
Lehigh University
Lehigh Preserve

Theses and Dissertations

1991

A compact representation of phase diagrams
Ali Yildirim
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Yildirim, Ali, "A compact representation of phase diagrams" (1991). Theses and Dissertations. 5488.
https://preserve.lehigh.edu/etd/5488

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5488?utm_source=preserve.lehigh.edu%2Fetd%2F5488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A Compact Repre~entation of Phase Diagrams

by

Ali Yildirim

A Thesis

p·resented to the Graduate Committee

of Lehigh Universit~

In Candidacy for the degree of

Master of Science

in

Computer Science

Lehigh University

1991

This thesis is accepted and approved in fulfillment of

the requirements for the degree

Computer Sci~nce.

Jn41.?f iffl
Date

of Master of

Advisor in Charge

CSEE Department Chairperson

.1.1.

Science .
in

Acknowledgments

I would. like to thank Prof~ Donald Hillman and Prof.

Richard Decker for their direction when I was lacking it and

for their being patient w~th my work. I also would like to

thank my country for financially supporting my education .
in

the USA.

111

Table of Contents

1. Abstract

2. Overview of Phase Diagrams

2.l Unary Systems

2.2 Binary Systems

2.2.1 Isomorphous Systems

2.2.2 Eutectic Systems

2.2.3 Peritectic Systems

2.2.4 Monotectic Systems

2~3 Ternary Systems

3. Description of Previous Work

3.lrProblems with Previous Work

4.· Compact Repre-$entation of Phase Diagrams

4. 1 Computer Graphics M·etafile Format

4.2 Programs ·Working on CGM Files

4.2.1 lhe program draw.c

4.3 Achievements

5. Inference on Stored Phase Diagrams·

6. Conclusions and Suggestions for Future Work

7~ Bibliography

8. Appen9-ix

9. Vita

.
iv

1

4

5

7

7

8

10

11

12

14

16

19

20

25

29

33

42

45

46

73

List of Figures

Figure 1. Approximate phase diagram for pure water 6

Figure 2. The copper-nickel phase diagram 8

Figure 3. The lead-tin equilibrium phase diagram 9

Figure 4. The peritectic region of the iron-nickel

phase diagram 10

Figure 5. The copper-lead phase diagram 12

Figure 6. Format of a short-form command header 23

Figure 7. Format of .a long-form command header 23

#igure 8-a. Flowchart of function main of draw.c 30

Figure 8-b. Flowchart of function Getinfo of draw.c 31

Figure 9. Output of draw.c for the lead-tin phase diagram 32

Figure 10. Phase diagram for the lead-tin alloy 32

Figure 11. A polygon with its vertices labelled 36

Figure 12. Output of idreg.clp for the lead-tin system 38

V

1. Abstract

In today's industrial world., alloys, which play a very

important role in ele.ctronics industry in producing and

packaging integrated circuits, are broadly used. Since phase

diagrams represent changes of state involving one or more

substances and are broadly used in packaging integrated

circuits , in this work, we are looking for a way of compactly

representing phase diagrams in the computer, displaying them

on the screen, and r~trieving information from them to help

engineers working in integrated circuits packaging.

As a result, we developed a compact representation that

requires less than 2K bytes of memory to store a typical phase

diagram. Using this representation, we are abie t9 display

phase diagrams on the screen and to make inferences on them

using a rule-based expert system.

1

Introduction

Many industrial operations, such as the manufacture of

ceramics, alloys, glass, and salts, depend on knowledge of

phase diagrams which are gr~phical representations of phase

changes involving one, two, or more substances while they are

being cooled or heated. Many industries, including the steel

industry, and naturally, the electronics and computer industry

~tc., make use of alloys. Since phase diagrams represent

information about phase chang·es of alloys, many industries

depend 6n this knowled~e. The use of alloys in s~miconductor

electronics for production of integrated circuits .
1S

essential. The alloys are mainly used in semiconducfor

electronics for package assembly and to attach a die to the

package. Adhesives could also be used for this purpose but

they ~re not as good at condqcting the heat. One of the most
important issues in manufacturing integrated circuits is the

problem of heat dissipation from the in~egrated circuit. To
avoid problems due to heat dissipation, it is better to use

alloys instead of adhesi ve.s to attach the die to the package.
Alloys are also used to attach the lid 'as well as the pins to

the package. Another use of a.lloys is to attach a flip chip to

a multicircuit package. When performing this, the flip chip
solder bumps shrink. When attaching different parts of an
integrat.ed circuit to the package, alloys with different
melting temperatures are used since we do not want previously

2

used alloys to· remelt while another alloy is being used at its

melting temperature to attach a part to the package. In other

words, ·we do not want to undo something which was done

earlier. Therefore, for instance, if a braze, which is a high

temperature sold~r, is used to attach the die to the package,

a low-temperature solder is used to attach the lid to the

package.

As mentior:ied earlier, phase changes invo~ ving one or more

substances are ~epresented by phase diagrams. A human expert

in pnase diagrams can easily interpret the information

contained in the di~gram. However, this process of visual

interpretation cannot be as- easily done by computers as by

humans. Jn order for the computer to interpret phase diagrams

like people do, the phase diag~ams must be represented in the

computer by a standard representation. A paper written by Don

J. Orser [~] says that it is possible to represent phase

diagrams using topological $tructures, inherent in the phase

diagrams, and explains a way of doing so. According to him, in

order to answer queries regarding phase adjacencies, the

·topological structure must be explicitly represented in the

computer.

I definitely agree with him. Therefore; what we are

looking for is a compact representation of phase diagrams,

other than topological structures, in order to be able to

di~play them on the screen and to provide answers to queries

m·ade by a knowledge based esystem.

3

2. Overview of Phase Diagrams

In terms of a material's microstructure, a phase
.
1S a

region which differs in structure and composition from another

region. Solid and liquid are just two of the possible phases.

-A phase diagram is a graphical representation of ph~se changes

of one or more substances undergoing c.hang.es in pressure and.
...... temperature or in some other combination of variables such as

solubility and temperature. Lead-tin, silver-copper, and

indium-antimony a.re three of the most kno.wn phase diagrams.

Since phase changes are so much~ part of the physical

world, phase diagrams are pertinent to everyday existance: the

melting of ice,. the boiling of water, the formation of fog,

the setting of cement, for instance, are well.-known phase

changes. In the laboratory, process-es such as extraction_;

crystallization, distillation, precipitation, the use of

freezing mixtures, and the identification of substances all

involve phase changes de$cribable by phas~ diagrams.

Phase diagrams contain experimental data. With any

system, the first step bf experimental study is to establish

what phases result from different compositions of the given

substances under a variety of specific conditions. The results

of th.e experiments are then plotted and embodied in phase

diagrams .

. Phase diagrams can also be calculated from theoretical

data as well. Compute_r programs have been developed to compute

phase boundaries between two regular solution phases, and

4

phase boundaries between compound solution phases. Most of the

calculated phase diagrams agree mate~ially with observations.

Phas~ diagrams are used by engineers and scientists to

understand and predict many aspects of the behavior of

materials. Some of the important information obtainable from

phase diag~ams is as follows:

1.the phases present at differe~t compositions and

temperatures under slow cooling ·conditions

2.the equilibrium solid solubility of one elel'D,ent

or compound in another

3.the temperature at which an alloy coo+ed under

equilibrium conditions st-arts to solidify and

the temperature :r;-ange over which solidific.ation

occurs

4.the temperature at which different phases start

to .melt

Phase diagrams are general+y classified by the number of

components invo.lved in the system, such as unary, binary, and

ternary systems.

2.1. Unary Systems

The simplest phase diagrams are the ones for unary

systems. When only qne component is present, every possible

phas~ is 100 percent of that component. The two variables of

pressure and ten:tperature suffice to .determine the state of the

system.

5

A pure substance such as water can exist in solid,

liquid, and vapor phases, depending on the conditions of

temperature and ..
pressure. A very familiar example of two

phases of a pure substance is a glass of water containing some
_____ __

ice. In this case, solid and liquid water are two distinct

phases ~hich are separated by a phase boundary, the surface of

the ice cubes. During the boiling of water, liquid water and

water vapor are two phases in equilibrium. Below

graphical representation of the phases of water.

I..

~
....J

C

760

Solid

Vapori~ation line

Freezing line

Liquid

I
I
I
I
I
I
I
I

Vapor I
I
I
I
I Triple point at 0.0 I° C

0· 100

Temperature of ~O, 0 c

' lS

FIGURE 1 Approximate phase diagram for pure water

the

At any point in the regions delineated by the curves, the

pressure and temperature allow only one phase, solid, liquid,

or vapor, to exist. At any point on the curves, two phases are

allowed to exist: solid-liquid, solid-vapor, and liquid-vapor.

Along the line between solid and liquid,
the melting

6

temperatures for different pressures can be found. In this

phase diagram, there exists a triple point at a low pressure

and low temperature where solid, liquid, and vapor phas~s can

coexist. The triple point represents the unique conditions

under which all three phases can coexist in equilibrium.

2.2. Binary Sy~tems

A mixture bf two metals .
1S called a binary alloy and

constitutes a two,.....component system. In this case, when the

pressure is kept constant, the maximum number of phases ~fl:ich

can coexist in equilibrium is three. This three-phase

equilibrium takes place only at an invariant point. There are

five kinds of bina:i;y systems: isomorphous, eutectic,

peritectic, monotectic, and complex systems.

2.2.1. Isomorphous Systems

In some binary metallic systems, the two elements are . .

compietely soluble in each other in both the liquid and solid

states. In these systems, only a single type of crystal

structure exists for all compositions of the components;

therefore, they are called isomorphous systems ..

An important example of ~somorphous binary allo:y sy-stems

is the copper-nickel system (fig.2). The area above ~he upper

line 4-n the diagram, called the liquidus, corresponds to the

region of stability for the liquid phase. On the other !)and,

the area l:;>elow the lowe.r line, called the solidus, corresponds

7

to the region of stability for the solid phase. A two-phase

region where the .liquid and solid phases can coexist is

represented by· the area between the solidus and liquidus in
•

which the amount of each phase present depends on the

temperature and chemical composition of the alloy.

0
0

1400

1300

1200

1100

0
100°-6
Cu

Liquid

1300°C

1084°
-------,a

I

10 20

·Wo = 53 wt% Ni

30 40 50 60

Weight percent nickel

w. = 58 wt % Ni

Tie line

70 80

line

Solid
solution a

90

FIGURE 2 The copper-nickel phase diagram

2.2.2. Eutectic Systems

100%
Ni

Many binary alloy systems have components which have

limited solid solubility in each other. This type of binary

system usually forms two solid solutions with limited

solubilities. A typical binary eutectic phase diagram is the

one for lead-tin alloy, shown in fig.3. In this diagram, there

are three one-phase regions (a), (~), and (liquid), three two-

phase
..

.regions (ci+liquid) , and (~+liquid), and one

three.;__phase .
region. . The .

regions of restricted solid

8

solubility, a and ~ phases, are called terminal solid
solutions. Unlike the ~ phase, which is a tin-rich solid
solution, the a ph~se is a lead-rich solid solution.

In simple binary eutectic systems, there is a specific
alloy composition known as the eutectic composition which
freezes at a lower temperature than all other compositions.

Procutectic ex = 24%

Proeulectic ex = 51 %

Liquid
= 49°,6 250

u
0

:':l ...
v
'"'
E 150
~

E-

Proculcctic ex

I

19.2
I

0 JO 20
100°..;
Pb

Eutectic a

100% Liquid

Eutectic~

Alloy 2 Alloy l

a

L' 'd I 1qu1 I

.1
I
I

le
I
I a+~
I
I
I
I I

40.0 61 .9
I I

30 40 50 60 70

Weight_percent tin

Liquidus

Eutectic point

I
97.5

I

80 90 100%
Sn

Solidus

FIGURE 3 The lead-tin equilibrium phase diagram

This low temperature which corresponds to the lowest
temperature at which the liquid phase can exist is called the
eutectic temperature wh_ich is 183 °C for the lead-tin system.
The eutectic composition is 61.9 weight percent tin and 38.1

9

weight percent lead.

Eutectic systems have an invariant reaction, called the

eutectic reaction, in which, when cooled slowly, the liquid

phase transforms into two different solid phases.

2.2.3. Peritectic Systems

Another type of reaction that ·frequently occurs in binary

phase systems is the peritectic reaction in which a liquid

phase reacts with a solid phase to. form a new and different

solid phase. This reaction is commonly present as part of more

complicated binary systems, particularly if the melting points

of the two components, under constant pressure, are quite

different.

0
.0

ci
s....
_,,
:-:l
L.

·c:.,
C.
E
Cl)

E-<

1538
1550

1500

i4.50

1400

1394

0
100%

Fe

FIGURE 4

L+o

0

.2 3 4

I
4.3

I
I

5

Weight percent nickel

Liquid

L+,

y

6 7 8 9

The peritectic- region of the iron-~ickel phase
diagram

10

The periteqtic reaction of the iron-nickel phase diagram

.is shown in fig. 4. In this diagram, there are two solid

phases, 8 and y, and one liquid phase. The 8 phase is a solid

solution of nickel in BCC iron, whereas they phase is a solid

solution of nickel in FCC iron. The BCC lron and FCC iron are

two forms of iron with different structures. The peritectic

point c is defined by the peritectic- temperature of 1517 °C

and the peritectic composition of 4. 3 weight percent nickel in

iron. This point i$ invariant becaµse three phases 8, y, and

liquid can coexist;. in equilibrium.

2.2.4. Monotectic Systems

The third type of three~phase reaction is the monotectic

reaction in which a liquid phase transforms into a solid phase

and another liquid phase. These two liquids are inuniscible·,

just like oil and water, and therefore constitute individu~l

phases. A reaction of this type occurs in the copper-lead

system, whose phase d~agram is shown in fig.5., at 955 °C and

36 weight percent lead in copper. Either a eutectic or a

peritectic reaction c-an appear in the lower temperature

region; the former is more often encountered. The copper-lead

phase diagram has an eutectic-point at 326 °C and 99.94 weight

percent lead, and as a result terminal solid solutions of

almost pure lead (0 .-007% copper) and pure copper (0. 005% lead)

are formed at room temperature.

11

Atomic percent lead

10 20 30 40 50 60 70 80 90 oc
°F

·1000 991°,63

87
36 955°

,''
L1+ Lz 1,/

1600

800

a+ L.z 1200
600

400 800

32 °
327.502°

'"---Cu
Pb---

200 .___ _ _.___ _ __.__ _ __._ _ __,_ ___ .,....._ _ _......_....;_..1,._-1 __ ...___--=:::_ 400
Cu 20· 40 60 80 Pb

Weight percent lead

b

FIGURE .5 The.copper-lead phase diagram

2.3. Ternary Systems-

Ternary alloy syst~ms are much more complicated and

harder to understand th~n unary and binary systems. However,

they are very interesting in the following $ense: In the

production of integrated circuits, we usually begin with

binary systems. However, a binary alloy can dissolve from the

substance with which it is in contact. We practically have a

ternary system ~t the junction of th~ binary alloy and the

bonding surface; therefore, we would like to know about

ternary systems in order to be able to predict how they react

to, for instance, the changes in temperature. From this point

12

of view, quaternary systems are also very interesting because

at the junction of two binary systems we might have one of

them dissolved in the other, leading "to a quaternary system.

13 ·, .- --.-~-.

3. Description of Previous Work

There are many ways of storing a picture in the computer.

Raster image and vector image methods are just two of them.

With the first m~t~od, a line, for instance, is stored as a

series of consecutive pixels on the screen; in other words, it

is stored as a bitmap. With the second method, a line .
lS

identified and stored with its beginning and ending points.

Therefore, the former takes mucih more space in memory than the

iatter does.

The raster image method uses up hu~dreds of kilobytes in

memory to store a picture because it needs 300 bits to store

-a one-inch-length digitized line. As an example·, let's

calculate how much space is needed to store a picture on a

sheet of paper of siz~ 8.5 in~hes by 11 inches. The amount of

space needed ,is

8.5*300*11*30D bits

which is approximately lM bytes. This much information in a

file is hard to handle, read, and therefore display on the

screen because of its large size.

When displaying bitmaps on the screen, some re$Ol~tion is

eventually lost, compared to the original digitized image.

Suppose we have a 640*480 monochrome VGA screen. This monitor

allows us to display at most

640 * 480 = 307200 pixels

on the screen. Therefore, it is impossible to display all the

14

infoi;mation contained in a bitmap and it is worthwhile to try

to compress a bitmap file before storing it in the computer.

We can use the words "display" and "store" in the same context

when talking about bitmaps because it is extremely difficult

to extract useful information from a bitmap. Hence, a bitmap

file can only be used fo~ displaying purposes.

One way of compressing a bitmap file is to scan it .8*8

bits at a time and replace 8*8 bits of information with only

one bit. A simple check suffices to do likewise; if any pixel

among the read-in 8*8 bits is on, we have a 1 in the reduced

image; otherwise a O. Therefore, with this technique, 8*8 bits

on the original image correspond to 1 bit on the reduced

image. In other words, if this kind of compre~sion is used,

the size of the reduced image is one sixty-fourth of. the

o:i;:-iginal image. This transformation, as stated above, .
is

unidirectional since it is impossible to get the original

image back from the reduced image.

Earlier, we calculated that we needed approximately· 1M

bytes to- store an 8. 5 inches by 11 inches page. With the

compression explained above, we need only

lM bytes / 6.4 = 15. 7K bytes

and this is quite a reduction in size with some loss .
in

resolution.

If we want to display a bitmap image on the screen, a

small program, which reads in the image file and draws the

corresponding picture on the screen, can be written.

15

After a litt1e information about bitmaps and how

compression can be made, we can now tbrn to the previous work

done on the phase diagrams. Prior to the current work, a phase

diagram to be displayed on the screen was digitized using an

image scanner which can save the scanned image. in different

formats, such as pcx, binary, etc. After the image was scanned

and saved in bitmap .format, it was compressed . using the

technique explained above. The size of the reduced image. file

was around 12K b.ytes. Then, another program~ written to

display a bitmap image on the screen, was called to do so.

3.1 Problems with Previous Work

Although the previous work done on phase diag~ams

succeeded in displaying them on the screen with some loss in

resolution, there are some problems with that work. These

problems originate from using bitmaps, in general, for the

representation of phase diagrams~ Let's take~ look at these

prob_lems.

The main ·P:L"Ob],.em is that it is extremely difficult to

retrieve useful information from a bit.map representation. As

explained in the previous. section, after storing a picture irt

binary format . in a file, all the information this file

contains is pixels and their color attributes, gray scale

values or just on or off, associated with them. Looking at

such a file, we have no notion of what the information means.

We cannot directly see what a CGM (Computer Graphics

16

M·etafile) , CDR (Core1Draw) , or a PCX (PC Paintbrush) file has

in it# either. However, these iiles can ~e easily decoded to

see what is in them since we know how they are encode~. Since

we want to make inferences on phase diagrams, we should not

employ a representation using a binary bitmap format to encode

pictures.

In order to enter a picture in the computer for storage

in any format, it is first digitized using an image scanner.

When a picture
,·
lS scann~d, there -will be some loss in

resolutioh because the scanner cannot capture everything in

the pic_ture. Meanwhile, compression of a file in binary format

using the technique explained in the previous section, too,

contributes to the loss in resolution. Therefore, some text

sue~ a~ the labels on the axes of phase dia~rams are very hard

to read on the screen when a file containing pictures in

binary format is displayed ..

"The third problem, originating from
.,

using a binary

format, as explaine.d in the previous paragraph, is that we do

not have a nice graphical interface. This is simply because of

the loss in resolution after digitizing a picture and then

compressing it.

Another problem is the amount of space a scanned image

takes in memory. Just after dig_itizing a picture, it requires

approximately BOOK bytes. Let's suppose we have 10 phase

diagrams to digitize. In this ca$e, we need BM· bytes to store

these image files. After the compression is used, we need

17

about 12.SK bytes per image file. The total space needed for

10 phase diagrams is more than 120K bytes~ Even after the

compres:aion, we need a lot. of s.pace in memory to store phase

diagrams.

In our·work~ using another representation scheme, we try

to solve the problems stated above.

18

4. Compact Representation of Phase Diagrams

As expressed in the earlier sections, previous work has

shown several problems in dealing with phase diagrams. In

order to tackle these problems, we·need to develop a different

approach to represent phase diagrams, which must be easy to

decode, easy to retrieve information from, should not take too

much memory for storagej also we should have a nice graphical

interface.

In the software market, there are some . nice graphics

tools, which are both powerful and easy to use, one of which

is Core1Draw. Core1Draw has very po:werful features, such as

snapping a text to any curve, dragging characters in text

until seeing the exact spacing, drawing curves quickly and

easily, and editi·hg curves. It also allows one to trace a

picture.

Our approach to the compact representation of phase

diagrams begins by fir.st digitizing, as usual, a phase diagram

using an image scanner. After tailoring the scanned image on

the screen for our needs, we can save the resulting image. The

scanner we used offers se~eral formats in which an image can

be saved. We chose to save the . image in the PCX (PC

Paintbrush) bttmap format which describes a graphic as a

rectangle of black and white dots. The advant~ge of using the

PCX format is that the files can be relatively small ·in many

cases, 180K bytes as opposed to BOOK bytes in binary format.

On the other hand, a disadvantage of using the PCX- format is

19

that ·we might need to be conce·rned with the resolution of a

PCX file. Another disadvantage is that exported PCX files in

Core1Draw contain no color or gray-scale information,

everything is black or white. However, we do not have to worry

about these details because we will be only tracing the

diagrams saved in the PCX format.

Having saved a phase diagram in the PCX format, we can

now trace it in order to save it in a different format, using

Core1Draw. It is possible to import a file into Core·1Draw and

then export it. Importing a file into Core1Draw m~ans reading

in the file which is in a format other than CDR {Core1Dr~w).

tikewise, exporting a file means saving it using a file format

other than CPR. Aft.er impo~ting a PCX file c9ntaining a, phase

diagram into Core1Draw, we trace the diagram, creating new

lines, and curves when necessary, for each line or curve in

the PCX file. After restoring all the information the PCX file

contains, we re~ove the bitmap from the screen ahd save the

remaining ima.ge in CGM (Computer Graphics Metafile) format.

Now. we give some information about CGM format because it

has been used again and -again during this work.

4.1. Computer .Graphics Metafile Format

The Computer Graphics Metafile provides a fil.e format for

the storage and retrieval of picture information. The file

format consists of a set of elements that can be used to

describe pictures in a way that is compatible-between systems

20

of different architectures and devices of differing

capabilities and design. The Computer .Graphics Metafile allows

picture information to be stored in an organized way on a

graphical software· system, .and facilitates transfer of picture

informatiori between different graphical software systems and

different computer graphics installations.

Every metatile starts with a };3EGIN METAFILE element and

ends with an END METAFILE element. This allows multiple

metafiles to be stored or transferred together. Each picture

starts with a BEGIN PICTURE eleme.nt and ends with an END

PICTURE element. Between these delimiters, the picture

descriptor is separated from the picture body by a BEGIN

PICTURE BODY element.

Binary encoding and character encoding -~re the ways of

encoding a Computer Graphics Metafile. The binary encoding of

CGM provides a representation of the ~etafile syntax that can

be optimized :for speed of g.eneration and interpretation, wbile

still providing a standard means of interchange among computer

systems. The encoding uses binary data formats that are much

more similar to the data representations used within computer

systems than the data f or·mats of the other encodings.

Furthermore,· some of the data formats may exactly match those

of some computer systems.

All elements in the metafile are encoded using a uniform

sbheme. The elements are represented as variable length data

structures, each consisting of opcode info~mation (element

21

class plus element identifier), the lengtb of its parameter

data, and finally the parameter data, if any .

. The structure of the Metafile (MF) is as follows:

BEGIN MF I MD I <picture>. . . I END MF I

The BEGIN METAFILE element is followed by the METAFILE

DESCRIPTOR (MD) which precedes the pictures. Finally, the

Metafile is ended with an END METAFILE element.

The metafile is partitioned into pictures. A picture

consists of a BEGIN PICTURE element, a PICTURE DESCRIPTOR

element (PD), a BEG:iN PICT.URE BODY el.ernent, an arbitrary

number of control, graphical, and attribute elements, and

finally an END PICTURE element.

BEGIN· PIC PD BEGIN BODY ·<element> ... END PIC

The binary encoding of the -metafile consists of a

sequential collection of bits. For measuring the lengths o·f

elements, the metafile is partitioned into octets, whith are

8-bit fields. The structure is also partitioned into 16-bit

:fields called words. Metafile elements are constrained to

start on word botindaries within the binary data structure.

Metafile elements are represented in one of two forms:

short-form commands (binary-encoded elements) and long-form

commands. There are two differences between them. The first

one is that a short-form command always contains a complete

element; the long-form command can accommodate partial

22

~lements. The second difference is that a short--form conunand

only accommodates parameter lists up to 30 octets in length;

on the other hand, a long..-form command can acconunodate lengths

up to 32767 octets per data partition.

M~tafile elements are grouped into class~s. Each element

in a class has its own identifier to make the element unique.

Eacn command, a binary-·encode.d element, has a command head~r.

For short-form commands, the command header consists of a

single word divided into three fields: element class, element

id, and parameter list length, as .shown in figure 6.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[elem. class[element id. I length

FIGURE 6 forma.t of a short-form command header

In figure 6, bits 15 to 12 correspond to element class

whose range is O to 15, whereas bits. 11 to 5 and 4 to 0

correspond to elemertt identifier (value range is Oto 127) and

parameter list length (value range is -0 to 30) respectively.

15 14 13 12 11 10 9 8 7 6 5 5 4 3 2 1 0

elem. class element id. 1 1 1 1 1

p parameter list length

word 1

word 2

FIGURE 7 format of a long-forrn command header

If a conunanq' s parameter list length is graeter than 30,

23

the long-form command header is used instead of the short-form

comm;:3.nd header. The long-form command header is shown in

figure 7, where Pis the partition flag, whose valu~ is O for

last partition and 1 for non-last partition~ Bits 4 to O in

word 1, which is decimal 31, indicates that this is a long

form corrunand header.

The most important inetafile elements are VDC TYPE·,

INTEGER PRECISION, REAL PRECISION, VDC INTEGER PRECISION, VDC

REAL PRECISION, POLYLINE, DISJOINT POLYLINE, TEXT, POLYGON,

RECTANGLE, CIRCLE, ELLIPSE., TEXT PATH, an_d TEXT ALIGNMENT. VDC

TYPE indicates the d~ta type, integ~r or real, of the Virtual

Device Coordinates (VDC) . INTEGER PRECISION specifies the

length, 8-bit, 16-bit, 24-bit, or 32-bit, for the operands of

integer data types. VDC INTEGER PRECISION, like INTEGER

PRECISTON, specifies the length for the operands of data type

point (P) and operands of data type VDC value; however, 8-bit

is not permitted as precision. POLYLINE spec.ifies ~ series of

connected lines; a line is drawn from the first point in the

parameter list to the second point, from the second point to

the next .point, etc., and from the next-to-last point to the

last point. Character strings can be represented in CGM using

TEXT with three parameters: a p·o{nt at which the string

begins, a flag which indicates whether the text string is

final or not, and finally the string itself. POLYGON .
1S

similar to POLYLINE except it is assumed that after the last

point in the parameter list comes the first _point in the

24

parameter list.

4. 2. Programs Working on CGM Files.

Bef6re writing a program· to read from a CGM file and to

display what is in this file on the screen, we should worry

about adding some. information to this file. After a phase

diagram has been saved as a CGM file in Cqre1Draw, this file

contains no information concerning the x and y axes 9f the

diagram. Along the x . axis, atomic p~rcentages of the

substances should be di$played, whereas along they axis, the

temperature should be displayed. In order for this information

to be appended to the CGM file containing the phase diagram,

a small program must be written. This program gets the

information to be app~nded from the keyboard, encodes it so

that it does. not take too many bytes, and adds the encoded

information to the end of· the CGM file~

Sometimes we want to put some labels such as "liquid"

inside regions on a phase diagram. For this,· we need two small

programs to do some file format conversions. The first program

reads a binary file and converts it into~ hexadecimal text

file. The second program does the opposite: converts a

hexadecimal text file into a binary file. Having had these two

programs available and known the encoding of CGM files, we can

easily put labels anywhere inside CGM files. First, we decide

where to put the label on the phase diagram. Then we have the

text conta~ning the label in the CGM format. The third step is

25

to donvert the CGM file, whi.ch is binary, into a hexadecimal
text file. The next step is to put the information in a proper
place, knowing the constraint that conunands begin on word
boundaries. The last thing to do is to convert the modified
hexadecimal. text file back into a binary file.

At this point, we hav.e a-11 the information we need,
label§, temperature, and atomic percentages, available to us
in order for a phase diagram to be complete.

4.2.1. The program draw.c

Once we are done with a phase diagram, storing the
diagram as a ·CGM file, putting labels inside regions, adding
the information to be displayed along tbe axes of.the diagram,
we can call the executable version of draw.c to display the
diagram on t::tie screen. However, before doing this, we have to
make sure that the grid to be di~played with the phase diagram
must be saved. as a CGM file and there must exist a file called
egavga .bgi, which is needed when initializing the graphics, in
the directory where draw.c 1.s stor~d. The program draw.c as
can be understood from its extension has been written in C.

Draw. c has the capability of decoding a CGM file and
displaying what is contained in this file on the screen. It
first ·reads the file grid. cgm and stores the information
concerning the lines of the grid. Then it reads another CGM
file supplied by the user and also stores the information
contained ih this file. Finally, ~t draws the diagram -0n the

26

screen and puts the labels on it, i-f any.

The most important data structures of draw. c are LineNode

and TextNode; the for~er is used to maintain a singly-linked

list of points, whereas the latter is used to store a

character string with some attributes. LineNode and TextNode

are us·ed· with two arrays, lineList and textList, respectively.

LineLi~t is ~n array ~ith each element pointing to a LineNode;

on the other hand, textList is an array with each element

~ointing to a TextNode. Each element of lineList either points

to the first element of a linked list of points or is null. If

an entry of lineList is not null, it points to a linked list

which contains all points on a line. Therefor~, each line on

the diagram is represented in draw. c as a linked list of

points pointed to by an eleme~t of lineList. Each element of

textList either is null or points to a TextNode which contains

a character string as well as its attributes such as text

type, text path, and text alignment.

We assume th~t the x and y coordinates of a point are

represented by integers, not by real numbers. If real numbers

are used, we have to add several functions to the programr

draw.c, which is actually not too complicated to do anyway.

After explaining what draw.c _does, let's . give some

information about some of its functions. The most important

func~ions in this program are draw_2D, Getinfo, and main. The

function main consists of, in general, two similar loops.

Inside each loop, a command is read from a CGM file, the

27

element;: class, element id, and parameter list length are

extracted from the command, the command code is calculated

·from element class and element id, and. finally the function

Getinfo 1.s ca1led with two arguments, corrunand code and

paramater list length, to decide on the actions to take. The

first loop is for the CGM file containing the grid, whereas

the second loop is for the CGM file containing the phase

diagram.

The function Getinfo can deal with 14 of the CGM

commands, the ones that concern us most. Getinfo consist.s of

a hug-e switch statement and checks if there is any' error for

each command. If no errors, it takes the necessary actions

such as storing the line
.
1.n a linked list, storing text

information, or changing the defaults for metafile descriptors

and control elements. The me.tafile corrunands that Get Info can

deal with are VDC TYPE, INTEGER PRECISION, REAL P~CISION,

METAFILE DEFAULTS REP~ACEMENT, VDC INTEGER PRECISION, VDC REAL·

PRECISION, POLYLINE, DISJOINT POLYLINE, TEXT, RESTRICTED TEXT,

APPEND TEXT, POLYGON, POLYGON SET, RECTANGLE., TEXT PATH, and

TEXT ALIGNMENT.

The function draw_2D simply draws lines and puts labels

on the screen. Since elements of lineList point to first

points of lines, draw 2D draws a line from the first point on

the linked list to the s~cond point, . . . ' from the next~to-

last point on the linked list to the last point on the list.

The text of each element of textList is displayed on the

28

screen with text path and horizontal and vertical alignments

taken into consideration.

Some of the subsidiary functions in draw.care GetWord,

Get Octets, fre.eMemory ,. statusLine, drawBorder, main Window, and

displayScale. The flowcharts corresponding to the functions

main and Getinfo are shown in figures 8-a and 8-b,

respectively.

The output of draw.c for the lead-tin phase diagram is

shown in figure 9. The 6riginal lead-t·in phase diagram taken

from Bulletin of Alloy Phase Diagrams [_6] is shown in figure

10 to make a comparison between the two diagrams.

4 . 3 . Achie·vements

So far, we .have a very compact representati_on of phase

diagrams (less than 2K bytes in size per diagram) . using

Computer Graphics Metafile format. We also h~ve ?l- nice display

of phase diagrams, with som~ labels on them, on the screen.

There.fore, we have, up to this point, solved two of the

problems the previous work faced.

29

J

- . ----- ·--~ ·-· . ~-,.

r -------- ------ ---- '·--·-----·-- ----- - --

read a command
from grid.cgm

L ________ -- -- ---~- ---- - --- ----- -
I

.1.

NO

. ~eco:~ ·~~mm~n: I
L _____________ -- ----------------------

1

,i ----- ---•-----~-1
_ -c~l~-Getrnfo_J

r----------- -- ---'--------- - ---
1

I

i ca 11 s}:ip
I

I I
I - ·--·--, _____ - -·- -~ ~-. - -~---- ~- J

I --------- -- .-- -·. --·--•- --

r---- ------------
'

[~all drn,~:~1
I
J

[=11 f ~eMemory]

exit

...--·-·-------· - " - -,,
r---~-----· .. -•-------- --- ----]
i read a command

m the CGM f i 1 e:
tered by user j
-·- ---,.-,------------

1
I

"
,·

_ __,,.--------~-----------~- --.........__
'------....... --YES--~ command 4 OHy

" --------''----.. ~ ~"'-~
I

NO
I

J r-- . --"---- -- - .

j decode command I
I I '·------·----- ---- ----- -- __ J

I

i
I

1!1

11

1._c__ 1
call Getinfo I

~-----r------·
\/
~-------------..:..., [call skip

J
I

FIGURE 8-a flowchart of the function main

30

FIGURE 8-b

i
NO

I
intPrec 1c ~

assigne~-~ v;lue
1

-1
I

horizAlign~
vertAlign are I 1

qssigned their M
values I I . .

flowchart of Getinfo

31

2-D GnAPH

Ii QL id
w
Cl 3 5 0 L___JL---1---+--1----4----+----+----t--+---,---, <I
C:
(.j ...
....
z
IJ)
CJ

150'--7.

20 30 40 50 60 70 80
ATOHIC PER CENT TIN

Hi t an~ k eu to cont i nue ...

~eta

90 100
Sn

FIGURE 9 output of draw. c for the lead-tin phase diagram

We ighl Percenl Tin
u JO 20 30 40 50 60 .70 80 00 . JOO 400·L~~·-~·,--~-,-~~•f.--..r~~.~......,..-.~~~...i.-.-.~~.:....-........-+---~-~-I-.-•• ~.

L
:mo ·J

u l
0 2~0 1

CJ l
~- j

t
2.JUl68! 0

C:
:::; j

....., J

[200 j (Pb) ' r 183°C
29

73.9 98.6 E J.
~ !SO J

100 l
l (tJSn)

50 ·I
(oSn) ol --~---------------------- 13oC

O JO 20 30 4 0 50 60 70 80 90 100 Pb ,\lomic Percent. Tin

FIGURE 10 phase diagram for the lead-tin alloy,
from Bulletin of Alloy Phase Diagrams

3.2

taken
[6]

5. Inference on Stored Phase Diag~ams

The first part of the work we have done is to compactly

represent phase diagrams in the computer and display them on

the screen, as explained in the previous sections. The second

part is to make some inferences on the stored phasa diagram~.

As expressed ea~lier, we nead ~representation-scheme other

than bitmap formats . in order to retrieve and use the

information contained in the diagrams. In this section, we

will explain ways of mating inferences from phase dtagrams,

such as identifying regions on the diagrams, calculating the

lowest melting point, etc. We ~ill also explain some CLIPS

rules that were written to do so. CLIPS (C Language Integrated

Production System) is a forward chaining rule-based language

that has inferencing capabilities. Designed at NASA/Johnson

Space Center with the specific purposes of providing high

portability, low .cost, and -easy integration with external

systems, CLIPS was written using the C progranuning language.

CtIPS can be integrated with external C functions or

applications and we will make use of this feature of CLIPS.

Before trying to perform inference on a phase diagram,

all the information, such as lines and text, it contains must

be ass.erted into the CLIPS fact base. Therefore, the CGM file

containing the phase diagram we are trying to make inferences

from must be read in first. CLIPS has two built~in furictions,

read and readline, to get information from the keyboard' or a

file. But these two functions are written to read ASCII text,

33

either from the keyboard or a file, not binary information.

Since CGM files are in binary format and built-in CLIPS

functions cannot deal with binary files, we have to write our

own function to -read from a CGM file. This function named

extract info reads a CGM file and asserts info~mation

conc~rning lines and text of the phase diagram directly into

the CLIPS fact base. Extract info is a modified version of

draw.c in that after accumulating informatiori for a line or

text, it asserts that information into the CLIPS fact base

instead of putting that information in one of the two arrays,

lineList and textList, as draw.c does. Extract info also does

not have the display capabilities of draw.c.

In order to facilitate identification of regions on a

phase diagram, each region to be identified is laJ:?eled ~ith a

name, such as liquid, liquid+alpha, or alpha+beta, depending

on the characte~istics of the region.

The collection of r~les to make inferences from phase

diagrams is named idreg.clp. Idreg.clp first calls the

function extract_info to transfer the information cqncerning

lines and text from a CGM file into the CLIPS fact base. The

next step performed is to find intersection points of the

lines and the rectangle enclosing th.e diagram. Then, the edges

of the rectangle· are split up into line segments based on the

number of ·intersection points on that line. For example, if an

edge has two intersection points on it, it is split up into

three line segments. The next step is to· find out which line

34

is the uppermost line of the region to be identified. The

uppermost line of the r.egion is asserted into the ·fact base as

the first segment of the polygon corresponding to the region.

After this point, eac:h line .segment. which continues from the

last point of the poly~oti and makes the smallest left (or

right, if there are no lines, with a left angle) angle gets

appended to the polygon until th.e first and last points of the

polygon are unified. This means that the polygon we have found

corr:esponds to the region whose borders we are trying to

determine and the edges of the polygon are the borders of the.

Each .. region '·
1S identified in the counterclockwise

direction. Unlike convex polygons, concave polygons are said

to be hard to identify and there are riot many algorithms to do

SO·. Therefore, the author had to devise an algorithm which can

.be used to identify both kinds of polygons, convex and

concave. If the region whose borders we are trying to find is

convex at the current point, it makes a left turn from the

last line se~ment of the polygon ([8]). In other words, t~e

angle between the previous and next line segments of the

polygon, corresponding to the region, is no.t reflexive. If the

region is concave at the current point, it m~kes a right turn~

Let's explain this concept with the help of fig. 11.

Let's suppose we are currently at point p2 and the coordinates

of pl, p2, and p3 are (xl, yl) , (x2,y2), and (x3,y3)

respectively. Deciding whether angle (plp2p3-) is a l.eft. or

35

right turn corresponds to evaluating a 3*3 determinant in the

points' coordinates. The determinant

xl yl 1
x2 y2 1
x3 y3 1

gives twice the signed area of the triangle (plp2p3), where

the sign of the determinant ~. is positive i.f ~nd only if

(plp2p3) f·orm a counterclockwise cycle. Theref.ore, the angle

plp2p3 is a left turn if and only if the determinant .6 is

positive.

z
•

FIGURE 11 a polygon P with vertices labelled

In a phase diagram, if there is more than one line

beginning or ending at any intersection point on the borders

of a region, we calculate wh.1.ch lines make left turns and

which ones make right turns. After finding out which lines

make left turns and right turns, we further process only one

kind of turrt : if there are any lines making left turns, they

get processed; othe·rwise, the lines making right tu~ns get

processed. For ·each line to be processed, we calctilate the

36

angle it makes with the last line segment of the region at the

current point. Then, we choose the line among others which

makes the smallest angle with the last line segment of the

region. This way, we· are guaranteed to find the correct

polygon for the region whose borders we are trying to

determine.

The listing of idreg. clp i.s given in the Appendix. The

output produced by idreg. clp for the lead-ti~ phase diagram is

shown in fig. 12. The information concerning format of the

facts of fig .. 12 is given at the very beginning of idreg.clp in

the Appendix ..

37

(lowest-x 0)

(lowest-y 0)

(highest-x 1000)

("highest~y 1000)

(line 1 1000 0 998 11 998 23 997 46 997 69 996 92

995 115 995 1_38 994 161 993 184 992 207 991 230

990 253 989 276 988 300 987 323 986 346 985 370)

(line 2 985 370 985 373 986 376 987 383 988 389 989 395

989 400 990 406 991 411 992 416 993 422 994 427"

995 433 996 4-38 996 444 997 450 998 456 1000 463)

(line 3 1000 463 988 458 979 454 960 445 942 437 926 429

910 423 895 417 881 411 866 406 853 401 838 397

824 392 810 388 795 384 779 379 762 375 745 370)

(line 4 745 370 722 382 69.9 394· 654 416 610 438 566 459

522 479 479 498 435 -516 391 533 346 550 301 566

254 582 207 596 157 611 107 625 54 638 0 652)

(line 5 0 652 7 649 14 646 28 641 42 635 55 628

68 622 80 615 92 608 103 601 113 593 124 585

134 577 144 568 153 559 162 550 172 540 181 530

184 526 188 521 195 513 202 504 209 495 216 486

223 477 230 467 237 458 244 448 251 438 258 427

265 416 271 ·405 278 393 284 381 290 368)

(line 6 290 3-6.8 272 357 255 346 224 324 1·95 303 16'8 ·282

145 260 123 239 104 217 87 196 72 173 59 151

48 127 38 103 30 78 24 53 19 26 15 0)

FIGURE 12 output of idreg.clp for the lead-tin system

38

(line 7 290 368 745 370)

(line 8 745 370 985 370)

(min-temperature 0)

(advance-in-temp 50)

(line 9 0 1000 1000 1000)

(line 10 1000 1000 1000 4 63)

(line 11 1000 463 1000 0)

(line 12 1000 0 .15 0)

(line 13 15 0 0 0)

(line 14 0 0 0 652)

(line 15 0 652 0 1000)

(max-1 ine-nurnber 15)

(borders 9 15 4 3 10 for liquid)

(polygon 1000 1000 0 1000 0 652 54 638 107 625 157 611

207 596 254 582 301 566 346 550 3·91 533 435 516

479 498 522 479 566 459 610 438 654 416 699 394

722 382 745 370 762 375 779 379 795 384 810 388

824 392 8.38 397 853 401 8-66 406 881 411 895 417

910 423 926 429 942 437 960 445 979 454 988 458

1000 463 1000 1000 for liquid)

(min-melting-temp 185)

(borders 4 5 7 for L+alpha)

(polygon 745 370 722 382 699 394 654 416 6l0 43'8 566 459

522 479 479 498 435 -516 391 533 346 550 301 566

254 582 207 596 157 611 107 625 54 638 0 652

(figure 12, continued from l.ast page)

39

7 649 14 646 28 641 42 63:5 55 628 68 622

80 615 92 608 103. 601 113 593 124 585 134 577

144 568 153 55.9 162 550 172 54·0 181 530 184 526

188 521 195 513 202 504 209 495 216 486 223 477

230 467 2-37 458 244 448 251 438 .258 427 265 416

271 405 278 393 284. 381 290 368 745 370

for L+alpha)

(borders 3 8 2 for L+beta)

(polygon 1000 463 988 458 979 454 960 445 942 437 926 429

910 423 895 417 881 411 866 406 853 401 838 3.97

824 392 810 388 7 95 384 779 379 762 375 745 370

985 370 985 37-3 986" 376 987 383 988 389 989 395

989 400 990 406 991 411 992 416 993 422 994 427

995 433 996 438 996 444 997 450 998 456 1000 463

for L+beta)

(borders 2. 1. 11 for beta)

(po.lygon 1000 463 998 456 997 450 996 444 996 438 995 433

994 427 993 422 992 416 991 411 990 406 989 400

98-9 395 988 389 987 383 98 6 .376 985 373 985 370

986 346 987 323 988 3CO 989 276 990 2-53 991 230

992 207 993 184 994 161 995 138. 995 115 996 92

997 69 997 46 998 23 998 11 1000 0 1000 463

for beta)

(borders 5 14 13 6 for alpha)

(figure 12, continued from last page)

40

(polygo.n 290 36·8 284 381 278 3.93 271 405 265 416 258 427

251 438 244 448 237 458 230 467 223 477 2.16 486

209 4·95 202 504 195 513 188 521 184 526 i.81 530

172 540 162 550 153 559 144 568 134 577 124 585

113 593 103 601 92 6-08 80 615 68 622 55 628

42 635 28 641 14 646 7 649 0 652 0 0

15 0 19 26 24 53 30 78 38 103 48 127

59 151 72 173 87 196 104 217 123 239 145 260

168 282 195 303 224 324 255 346 272 357 290 368

for alpha)

(borders 7 6 12 1 8 for alpha+beta)

(polygon 745 370 290 368 272 357 255 34 6 -224 324 195 30.3

168 282 145 260 123 239 104 217 87 196 72 173

59 151 48 127 38 103 30 78 2.4 53 19 26

15 0 1000 0 998 11 998· 23 997 46 997 69

996 92 995 115 9.95 138 994 161 993 184 992 207

991 230 990 253 989 276 988 300 987 323 986 346

985 370 745 370 for alpha+beta)

(figure 12, continue~ from last page)

41

6. Conclusions and -Suggestions· for Future Work

Conclusion·s

Many industrial operations depend on knowledge of phase

diagrams which are graphical representations of phase changes

involving one or more substances. The electronic~ industry is

just one exampie. Compositions of two or more metals, called

the alloys, are mainly used in semiconductor electronics in

as~embly and attaching something to integrated circuit

packages. Since alloys are broadly used, it is important that

we know their characteristics and how to store them
,,
in

computers. Phase diagrams can ·be stored using many available

file formats. In this work, we have explained two ways of

doing so, the binary bitmap format and Computer Graphics

Metafile format, and have chosen the latte·r. In the first part

of the work, we succeeded in ·obtaining .a very compact

representation of phase diagrams; less than 2K bytes in

memory, and a very nice graphics inter.face. When a phase

diagram . is displayed on the screen using the prog-rams

ment.ione<;i earlier, everything on the diagram is readable, as

opposed to not ~eing able to read most of the labels on the

diagram with the binary bitmap format previously used for

representation of phase diagrams.

Another . issue that was addressed . is the problem of

retrieving information from phase diagrams. This is al!'(lost

impossible with the binary bitmap formats. Since Computer

42

Graph_ics Metafile format uses lines to represent pictures,

generally, and we know how to decode CGM files, we can easily

retrieve the information we want from phase diagrams. CLIPS

rules were written, by the author, to identify regions on the

phase diagrams. This is quite useful in doing some

calculations, for instance the lowest melting temperature. We

have succeeded . in finding out all the . regions on phase

diagra·ms of interest.

Overall, we have a very compact representation of phase

diagrams, can display them very easily on the screenI and most

importantly we can make inferences on stored phase diagrams,

using the Computer Graphics Metafile format.

Sµggestions for Future Work

In this work, we have concentrated on binary ph,ase

diagrams. Both parts of our work can be extended to include

ternary and quaternary phase diagrams. In the first part, the

drawing program,· draw. c, can be extended to read three-

dimensional phase diag.rams and to display th·em on a two

dimensional screen. In the second part, more rules can be

added. to the rules, idreg.clp, to find volumes of ternary

phase diagrams as well. However, these two extensions might

require a lot of effort be:cause the current representation

scheme of phase diagrams, Computer Graphics Metafile, has to

be changed

pictures.

. since it cannot represent three-dimensional

43

Another aspect of extending the Gurrent work could be
adding a hierar9hidal representation to the CLIPS rules we
have, which can be done ·using CLIPS 5.0 'v-!hich supports object
oriented frame structures. Using this kind of representation,
we can derive edges of a surface from vertices, stirfaCe$ from
edges, and finally volumes from surfaces.

44

7. Bibliography

[1] Orser, Don J •. , "An .Algebraic Representation for the

Topology of Multicomponent Phase Diagrams", Center for

Manufacturing Engineering, National Bureau of Standards, 1986

[2] Alper, Allen M., "Phase Diagrams: Materials Science

Technology", volume 1, .Academic Press, New York, 1970

[3] Smith, William F. , "Principles of Materials Science

Engineering", 2nd edition, McGraw--Hill, New York, 1990

[4] "CorelDraw", Cor·e1 Systems· Corporation, 1988

and

and

[5] ''Computer Graphics Metafile",. American National Standards

Institute, New York, 1987

[6] "Bulletin of Alloy Phase Diagrams", American Society for

Metals, Metals Park, Ohio

[7] Giarratano, Joseph C. and Ri1ey, Gary D., "Expert Systems:

Principles and Programming", PW'S-KENT Publishing Company,

Boston, 1989

[8] Preparata,. Franco P. and Shamos, Michael I . ,

"Computational Geometry : An Introduction", Springer-·Verlag,

New York, 1985

[9] "CLIPS Reference Manual, Version 4. 3 of CLIPS", Artificial

Intelligence Section, Lyndon B. Johnson Space Center, July

1989

[10] ;'Clips Reference Manual" . , version 5. 0, Software·

Technology Branch, Lyndon B. Johnson Space Center, volumes 1

and 2, January 1991

45

8. Appendix

Listing -of idreg. clp whic.h is a compilation of rules to

make inferences on stored.phase diagrams is given below.

; idreg.clp

)
; 4/25/ 91

.
'
; fact templates used in the rules below

.
'
..
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'
.
'

(text <text-number> <string> at <x> <y>)

(special-line <xl> <yl> <x2> <y2> for <phase>)

(closest-point <x> <y> on <line-number> for <phase>)

(line <line....;number> <<< <x> <y> >>>)'

(inte·rsects-with <line-number> at <x> <y> for <phase>)

(t-poly <<< <x> <y> >>> for <phase>)

(intersection-points<< <x> <y> >> on <line-number>)

(IPs << <x> <y> >> on <line-number>)

(polygon<<< <x> <y> >~> for <phase>)

.(temp <line-number> for <phase>)

(angle <angle>· to <line-number> for <phase>)

(min-angle <angle> to <line-number> for <phase>)

(has-same-angle <<<line-number>>> for ?phase)

(process<<< <x> <y> >>> for ?phase)

(point-no <number>. for <phase>)

(left-turn <<<line-number>>> for ?phas.e)

(right-turn <<<line-number>>> for ?phase)

46

. ,

. ,

. ,

. ,

. ,

. ,

. ,

. ,

. ,

. ,

(append-line <line~number> for <phase>)

(borders <<<line-number>>> for <phase>)

(min-temperature <minTemp>)

(advanca-in-temp <advance>)

(min-melting~temp <temperature>)

(max-line-numb~r <max>)

(lowe.st-x <x>)

(lowest-y <y>)

(highest-x <x>)

(highest-y <y>)

(defrule readFile

?init <- (initial-fact)

=>

(ret.ract ? init)

(printout t "Input File Name : ")

(bind ?file-name (str-cat (readline) ". cgm"))

(extract info ?file-name) -
(assert (IPs on -1)

(IPs on -2")

(IPs on -3)

(IPs on -4))).

(defrule findLiquid

?tt <- (text ?tno $?txt at ?x ?y)

(test (! = (member liquid $?txt) 0))

47

=>

(retract ?-tt)

(assert (special-line ?x ?y ?x 2000 for liquid)

(closest-point 5000 5000 on O for liquid)))

(defrule findL+alpha

?tt <- (text ?tno $?txt at ?x ?y)

{test (! = (member L+alpha $?txt) 0))

=>

(retract ?tt)

(assert (special-line ?x ?y ?x 2000 fof L+alpha)

(qlosest-point 5000 5000 on O for L+alpha)))

(defrule findL+beta

?tt <- (text· ?tno $?txt at ?x· ?y)

(test (! = (member L+beta $?txt) 0))

=>

(retract. ?tt)

(assert (special-line ?x ?y ?x 2000 for L+beta)

(clpsest-point 5000 SOOD on O for L+beta)))

(defrule findBeta-

?tt <- (text ?tno- $?txt at ?x ?y)

(test (! = (member beta $?txt) 0))

=>

(retract ?tt)

48

(assert (special-line ?x ?f ?x 2000 for beta)

(ciosest-point 5000 5000 on O for beta)))

(defrule findAlpha

?tt <- (text ?tno $?txt at ?x ?y)

(test (! = (member alpha $?txt) 0))

=>

(retract ?tt)

·(assert (special~line ?x ?y ?x 2000 for alpha)

(closest-point 5000 5000 on O for alpha))).

(defrule findAlpha+Beta

?tt <- (text ?tno $?txt at ?x ?y)

(test (! = (member alpl+a+beta $?txt) 0))

=>

(retract ?tt)

(assert (special--line ?x ?y ?x 2000 for alpha+.beta)

(closest-point 50-00 5000 on O for alpha+beta)))

(defrule findIPs

(declare (salience 30))

(line ?lnol&: (< ?lnol 0) ?xb ?yb ?xe ?ye)

?ip <- (!Ps $?ptsl on ?lnol)

(line ?lno2&: (> ?lno2 0) ?xl ?yl $?pts2 ?x2 ?y2)

(test (and (or (! = ?xl ?xb) (! = ?yl ?yb))

(or ,(! = ?xl. ?xe) (~ = 7yl ?ye-))

49

(or (! = ? x 2 ? xb) (! -= ? y_ 2 ? y b))

(or (!= ?x2 ?xe) (!= ?y2 ?ye)}))

·=>

(bind ?len (length $?ptsl))

(bind ?foundl 0)

(bind ?found2 0)

(bind ?' .1 0)

-(while (and (< ?' .1 ?len)

(bind ?xnth (nth (+ ?' . l

(bind ?ynth (nth (+ ?' . l

(if (and (= ?xl 7xnth)

(bind ?foundl l)

else

(bind ?i (-+ ?i 2))))

(bind ?i 0)

(while (and (< ?' • 1. ?len)

(bind ?xnth (nth (+ ?' . l

(bind ?ynth (nth (+ ?' . l

(if (and (= ?x2 ?xnth)

(bind ?found2 1)

else

(bind ? i (+ ? i 2))))

(bind $?stuff $?ptsl)

(bind ?remove O)

(if (?yb ?ye) then

(if (and (< ?foundl 1)

(<

1)

2)

(=

(<

1)

2)

(=

?foundl 1)) do

$?ptsl))

$?ptsl))

?yl ?ynth)) then

?found2 1)) do

$?ptsl))

$?ptsl))

?y2 ?ynth)) then

50

(= ?yl ?yb)

(or (and (>= ?xl ?xbt (<= ?xl ?xe))

(and (>= ?xl ?.xe) (<-:- ?xl ?xb)))) then

(bind $?stuff (mv-append $?stuff ?xl ?yb))

(bind ?remove 1)

else (if (and (< ?found2 1)

(= ?y2 ?yb)

for (and (>= ?x2 ?xb) (<= ?x2 ?xe))

(and(>= ?x2 ?xe) (<= ?x2 ?xb)-))) then

(bind $?stuff (mv-append $?stuff ?x2 ?yb))

(bind ?~emove 1)))

else ; if (= ?xb ?xe) then

(if (and (< ?foundl 1)

(= ?xl ?xb)

(or (and (>= ?yl ?yb) (<=

·(and (>= ?yl ?ye) (<=

(bind $?stuff (mv-.append $?stuff

(bind ?remove 1)

else (if (and (< ?found2 1)

(= ?x2 ?xb)

?yl ?ye))

?yl ?yb)).)) then

?xb ?yl))

(or (and (>= ?y2 ?yb) (<= ?y2 ?.ye))

(and(>= ?y2 ?ye) (<= ?y2 ?yb)))) then

(bind $?stuff (rnv-append $?stuff ?xb ?y2))

(bind ?remove 1))))

(if ~> ?remove 0) then

(retract ?ip)

51

(assert (IPs $?stuff on ?lnol))))

(defrule sortIPs

"should fire after all findIPs rules on agenda fir~JJ

(declare (salience 20))

{line ?lno&: (< ?lno 0) ?xb ?yb ?xe ?ye)

?ip <..;.. (IPs $?pts on ?lno)

=>

(retract ?ip)

(bind ?len (length $?pts))

(if (= ?len 0) then

(assert (intersection-points on ?lno))

else

(bind ?cpx ?xb)

(bind ?cpy ?yb)

(bind ? i 0)

(bind $? stuff (str-explode ""))

(while. (< ?i ?len) do

(bind ? j 0)

(bind ?dist 5000)

(while (< ?j ·?len) do

(if (= ?yb ?ye) then

(if (> ?xe ?xb) then

(bind ?dl (- (nth (+ ·?j 1) $?pts) ?cpx))

(if (and (> ?dl 0.) (< ?dl ?dist)) then

(bind ?dist ·?dl)

52

(bind ?tempx (nth (+ ?j 1) $?pts))

(bind ?tempy (nth (+ ?j 2) $?pts)))

else ; if (> ?xb ?xe) then

(bind ?dl (- ?cpx (nth (+ ?j 1) $?pts)))

(if (and (> ?dl 0) (< ?dl ?dist)) then

(bind ?dist ?dl)

(bind ?tempx (nth (+ ?' . J .l) $?pts))

(bind ?tempy (nth (+ ?' . J 2) $?pts))))

else . if (""""'." ?xb ?xe) then '
(if (> ?ye 1yb) then

(bind ?dl (- (nth (+ ?j 2) $?pts) ?cpy))

(if (and (> ?dl 0) (< ?dl ?dist)) then

(bind ?dist ?dl)

(bind ?tempx (nth (+ ?j 1) $?pts))"

(bind ?tempy (nth (+ ?j 2) $?pts)))

else ; if (> ?yb ?ye) then

(bi~d ?dl (- ?cpy (nth (+ ?j 2) $?pts)))

(if (and (> ?dl O) (< ?dl ?dist).) then

(bind ?dist ?dl)

(bind ?tempx (nth (+ ?' . J 1) $?pts))

(bind ?tempy (nth (+ ?' . J 2) $?pts)))))

(bind ?j (+ ?' . J 2)))

(bind $?stuff (mv-append $?stuff

(bind ?cpx ?tempx)

(bind ?cpy ?tempy)

(bind ? i (+ ? i 2)))

53

?tempx ?tempy))

(assert (intersection-points $?stuff on ?lno))))

(defrule splitLines

(declare (Salience 10))

?line<- (line ?lno&: {< ?lno 0) ?xb ?yb ?xe ?ye)

?ipt <- (intersection-points $?pts on ?lno)

?mln <- (max-line-number ?max)

=>

(retract ?line ?ipt 7mln)

(bi~d ?len (length $?pts))

(bind ?xf ?xb)

(bind ?yf ?yb)

(bind ? i O)

(while (< ?i ?len) do

(bin~ ?max (+ ?max 1))

{bind ?xl (nth (+ ?i 1) $?pts})

(bind ?yl (nth (+ ?i 2) $?pts))

(assert (line ?max ?xf ?yf ?xl ?yl))

(bind ?xf ?xl)

(bind ?yf ?yl)

(b ··. d ? . (? . 2))) in . i .+ . 1

(bind ?max (+ ?max 1))

(assert (line ?ma~ ?xf ?yf ?xe ?ye)

(max-line-number ?max)))

(defr.ule findIWs

54

(special-line ?xl ?yl ?x2 ?y2 for ?phase)

(line ?lno $?pts)

=>

(bind ?ml 2000000)

.(bind ?len (length $?pts))

(bind ?i 2)

(while (< ?i ?len) do

(btnd ?x3 (nth (- ?i 1) $?pts))

(bind ?y3 (nth ?i $?pts))

(bind ?x4 (nth (+ ?i 1) $?pts))

(~ind ?y4 .(hth (+ ?' • J.. 2) $?pts))

(if (! ~ ? 3 .x ?x4) then

(.bind ?m2 (/ (- ?y4 ?y3) (- ?-x4

else

.(bind ?m2 2 00·0 00 0))

(if (! =: ?ml ?m2) then

(bind ?xi ?xl)

(bind ?yi (-- (+ (* ?2 . rn ?xi) ?y3)

(if (and

(and (or (and (>= ?xi ?xl)

(and (>= ?xi ?x2)

(or (and (>= ?yi ?yl)

(and (>= ?yi ?y2)

(and (or (and (>= ?xi ?x3)

(and (>= ?xi ?x4)

(or (and (>= ?yi ?y3)

55

?x3)))

(* ?m2

(<= ?xi

(<= ?xi

(<= ? .. . y J..

(<= ?yi

(<= ?xi

(<= ? . •. XJ..

(<= ? . . yi

?x3)))

?x2))

?xl)))

?y2))

?yl))))

?x4))

?x3)))

?y4))·

(and (>= ?yi ?y4) (<= ?yi ?y3:))))) then

(assert

(inte·rsects-with ?.lno at ?xi ?yi for ?phase))))

(bind ?i (+ ?i 2))))

(defrule findClosestPoint

?iw <- (intersects-with ?lno at ?xi ?yi for ?phase)

?cp <~ (closest-point ?cpx ?cpy on ?cplno for ?phase)

(special-line ?xl ?yl ?x2 ?y2 for ?phase)

=>

(retract ? iw)

(bind ?sqcp (* (- ?yl ?cpy) (- ?yl ?cpy)))

(bind ?sqi (* (- ?yl ?yi) (- ?yl ?yi))·)

(if (< ?sqi ?sqcp) then

(retract ?cp)

(assert (closest-point ?xi ?yi on ?lno for ?phase))))

(defrule assertinitialPoly

(d~clare (~alience -10))

?cp <- (~losest-point $?pt on ?.lno for ?phase)

?sl <- (special-line ?xl ?yl $?last~pt for ?phase)

(l ·n ?l ? ·2? 2 $? ·t ? 3? 3) · i e . no . x . y . p s . x . y ·

~>

(retract ?cp ?sl)

(bind ?delta

(- (+ (* ?xl ?y2) (* ?x2 ?y3) (* ?x3 ?yl))

56

(+ (* ?y2 ?x3.) (* ?y3 ?xl) (* ?yl ?x2))))

(if (> ?delta 0) then

; if the line is going from right to left

(bind $?points (mv-app~nd ?x2 ?y2 $?pts ?x3 ?y3))

else

; if the line is going from left to right

(bind $·?points (mv-append ?x3 ?y3))

(bind ?len (length $?pts))

(while (> ?len 0) do

(bind ?x (nth (- ?len 1) $?pts))

(bind ?y (nth ?len $?pts))

(bind $?points (mv-append ~?points ?x ?y))

(bind ?len (- ?len 2)))

(bind $?points (mv-append $?points ?x2 ?y2)))

(assert (t-poly $?points for ?phase)

(left-turn for ?phase)

(right~turn for ?phase)

(bor~ers ?lno tor ?pha~e)))

(defrule modifyLRTurns-1

(declare (salience -20))

(t-poly $?ptsl ?xl ?yl ?lpx ?lpy for ?phase)

(line ?lno ?lpx ?lpy ?x2 ?y2 $?pts2)

(borders $?tines for ?phase)

(test. (= (member ? lno $? 1 ines) 0))

?rt<- (righ~-turn $?lineList-l for ?phase)

51

?lt <- (left-turn $?lineList-2 for ?phase)

(test (and (= (member ?lno $?lineList-1) 0)

(= (member ?lno $?lineList-2) 0)))

=>

(bind ?delta

(- (+ (* ?xl ?lpy) (.* ?lpx ?y2) (* ?x2 ?yl))

(+ (* ?lpy ?x2) (* ?y2 .?xl) (* ?yl ?lpx))))

(if (> ?delta 0) then

(retract ?lt)

; left-turn

(assert (left-turn =(mv-append $?lineList-2 ?lno)

for ?phase))

else (if (~ 1delta 0) then

(retract ?rt)

; right-turn

(assert (right-turn =(mv-append $?1ineList-1 ?lno)

for ?phase))

else ; delta= 0

(bind ?ax (- ?xl ? lpx)) . X component of vector a '
(bind. ?ay (- ? 1 ? lpy)) . y component of vector a . y

'
(bind ?bx (- ?x2 ?lpx)) . ;x component of vector b '
(bind ?by (:- ?y2 ?lpy)) . y component of vector b '
(bind ?a-len (sqrt (+ (* ?ax ?ax) (* ?ay ?ay).)))

(bind ?b-len (sqrt (+ (* ?bx ?bx) (* ?by ?by))))

(bind ?a-mul-b (+ (* ?ax ?bx) (* ?ay ?by)))

(bind ?angle (/ ?a-mul-b (* ?a-len ?b-1en)))

(bind ?angle (trun.c (* ?angle 10000)))

(if (> ?angle 10000) then ; angle= 3.14159 radians

58

(retract ?lt)

(assert (left-turn =(mv~append $?lineList-2 ?lno)

for ?phase))

else ; angle= 0 radian

(bind ? len2 0)

(bind ? count O)

(while (and ("""""'. ?delta 0) (< ?count 5)) do

(if (= ?len2 (length $?pts2)) then

(bind ?x3 ?x2)

(bind ?y3 ?y2)

else

(bind ?x3 (nth (+ ?len2 1) $?pts2))

(bind ?y3 (nth (+ ?len2 2) $?pts2))

(bind ?len2 (+ ?len2 2)))

(bind ?delta

(- (+ (* ?xl ?lpy) (* ? 1 p X ? y 3) (* ? X 3 ?y 1))

(+ (* ?lpy ?x3) (* ?y3 ? ~1) (* ?yl ? lpx))))

(bind ?count (+ ?count 1)))

(bind ?count O)

(bind ?lenl (length $?ptsl))

(while (a:nd (= ?delta 0) (< ?count 5)) do

(if(= ?lenl 0} then.

(bind ?xO ?xl)

(bind ?yO ?yl)

else

(bind ?xO (nth (-- ? lenl 1.). $?ptsl))

59

(bind ?yO (nth ?lenl

(bind ?lenl (- ?·lenl 2).))

(bind ?delta

(- (+ (* ?xO ?lpy) -(*

(+ (* ?lpy ?x2) (*

(bind ?count (+ ?count 1)))

$?ptsl.))

?lpx ?y2)

?y2 ?xO)

(if(>= ?delta 0) then

(retract ?lt)

; left turn

(* ?x2 ?yO))

(* ?yO ? lpx))))

(assert (left-turn =(mv-append $?lineList-2 ?lno)

for ?phase))

else ; right turn

(retract ?rt)

(assert (right-turn =(mv-append $?lineList-1 ?lno)

for ?phase)))))))

(defrule modifyLRTurns-2

(declare (salience -20))

(t--poly $?ptsl ?xl ?yl. ? lpx ? lpy for ?phase)

(line ?lno $?pts2 ?x1 ?y2 ?lpx ?lpy)

(borders $?iines for ?phase)

(test (= (member ? lno $?lines) 0))

?rt<- (right-turn $?lineList-1 for ?phase)

?lt <- (left-turn $?lineList-2 for ?phase)

(test (and (.= (member ?lno $?lineList-l) 0)

(= (member ?lno $?lineList-2) 0)))

=>

60

(bi.nd ?delta

(-:- (+ (* ?x 1 ? lpy). (* ?_ l p x ? y2) (* ? x2 ? y 1))

(+ (* ?lpy ?x2) (* ?y2 ?xl) (* ?y1 ?lpx))))

(if (> ?delta 0) then ; left-turn

(retract ?lt)

(assert (left-turn ~(mv-append $?lineList~2 ?lno)

for ?phase))

else (if (< ?delta 0) ·then

(retract ?rt)

; right-turn

(assert (right-turn = (mv-appe.nd $?lineList-1 ?lno)

for ?phase))

else . delta - 0 '
(bind ?ax (- ?xl ? lpx)) . X component of vector· a . ,

(bind ?ay (- ?y1 ? lpy)) . y component of vector a '
(bind ?b (- ? 2 ? lpx)) . X component of vector b . X .x

'
(bind ?by (- ?y2 ? lpy)) . y component of vector b '
(bind ?a-len (sqrt (+ (* ?ax ?ax) (* ?-ay ?ay.))))

(bind ?b-len {sqrt (+ (* ?bx ?bx) (* ?by ?by))))

(bind ?a-mul-b (+ (* ?ax ?bx) (* ?ay ?by)) .)

(bind ?angle (/ ?a-mui-b (* ?a-len ?b-len)))

(bind ?angle (trunc (* ?angle. 10000)))

(if (> ?angle 10000) then ; anile = 3.14159 radians

(retract ?lt)

(assert (left-turn =(mv-append $?lineList-2 ?lno)

for ?phase))

else ; angle - 0 radian

61

(~ind ?len2 (length $?pts2))

(bind ? count O)

(while (and (= ?delta O) (< ?count S)) do

(if (= ?len2 0) then

(bind ?x3 ?x2)

(bind ?y3 ?y2)

else

(bind 1x3 (nth (- ?l~n2 1) $?pts2))

(bind ?y3 (nth ?len2 $?pts2))

(bind ?len2 (- ?len2 2)))

(bind ?delta

(- (+ (* ?xl ?lpy) (* ? lpx ?y3) (* ?x3 ?y1))

(+ (* ?lpy ?x3) (* ?y3 ?xl) (* ?yl ?lpx))))

(bind ?count (+ ?count 1)))

(bind ?count O)

(bind ?lenl (length $?ptsl))

(while (and (= ?delta 0) (< ?count 5)) do

(if (= ?lenl 0) then

(bind ?xO ?xl)

.(bind ?yO ?yl)

else

(bind ?xO (nth (- ?Lenl 1) $?ptsl))

(bind ?yO (nth ?lenl $?ptsl))

(bind ?lenl (- ?lenl 2)))

(bind ?delta

(- (+ (* ?xO ?lpy) (* ?lpx ?y2) (* ?x2 ?yO))

62

(.+ (* ? lpy ?x2) (* ?y2 ?xO) ("* ?yO ?1px))))

(bind ?count (+ ?count 1)))

(if (>= ?delta 0) then ; left turn

(retract ?lt)

(assert (left-turn = (mv-append $?lineList-2 ?lno)

for ?phase))

else ; right ·turn

(retract ?rt)

(assert (right-turn =(mv-append $?lineList:....1 ?lno)

for ?phase)))))))

(defrule openUpLRTurns

(declare (salience -30))

?lt <-- (left-turn $?lineList-1 for ?phase)

?rt<- (right-turn $?lineList-2 for ?phase)

=>

(retract ?lt ?rt)

(bind ?lenl (length $?lineList-1))

(bind ?lenr (length $?lineList-2))

(bind ?i O)

(if (> ?lenl 0) then ; any left turns

(while (< ?i ?lenl) do

(bind ?lno (nth (+ ?i 1) $?lineList-1))

(.assert (temp ? lno for ?phase))

(bind ? i (+ ? i 1)))

else (if (> ?lenr .0) then

63

; no left turns, some right turns

(while (< ?i ?lenr) do

(bind ?lno (nth (+ ?i 1) $?lineList-2))

(assert (temp ?lno for ?phase))

(bind ?i (+ ? i 1)))))

(if (or (> ?lenl 0} (> ?lenr 0)) then

(assert (has-same-angle for ?phase)

(min-angle 63000 to O for ?phase))))

; 2*pi < 6.30

(defrule calcAngle-1

(declare (salience -40))

?tt <- (temp ?lno for ?phase)

(t~poly $?pts ?xl ?yl ?x2 ?y2 for ?phase)

(line ?lno ?x2 ?y2 ?x3 ?y3 $?ptsl)

=>

(~etract ?tt)

(bind ?ax (- ?xl ?x2)) . X component of vector ,

(bind ?ay (- ?yl ?y2)) . y component of vector ,

(bind ?bx (- '?x3 ?x2)) . X component of vector ,

(bind ?by (- ?y3 ?y2)) . y component of vector ,

a

a

b

b

(bind ?a-len (sqrt (+ (* ?ax ?-ax) (* ?ay ? ay))))

(bind. ?b-len (sqrt (+

(if (or (= ?a-len 0)

(bind ?angle 62831)

else

(*

(=

?bx ?bx) (* ?by ?·by))))

?b-len 0)) then

; 2*pi = 6.28318

64

(bind ?a-mul...;b (+ (* ?ax ?bx) (* ?ay ?by)))

(bind ?angle (acos (/ ?a-mul-b (* ?a~len ?b-len))})

; angle in radians

(bind ?angle (trunc (* ?angle 10000))))

(assert (angle ?angle to ?lno for ?phase)))

(defrule catcAngle-2

(~eclare (salience -40))

?tt <- (temp ? lno for ?phase)

(t-poly $·?pts ?xl ?yl ?x2 ?y2 for ?phase)

(line ?lno $?ptsl ?x3 ?y3 ?x2 ?y2)

=>

(ret~act ?tt)

(bind ?ax (- '(x1 ?x2)) . X component of vector ,

(bind ?ay (- ?yl ?y2)) . y component. of vector ,

(bind ?bx (- ?x3 ?x2)) . X component of vector ,

(bind ?by (- ?y3 '? y2)) . y component of vector ,

a

a

b

b

(bind ?a-len (sqrt (+ (* ?ax ?ax) (* ?ay '?ay))))

(bind ?b--len (sqrt (+ (* ?bx ?bx) (* ?by ?by))))·

(if (or (= ?a-len 0) (= ?b-len 0)) then

(bind ?angle 62831) ; 2*pi - 6.28318

else

(bind ?a-mul~b (+ (* ?ax ?bx) (* ?ay ?by)))

(bind ?angle (acos (/ ?a-mul-b (* ?a-len .?·b-len))))

; angle in radians

(bind ?angle (trunc (* ?angle lODOO.))))

6S

(assert (angle ?angle to ?lno for ?phase)))

(defrule findMinAngle

?-ang <- (ang __ le ?anglel to ? lnol for ?phase)
\

?min<- (min-angle ?angle2 to ?lno2 for ?phase)

?hsa <.,... (has-same-angle $?lineList for ?phase)

=>

(-retract ?ang)

(if (= ?angle.1 ?angle2) then

(retract ?hsa)

(bind $?list (mv-ap.pend $?lineList ?lnol))

("assert (has-same-angle $?list fOr ?phase))

else (if (< ?anglel ?angle2) then

(retract ?min ?hsa)

(assert (has-same-angle ?lnol for ?phase)

(min-angle ·?anglel to ?lnol for ?phase)))))

(defrule moreTestsNeeded

(declare (salience -50))

?min<- '(min-angle ?angle to ?lno for ?phase)

?hsa <- (has-same-angle $?lineList for ?phase)

=>

(if (= (length $?lineList) 1) then

(retract ?hsa)

else

(retract ?min)

66

(assert (process for ?phase)

(point-no 3 for ?phase})))

(-d~frule modifyProGess

?pro<~ (process $?pt-list for ?phase)

(p·oint-no ?number for ?phase)·

(has-same-angle $?line-List for· ?phase)

(te.st (> (length $?lineList) (/ (length $?pt-list.) 2)))

(t-poly $?pts ?tpx ?tpy for ?phase)

(line ?lno $Jlpts)

(test

(= (nth (+ (/ (length $?pt-list) 2) 1) $?lineList) ? lno))

=>

(retract ?pro)

(bind ?len (length $?lpt-s))

(bind ?fx (nth 1 $?lpts))

(bind ?fy (nth 2 $1lpts))

(if (and (~ ?fx ?tpx) (= ?fy ?tpy)) then

(if (> (* ?number 2) ?len) then

(bind ?index (~ ?len 2))

else

(bind ?index (* (~ ?number 1) 2)))

else

(if (> (* ?number 2) ·? len) then

(bind ? index O)

else

67

(bind ? index (- ? len (* ?number 2)))))

(bind ?x (nth (+ ?index 1) $? lpts))

(bind ?y (nth (+ 7index 2) $? lpts))

(bind $?list (mv-append $.?pt-list ?x ?y)).

(assert (process $?li.st for ?phase)))

(defrule findMostConvex

?pro <- (process $?pt-list f_or ?phase)

·?num <- (point--no ?num1:?er for ?phase)

?hsa <- (has-same-angle $?lineList. tor ?phase)

(test (= (/ (1 ength $? pt -1 is t) 2) (1 engt h $? 1 ineL is t)))

(t-poly $?pts ?x1 ?yl ?x2 ?y2 .for ?phase)

=>

(retract ?pro ?hsa ?num)

(bind ? count 1)

(bind ?min-angle 62831) ; 2*pi 6.28318

(bind ?.len {length $?pt-list))

(bind ?ax (- ?xl ?x2))

(bind ?ay (-ea ?yl ?y2))

(bind ?a""""len (sqrt (+ (* ?ax ?ax) (* ?ay ? ay))))

(bind ?' . l. 0)

(while (< ?i ?len) do

(bind ?bx (- (nth (+ ?i 1) $?pt~list") ?x2))

(bind ?by (-:- (nth (+ ?i 2) $?pt-list) ?y2))

(bind ?b-1en (sqrt (+ (* ?bx ?bx) (* ?by ?by))))

(bind ?a~mul-b (+ (* ?ax ·?bx) (* ? . .ay ?by)))

68

(bind ?angle. (acos (/ ?a-mul-b (* ?a-len ?b-len))))

(bind ?angle (trunc (* ?angle 10000)))

(if (= ?angle ?min-angle) then

(bind ?count (+ ?cotint 1))

else (if (< ?angle ?min~angle) then

(bind. ? count 1)

(bind ?lno (nth (/ (+ ?i 2) 2) $?lineList))

(bind ?min-angle ?angle)))

(bind ?i (+ ?~ 2)))

(if (or (= ?count 1)· (= ?number 10)) then

(assert (app~nd-line ?lno for ?phas~))

else

(assert (process for ?phase)

(point-no = (+ ?number lJ for ?pha~e.))))

(defrule createAL

(declare (salience -50))

?ma<- (min-angle ?angle to ?lno for ?phase)

=>

(retract ?ma) ,:;;

(assert (append-line ?lno for ?phase)))

(defrule appendLine-1

?al<- (append-line ?lno for ?phase)

?tp <- (t-poly $?pts ?x ?y for ?ph~se)

(line ?lno ?x ?y $?·ptsl)

69

?bo <- (borders $?lines for ?phase)

==>

(retract ?al ?tp ?bo).

(bind $?stuffl (mv-append $?pts ?x ?y $?ptsl))

(bind $? stuff2 (mv~append $? lines ? lno) .)

(assert (t-poly $?stuff1 for ?phase)

(left-turn for ?phase)

.(right-turn for ?phase)

(borders $? stuff2 foz- ?phase)))

(defrule appendL~ne-2

?al<~ (append-line ?lno for ?phase)

?tp <- (t-poly $?pts ?x ?y for ?phase)

(line ?lno $?ptsl ?x ?y)

?bo <- (borders $?lines for ?phase)

==>

(retract ?al ?tp ?bo)

(bind ? len (!en.9th $?pts 1))

(bind $?stuffl (mv~appertd $?pts ?x ?y))

(~hile (> ?len 0) do

(bind ?xa (nth c~ ?len 1) $?ptsl))

(bind ?ya (nth ?len $?ptsl))

(bind $?stuffl (mv-append $?stuffl ?xa ?ya))

(bind ?len (- ?len 2)))

(bind $?stuff2 (mv~append $?lines ?lno))

(assert (t-poly $?stuffl for ?phase)

70

(left-turn for ?phase)

(right-turn for ?phase)

(borders $?stuff2 for ?phase)))

(defrule checkP~ly

?tp <~ (t-poly ?fx ?fy $?pts ?fx ?fy for ?phase)

(borders $?borders for ?phase)

=>

(retract ?tp)

(assert (polygon ?fx ?fy $?pts ?fx ?fy for ?phase))

(.printout t llborders of " ?phase " : " $?borders crlf))

(defrule findEutectic

(polygon $?pts for liquid)

(lowest-y ?ymin)

(h~ghest-y ?ymax)

(min-temp·erature. ?minTemp)

(advance-in-temp ?advance)

=>

(bind ?len (length $?pts))

(bind ?minX (nth 2 $?pts))

(birtd ? i O)

(while (< ?i ?len) do

(if (< (nth (+ ?i 2) $?pts) ?minY) then

(bind ?minY (nth (+ ?i 2_) $?pts)))

(bind ?i (+ ?i 2)))

71

(bind ?m-temp

(+ (* (* (/ (- ?minY ?ymin) (- ?ymax ?ymin))

?-advance)

10)

?minTemp))

(assert (min-melting-temp ?m-temp))

(printout t "minimum melting temperature

72

" ?m-temp crlf)) ..

9. Vita

Ali Y1ld1r1m was born on February 5, 1967 in Dursunbey,

Turkey. His parents, Abdullah Y1ld1r1m and Zahide Y1ld1r1m,

raised him in towns of c;anakkale, a province in Western

Turkey. In 199·3, he graduated from Canakkale High School. From

Fall 1983 to Spring 1987 he attended Hacettepe University, in

Ankara, Turkey, and g.J;'aduated with a ·B. S .. in Electrical and

Electronics Engineering in June 1987. He got the first place

among the students who attended the Electrical and Electronics

Engineering Department and the second place among the students

attending th_e College of Engineering in the academic year

1986-1987. After a two-month vacation, he started working for

the TELETA$. Tel~ko~finikasyon Endfistri Ticaret A.$. Research

and Development Laboratories, one of the two biggest

telecommunication companies in Turkey. While working for

TELETA$, he was also ·attending Technical University of

Istanbul to get his M .. S .. in Computer: Science. Approximately

one and a half _years later, he won a scholarship from Turkish

Ministry of Education and left his bountry on March 17, 1989

for a M.S. and Ph.D. in Computer Science .in the United States

of America.

73

	Lehigh University
	Lehigh Preserve
	1991

	A compact representation of phase diagrams
	Ali Yildirim
	Recommended Citation

	tmp.1551882614.pdf.DO071

