-

o . 

Factoring an x out of equation (3.3) yields 

18 
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ip ip-1 
a. X - b, X 

1.p 1.p 

ip-1 
+ a X -

ip-1 
ip-1-.1 

b. 
1

x + 
1.p-

(3.4) 

The only way (3.4) has i +1 
p 

distinct nonzero roots 

x
1
.,x

2
, ... ,x. is that all the coefficients are zero. Notice that no 

. 1.p+ 1 

consecutive integers appear between x
4 

and xq; therefore, a. 
1.p 

= ••• = a 4 = b ip = b, 
1.p-l 

= ••• = b6- = 0. Finally, (3.1) becomes 

xq + a x 3 + a x
2 

+ax= 0. 
3 2 1 

= a. 
1.p-l 

(3.5) 

By squaring (3.5) and knowing that (xq)
2 = x

2
q = x, the result becomes 

2 4 
+ a X 

2 

2 2 
+ a X 

1 
+ X = 0. (3.6) 

Again an x can be factored out of (3.6), so as to obtain 

2 5 2 3 2 1 
a_

3 
x + a x + a x + 1 .... O . 

2 1 
(3.7) 

Clearly, ( 3 .-7) has less than i (ie. > 6) nonzero roots; hence the 
p 

contradiction. 

Q.E.D. 

Generally Theorem 3-3 shows improvement for codes with m > 5. 

This was shown by several computer simulations that help~d compile the 

data presented later in this chapter. The following example 

illustrates the applica.tion of Theorem 3-3. 

Example 3-4: For a d-e-c BCH code with length n = 255, the following 

r-th generalized Hamming weights can be calculated along with 

their corresponding Griesmer and generalized Singleton bounds 
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to show :the improvement. 

r 2 3 6 9 16 23 38 53 84 115 

New Bound 8 10 14 18 26 34 50 66 98 130 

Griesmer 8 10 13 16 23 30 45 60 91 122 

Singleton 18 19 22 25 32 39 ·54 69 100 131 

+ 

Notice in the above example that d
115

(C) is improved from 122 to 

130. The generalized Singleton bound is 131, which implies that 

d (C) must equal either 130 or 131. 
- 115 

S~milarly for the double-error-dorrecting reversible cyclic code, 

Feng, Tzeng, a~d Wei [5] improved the r-th generalized Hanuning weights 

in their Theorem 8 which is restated here as Theorem 3-7. The 

generator polynomial for .this code is g(X) = LCM { 0_
1

(X), 

0
1

(X) } which yields the following defining ~et 

A = { . . . ' 
-q 

f3 I • • • I 

-4 -2 -1 130 
I3 ,13 ,I3' ' 

4 
f3 I • • • I 

q . 
I3 ' ••• } 

or A-.= { n-is, nis I s = 0 1 2 1 
JJ JJ . ' ' ' ••• ,.m- } ' 

where 
m-1 

q = 2 • 

Theorem 3-7: Let c be a double-error-correcting reversible code with 

( i) if r - 2i -2p+l and p > 2, then d ( C) > 2i +3 
p-1 . r p-1 

and (ii) if r = 3i -2p and p > 1, then d ( C) > 3i +3. + 
p-1 r p-1 

The proof for Theorem 3-7 follows that of Theorem 3-6 and part ( i) is 

outlined in [5]. An example illustrates the use of Theorem 3-7. 

Example 3-5: Given a d-e-c reversible cycliq code with length n = 

255i the new bounds determined by Theorem 3-7 along with- the 

corresponding Griesmer and generalized Singletcin bounds can be 
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calculated. 

r 2 3 6 9 16 23 38 53 84 115 

New Bound 9 11 15 19 27 35 51 67 99 131 
Griesmer 8 10 13 16 23 30 45 60 9·1 122 

Singleton 19 20 23 26 33 40 55 70 101 132 

+ 

Notice that d
1

(C) ~ 6 for the d-e~c reversible cyclic code and d
1

(C) = 

5 for the d-e-c SCH code, as in Example 3-4; the new bounds for the 

reversible code are always one more than those for the SCH code due to 

the inclusion of a0
. This emphasizes the similarity between the 

calculations for both type of d-e-c codes. 

2. Triple Error-Correcting Codes 

Now consider a primitive binary triple-error-correcting (t-e-c) 

SCH c.ode C with length n 
m 

= 2 -1. The generator polynomial for C l.S 

g.( X) = LCM { 0
1 

(X), 0
3 

( X) , 0
5

(X) } which yields the following 

defining set 

A = { 131' J3 2' J3 3' 84 
' 

J3 5 
. ' J3 6' J3 8' 

10 q J33q' J35q 
} J3 , ... ,13 

' 

or A= {Bis~ s = 1,2, ... ,3m }, 

m-1 3q 
where q = .2 and J3 = 

. +1 J35q -- q+2 J3q and .J3 • Again from [ 5] ' the 

following theorem was derived. 

Theorem 3-8: Let c be a primitive t-e-c acH code with n 
m 

= 2 -1, then 

d. (C) > i +1 for 8 < p < 3m-4. 
1.p-p - p·· - - + 

Similarly, the previous theorem performs best for codes with 

length m > 6. The proof for this theorem is again provided in (5). 

The application of this theorem is also shown with an example. 
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Example 3-6: For a t-e-c BCH code with length n = 255, the following 

r-th generalized Hanuning weights can be calculated along with 

their corresponding Griesmer and generalized SiQgleton bounds 

to show the improvement. 

r 2 3 6 9 12 19 26 33 48 62 77 108 

New Bound 11 13 17 21 25 33 41 49 65 81 97 129 
Griesmer 11 13 16 19 22 29 36 4'3 58 71 87 118 

Singleton 26 27 30 33 36 43 50 57 72 86 101 132 

+ 

Since by including 0_
3

(X) and 0
3

(X) in the generator polynomial 

for the d-e-c reversible cyclic code, discussed earlier, d
1

(C) becomes 

ten which indicates a four-error-correcting code. Therefore, the 

triple-errot-correcting reversible cyclic code does not exist; so no 

analysis can be given. 

This thesis cbnsiders extending the above theorems to higher 

order-error-correcting primitive binary ~CH codes in the next section. 

3. Cyclic Product Codes 

Based on the introductory material presented on cyclic product_ 

codes in chapter 2 section 3 and the concept of r-th generalized 

Hamming weights, the following .realization concerning their weight 

hierarchy can be established, which was first studied by Yang (19]. 

Given a cyclic product code C = * where the weight 

hierarchies of the component codes are given, then drl(Cl) for 1 .< rl 

< kl and dr2 cc2 ) for 1 < r
2 

<. k
2 

are known. The subcode D 
rl 

of code -

cl has dimension rl; therefore, 1-X.< Dr 1) I = dr1< 0r1>· Similarly, 
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I-X(Dr
2

) I = dr
2

(Dr
2

). Theorem 3-9 formally prese!lts the determination 

of the generalized Hamming weights for cyclic product codes. 

Theorem 3-9: 

code c = (n,k) = has d (C) > min { d (C) * 
r · rl l 

d ( c ) } where 1 < r < k 1 < r
2 

< k
2

, and r = r r . ....._ 
r2 2 - 1 - 1' ,_ · 1 2 ....-

Proof of Theorem 3-9: } and { 

} be the basis of subcodes D and D 
rl r2 

respectively. 

t ,. 
It then follows that { yi xj 1 < j < r

1 
and 1 < i < r

2
} is a basis 

of a subcode D of C with dimension r where r = rlr2. Therefore, it 

follows that Ix.co)!= drl(Cl) * dr2(C2)., so dr(C) > drl(Cl) * dr2(C2) 

by Def 3-3. 

Q.E.D. 

III.4 Extensions of Existing Results 

This section presents new resu1 t.s· pertaining to the idea of 

forming weight hierarchies from generalized Hamming weights for cyclic 

codes. First the method used to derive Theorems 3-6 and 3-8 is 

extended to t-error-corr~ctirtg primitive BCH codes where t > 4. A 

·distribution table for the generaliz.ed Hamming weights of cyclic codes 

i$ presented to aid in deriving relationships between the new bounds. 

Finally, complete weight h~erarchies are calculated for double and 

triple-error-correcting primitive BCH codes for n < 128. 

1. t-Error-Correcting Cyclic Cod~s for t>3 

Following the forms of Theorems 3-6 and. 3-7, a related theorem 
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for the four-error-correcting primitive BCH code can clearly be 

established. 

The generator polynomial for the four-error~~orrecting primitive 

BCH code is g(X) = LCM { 0
1

(X), 0
3

(X), 0
5

(X), 0
7

(X) }. The following 

proposed theor~m with accompanying proof is now presented. The proof 

follows the basic form as outlined for Theorem 7 in [5]. 

Theorem 3-10: Let C be a primitive four-error-correcting BCH code of 

length n = 2m-1, then d. . 
1

(C) > i for 12 < p < 4m-7. + 
1.p-p- p 

Proof of Theorem 3-10: This proof prbcedes similarly to that of 

Theorem 3-6; however, it is much more complex. Again by Theorem 3-3, 

.if any d-1 columns of H have rank d-r or more then d _ ( C) > d. For this 
r 

case~ it is enough to prove that if any i -1 columns of H 
p 

have rank 

p+l or more then d (C) > i . 
r p 

To prove by contradictio~, assume there are i -1 columns of H 
p 

having rank p. Allow the first row of submatrix H', formed by the 

i -1 
p 

columns of H, to have distinct locators x
1

,x
2

, ... ,x. . 
1.p-l 

In 

order to have rank p, the first prows must be linearly dependent. 

Furthermore, the rows corresponding to Bq, n3
q = 

q+l n5q 
B I JJ 

q+2 
= B ,. 

7q q+3 m-1 
and B = B where q = 2 are linearly independent on the first p 

rows. Therefore, the -equations for rows Bq, B
3
q, B

5q, and B ?q with 

common roots and coefficients a.
1

,a.
2

, ••• ,a. ; 
l. l 1.p 

b,1,b·2·, ••. ,b.; 
l. l. 1.p Ci] 1 ci2 1 • • • 1 C ip; and d.

1
,d.

2
, ••• ,d. , respectively 

l. l. 1.p 

are 

q ip ip-1 
x + a; x + a. 

1
x + ••• +. 

i2 
ai2x 

il 
+ a.

1
x = o, (3.8) 

1.p 1.p- 1. 

q+l ip ip-1 
X + b, X + b, 

1
x 

1.p 1.p-
+ .••. + = 0, (3.9) 
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i2 q+2 ip ip-1 il 
X + C, X + C, X + ... ·+ ci2x + a. X = o, (3.10) 

1.p-l 1.l 1.p 

i2 il q+J 1.p ip-1 
di2x and X + d, X + d, X . + ... + + a, X = 0. (3.11) 

1.p-l 1. l 1.p 

Eliminating the highest order terms in each, the following is obtained 

ip ip-1 ip-1 
(3!8)x - (3 .. 9) = [ a. x - b x + a x + 

1.p ip ip-1 
ip-1-1 iJ il-1 

bip-lx + ... + a 11 x bilx )x - 0, (3.12) 

and 

(3.9)x ~ (3.10) = 

ip-1-1 
C, X 

1.p-l 

ip ip-1 ip-1 
[ b X - C X + b X + 

ip ip ip-1 

+ ... + bilxil - cilxil-1 .]x = O, 

( 3 . 10) x - ( 3 . 11) = ( c . x.1.p 
1.p 

ip-1 
- d X + 

ip 
ip-1 

.C, X + 
1.p-l 

ip-1-1 
d, X 

1.p-l 
+ ..• + 

il 
CiJX 

il-1 
d X 
il 

]x = 0. 

Now to eliminate the. highest order terms once again, namely 

following equations ~re determined· 

. 2 ip-1 
b. (3.12) - a. (3.13) = (a. c. - b, )x + (a. 

1
b. 

1.p. 1.p 1.p 1.p 1.p 1.p- lp 

ip-1 ip-1 ip-1-l 
a . b . l ) x + ( a . c - b. b . ·1 ) x + . • • + 

1.p 1.p- 1.p 1.p 1.p-

[ b. ( a
1 

- b
2

) - a. ( b
1 

- c
2

) ) x + 
1.p 1.p 

a C -
ip 1 blb. 1.p 

= 0 I 

(3.13) 

(3.14) 

X, ' the 
1.p 

(3.15) 

and C, (3.13) - d, (3.14) = (b, .d, -
1.p 1.p 1.p 1.p 

2 ip-1 
c. )x + (b. 

1
c. -

1.p 1.p- 1.p 
ip-1 . 

b, C, l)X + (b. d, l 
1.p 1.p- . 1.p 1.p-

ip-1-1 
- C, C, 

1
)x + ..• + 

1.p 1.p-

At this point two case~ need to be considered, 

m-2 
2 . Beginning with· the first case, the s~t 

contains no cons~cutive integers between i
8 

and 
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i .. 
p 

i 
m-2 

< 2· 
p -
. for 8 l. 

s 

The only 

(3.16) 

and l. > 
p 

< s < 4m 

possible 



way (3.15) and (3.16) can have i corrunon non-zero roots 1.s for the p 

following relation to be true 

b, 
2 

a. 
1
b. b, 1 b, b, a. C, - - a. a. C, -1.p 1.p 1.p 1.p- 1.p 1.p 1.p- 1.p 1.p-l 1.p ip-1 = = 

b, d. 
2 

b. 
1

c. b, b, d, - C, - C, 1 - C, C, 1.p 1.p 1.p 1.p- 1.p 1.p 1.p- 1.p 1.p-l i.p 1.p-l 

aab· - a. ba a. ca - b, ba Kl 1. e. 1.e. 1.e. l. e. = = = = (3.17) 
bac· - b, ca b. d

8 
- C, c

8 K2, 1.p 1.p 1.p 1.p 

us in g K
2 

( b . ( 3 • 8 ) + a . ( 3 . 9 ) J + K 
1 

( c . ( 3 • 9 ) + b . ( 3 • 10.) ) = O , equation 1.p 1.p 1.p 1.p 

(3.18) is obtained. 

b K xq + 
ip 2 

q+l q+2 (.a. K2 + C, K )x + b, K x + 1.p 1.p 1 1.p 1 
7 2 

J
7

x + ... + J X + J X = 0, 2 1 (3.18) 

where J. = b .. K
2

a .. + a. K
2

b .. + c. K
1

b .. + b. K
1

c .. for 1 < j < 7. J 1.p l.J 1.p 1.J 1.p 1.J 1.p 1.J 
q 2 q+l 2 3 q+2 2 Squaring (3.18) and knowing that (x) = x, (x ) = x, and (x ·) 

5 
= x, the following is achieved 

2 2 . 
[b. K

2 
+ (a. K

2 1.p . 1.p . 
2 2 2 2 4 + C K ) X . + b K X + . ip 1 ip 1 

2 13 
J X + ••• + 

7 
2 3 2 J

2 
x + J

1 
x)x = 0. ( 3 .19) 

Equation (3.19) cannot have i nonzero roots; hence the .contradiction. p 
m-2 Now the second case, i > 2 , must be investigated where there p 

exists one consecutive pai~ of integers between i
6 

and 

and 2m-
2

+1. Therefore, 

i ' p 
m-2 namely 2 · 

K
1 

a. b. - a. b. iw-1 1.w 1.w 1.w-l -= 
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Kl a. C, - b, b, 1 
and 

lW 1.w-l lW .tw-
where 8 i 

m-2 -- < w < p and ; 2 +l. - -
b, d 

w 
K2 - C, C, 

lW · iw-1 lW 1.w-l 

The consecutive pair of integers yields the following relation where v 

m-2 
= ·2 I 

a b - a b + a c - b b K 
v-1 v v v-1 v+l v v+l v 1 

= 
b C - b C + b d - C C K 

v-1 v v v-1 v+l v v+l v 2~ 

Performing K
2

[b. (3.8) + a. (3.9)] + K
1

(c. (3.9) + b. (3.10)] = O, 
lp 1.p . 1.p· 1.p 

gives the following equation 

(a K
2

b. + a. K
2

b 
V 1.p lp V 

where J. 
J 

q+l 
c, K

1
)x 

1.p 

+ c K b 
ip 1 V 

+ b, K
1

c )xv+ b. K xq +(a K 
1.p V 1.p 2 ip 2 

q+2 
+ b, K

1
x 

lp 

7 
+ J

7
x + ... + J

1
x = 0, 

+ 

(3.20) 

7 • 

If J =. O, then that term just drops out and the previous case holds; 
V 

however J = 0 must be considered. 
V 

By performing 

following is obtained. 

-2 2 
(J ) (3 .. 20) [l + 

V 

v-1 
(J X + ••• )X = 0, 

V 

which is a nonzero polynomial with less than v 

contradiction again. 

(3.21) 

m-2 
= 2 roots; hence the 

Q.E.D. 

Example 3-7: For a four-error-correcting BCH code with length n = 
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255, the following r-th generalized Hanuning weights can be 

calculated along with their correaponding Griesmer and 

generalized Singleton bounds to show the improvement. 

r 3 6 9 12 15 22 29 36 43 57 72 87 102 

New Bound 16 20 24 28 32 40 48 56 64 80 96 112 128 

Griesmer 17 21 24 27 30 37 44 51 58 72 87 102 117 

Singleton 35 38 41 44 47 54 61 68 75 89 104 119 134 

+ 

From the previous example, the first new bounds, namely r = 3 and 

6, are actually worst than the Gri~smer bounds. However, ·an 

improvement does occur for larger values of r. When Theorem 3-7 is 

used, the maximum value between the new bound and Griesmer bound 

should be chosen. Also through computer simulation, thiS" theorem 

should be applied to codes with m > 7. 

Now considering the four-error-correcting r~versible cyclic code 

mentioned earlier, the relationship between the d-e-c reversible 

cyclic and BCH codes would appear to be applicable. The structure of 

the d-e-c reversible cyclic code consists of consecutive powers of 

two, while the four-erro~-correcting reversible code does not have 

such a consistent structure. Therefore, after extensive 

investigation, no result similar to that of Theorem 3-7 could be 

determined. It is conjectured, however, that for 

even-error-dorrecting reversible cyclic codes, their improved r~th 

generalized Hamming· weights should be. one mar~ than the corresponding 

even-error-correcting primitive BCH codes. 

Similar theorems for primitive t = 5, 6, etc. error-corr·ecing BCH 
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codes can also be deter~ined, but nbt without complex proofs. The 

early bounds, such as r < 12, for such codes are always worst than 

their corresponding Griesmer bound; however, eventually they do show 

improvement. Conjectures fort= 5,6 are bffered, but without proofs. 

Conjecture 3-1: Let C be· a primitive binary five-error-correcting BCH 

m-1 code with n = 2 with m > 8, then d, (C) > i -1 for 15 < 1.p-p-2 - p 

p < Sm-9. + 
Conjecture 3-2: Let C be a primitive binary six-error-correcting BCH 

m-1 code with n = 2 with m > 9, then d (C) > i -2 for 19 < ip-p-3 - p 

p < 6m-:12. + 

2. General Relationships of New Bounds 

The general relationship between the three parameters n, k, and. d 

of a codec= (n,k,d) are summarized in the following table. 

Given parameters 

n k maximize d 
k d minimize n 

n d maximize k 

Table 3·-1 Rel.ationship of Parameters ( n, k, d) 

Therefore·, for example, given n and k, effort should be made to 

maxi~ize d which will improve the error-correcting capabilities of a 

code c. The relations ~hewn in the above table can be extended to a 

subcode D = (n,r,d) of C. Subcode D can also be expressed as 

( I X(D) j ,r,d) by- Def 3-1 and 3-2. Using the above table, given r (ie. 

k) and d, it is necessary to minimize li(o) I which is equal to 
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Hence, subcode D can be defined as (d (C),r,d). 
r 

Using the new p~rameters for a subcode D, Wei [18] presented a 

theorem which is restated here as Theor~m 3-11. 

i 
Theorem 3-11: Let d (n,k) denote the maximum value of d. (C) 

max 1 

amongst all (n,k) codes C, then d 
1

(d (C),r) > d. (C). + 
max r - 1 

This theorem must be used- in conjurtction with an updated table of 

minimum-distance bounds for linear codes such as in [17]. This 

theorem wili ~lso assist in improving the Griesmer bound on occasion. 

The new bounds that are determined by the theorems presented in 

this chapter are summarized. in Table 3-2. This chart shows a basic 

algebraic structure amongst primitive error-correcting BCH codes with 

t = 2 through 6 and 1 < r < 80. 

When using this chart, the required conditions in Theorems 3-6, 

3-8, 3-10 and Conjectures 3-1 and 3-2, must be maintained. For 

instance a (63~45) primitive BCH code with t = 3 utilizes "Theorem 3-8 

which allows for calculations for 8 < p < 14 (or 3rn-4) which 

translates to 2 < r < 18- (or ip-p). Also note that the data provided 

fort= 5 and 6 are calculated by conjectures, hence unsupported by a 

proof. Such values are included to suggest a uniform algebraic 

structure. 

The legend for Table 3-2 is as follows: 

G: Griesmer Bound. 

N: New Bound. 

EQN: Algebraic Relation with t-Value. 
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t 2 3 4 5 6 

EQN r G N G N G N G N G N 

1 5 7 9 11 13 
3t+2 2 8 8 11 11 
3t+4 3 10 10 13 13 16 17 20 19 

4 
5 

3t+8 6 13 14 16 17 21 20 24 23 28 26 
7 
8 

3t+12 9 16 18 19 21 24 24 27 27 31 30 
10 

11 
3t+l6 12 22 25 27 28 30 31 34 34 

13 
14 

3t+20 15 30 32 33 35 37 38 
3t+20 16 23 26 

17 
3t+24 18 36 39 40 42 
3t+24 19 29 33 

20 

3t+28 21 43 46 
3t+28 22 37 40 
3t+28 23 30 34 

24 
3t+32 25 43 47 
3t+32 26 36 41 

27 
3t+36 28 50 54 
3t+36 29 44 48 

30 

31 
3t+40 32 50 55 
3t+40 33 43 49 

34 
3t+44 35 57 62 
3t+44 36 51 56 

37 
3t+48 38 45 50 
3t+.48 39 57 63 

40 

Table 3-2 New Bounds Distribution Table, Part 1 of 2 
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t 2 3 4 5 6 

EQN r G N G N G N G N G N 

41 
3t+52 42 64 7.0 
3t+52 43 58 64 

44 
3t+56 45 63 71 

46 
3t+60 47 69 78 
3t+56 48 58 65 

49 
50 

51 
3t+64 52 70 79 
3t+60 53 60 66 
3t+68 54 76 86 

55 
56 
57 

3t+68 58 73 80 
59 
60 

61 
3t+76 62 84 94 
3t+72 63 73 81 

64 
65 
66 

3t+80 67 85 95 
68 
69 
70 

71 
72 
73 
74 
75 
76 

3t+92 77 99 110 
3t+88 78 88 97 

79 
80 

Table 3-2 New Bounds Distribution Table, Part 2 of 2 
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Notice in Table 3-2 that the algebric relations with the t-value 

increase by continuously adding four to the constant term and always 

multiplying t by three. 

Although the remarks about cyclic product codes, presented 

earlier, do -not directly utilize the new method outlined in this 

thesis and [SJ, indirectly they can be used to improve the d (C) 
r 

values for such codes. When theorems such as 3-6 a~e applicable to 

the component codes, the generalized Hamming weights for the cyclic 

product code can also be improved. 

3. On Determining Weight Hierarchies 

Improving the bounds for cyclic codes does not appear to be an 

important contribution to error-~ontrol coding. However, by narrowing 

the range of possible values for the generalized Hamming weight$, 

determining the complete weight hierarchies becomes easier and more 

useful. 

Complete weight hierarchy tables are provided for primitive BCH 

codes with t = 2,3 and m = 4,5,6. The legend~ fdr Tabl~s 3.3 through 

3.8 are given as follows: 

F: Results from Feng, Tzeng, and Wei (4). 

D: Duality. 

G: Griesmer Bound. 

M: Monotonicity. 

W: Theorem 3-9. 

X: Known. 

Z: Computer search and/or mathematical arguments from Wei(4]. 
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Primitive 
(15,7) 

Iii,. 
d-e-c BCH C = .,.. 

Code 
r d 

r 

15D,D 8 

14D,D 7 

13D,D 6 

12D,D 5 

1 sx 

10D,D 4 

9
0,D 

3 

2 BF 

7
D,D 

2 

3 lOG,D 

4 llG,D 

4x 1 

5 130,D 

6 14D,D 

7 150,D 

d .l r.l 
r 

c-1 = (15,8) 

Table 3-3 Weight Hierarchies for (15,7) and (15,8) Codes 
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Primitive 
(15,5) 

1111,. 

t-e-c BCH C = ,.. 
Code 

r d 
r 

15D,D 10 

14D,D 9 

13D,D 8 

12D,D 7 

11D,D 6 

10D,D 5 

1 7x 

8
0,D 

4 

7
D,D 

3 

6
0,D 

2 

2 llF,D 

4x 1 

3 13D,D 

4 14D,D 

5 15D,D 

d ..L r..L 
r 

c-1- = (15,10) 

Table 3-4 Weight Hierarchies for (15,5) and (15,10) Codes 
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Primitive 

C = (31,21) 
.... 

d-e-c BCH ,.. 
Code 

r dr 

31D,D 10 
to to 

28D,D 7 

1 sx 

26D,D 6 

25D,D 5 

2 8
G,F 

23G,D 4 

3 lOG,D 

21G,Z 3 

4 12D,D 

5 13D,D 

18G,D 2 

6 15D,D 

7 16D,D 

8 17D,D 

9 18D,D 

10 19D,D 

12x 1 

11 21·0, D 

to to 

21 31D,D 

d .. L rJ_ 
r 

c-1- = (31,10) 

Tabl~ 3-5 Weight Hierarchies for (~l,21) and (31,10) Codes 
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Primitive 
C = (31,16) Iii. 

t-e-c BCH ~ 

Code 
r d 

r 

260,D 10 
to to 

310,D 15 

1 7x 

240,D 9 

23D,D 8 

22D,D 7 

2 llG,D 

20D,D 6 

3 13G,D 

4 14D-16M 

5 15D-17M 

16D-18M 5 

15D-17M 4 

14G,D 3 

6 190,D 

12G,D 2 

7 210,D 

8 22D,D 

9 23D,D 

BX 1 

10 250,D 

to to 
16 310,D 

a ..l. r..l. 
r 

c-1- = (31,15) 

Table 3-6 Weight Hierarchies for (31,16) and {31,15) Codes 
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Primit1.ve 
C = (63,51) 

.... 
d-e-c BCH r 

Code 
r d 

·r 

63D,D 12 
to to 

60D,D 9 

1 sx 

58D,D 8 

57D,D 7 

2 8
G,F 

55D,D 6 

3 lOG,D 

4 llG,D 

52D,D 5 

5 13W,D 

6 14W,D 

7 15W,D 

48Z,D 4 

8 17F,D 

9 18F,D 

10 19F,D 

11 20F,D 

12 21F,D 

42G,Z 

d j_ rj_ 
r 

c-1- = (63,12) 
continued 

Table 3-7 Weight Hierarchies for (63t51) and (SJ,12) Codes, Part 1 of 2 
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continued 
C = (63,51) 

r d 
r 

13 23D,D 

14 24D,D 

15 25D,D 

16 260,D 

17 270,D 

36D,D 
2 

18 29D,D 

19 30D,D 

20 310,D 

21 320,0 

22 330,0 

23 340,D 

24 350,D 

25 360,D 

26 370,D 

27 380,D 

28 390,D 

24x 1 

29 41D,D 
to to 

51 63D,D 

d ..i ..i r r 

c..i = (63,12) 

Table 3-7 Weight Hierarchies fo~ (63,51) and (63~12) Codes, Part 2 of 2 
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Primitive 
C = (63,45) 

... 
t-e-c BCH .,, 

Code 
r dr 

58D,D 18 
to to 

63D,D 13 

X 
1 7 

56D,D 12 

55D,D 11 

54D,D 10 

2 llG,F 

52D,D 9 

3 13D,D 

4 14D-19M 

5 1s0-20M 

6 17D-21M 

46°-soM 8 

45D-49M 7 

7 19D-22M 

44D-48M 6 

8 21D-23M 

43D-47M 5 

41D-46M 4 

9 24D,D 

10 250,D 

d ..l. r..i 
r 

c.l. = (63,18) 
continued 

Table 3-8 Weight ,Hierarchies for (63,45) and (63,18) Codes, Part 1 of 2 
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continued 
C = (63,18) 

r dr 

38G,D 3 

11 27D,D 

12 28D,D 

13 29D,D 

14 30D,D 

15 31D,D 

32G,D 2 

16 33D,D 

17 34D,D 

18 35D,D 

19 36D,D 

20 37D,D 

21 38D,D 

22 39D,D 

23 40D,D 

24 41D,D 

25 42D,D 

21x 1 

2.6 44D,D 

to to 
45 630,D 

d .J_ r.J. 
r 

c.l. = (63,18) 

Table 3-8 Weight Hierarqhies for (63,45) and (63,18) Cod~~' Part 2 of 2 
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Now that weight hieratchies for cyclic codes can be determined·, 

it remains to be shown what they can be used for. The next chapter 

discusses two important applications that were first investigated by 

Wei in (18). 
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IV. DISCUSSION ON APPLICATIONS 

Originally the study of generalized Harruning weights for linear 

codes was motivated by its application to type :II wire-tap channels 

and t-resilient functions. Wei determined that generalized Hamming 

weights completely characterize the performance of a linear code when 

it is used on a wire-tap channel (18]. Such direct applications of 

ger,eralized Hamming weights indicate why it is very important to 

investigate how to determine them .and their structures. 

This chapter describes the applic~tion of a code's weight 

hierarchy when it is used along a type II wire-tap channel in section 

one. Also the importance of security curves are discussed through an 

illustrative example. Finally, .a cryptology application is pres~nted 

in section two, which describes how generalized Hamming weights can 

be used int-resilient functioni. 

IV.1 Wire-Tap Channels 

The type II wire-tap ·channel was first examined by Ozarow and 

Wyner (11). To aid the discussion of its operation, Figure ·4-1 shows 

the basic model of a type II wire~tap channel. The wire~tap channel 

is present in every cryptosystem whether public or private-key. The 

sender introduces a k-bit message m which is encoded into an n-bit 

codeword v. This codeword is then sent along the channel to the 

receiver where it is decoded. Along the channel, however, an 

intruder is able to obtain any s-bits he chooses. Although the 
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sender intruder receiver 
,1111~ 

m a-bits m' 

V type II w 

encoder wire tap decoder 

channel 

Figure 4.1 Model for Type II Wire-Tap Channel 

channel is usual.ly noisy, a noiseless channel is assumed; therefore, 

correct decoding by the intruder is not the real problem. Instead, 

the goal is preventing the intruder from obtaining too much 

information. 

One of the methods to hinder the intruder sug9ested by Ozarow and 

Wynei (11) was to use an (n,n~k) linear code C. Code C clearly has 2k 

cosets disjoint from the standard array. The encoder selects one of 

the 2k cosets corresponding to the k information bits, then randomly 

selects one of the vectors within that coset. Since the channel is 

assumed noiseless, the receiver can determine the coset which contains 

the received vector. The random selection of a vector from a coset is 

not known. by the intruder, although he has full knowledge of the code 

being used along the channel. Wei (181 showed that the s-bits tapped 

by the intruder will provider-bits of information -if and on~y ifs> 

d (C). Therefore, ifs= 0 then the intruder gains no information 

r 

while if s = n the intruder has full knowledge of the information 

transmitted. 

EXAMPLE 4-1: Given a (15,7) DEC BCH code C with the weight hierarchy· 

{ S,8,10,ll,13,14,15} to transmit k = 8 bits of information, 
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and the dual (15,8) code with weight hierarchy { 4,7,9,lOi 

12,13,14,15 } (NOTE: See Table 3-2)~ the performance of code 

C along a type II wire-tap channel can be determined. To aid 

in the analysis a security curve for C can be constructed as 

in Figu.re 4. 2. 

If the intruder samples O to 3-bits, he is uncertain 

about all 8 information bits. When$ is 4 to 6-bits, the 

intruder is now uncertain about only 7 of the 8 information 

bits. The analysis continues until s = n = 15, then the 

intruder is uncertain about none of the information bits .. The 

d~ops of the equivocation .curve in Figure 4. 2 occur at the 

same value.s of the dual code's weight hierarchy cl-, namely { 

4 I 7 I 9 I l O I l 2 I l 3 I l 4 I 15· } + 
The determination of the ~eight hierarchy of a code is necessary 

to analyze its ~erformance along a type II wire-~ap channel. Such a 

direct application of what appears to .be an abstract error-control 

coding concept is very useful in the design of such a channel. 

8 

6 

4 

2 

0 

Uncertainty (bits) 

2 4 6 

s (bits) 

8 10 12 14 16 

Figure 4.2 Security Curv~ for the (15,7) d-e-c BCH Code 
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IV.2 t-Resilient Functions 

This ap~lic~tion is similar to that of the wire-tap channel. The 

difference is that the intrud~r intercepts bits and then substitutes 

other bits, so as to alter the original message. 

Similarly, one of the schemes suggested in Chor, Goldreich, and 

Hastad [3] uses a (n,n-k) linear code for the t-re~ilient furiction. 

In this situation, the intruder can actually reduce the amount of 

information the sender· is able to transmit along the channel. 

Depending on the s-bits the intruder is able to tap into the channel, 

he is able to reduce the amount of information transmitted from k to 

k-r if and ·only ifs> d (C). 
r 

The goal in designing t-resilient functions is to maximize the 

randomness of a decoded vector w, which will maximize the intruder's 

uncertainty about it. The intruder substitutes the s-bits along the 

channel with the intent to reduce the randomness of the decoded vector 

w. Therefore, if the intruder makes no substitutions, the randomness 

of w does not change; however, if the intruder substitutes s~bits, he 

reduces the randomness of w bys. 

The analysis in Example 4-1 can be used similarly to determine a 

linear code's performance as~ t-resilient function in eve~y detail. 

In this case, the intruder is able to decrease the number of 

informati6n bits used to determine the randomness of w; therefore, the 

y-axis labeled 'uncertainty' would be changed to 'randomness.' Hence, 

the importance of determining weight hierarchies of linear codes is 

shown by another possible application. 
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V. CONCLUSIONS 

Generalized Harnmi·ng weights used to construct weight hierarchies 

for several types of cyclic cqdes have been discussed. First, the 

background information about error-control coding, linear codes, and 

cyclic codes was presented. 

Several definitions and theorems from previous papers were 

summarized c:;tnd illustrated with a few examples, before. the focus of 

this thesis was presented. A method of improving the Griesmer or 

lower bound for generalized Hamming weights of cyclic codes was 

discussed. This methbd utilizes the structure of a cyclic code's 

parity check matrix and defining set to determ~ne the code's 

generalized Hamming weights. This method was investigated for only 

the double and triple-error-correcting p~imitive BCH codes and the 

double-error-correcting reversible cyclic code. 

These results were extended to include the t-error-correcting 

primitive BCH codes where t > 3 and fhe four-error-correcting· 

reversible cyclic cod~ was briefly discussed. The algebraic structure 

between the new bounds was shown via a distribution table and several 

complete weight hierarchy tables for primitive BCH codes were 

calculated. Although the new results may not appear to be 

significant, any improvement in decreasing the range of possible 

values for generalized Hamming codes makes the determination of their 

corresponding weight hierarchies more precise and useful. 

Finally, the purpose for determining the weight hierarchies of 

cyclic codes was shown by discussing· two different cryptographical 
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applications, the wire-tap channel and t-resilient functions. 

Although the discussion in this thesis was focused toward binary 

cyclic codes~ it was noted that the results can be extended to 

non-binary cyclic codes. This thesis was unable to offer any definite 

results concerning non-primitive BCH codes artd reversible cyclic 

codes, although several computer simulat~ons_were generated, therefore 

this is one possible research area. Further generalizations 

concerning the similarities between the weight hierarchies of cyclic 

codes should be investigated, as well as further improvements to 

their corresponding weight hierarchy tables. 

The study of generalized Hamming weights is relatively new, as 

mentioned earlier. Therefore, much more research is necessary, for 

many other classes of error-control cod~s. 

48 



REFERENCES 

(1) Blahut, R.E. Digital Transmission of Information. Addison & 

Wesley, New York, New York; 1990. 

(2) Burton, H.O. and Weldon, E.J. "Cyclic Product Codes," IEEE 

Transactions on Information Theory, vol.IT-21 no.4 July 1965, pp. 

433-439. 

[3] Chor, B., Goldreich, o., Hastad, J., Friedmann, J., Rudich, s., 

and Smolesky, R. "The Bit Extraction Problem oft-Resilient 

Functions," Proceedings of the 26th Symposium on Foundations of 

Computer Science, 1985, pp. 396-407. 

(4) Chung, H. "The Second Generalized Hamming Weight of Double 

Error-Correcting BCH Codes and Their Dual Codes," to appear in 

Algebraic Algorithms and Error-Correcting Codes Conference, New 

Orleans~ LA 1991. 

[5] Feng, G.L., Tzeng, K.K., and Wei, V.K. "On the Generalized 

Hamming Weights of Several Classes of Codes," IEEE International 

Symposium on Info_rmation Theory, Budapest, Hungary, June 24-28, 

1991 and also to appear in IEEE Transactions on Information 

Theory. 

[6) Hartmann, C.R.P. ~hd Tz~ng, K.K. "On the Minimum Distance of . . 

Certain Reversible Cyclic Codes,·" IEEE Transactions on 

Information Theory, vol. lT-26 no. 5 September 1.970, pp. 644-646. 

[7] Helgert, H.J. and Stinaff, R.D. "Minimum-Distance Bounds for 

Binary Linear Codes," IEEE Transactions on Information Theory, 

vol.IT-19 no.3 May 1973, pp. 344-356. 

49 



[8) Helleseth, T., Kleve, T., and Ytrehus, O. "Generalized Harruning 

Weights of Lin~ar Codes," ·private communication 1991. 

[9) Lin, S. and Costello, D.J. Error Control Coding: Fundamentals 

and Applications. Prentice Hall, Englewood Cliffs, New Jersey; 

1983. 

[10) Macwilliams, F.J. and Sloane, N.J.A. Theory of Error Correcting 

Codes. North-Holland, New York, New York; 1977. 

[11) Ozarow, L·.H. and Wyner, A.O. "Wire-Tap Channel II," AT&T Bell 

Labs Technical Journal, vol.63 No.10 D.ecember 1984, pp. 

2135-2157. 

[12) Peterson, W.W. and Weldon, E.J. Error Correcting Codes. MIT 

Press, Cambridge, Massachusetts; 1972. 

[13) Rao, T.R.N. and Fujiwara, E. Error-Control Coding for Computer 

Systems. Prentice Hall, Englewood Cliffs, New Jersey; 1989. 

[14) Rhee, M.Y. Error-Correcting Coding Theory. McGraw-Hill, New 

York, New York; 1989. 

(15] Tzeng, K.K. and Zimmermann, K.P. "On Extending Gappa Codes to 

Cyclic Codes," IEEE Transactions on Information ~heory, 

vol.IT-20, no.6 November 1975, pp. 712-716. 

(16) Vanstone, S.A .. and Van Oorschot, P.C. An Introduction to Error 

Correcting Codes with Applications. Kluwer Academic Publish~rs, 

Boston, Massachusetts; 1989. 

[17) Verhoeff, T. "An Updated Table of Minimum-Distance Bounds for 

Binary Linear Codes," IEEE Transactions on Information Theory, 

vol.IT-33 no.5 September 1987, pp. 665-680. 

[18] Wei, V.K. "Generalized Hamming Weights for Linear Codes," IEEE 

so 



Transactions on Information Theory, vol.IT-37 no .. 5 September 

1991, pp. 1412-1418. 

[19) Yang, K. "On Weight Hierarchy of Some BCH Codes and Product 

Codes," private conununication, 1990. 

51 



VITA 

Gary A. Helfrich was born on June 22, 1968 in Allentown, 

Pennsylvania. In February 1986, he received his Certification in 

Computer Technology from the Lincoln Techical Institute in Allentown, 

Pennsylvania. He then attended Penn State University in Allentown and 

State College, Pennsylvania from 1986 to 1990 where he received his 

Bachelor of Science in Computer Engineering wit~ minors in Computer 

Science and Mathematic~ in May 1990. Upon graduation from Penn State, 

he was empl.oy~d by Bell Communications Research in Piscataway-, New 

Jersey. Since August 1990, he has been a participant of Bellcore's 

Full-Time Graduate Studies Program at Lehigh University in Bethlehem, 

Pennsylvania, in the Department of Computer Science and Electrical 

Engineering where he is working on his Master of Science in Electrical 

Engineering under Professor Kenneth K. Tzeng. His interests are 

communication systems, computer networks, and error-control-coding. 

52 


	Lehigh University
	Lehigh Preserve
	1991

	Weight hierarchies of cyclic codes and their applications
	Gary A. Helfrich
	Recommended Citation


	tmp.1551882614.pdf.9uMGt

