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1. Abstract 

In today's industrial world., alloys, which play a very 

important role in ele.ctronics industry in producing and 

packaging integrated circuits, are broadly used. Since phase 

diagrams represent changes of state involving one or more 

substances and are broadly used in packaging integrated 

circuits , in this work, we are looking for a way of compactly 

representing phase diagrams in the computer, displaying them 

on the screen, and r~trieving information from them to help 

engineers working in integrated circuits packaging. 

As a result, we developed a compact representation that 

requires less than 2K bytes of memory to store a typical phase 

diagram. Using this representation, we are abie t9 display 

phase diagrams on the screen and to make inferences on them 

using a rule-based expert system. 
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Introduction 

Many industrial operations, such as the manufacture of 

ceramics, alloys, glass, and salts, depend on knowledge of 

phase diagrams which are gr~phical representations of phase 

changes involving one, two, or more substances while they are 

being cooled or heated. Many industries, including the steel 

industry, and naturally, the electronics and computer industry 

~tc., make use of alloys. Since phase diagrams represent 

information about phase chang·es of alloys, many industries 

depend 6n this knowled~e. The use of alloys in s~miconductor 

electronics for production of integrated circuits . 
1S 

essential. The alloys are mainly used in semiconducfor 

electronics for package assembly and to attach a die to the 

package. Adhesives could also be used for this purpose but 

they ~re not as good at condqcting the heat. One of the most 
important issues in manufacturing integrated circuits is the 

problem of heat dissipation from the in~egrated circuit. To 
avoid problems due to heat dissipation, it is better to use 

alloys instead of adhesi ve.s to attach the die to the package. 
Alloys are also used to attach the lid 'as well as the pins to 

the package. Another use of a.lloys is to attach a flip chip to 

a multicircuit package. When performing this, the flip chip 
solder bumps shrink. When attaching different parts of an 
integrat.ed circuit to the package, alloys with different 
melting temperatures are used since we do not want previously 
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used alloys to· remelt while another alloy is being used at its 

melting temperature to attach a part to the package. In other 

words, ·we do not want to undo something which was done 

earlier. Therefore, for instance, if a braze, which is a high

temperature sold~r, is used to attach the die to the package, 

a low-temperature solder is used to attach the lid to the 

package. 

As mentior:ied earlier, phase changes invo~ ving one or more 

substances are ~epresented by phase diagrams. A human expert 

in pnase diagrams can easily interpret the information 

contained in the di~gram. However, this process of visual 

interpretation cannot be as- easily done by computers as by 

humans. Jn order for the computer to interpret phase diagrams 

like people do, the phase diag~ams must be represented in the 

computer by a standard representation. A paper written by Don 

J. Orser [~] says that it is possible to represent phase 

diagrams using topological $tructures, inherent in the phase 

diagrams, and explains a way of doing so. According to him, in 

order to answer queries regarding phase adjacencies, the 

·topological structure must be explicitly represented in the 

computer. 

I definitely agree with him. Therefore; what we are 

looking for is a compact representation of phase diagrams, 

other than topological structures, in order to be able to 

di~play them on the screen and to provide answers to queries 

m·ade by a knowledge based esystem. 
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2. Overview of Phase Diagrams 

In terms of a material's microstructure, a phase 
. 
1S a 

region which differs in structure and composition from another 

region. Solid and liquid are just two of the possible phases. 

-A phase diagram is a graphical representation of ph~se changes 

of one or more substances undergoing c.hang.es in pressure and. 
...... temperature or in some other combination of variables such as 

solubility and temperature. Lead-tin, silver-copper, and 

indium-antimony a.re three of the most kno.wn phase diagrams. 

Since phase changes are so much~ part of the physical 

world, phase diagrams are pertinent to everyday existance: the 

melting of ice,. the boiling of water, the formation of fog, 

the setting of cement, for instance, are well.-known phase 

changes. In the laboratory, process-es such as extraction_; 

crystallization, distillation, precipitation, the use of 

freezing mixtures, and the identification of substances all 

involve phase changes de$cribable by phas~ diagrams. 

Phase diagrams contain experimental data. With any 

system, the first step bf experimental study is to establish 

what phases result from different compositions of the given 

substances under a variety of specific conditions. The results 

of th.e experiments are then plotted and embodied in phase 

diagrams . 

. Phase diagrams can also be calculated from theoretical 

data as well. Compute_r programs have been developed to compute 

phase boundaries between two regular solution phases, and 
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phase boundaries between compound solution phases. Most of the 

calculated phase diagrams agree mate~ially with observations. 

Phas~ diagrams are used by engineers and scientists to 

understand and predict many aspects of the behavior of 

materials. Some of the important information obtainable from 

phase diag~ams is as follows: 

1.the phases present at differe~t compositions and 

temperatures under slow cooling ·conditions 

2.the equilibrium solid solubility of one elel'D,ent 

or compound in another 

3.the temperature at which an alloy coo+ed under 

equilibrium conditions st-arts to solidify and 

the temperature :r;-ange over which solidific.ation 

occurs 

4.the temperature at which different phases start 

to .melt 

Phase diagrams are general+y classified by the number of 

components invo.lved in the system, such as unary, binary, and 

ternary systems. 

2.1. Unary Systems 

The simplest phase diagrams are the ones for unary 

systems. When only qne component is present, every possible 

phas~ is 100 percent of that component. The two variables of 

pressure and ten:tperature suffice to .determine the state of the 

system. 
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A pure substance such as water can exist in solid, 

liquid, and vapor phases, depending on the conditions of 

temperature and .. 
pressure. A very familiar example of two 

phases of a pure substance is a glass of water containing some 
\_____ __ 

ice. In this case, solid and liquid water are two distinct 

phases ~hich are separated by a phase boundary, the surface of 

the ice cubes. During the boiling of water, liquid water and 

water vapor are two phases in equilibrium. Below 

graphical representation of the phases of water. 

I.. 

~
....J 

C 

760 

Solid 

Vapori~ation line 

--------------
Freezing line 

Liquid 

I 
I 
I 
I 
I 
I 
I 
I 

Vapor I 
I 
I 
I 
I Triple point at 0.0 I° C 

0· 100 

Temperature of ~O, 0 c 

' lS 

FIGURE 1 Approximate phase diagram for pure water 

the 

At any point in the regions delineated by the curves, the 

pressure and temperature allow only one phase, solid, liquid, 

or vapor, to exist. At any point on the curves, two phases are 

allowed to exist: solid-liquid, solid-vapor, and liquid-vapor. 

Along the line between solid and liquid, 
the melting 
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temperatures for different pressures can be found. In this 

phase diagram, there exists a triple point at a low pressure 

and low temperature where solid, liquid, and vapor phas~s can 

coexist. The triple point represents the unique conditions 

under which all three phases can coexist in equilibrium. 

2.2. Binary Sy~tems 

A mixture bf two metals . 
1S called a binary alloy and 

constitutes a two,.....component system. In this case, when the 

pressure is kept constant, the maximum number of phases ~fl:ich 

can coexist in equilibrium is three. This three-phase 

equilibrium takes place only at an invariant point. There are 

five kinds of bina:i;y systems: isomorphous, eutectic, 

peritectic, monotectic, and complex systems. 

2.2.1. Isomorphous Systems 

In some binary metallic systems, the two elements are . . 

compietely soluble in each other in both the liquid and solid 

states. In these systems, only a single type of crystal 

structure exists for all compositions of the components; 

therefore, they are called isomorphous systems .. 

An important example of ~somorphous binary allo:y sy-stems 

is the copper-nickel system (fig.2). The area above ~he upper 

line 4-n the diagram, called the liquidus, corresponds to the 

region of stability for the liquid phase. On the other !)and, 

the area l:;>elow the lowe.r line, called the solidus, corresponds 
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to the region of stability for the solid phase. A two-phase 

region where the .liquid and solid phases can coexist is 

represented by· the area between the solidus and liquidus in 
• 

which the amount of each phase present depends on the 

temperature and chemical composition of the alloy. 

0 
0 

1400 

1300 

1200 

1100 

0 
100°-6 
Cu 
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1300°C 

1084° 
-------,a 

I 

10 20 

·Wo = 53 wt% Ni 

30 40 50 60 

Weight percent nickel 

w. = 58 wt % Ni 

Tie line 

70 80 

line 

Solid 
solution a 

90 

FIGURE 2 The copper-nickel phase diagram 

2.2.2. Eutectic Systems 

100% 
Ni 

Many binary alloy systems have components which have 

limited solid solubility in each other. This type of binary 

system usually forms two solid solutions with limited 

solubilities. A typical binary eutectic phase diagram is the 

one for lead-tin alloy, shown in fig.3. In this diagram, there 

are three one-phase regions (a), (~), and (liquid), three two-

phase 
.. 

.regions (ci+liquid) , and (~+liquid), and one 

three.;__phase . 
region. . The . 

regions of restricted solid 
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solubility, a and ~ phases, are called terminal solid 
solutions. Unlike the ~ phase, which is a tin-rich solid 
solution, the a ph~se is a lead-rich solid solution. 

In simple binary eutectic systems, there is a specific 
alloy composition known as the eutectic composition which 
freezes at a lower temperature than all other compositions. 

Procutectic ex = 24% 

Proeulectic ex = 51 % 

Liquid 
= 49°,6 250 
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0 

:':l ... 
v 
'"' 
E 150 
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Alloy 2 Alloy l 

a 

L' 'd I 1qu1 I 
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I 

le 
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I I 
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I I 
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Liquidus 

Eutectic point 

I 
97.5 

I 

80 90 100% 
Sn 

Solidus 

FIGURE 3 The lead-tin equilibrium phase diagram 

This low temperature which corresponds to the lowest 
temperature at which the liquid phase can exist is called the 
eutectic temperature wh_ich is 183 °C for the lead-tin system. 
The eutectic composition is 61.9 weight percent tin and 38.1 
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weight percent lead. 

Eutectic systems have an invariant reaction, called the 

eutectic reaction, in which, when cooled slowly, the liquid 

phase transforms into two different solid phases. 

2.2.3. Peritectic Systems 

Another type of reaction that ·frequently occurs in binary 

phase systems is the peritectic reaction in which a liquid 

phase reacts with a solid phase to. form a new and different 

solid phase. This reaction is commonly present as part of more 

complicated binary systems, particularly if the melting points 

of the two components, under constant pressure, are quite 

different. 
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The periteqtic reaction of the iron-nickel phase diagram 

.is shown in fig. 4. In this diagram, there are two solid 

phases, 8 and y, and one liquid phase. The 8 phase is a solid 

solution of nickel in BCC iron, whereas they phase is a solid 

solution of nickel in FCC iron. The BCC lron and FCC iron are 

two forms of iron with different structures. The peritectic 

point c is defined by the peritectic- temperature of 1517 °C 

and the peritectic composition of 4. 3 weight percent nickel in 

iron. This point i$ invariant becaµse three phases 8, y, and 

liquid can coexist;. in equilibrium. 

2.2.4. Monotectic Systems 

The third type of three~phase reaction is the monotectic 

reaction in which a liquid phase transforms into a solid phase 

and another liquid phase. These two liquids are inuniscible·, 

just like oil and water, and therefore constitute individu~l 

phases. A reaction of this type occurs in the copper-lead 

system, whose phase d~agram is shown in fig.5., at 955 °C and 

36 weight percent lead in copper. Either a eutectic or a 

peritectic reaction c-an appear in the lower temperature 

region; the former is more often encountered. The copper-lead 

phase diagram has an eutectic-point at 326 °C and 99.94 weight 

percent lead, and as a result terminal solid solutions of 

almost pure lead (0 .-007% copper) and pure copper (0. 005% lead) 

are formed at room temperature. 
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FIGURE .5 The.copper-lead phase diagram 

2.3. Ternary Systems-

Ternary alloy syst~ms are much more complicated and 

harder to understand th~n unary and binary systems. However, 

they are very interesting in the following $ense: In the 

production of integrated circuits, we usually begin with 

binary systems. However, a binary alloy can dissolve from the 

substance with which it is in contact. We practically have a 

ternary system ~t the junction of th~ binary alloy and the 

bonding surface; therefore, we would like to know about 

ternary systems in order to be able to predict how they react 

to, for instance, the changes in temperature. From this point 
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of view, quaternary systems are also very interesting because 

at the junction of two binary systems we might have one of 

them dissolved in the other, leading "to a quaternary system. 
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3. Description of Previous Work 

There are many ways of storing a picture in the computer. 

Raster image and vector image methods are just two of them. 

With the first m~t~od, a line, for instance, is stored as a 

series of consecutive pixels on the screen; in other words, it 

is stored as a bitmap. With the second method, a line . 
lS 

identified and stored with its beginning and ending points. 

Therefore, the former takes mucih more space in memory than the 

iatter does. 

The raster image method uses up hu~dreds of kilobytes in 

memory to store a picture because it needs 300 bits to store 

-a one-inch-length digitized line. As an example·, let's 

calculate how much space is needed to store a picture on a 

sheet of paper of siz~ 8.5 in~hes by 11 inches. The amount of 

space needed ,is 

8.5*300*11*30D bits 

which is approximately lM bytes. This much information in a 

file is hard to handle, read, and therefore display on the 

screen because of its large size. 

When displaying bitmaps on the screen, some re$Ol~tion is 

eventually lost, compared to the original digitized image. 

Suppose we have a 640*480 monochrome VGA screen. This monitor 

allows us to display at most 

640 * 480 = 307200 pixels 

on the screen. Therefore, it is impossible to display all the 
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infoi;mation contained in a bitmap and it is worthwhile to try 

to compress a bitmap file before storing it in the computer. 

We can use the words "display" and "store" in the same context 

when talking about bitmaps because it is extremely difficult 

to extract useful information from a bitmap. Hence, a bitmap 

file can only be used fo~ displaying purposes. 

One way of compressing a bitmap file is to scan it .8*8 

bits at a time and replace 8*8 bits of information with only 

one bit. A simple check suffices to do likewise; if any pixel 

among the read-in 8*8 bits is on, we have a 1 in the reduced 

image; otherwise a O. Therefore, with this technique, 8*8 bits 

on the original image correspond to 1 bit on the reduced 

image. In other words, if this kind of compre~sion is used, 

the size of the reduced image is one sixty-fourth of. the 

o:i;:-iginal image. This transformation, as stated above, . 
is 

unidirectional since it is impossible to get the original 

image back from the reduced image. 

Earlier, we calculated that we needed approximately· 1M 

bytes to- store an 8. 5 inches by 11 inches page. With the 

compression explained above, we need only 

lM bytes / 6.4 = 15. 7K bytes 

and this is quite a reduction in size with some loss . 
in 

resolution. 

If we want to display a bitmap image on the screen, a 

small program, which reads in the image file and draws the 

corresponding picture on the screen, can be written. 

15 



After a litt1e information about bitmaps and how 

compression can be made, we can now tbrn to the previous work 

done on the phase diagrams. Prior to the current work, a phase 

diagram to be displayed on the screen was digitized using an 

image scanner which can save the scanned image. in different 

formats, such as pcx, binary, etc. After the image was scanned 

and saved in bitmap .format, it was compressed . using the 

technique explained above. The size of the reduced image. file 

was around 12K b.ytes. Then, another program~ written to 

display a bitmap image on the screen, was called to do so. 

3.1 Problems with Previous Work 

Although the previous work done on phase diag~ams 

succeeded in displaying them on the screen with some loss in 

resolution, there are some problems with that work. These 

problems originate from using bitmaps, in general, for the 

representation of phase diagrams~ Let's take~ look at these 

prob_lems. 

The main ·P:L"Ob],.em is that it is extremely difficult to 

retrieve useful information from a bit.map representation. As 

explained in the previous. section, after storing a picture irt 

binary format . in a file, all the information this file 

contains is pixels and their color attributes, gray scale 

values or just on or off, associated with them. Looking at 

such a file, we have no notion of what the information means. 

We cannot directly see what a CGM (Computer Graphics 
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M·etafile) , CDR (Core1Draw) , or a PCX (PC Paintbrush) file has 

in it# either. However, these iiles can ~e easily decoded to 

see what is in them since we know how they are encode~. Since 

we want to make inferences on phase diagrams, we should not 

employ a representation using a binary bitmap format to encode 

pictures. 

In order to enter a picture in the computer for storage 

in any format, it is first digitized using an image scanner. 

When a picture 
,· 
lS scann~d, there -will be some loss in 

resolutioh because the scanner cannot capture everything in 

the pic_ture. Meanwhile, compression of a file in binary format 

using the technique explained in the previous section, too, 

contributes to the loss in resolution. Therefore, some text 

sue~ a~ the labels on the axes of phase dia~rams are very hard 

to read on the screen when a file containing pictures in 

binary format is displayed .. 

"The third problem, originating from 
., 

using a binary 

format, as explaine.d in the previous paragraph, is that we do 

not have a nice graphical interface. This is simply because of 

the loss in resolution after digitizing a picture and then 

compressing it. 

Another problem is the amount of space a scanned image 

takes in memory. Just after dig_itizing a picture, it requires 

approximately BOOK bytes. Let's suppose we have 10 phase 

diagrams to digitize. In this ca$e, we need BM· bytes to store 

these image files. After the compression is used, we need 
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about 12.SK bytes per image file. The total space needed for 

10 phase diagrams is more than 120K bytes~ Even after the 

compres:aion, we need a lot. of s.pace in memory to store phase 

diagrams. 

In our·work~ using another representation scheme, we try 

to solve the problems stated above. 
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4. Compact Representation of Phase Diagrams 

As expressed in the earlier sections, previous work has 

shown several problems in dealing with phase diagrams. In 

order to tackle these problems, we·need to develop a different 

approach to represent phase diagrams, which must be easy to 

decode, easy to retrieve information from, should not take too 

much memory for storagej also we should have a nice graphical 

interface. 

In the software market, there are some . nice graphics 

tools, which are both powerful and easy to use, one of which 

is Core1Draw. Core1Draw has very po:werful features, such as 

snapping a text to any curve, dragging characters in text 

until seeing the exact spacing, drawing curves quickly and 

easily, and editi·hg curves. It also allows one to trace a 

picture. 

Our approach to the compact representation of phase 

diagrams begins by fir.st digitizing, as usual, a phase diagram 

using an image scanner. After tailoring the scanned image on 

the screen for our needs, we can save the resulting image. The 

scanner we used offers se~eral formats in which an image can 

be saved. We chose to save the . image in the PCX (PC 

Paintbrush) bttmap format which describes a graphic as a 

rectangle of black and white dots. The advant~ge of using the 

PCX format is that the files can be relatively small ·in many 

cases, 180K bytes as opposed to BOOK bytes in binary format. 

On the other hand, a disadvantage of using the PCX- format is 
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that ·we might need to be conce·rned with the resolution of a 

PCX file. Another disadvantage is that exported PCX files in 

Core1Draw contain no color or gray-scale information, 

everything is black or white. However, we do not have to worry 

about these details because we will be only tracing the 

diagrams saved in the PCX format. 

Having saved a phase diagram in the PCX format, we can 

now trace it in order to save it in a different format, using 

Core1Draw. It is possible to import a file into Core·1Draw and 

then export it. Importing a file into Core1Draw m~ans reading 

in the file which is in a format other than CDR {Core1Dr~w). 

tikewise, exporting a file means saving it using a file format 

other than CPR. Aft.er impo~ting a PCX file c9ntaining a, phase 

diagram into Core1Draw, we trace the diagram, creating new 

lines, and curves when necessary, for each line or curve in 

the PCX file. After restoring all the information the PCX file 

contains, we re~ove the bitmap from the screen ahd save the 

remaining ima.ge in CGM (Computer Graphics Metafile) format. 

Now. we give some information about CGM format because it 

has been used again and -again during this work. 

4.1. Computer .Graphics Metafile Format 

The Computer Graphics Metafile provides a fil.e format for 

the storage and retrieval of picture information. The file 

format consists of a set of elements that can be used to 

describe pictures in a way that is compatible-between systems 
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of different architectures and devices of differing 

capabilities and design. The Computer .Graphics Metafile allows 

picture information to be stored in an organized way on a 

graphical software· system, .and facilitates transfer of picture 

informatiori between different graphical software systems and 

different computer graphics installations. 

Every metatile starts with a };3EGIN METAFILE element and 

ends with an END METAFILE element. This allows multiple 

metafiles to be stored or transferred together. Each picture 

starts with a BEGIN PICTURE eleme.nt and ends with an END 

PICTURE element. Between these delimiters, the picture 

descriptor is separated from the picture body by a BEGIN 

PICTURE BODY element. 

Binary encoding and character encoding -~re the ways of 

encoding a Computer Graphics Metafile. The binary encoding of 

CGM provides a representation of the ~etafile syntax that can 

be optimized :for speed of g.eneration and interpretation, wbile 

still providing a standard means of interchange among computer 

systems. The encoding uses binary data formats that are much 

more similar to the data representations used within computer 

systems than the data f or·mats of the other encodings. 

Furthermore,· some of the data formats may exactly match those 

of some computer systems. 

All elements in the metafile are encoded using a uniform 

sbheme. The elements are represented as variable length data 

structures, each consisting of opcode info~mation (element 

21 



class plus element identifier), the lengtb of its parameter 

data, and finally the parameter data, if any . 

. The structure of the Metafile (MF) is as follows: 

BEGIN MF I MD I <picture>. . . I END MF I 

The BEGIN METAFILE element is followed by the METAFILE 

DESCRIPTOR (MD) which precedes the pictures. Finally, the 

Metafile is ended with an END METAFILE element. 

The metafile is partitioned into pictures. A picture 

consists of a BEGIN PICTURE element, a PICTURE DESCRIPTOR 

element (PD), a BEG:iN PICT.URE BODY el.ernent, an arbitrary 

number of control, graphical, and attribute elements, and 

finally an END PICTURE element. 

BEGIN· PIC PD BEGIN BODY ·<element> ... END PIC 

The binary encoding of the -metafile consists of a 

sequential collection of bits. For measuring the lengths o·f 

elements, the metafile is partitioned into octets, whith are 

8-bit fields. The structure is also partitioned into 16-bit 

:fields called words. Metafile elements are constrained to 

start on word botindaries within the binary data structure. 

Metafile elements are represented in one of two forms: 

short-form commands (binary-encoded elements) and long-form 

commands. There are two differences between them. The first 

one is that a short-form command always contains a complete 

element; the long-form command can accommodate partial 
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~lements. The second difference is that a short--form conunand 

only accommodates parameter lists up to 30 octets in length; 

on the other hand, a long..-form command can acconunodate lengths 

up to 32767 octets per data partition. 

M~tafile elements are grouped into class~s. Each element 

in a class has its own identifier to make the element unique. 

Eacn command, a binary-·encode.d element, has a command head~r. 

For short-form commands, the command header consists of a 

single word divided into three fields: element class, element 

id, and parameter list length, as .shown in figure 6. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

[elem. class[ element id. I length 

FIGURE 6 forma.t of a short-form command header 

In figure 6, bits 15 to 12 correspond to element class 

whose range is O to 15, whereas bits. 11 to 5 and 4 to 0 

correspond to elemertt identifier (value range is Oto 127) and 

parameter list length (value range is -0 to 30) respectively. 

15 14 13 12 11 10 9 8 7 6 5 5 4 3 2 1 0 

elem. class element id. 1 1 1 1 1 

p parameter list length 

word 1 

word 2 

FIGURE 7 format of a long-forrn command header 

If a conunanq' s parameter list length is graeter than 30, 
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the long-form command header is used instead of the short-form 

comm;:3.nd header. The long-form command header is shown in 

figure 7, where Pis the partition flag, whose valu~ is O for 

last partition and 1 for non-last partition~ Bits 4 to O in 

word 1, which is decimal 31, indicates that this is a long

form corrunand header. 

The most important inetafile elements are VDC TYPE·, 

INTEGER PRECISION, REAL PRECISION, VDC INTEGER PRECISION, VDC 

REAL PRECISION, POLYLINE, DISJOINT POLYLINE, TEXT, POLYGON, 

RECTANGLE, CIRCLE, ELLIPSE., TEXT PATH, an_d TEXT ALIGNMENT. VDC 

TYPE indicates the d~ta type, integ~r or real, of the Virtual 

Device Coordinates (VDC) . INTEGER PRECISION specifies the 

length, 8-bit, 16-bit, 24-bit, or 32-bit, for the operands of 

integer data types. VDC INTEGER PRECISION, like INTEGER 

PRECISTON, specifies the length for the operands of data type 

point (P) and operands of data type VDC value; however, 8-bit 

is not permitted as precision. POLYLINE spec.ifies ~ series of 

connected lines; a line is drawn from the first point in the 

parameter list to the second point, from the second point to 

the next .point, etc., and from the next-to-last point to the 

last point. Character strings can be represented in CGM using 

TEXT with three parameters: a p·o{nt at which the string 

begins, a flag which indicates whether the text string is 

final or not, and finally the string itself. POLYGON . 
1S 

similar to POLYLINE except it is assumed that after the last 

point in the parameter list comes the first _point in the 
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parameter list. 

4. 2. Programs Working on CGM Files. 

Bef6re writing a program· to read from a CGM file and to 

display what is in this file on the screen, we should worry 

about adding some. information to this file. After a phase 

diagram has been saved as a CGM file in Cqre1Draw, this file 

contains no information concerning the x and y axes 9f the 

diagram. Along the x . axis, atomic p~rcentages of the 

substances should be di$played, whereas along they axis, the 

temperature should be displayed. In order for this information 

to be appended to the CGM file containing the phase diagram, 

a small program must be written. This program gets the 

information to be app~nded from the keyboard, encodes it so 

that it does. not take too many bytes, and adds the encoded 

information to the end of· the CGM file~ 

Sometimes we want to put some labels such as "liquid" 

inside regions on a phase diagram. For this,· we need two small 

programs to do some file format conversions. The first program 

reads a binary file and converts it into~ hexadecimal text 

file. The second program does the opposite: converts a 

hexadecimal text file into a binary file. Having had these two 

programs available and known the encoding of CGM files, we can 

easily put labels anywhere inside CGM files. First, we decide 

where to put the label on the phase diagram. Then we have the 

text conta~ning the label in the CGM format. The third step is 
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to donvert the CGM file, whi.ch is binary, into a hexadecimal 
text file. The next step is to put the information in a proper 
place, knowing the constraint that conunands begin on word 
boundaries. The last thing to do is to convert the modified 
hexadecimal. text file back into a binary file. 

At this point, we hav.e a-11 the information we need, 
label§, temperature, and atomic percentages, available to us 
in order for a phase diagram to be complete. 

4.2.1. The program draw.c 

Once we are done with a phase diagram, storing the 
diagram as a ·CGM file, putting labels inside regions, adding 
the information to be displayed along tbe axes of.the diagram, 
we can call the executable version of draw.c to display the 
diagram on t::tie screen. However, before doing this, we have to 
make sure that the grid to be di~played with the phase diagram 
must be saved. as a CGM file and there must exist a file called 
egavga .bgi, which is needed when initializing the graphics, in 
the directory where draw.c 1.s stor~d. The program draw.c as 
can be understood from its extension has been written in C. 

Draw. c has the capability of decoding a CGM file and 
displaying what is contained in this file on the screen. It 
first ·reads the file grid. cgm and stores the information 
concerning the lines of the grid. Then it reads another CGM 
file supplied by the user and also stores the information 
contained ih this file. Finally, ~t draws the diagram -0n the 
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screen and puts the labels on it, i-f any. 

The most important data structures of draw. c are LineNode 

and TextNode; the for~er is used to maintain a singly-linked 

list of points, whereas the latter is used to store a 

character string with some attributes. LineNode and TextNode 

are us·ed· with two arrays, lineList and textList, respectively. 

LineLi~t is ~n array ~ith each element pointing to a LineNode; 

on the other hand, textList is an array with each element 

~ointing to a TextNode. Each element of lineList either points 

to the first element of a linked list of points or is null. If 

an entry of lineList is not null, it points to a linked list 

which contains all points on a line. Therefor~, each line on 

the diagram is represented in draw. c as a linked list of 

points pointed to by an eleme~t of lineList. Each element of 

textList either is null or points to a TextNode which contains 

a character string as well as its attributes such as text 

type, text path, and text alignment. 

We assume th~t the x and y coordinates of a point are 

represented by integers, not by real numbers. If real numbers 

are used, we have to add several functions to the programr 

draw.c, which is actually not too complicated to do anyway. 

After explaining what draw.c _does, let's . give some 

information about some of its functions. The most important 

func~ions in this program are draw_2D, Getinfo, and main. The 

function main consists of, in general, two similar loops. 

Inside each loop, a command is read from a CGM file, the 
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element;: class, element id, and parameter list length are 

extracted from the command, the command code is calculated 

·from element class and element id, and. finally the function 

Getinfo 1.s ca1led with two arguments, corrunand code and 

paramater list length, to decide on the actions to take. The 

first loop is for the CGM file containing the grid, whereas 

the second loop is for the CGM file containing the phase 

diagram. 

The function Getinfo can deal with 14 of the CGM 

commands, the ones that concern us most. Getinfo consist.s of 

a hug-e switch statement and checks if there is any' error for 

each command. If no errors, it takes the necessary actions 

such as storing the line 
. 
1.n a linked list, storing text 

information, or changing the defaults for metafile descriptors 

and control elements. The me.tafile corrunands that Get Info can 

deal with are VDC TYPE, INTEGER PRECISION, REAL P~CISION, 

METAFILE DEFAULTS REP~ACEMENT, VDC INTEGER PRECISION, VDC REAL· 

PRECISION, POLYLINE, DISJOINT POLYLINE, TEXT, RESTRICTED TEXT, 

APPEND TEXT, POLYGON, POLYGON SET, RECTANGLE., TEXT PATH, and 

TEXT ALIGNMENT. 

The function draw_2D simply draws lines and puts labels 

on the screen. Since elements of lineList point to first 

points of lines, draw 2D draws a line from the first point on 

the linked list to the s~cond point, . . . ' from the next~to-

last point on the linked list to the last point on the list. 

The text of each element of textList is displayed on the 
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screen with text path and horizontal and vertical alignments 

taken into consideration. 

Some of the subsidiary functions in draw.care GetWord, 

Get Octets, fre.eMemory ,. statusLine, drawBorder, main Window, and 

displayScale. The flowcharts corresponding to the functions 

main and Getinfo are shown in figures 8-a and 8-b, 

respectively. 

The output of draw.c for the lead-tin phase diagram is 

shown in figure 9. The 6riginal lead-t·in phase diagram taken 

from Bulletin of Alloy Phase Diagrams [_6] is shown in figure 

10 to make a comparison between the two diagrams. 

4 . 3 . Achie·vements 

So far, we .have a very compact representati_on of phase 

diagrams (less than 2K bytes in size per diagram) . using 

Computer Graphics Metafile format. We also h~ve ?l- nice display 

of phase diagrams, with som~ labels on them, on the screen. 

There.fore, we have, up to this point, solved two of the 

problems the previous work faced. 
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FIGURE 8-b 
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5. Inference on Stored Phase Diag~ams 

The first part of the work we have done is to compactly 

represent phase diagrams in the computer and display them on 

the screen, as explained in the previous sections. The second 

part is to make some inferences on the stored phasa diagram~. 

As expressed ea~lier, we nead ~representation-scheme other 

than bitmap formats . in order to retrieve and use the 

information contained in the diagrams. In this section, we 

will explain ways of mating inferences from phase dtagrams, 

such as identifying regions on the diagrams, calculating the 

lowest melting point, etc. We ~ill also explain some CLIPS 

rules that were written to do so. CLIPS (C Language Integrated 

Production System) is a forward chaining rule-based language 

that has inferencing capabilities. Designed at NASA/Johnson 

Space Center with the specific purposes of providing high 

portability, low .cost, and -easy integration with external 

systems, CLIPS was written using the C progranuning language. 

CtIPS can be integrated with external C functions or 

applications and we will make use of this feature of CLIPS. 

Before trying to perform inference on a phase diagram, 

all the information, such as lines and text, it contains must 

be ass.erted into the CLIPS fact base. Therefore, the CGM file 

containing the phase diagram we are trying to make inferences 

from must be read in first. CLIPS has two built~in furictions, 

read and readline, to get information from the keyboard' or a 

file. But these two functions are written to read ASCII text, 
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either from the keyboard or a file, not binary information. 

Since CGM files are in binary format and built-in CLIPS 

functions cannot deal with binary files, we have to write our 

own function to -read from a CGM file. This function named 

extract info reads a CGM file and asserts info~mation 

conc~rning lines and text of the phase diagram directly into 

the CLIPS fact base. Extract info is a modified version of 

draw.c in that after accumulating informatiori for a line or 

text, it asserts that information into the CLIPS fact base 

instead of putting that information in one of the two arrays, 

lineList and textList, as draw.c does. Extract info also does 

not have the display capabilities of draw.c. 

In order to facilitate identification of regions on a 

phase diagram, each region to be identified is laJ:?eled ~ith a 

name, such as liquid, liquid+alpha, or alpha+beta, depending 

on the characte~istics of the region. 

The collection of r~les to make inferences from phase 

diagrams is named idreg.clp. Idreg.clp first calls the 

function extract_info to transfer the information cqncerning 

lines and text from a CGM file into the CLIPS fact base. The 

next step performed is to find intersection points of the 

lines and the rectangle enclosing th.e diagram. Then, the edges 

of the rectangle· are split up into line segments based on the 

number of ·intersection points on that line. For example, if an 

edge has two intersection points on it, it is split up into 

three line segments. The next step is to· find out which line 
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is the uppermost line of the region to be identified. The 

uppermost line of the r.egion is asserted into the ·fact base as 

the first segment of the polygon corresponding to the region. 

After this point, eac:h line .segment. which continues from the 

last point of the poly~oti and makes the smallest left (or 

right, if there are no lines, with a left angle) angle gets 

appended to the polygon until th.e first and last points of the 

polygon are unified. This means that the polygon we have found 

corr:esponds to the region whose borders we are trying to 

determine and the edges of the polygon are the borders of the. 

Each .. region '· 
1S identified in the counterclockwise 

direction. Unlike convex polygons, concave polygons are said 

to be hard to identify and there are riot many algorithms to do 

SO·. Therefore, the author had to devise an algorithm which can 

.be used to identify both kinds of polygons, convex and 

concave. If the region whose borders we are trying to find is 

convex at the current point, it makes a left turn from the 

last line se~ment of the polygon ([8]). In other words, t~e 

angle between the previous and next line segments of the 

polygon, corresponding to the region, is no.t reflexive. If the 

region is concave at the current point, it m~kes a right turn~ 

Let's explain this concept with the help of fig. 11. 

Let's suppose we are currently at point p2 and the coordinates 

of pl, p2, and p3 are (xl, yl) , (x2,y2), and (x3,y3) 

respectively. Deciding whether angle (plp2p3-) is a l.eft. or 
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right turn corresponds to evaluating a 3*3 determinant in the 

points' coordinates. The determinant 

xl yl 1 
x2 y2 1 
x3 y3 1 

gives twice the signed area of the triangle (plp2p3), where 

the sign of the determinant ~. is positive i.f ~nd only if 

(plp2p3) f·orm a counterclockwise cycle. Theref.ore, the angle 

plp2p3 is a left turn if and only if the determinant .6 is 

positive. 

z 
• 

FIGURE 11 a polygon P with vertices labelled 

In a phase diagram, if there is more than one line 

beginning or ending at any intersection point on the borders 

of a region, we calculate wh.1.ch lines make left turns and 

which ones make right turns. After finding out which lines 

make left turns and right turns, we further process only one 

kind of turrt : if there are any lines making left turns, they 

get processed; othe·rwise, the lines making right tu~ns get 

processed. For ·each line to be processed, we calctilate the 
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angle it makes with the last line segment of the region at the 

current point. Then, we choose the line among others which 

makes the smallest angle with the last line segment of the 

region. This way, we· are guaranteed to find the correct 

polygon for the region whose borders we are trying to 

determine. 

The listing of idreg. clp i.s given in the Appendix. The 

output produced by idreg. clp for the lead-ti~ phase diagram is 

shown in fig. 12. The information concerning format of the 

facts of fig .. 12 is given at the very beginning of idreg.clp in 

the Appendix .. 
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(lowest-x 0) 

(lowest-y 0) 

(highest-x 1000) 

("highest~y 1000) 

(line 1 1000 0 998 11 998 23 997 46 997 69 996 92 

995 115 995 1_38 994 161 993 184 992 207 991 230 

990 253 989 276 988 300 987 323 986 346 985 370) 

(line 2 985 370 985 373 986 376 987 383 988 389 989 395 

989 400 990 406 991 411 992 416 993 422 994 427" 

995 433 996 4-38 996 444 997 450 998 456 1000 463) 

(line 3 1000 463 988 458 979 454 960 445 942 437 926 429 

910 423 895 417 881 411 866 406 853 401 838 397 

824 392 810 388 795 384 779 379 762 375 745 370) 

(line 4 745 370 722 382 69.9 394· 654 416 610 438 566 459 

522 479 479 498 435 -516 391 533 346 550 301 566 

254 582 207 596 157 611 107 625 54 638 0 652) 

(line 5 0 652 7 649 14 646 28 641 42 635 55 628 

68 622 80 615 92 608 103 601 113 593 124 585 

134 577 144 568 153 559 162 550 172 540 181 530 

184 526 188 521 195 513 202 504 209 495 216 486 

223 477 230 467 237 458 244 448 251 438 258 427 

265 416 271 ·405 278 393 284 381 290 368) 

(line 6 290 3-6.8 272 357 255 346 224 324 1·95 303 16'8 ·282 

145 260 123 239 104 217 87 196 72 173 59 151 

48 127 38 103 30 78 24 53 19 26 15 0) 

FIGURE 12 output of idreg.clp for the lead-tin system 
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(line 7 290 368 745 370) 

(line 8 745 370 985 370) 

(min-temperature 0) 

(advance-in-temp 50) 

(line 9 0 1000 1000 1000) 

(line 10 1000 1000 1000 4 63) 

(line 11 1000 463 1000 0) 

(line 12 1000 0 .15 0) 

(line 13 15 0 0 0) 

(line 14 0 0 0 652) 

(line 15 0 652 0 1000) 

(max-1 ine-nurnber 15) 

(borders 9 15 4 3 10 for liquid) 

(polygon 1000 1000 0 1000 0 652 54 638 107 625 157 611 

207 596 254 582 301 566 346 550 3·91 533 435 516 

479 498 522 479 566 459 610 438 654 416 699 394 

722 382 745 370 762 375 779 379 795 384 810 388 

824 392 8.38 397 853 401 8-66 406 881 411 895 417 

910 423 926 429 942 437 960 445 979 454 988 458 

1000 463 1000 1000 for liquid) 

(min-melting-temp 185) 

(borders 4 5 7 for L+alpha) 

(polygon 745 370 722 382 699 394 654 416 6l0 43'8 566 459 

522 479 479 498 435 -516 391 533 346 550 301 566 

254 582 207 596 157 611 107 625 54 638 0 652 

(figure 12, continued from l.ast page) 
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7 649 14 646 28 641 42 63:5 55 628 68 622 

80 615 92 608 103. 601 113 593 124 585 134 577 

144 568 153 55.9 162 550 172 54·0 181 530 184 526 

188 521 195 513 202 504 209 495 216 486 223 477 

230 467 2-37 458 244 448 251 438 .258 427 265 416 

271 405 278 393 284. 381 290 368 745 370 

for L+alpha) 

(borders 3 8 2 for L+beta) 

(polygon 1000 463 988 458 979 454 960 445 942 437 926 429 

910 423 895 417 881 411 866 406 853 401 838 3.97 

824 392 810 388 7 95 384 779 379 762 375 745 370 

985 370 985 37-3 986" 376 987 383 988 389 989 395 

989 400 990 406 991 411 992 416 993 422 994 427 

995 433 996 438 996 444 997 450 998 456 1000 463 

for L+beta) 

(borders 2. 1. 11 for beta) 

(po.lygon 1000 463 998 456 997 450 996 444 996 438 995 433 

994 427 993 422 992 416 991 411 990 406 989 400 

98-9 395 988 389 987 383 98 6 .376 985 373 985 370 

986 346 987 323 988 3CO 989 276 990 2-53 991 230 

992 207 993 184 994 161 995 138. 995 115 996 92 

997 69 997 46 998 23 998 11 1000 0 1000 463 

for beta) 

(borders 5 14 13 6 for alpha) 

(figure 12, continued from last page) 
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(polygo.n 290 36·8 284 381 278 3.93 271 405 265 416 258 427 

251 438 244 448 237 458 230 467 223 477 2.16 486 

209 4·95 202 504 195 513 188 521 184 526 i.81 530 

172 540 162 550 153 559 144 568 134 577 124 585 

113 593 103 601 92 6-08 80 615 68 622 55 628 

42 635 28 641 14 646 7 649 0 652 0 0 

15 0 19 26 24 53 30 78 38 103 48 127 

59 151 72 173 87 196 104 217 123 239 145 260 

168 282 195 303 224 324 255 346 272 357 290 368 

for alpha) 

(borders 7 6 12 1 8 for alpha+beta) 

(polygon 745 370 290 368 272 357 255 34 6 -224 324 195 30.3 

168 282 145 260 123 239 104 217 87 196 72 173 

59 151 48 127 38 103 30 78 2.4 53 19 26 

15 0 1000 0 998 11 998· 23 997 46 997 69 

996 92 995 115 9.95 138 994 161 993 184 992 207 

991 230 990 253 989 276 988 300 987 323 986 346 

985 370 745 370 for alpha+beta) 

(figure 12, continue~ from last page) 
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6. Conclusions and -Suggestions· for Future Work 

Conclusion·s 

Many industrial operations depend on knowledge of phase 

diagrams which are graphical representations of phase changes 

involving one or more substances. The electronic~ industry is 

just one exampie. Compositions of two or more metals, called 

the alloys, are mainly used in semiconductor electronics in 

as~embly and attaching something to integrated circuit 

packages. Since alloys are broadly used, it is important that 

we know their characteristics and how to store them 
,, 
in 

computers. Phase diagrams can ·be stored using many available 

file formats. In this work, we have explained two ways of 

doing so, the binary bitmap format and Computer Graphics 

Metafile format, and have chosen the latte·r. In the first part 

of the work, we succeeded in ·obtaining .a very compact 

representation of phase diagrams; less than 2K bytes in 

memory, and a very nice graphics inter.face. When a phase 

diagram . is displayed on the screen using the prog-rams 

ment.ione<;i earlier, everything on the diagram is readable, as 

opposed to not ~eing able to read most of the labels on the 

diagram with the binary bitmap format previously used for 

representation of phase diagrams. 

Another . issue that was addressed . is the problem of 

retrieving information from phase diagrams. This is al!'(lost 

impossible with the binary bitmap formats. Since Computer 
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Graph_ics Metafile format uses lines to represent pictures, 

generally, and we know how to decode CGM files, we can easily 

retrieve the information we want from phase diagrams. CLIPS 

rules were written, by the author, to identify regions on the 

phase diagrams. This is quite useful in doing some 

calculations, for instance the lowest melting temperature. We 

have succeeded . in finding out all the . regions on phase 

diagra·ms of interest. 

Overall, we have a very compact representation of phase 

diagrams, can display them very easily on the screenI and most 

importantly we can make inferences on stored phase diagrams, 

using the Computer Graphics Metafile format. 

Sµggestions for Future Work 

In this work, we have concentrated on binary ph,ase 

diagrams. Both parts of our work can be extended to include 

ternary and quaternary phase diagrams. In the first part, the 

drawing program,· draw. c, can be extended to read three-

dimensional phase diag.rams and to display th·em on a two

dimensional screen. In the second part, more rules can be 

added. to the rules, idreg.clp, to find volumes of ternary 

phase diagrams as well. However, these two extensions might 

require a lot of effort be:cause the current representation 

scheme of phase diagrams, Computer Graphics Metafile, has to 

be changed 

pictures. 

. since it cannot represent three-dimensional 
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Another aspect of extending the Gurrent work could be 
adding a hierar9hidal representation to the CLIPS rules we 
have, which can be done ·using CLIPS 5.0 'v-!hich supports object
oriented frame structures. Using this kind of representation, 
we can derive edges of a surface from vertices, stirfaCe$ from 
edges, and finally volumes from surfaces. 
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8. Appendix 

Listing -of idreg. clp whic.h is a compilation of rules to 

make inferences on stored.phase diagrams is given below. 

; idreg.clp 

) 
; 4/25/ 91 

. 
' 
; fact templates used in the rules below 

. 
' 
.. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 
. 
' 

(text <text-number> <string> at <x> <y>) 

(special-line <xl> <yl> <x2> <y2> for <phase>) 

(closest-point <x> <y> on <line-number> for <phase>) 

(line <line....;number> <<< <x> <y> >>>)' 

(inte·rsects-with <line-number> at <x> <y> for <phase>) 

(t-poly <<< <x> <y> >>> for <phase>) 

(intersection-points<< <x> <y> >> on <line-number>) 

(IPs << <x> <y> >> on <line-number>) 

(polygon<<< <x> <y> >~> for <phase>) 

.(temp <line-number> for <phase>) 

(angle <angle>· to <line-number> for <phase>) 

(min-angle <angle> to <line-number> for <phase>) 

(has-same-angle <<<line-number>>> for ?phase) 

(process<<< <x> <y> >>> for ?phase) 

(point-no <number>. for <phase>) 

(left-turn <<<line-number>>> for ?phas.e) 

(right-turn <<<line-number>>> for ?phase) 
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. , 

. , 

. , 

. , 

. , 

. , 

. , 

. , 

. , 

. , 

(append-line <line~number> for <phase>) 

(borders <<<line-number>>> for <phase>) 

(min-temperature <minTemp>) 

(advanca-in-temp <advance>) 

(min-melting~temp <temperature>) 

(max-line-numb~r <max>) 

(lowe.st-x <x>) 

(lowest-y <y>) 

(highest-x <x>) 

(highest-y <y>) 

(defrule readFile 

?init <- (initial-fact) 

=> 

( ret.ract ? init) 

(printout t "Input File Name : ") 

(bind ?file-name (str-cat (readline) ". cgm") ) 

(extract info ?file-name) -
(assert (IPs on -1) 

(IPs on -2") 

(IPs on -3) 

(IPs on -4) ) ). 

(defrule findLiquid 

?tt <- (text ?tno $?txt at ?x ?y) 

(test ( ! = (member liquid $ ?txt) 0)) 

47 



=> 

(retract ?-tt) 

(assert (special-line ?x ?y ?x 2000 for liquid) 

(closest-point 5000 5000 on O for liquid))) 

(defrule findL+alpha 

?tt <- (text ?tno $?txt at ?x ?y) 

{test ( ! = (member L+alpha $ ?txt) 0) ) 

=> 

(retract ?tt) 

(assert (special-line ?x ?y ?x 2000 fof L+alpha) 

(qlosest-point 5000 5000 on O for L+alpha))) 

(defrule findL+beta 

?tt <- (text· ?tno $?txt at ?x· ?y) 

(test ( ! = (member L+beta $ ?txt) 0) ) 

=> 

( retract. ?tt) 

(assert (special-line ?x ?y ?x 2000 for L+beta) 

(clpsest-point 5000 SOOD on O for L+beta))) 

(defrule findBeta-

?tt <- (text ?tno- $?txt at ?x ?y) 

(test ( ! = (member beta $ ?txt) 0) ) 

=> 

(retract ?tt) 
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(assert (special-line ?x ?f ?x 2000 for beta) 

(ciosest-point 5000 5000 on O for beta))) 

(defrule findAlpha 

?tt <- (text ?tno $?txt at ?x ?y) 

(test (! = (member alpha $ ?txt) 0) ) 

=> 

(retract ?tt) 

·(assert (special~line ?x ?y ?x 2000 for alpha) 

(closest-point 5000 5000 on O for alpha))). 

(defrule findAlpha+Beta 

?tt <- (text ?tno $?txt at ?x ?y) 

(test ( ! = (member alpl+a+beta $ ?txt) 0) ) 

=> 

(retract ?tt) 

(assert (special--line ?x ?y ?x 2000 for alpha+.beta) 

(closest-point 50-00 5000 on O for alpha+beta))) 

(defrule findIPs 

(declare (salience 30)) 

(line ?lnol&: (< ?lnol 0) ?xb ?yb ?xe ?ye) 

?ip <- (!Ps $?ptsl on ?lnol) 

(line ?lno2&: (> ?lno2 0) ?xl ?yl $?pts2 ?x2 ?y2) 

(test (and (or ( ! = ?xl ?xb) ( ! = ?yl ?yb)) 

(or ,( ! = ?xl. ?xe) ( ~ = 7yl ?ye-)) 
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(or ( ! = ? x 2 ? xb) ( ! -= ? y_ 2 ? y b) ) 

(or (!= ?x2 ?xe) (!= ?y2 ?ye)})) 

·=> 

(bind ?len (length $ ?ptsl) ) 

(bind ?foundl 0) 

(bind ?found2 0) 

(bind ?' .1 0) 

-(while (and (< ?' .1 ?len) 

(bind ?xnth (nth (+ ?' . l 

(bind ?ynth (nth (+ ?' . l 

(if (and (= ?xl 7xnth) 

(bind ?foundl l) 

else 

(bind ?i (-+ ?i 2)))) 

(bind ?i 0) 

(while (and (< ?' • 1. ?len) 

(bind ?xnth (nth (+ ?' . l 

(bind ?ynth (nth (+ ?' . l 

(if (and (= ?x2 ?xnth) 

(bind ?found2 1) 

else 

(bind ? i ( + ? i 2) ) ) ) 

(bind $?stuff $?ptsl) 

(bind ?remove O) 

(if ( ?yb ?ye) then 

(if (and (< ?foundl 1) 

(< 

1) 

2) 

(= 

(< 

1) 

2) 

(= 

?foundl 1) ) do 

$?ptsl)) 

$?ptsl)) 

?yl ?ynth)) then 

?found2 1) ) do 

$?ptsl)) 

$?ptsl)) 

?y2 ?ynth)) then 
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(= ?yl ?yb) 

(or (and (>= ?xl ?xbt (<= ?xl ?xe)) 

(and (>= ?xl ?.xe) (<-:- ?xl ?xb)))) then 

(bind $?stuff (mv-append $?stuff ?xl ?yb)) 

(bind ?remove 1) 

else (if (and (< ?found2 1) 

(= ?y2 ?yb) 

for (and (>= ?x2 ?xb) (<= ?x2 ?xe)) 

(and(>= ?x2 ?xe) (<= ?x2 ?xb)-))) then 

(bind $?stuff (mv-append $?stuff ?x2 ?yb)) 

(bind ?~emove 1))) 

else ; if (= ?xb ?xe) then 

(if (and (< ?foundl 1) 

(= ?xl ?xb) 

(or (and (>= ?yl ?yb) (<= 

·(and (>= ?yl ?ye) (<= 

(bind $?stuff (mv-.append $?stuff 

(bind ?remove 1) 

else (if (and (< ?found2 1) 

(= ?x2 ?xb) 

?yl ?ye) ) 

?yl ?yb) ).) ) then 

?xb ?yl)) 

(or (and (>= ?y2 ?yb) (<= ?y2 ?.ye)) 

(and(>= ?y2 ?ye) (<= ?y2 ?yb)))) then 

(bind $?stuff (rnv-append $?stuff ?xb ?y2)) 

(bind ?remove 1)))) 

(if ~> ?remove 0) then 

(retract ?ip) 

51 



(assert (IPs $?stuff on ?lnol)))) 

(defrule sortIPs 

"should fire after all findIPs rules on agenda fir~JJ 

(declare (salience 20)) 

{line ?lno&: (< ?lno 0) ?xb ?yb ?xe ?ye) 

?ip <..;.. (IPs $?pts on ?lno) 

=> 

(retract ?ip) 

(bind ?len (length $?pts)) 

(if (= ?len 0) then 

(assert (intersection-points on ?lno)) 

else 

(bind ?cpx ?xb) 

(bind ?cpy ?yb) 

(bind ? i 0) 

(bind $? stuff ( str-explode "") ) 

(while. (< ?i ?len) do 

(bind ? j 0) 

(bind ?dist 5000) 

(while (< ?j ·?len) do 

(if (= ?yb ?ye) then 

(if (> ?xe ?xb) then 

(bind ?dl (- (nth (+ ·?j 1) $?pts) ?cpx)) 

(if (and (> ?dl 0.) (< ?dl ?dist)) then 

(bind ?dist ·?dl) 
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(bind ?tempx (nth ( + ?j 1) $ ?pts) ) 

(bind ?tempy (nth (+ ?j 2) $?pts))) 

else ; if (> ?xb ?xe) then 

(bind ?dl (- ?cpx (nth (+ ?j 1) $?pts))) 

(if (and (> ?dl 0) (< ?dl ?dist)) then 

(bind ?dist ?dl) 

(bind ?tempx (nth (+ ?' . J .l) $?pts)) 

(bind ?tempy (nth (+ ?' . J 2) $?pts)))) 

else . if ( """"'." ?xb ?xe) then ' 
(if (> ?ye 1yb) then 

(bind ?dl (- (nth (+ ?j 2) $?pts) ?cpy)) 

(if (and (> ?dl 0) (< ?dl ?dist)) then 

(bind ?dist ?dl) 

(bind ?tempx (nth (+ ?j 1) $?pts))" 

(bind ?tempy (nth (+ ?j 2) $?pts))) 

else ; if (> ?yb ?ye) then 

(bi~d ?dl (- ?cpy (nth (+ ?j 2) $?pts))) 

(if (and (> ?dl O) (< ?dl ?dist).) then 

(bind ?dist ?dl) 

(bind ?tempx (nth (+ ?' . J 1) $?pts)) 

(bind ?tempy (nth (+ ?' . J 2) $ ?pts) ) ) ) ) 

(bind ?j (+ ?' . J 2) ) ) 

(bind $?stuff (mv-append $?stuff 

(bind ?cpx ?tempx) 

(bind ?cpy ?tempy) 

(bind ? i ( + ? i 2) ) ) 
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(assert (intersection-points $?stuff on ?lno)))) 

(defrule splitLines 

(declare (Salience 10)) 

?line<- (line ?lno&: {< ?lno 0) ?xb ?yb ?xe ?ye) 

?ipt <- (intersection-points $?pts on ?lno) 

?mln <- (max-line-number ?max) 

=> 

(retract ?line ?ipt 7mln) 

(bi~d ?len (length $?pts)) 

(bind ?xf ?xb) 

(bind ?yf ?yb) 

(bind ? i O) 

(while (< ?i ?len) do 

(bin~ ?max (+ ?max 1)) 

{bind ?xl (nth (+ ?i 1) $?pts}) 

(bind ?yl (nth (+ ?i 2) $?pts)) 

(assert (line ?max ?xf ?yf ?xl ?yl)) 

(bind ?xf ?xl) 

(bind ?yf ?yl) 

(b ··. d ? . ( ? . 2) ) ) in . i .+ . 1 

(bind ?max (+ ?max 1)) 

(assert (line ?ma~ ?xf ?yf ?xe ?ye) 

(max-line-number ?max))) 

(defr.ule findIWs 
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(special-line ?xl ?yl ?x2 ?y2 for ?phase) 

(line ?lno $?pts) 

=> 

(bind ?ml 2000000) 

.(bind ?len (length $?pts)) 

(bind ?i 2) 

(while (< ?i ?len) do 

(btnd ?x3 (nth (- ?i 1) $?pts)) 

(bind ?y3 (nth ?i $?pts)) 

(bind ?x4 (nth (+ ?i 1) $?pts)) 

(~ind ?y4 .(hth (+ ?' • J.. 2) $?pts)) 

(if ( ! ~ ? 3 .x ?x4) then 

(.bind ?m2 (/ (- ?y4 ?y3) (- ?-x4 

else 

.(bind ?m2 2 00·0 00 0) ) 

(if ( ! =: ?ml ?m2) then 

(bind ?xi ?xl) 

(bind ?yi ( -- (+ (* ?2 . rn ?xi) ?y3) 

(if (and 

(and (or (and (>= ?xi ?xl) 

(and (>= ?xi ?x2) 

(or (and (>= ?yi ?yl) 

(and (>= ?yi ?y2) 

(and (or (and (>= ?xi ?x3) 

(and (>= ?xi ?x4) 

(or (and (>= ?yi ?y3) 
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?x3) ) ) 

(* ?m2 

(<= ?xi 

(<= ?xi 

(<= ? .. . y J.. 

(<= ?yi 

(<= ?xi 

(<= ? . •. XJ.. 

(<= ? . . yi 

?x3) ) ) 

?x2)) 

?xl) ) ) 

?y2)) 

?yl) ) ) ) 

?x4)) 

?x3))) 

?y4) )· 



(and (>= ?yi ?y4) (<= ?yi ?y3:))))) then 

(assert 

(inte·rsects-with ?.lno at ?xi ?yi for ?phase)))) 

(bind ?i (+ ?i 2)))) 

(defrule findClosestPoint 

?iw <- (intersects-with ?lno at ?xi ?yi for ?phase) 

?cp <~ (closest-point ?cpx ?cpy on ?cplno for ?phase) 

(special-line ?xl ?yl ?x2 ?y2 for ?phase) 

=> 

(retract ? iw) 

(bind ?sqcp ( * (- ?yl ?cpy) (- ?yl ?cpy) ) ) 

(bind ?sqi (* (- ?yl ?yi ) (- ?yl ?yi ) )·) 

(if (< ?sqi ?sqcp) then 

(retract ?cp) 

(assert (closest-point ?xi ?yi on ?lno for ?phase)))) 

(defrule assertinitialPoly 

(d~clare (~alience -10)) 

?cp <- (~losest-point $?pt on ?.lno for ?phase) 

?sl <- (special-line ?xl ?yl $?last~pt for ?phase) 

(l ·n ?l ? ·2? 2 $? ·t ? 3? 3) · i e . no . x . y . p s . x . y · 

~> 

(retract ?cp ?sl) 

(bind ?delta 

(- (+ (* ?xl ?y2) (* ?x2 ?y3) (* ?x3 ?yl)) 
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(+ (* ?y2 ?x3.) (* ?y3 ?xl) (* ?yl ?x2)))) 

(if (> ?delta 0) then 

; if the line is going from right to left 

(bind $?points (mv-app~nd ?x2 ?y2 $?pts ?x3 ?y3)) 

else 

; if the line is going from left to right 

(bind $·?points (mv-append ?x3 ?y3)) 

(bind ?len (length $?pts)) 

(while (> ?len 0) do 

(bind ?x (nth (- ?len 1) $?pts)) 

(bind ?y (nth ?len $?pts)) 

(bind $?points (mv-append ~?points ?x ?y)) 

(bind ?len (- ?len 2))) 

(bind $?points (mv-append $?points ?x2 ?y2))) 

(assert (t-poly $?points for ?phase) 

(left-turn for ?phase) 

(right~turn for ?phase) 

(bor~ers ?lno tor ?pha~e))) 

(defrule modifyLRTurns-1 

(declare (salience -20)) 

(t-poly $?ptsl ?xl ?yl ?lpx ?lpy for ?phase) 

(line ?lno ?lpx ?lpy ?x2 ?y2 $?pts2) 

(borders $?tines for ?phase) 

(test. ( = (member ? lno $? 1 ines) 0) ) 

?rt<- (righ~-turn $?lineList-l for ?phase) 
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?lt <- (left-turn $?lineList-2 for ?phase) 

(test (and (= (member ?lno $?lineList-1) 0) 

(= (member ?lno $?lineList-2) 0))) 

=> 

(bind ?delta 

(- (+ (* ?xl ?lpy) (.* ?lpx ?y2) (* ?x2 ?yl)) 

(+ (* ?lpy ?x2) (* ?y2 .?xl) (* ?yl ?lpx)))) 

(if (> ?delta 0) then 

(retract ?lt) 

; left-turn 

(assert (left-turn =(mv-append $?lineList-2 ?lno) 

for ?phase) ) 

else (if (~ 1delta 0) then 

(retract ?rt) 

; right-turn 

(assert (right-turn =(mv-append $?1ineList-1 ?lno) 

for ?phase)) 

else ; delta= 0 

(bind ?ax (- ?xl ? lpx) ) . X component of vector a ' 
(bind. ?ay (- ? 1 ? lpy) ) . y component of vector a . y 

' 
(bind ?bx (- ?x2 ?lpx)) . ;x component of vector b ' 
(bind ?by ( :- ?y2 ?lpy)) . y component of vector b ' 
(bind ?a-len (sqrt (+ (* ?ax ?ax) (* ?ay ?ay).))) 

(bind ?b-len (sqrt (+ (* ?bx ?bx) (* ?by ?by)))) 

(bind ?a-mul-b (+ (* ?ax ?bx) (* ?ay ?by)) ) 

(bind ?angle (/ ?a-mul-b (* ?a-len ?b-1en))) 

(bind ?angle (trun.c (* ?angle 10000))) 

(if (> ?angle 10000) then ; angle= 3.14159 radians 
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(retract ?lt) 

(assert (left-turn =(mv~append $?lineList-2 ?lno) 

for ?phase) ) 

else ; angle= 0 radian 

(bind ? len2 0) 

(bind ? count O) 

(while (and ("""""'. ?delta 0) (< ?count 5)) do 

(if (= ?len2 (length $?pts2)) then 

(bind ?x3 ?x2) 

(bind ?y3 ?y2) 

else 

(bind ?x3 (nth (+ ?len2 1) $?pts2)) 

(bind ?y3 (nth (+ ?len2 2) $?pts2)) 

(bind ?len2 (+ ?len2 2))) 

(bind ?delta 

(- (+ (* ?xl ?lpy) ( * ? 1 p X ? y 3 ) ( * ? X 3 ?y 1 ) ) 

(+ (* ?lpy ?x3) ( * ?y3 ? ~1) ( * ?yl ? lpx) ) ) ) 

(bind ?count (+ ?count 1))) 

(bind ?count O) 

(bind ?lenl (length $?ptsl)) 

(while (a:nd (= ?delta 0) (< ?count 5)) do 

(if(= ?lenl 0} then. 

(bind ?xO ?xl) 

(bind ?yO ?yl) 

else 

(bind ?xO (nth (-- ? lenl 1.). $ ?ptsl) ) 
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(bind ?yO (nth ?lenl 

(bind ?lenl (- ?·lenl 2).)) 

(bind ?delta 

(- (+ (* ?xO ?lpy) -( * 

(+ (* ?lpy ?x2) (* 

(bind ?count (+ ?count 1) ) ) 

$?ptsl.)) 

?lpx ?y2) 

?y2 ?xO) 

(if(>= ?delta 0) then 

(retract ?lt) 

; left turn 

(* ?x2 ?yO)) 

(* ?yO ? lpx) ) ) ) 

(assert (left-turn =(mv-append $?lineList-2 ?lno) 

for ?phase)) 

else ; right turn 

(retract ?rt) 

(assert (right-turn =(mv-append $?lineList-1 ?lno) 

for ?phase))))))) 

(defrule modifyLRTurns-2 

(declare (salience -20)) 

(t--poly $ ?ptsl ?xl ?yl. ? lpx ? lpy for ?phase) 

(line ?lno $?pts2 ?x1 ?y2 ?lpx ?lpy) 

(borders $?iines for ?phase) 

(test (= (member ? lno $?lines) 0) ) 

?rt<- (right-turn $?lineList-1 for ?phase) 

?lt <- (left-turn $?lineList-2 for ?phase) 

(test (and (.= (member ?lno $?lineList-l) 0) 

(= (member ?lno $?lineList-2) 0))) 

=> 
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(bi.nd ?delta 

(-:- ( + ( * ?x 1 ? lpy). ( * ?_ l p x ? y2 ) ( * ? x2 ? y 1 ) ) 

(+ (* ?lpy ?x2) (* ?y2 ?xl) (* ?y1 ?lpx)))) 

(if (> ?delta 0) then ; left-turn 

(retract ?lt) 

(assert (left-turn ~(mv-append $?lineList~2 ?lno) 

for ?phase)) 

else (if (< ?delta 0) ·then 

(retract ?rt) 

; right-turn 

(assert (right-turn = (mv-appe.nd $?lineList-1 ?lno) 

for ?phase)) 

else . delta - 0 ' 
(bind ?ax (- ?xl ? lpx) ) . X component of vector· a . , 

(bind ?ay (- ?y1 ? lpy)) . y component of vector a ' 
(bind ?b (- ? 2 ? lpx)) . X component of vector b . X .x 

' 
(bind ?by (- ?y2 ? lpy) ) . y component of vector b ' 
(bind ?a-len (sqrt (+ (* ?ax ?ax) (* ?-ay ?ay.)))) 

(bind ?b-len {sqrt (+ (* ?bx ?bx) (* ?by ?by) ) ) ) 

(bind ?a-mul-b (+ (* ?ax ?bx) (* ?ay ?by) ) .) 

(bind ?angle (/ ?a-mui-b (* ?a-len ?b-len))) 

(bind ?angle (trunc (* ?angle. 10000))) 

(if (> ?angle 10000) then ; anile = 3.14159 radians 

(retract ?lt) 

(assert (left-turn =(mv-append $?lineList-2 ?lno) 

for ?phase) ) 

else ; angle - 0 radian 
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(~ind ?len2 (length $?pts2)) 

(bind ? count O) 

(while (and (= ?delta O) (< ?count S) ) do 

(if (= ?len2 0) then 

(bind ?x3 ?x2) 

(bind ?y3 ?y2) 

else 

(bind 1x3 (nth (- ?l~n2 1) $?pts2)) 

(bind ?y3 (nth ?len2 $?pts2)) 

(bind ?len2 (- ?len2 2) ) ) 

(bind ?delta 

(- (+ (* ?xl ?lpy) (* ? lpx ?y3) (* ?x3 ?y1)) 

(+ (* ?lpy ?x3) (* ?y3 ?xl) (* ?yl ?lpx)))) 

(bind ?count (+ ?count 1))) 

(bind ?count O) 

(bind ?lenl (length $?ptsl)) 

(while (and (= ?delta 0) (< ?count 5)) do 

(if (= ?lenl 0) then 

(bind ?xO ?xl) 

.(bind ?yO ?yl) 

else 

(bind ?xO (nth (- ?Lenl 1) $?ptsl)) 

(bind ?yO (nth ?lenl $?ptsl)) 

(bind ?lenl (- ?lenl 2))) 

(bind ?delta 

(- (+ (* ?xO ?lpy) (* ?lpx ?y2) (* ?x2 ?yO)) 
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(.+ ( * ? lpy ?x2) (* ?y2 ?xO) ("* ?yO ?1px) ) ) ) 

(bind ?count (+ ?count 1))) 

(if (>= ?delta 0) then ; left turn 

(retract ?lt) 

(assert (left-turn = (mv-append $?lineList-2 ?lno) 

for ?phase) ) 

else ; right ·turn 

(retract ?rt) 

(assert (right-turn =(mv-append $?lineList:....1 ?lno) 

for ?phase))))))) 

(defrule openUpLRTurns 

(declare (salience -30)) 

?lt <-- (left-turn $?lineList-1 for ?phase) 

?rt<- (right-turn $?lineList-2 for ?phase) 

=> 

(retract ?lt ?rt) 

(bind ?lenl (length $?lineList-1)) 

(bind ?lenr (length $?lineList-2)) 

(bind ?i O) 

(if (> ?lenl 0) then ; any left turns 

(while (< ?i ?lenl) do 

(bind ?lno (nth (+ ?i 1) $?lineList-1)) 

(.assert (temp ? lno for ?phase) ) 

(bind ? i ( + ? i 1) ) ) 

else (if (> ?lenr .0) then 
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; no left turns, some right turns 

(while (< ?i ?lenr) do 

(bind ?lno (nth (+ ?i 1) $?lineList-2)) 

(assert (temp ?lno for ?phase)) 

(bind ?i ( + ? i 1) ) ) ) ) 

(if (or (> ?lenl 0} (> ?lenr 0)) then 

(assert (has-same-angle for ?phase) 

(min-angle 63000 to O for ?phase)))) 

; 2*pi < 6.30 

(defrule calcAngle-1 

(declare (salience -40)) 

?tt <- (temp ?lno for ?phase) 

(t~poly $?pts ?xl ?yl ?x2 ?y2 for ?phase) 

(line ?lno ?x2 ?y2 ?x3 ?y3 $?ptsl) 

=> 

(~etract ?tt) 

(bind ?ax (- ?xl ?x2)) . X component of vector , 

(bind ?ay (- ?yl ?y2)) . y component of vector , 

(bind ?bx (- '?x3 ?x2)) . X component of vector , 

(bind ?by (- ?y3 ?y2)) . y component of vector , 

a 

a 

b 

b 

(bind ?a-len (sqrt (+ (* ?ax ?-ax) (* ?ay ? ay) ) ) ) 

(bind. ?b-len (sqrt (+ 

(if (or (= ?a-len 0) 

(bind ?angle 62831) 

else 

(* 

(= 

?bx ?bx) (* ?by ?·by) ) ) ) 

?b-len 0) ) then 

; 2*pi = 6.28318 
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(bind ?a-mul...;b (+ (* ?ax ?bx) (* ?ay ?by))) 

(bind ?angle (acos (/ ?a-mul-b (* ?a~len ?b-len))}) 

; angle in radians 

(bind ?angle (trunc (* ?angle 10000)))) 

(assert (angle ?angle to ?lno for ?phase))) 

(defrule catcAngle-2 

(~eclare (salience -40)) 

?tt <- (temp ? lno for ?phase) 

(t-poly $·?pts ?xl ?yl ?x2 ?y2 for ?phase) 

(line ?lno $?ptsl ?x3 ?y3 ?x2 ?y2) 

=> 

(ret~act ?tt) 

(bind ?ax (- '(x1 ?x2)) . X component of vector , 

(bind ?ay (- ?yl ?y2)) . y component. of vector , 

(bind ?bx (- ?x3 ?x2)) . X component of vector , 

(bind ?by (- ?y3 '? y2) ) . y component of vector , 

a 

a 

b 

b 

(bind ?a-len (sqrt (+ (* ?ax ?ax) (* ?ay '?ay)))) 

(bind ?b--len (sqrt (+ (* ?bx ?bx) (* ?by ?by) ) ) )· 

(if (or (= ?a-len 0) (= ?b-len 0) ) then 

(bind ?angle 62831) ; 2*pi - 6.28318 

else 

(bind ?a-mul~b ( + ( * ?ax ?bx) ( * ?ay ?by) ) ) 

(bind ?angle (acos (/ ?a-mul-b (* ?a-len .?·b-len)))) 

; angle in radians 

(bind ?angle (trunc (* ?angle lODOO.)))) 
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(assert (angle ?angle to ?lno for ?phase))) 

(defrule findMinAngle 

?-ang <- (ang __ le ?anglel to ? lnol for ?phase) 
\ 

?min<- (min-angle ?angle2 to ?lno2 for ?phase) 

?hsa <.,... (has-same-angle $?lineList for ?phase) 

=> 

(-retract ?ang) 

(if (= ?angle.1 ?angle2) then 

(retract ?hsa) 

(bind $?list (mv-ap.pend $?lineList ?lnol)) 

("assert (has-same-angle $?list fOr ?phase)) 

else (if (< ?anglel ?angle2) then 

(retract ?min ?hsa) 

(assert (has-same-angle ?lnol for ?phase) 

(min-angle ·?anglel to ?lnol for ?phase))))) 

(defrule moreTestsNeeded 

(declare (salience -50)) 

?min<- '(min-angle ?angle to ?lno for ?phase) 

?hsa <- (has-same-angle $?lineList for ?phase) 

=> 

(if (= (length $?lineList) 1) then 

(retract ?hsa) 

else 

(retract ?min) 
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(assert (process for ?phase) 

(point-no 3 for ?phase}))) 

(-d~frule modifyProGess 

?pro<~ (process $?pt-list for ?phase) 

(p·oint-no ?number for ?phase)· 

(has-same-angle $?line-List for· ?phase) 

(te.st (> (length $?lineList) (/ (length $?pt-list.) 2))) 

(t-poly $?pts ?tpx ?tpy for ?phase) 

(line ?lno $Jlpts) 

(test 

(= (nth ( + (/ (length $?pt-list) 2) 1) $ ?lineList) ? lno) ) 

=> 

(retract ?pro) 

(bind ?len (length $?lpt-s)) 

(bind ?fx (nth 1 $?lpts)) 

(bind ?fy (nth 2 $1lpts)) 

(if (and (~ ?fx ?tpx) (= ?fy ?tpy)) then 

(if (> (* ?number 2) ?len) then 

(bind ?index (~ ?len 2)) 

else 

(bind ?index (* (~ ?number 1) 2))) 

else 

( if (> (* ?number 2) ·? len) then 

(bind ? index O) 

else 
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(bind ? index (- ? len ( * ?number 2) ) ) ) ) 

(bind ?x (nth (+ ?index 1) $? lpts)) 

(bind ?y (nth (+ 7index 2) $? lpts) ) 

(bind $?list (mv-append $.?pt-list ?x ?y)). 

(assert (process $?li.st for ?phase) ) ) 

(defrule findMostConvex 

?pro <- (process $?pt-list f_or ?phase) 

·?num <- (point--no ?num1:?er for ?phase) 

?hsa <- (has-same-angle $?lineList. tor ?phase) 

(test ( = ( / ( 1 ength $ ? pt -1 is t) 2 ) ( 1 engt h $ ? 1 ineL is t ) ) ) 

(t-poly $ ?pts ?x1 ?yl ?x2 ?y2 .for ?phase) 

=> 

(retract ?pro ?hsa ?num) 

(bind ? count 1) 

(bind ?min-angle 62831) ; 2*pi 6.28318 

(bind ?.len {length $?pt-list)) 

(bind ?ax (- ?xl ?x2)) 

(bind ?ay ( -ea ?yl ?y2)) 

(bind ?a""""len (sqrt (+ (* ?ax ?ax) (* ?ay ? ay) ) ) ) 

(bind ?' . l. 0) 

(while (< ?i ?len) do 

(bind ?bx (- (nth (+ ?i 1) $?pt~list") ?x2)) 

(bind ?by (-:- (nth (+ ?i 2) $?pt-list) ?y2)) 

(bind ?b-1en (sqrt (+ (* ?bx ?bx) (* ?by ?by) ) ) ) 

(bind ?a~mul-b (+ (* ?ax ·?bx) (* ? . .ay ?by) ) ) 
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(bind ?angle. (acos (/ ?a-mul-b (* ?a-len ?b-len)))) 

(bind ?angle (trunc (* ?angle 10000))) 

(if (= ?angle ?min-angle) then 

(bind ?count (+ ?cotint 1)) 

else (if (< ?angle ?min~angle) then 

(bind. ? count 1) 

(bind ?lno (nth (/ (+ ?i 2) 2) $?lineList)) 

(bind ?min-angle ?angle))) 

(bind ?i (+ ?~ 2))) 

(if (or (= ?count 1)· (= ?number 10)) then 

(assert (app~nd-line ?lno for ?phas~)) 

else 

(assert (process for ?phase) 

(point-no = (+ ?number lJ for ?pha~e.)))) 

(defrule createAL 

(declare (salience -50)) 

?ma<- (min-angle ?angle to ?lno for ?phase) 

=> 

(retract ?ma) ,:;; 

(assert (append-line ?lno for ?phase))) 

(defrule appendLine-1 

?al<- (append-line ?lno for ?phase) 

?tp <- (t-poly $?pts ?x ?y for ?ph~se) 

(line ?lno ?x ?y $?·ptsl) 
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?bo <- (borders $?lines for ?phase) 

==> 

(retract ?al ?tp ?bo). 

(bind $?stuffl (mv-append $?pts ?x ?y $?ptsl)) 

(bind $? stuff2 (mv~append $? lines ? lno) .) 

(assert (t-poly $?stuff1 for ?phase) 

(left-turn for ?phase) 

.(right-turn for ?phase) 

(borders $? stuff2 foz- ?phase) ) ) 

(defrule appendL~ne-2 

?al<~ (append-line ?lno for ?phase) 

?tp <- (t-poly $?pts ?x ?y for ?phase) 

(line ?lno $?ptsl ?x ?y) 

?bo <- (borders $?lines for ?phase) 

==> 

(retract ?al ?tp ?bo) 

(bind ? len ( !en.9th $ ?pts 1) ) 

(bind $?stuffl (mv~appertd $?pts ?x ?y)) 

(~hile (> ?len 0) do 

(bind ?xa (nth c~ ?len 1) $?ptsl)) 

(bind ?ya (nth ?len $?ptsl)) 

(bind $?stuffl (mv-append $?stuffl ?xa ?ya)) 

(bind ?len (- ?len 2))) 

(bind $?stuff2 (mv~append $?lines ?lno)) 

(assert (t-poly $?stuffl for ?phase) 
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(left-turn for ?phase) 

(right-turn for ?phase) 

(borders $?stuff2 for ?phase))) 

(defrule checkP~ly 

?tp <~ (t-poly ?fx ?fy $?pts ?fx ?fy for ?phase) 

(borders $?borders for ?phase) 

=> 

(retract ?tp) 

(assert (polygon ?fx ?fy $?pts ?fx ?fy for ?phase)) 

(.printout t llborders of " ?phase " : " $ ?borders crlf)) 

(defrule findEutectic 

(polygon $?pts for liquid) 

(lowest-y ?ymin) 

(h~ghest-y ?ymax) 

(min-temp·erature. ?minTemp) 

(advance-in-temp ?advance) 

=> 

(bind ?len (length $?pts)) 

(bind ?minX (nth 2 $?pts)) 

(birtd ? i O) 

(while (< ?i ?len) do 

(if (< (nth (+ ?i 2) $?pts) ?minY) then 

(bind ?minY (nth (+ ?i 2_) $?pts))) 

(bind ?i (+ ?i 2))) 
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(bind ?m-temp 

(+ (* (* (/ (- ?minY ?ymin) (- ?ymax ?ymin)) 

?-advance) 

10) 

?minTemp)) 

(assert (min-melting-temp ?m-temp)) 

(printout t "minimum melting temperature 
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