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ABSTRACT 

Elastic stress concentration, fracture mechanics and local strain based 

approaches were evaluated in predicting fatigue crack initiation life at notches for 
"> 

materials 2024-T3 aluminum alloy, commercially~ure copper, 70-30 brass, and Cu-Be 

alloy 25. Blunt keyhole and sharp V-no.tched compact tension specimens were 

subjected to cydic loading in ambient laboratory air, at .~ stress ratio of R=0.1, and at 

frequency f=25. Hz. Crack _initiation was defined as the cycles to form a 1 mm long 

crack extending from the notch root. Maximum loads were selected to produce 

initiation in the range 104 to 106 cycles. The Moire' fringe technique was used to 

measure strains near the notch. Also, era.ck propagation tests were performed to 

evaluate ini"tia.tion-propagation models and the fraction of life spent in initiation and 

propag·ation. 

The results suggest that the best init.iation model is based on computed 

estimates of strain at some distance ahead the notch root. This distance was shown to 

be inversely related to the materials' strength. This model properly described both the 

.influence of material and geometry over the full range of initiation cycles. The models 

based on elastic notch stress and stress inte1isity factor did not lead to physically 

acceptable results, i.e., they predicted that initiation life for blunt notch specimens was 

shorter than that for sharp notch specimens. The strain-cycl~ fatigue model called 

local strain approach appeared to be son1ewhat better than approaches based on elastic. 

stress or stress i_ntensity factor but could not con1bine data. for sharp and blunt notches 

for materials· other than aluminum. In this case, estimating the fatigue notch fac.tor, 

Kf, seemed to be the principal difficulty. 

In the range 104 -106 cycles, about 30% of the total life is spent in initiating the 

crack for sharp notch speci1nens· whereas for blunt notch specimeus, initiation life 

covers about 75% of the total 'life of the specimen. 
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I. INTRODUCTION 

Materials failures are of particular importance in almost all aspects of human 

life. Of all types of mechanical failures, it is often stated that fatigue accounts for the 

majority of them and more importantly, fatigue faJlures almost always occur without 

any obvious warning. In order to prevent these insidious and catastrophic failures, and 

with the obj~ct of reducing both cost and time in designing a component_, fatigue life 

prediction is an important_. process. It involves determining, for given service loadings, 

whether a crack will initiate, and then grow to such a size that c~tastrophic failure will 

occur. 

The question of whether the initiation and propagation- stages should be used 

independently in life prediction, ·or whether the results should be combined depends on 

the service conditions, component geometry, material fabrication processes, and the 

material itself. For instance, there are cases in which fabrication process produces 

crack-like flaws, or cases where a design engineer has to assume that crack already 

exists in the component. In such c~ses, life prediction logically uses only the crack 

propagation approach. On the other hand, there are 1nany components. that are 

produced by carefully controlled fabrication· processes and are made of high quality· 

~aterials or there are cases in which a:s soon as the crack initiates, t_he component is no 

longer allowed to be in service. In such cases, ~ component may spend most of its life 

in initiating cracks and in the$e cases, life prediction involves only the crack initiation 

st-age. The relative importance of the two initiation and propagation phases may also 

depend upon loading conditions. Large proportions of the total cycles to failure are 

involved wi_th propagation phase when stresses are high- low-cycle fatigue-. whereas 

in long-life fatigue, where imposed stres§es a.re low, initiation life is dominant. 

Crack initiation, however, has proven to be the most complex, and the most 

difficult to characterize q uan ti tatively. S01ne of the comple?(ities include simply 

defining what constitutes a crack, measuring strain nea.r the n9tch root, finding the 

•) ... 



most .appropriate initiation criteria, etc. Complexities notwithstanding, during the last 

three decades numerous '!initiation models have emerged. Previous work on several 

steel_s1 , showed t~at models based on nominal stress
1

'
3 

, or strain-cycle fatigue
2

•
4

-
7 

were similar in their ability to predict crack initiation. Other eviden.ce suggests that 

models based on the stress intensity factor may
8

·;
9 

or may not2 provide better 

quantitative predictions. Finally, other work sugg~sts that the strain at the ·notch root 

. h d . 11· k . / . t" 2, 10,11 1s t e om1nant parameter contra mg_ crac · m1t1a 10n · . 

A common. feature of all models is the lack of influence of microstructural or 

metallurgicaf properties, ex.eluding perhaps strength 1 , on crack ih-itiation. Therefore, a 

better understanding of the complex fatigue crack initiation behavior from notches and 

in materials with a wide range in important metallurgical factors, particularly strength 

and. stacking fault energy, is required for,'" more precise prediction of fatigue life in 

designing a component. 

• l .1- Fatigue Cr·ack Initiation 

For the first tim.e in 1933, Gough 12 showed that the slip process is respon.sible 

for metal fatigue da1nage as it is ip static deformation. The slip process in a material 

under cyclic defonnation produces heavily distored regions .called slip bands. Among 

these slip bands, there are generally several which are more distored and deepened than 

the rest. These are called persistent slip bands and are almost always the origins of 

fatigue cracks. \,Vood13 showed that these persistent slip bands form at early stage of 

component fatigue life. For a design engineer, however, the. question is when a deepend 

slip band should be called a crack. Should it be in the scale of 1nicro:-structural unit 

such as grciin siie as proposed by Wood13 , or in the scale of Manson's criterion 14 -0.076 

mm- or of the size suggested by Dowling15 ? Obviously, whatever size is selected, it 

should be within the range of the resolution .of i~spection equipment. Another problem 

l, is that initiation life, Ni, defh1ed as· the number qf cycles to produce a crack of some 

size, depends on the component geometry. 

In an atte1npt to elin1ina.te the dependence of initiation life on specimen 

geometry, Dowling15 has suggested that the crack °length at initiation be less than or 

eq·ual to the crack length at the transition, LT, between short-crack- and long-crack-

3 



• 
controlled behavior. For a compact tension sample with sharp notch, he has shown.15 

that LT is on the order of r / 5, where r .is notch root radius. However, as n1en tioned 

previously, sometim.es such a size might not be easily se~n within the range of the 

resolution of practical equipment. In such cases, a larger era.ck length n1ight. be 

specified. 

el.2-Effect of Stress Concentrators 

The presence of geometrical discontinuities such as keyholes, fillets, welds, etc. , 

is often unavoidable in engineering_ structures and machine parts. These discontinuities 

act as stress raisers and seriously reduce fatigue. strength of th~ component. The 

theoretical maxim um stress at the root of a discontinuity-- nut.ch can be calculated 

by elasticity .theory. It c:an also be obtained through using handbook cl1a.rt.s 16 showing 

the elastic stress coircen tration factor. Kt. for a wide rang,· of c·o111 µu1w11 t.s \..vit.li 

different geometry. Kt is defined as the ratio of maximum elastic stress at the notch 

root to nominal. stress. However:, tpe actual stress at the notch root may be lowered 

due to local yielding as shown in Figure 1.1. This is the reason that the actual fatigue 

strength reduction of a notched component is less than that pred.icted on the basis of 

elastic stress concentration factor. In order to explain this discrepnancy, the 

fatigue-notch factor or fatigue strength reduction fa.ct.or. Kr, has Of'f'n in trod 11cf'd and. 

at a given cycle defined as follows: 

K = fati~ue strength of unnotched component 
f fatigue strength of notched component 

Since the fatigue ·strength of the notched component depends on the yield 

strength or on the extent of plastic deformation at the notch root.,. Kf is also expected 

to be dependent on material yield strength as well. MoreovPr, t.lH' results uf several 

. l. . . 17,18,19 h h . I' I l I I . expenmenta 1nvest1gat1ons s ow t. at. \.f a. so < PpP11< s 011 tHHc 1 sPvent.y. stress 

d l.f. F' l ·> 18 ·28 ·1 I 1· .. . I I 1· ·1 state, ali. J e. 1gure ·- s 1ows 10w \.f vanes w1t.1 eye 1':-, tu a.1 1~r1·. 
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Theoretical Stress ) ----------

True Stress 

Figure .1.1- Schematic showing irue and thoretical stress concentration. 
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In order to be able to predict fatigue strength of a notched component frorr:i 

that of smooth specimens, many attempts have been made t-o correlate Kf with the 

elastic stress concentration factor, Kt, The following equation expresses this 

l . h' b d N b ' k 11,1a,21 re at1ons 1 p ase on eu er s wor . t 

(1.1) 

Where r is notch root radius and p'is related to the grain. size oft.he material. Kf may 

also be determined by using plots of notch sensivity 18 , q, vPrs11s notch root. ra.<li"us. 

The notch sensitivity factor is d~fined as 

Kf-1 
q== ·K~-1 ( 1.2) 

and may vary between O and 1 respectively for Kf= 1 and Kf= Kt. When Kf= 1, the 

notch has no effect on the fatigue strength of the component and it has its maximum 

effect when K·f=Kt. It should be noted, however, that. q is nut. a rna.t.eria.l prµpcrt.y· aud 

depends on the same factors as Kf does. 

One other equation has been given by Peterson 22 correlating Kf to Kt as 

follows: 

(1.3) 

+ 
Where p is notch root and a is empirically deijned as a=0.02,54(2079 /Su )1. 8 where a 

a·nd Su_, ultimate tesile strength, are in nun and M Pa, respect.i \'ely. Petersuu ·s equation 

seems to be a modified combination of Neuber's and nut.ch sensivity cuuccµt.. 

Elsever17 , it has been shown that Kf and Kt ca.11 ·lw corrf'lat.Pd wit.h yiPld st.n'll1:?;t.h 

instead of ultimate tensile strength. 
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Some other general trends in Kt and Kf a~e as follow: 

-As Kt increases, Kf /Kt ratio decreases. This means that for blunt notc~es, Kf is 

close to Kt. Moreover, there seems to be a critical notch root radius below which Kf 
. 8 17,23-25 

does not increase. ' · This is the basis for the concept of the effective notch root 

radius. 

-Differen.t Kf values may be obtained for d~fferent geometies havi_ng the same Kt. 17 

This arises from the fatigue size effect. Therefore, Kf accounts not only for plasticity 

but also for size effects. 

-Kf increases as grain size decreases.
17

'
26 

This is consistent with the effect of yield 

strength on Kf. 

-For similar geometries and at a given load, the higher the yield strength, the closer is 

Kf to Kt. 

Notches can also introduce a. state of triaxiality and develop residual stresses. 

When nominal stresses are within the elastic range, the- local yielding can complicate 

the material behavior at the notch root by developing residual stresses. In such cases, 

the small specimen snperimposed on the notch root, shown in Figure 1.3, undergoes 

cyclically strain-controlled conditions, whereas the rest of the .material is u_nder stress 

control. This concept which is an application of Neu.be.r's rule has been ·used to 

determine fatigue initiation life at notches as will be explained later. Moreover, 1n 

low~cycle fatigue where the nomi'nal stresses are high, the local stress can be fully 

reversed even though no1nina.l stresses are tensile. 

e 1.3 - Effect of Tensile Strength and Stacking Fault Energy 

Besides mechanical factors such as stress raisers·, and ·residual stresses, there are 

certain n1eta.Hurg-ical. factors which can affect the fatigue strength of any component. 

Among them,. the tensile strength is frequently used to approximate fatigue properties 

of materials. For exa1nple, the fatigue lin1it of wrought alloy steels is usually stated to 

be approxi1nately half of their tensile strength. On ohe hand, such general correlations 

may be expected since slip is more difficult in higher strength alloys. On the other 

hand, increasing the strength increases sensitivity to all kinds of stress raisers including 
' 

inclusions, second phase particles, surface roughness,. et''<;. ,and also it incr_eases sensivity 

to environ1nental attack and decreases fracture· toughness of the material. 

8 
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Structure Under 

Stress Control 

' Specimen U nde Strain Control 

Figure 1.3- Schematic showi.ng the simulation of strain-controlled test specimen at 

notch root of a structure under stress control condition. 
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Figure 1.4 27 shows· the fatigue limits, as a function of ha.rd ness ( or strength) for 

smooth specimens of different alloy steels under completely reversed stress tests at 

room temp~rature. As se~n, the constant factor used to correlate fatigue limit. to 

strength·' does not hold beyond a. hardness of approximately 40 RC. T·her~fore, while 

approximate relations .may be used for convenience, it should be noted that their use 

must be restricted to only certain circumstances such as smooth and highly polished 

specimens, up to a certain hardness range. 

Fatigue strength can also be affected by the stacking fault energy which 

controls the ease of cross-slip <!;~ell as the. mode of deformation. 28- 30 In .materials 

with high stacking fault energy, dislocations can cross slip easily a.round obstacles. As 

a result slip bands and pla.sticaly defornwd zurws ca.11 fun11 wlti'ch prornot.<· butlt <'rack 

initiation and propagation st.ages. Defo1'rna.tio1J 111u(if. in t.lwsc 111at.f•ria.ls is ca.lied wavy 

since the slip band appears to be wavy. Thompson a11d Hackofr,11 30 haVf·' shown thaJ in 

materials with high stacking fault energy, such as copper and a.I um in urn, grain size does 

not affect fatigue strength of the m.aterials tested over 104 10-7 cycles a.11d u 11<ler 

constant stress amplitude. This happens because dislocations cross slip easily- and form 

cell structure which mas·k the effect of grain boundaries or grain size on fatigue life. 30 

This concept is most meaningful for propagation. However. it. is ~wrti11ent. t.o 11w11t.io11 

it here because in this study, we ·define initiation life as the 11 u rnber of cycles tu fun11 .a 

1 m.m long crack. 

In materials with low stacking fault energy, parti'al dislocations are widely 

separated and recombination can be done only by applying large forces. The-refore . 

. cross slip is not easy and barriers are effective in introducing strain hardening due to 

dislocation pile- ups. In this case, tra.nsgran ular slip bands a.rP formed and the 

deformation mode is called planar. It· has bce11 show11 30 tlta.t i11 low-sta.<'king-fa11lt 

materials, grain size ca.11 affect fa.t.igu<' st r<'11gt 11 t l1rungl1 i11qwdi11g crc1ck tn',H gn1i11 

boundaries. 

10 
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el.4-Initiation Life Prediction At Notches 

' Prediction of fatigue crack initiation life from notches has been a subject of ,., 

active interest during the last 30 years. 1-11 The principal reason is the need for a 

model by which a design engineer will be able to minimize the number of tests required 

to predict fatigue behavior for a notched component. Traditionaly, nominal stresses· 

and elastic stress concentration based approaches have been used. Recently, two more 

complicated methods-local strain and fracture mechanics based approaches- have 

qeen employed to predict crack initiation life in metals. In this part, fractur~ 

mechanics, local strain, and other approaches based on elastic stress concentration will 

be discussed.· 

el.4.1-Fracture Mechanics Approach 

Based on linear elastic analysis, this approach which has been used in several 

. t' t' 8,9,24,31-38 l AK/ r;; f · fl · · · mves 1ga 10ns · emp oys u ~p as a· measure o maximum stress . uctuat1ons 

at the root of the notch to predict initi.ation life for notched components. LlK 

represents the maximum range of stress intensity, which depends on applied load, 

com·ponent geometry, and crack length, and p is the notch root radius. The origin of 

this approach stems from Irwin 39 and Cre_ager 4o. In 1966, Creager showed that elastic 

stress distribution around sharp elliptical or hyperbolic notches in a component 

subjected to mo.de I deformation can be calculated as a function. of stress intensity from 

the follow~ng equations: 

.. K1 . . ·. . . . . K1 p . 
C!x= 

112 
cos (} /2 [l-s1n B/2 s.in 30/2]-

112 2r cos 30 /2 ( 1.4a) 
(211-r) · {21rr) 

l{I 1· . K1 p . 
Cly= 

112 
cos O 2 [l+sin O /2 sin 30 /2]+ 

112 2r cos 30 /2 (1.4b) 
(21rr). (21rr) 

K1 • . k1 p . . . 
Txy= 1/2 Sill O /2 cos (} /2 cos 30/2- . 1/2 2r sin 30/2 

(21rr.) ( 2?rr) 
(1.4c) 

where r, 0, and p are shown in Figure 1.541. 
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Figure 1.5- Elastic stress distributi_on near the tip of an elliptical notch for a structure 

under mode I deformation..41 
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When a structu.ral component a:s ·in Figure 1.5 is cyclically loaded, maximum stress 

fluctuation at the notch .root, i. e., 0=0 and r=p/2, may be calculated by Eq. 1.4b as 

follows: .. 
_ 2 [~K] ~<imax- .r= r,:; 

"'4 7r -~ p 
when p-+O (~.5) 

Also, ~<imax can be calculated using stress concentration factor as follows: 

~umax=Kt.~S ( 1.6) 

,f.. 

As see11 from the last two eq aations, K./ ..Jp is in fact equal to Kt .~S times. a factor of 

vi' /2 . Therefore, an alternative stress concentration factor is defined2 as Krm= S 2~ 
. 1rp 

which is close to Kt 011~y when notch has a crack-like geon1etry. Using finite element 

analysis for hlunt con1pact-tension specimens, Wilson42 has shown that Eq. 1.5 is 

accurate to within 10% for notch radius up to 5 m111. The accuracy of Eq. 1.5 has also 

been studied by Dowling2· for notched specimens shown _in Fig~ue 1.6. 2 The results 

presented in Table 1.1 show .a considerable difference between Kfm and Kt for the two 

blunt notches. The other limitation of this approach appears when there is significant 

plastic deformation at the n(?tch root. In such cases when ~K/...Jp versus Ni is ploted 

for specimens with different notc::h geo111etry, data separation ~ill be seen for low-cycle 

-and high stress conditions. An example has been shown in Figure 1.7.2 

Table 1.1- Stress Concentration Factors for the _Notches Shown: in Figure 1.6.2 

Specin1en 

Center Hole 2.12 1.19 

Con1pact 2.62 2.41 

Blunt DEN 2.42 1.63 

Sharp DEN 10.7 10.3 
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Figure 1.6,.. · No_tched specimen geometries: (a) Center hole, ( b) Compact, (c) Blunt 

double edge notch ( DEN), and ( d) Sharp double- edge notch. For each geomet_ry, 

W 25.4 mm; t=thickness.2 
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Figure 1. 7- Fracture mechanics approach used to correlate fatigue crack initiation, life 

for various notched specimens. 2 
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el.4.2-Local Strain Approach 

Most problems of engin~ering interest in designing structuraJ components and 

ma.chine parts involve the case whe:r;e nominal stresses are elastic while inelastic local 

stresses ar.e developed at keyholes, welds, fillets, etc. In these cases, as would be 
. . 

expected, models based on elasticity theory are not able to predict the fatigue .damage 

of the component. In order to account for plasticity effects at notches, the local strain 

approach has been introduced2 '4- 7 .43-
46 which assumes that initiation at the notch 

occurs- when a small smooth specimen loc·ated at the notch, s:hown in Figure 1.5, fails. 

This method then establishes the str~ss-strain history for this small specimen through 

experime·ntal tests, hypotheses, or a finite -element analysis. A rule. proposed by 

Neu·ber47 has been extended to fatigue problems by Topper et .al.4 to predict fatigue 

initiation life for notched components, as shown schematically in Figure 1.8. 

Neub.er studied the behavior of stress and strain ·concentration for notched 

shear-strained prismatic. bodies and proposed a ·rule which can be used with stress­

strain "laws to correlate the nonlinear stress-strain behavior at the notch root to the 

nominal stress-strain applied to a component. He states47 that " The geometrical 

mean value of the stress and strain concentration fac~ors is equal to the Hookian stress­

c.oncentration factor ," 47 which means (The analysis has been developed by Topper et 

al.4 and is repeated here for convenience): 

(1.7) Neuber rule 

where Ker and -Kr ~re plastic stress and plastic strain concentration factors, 

respectively. Equation (1. 7) states that the product KO" Kc is .constant. This is 

reasonably supported by the fact that Ku decreases and Kf increases as yielding 

occurs. Substituting KO" and l\f with ~ range of stress and strain gives: 

.K =(Llcr Llf)1/2 
t ~s.Lle (1.8) 

which is an important and useful equation because it correlates nominal factors to local 

factors or: 
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where ds and .6.e are nominal stress and strain ranges, .6.0' and .6.t: are local stress and 

strai_n ranges, and E is the elastic modulus. When nominal stress and strain are elastic, 

using Hook's law Equation (1. 9) may be rewritten as: 

. l/2 
Kt.6.s==( Ll<J' dt: E) · (1.10) 

Since plasticity at the notch root can_ markedly lower the value of Kt, Kf has been used 

in fatigue problem.s instead of Kt. Although Kf, as shown in Figure 1.2, varies over 

the life range, approximate equations like that of Peterson22 may be used to dete·rmine 

Kf. Substituting Kt for Kf, Equation (1.10) becomes: 

Kf .6. s == ( .6. (J' d t: E) 
1 

/ 
2 

( 1.11 ) 

or 

(K ds)2 

Ll<T dl== f E - constant (1.12) 

which is the eqµation of a rectangular hyperbola, shown in Figure 1.8, and is very 

important in most engineering d·esigns. where nominal stresses are essentially elastic and 

local stre~ses and strains mi1ght be plastic. When local stress and strain are also elastic, 

i.e., high-cycle fatigue, Equation ( 1.11) may be further simplified as: 

(1.13} 

It should be noted that when cyclic stress-strain curve is known, its intersection with 

Equation (1.12) will give the local stress and strain at the notch tip. Fatigue life· can 

then be estimated using this strain with Manson48 type strain-life equations {see Figure 

1.8). 

In summary , Equation. (1.9), with Kt substituted by Kf may be used for aH 

values of n_ominal stress even when general yielding occurs. In such cases, the cyclic. 

stress-strain curve of the material should be used to obtain .6.s and .6.e. Eqilation(l.i'l) 

applies for ds values less than the yield stress, and Equation(l.13) for dS values less 

than the yield stress divided by Kt. This is the case when there is no .plasticity even at 

notch root. However, Equation(l.13) is frequently used for initiation life estimates 

even in the presence of inelastic stress and strain at the notch. 
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Figure 1.8,. Estima_tion of .fatigue crack initiation life based on Neuber's ana(ysis and 

sress and/ or strain-life curves. 
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This approach compared to fracture mechanics base approach has at least three 

advantages: it accounts for plasticity at notch root, notch geometry can be accounted 

for and life estimation using Kf.6.s as a damage factor, is· much easier since K1, and 

therefore an estimate of Kf, is readily available for variety of geometries. Also, mean 

stress effects ·can be accounted for, using this approach, by subtracting the quantity O"m 

from u't in the following equation49
•
50

. 

where 

df /2= total strain amplitude 

E= Young's modulus 

u't= fatigue strength coefficient 

um- mean stress 

2N = number of reversals to failure 

(1.14) 

b== fatigue strength exponent ( the slbpe of elastic strain vs. 2N line) 

c- fatigue ductility exponent ( the slope of plasfic strain vs. 2N li1_1e) 

f' t== fatigue: ductility coeffiden t 

ln notched mem_be_rs, local yielding induces either compressive or tensile residual 

.stresses. These stresses 1nay change the magnitude of the mean .stress at the notch 

root. If the applied load is~ tensile, compressive mean stress develops and if it is 

compressive, tensile mean stress is developed around the notch root. Tensile mean 

stre.sses, if not being accounted for, may result in a nonconservative life estimates. 

However, since the material at notch root undergoes strain control, mean stresses will 

be relaxed after e_nough cyclic plastic strain is reached50
-
52

. The effect of mean stress 
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becomes much more important when the component is under variable amplitude 

loading. In this case, load history must be known- to predict the effect of mean 

stresses. Also, this approach accounts for hardening/softening effects through using 

cyclic stress strain data. Along with those advantages, these are some difficulties with 

this approach as follows: 

-"Where the ge01netry or mode of loading differs drastically from cases for which 

N·euber's rule has been verified, it is advisable to use it (Neuber's rule) with caution." 2 

.-Material properties obtained either fro1n literature or by testing specimens in 

laboratory may be very different from actual component properties due to: fabrication 

related effects. 2 In the case where only local yielding occurs, the role of fabrication 

related effects may become more important since the propeties of the material in a 

small zone at the notch root may differ dra~tica.lly from those of laboratory tested 

specimens. 

el.4.3- Kt-Based Approaches 

Fatigue damage in this approach is defined· by the product kt.~s, where ~s is 

the maxim u1n stress fluctuation at the notch tip and K\ is the elastic stress 

concentration factor. As stated before, when plasticity occurs, this approach leads to 

an unnecessarily conservative life estimat.es. When local plasticity occurs, the stress 

distribution in the notch vic-inity is changed. Also, the damage factor may be 

maximized at some di·stance a.head of the notch. For this r.ea.son and the fact that in 

fatigue, sharp notches have less effect than predicted by Kt, historically Kt has been 

replaced by Kf is a function of material, loading condition and geometry as explained 

previously. The quantity Kf along with Neuber's equation were used to account for 

plasticity and geometry effects. The quantity Kf is treated as a constant whereas it 

was proved to be a function of life. 

An alternative approach which uses Ktd instead of Kf has been used by Bathias 

and Ga.bra, where J(td is kt evaluated some distance ahead of notch. ~(td is determined 

by Neuber2 1.53 equation as follows: 
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K K·( P )o.s 
td- t p+4d (1.14) 

where p is notch root radius. Also, as mentioned previously, Neuber47 has shown that 

(1.7) 

which can be applied at any distance ahead of notch. Combining. equations 1.14 and 1. 7 

results 'in 

-(du dL\cd)0.5 
Ktd- L\s L\e 

and thus 

Ktd 2 .L\s.L\e 
L\cd== A 

ilUd 

(1.15) 

(1.16) 

where far field stress is elastic, then L\e==1:s. Therefore_, 

( 1.17) 

Note that Ktd· L\s==L\u d· 

This approach accounts for plasticity and geometry, through :utilizing Ktd and 

Neuber analysis and is very similar 'to the local strain approach. Howeyer, the key 

ques'tion is" Is d. a constant vaJue as Bathias e.t al. 12 proposed?" They have calculated 

L\cd at a distance d==150 µm (grain size of the materials used) for prediction of fatigue 

crack initiation in two different aluminum alloys with yield strengt~ of 328 and 410 

MPa. They used c~mpact tension specimens with. notches ranging from 0.5 to 5 mm. 

The results of their work show that this approach- ·may account for both notch effects 

and material properties. Howe.ver, it seems that more work needs to be done to see if d 

has any correlation with material properties such as grain size, strength, etc. 

22 
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II-OBJECTIVE 

Variou~ modifications of the local strain and fracture mechanics approaches give 

fl . t· d. t· .r .• ·t· ·t· 2,8,41.,54,55 con 1c 1ng pre _1c 1oils 1or 1n1 1a 10n, particul~rly 
. 
1n low-c;ycle region . 

Moreover, ·a. common feature of all initiation models is the lack of influence of 

microstructural or metallurgical properties., excluding perhaps strength, 1 on crack 
'\, ... 

initiation. ·Therefore, the objective of the present study is to develop data on crack 

initiation at notches which can be used to compare the models while concurrently 

providing a ra,nge in both strength and stacking f(Jult ene:gy. Strength controls the ease 

of slip whereas stacking fault energy controls .the ease of cross-slip, as well as the type 
. . /'~ .. 

of deformation.', :Por this purpose, the materials chosen were an aluminum alloy 2024-

T3; commercial copper, 70-30 brass, and Cu-Be alloy 25. They provide ranges in 

strength and stacking fault energy from 300 to 850 MP a and from 15 to 120 mJ/m2 , 

respectively. Minor objectives of this study are as foUows: 

1. Strain meas·utment· at the notch root utilizing Moire:..fringe technique to compare 

measured and computed· strains. 

2. Determining .the relative importance of initiation cycles, Ni, versus total cycles to 

failure, Nf, for blunt and sharp notches. 
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III.EXPERIMENTAL PROCEDURE 

(j 

•3.1-Materials and Grain-size Measurements 

The materials tested Oin ~he present study were commercial copper (Bar 1/ 4-

inch thick), 70-30 brass ( 1/4-inch thick plate), Cu-Be alloy 25* ( 7-inch diameter hot 

forged bar),. and 2024-T3 aluminum (3/8-inch thick bar). Chemical analysis and 

average grain size for all materials are shown in tables 3.1 and 3.2, respectively. 

Grain size 1neasure:ril.ents were performed in accordance with ASTM standard 

El 12 'three circles method 56
, which is a grain boundary intercept technique, for both 

longitudinal and transver~e orientations to the flow direction. For the aluminum alloy, 

the grain. size was an average for three dimensions because the grains were not 

equiaxed. In the case of Cu-Be alloy 25, duplex .grains were present in metallographic 

section. In measuring the average grain size, l, for this al}oy, both small and large 

grains were 1nduded. The etchants57 used to reveal grain boundaries were: for 

aluminum, Keller!s reagent; for Cu-2Be, 1 part ammonium persulfate hydroxide, 2 

parts ammonium persulfate(2.5% 1n H20); for brass, Cr03 (saturated aqueous 

solut.ion); for copper, 2 g K2Cr2 0 7 , 4 ml NaCl (saturated solution), 8 ml H2S04 , 100 

ml water, followed by Fe·3Cl to incr~a.se grain boundary contrast. 

*Supplied by N'GK Metals Corporation 

24 

I • 



•3.2. Mechanical Testing 

Tensile properties were. obtained on an Instron. screw driven tensile machine at 

a constant strain rate. of 5 mm/min. Either button head or flat specimens were 

machined from longitudinal direction and tested according to A$TM E8-87a58 . The 

results are shown in Table 3.3. 

All fatigue experiments in t.his study were ·'performed on an Instron 

servohydraulic closed-loop testing machine. Blunt and sharp keyhole notched compact 

tension ( CT) type specimens were oriented in the longitudinal (LT) direction, except 
.r 

for Cu-Be specimens which were oriented in both (L- R) and (R- L) directions(see 

Figure 3.1 and 3.259
) were used. Specimen dimensions are shown in Figure 3.3. 

The stress il)tensity solutions for these samples is as follows59-: 

p . 
K== 

112
f(a/W) (3.1) 

BW 

where 
. I 

K==stress intensity factor 

P==applied load 

B==sample thickness 

W-sample width 

a==crack length 

f( a/W)== (2+a/~J
2
[0.886+4,64a/W-13.32(a/W)2 +14. 72(a/W)3-5.6( a/W)4] 

(1-a/W) 

The nominal stress at the root of the notch60 for this geometry is: 

S= p [3(W +a) +l] 
B(W-a) W-a 
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The specimens wer~ ·subjected to cyclic maximum loads ranging from 1500 to 

15000N i.n ambient laboratory air(for additional details see Table 4.1). All waveforms 

were sinusoidal with stress ratio(min load/max load) of R==0.1, and all tests were 

conducted at a cyclic frequancy of 25 Hz. Maximum loads were selected to p;roduce 

initiation cycles in the range 103 to 106. Crack initiation was defined as the cycles to 

form a 1 mm long crack extending from the notch root. Crack lengths, for both 

initiation and propagation were monitored via a compliance technique, with a 0.2 inch 

clip gage heing attached to knife edges machined in the mouth of the notch. Visual 

verification of these readings were made at appropriate intervals on both side~ of the 
:, 

samples with the aid of a traveling microscope. In order to facilitate crack observation, 

particularly for initiation period, all copper alloy and aluminum alloy specimens were 

electrolytically and mechanically polished, respectively. 

Fatigue crack propagation data were also obtained under the same conditions 

and at constant load and constan~ stress ratio R==O.l ·utilizing an IBM XT computer 

and software developed by Fracture Technology Associates, Inc. 
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Table 3.1- Chemical Com.position of the Materials Investigated*. 

Element Al2024-T3 Copper Brass Cu-Be 

Zn 29.84 

Cu 4.16 99.95 70.13 Bal. 

Mn 0.57 

Mg 1.37 

Be 1.85 

Co 0.23 

Si 0.08 

Sn <0.01 

Fe 0.006 

Ph <0.003 

p <0.001 

0 0.034 

Al Bal. 

* Wet Chemical and Gas Analysis; Weight Percent. 
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Table 3.2- Grain S_ize of the Materials Tested. 

Material 

Copper 

Brass 

Cu-:Be 

Al 2024-T3 

28 

Average Grain Size 

l(µm) 

24 

22 

40 

162 



Table 3.3- Average+ Tensile, Properties of the Materials Investigated. 

Material 

Copper 

Brass 

Cu-Be 

Al2024-T3" 

YS* 

(MPa) 

336 

365 

652 

369 

UTS** 

(MPa) 

337 

436 

846 

462 

Total Elongation 

in 45mm, % 

10 

39 

25 

15 

+ For Three Specimens; Standard Deviation <2% for Strength and < 10% for 

Elongation. 

* Yield Strength at 0.2 % Offset 

** -Ultimate Tensile Strength 
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Figure 3.1- Crack plane orientation code for rectangular sections. 
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Figure 3.2- Crack plane orientation code for bar and hollow cylinder. 
59 
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Fig-µre 3.'3- Ceometry and dimensions of compact tension specimens used in the 

present study. 
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IV-RESULTSAND DISCUSSION 

In order to evaluate different fatigue-initiation-life models, fatigue 

experiments were performed on CT specimens with two different notch root radii for 

materials of 2024-T3 aluminum, commercial copper, 70-30 brass, and Cu-Be alloy 25. 

The results are shown in Table 4.1, whereas the symbols are defined as follows: 
., 

dS=maximum nominal fluctuating stress at the notch root, 

calculated from Eq~ation 3.2. 

R=minimum nominal stress/maximum nominal stress 

p=notch root radius 

Kt =theoretical stress concentration factor, 

determined from- Figure 4.14.42 

Kf =fatigue strength reduction factor, 

determined from Equation 1.3. 

Ni=number of cycles to initiate a 1 mm crack 

NJ-number of cycles to failure 
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Table 4.1- Fatigue Data for the· Materials Investigated. 

Material 

Copper .,, 

" ,., 

" 
" 
" 

Brass 

" 
II 

II 

II 

II 

" 
" 
II 

Lis* 
(MPa) 

318 

180 

126 

126 

180 

126 

68 

180 

168 

263 

2-31 

126 

126 

180 

126 

84 

Stress Ratio, R=0.1 

p 

(mm) 

1.59· 

0.13 

0.13 

0.13 

1.59 

1.59 

0.13 

0.13 

0.13 

1.59 

1.59 

0.13 

0.13 

1.59 

1.59 

0.13 

* Did not fail after 4.0lx106 cycles. 

3.1 2.5 

9.9 2.4 

9.9: 2.4 

9.9 2.4 

3.1 2.5 

3.1 2.5 

9.9 2.4 

10.8 3.3 

10.8 3.3 

3.5 3.0 

3.5 3.0 

10.8 3.3 

10.8 3.3 

3.5 3.0 

3.5 3.0 

10.8 3.3 

34 

N. 
I 

(Cycles) 

4400 

8000 

41000 

61000 

70000 

235000 

4010000 

9500 

135.00 

28800 

37600 

38500 

42·000 

84000 

380000 

740000 

Nf 

(Cycles) 

5900 

23100 

118500 

134300 

86800 

3054000 

* 

37800 

48500 

36800 

51700 

116500· 

127iOO 

113800 

474200 

1002300 



Table 4.1- ( Continued) 

Material 

Cu-Be 
II 

II 

" 
II 

II 

II 

II 

Al2024-T3 
II 

II 

II 

II 

II 

II 

~s* 
(MPa) 

158 

126 

198 

68 

68 

126 

126 

105 

126 

180 

126 

126 

68 

68 

68 

~tress Ratio, R=O.l 

p 

(mm) 

0.07 

0.07 

1.59 

0.07 

0.07 

1.59 

1.59 

1.59 

0.13 

1.59 

1.59 

1.59 

0.13 

0.13 

1.59 

16.5 

16.5 

3.9 

16.5 

16.5 

3.9" 

3.9 

3.9 

10.8 

3.5 

3.5 

3.5 

10.8 

10:8 

3.5 

35 

N. 
I 

(Cycles) 

6.5 11400 

6.5 18000 

3.7 85800 

6.5 130000 

6.5 133000 

3.7 405000 

3.7 440000 

3.7 665000 

3.8 11500 

3 14000 

.3 37500 

3 38500 

3.8 138500 

3.8 149000 

3 335000 

Nf 

(Cycles) 

45000 

72100 

100800 

399800 

408600 

455900 

502100 

755100 

20300 

19300 

62400 

49500 

341100 

540400 

690100 



e4.l-Nominal Stress 

Fatigue initiation data ·for the 2024-T3 Al and Cu-Be alloys is plotte.d in Figure 

4.1 as Snom/UTS versus Ni: Nominal stresses were determined using Equation 3.2. As 

seen from this Figure, .solid curves are spaced farther "apart relative to broken curves. 

In other words, material with higher strength, i.e. the Cu-' Be alloy, is more notch 

sensitive than the aluminum alloy which has lower strength. 

From this Figure and Figures 4.2 and 4.3, it seem-s that for a given material, 

sharp and blunt notch data approach each other at long life. This happens because at 

long life, i.e., 105 -106 cycles, there is still some plastic deformation at notch root of 

sharp notch specimens whereas at the same cycles for blunt notch sample, the notch 

root stress is no longer plastic. Therefore, Kt for· blunt notch keeps its full theoretical 

effect while the effect of Kt for sharp V-notch decrea~es due to plasticity and notch 

blunting. To verify the above hypot.hesis, consider the theoretical notch root stress 

'(Kt.dS) for aluminum alloy at its lowest applied stress {S==76 MPa). For sharp 

V-notch, Kt.dS==739 MPa, whereas for blunt keyhole notch, KtdS==239 MPa. A.s 

seen from Table 3.3 the yield strength of this alloy is about 370 MPa and therefore, at 

nominal stress S==76 MPa, plastic deformation at the notch root is. expected only for 

sharp V-not~h specimen. Also, from Figures 4.1 through 4.3, it inay be concluded that 

at longer life, where notch root stress of both sharp and blunt notch specimens becomes 

elastic, all data approaches fatigue limit(i.e. fatigue strength at a given cycle) of 

smooth specimen divided by Kf. In other words, at long life, Kf becomes constant and 

the role of surface roughness left from machining the notch ~nd the role of other. flaws 

at the notch ·vicinity may become important. 
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Figure 4.1- Nominal stress normalized by ulti1nate tensile strength versus crack 

initiation life for Cu-Be and aluminum alloys. This Figure shows the effect of material 

~trength on notch sensitivity and the effect of notch on i_nitiation life. 

37 



\, .. 

300 

100 

0 3 
10 

0 

0 

Brass 

Filled=Blunt 
Open=Sharp 

10 4 10 5 10 6 

Ni, (Cycles) 
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•4.2.1-Fracture mechanics approach 

The i{ factor which was employed as a model for predicting fatigue initiation 

life at notches by J3arsom and McNicol8 has been used in Figures 4.4~4. 7 to correlate 

initiation <la.ta for blunt and sharp notch specimens. By combining the Equations 1.5 

and 1.6, we saw that when notch root radius approaches. zero, i.e., crack-like notch, 
~K ~· . . . .. 
{p becomes equal to 2 .Kt.~S or ~0.85Kt.~S. Therefore, choosing such a factor as 

a representative for maximum local stress at notch root is expected to give too 

conservative results partic~larly for s_harp V -notch specimens and also in the low-cycle 

regime where there ·is considerable plastic deformation in the notch vicinity.. This 

result is clearly shown in Figuers 4.4-4. 7. Initiation data from all materials are plotted 

together in Figure 4.8. 

If ~K/{p-type n1odels properly account~d for notch geome~ry, one would 

expect blunt and sharp notch results to follow a common trend. However, as seen, not 

only do the blunt and sharp notch results not follow a common trend, but also fatigue 

crack initiation data for sharp V -notched specimens of all- materials lies above data for 

bl~nt-keyhole notched speci1nens. In fa.ct, the data in Figures 4.4 through 4.7 suggest 

that initiatior~ requires more cycles for sharp than blunt notches at the same i. In 

other words, this model does not le.ad to physically plausible results. In summary, this 

approach does not account for either notch-root plasticity or notch geometry. 
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Figure 4.4- Fatigue crack initiation data for ·2024:- T'J aluminum are correlated using 

fracture mechanics approach. 
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Figure 4.5,- Correlating bl.unt and sharp notches data for Cu- Be alloy using fracture 

mechanics approach. 
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Figure 4. 7- Using fracture mechanics approach to correlate fatigue crack initi(ltion life 
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Assuming that general yielding did not occur in present experiment, the 

simplified form of Neuber's47 equation, which has been developed for fatigue problems 

by Topp~r et· al.4 , has been employed in FigtJres 4.9 through 4.12 to correlate fatigue 

crac~ initiation data. As discussed in section 1.4~2, the quantity Kf .LlS has been 

derived through simplifying Equation 1.7 and is taken to be equal to (~rrLlcE)
112

. 

Therefore, Kf .LlS, if calculated properly, is a measure ·of local stress and strain at the 

notch root. 

As shown in Figures 4.9 through 4.12, only fatig·ue crack initiation data for 

aluminum alloy appears to be independent of notch root radius, whereas for the other 

materials the data obtained for the blunt keyhole notch geom·etry lies above that for 

the sharp notch data. The quantities Kf and LlS were determined using Equations 1.3 

and 3.2, respectively. In order to evaluate. the accuracy of Equation 1.3, Kf was 

obtained fro111 handbook of .rnilitary s.tandards61 for different types of aluminum alloys 

with different not.ch root radii and for lives from 104 to 106 cycles, and then was 

compared with Kf determined by Equati9n 1.3. Also, the results were compared with 

actual data obtained from plots of notch sensivity index ver·sus notch radius for 

alu1nin um alloy 18
. The. results were satisfactory and. showed that the various ways to 

estimate Kf »1ere within -10 to +10 percent. 
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Figure 4.9- Using the· local strain approach to compare fatigue crack initiation life for 

blunt keyhole- and sharp v-notch sp·ecimens of aluminum alloy 2024-TJ. 
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Figure 4.10- Using the local strain approach to compare fatigue crack initiation ·life for 

blunt keyhole- and sharp v- notch specimens of Cu-Be alloy 25. 

48 



1600 

Brass 
Notch Radius 

r , mm 

Open 0.13 
1200 Filled 1.59 

f'I 
\ 

400 

0 L..L..L..---L--'-...L......L....-L..1..U.---'--~L..L.J....I....L..L--.---'-_..__L.....J.-L...LJ..J..l..---' 

10 3 10 4 10- 5 10 6 

Ni, (Cycles) 
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As shown in Figures 4.9 through 4.12, only the aluminum. fatigue crack 

initiation data appears to be independent of notch root radius whereas for all the other 

materials th~ blunt notch data lies above the sharp notch data. This discrepancy may 

arise from the following reasons:. 

-Equation 1.3 used to determine Kf may not be valid for Cu-Be alloy, brass and 

copper. 

-. As discussed in §1.2, t.he quantity Kf va_ri~s with life, i.e., l\f=f(N), whereas in the 

present analysis, a constant value has been used for Kf for the w·hole fatigue life range. 

-In low-cycle region, where the sample experiences large tensile loads, the plastically 

deformed material at the notch vicinity may go under compressive mean stresses. 

This, even for a rather short period nf time, may affect the initiation life. This effect is 

not accounted for by this approach. 

In order to compare this approach with fracture mechanics approach, all data 

have plotted in Figure 4.13 and in the sa1.ne scale as iri rigure 4.8. _As shown in Figure 

4.13_, using this approach, blunt and sharp data falls together to a much ·greater extent 

compared with fracture mechanics results in Figure 4.8. However., as can be seen, the 

overall slope of Kf.ilS versus Ni plot is low. In the other words, ·Ni appears to be quite 

insensitive to Kf.~S. 

explained ip §1.4.2. 

The advantages and disadvantages of this approach were 
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•4.2.3-Kt-Based Approaches 

a) Maximum Elastic Stress (Kt.6.S) 

In this approach, the elastic notch stress, u=K1.6.S, has been calculated ·and 

plotted versus fatig~e crack initiation data. The quantity K1 has been calculated using 

the results of Wilson's42 finite element analysis (Figure 4.14) and the nominal s~ress S 

fro.m Equation ·3;2. The results are shown in ·Figure 4.15 where, as was true for the 

fracture mechanics approach, the fatigue crack initiation data for sharp V -notched 

specimens of all materials lies above the data for blunt keyhole'-notc.hed specimens. 

Here ~gain, the parameter Kt~~ leads to the physically unsatisfactory result that 

initiation occurs sooner in blunt than sharply notched specimens. The individual plots 

for thi~ approach are almost the same as figur~s 4.4-4. 7, as explained ·p;reviously. 
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defined as r/ ( W- a) where r, ~V, and· .a. are notch radius, width, and crack length of CT 
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b)Ktd Based Approach 

As a result of local plasticity, approaches -based on maxim um theoretical stress 

at notch root resulted in unnecessarily conservative resuJts, particularly for ·sh~rp 

notches. Also, they were n.ot able t9 account for notch geometry. For this reason, 

Neuber's equation and Kf were employed in local strain approach to account for 

plasticity and _geometry effects. Although Kf has been proven to be a function of life, 

it i~ used as a constant which n1ay represent a source of error. Moreover, we. saw that 

different Kf might be obtained for components with different geometries but with equal 

K1S. In. order to. alleviate these problems, an alternative approach i~ warranted. 

Perhaps such an approach can be based on Ktd where Ktd ·is I<;1 evaluated some 

distance ahead of notch. This approach, as dicussed previously, employs the ratio 

Ktd~S · · I . d d' h d f h h 
2

E to detern11ne strain amp itu e at some 1stance a ea o note . It t en. 

correlate~ this value with fatigue crack init_iation data. 

Here an in1portant question is \vhat distance "d" ahead of the notch should be 

selected. Bat hi as and Gabra 11 have used the Ktd 3:pproach to c.orrelate fatigue crack 

initiation data frorn different notch geometries for two aluminum alloys. In their 

study, they have calculated the strain at distance d= 150 /lllL The r~ason for the 

choice of d=150 µ1n was stated simply that this value gave the minimum scatter of 

initiation data and was about the same as th~ grain siz~. 

An alternative and a new rationale for distance "d" is proposed here. The idea 

is that fatigue damage factor defined by the ( ~a·.~c) product may be maximized ahead 

of the notch. root whereas the strain itself i.s 1i1~xin1ized at the notch rooL This can be 

explained by stress redistribution at notch root due to local yielding. When the applied 

load is reduced to its miniin u1n level, co1npressive stresses are developed at the notch 

vicinity, as -shown in Figure 4.1662
•
63

. This stress -redistribution process may cause the 

product ~a.tlf to be maxiinized at s6n1e distance ahead of tl~e notch. The fact that 

the product ~a .~f is main.ly responsible for controlling fatigue da1nage, is reasonably 
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supported by the fact that" this product is a measure of the strain energy density. 

Consequently, if the proposed ration.ale is correct, one might expect' "d" to ·be 

dependent on both specimen geometry and material strength both of whic;h control the 

extent and the magnitude of deformation. 

As mentioned, Bathias' results suggest- that "d" is a constant. To assess 

whether d is a constant, we studied the effect of the choice of d for different materials 

and judged the optimum value, "dopt", as being that which best describes data for 
K .6.S 

both blunt and sharp notches resulting in a common dependence of tdE on Ni. As 

an example, consider the data for 2024-T3 aluminum alloy shown in figures 4.17-4·.20. 

As d increases toward 200 µm, data for blunt and sharp notches app~oach each 

other and get farther apart when d exceeds 200 µm. Therefore,_ the optimum value is 

taken to be dopt=l75 µm. Similar analyses have been done for the copper alloys and 

the optimurn values are t_abulated in Table 4.2. One should note that "dopt" is not 

actualy a single value but gene.rally falls within ± 25 µm of the values presented in 

Table 4.2. 
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Table 4.2- Optimum Distance( dopt) From The N-otch Root. 

Material 

Copper 200 

Al2024-T3 175 

Brass 125 

Cu~Be 50 
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Figure 4.16- Residual compressive stress at the crack ( or notch) tip.
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Since dopt is not constant, and since it is expected to be a function of plastic 

zone size ·and\or yield strength, we studied its relationship t() these and other material 

properties. The results suggest that "dopt" is inversely proportional to the strength 

(either yield or tensile.) of the material. There was no relation between dopt and other 

material properties such as grai~ size, stacking_ fault energy, modulus of elasticity, and 

true fracture strain. Figure 4.21 shows the invel'.se relation between dopt and yield 

strength which suggests that dopt relates to notch sensitivity. This relationship can be 

tested by using data report~d in Ref. 9 for a Ti-6Al-4V alloy. This material has yiel~ 

strength of 1007 MPa. Using the best fit plot in Figure 4.21, dashed line to the filled 

symbol, dopt is determined to be about 20 µm. Fatigue initiation data9 for this alloy 

for blunt and sh_arp notched specimens with .Kt-4.1 and 12.6 has been plotted in 
. Ktd~S . 

Figure 4.22 employing the quantity 2
E , where I(td 1s determined for d==20 µm. 

where data from blunt and sharp notched specimens falls together in a common trend. 

As can be seen from this figure, the data from blunt and .sharp notched specimens c;tre 

separated for d==200 µm which is very different from dopt· 

In Figure 4·.23, this n1odel is utilized to correlate fatigue crack initi.ation data 

for both blunt and. sharp notches for the 1n9,teria.ls u,sed in the present study. All data 

has been determinP-d at a. distance d=dopt as defined in Table 4.2. In contra.st to 

~K/.Jp and Kf~S, this mqdel correctly accounts for notch and nearly for .material 

effects. In order to more properly account for material effects, the data is normalized 

using the ratio YS/UTS, where YS and U1'S are yield and ultimate tensile strength of 

material, as shown in Figure 4.24. The role of another metallurgical factor which 

affects the fatigue life of the component is appearing in this Figure since for a given 

l,ife, there is a stratification of the result~ with low stacking fault energy materials lying 

at the ·highest posi1 ions on the ordinate co1npared with the high stacking fault energy 

.materials. The values of stacking fa.ult energy are show~ in Table 4.3. It should be 

.noted that values for copper, brass, and alun1inum. alloy have been obtained directly 

from Ref. 64, whereas the value for Cu-Be alloy has been indirectly determined using 

Refs. 64 and 65. As mentioned previously, stacking fault energy controls the ease of 

cross-slip, as well as the type of deformation topography o·bserved during fatigue28
. 
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Table 4.3- Stacking Fault Energy " 'SF " for the Materials Investigated. 

Material 

Cu-Be alloy 25 

Brass(70-30) 

Copper 

Aluminum 

'SF 
mJ/m2 

10-20 

::::::14 

::::::78 

.::::::120 

66 

Temperature 

co 

25 

25 

25 

25 

Ref.# 

66, 67 

66 

66 
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The lower and upper limit of the fatigue crack initiation data obtained from 

this study along with other data from literature have been correlate~ using this model, 

as shown in Figure 4.25. The data for aluminum aUoys. are well wit"hin the ra~ge 

predicted by present work. These data has been obtained from compact tension 

specimens with Kt=2.1 and Kt ~6. 7 at stress ratio R=0.01. However, it seems that 

this model understimates initiation life for Ti alloy whereas it overstimates initiation 

life for the steel alloys. These discrepancies might be related to several factors such as 

ge_ometry and mean stress effects .. 

In summary, this model more correctly explains both material and notch effects 

when compared with the local strain or b.K/ fp approaches. This is especially evident 

when the data are normalizeq by the ratio of YS/UTS. The quantity Ktd 9etermined 

for an optin1 un1 distance from the notch root appears to work m lich better than Kf 

calculated fron1 the empirical equations. The strength of the material can be used to 

estimate the optimum distance by utilizing the relation given in Figure 4.·21. 

67 



10 

0 

0 

~ 
N " " -¢- ~ 

0 
rJl ·'-.,.. 

Q 5 
'-.,. 

• -¢- ~ .......... 
"C 
+l 

~ 
0 
0 
0 
~ 

Cu- e 
Al and 

s Ref. 1 D 
A 

0 Ref. g 

o. ~ Ref. 11 

'-...... 
............ 0 

............ -¢- ~· 
........... 0 

0 
«) <> 

10 4 

........... 0 
........... 

-¢- ti. ~ 
........... 

--- -.ti. - -
0 

<> 
¢ 

10 5 

Ni, (Cycles) 

t. ~. 

and rass 
Cu 

0 

- -
D 

10 6 

Figure 4.25- Strain amplitude determined from J{td.LlS /2E used to correlate fatigue 

.initiation life for the materials emplo.yed in the present study and for materials from 

References no. 1, 9, 11. J{td was calculated for d= dopt. 

68 



•4.3-Initiation and Propogation Contribution to Fatigue Life 

An important question from a fatigue design viewpoint is how much of liff is 
' 

spent in the initiation and propo·gation components. In other words, the question is 

whether these two stages should be used indep·endently for life prediction, or the results 

should be combined. The answer, as described previously, is that it depends on the 

service condition, component geometry, material fabrication proces~, and material 

itself. Several models48
•
66-73 have been proposed during the past three decades to 

describe how these two components depend on the total life. The plots of some of 

these models along with the blunt and- sharp data from present study are shown 1n 

Figure 4.26. As seen data from blunt notches appears to follow model number (4.1), 

whereas the sharp notch data seems to be consistent with model numbers ( 4.2) and 

( 4.3). Model i:iumber ( 4.1) proposed by Manson48 gives the following relation between 

Ni and Nf. 

(4.1) 

l\1odels number (4.2) 72 and (4.3) 73 describe the relation between Ni and Nf, 

respectively, as follows: 

Ni = O.Ol6Nf 1. 3
i 

N. = 0.0014Nf1.42 
I . 

( 4.2) 

(4.3} 

For both groups. of data, i.e. blunt and sha1~p notches, N/Nf appears to be 

quiet independent of Nf in range 104 to 106 cycles. As can be seen from this Figure, 

about 30% of the total life is spent in initiating the crack for sharp notch specimens 

whereas for blunt notch specimens, initiation life covers about 75% of the total ife of 

the con1ponerit. 
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Figure 4.26- Plots of proposed initiation-propagation models along with data from 

present study. 
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V-CONCLUSION 

Fatigue crack initiation was studied for 2024-T3 aluminum, 70-30 brass, Cu-Be 

allo"y 25, and commercially pure copper. Blu~1t-keyhole and sharp-V notch compact 

tension specimens we.re loaded with a .minimu.m to maximum stress ratio of 0.1. 

Based on the results of these tests, the conclusions are: 

Ktd·~S 
1. The para.meter ~l= 

2
E was used to correlate fatigue initiation data from blunt 

and sharp notches and a.ppea.r:3 to be a better descriptor than the other approaches for 

explaining for both notch and material effects. Ktd is t·he elastic stress concentration 

factor, Kt, evaluated at a. cl ista.nce dopt a.head of the notch. The di.stance "dopt" is 

shov./n to be inversely related to material strength. A further modification of this 

approach by the u'~ls improves the correlation with c:ycles to era.ck initiation. 

2. The local .. strain approach did not. c6n1 bine data. for blun.t and sharp notches for 

materials other than a.l·uminurn. The principal difficulty seems to stein from the fact 

that the utility of t"his approach cl~pencls 011 the a.cc1fra.c·y of Kf. Kf is not always 

available in literature and empirical rrlations are not necessarily vafid for all ri1ater.ials. 

3. The parameter ~<: may be used to estimate Kt only for crack-like notch geometries. 

For blunt notches, this approach does not lea.cl to physically acceptable results, i.e., it 

predicts that initiation life for blunt notches is shorter than that for sharp notches. 

4 6 4. In the range 10 -10 cycles, a.bout :JOo/cJ of the tot.al life is spent in initiating the 

era.ck for sharp not.ch specimens whereas for blunt notch spec1n1ens, initiation life 

covers about 7.So/ci of the total life oft.he cornponent. 

. . Ktd'S . 
5. Us111g E= E , the stra.111 was calculated for blunt copper for cl=l60 µm ahead of 

the notch. For nominal stresses S=l40, 200, 350 l\1Pa., the. computed strain appeared 

to be consistent with l\1oire fringe mea.sunnents within ± 10%( Figure 4 in Appell"dix). 
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APPENDIX 

•Strain Measurements 

Ktd·S 
In order to evaluate the quantity 

2
E as a measure of strain at distance "d" 

ahead the notch, the Moire-fringe technique was utilized* to measure the distribution 

of the principal strain( the strain in the loading direction) in the vicinity of the notch. 

These measurments were performed on two copper and two brass specimens with both 

blunt and sharp notches. The specimen grating for strain measurement had a 

frequency of 1200 lines/mm and was produced from a photographic mold by 

replication. The specimen was then placed in a portable loading frame at zero load. A 

spectra physics model 127-25 mW was used as a source of Helium-neon laser light. 

The interference pattern emerging from the specimen was accumulated by a CCD video 

camera that was connected to a PC-based digital image processor. The apparatus and 

specimen were adjusted for proper optical alignment and orientation. Several optical 

parameters were checked to ensure that laser beams were projected along correct 

angles. Actually, some deviations from ideal setting existed in practice. This resulted 

in an initial pattern of relatively few fringes( at null or zero load). Also, in this case, 

residual stresses left from machining the notch influenced the initial pattern. 

l\1oreover, there are always a few fringes at the edge of adhesive due to surface tension 

effects. In the present study, th is influenced the initial pattern since we had to deal 

with the edge of adhesive placed at the notch root. However, the initial pattern did not 

affect the final displacement results because it was subtracted from the next pattern, 

obtained at load, to determine the load induced displacements. 

After the zero-load pattern(null field) had been recorded, the specimen was 

loaded to desired load and the pattern was recorded. ·1n order to measure the applied 

load, the notch opening displacen1en t was recorded using a digital voltmeter and a 0.4 

inch clip gage being attached to knife. edges 111achined in the 111outh of the notch. 

* Moire fringe measurements were made with the assistance of Professor A. S. Voloshin 

and Mr. P. H. Tsao. 
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The readings then were compared with Crack Opening Displacement COD 

measurments previou·sly performed on similar specimens. After different patterns 

related to five different loads(induding zero load) Were obtained, an image processing 

software was used to analyze the patterns and to evaluate displacements at selected 

areas around the notch root. However, since the displacements dealt with in this study 

were rather large and were beyond the software sensivity limit, displacements were 

simply measured over a give·n number of fringes and at several distances ahead of the 

notch. 

follows: 

Then, strains were determined from the strain-displacement relations as 

_av 
f.y--a· y 

(I) 

The results for copper with blunt and sharp notches and for brass with sharp 

l:}Otch are shown in Figure 1 through Figure 3. In the case of brass with a blunt notch, 
i 
the grating was far from the notch root and therefore, ho data was obtained. As 

would be expected, in sharply notched specimens, the strain decreases sharply as the 

distance fro1n notch root increases, and the slope is lower for the blunt keyhole notch. 

As mentioned, at a given load and at a given distance from the notch, strain was 

1neasured over a distance of about 100 µin above and below X-axis and in Y-direction. 

Then the value was· regarded as strain at the given distance. This assµmption may 

introduce ~ large error, particularly for sharp notches where strain gradient is large. 

However, this assumption introduces l~ss error for blunt notched specimens. Figure 4 

shows measured strain versus calculated strain for copper with. blunt notch at three 

nominal stress levels S=l40, 200, and 350. l\{Pa, and at a distance d=l60 µm ah_ead the 

notch roo.t. As can be seen, as load increases, calculated strain increases mqre than the 

n1easured strain. The first reason is that as local plasticity occurs, the stress gradient 

sharply decreases whereas, in contrast, strain gradient increas.es sharply. Therefore, if 

pa.rt of the distance over which strain is measured has already plastically deformed 

while the other part is still elastic, the average st1;ain ovei: th.e distance will be less t~an 

the absolute value of the strain. Second reaso1i lies in the fact that as load increases, 

number of fringes increases and thus, the. accuracy of measunnents drops. Figure 5 

~hrough Figure 7 show the l\1oire pattern for copper V-notched specimen at three 

different loads. 
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In summary, when the Moire fringe technique is used, the absolute values of 

strain must be measured rather than the average values, particularly for· s.harp notches .. 

A grating frequency of 1200 lines/mm appears to be unsuitable where the strain 

magnitude is large_. In fact, it is too sensitive. In cases such as this study where strain 

is to be measured at the notch root, the effect of residual' stresses and the effect of the 

adhesive edge must be accounted for. 
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Figure 5. Moire pattern for copp~r specimen with- sharp.,v ~otch and at zero load. 
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Figure 6. Moire pattern for copper specimen with sharp:.v no"tch .and at nominal stress 

S= 138 MPa. 
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Figure 7. Moire pattern for copper specimen with sharp-v notch and at nominal stress 

S= 209 MPa. 
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