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ABSTRACT 

Fine gage .springs, i.e., 0.001 to 0.010 inch thick, of Be-Cu are us_ed as electrical 

connectors at a rate of millions of pounds per year in the world market. Lack of 

knowledg~ on fatigu~ and corrosion fatigue behavior of Be-Cu led to a reaserch effort to 

generate needed data. Special cir~um~tances which are associated with the size of these 

connectors, e.g., reson·ance in fatigue cycling ~n9- buckling made this effort more 

difficult and complex. 

Cold work and heat treatment were studied in this research as two important 

production treatments. Notches were also introduced to represent unavoidable 

geometrical discontinuties. Some tests were conducted in 0.5N s_alt water to study 

corrosion fatigue of Be'"Cu alloy. Trans.mission and scanning electron microscopy were 

also em ployed to characterize the alloy performance. 

Cyclic softening and hardening. were found in fatigue of cold worked and 

annealed Be-Cu, respectively. The latter was .associated with cyclic strain aging. A 

120% increase in flow strength of the annealed material after 2x 106 fatigue cycles was 

observed. It was shown that any mechanical or thermal treatment that decreases the 

ductility of the mc1terial, increases the notch sensitivity. 

In contrast to published literature showing excellent corrosion. fatigue behavior 

of Be-Cu, a considerable decrease in fatigue strength of this material in the aged 

condition was found. These observations are ra~ionalized by the fact that the test 

frequency in this investigation was 1 Hz, while the published data on corrosion fatigue 

of Be-Cu are for tests at 20 Hz or higher. Delet~rious effects of both notch and 

corrosive environment were found to be greater at high, i.e. 106 , cycles than for low, 

i.e. 104
, cycles. Much less environmental .sensitivity was observed in the presence of a 

notch in compared with that observed in the absence of a no.tch. 
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1. INTRODUCTION 

Beryllium copper, also called Be bronze, has many excellent characteristics. It 

is among the hardest and strongest of all the copper-base alloys1
. Since the early 

decades of the 20th century, beryllium copper has been used in many engineering: 

applications in the "form of both castings and wrought products. Since that time, 
a . 

berylli_um copper components have been produced for ship propellers, oil drilling, jet 

aircraft .landing ge~r, wind tunnel apparatus, molds for producing plastic parts, 

submarine telephone equipment, electrical connectors,. etc. Fine gage strips, say 0.001 

to 0.010 inch thick, of beryllium copper are produced· through a combination of solution 

annealing, cold forming, and age hardening. These strips are used for electrical and 

elec;tronic devices in a very high volume, i.e. millions of pounds per year, in the world 

market. These electri~al and electronic connectors are in the form of springs and 

consequently their fatigue behavior has be~n of _great interest among the producers and 

consumers. hi service, these connectors are sometimes exposed to corrosive 

environments, which underscores the importance of determining their fatigue behavior 

in aqueous as well a.s ambient environments. 

Corrosion fatigue or environmentally assiste.d fatigue cracking is .a term used ·t_o 

de.scribe the phenomenon of gradual accumulation of damage in ·a material under the 

combined actions of a .fluctuating stress (fatigue) and a corrosi.ve environment. This 

process causes alterations in crack initiation, crack propagation, and fracture of the 

material. All structural metals including aluminum_, titanium, copper, ·and ferrous 

alloys are susceptible to corrosion fatigue. The degree of damage which occurs depends 

upon the relative aggresiveness of the environment, cyclic loading conditions, 

ten1perature, etc. The fatigue life may be reduced to a fraction of its ambient value in 

the presence of an aggressive environment2
'
3

• Corrosion fatigue, due to the nature of 

corrosion, is -a time dependent phenomenon. Therefore, the lower the frequency of load 

fluctuations, the greater is the time of exposure, and the· _greater the environmental 

influence. Generally speaking, corrosion fatigue is the most common mode of fracture 

due to combination of mechanical loading and environmental interaction4 • 

The published literature contains very few investigations5-7 on corrosion fatigue 

of Be-Cu. Gough and Sopwith 5 found excellent fatigue properties for beryllium copper 
2 



in both fresh water and brine, CO.IJlparable t_o that of 18-8 stainless steel. In an 

investigation on ~orrosion resistance of Be-Cu, Richards6 reported an excellent 

resistance to .corrosion, stress corrosion, and corrosion fatigue of Be-Cu when it -was 

exposed to 3% s.alt water spray. He examined solution treated, cold drawn, and aged 

berylliu:m copper and observed nearly no chaQge in fatigue life under corrosive 

condition~. Reviewing the literature, Jaske et al8 also reported that the wrought Be­

Cu has the highest corrosion fatigue strength value of all the copper alloys in salt 

water. An interesting po~nt in all these investigations is that all data reported on 

corrosion fatigue of beryllium copper are from t_ests done at high frequencies, i.e., 20-40 

Hz. This .means that the time for corrosion has been relatiyely short in all these 

studies. 

Design requirements for different applications of thin gage materials, as well as 

any engineering material, will inevitably leads to stress raisers in products which act 

like notches. Despite the importance of notches on fatigue behavior, no data were 

found on notch effects on both fatigue and corrosion fatigue oK.Be.'..'·Cu. 

Finally, the importance of processing variables s·uch as cold forming and heat 

treatment, besides the absence of data on the notch effect on fatigue behavior in 

·ambient and aqueous environment of beryllium copper suggests the n.eed for a research 

effort in this field. It is important to understand both 1nicroscopic and macroscopic 

aspects of f~tigue in the Be-Cu alloy system. 

3 



1.1 Fatigue- Damage 

1.1.1 Ambient Air Fatigue 

Fatigue damage is accompanied by local plastic deformation whether the 

nominal applied stress is below or above the unidirectional yield. stress. This plastic 

defomation occurs at stress raisers, e.g., rough surfaces, and involves the formation of 

slip bands. These slip ~ands appear on the surface of the fatigued material. 

Consequently, extrusions and intrusions form ·in these bands and the intrusions become 

the source of crack initiation9- 13 . Most researchers have reported that fatigue cracks 

initiate on the surface of the cyclically loaded specimens. However, some sub-surface 

k . . . ; h b t d14,15 crac 1n1t1ation · as een repor e . This sub-surface initiation occurs when a 

strong~y adherent metal surface oxide exists which retards initiation at the external 

surface. Several fatigue crack initiation models have been proposed, all of them based 

011 the slip on crystallographic planes3
. The differences between these models relate to 

the slip character of different materials which can be slip on a single system, on the 

alternating parallel slip planes, and on the multiple slip systems. According to these 

models, the fatigµe crack initates from the deeperied intrusions and tends to follow 

specific crystallographic planes for a while. Later the crack formed grows in a plane 

perpendicular to the applied load direction 16 . Non-reversible plastic deformation 

occurs in front of the crack tip during the crack propagation process in a manner 

-similar to that of crack nncleation3
. Obviously the importance of the role of -slip 

mechanism on fatigue crack initiation and propagation depen·ds upon the ability of the 

material to u11dergo plastic deformation. It is why the mechanisms proposed on the 

basis of slip are .much more applicable to ductile materials3
. 

1.1.2 Corrosion Fatigue 

As mentioned before, the presence of an aggressive environment, usually, 

decreases the fatigue life of the metals. This effect is due to the .interaction between 

localized cyclic deformation and chemical reaction which can affect both initiation and 

propagation stages3
'
17

-
19

. In the case of smooth polished specimens, Sudarshan et al3 

reported up to a nine times reduction in fatigue crack initiation life upon exposure to 
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an aggressive environment. They equated the effect of such an environment to 

introducing of a sharp -notch in.to the surface. They argued that a 
. 

corrosive 

environment facilitates the formation of discontinuties on the surface which can later 

become fatigue cracks. Four major theories have been proposed for explaining fatigue 

damage in aq~eous environments, these are:· 

• Pitting - This mechanism was one of the earliest theories proposed to explain the 

fatigue life reduction in aqueou~ environments. According to this theory, corrosion 

induced pits on the fatigue specimen surface act as stress raisers which facilitate the 

crack initiation process. Many stud"ies on low-carbon steels have shown this 

phenomenon responsible for fatigue cracking in corrosive environments19 . 

• Protective Film Destruction - When the elect.rochemical ·potential of a metal in a 

given aqueous environment i's in the passive region, this mechanism becomes important. 

In such a case, the protective film can rupture du~ to mechanical loading. Therefore, ·a 

discontinuity form on the surface of the metal which acts as an origin for crack 

nucleation. The sarne mechani~m can accelerate the crack p.ropagation rate by 

preventing the formation of protective layer at crack tip. This rriechanism has been 

observed in corrosion fatigue of mild steel, stainless steel, and aluminum alloys in sea 

water3 • 

• Strain Enhanced Dissolution of Slip Steps - This mechanism _has. been found to be 

. . . f . f d l I·I . 3 19 •20 Th . . . f h' active in corrosion atigue. o copper an severa copper a oys ' . e origin o · t is 

model is that ~efor.med areas in metals are anodic relative to undeformed regions19 . 

This idea comes from the tact that atoms in deformed regions are in a higher energy 

state than the atoms in undeformed areas. Two contradictory statements have been 

reported as a consequence of this mechanism:. iI~hn and Duquette20 observed an 

Increase in slip offset- height and density, but blunting of slip hand crac.ks which 

resulted in delay in crack initiation and an increase in fatigue life of Cu and· Al.,Cu 

single crystals exposed to salt water. On the other hand, many investigations have 
3 19 .. ·• 

shown ' a premature fatigue crack initiati6n in aggressive environments. :This 

accelerated crack nucleation has been attributed to the concentration of deformation in 

the slip bands which are preferentially corroded. Hahn and Duquette21 observed that 

enhanced localized dissolution also alter.s the fatigue crack path from transcrystalline in 

air to either partially or totally intergranular in corrosive environment in a CuNiCr 
5 



alloy. They argued that surface softeni"ng and blunting of slip band cracks suppress 

crack initiatioin in slip bands. Instead, cracks initiate and grow at grain boundries, due 

to geometric constraint. 

• Surface Adsorption - The su:r,-face energy of a metal can be reduced by adsorption of 

specific species from the environment. This ph~nomenon lowers the local bond energies 

and facilitates crack initiation and propagation 19
. Hydrogen embrittlement of metal~ 

which results in premature fatigue fracture is one example of this :mechanism. 

As shown in Figure 1.1, these four mechanisms are directly described by 

different regions in a polarization curve3
• 

1. 1.3 Effect of Dissolved Oxygen on Corrosion ·Fatigue 

The importance of dissolved oxygen on corrosion fatigue has .been reported by 

several investigat~rs22'" 25 . Mehdizadeh et al23 observed 65% decrease of endurance 

limit when they fatigued AISI 1035 steel in aerated brine. They got no environmental 

effect when they repeated the same test in deaereated salt water. Working on 

corrosion fatigue of low-carbon steel in salt water, Duquette and Uhlig24 also reported 

similar behavior. They observed rusting- in regions of maximum stress in the solution 

containing dissolved oxygen. ·They related this. observation to galvanic in-terac.tion of 

fresh metal at slip steps, formed by fatigue, with adjacent metal covered by the usual 

oxide films. In the other words, the region ·underneath the oxide film, but close to 

deforme.d area acts as anode in a galvanic cell and corrodes faster. Du-quette and 

Uhlig24 could compensate for the deleterious effect of aeration in their study by 

applying cathodic current. 

6 
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1.2 Production VariableS' 

1.2.1 Cold. Work 

Considering the nature of fatigue damage, i.e. the accumulation of deformation, 

it is expected that every treatment which increases the yield stre~gth of the material, 

improves the fatigue strength. Generally speaking, cold working improves the cyclic 

behavior of metals. The influence of pre-:-deformation on fatigue resistance, similar to 

that of monotonic behavior, is due to introducing dislocations. The density of 

dislocations that exist in a metal prior to- fatigue not only can affect the fatigue life, 

but can also cause cyclic softening or hardening26 . Smith et al27 proposed th.at the 

ratio of the monotonic ultimate ~ensile strength to the yield strength could be used to 

determi"ne if softening or hardening would occur. They claimed that .cyclic hardening is 

expected when this ratio is greater than 1.4, cy~lic softening is dominant when it is 

less than 1.2, and no significant strength change is expected between 1.2 anq. 1.4. 

Studying the fatigue li1nit of copper, Awatani et al28 observed cyclic hardening and 

softeninig in annealed and cold worked materials, respectively. They found that in pre­

stretched copper, the dislocation substructures form in fatigue cycling. These networks 

then grow toward the grain boundries at high cycles and lead to formation of relatively 

dislocation free grains. The formation of relatively dislocation free grains is responsible 

for cyclic softening that does not let the specimen to show a fatigue limit. On the 

other hand, they observed forests of dislocations in annealed copper at h~gh cycles 

concentrated inside the grains which were responsible for cyclic hardening and 

introducing of endurance limit. 

Cold working as well as other strengthening mechanisms, increase the 

environmental sensitiv~ty. Regions with ~ high density of dislocations are high energy 

areas prone to environn1ental attack. Increased sensitivity of pre-deformed· metal in a 

corrosive medium not only affects the crack initiation, but ·facilitates the crack 

29 propagation rate as well . 
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1.2.2 Heat Treatment 

High strength can be obtained in Be-Cu alloys by .. age hardening of solutionized 

or solutionized and cold worked materials. Aging makes the alloy stronger through the 

intrpduction of second phase precipitates. Similar to the effect of cold working, age 

hardening increases both fatigue strength. and sensitivity to environmental attack. The 

interface of the precipitate and the matrix is a high energy region prone to accelerated 

corrosion in aggressive environments. Additionally, precipitates act as barriers to 

dislocation movements resulting to formation of more localized dislocation substructure 

than that of annealed material. These high energy areas increase the environmental 

sensitivity. 

Richards6· reported 15% decrease in fatigue strength of solution treated Be-Cu 

in salt water after 5x 10 7 cycles, while he observed 18% reduction in fatigue strength in 

solution treated and aged condition of the same material. Hahn and Duquette21 found 

no effect on fatigue behavior of solutionized CuNiCr w4en it was exposed to NaCl 

solution. At the same time they observed 11 % reduction in fatigue strength of that 

material in brine. Considering the point that both of those investigations were 

performed at high frequencies, i.e. 20 Hz and higher, a much greater environmental 

effect is expected at lower frequencies. 

Studying the fatigue fracture surface of CuNiCr, Hahn and 01).quette21 

observed that in both solutionized and .aged materials, crack initiates .J;,\lostly at slip 

bands and propagates for a small period of time transgranularly. However, sometimes, 

intergranular crack initiation was observed in aged material._ The fract~re texture then 

changes to. intergranular mode and follows the gtain boundries. They attributed the 

transgranular crack initiation to "notch-peak topography caused by dislocation _motion 

in persistent slip bands, after strain saturation has been reached". They argued that 

grain boundary precipitates are responsible for intergra_nular crack initiation in aged 

material. S.imilar results have been reported for pure copper13
•
30

• A shift from mostly 

transgranular to mostly intergranular crack initiation, as· environment is changed from 

air to salt water, have been reported for· pure copp~r13
•
30 and CuNiCr alloy21 . This 

shift in fracture mode in c.orrosive environment has been attributed to blunting of slip 

band tracks due to localized dissolution. Consequently, instead of slip bands, cracks 

form at grain boundries. This is why corrosive environment intensifies the. 

intergranular fracture mode. More interesting in these studies13
•
21

•
30

, is the fact that 
9 



crack initiation life of both solutionized and aged materials increased from 

approximately 5% to 40% of total fatigue life. Decreasing the total fatigue life and 

increasing the _initiation life of copper and some of its alloys suggests that corrosion 

primarily affects the crack propagation rate. In the other words, there is a dynamic 

interacti"on at the crack tip between the corrosive media 'and the mechanical conditions 

that lead to accelerating fatigue crack growth. 

1.3 Notch Effects 

Most. engineering components contain some change in geometry, discontinuities, 

or notches which .act as stress raisers. The introduction of a notch to a sample under 

unidirectional loading results in a non-uniform stress distribution at the vicinity of the 

notch. 'J;'he ratio of stress concentrated at the notch tip to the nominal stress applied 

is called the elastic stress concentration factor (.Kt). Peterson 31 calculated Kt for 

mai:iy geometrical shapes. 

Besides the high local stress, and consequently strain, introduced by the notch, 

the notch also· results in a triaxial tensile state of stress in ductile materials. This 

triaxiality consti;ains the plastic deformation at notch tip ~hich leads to increase in the· 

yield strength. Therefore, ductile materials will be strengthened by introduction of the 

notch. On the other hand, when the material is brittle and does not tend to undergo 

·plastic deformation at crack tip, the notched material breaks sooner than that of a 

smooth one and shows a lower strength due to the stress concentration32
. The latter 

phenomenon is· called notch weakening. 

10 



1.3.1 Notch Effects in Ambient Air Fatigue 

Similar to what: was discussed concerning monotonic behavior, a reduction in 

fatigue strength. of materials is also expected in the presence of notch. This reduction 

is due to early initiation which is associated with the introduction of high stress field in 

the vicinity of nptch. However, in some cas~s, it is possible that the growing crack 

stops when goes out of this high stress field. 

The fatigue notch fac~or (Kf) is defined as as the ratio of fatigue strength of 

smooth sample divided by that of a notched on~ at a given life. In reality, the 

magnitude of the Kf is less than that of the Kt, meaning that the harmful effect of t'he 

notch on fatigue strength is :le.ss than that predicted from elasticity. This phenomenon 

can ·be attributed to the accumulation of plastic deformation at the notch tip, which 

decreases the deleterious effect of the high local stress. Frost et al33 collected numbers 

of Kf-Kt relations proposed by others. These relations are m~inly empirical and have 

been found fqr specific materials. Therefore, they are not applicable for every system. 

Note: that Kt is based on geometry alone, while Kf accounts for both geometry and 

material characteristics. Among the various Kf-Kt relations, t'he one that is most 

widely used for different conditions is: 

Kt- 1 
K == 1+---

f 1+ ~A/p 
(1) 

Where p is the notch root radius and A is a material constant. Some investigators 

have reported A as a function of tensile strength and/or yield strength of the 

material33 . There are also some studies showing A as a function of grain size34
. 

Almost none of the proposed Kr-Kt relations accounts for the effect of number 

of cycles to failure (Nf) on Kt. Collins34 addressed studies confirming that Kf 

increases as Nf incr:eases. The reason for this phenomenon is that as the stress 

decreases, the plastic deformation at notch tip decreases and elastic conditions are 

more closely approached. The extreme case of brittle behavior is when Kf reaches to 

l(t in ·a completely elastic material. Since Kf is close to 1 at one cycle, i.e., the tensile 

te~t, and increases with increasing Nf, it is usual to take Kf at lQ6-10 7 cycles to 

failure as the fatigue notch factor of the material. 
11 



The notch sensitivity factor ( q) which is defined as the ratio of the changes of 

the actual stress range to the changes of the theoretical stress range, is a material 

constant 33 : 

(2) 

It is known that for a given notch,_ the notch se.nsitivity increases as the strength of the 

material increases35 . This effect is related to the more limited ability for deforrnation 

and crack blunting of the high strength materials which makes them more notch 

sensitiv~ than that of ductile materials. Similar to what was mentioned in the case of 

Kf, an incr~ase in the notch s~nsitivity factor ( q) ·is expected as the number of cycles to 

failure increases. 

1.3.2 Notch Effects in Corrosion Fatigue 
\ 

) 

Aggresive environment.s, as discussed before, can decrease the fatigue strength 

of the plain specimens. The.refore, it can be concluded that such an environment 

should have the same effect in the presence of notch. Frost et al33 addresse<;l several 

studies on notch effect in corrosive environments. These studies which have been 

conducted on different steels show that in the presence of a blunt notch, a moderate 

corrosive medium has· the same effect on fatigue strength of both smooth and notched 

samples. Note that in the presence of a'-Sharp notch, the :crack initiates very soon and 

fatigue behavior is con:trolled by the stress required for crack growth. and the rate of 

crack propagation. Therefore, in the case of sharp notches, environmental :effect is 

mainly limited to its influence on propagation process, while in the case of blunt 

notches, the environment has its influence on both crack initiation and propagation 

stages. 

Reviewing the literatµre, Miller36 found that in some fatigue studies the 

notched fatigue strengths in an aqueous environment were superior to those in ambient 

12 



environment. These observations were related to the formation of a calcareous layer 

and to the cooling eff~ct of the aqueous medium. Note that at high loads and for very 

high frequencies, the deleterious effect of a temperature rise, especially at crack tip, can 

be redu(:ed by cooling effect of the aqueous solution. 

Both Frost et al33 and Miller36 discussed studies confirming the abs.ence of non­

propagating cracks in notched steel samples exposed to corrosive environment. 

However, non-propagating cracks h~d been obs.erved before in low-stress air fatigue 

testing of notched samples. The~e observations suggest that the stress level required to 

cause a crack to initiate and grow is lowered by some type of surface softening in the 

corrosive environment. 

1.4 Objectives 

The main objective of this study is to isolate· and examine the effects of some of 

the major variables on the fatigue behavior of Be-Cu spring alloys. These variables 

include: 

• Heat treatment and cold working as two important production treatments, 

• Geometrical discontinuities -as inevitable design requirements in engineering 

products, 

• Aqueous medium representative <;>f environmental influences-. 

The effects of ~hese variables will be studied on the fatigue life under the stress 

control conditions. The results will be analyzed and compared with the theories and 

reports available in the literature. Microscopic aspects of fatigue will be also :studied as 

a secondary goal in this investigation. 

13 



2. EXPERIMENTAL PROCEDURE 

2.1 Materials 

High strength and high conductivity Be-Cu spring materials, Cl 7200 and 

Cl 7500 respectively, were used in this study. Table 2.1 includes the specification for 

chemical composition, t.emper designation37
-
39

, grain size, and thickness of materials 

used. The materials obtained were in the form of strips with 0. 75 inch in width. 

Since some ·connectors are formed by bending age-hardened s.trips, alloy 10 in 

the aged condi~ion was selected to study the effect of bending deformation on fatigue 

strength. The magnitude of the strain in bending of strips was measured using circle 

grid analysis method ( Figure 2-.1). Maxim um strain measured in the tensile side of the 

bend was about '7%. Therefore, some samples of alloy 10 were stretched 7% prior ~o 

fatigue testing. 

Three different conditions of alloy 25 were also used to study the effects of heat 

treatment and cold working. 

2.1..1 Tensile Properties 

Tensile sampl~s were punched out of strips according. to ASTM-E840
. Notched 

specimens were the same geome.tty as SfDooth samples except they contained a center 

hole of 0.04 7 inch diameter prepared using the electro-discharge machining (EDM) 

technique. An lnstr·on 1011 testing machine was used for t_ensile tests under computer 

control. Tensile results summarized in T'-<tble 2.·2 are for at least three samples for 

each smooth condition and two specimens for each notched condition. 

14 
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Table 2.1. Be-Cu Materials and Composition 

Alloy no. UNS ·no. Composition,wt%1 Temper Des GrainSize,µm 1 Thickness,inch 

Be = 1.85-1.9 

Fe = 0.1-0.4 TB002 8-.12 0.0063 

Si == 0.05-0.1 

25 C17200 Al == 0.03~0.07 TD043 10-12 0.0062 

Co == 0.21-U.25 

Ni == 0.03-:0.06 TM044 15 0.005 

Cu == Bal. 

Be== 0.53 

Fe== 0.03 

10 Cl 7500 Co== 2.61 T .. M044 10 0.006 
' 

Ni == 0.017 

Cu= Bal. 

1. According to material supplier report. 

2. Solution heat treated (called anneaJed o:r solutionized in this report). 

3. Solution heat treated and cold rolled ( called cold rolled in this report). 

4. Solution heat. treated, cold rolled, and precipitation heat treated ( called cold rolled .. 

and· aged or aged in this report). 

15 



Figure 2.1. 

\ 

Diameter changes of electro-chemically printed grids represent 

the magnitude of the strain at the surface. 
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Table 2.2. Tensile Properties of Be-Cu materials. 

Smooth Notched 

Material I.D. Sy(ksi) UTS(ksi) El(%)* Sy(ksi) UTS(ksi) El(%)* 

;'7 

10-TM04 112.5 125.2 10 124.8 125 L8 

' ' 

25-TBOO 31.1 69.8 42.3 36.6 61.7 12.7 

25-TD04 113.8 117.4 2.1 107 118.8 1.2 

25-TM04 115.3 145 16.8 132.8 134.9 1.7 

Fatigued 25-TBOO 69.6 80.7 19.9 - - -

* Total elongation in 2 inches gage. length. 

Typical values for the standard deviation of yield strength, tensile strength, and %El 

were less than 4 ksi, 1.6 ksi, and 4%, respectively. 

l7 
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2.2 Fatigue Testing 

Hour-glass fatigue specimens* were cut out of strips according to ASTM-E46641 

using EDM method. The specimens. were cut with a radius of 4 inches to a minimum 

gage section width of 0.5 inch. Specimens of the same geometry except for a drilled 

center .hole of 0.047 inch diameter were used as notched specimens. 

Two and one half inch lengths of clear tygon tubing (1 inch outer diameter and 

0.125 inch wall thickness) were glued to some smooth and notched samples of alloy .25 

in bo~h the annealed and the cold rolled and aged conditions as environmental 

chambers for corrosion tests. As seen in Figure 2.2, the tubing· is closed at both ends 

and an opening is cut in the top to allow aeration of the aqueous environment. 

The edges of all samples were polished using -600 grit sand p.aper prior to 

fatigue testing to ren1ove possible irregularities due to the electro-discharge cutting 

process. 

Load controlled fatigue tests were performed on a lnstron closed-'loop electro­

hydraulic, lnstron 2115, machine. All tests were conducted at ambien.t labratory 

temperature. A sinusoidal waveform and a minimum to maximum stress ratio of 0.1 

were used in this fatigue testing p'rogram. The frequencies employed were up to 50 Hz 

for air fatigue and 1 Hz for corrosion fatigue experiments. Special grips (Figure 2.2) 

were designed to assure desired alignment. A guide plate was used to c4eck the 

alignment of the grips prior to each test. The apparatus installed· at the bottom grip in 

Figure 2.2 (bottom left), was designed to prevent any possible turning of the actuator 

during cycling. Note that in this type of fatigue frame, it is ·possible for the actuator to 

turn during cycling when the test sample is not stiff enough. 

* Some preliminary fatigue tests were conducted on tensile samples of uniform gage 

section width. Most of these tests failed due to resonance of this geometry - a 

common occurence for thin f!latef'.ials subjected to fatigue cycling. The vibration was 

monitored using a strobelight. It could be limited somewhat by changing the 

.frequency. However, at low frequencies required for corrosion tests, the vibration was 

worse. Consequently, it was necessary to chang~ from a common tensile to an hour­

glass shape to solve this problem. The hour-glass shape was found to be less 

susceptible to resonance than the standard tensile geometry. 
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Figure 2.2. Fixturing for corrosion fatigue testing. 
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An 0.5N NaCl solution, i.e., 29.25 grams of sodium chloride in 1000 cm3 of distilled 

water, was selected as the aqueous environment in the corrosion fatigue experiments. 

The pH of. the solution measured at ·room temperature was 5.9. 

2.3 Electron Microscopy 

The fracture surface of some annealed and aged samples of alloy 25 tested in 

both ambient and aqueous environment were examined using an ETEC scanning 

electron microscope (SEM) at an accelerating voltage of 20 KV. Corrosion fatigue 

specimens were ultrasonicc:1,lly cleaned .in Alconox solution for 45 min.utes prior to 

fractography. However, this technique·was not able to remove all corrosion products. 

The distribution and arrangerhel).t of dislocations after fatigue cycling for cold 

rolled and for annealed materials of alloy 25 were examined by viewing thin films on a 

Phillips 400 transmission electron microsc~pe {TEM) at an accelerating voltage of 120 

KV. The TEM foils were obtained by jet polishing_ of electro-discharge cut circles using 

a 50% (by volume) phosphoric acid solution. This process was conducted at ambient 

temperature and under 100 mA cutrent. 
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3. RESULTS AND DISCUSSION 

3.1 Tensile Results 

Comparing smooth and notched tensil~ data _in Table 2.·2, one can see the notch 

strengthening effects for annealed and aged materials. As mentioned in section 1.3.1, 

introducing .a notch results in triaxial coristraint which reduces "the local plastic 

deformation at notch tip. It might be expected t·hat this constraint would i:ric.rease 

both yield strength and ultimate tensile strength of the material. But as seen in Table 

2.2, an increase ·in th~ yield strength has been accompanied by no change or even a 

decrease in the tensile strength. The reason for this observation js that constraint of 

plastic defor.mation lowers the ductility and therefore, does not allow the material to 

take advantage of strain hardening leading to premature fracture. This argu·ment is 

graphically shown in Figure 3.1 where stress-strain curves for smooth and notched­

specimens of annealed 1naterial are plotted. In the case of cold rolled material (alloy2fr­

TD04 ), as seen in Table 2.1, no considerable change was observed. However, one may 

attribute the slight- decrease of yield strength to th~ notch weakening. As discussed in 

§1.3.1, notch weakening is expected when the ma~erial is brittle. Note that both notch 

weakening and strengthening phenomena can be better. seen in more severe notches 

that apply high~r stress concentrations. According to Peterson31
, Kt in these 

experiments was 2.73. 
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Figure 3.1. Smooth and notch·ed tensile results for alloy 25 in the annealed condition. 
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3.2 Ambient Air Fatigue 

3.2.1 Effects of Production Variables 

The effect. of a 7% tensile strain on the fatigue strength of alloy 10 in the cold 

rolled and aged condition is seen in Figure 3.2. A slight increase in fatigue strength of 

this material is due 'to an increase in the strength of the material after stret.ching. 

Figures 3.3 and 3.4. show the effects of cold forming and heat treatment on the 

fatig.ue strength of alloy 25 in the absence ~nd in the presence of notch, respectively. 

From these plots·, one sees that the differe·nce in fatigue strength of the various 

material conditions decrease w.ith increasing cycles reaching a minimum at long lives. 

As shown in Figure 3.4, in the presenc~ of notch and at high cycles, there is nearly no 

difference between high and. low· stren·gth materials. 

The smaller difference between fatigue strength of materials at high cycles than 

for low cycles, can also be explained by the change in flow strength experienced by the 

material during cycling. As discusS'ed in section 1.2.1, depending upon the density and 

arrangement of dislocations present in the material,. hardening or softening can be 

expected in fatigue cycling. According to Smith et al27 cyclic hardening would be 

expected in the annealed material, whereas the rest of th~ materials should undergo 

softening and/or no significant change. The first phenomenon is clearly shown in 

Figure 3.5 where the stress-~train curve of alloy 25 in the annealed condition before and 

after fatigue cycling i's presented. The particular specimen tested was one surving 

2 x 106 cycles at ua= 25(ksi) without failure. As can be seen, cyclic hardening in the 

fatigued sample resulted in a 120% increase in the .flow strength. 

A clearer picture of the fatigue .data for alloy 25 results from plotting the 
. ~ 

normalized stress rate LlS/UTS as in Figures 3.6 and 3.7. On the normalized basis it is 

evi~ent that annealed material is· superior· to cold r·olled or cold rolled and aged for all 

cyclic lives and for both n.otched and unnotched specimens. An exception to this 

statement is the unnotched data for fatigue life at less than 104 cycles. In this case, 

Figure 3.6, the cyclic life is so short that fatigue tests with a stress ratio of 0.1 are 

really not too different from monotonic tensile tests. On t·he other hand, in the 

presence of a notch, Figure 3. 7, the superiority of annealed material at short life 

probably reflects a greater capacity for blunting of the notch in the lower strength 

materials. For lives ~f 106 cycles, cyclic ha.rdening is probably responsible for the 

.superiority of an·nealed material as illustrated in Figure 3.5. 
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Figure 3.2. Effect of 7% tensile strain on the fatigue strength of alloy 10 

in the. cold rolled and aged condition. 
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Figure 3.3. Effects of cold forming and heat treatment on the fatigue strength 

of -alloy 25 in the absence of a notch. 
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Figure· 3.4. Effects of cold forming ~nd heat treatment oh fatigue strength 

of alloy 25 in the presence of a notch. 
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Figure 3.5. Cyclic hardening in annealed Be-Cu after 2x 106 cycles at 

o:a=25(ksi) resulted in 120% increase in flow strength. 
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Figure 3.6. Effects of cold forming and heat treatment on fatigue strength of 

alloy 25 in the absence of a notch normalized. by tensile strength. 
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Figure 3. 7. Effects of cold forming and heat treatment on fatigue strength of 

alloy 25 in the presence of a notch no.rmalized by tensile strength. 
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As discussed in section 1.2.1, hardening or softening in fatigue cycling depends 

on the density of dislocations prior to fatigue and also on their rearrangement during 

fatigue. This concept was confirmed by transmission electron microscopy of fatigued 

samples of alloy 25 in the annealed and cold rolled conditions. Figure 3.8 shows the 

concentration of dislocation networks inside the grains in annealed material. However, 

in- the cold rolled spe~imen, dislocations were found to be much more concentrated at 

grain boundaries, Figu·re: 3.9. This observation is consistent with that of Awatani et 

al28 and indicates that fatigue reversals have caused softening in cold rolled material 

through the concentration of dislocations close to grain boundaries. Hardening, on the 

other hand, has occured -in fatigue cycling of the relatively low-dislocation-density 

material by rearranging of dislocations inside the grains. 

Finally, refering again to Figure 3.5, suggests ~he possible influence- of straii:i 

aging on cyclic hardening of anne.aled Be'"Cu alloy. Working c;>n yielding phenomenon 

.in copper alloys, Jones ai;id Phillips42 reported no initial yield point in solution treated 

and in aged Be-Cu. However, they found that this phenomenon could be produced by 

suitable cold working and strain aging. In suc4 a treatment, Cottrell atmospheres form 

around the dislocations by vacancy assisted diffusion of beryllium atoms. They argued 

that continuing the aging treatment caused precipitation of .solute atoms along the 

dislocation lines and consequently results in a marked increase in the yield strength. 

Comparing Jones and Phillips42 results with the observation of yielding phenomenon in 

this study, one can say that f~tigue cycling has provided suitable conditions for· 

dislocation locking, similar to that. of con:ibination of col~ working and heat treatment. 

F . . d d . . .. h b 1 d . l ·b ·143 44 I . atigue in uce strain aging as een a so reporte in ow-car on stee ' . n 

these studies, ~he observation .of a fatigue limit is attributed to strain aging. It i·s also 

claimed that strain aging, during. cycling, increases the constraints imposed on -regions 

of plastic deformation results in strengthening of the material, especially in stage I of 

crack growth. 

While strain aging was not a major part <;>f this study, it is likely that the 

interaction between dislocations, or their network, and locking agents in fatigue of 

annealed Be-Cu plays an important role in cyclic hardening of this material. In other 

words, both the dislocation arrangement and strain aging are responsible for cyclic 

hardei:iing of annealed material. 

30 



Figure 3.8. TEM micrograph of annealed Be-Cu after 2x 106 fatigue cycles 

showing the distribution of dislocations inside grains. The 

arrow indicates the grain boundary. 
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Figure 3.9. TEM micrograph of cold rolled Be-Cu after 4x 106 fatigue cycles 

revealing the concentration of dislocations at, or in regions close 

to, grain boundary. The arrow shows the grain boundary. 
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3.2.2 Notch Effects 

Figures 3.10-~.13 show the notch effect on fatigue strength of four materials 

tested. .As expected, for a given life, the notched sample tolerates much less stress* 

than that of the smooth one. The notch effect is usually described by the fatigue notch 

factor (.Kf) or ;notch sensitivity factor (q). Variations of Kf and q for different 

conditions of alloy 25 versus number of cycles to failure are shown in Figures 3.14 ~nd 

3.16, respectively. "'As seen. in these Figures, both Kt and q increase as the rtui:nher of 

cycles to failure "increases. This observation corifirms that the more deleterious effect of 

notches is at high cycles, or better, at low loads. The reason for this more harmful 

effect, as dicussed before, relates to less plastic deformation at the lower loads. 

Another feature of Figure 3·.14 is the dependence of l(f on the strength of the 

material. This concept is shown in a different way in· Figure 3.15 where Kf is plotted 

versus ultimate tensile strength for different fatigue lives of alloy 25. According to this 

Figure, the general idea of increasing Kf ~ith increasing strength of material is true for 

tensile strength in the range of 70 to 115 ksi. Beyond 115 ksi, Kf is nearly constant. 

As seen here, the cold rolled material that has relatively high strength but very low 

ductility, has the highest fatigue notch factor. This observation, again, illustrates the 

blunting effect of plastic deformation at notch tip. The conclusion. here is that any 

treatment which results in mote brittle behavior, in a given alloy, increases the 

deleterious effect of notches. 

The given equation for Kr Kt relation: 

Kt- 1 
Kt== 1+ -. -= 

1+ ~A/p 
(1) 

was examined using measured Kf values in this study. No dependence of the constant 

A ih this equation ori grain size was found which is not ctmsistent with what Collins34 

reported. Between ultimate tensile and yield strength, the latter showed a bet"ter 

relationship with A. The dependence of A on yield strength in Be-Cu alloys tested and 

some low-carbon steels45 are shown in Figure 3.17. As seen, the constant A increases 

as the yield strength decreases. A in equation ( 1) has the dimension of length. This 

means that for a given notch root radius, Kf and Kt are related through a distance 

parameter and this distance parameter is proportional to the inverse of the yield stress. 

* In notched samples, the stress is the net nominal stress applied to the specimen. 
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This finding is similar to what Azimi46 has observed. He found that in notched 

specimens, the maximum damage occurs not at the notch tip, but at a distance in front 

of it and that this distance is proportional to the inverse of the yield strength. 

Comparing two sets of results, it can be concluded that ·Kf is equal· to the magnitude of 

Kt at a distance i.n front of the n9tch tip. This distance which. depends on the ability 
.,,,. .. ,• ~ 

·., 

of the material to blunt the crack, can be explained by the yield strength and should be 

proportional to A in equation 1. 

In spite of its benefits, equation 1 for the Kf-Kt relationship still has some 

problems. This equation does not account for the effect of mean stress. Moreover, this 

equation shows a linear relationship between Kf and Kt, while it is not the case. Note 

that after a critical Kt, increasing stress concentration has no more effect on Kf 33 . 

These problems suggest caution in using of the equation 1. However, this equation can 

be employed to have an idea about Kf in many circumstances. 
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Figure 3.10. Notch effect on the ambient air fatigue strength of alloy 10 

in the cold rolled and aged condition. 
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Figure 3.11. Notch effect on the ambient air fatigue strength of alloy 25 

in the annealed condition. 
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Figure 3.12. Notch effect on the ambient air fatigue strength of alloy 25 

in the cold rolled condition. 
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Figure 3.13. Notch effect on the ambient air fatigue strength of alloy 25 

in the cold rolled and aged condition. 
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Figure 3.14. Effect of treatment condition on the fatigue notch factor (Kf) 

of alloy 25 for different fatigue life in ambient air. 

39 

.. ,:,.;•. -· ... :., ... , 



. . 
_ ... _, ··•• • . .• ·=-· .• : .. •. 

J. 

-~· 

2.5 

2.0 

1.5 

1.0 
50 

• N1-1 O 4 

a - N1-10 6 

- ... - N
1
-10 6 / 

/ 

I 
I 

' / 

75 

Alloy25 - ambient -- ... --,,,- ' / ' ' 0 

.,,,,-- ·- ~ 
/ • 

100 125 150 1.75 

UTS 

Figure 3.15. Variation of l(f in alloy 25 as a function of ultimate tensile strength. 

40 



.. ' .. · .· 

1 

--- Annealed(TBOO) Alloy25 - ambient 

0.8 
--• - Cold Rolled(TD04) 

.... - C.R. & Aged(TM04) • 
/ 

0.6 

0.4 

0.2 

Cycles to Failure 

Figure 3.16.. Effect of treatment condition on notc.h sensitivity factor ( q) of 

alloy 25 for different fatigue lives. 

41 



0.08 

0.07 --{] -. - Be-Cu 
Low-Carbon Steel Iii 

.o 
/ 

0.06 / 
/ 

/ 
0.05 / 

..c / 
CJ / C 0.04 / ... 

/ 
<( 0.03 / 

/ 

0.02 / 
/ 

/ 

0.01 

0 
0.005 0.01 0.015 0.02 0.025 0.03 0.035 

1 /S , ksi--1 
y 

Figure 3.17. Variation ofthe constant A in the Kf-Kt relation, equation 1, as a 

function of the yield strength for some low-c~rbon steels45 and 

Be-Cu all_oys tested. 

42 



3.3 Corrosion Fatigue 

The highest and lowest strength materials, alloy 25TB00 and 25TM04, 

respectively, were selected for testing in brine. Figures 3.18 a·nd 3.19 show t.he effect of 

aqueous environment on the fatigue strength of annealed and cold rolled and aged 

materials, respectively. 

3.3.1 Smooth Results 

The environmental effect is greater at high. cycles than that of low cycles for 

both aged and anneal.ed materials. This is due to the time dependent characteristics of 

corrosion. Aqueous medium lowered fatigue strength of sqlution annealed Be-Cu by 

about 10% for a life of 3x 105 cycies, while the same environment at the same lifetime 

decreas.ed ·the fatigue strength of cold rolled and aged material by more than 37%. 

This difference is attributed to the difference in strength of the two materials. As 

discussed in section 1.2, the high strength material has more regions of high energy 

which are prone to environmental attack th.an that of the annealed material. These 

regions of high energy include the matrix/precipitate interface and the regions of high 

concentration of dislocations. 

The effect of frequency on· corrosion fatigue is seen ·by comparing these results 

with those of other investigations on Be-Cu. For exam.pie, _Richards6 reported no 

difference in corrosion fatigue strength between ~olutionized and aged Be-Cu, while his 

ma_terials were tested at 20 Hz. Also, he did not see any appreciable decrease in fatigue 

strength of both materials in salt water as compared to that of air fatigue. Decreasing 

the cyclic frequency from 20 to 1 Hz, increa~es the exposure time and- may be 

responsible for the difference between current findings and those of Richards6
. 

Considering the point that most real cases involve low frequency conditions, it can be 

stated tha~ high frequency corrosion fatigue tests. are not very useful -in predictil)g 

service performance. 

The effect of oxygen present in the environment is another important feature of 

the corrosion fatigue response. The corrosion chambers used in this study had 

openings to allow aeration of the environment. Two tests using chambe.rs without 

arty opel)ing ~ere performed on aged material. The results which are not reported in 
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Figure 3.18. Effect of aqueous environment on fatigue strength of alloy 25 

in the annealed condition. 
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Figure 3.19, revealed about a 60% increase in fatigue life in comparison with tests using 

open chambers at the same stress level. Considering the fact that these two tests were 

not conducted in completely deaerated condition, it is possible. that there is no 

environmental effect on fatigue strength of Be-Cu in deaerated brine. This is similar to 

what Mehdizadeh et al23 observed in their study on corrosion fatigue of some low 

carbon steels. 

3.3.2 Notched· Results 

In .contrast to what was. observed in corrosion fatigue testing of smooth 

samples, in the presence of notch in both annealed and aged materials there was almost 

no environmental effect (Figures 3.18 ~nd 3.19). The reason for this paradoxical result 

is the effect of the notch in reducing the initiation component of life due to the stress 

concentration and because the major part of fatigue life in these fine gage strips is 

consumed in crack initiation*. However, it is not dear why there is no effect for 

notched specimens since it can be argued that at the lower frequency used in this 

study, notched specimens should not be free of corrosion damage. 

Scanning electron 1nicroscopy of fracture surface of air-fatigued materials 

reveal~d that in both ·smooth and notched samples of aged material, fatigue. crack 

initiated on slip planes and followed the crystallographic directions (Figure 3.20). In 

smooth samples this texture changed very soon to a dimple-like mode (Figure 3.21). 

The fatigue crac·k then propagated through the entire surface in this mode, until the 

fast fracture region. But, in notched specimens, the cleavage-like fatigue fracture 

observed dudng early propagation did not change until the fast fracture. 

Changtng fracture mode from a ductile manner, i.e. dimples, in smooth samples 

to a brittle cleavage-like in notched specimens is consistent with the con~traint effect of. 

the notch discussed before. Note that in the case of notched samples, fatigue crack 

propagated less than 0.04 inch from the notch tip prior to the fast fracture. 

* For most instances, it was impossib.leto stop cycling of a sample with a crack in it. 
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Figure 3.20. SEM fractograph of alloy 25 in the aged condition showing 

the transcrystalline fracture along spesific crystallographic 

planes in initiation site. 
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Figure 3.21. SEM fractograph of alloy 25 in the aged condition indicating 

the dimple-like fracture crack growth. 
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In annealed material no change in fracture mode was observed by the introduction of 

notch. In both smooth and notched samples, crack started at slip lines in a very 

ductile manner (Figure 3.22). Broek47 argued that observation of this fracture surface 

represents the local blunting of cracks .formed at slip lines, which is in agreement with 

very high ductility of this material. The irregul:a,r nature of slip lines distinguishes this 

texture from the fatigue striations that appeared later in both smooth and notched 

specimens (Figure 3.23). 

No significant change was f~und in fractue surface of both ~nnealed and aged 

materials when they were exposed to the salt water. However; secondary cracks, 

growing perpendicular to the direction of crack growth, were deepened and were much 

more visible in aqueous environment. Striations observed in annealed material were 

almost flat and more difficult to detect· in aqueous environment. In all cases studied_, 

the cracks followed a transgranular path and did not change in brine which is in 

contrast to what was reported for pure copper
13

•
30 

and CuNiCr21
. 
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Figure 3.22. SEM fractograph of alloy 25 in the annealed condition showing crack 

initiation at slip lines which is associated with local blunting. 
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Figure 3.23. SEM fractograph of alloy 25 in the annealed condition showing fatigue 

striations along with high plastic deformation. The arrow indicate the 

crack growth direction. 

51 



INTEf\JTIONAL SECOND EXPOSURE 

·".,-~.-.. 

·;,---.... . .. 

.. ~-· ~~ . 

Fig11rc :L:!:L. ~L\1 l'r;1ctogr;1pl1 (,1· allu\ :.!:) i11 tilt' ;111111·,d,;d cu11ditiu11 :--;l1owi11g L-itig11t' 

:--;1 ri,11 io11:-- nlong \\·it 11 l1igl1 plc1~t ic d,·l'or111;1t io11. ll1t· ;1rro\\' i11dicatt· t lit· 

n,1ck gni\vtl1 dir1·ctio11. 

GI 

I 
I 



4. CONCLUSIONS 

Fatigue and. corrosion fatigue tests of Be-Cu spring materials in the annealed, 

cold rolled, and aged conditions were conducted in ambient air and aqueous salt 

solution for smooth and notched specimen configurations with the stress ratio of 0.1. 

Test frequencies were 50 Hz and 1 Hz for air and corrosion fatigue tests, re~pectively. 

Based .on these results, the conclusions are: 

Ambient Air Environment 

1. For smooth specimens of -alloy 25, fatigue strength increases with increasing tensile 

strength. This effect diminishes as fatigue cycles increase from 104 to 106 cycles. 

Notched specimens of alloy 25 show the same tre·nd, but with a reduced influence of 

strength. 

2. Normalized fatigue strength, ~S/UTS, for both notched and smooth specimens of 

alloy 25 show annealed material to be superior to stronger materials at all cyclic lives . 

. Notch blunting and cyclic har.dening are considered as likely explanations for this 

behavior at short and long lives, respectively. 

·3. Fatigue notch sensitivtty, as measured by Kf for Kt =2.73, increases with increasing 

strength and cyclic life. 

4. Crack initiation is the dominant fatigue ptocess for Be-Cu spring materials for the 

present test conditions. 

Aqueous Environmf~i1t 

5. For smooth specimens of annealed and cold rolled and aged alloy 25, environmental 

sensitivity (reduction in fatigue strength) increases as strength and cyclic life increases. 
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6. Notched specimens of annealed and cold. rolled and aged alloy 25 exhibited about 

the same fatigu~ life in am.bient and equeous environments. 

7. T·he environmental sensitivity of alloy 25 in present tests of smooth specimens 

conflicts wit.h other results suggesting Be-Cu alloys are insensitive to environment. 

The source of this difference is probably the lower frequency in these tests, i.e., 1 versus 

20 Hz. 
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