
Lehigh University
Lehigh Preserve

Theses and Dissertations

1991

An object-oriented framework for computer
network simulations
Bruce R. Varnerin
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Varnerin, Bruce R., "An object-oriented framework for computer network simulations" (1991). Theses and Dissertations. 5480.
https://preserve.lehigh.edu/etd/5480

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5480?utm_source=preserve.lehigh.edu%2Fetd%2F5480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AN OBJECT-ORIENTED FRAMEWORK
FOR COMPUTER NETWORK SIMULATIONS

by
Bruce R. Varnerin

A thesis
Presented to the Graduate Committee

of Lehigh University
in Candidacy for the Degree of

Master of Science .
1Il

Computer Science

Lehigh University
(April, 1991)

This thesis is accepted and approved in partial fulfillment of the requirementS for the
degree of Master of Science in Computer Science.

4/zs/<j/
Date

Advisor in Charg

CSEE Departmen

..
11

'' '1.

ACKNOWLEDGEMENTS

There are many people deserving thanks for their support while completing this thesis.

Above all others, my wife, Debbie, deserves thanks for her understanding and

encouragement. Without her, this thesis would not have been possible.

The guidance offered by Professor Edwin Kay was instrumental in bringing my abstract

ideas into a cohesive project. I thank him also for making time for me in his hectic

schedule.

I should also mention the help Pam Woodbury provided by sharing the files that

implemented the Smalltalk-80 simulation framework. This enabled me to implement

and experiment with the network simulation framework much more quickly than I

could have otherwise.

m

CONTENTS

I. Abstract •·
II. Introduction

ID. The Smalltalk-80 Environment • • •
A. The Smalltalk-80 Language • •

1. Objects, Messages, and Methods 6
2. Oasses and Instances 7
3. Inheritance 8
4. Syntactical/Notational Conventions 9

B. Programmer's Interface • • • • •

1. Browsers 16
2. Inspectors 16
3. Debuggers 17
4. Model-View-Controller Paradigm 17

C. Simulation Tools ·• .
1. ProbabilityDistribution Class Hierarchy 19
2. Simulation Class 21
3. SimulationObject and EventMonitor Classes 24
4. Resource and ResourceCoordinator Classes 28

IV. The Network Simulation Framework . . • • • • • . . . •· .
A. Overview

1. Architecture of the Model
• • • • • • • • 0 • . . .
35

2. Customers, Servers and Resources 40
3. The Life Cycle of a NetworkMessage 42
4. Statistics Gathering 44

B. Implementing the Framework - Class Descriptions
1. NetworkSimulation 46
2. Network (Abstract Class) 47
3. NetworkNode (Abstract Class) 49
4. NetworkMessage 52

C. Expanding the Framework - Implementing Subclasses
1. Network Subclasses 54
2. NetworkNode Subclasses 58

D. Designing a User Interlace • • • 0 .,
1. Interacting with the Simulation 63
2. Interacting with SimulationObjects 64
3. Event Logging 64

lV

1

2

5
6

15

18

33
33

45

53

61

V. Example: Evaluating LAN Expansion . . • • • 66
A. The Existing LAN • . . . • • . • • . . . • . • .• 66
B. Classes Workstation, File Server and LAN • 0 67
C. Results • • • • • • 71

VI. · Conclusion • • . • . . . • • • • 75

vn~ References • . • • . • • • • • . • • . • . • • . 77

VIII. Appendix A - Simulation Framework Implementation • • . . . • • 79

IX. Appendix B - Network Simulation Framework Implementatiop . . • • 100

X. Biography • • • • • • • • • • • . • • . • . • • • 127

V

LIST OF FIGURES

Figure 1. Class Notation Examples • • . • • • • • 0 • • • . 13

Figure 2. Instance Notation Examples 0 • . . • . • 0 . . • • 14

Figure 3. Object Interaction Notation Example • • • • • • • • • 14

Figure 4. Conceptual Model of a Computer Network • • • • • • . . . 34

Figure 5. Roles Within the Network Simulation Framework • • • . • 35

Figure 6. Class Hierarchy • • • . • 0 • . • . 37

Figure 7. Linking of Instance "'v-ariables . . • • • • • 0 • 0 . • . 39

Figure 8. The Model Resources . . . • • • • • • . • . • . • 42

Figure 9. Timeline of a NetworkMessage • • • • • • • . • . • 44

Figure 10. Proposed User Interlace • . . • • • • 0 ~ 0 • .. • • 62

figure 11. The Effects of Network Expansion . • • • • 0 • . • . • 74

G

.
Vl

I. Abstract

Today's local area networks are expanding and diversifying at an alarming rate. Many

vendors offer network traffic monitoring applications to assist the network manager in

detecting network faults. Some network simulation packages have been made available

to provide pro-active network management. These approaches have proved to be too

restrictive and cumbersome for network managers in the field.

This thesis proposes an innovative approach to the problem of network simulation - an

approach that is both flexible and easy to implement. At the core of this framework is

an object-Oriented programming environment (Smalltalk-80) and a set of predefined

network objects. All that i~ left to the network manager is to specify host-to-host traffic

and what statistics are to be collected. At the same time, the network manager is

encouraged to adapt the existing network objects to his own environment

(implementing new protocols, adding random errors, etc).

The objectives of this thesis are (1) to present the Smalltalk-80 environment, with

emphasis on its simulation framework, (2) to present the newly developed network

simulation framework, and .(3) to demonstrate how this framework would be used. The

framework has ·been implemented in Objectworks\5m.alltalk on a Sun Microsystems

SparcStation 1 + workstation. Results of a ·simple study on local area network

expansion are also presented in this thesis.

1

II. Introduction

Queuing network analysis has provided the primary framework for determining

network delay behavior. Since accurate representation of a network protocol requires a

queue at every control point (flow control, media access, error checking, etc.),-this

method quickly falls short for even the most trivial real world examples [BeG87].

Simplifying assumption~ can be made to reduce the number of queues at the expense of

sacrificing accuracy and usefulness.

Today's network analysts must apply new techniques. A combination of simulation,

queuing network analysis and heuristics, is the only approach that can make sense of the

complexity in today's networks. And, indeed, the literature is flooded with vario.us

implementations of this theme, broadly classified as "network simulations" regardless

of the analytic content. For the most part, these simulations have done a thorough job

of modeling the networking protocols and computing environments around which they

were designed.

The network simulation tools reported to date fall into two categories: those that present

.a procedural programming interface [ASA85,DeP85,KiL87,JaJ87] and those that

present a "user-friendly" interface [Bac87,ZTD88]. The programmatic approaches offer

infinite flexibility to .the user adept at programming, simulation, queuing theory, and

networking protocols (and infinite complexity to those who are not). The "user

friendly;,· approaches allow the user to select predefined protocols, topology, traffic

patterns, and statistics (but afford little flexibility for the adventuresome user). One

approach worth noting [HeM88] offers a "user-friendly" interface, but relies on the user

2

...

to develop the queuing network model for the system under analysis.

These techniques have failed to gain strong popularity in the network management

community owing to a familiar problem: network managers are not usually simulation

experts, but they need a tool with enough flexibility to be adaptable to their

environment. (That is, they want some flexibility, but not at the expense of usability.)

Object-oriented programming and user interfaces are gaining.increasing popularity in

many applications. Simulation model development has not yet taken advantage of the

many benefits offered [Coo86]. Several of these advantages look particularly

promising for network simulation. Objects ar~ completely independent of each other

Gust as network nodes are). Objects communicate with each other via messages (the

analogy here is obvious). And finally,. inheritance allows for expandability and

adaptability to almost any environment. At least one leading network architecture is

actually specified in object-oriented terminology [ZDL90].

The po~ential for object~oriented programming in the network management arena is best

espoused by Hiebert:

Mapping and representing networks via object-oriented
definition principles and employing inheritance and
method/ data-encapsulation concepts could simplify and reduce
overhead in real-world networks. The benefits of associating
the methods and properties with the proper class of objects may
also reduce the software maintentlnce costs in network-ma.Mgement
and -planning software. [Hie88]

This paper will present the high-level design of a network simulation framework based

on the Smalltalk-80 object-oriented programming environment. This method takes

3

I

advantage of the general benefits of object-oriented programming as well as several

specific advantages offered by the Smalltalk-80 environment (easy to execute

simulation constructs, a windowed interface, and the ability. to customize the entire

environment to a particular application) [GoR83].

The framework introduced treats all network entities as independent objects. The

network itself, its nodes, and its messages are separate instances of Smalltalk-80

classes, with their own memory and protocol (behavior). Simulation control and all

global statistics gathering are performed by an instance of yet another class.

The network manager interacts with this framework through the standard Smalltalk-80

programming environment. New object classes are defined for each network and

network node. Setting network parameters and gathering statistics are programmed by

the user using the utilities provided by the framework. The inherent flexibility of

Smalltalk-80 allows the more adventuresome user to make changes to any part of the

framework. Defining new object behaviors, changing statistics gathering~ and changing

network behavior are all possible within the framework.

This paper will first present an overview of the Smalltalk-80 programqiing

environment, concentrating on its simulation tools (Section II). I present the newly

developed extension of these simulation tools that make up the network simulation

framework in Section m. In Section IV, this framework-is applied to a simple example

of network reconfiguration. The paper is concluded with Section V, with an emphasis

on identifying areas for future work in developing this framework.

4

ill. The Smalltalk-SO Environment

Object-oriented programming languages have been developed around three underlying

ideas: data/program encapsulation, message passing between objects, and object

inheritance [Coo86]. Encapsulating the data with the program ·modules that act on it

effectively creates "smart data" (an object) [Par90]. The programmer does not need to

know the underlyin~ details of the data, just how it responds to other objects. These

responses are elicited-by sending the object a message. Inheritance is used by the

programmer to extend the capabilities of objects, without having to reprogram the

object from the ground up.

This object-oriented paradigm is implemented to varying degrees by the languages

available on the commercial market. C++, Simula, Clu, and Ada have all managed to

gain some acceptance despite some inadequacies (e.g., inconsistent treatment of

primitive objects, limited inheritance capabilities, inadequate development tools, etc}

[Coo86].

Smalltalk-80 is more than just an object-oriented programming language; it is e:t

completely consistent, object-oriented programming environment [GoR83]. This

section of the paper will first provide an overview of the Smalltalk ~80 "language, with

the intent of providing enough knowledge to understand the network simulation

framework presented in the next section.: After the language is explained, I will bri~fly

present the programmer's environment. The final part of this section will detail the

Smalltalk-80 simulation tools described in [GoR83]. It is from these basic simulation

tools that the network simulation framework is built.

5

A. The Smalltalk-80 Language

Because of the consistent implementation of Smalltalk-80, it is only necessary to learn a

few basic concepts to understand the language. These concepts include·: objects,

messages, methods, classes, and instances [GoR8?]. I present these ideas below.

1. Objects, Messages, and Methods

An object is made up of private variable(s), the data, and a set of oper3:tions that act on

that data·. These two parts of an object are also called its state and behavior. The value

of an object's private.variables define its state; its methods define its behavior [Par90].

A message is sent to an object as a request for it to invoke one of its methods and send a

reply back to the sender (another object). [9oR83J

In Smalltalk-SO, every conceivable part of the .environment, is itself, a Smalltalk:-80

object (e.g., numbers, characters, queues, geometric shapes, dictionaries, text editors,

user menus, windows, debuggers, etc. are all objects· accessible to the programmer). To

understand an object is to understand Smalltalk-SO.

An object that must maintain multiple-pieces of information is called a composite

object. Indeed, even an object's private variables are themselves objects TPar90].

However, these private variables are not directly accessible to other objects· in the

system. They can only be accessed through the composite object's methods.

Messages sent to objects identify a particular meth~d for an object to execute and also

supply the necessary arguments. A message is a two-way pipe, however, since the

message receiver must return some object to the sender. If no object is explicitly

6

returned by the method, the receiver itself is returned. Whether the returned object is

used is completely ll:P to the sender. The set of messages to which an object responds is

called its interface, or protocol, with the rest of the system [GoR83].

Messages may be unary, keyword or bi,u;i.ry. A unary messag_e takes no arguments (e.g.,

"clock time" represents the message "time,,. being sent to the object "clock"). A

keyword message takes orie or more arguments (e.g., "clock setHour: 10'·' is the

message "setHour:" sent to "clock" with the argument "1 O"; "clock setHour: 10

andMinutes: 30" is the message "setHour:andMinutes:" sent to "clock" with the

arguments "10" and "301f). A binary message, specified by either one.or two symbols

(e.g.,+,--, etc.) takes a single argument (e.g., "3 + 4" is the message "+" sent to "3" with

the argument "4"). [GoR83]

The methods that define how an object re~ponds to messages are grouped into message

categories. The standard category names used by the predefined Smalltalk-80 objects

allow easy access for copying code, ot just to learn how an object functions.

2. Classes and fustances

Since many programming objects share the same properties (e.g.·, the integer "3" and

the integer "4" should have the same methods in order for arithmetic to be consistent), it

would be useful to be able to do this without having to reprogram each method for each

object. This is done by separating an object's state from its behavior. The data-only

object is known as an instance; the metlfd-holding object is known as a class. A class

can be viewed as a template for the object's data affixed to its behavior. [Par90]

7

A class is an object in and of itself. It responds to messages through its class methods

(as opposed to the instance methods), and may contain its own memory as class

variables. Class methods are used.to create new instances and to initialize the class.

Class variables serve as global variables,. accessible to all instances of a class, as well as .

the class.

Example~ of Smalltalk-80 classes include Integer, Float, Array, Dictionary,

Rectangle, Stream, File (and many more). Examples of instances are "4" (instance of

class Integer), "3.1415" (instance of Float), "#(1 2 3 4 5)" (instance of Array), etc.

3. Inheritance

Classes allow the Smalltalk-80 programmer to share methods and instance variable

templates among identical types of objects. Inheritance, or subclassing, allows the

Smalltalk:-80 programmer to share instance variable templates and methods among

mostly similar types of objects. [GoR83]

Consider a small integer object versus a standard integer object (a small integer

occupies less memory than a standard integer). Aside from the range of values that can

be represented, these two objects are identical. Or, consider two collections of objects:

the first, an ordered collection, maintains the order in which objects are added; the

second, a sorted collection, sorts objects according to some algorithm. Aside from the

method to add an object to the collection, these two objects are almost identical. To

define a new class just to provide these differences would be ·wasteful.

8

Smalltalk:-80 allows the programmer to define a new class as a subclass of an existing

class. In so doing, all the instance variable declarations ~d methods become accessible

to the subclass transparently. If a superclass's method needs to be modified (e.g., the

method to add art element in the class SortedCollection), the programmer simply

overwrites the superclass method by redefining it for the subclass.

This ability to add functionality incrementally is the key to Smalltalk-80's flexibility.

A novice user merely makes use of existing object.classes, while the expert programmer

is free to create new ones. Smalltalk-80 is so open to change and expandability, that the

program.mer is free to change all but the most primitive classes in the system.

Inheritance is the key to turning the network simulation framework into a functioning

simulation. The simulation user (programmer) is asked to define subclasses to describe

the network and its nodes.

4. Syntactical/Notational Conventions

Smalltalk:-80 has a simple syntax, although unusual by procedural programming

standards. Since I will need to make use not only of Smalltalk-80 code, but of several

diagrams to explain the network simulation framework, I will present the Smalltalk-80

syntax and introduce some notational conventions designed to make this thesis more

readable.

To distinguish Smalltalk-80 code from the rest of the text, I will present it in the

Helvetica font. Comments within the Smalltalk-80 code are delimited with double

quotation marks. Most Smalltalk-80 code will also be separated from the text by

9

spacing. When Smalltalk-80 objects (classes or instances) are mentioned in the passing,

they will not ~e physically separated, but will appear in the Helvetica font. When

talking about a Smalltalk-80 class, I will explicitl.y use the word class. All other

references to Smalltalk-80 objects can be assumed to ref er to an instance. Method

names and messages mentioned in the text will appear in Helvetica bold font.

a. Smalltalk-80 Expression Syntax

As mentioned above, Smalltalk-80 syntax is pretty simple to understand, but it is

different from what most programmers are used to. Smalltalk-80 code consists of four

expression types: literals (constants), variable names (current value of a variabJe),

message expressions (invoking a.receiver's methods), and block expressions (for

deferred actions and control structures). This section that describes Sm_alltalk-80 's

expression syntax is taken almost exclusively from [GoR83].

Smalltalk-80 literals are expressed in a fashion familiar to most programmers:

• Numbers are a sequence of an optional radix, an optional minus sign,·digits, an

optional decimal point, digits and an optional exponent (e.g., 3.1415, 8r777,

6.03e23).

• Character constants are prefixed by the dollar sign (e.g., $a, $b, $d).

• Strings are enclosed in single quotes (e.g., 'Hello').

• Syipbols a prefixed with a pound sign (e.g., #bill).

10

• Arrays are delimited with parentheses and preceded by a pound sign

(e.g., #(1 2 3)).

Variable·names may be any string of.characters starting with a letter or digit. By

convention, class, pool and global variables begin with upper case letters; temporary

and instance variables begin with lower c~e letters. Anoaier convention adopted by

Smalltalk-80 programmers is that when variable names consist of two or more

concatenated words, the first letter of each embedded word should be capitalized (e.g.,

MaximumNumberAllowed or numberOfMessagesPending).

A message expression consists of a receiver (an object), a message selector (the name of

the method the receiver should invoke) and possibly some arguments. The value of a

message expression is the re~ value of the method invoked (by default the receiver

itself if no value explicitly returned). A value is explicitly returned from a method

using the ""' operator (e.g., A rue returns the boolean true value). The following are

all message expressio11:s:

. argument(s) message expression receiver message

3+4 3 + 4
theta sin theta

.
Sin

anArray at: index anArray at: index
inventory at: #apples put: 1000 .inventory at:put: #apples, 1000

A message expression's return value can be assigned to a variable (using the":="

assignment operator) or used in more complex expressions (use parentheses if unsure of

operator precedence).

11

Block expressions (delimited by square brackets) are primarily used within. control

structures. A block represents a series of actions to be performed later (i.e., during

execution of the control structure). Within control structures blocks are used either as

arguments of a message or as the receiver of a message. The following code fragments

execute 'familiar control structures:

"if-then-else" (counterVariable = 0)

'1or loop"

iff rue: [Transcript show: 'counter is zero']
ifFalse: [Transcript show: 'counter is nonzero']

(1 to: 10) do: [:index I Transcript show: 'index = '.
index printOn: Transcript]

''while loop" [self anyMessagesToSend]
whileTrue: [self sendMessage]

b. Smalltalk-BO Class/Met hod Syntax

[GoR83] mentions two nieans of describing a class in print. The first, called a protocol

description~ gives a functional description of the messages in the instances' message

interface. The second, an implementation description., shows how this functionality

would be implemented in the system.

A protocol description lists each message that an instance responds to, giving a

comment about its functionality. No mention is ·made of how it is implemented. This

approach provides a black-box approach that is appropriate to object-oriented

programming. This is the approach that will be taken in the text of this thesis.

12

Implementation descriptions show the private instance variables and the Smalltalk-80

code for each message that an instance will respond to. Implementation descriptions

are provided in the appendices.

c. Pictorial Representations

Diagrams will be used extensively to describe the network simulation framework. .

These diagrams will maintain the conventions mentioned above for class names,

instance variable names and mes~age selectors (Helvetica font., messages in bold).

In addition, when depicting class hierarchy, classes will be shown in boxes. The class

name, super class, class variables and instance variables·will be listed. Abstract classes

will appear within dotted lines; concrete classes are shown in solid. Figure 1 depicts the

pictorial conventions for classes.

class: AbstractClassName class: ConcreteClassName

: superclass: SuperClassName superclass: SuperClassName
class class

variables: Class VariableName variables: ClassVariableName

instance instance

variables: lnstanceVarlableName variables: Instance VarlableName .

Figure 1. Class Notation Examples

It will also be necessary to show the linkage between instances of the classes of the

network simulation framework. An instance will be shown with a nam~ indicative of

its class and with its instance·variables as depicted in Figure 2.

13

a Fraction

numerator
denominator

aDate

day
year

allnkedllst

firstlink
lastlink

Figure 2. Instance Notation Examples

aWlndow

inputOrigin ,
creationOrigin
sensor

Finally, some pictorial representation of an instances message interface must be shown.

It is useful to.see how the various simulation objects interact with each other during.the

simulation. The object interaction notation will depict objects in solid boxes with a

name indicative of its class; messages are shown as solid arrows; return values are

shown as dotted arrows. When a message merely returns self (the receiver), the return

path is omitted. Objects that are classes will be explicitly labeled (see Figure 3).

aFlleStream k::-:;___n_:_ex__;t_--1 aCardflle at: (aPersonRecord name)
put: aPersonRecord - aDlctionary

·•. y /'t

1"lext··1 aStrlng ~-...-~ext
.
:l'lleW

a Person Record
ft .

new: aString .
:/'flew

'

Person Record (class)

Reading personnel records
from a.file into an online
dictionary, one record at a
time.

Figure 3. Object Interaction Notation Example

14

B. Programmer's Interlace

As was mentioned earlier in this section; Smalltalk-80 provides more than just an
~

object-oriented programming language; it provides a complete object-oriented

programming environment [GoR83]. This interactive environm~nt consists of a

workstation, a bit-mapped display, a mouse, and a window-based front-end that

functions as a programmer's interface. It is this programmer's interface that sets

Smalltalk-80 apart from. other object-oriented languages. [Coo86]

The starting point to this· interface is the Launcher, a main menu for creating windows,

saving changes, interacting with the ftle system, etc. The programmer's interface is

itself programmed in Smalltalk-80. The.compiler, the source code editor, the debugger,

etc. are all Smalltalk ~80 objects whose methods are directly accessible to the

Smalltalk-80 programmer. This gives the Smalltalk-80 programmer the uncommon

ability to. change the programming language itself.

Smalltalk-80 provides three utilities that will have to be used by the implementor of the

network simulation framework. A browser allows one to browse or edit the source

code of all classes in the Smalltalk-80 system. An inspector allows one to view the

state of any instance of a class. A debugger is a combination of a browser and an

inspector that appears whenever errors are encountered in the Smalltalk:-80 code.

Browsers, inspectors, and· debuggers are presented in detail in [GoR83] and [Par90].

An overview of these three utilities along with an important programm~g approach

called the model-view-controller paradigm are presented in the following subsections.

15

1. Browsers

A browser window is the primary means to view, add, and edit Smalltalk-80 code. It

consists of a window with 5 subwindows, the largest of which is a source code editor.

The smaJ)er subwindows allow the user to select categories of classes (e.g.,

"Collections-Text"), individual classes (e.g., String), categories of methods (e..g.,

"comparing"), and individual methods (e.g., match:), to view or edit.

The system browser makes all class.es in the system available to the user. Other

browsers view a given category of classes, classes that send or implement the same

message, or just one particular class.

A browser may be created.from the Launcher or by sending an object the message

browse.

2. Inspectors

An inspector shows the current state of any active object. It is a two column window

showing each instance variable of the object and its corresponding value. An inspector

can be used as a debugging aid, as a "what-if' tool (you can·change a value with an

inspector), or simply as an output mechanism. Inspectors are created from several. other

utilities (e.g., debuggers and workspaces), or can be invoked simply by sending any

object the message inspect.

16

3. Debuggers

A debugger can be invo~ed after an error is encountered as a method is run. A

debugger presents four st;1bwindows. At the top is a trace of the operations that were

executed just before the error was encountered. In the middle is .a source code editor

·that shows the offending piece of code. At the bottom are two inspectors, one for

ins~ance variables, and one for temporary variables.

The debugger allows the programmer to step through the events leading up to the error.

At any point, code can be modified in the source code. ed~tor and saved. The debugger

allows you to single""'.step, resume execution or quit.

4. Model-View-Controller Paradigm

The Model-View-Controller (MVC) paradigm is a programming methodology designed

to modularize the task of developing user interfaces to Smalltalk-BO programs- [Par90].

In this approach, the.user interface (the view) is developed as a separate Srnalltalk-80

object from the main program object (the model). The two are linked by a third object~

called the controller.

The network simulation framework presented in this thesis provides a means for

systematically developing.the model object in the MVC triad. An approach to

developing a user-friendly interface (i.e., the view and the controller) will be

mentioned, but implementation details are not provided.

17

C. Simulation Tools

[GoR83] proposes a Smalltalk-80 framework for developing event-Oriven simulations.

Since the network simulation framework is a direct extension of these utilities, a

thorough explanation will be presented.

An event-driven simulation is one in which the simulated clock is advanced to the point

at which the next event occurs (rather than a fixed time increment) [GoR83]. This

implies that an event must be scheduled beforehand to occur (i.e., everything must be

expected}. A queue of events, ordered by the (simulated) time at which they are to

occur, must be maintained to implement this approach.

In many real-world systems, objects enter and leave independently (e.g., customers in a

store). The may produce or consume resources (e.g., paying cash and buying

merchandise, respectively). They may also need to coordinate their activities with each

other (e.g., two customers may want the same piece of merchandise, or may require

help from a salesperson). [GoR83]

The simulation framework in [GoR83] provides three classes (or class hierarchies) for

implementing simulations. The Simulation class describes instances that control the

entire simulation: maintaining the event queue, handling the overhead of objects

entering and leaving; storing and coordmating resources. Class SimulationObject (and

i~s subclass, EventMonitor) provide the framework for describing the individual

objects to be simulated. Class Resource (and its subclass ResourceCoordinator),

provide a mechanism for producing, storing, consuming, and releasing resources.

18

~
'> .,

' ,.·------

1. ProbabilityDistribution Class Hierarchy

Before getting into the simulation framework of [GoR83], I present the

ProbabilityDistribution class hierarchy that is frequently needed in the simulation

framework. Probability distribution functions are widely used to model random events

such as the frequency with which customers enter a store, the probability that two

customers might arrive at the same time, or the time it takes to service individual

customers [GoR83]. In perfonning network analysis, probability distributions are used

to model message interarrival times, message lengths, queue times, transmission times,

probable destinations, etc [BeG87].

[GoR83] presents both discrete and continuous probability distribution functions,

represented as abstract subclasses (DiscreteProbability and .ContinuousProbability)

of an abstract superclass (ProbabilityDistribution). It is intended that subclasses of

DiscreteProbability and ContinuousProbability will implement the density: x

method that is used to compute the next sampled value (returned by the next method).

Also presented in [GoR83] are concrete subclasses to model the various distribution

functions needed by simulation programmers. The discrete probability distribution

classes SampleSpace, Bernoulli, Binomial, Geometric, Poisson, as well as the

continuous probability classes, Uniform, Exponential, Gamma, and Normal are all

predefined and available for use. [GoR83]

In the network simulation framework, we will need to use the SampleSpace,

Uniform, and Exponential classes to simulate picking a random destination for a

message, message length distributions, and message interarrival times, respectively.

19

' If
I

The discussion here will be limited to creating instances of these three class.es for use in

the network .silllulation framework.

A SampleSpace consists of a set of all possible values. The next method answers one

of these values, selected at random each with an equal probability of success. A

SampleSpace is created by simply sending an array of all possible values as the

argument of the data: method of the SampleSpace class. For example, the following

code fragment creates a SampleSpace for the possible outcomes of rolling a die:

aSampleSpace := SampleSpace data: #(1 2 3 4 5 6).

A Uniform probability distribution function is the continuous equivalent to a

SampleSpace. Instead of choosing one value from all possible values each with equal

probability,. you choose a value within a range of values where each possible value has

an equal.probability. The value returned from the next method is a Float. The

following code fragment shows how to create a Uniform distribution function:

aUniformDistribution := Uniform from: 1 to: 100.

Rather than answering the question "What is the next yalue ?" Exponential

distributions determine how long it will be until the next event occurs. This is

obviously an important distribution for event-driven simulations, as we will see. Again,

Exponential is a continuous distribution and. returns the time until the nexf event when

sent the message next. The Exponential distribution is used most often v;hen the

likelihood of an event not occurring decreases with time (or, when the likelihood that an

20

event does occur increases withtime)[GoR83]. This is precisely what happens as

messages arrive in ~ network [HeM88]. An Exponential distribution is created by

specifying the average numb~r of events per unit time:

anExppnentialDistribution := Exponential mean: 0.1.
"0.1 events per unit time = 1 event every 10 units of ·time"

2. Simulation Class

Oass Simulation manages the objects in the simulated system and schedules events to

occur according to the simulated clock [GoR83]. Instances of class Simulation contain

the event queue, the simulated clock, a set of resources and a count of the active

processes.

Methods are provided for starting, finishing, and initializing the simulation, producing

and acquiring resources, inquiring about resources, and scheduling future actions.

Several methods are left to the developer to implement in subclasses (e.g., exit:,

enter:, defineArrivalSchedule, defineResources). Simulation is therefore an

abstract class.

An instance of class Simulation mediates among objects and resources. When an

object is scheduled to enter the system, it is placed into the event queue. When it

produces resources, they are stored in the .resources instance variable. When they need

to acquire resources, they must ask the cl3:Ss Simulation instance to do so. It is only by

having all scheduling and resource interactions go through the class Simulation

instance. that the simulation can be controlled.

21

Simulation instances use the class DelayedEvent to store events in the eventQueue.

A DelayedEvent represents a process paused until its resumptionCondition (time to

resume) has been reached. Class Delay~d Event does not have to be accessed directly

by the simulation programmer. Therefo1:"e, its protocol ·description will not be shown

below.

The [OoR83] protocol description of class Simulation is given below. A full

implementation description (including the DelayedEvent class) may be found in

Appendix A.

Simulation instance protocol

initialization

initialize

modeler's initialization language

defineArrivalSchedu le

define Resources

Initialize the receiver's instance variables.

Schedule simulation objects to enter the simulation

at specified intervals of time, typically based on

probability distribution functions. This method is

implemented in subclasses. It involves a sequence

of messages to the receiver (i.e., self) that are of the

form
schedule:at:, scheduleArrivalOf :at:,
scheduleArrivalOf:accordingTo:, or
scheduleArrivalOf:accordingTo:startingAt:

Specify the resources that are initially entered into

the simulation. These typically act as resources to

be acquired. This method is implemented by

subclasses and involves a sequence of messages to

the receiver (i.e., to self) of the form produce:
amount of: resourceName.

22

modeler's task language

produce: amount of: resource Name

coordinate: resourceName

An additional quantity of amount of a resource
referred to by the String, resourceName, is to be
part of the receiver. If the resource does not as yet
exist in the receiver, add it; if it already exists,
increase its available quantity.

Use of a resource ref erred to by the String,
resourceName, is to be coordinated by the .
receiver.

schedule: actionBlock after: timeDelaylnteger
Set up a program, actionBlock, that will be
evaluated after a simulated amount oftime,
timeDelaylnteger, passes.

schedule: actionBlock at: timelnteger
Schedule the sequence of actions (actionBlock) to
occur at a particular simulated time, timelnteger.

scheduleArrivalOf: aSimulationObject at: timelnteger
Schedule the simulation object,
aSimulationObject, to enter the simulation at a
specified time, timelnteger.

scheduleArrivalOf: aSimulationObjectClass accordingTo: aProbabilityDistribution
Schedule simulation objects that are instances of
aSimulationObjectClass to enter the simulation
at specified time intervals, based on the
probability distribution, aProbabilityDistribution.
The first such instance should be scheduled to
enter now.

scheduleArrivalOf: aSimulationObjectClass accordingTo: aProbabilityDistribution

startingAt: timelnteger
Schedule simulation objects that are instances of
aSimulationObjectClass to enter the simulation
at-specified time intervals, based on the
probability distribution, aProbabilityDistribution.
The first such instance should be scheduled to
enter at time timelnteger.

23

acc·essing

includesResourceFor: resourceName
Answer if the receiver has a resource that is ref erred
to by a String, resourceName. If such a resource
does not exist, then report an error.

provideResourceFor: resourceName

time

simulation control

startup

proceed

finishUp

enter: anObject

exit: anObject

Answer a resource that is referred to by the
String, resourceName.

Answer the receiver's current time.

Specify the initial simulation objects and the arrival
of new objects.

This is a single event execution. The first event in
the queue, if any, is removed, time is updated to
the time of the event, and the event is started.

Release references to any remaining simulation
objects.

The argument, anObject, is informing the
receiver that it is entering. This is a "do nothing"
method that should be implemented by subclasses.

The argument, anObject, is informing the
receiver that it is exiting. This is a "do nothing"
method that should be implemented by subclasses.

3. SimulationObject and EventMonitor Classes

[GoR83] proposes an abstract class, SimulationObject, to describe objects within a

simulation that have tasks to perform. The methods provided by this class allow the

object to interact with the Simulation instance. Subclasses of SimulationObject are

required to ~plement the initialize and tasks methods.

24

An abstract subclass of the SimulationObject class, EventMonitor, is also presented in

[GoR83]. This class is functionally equivalent to the SimulationObject class and still

leaves the initialize and tasks methods unimplemented. EventMonitor automatically

logs to the file, DataFile (a class variable) every event that the object performs. Since

SimulationObject and EventMonitor present the same message interface,

SimulationObject will be used hence foiw·ard to refer to both classes.

A SimulationObject enters the simulation, initializes itself,·performs its tasks and then

exits. As a SimulationObject is carrying out its tasks, it can produce or consume

resources, hold for periods of time, reschedule itself, etc. These actions, although sent

as messages to the SimulationObject itself (to "self"), are actually carried out by the

Simulation instance.

The protocol description for both SimulationObject and EventMonitor follow. Full

implementation descriptions appear in Appendix A. The use of these classes will

become clearer as the network simulation framework is unveiled. EventMonitor

becomes the superclass of all subclasses used to simulate the network, network nodes,

and messages on the network.

SimulationObject and EventMonitor instance protocol

initialization

initialize Initialize instance variables, if any.

25

sitnulation control

startup

tasks

finishUp

task language

Initialize instance variables. Inform the sitnulation
that the receiver is entering it, and then start the
receiver's tasks.

Define the sequence of activities that the receiver
must carry out.

The receiver's tasks are completed. Infomi the
sun ulation.

holdFor: aTimeDelay Delay carrying out the receiver's next task until
aTimeDelay amount of sitnulated titne has passed.

acquire: amount ofResource: resourceName
Ask the sitnulation to provide a simple resource
that is referred to by the String, resourceName.
If one exists, ask it to give the receiver amount of
resources. If one does not exist, notify the
siinulation user (programmer) that an err~r has
occurred.

acquire:. amount of: resourceName withPriority: priorityNumber
Ask the sitnulation to provide a simple resource
that is referred to by the String, resourceName.
If one exists, ask it to give the receiver amount of
resources, taking into account that the priority for
acquiring the resource is to be set to
priorityNumber. If one does not exist, notify the
siinulation user (programmer) that an error has
.occurred.

produce: amount ofResource: resourceName

release: aStaticResou rce

Ask the sitnulation to provide a simple resource
that is referred to by the String, resourceName.
If one exists, addto it amount more of its
.resources. If one does not exist, create it.

The receiver has been using the resource ref erred
to by the argument, aStaticResource. It is no

26

longer needed and can be recycled.

inquireFor: amount ofResource: resourceName
Answer whether the simulation has at least a
quantity, amount, of a resource ref erred to by the
String, resourceName.

resourceAvailable: resourceName
Answer whether the simulation has a resource
referred to by the String, resourceName.

acquireResource: resourceName
Ask the siin ulation to provide a resource
simulation object referred to by the String,
resourceName. If one exists, ask it to give the
receiver its services. If one does not exist, notify
the simulation user (programmer) that an error has
occurred.

produceResource: resourceName
Have the receiver act as a resource that is referred
to by the String, resourceName. Wait for
another SimulationObject that provides service
to (acquires) this resource.

resume: anEvent The receiver has been giving service to the
resource referred to by the argment, an Event.
The service is completed so that the resource, a
SimulationObject, can continue its tasks.

numberOf ProvidersOfResource: resourceName
Answer the number of SimulationObjects
waiting to coordinate its tasks by acting as the
resource referred to by the String,
resourceName.

numberOfRequestersOfResource: resourceName

stopSimulation

Answer the number of SimulationObjects
waiting to coordinate its tasks by acquiring the
resource referred to by the String,
resourceName.

Tell the siinulation in which the receiver is
running to stop. All scheduled events are removed.

27

and nothing more can happen in the simulation.

4. Resource and ResourceCoordinator Classes

A framework consisting of the classes Resource, ResourceProvider,

StaticResource and ·ResourceCoordinator are proposed by [GoR83] to manage

resources in event-driven simulations. Instances of the Resource class maintain a

queue of requests for the named•resource. It accesses the active simulation for tim~g

and process management. Its subclasses, ResourceCoordinator and

Resource Provider~ provide complete access and control of static and fluctuating

resources.

In a system, fixed resources can be consumable. (e.g., food) or nonconsumable (e.g., a

plate). Fluctuating resources are either renewable or producer/consumer coordinated.

Using a typical restaurant as a model will help visualize coordinated resources.

Customers enter and line up·waiting to be seated. They must wait until a waitress

arrives to seat and serve them before they can continue with the rest of their day. On

busy days, the customer line grows long,_ as there are·more customers than waitresses.

On slow days, the only line is that of the waitresses waiting for customers. Since the

customer needs the waitress to be able to eat, and the waitress needs the customer to

earn a living, these resources are said to be coordinated.

In the network simulation framework, the network and the messages on the network are

considered resources. The network nodes are the servers of the system. All these

objects need to be managed as coordjnated resources, since they are all independent

SimulationObjects with other tasks to perform (i.e., statistics _gathering). So, the

28

discussion of the Resource class hierarchy will be limited to just the superclass

Resource and the subclass ResourceCoordinator.

The Resource class provides the basic mechanism for handling resource requests: an

instance variable that contains the resource name (resourceName), an instance

variable that maintains a request queue (pending), and methods that manipulate these

instance variables. Subclass ResourceCoordinator implements the functionality for

satisfying coordinated resource requests. It must also be able to distinguish between

three conditions: either there are customers waiting for servers, servers waiting for

customers, or no one waiting at all. A ResourceCoordinator instance will answer an

object thatpoints to the next server or customer in the pending request queue when

asked to provide resources. The object returned, a WaitingSimulationObject instance,

will answer the server or customer (a SimulationObject) when sent the message

resource.

When using coordinated resources, the pending request queue represents customers or

servers waiting for service or to serve. These requests are represented as instances of

the OelayedEvent subclass, WaitingSimulationObject. WaitingSimulationObject

provides for priority resource requests and puts additional utilities around the

Delayed Event class to handle resources more easily. For instance, the customer or

server is held in an instance variable called resource instead of having to be extracted

from the DelayedEvent's resumptionCondition variable. As a result, a server that is

passed a WaitingSimulationObject need only send the message resource to access

the object itself. Since this is the only WaitingSimulationObject message relevant to

the network simulation framework, this class will be left out of the protocol description

29

that follows.

When a server finishes its service of a coordinated resource, it sends the resource a
. .

resume message. This accomplishes two tasks. It breaks the linkage to the server,

enabling the resource to exit the system without having to worry about garbage

collection. Also, it resumes the SimulationObject at the point in its tasks method that

it requested service.

The protocol for classes Resource and ResourceCoordinator (interpolated from

[GoR83]) is shown below. As with the rest ofthe Smalltalk-80 simulation framework

classes, the implementation descriptions (including class WaitingSimulationObject)

are found in Appendix A.

Resource class proto~ol

class initialization

activeSimulation: existingSim_ulation

instance creation

named: resourceName

Set the currently active simulation instance to an
existingSimulation.

Answer a new instance of the receiver with its
instance variable, resourceName initialized to

resourceName.

30

Resource instance-protocol

accessmg

addRequest: aDelayedEvent Add a request for resources, aDelayedEvent, to

the pending request queue.

name Answer the resourceName.

private

provide Resources

setName: aString

Answer the receiver itself.

Set the receiver's resourceName to the String,
aString, and initialize the pending request queue.

ResourceCoor(;jinator instance protocol

accessmg

customers Waiting

servers Waiting

queueLength

task language
.

acqµ1re

Answer whether there are customers waiting in lh:e·

receiver's pending request queue.

Answer whether there are servers waiting in the

receiver's pending request queue.

Answer the number of requests in the receiver's

pending request queue.

Answer a WaitingSimulationObject (a customer)

to serve from the receiver's pending request queue

if any exist. If not, pause the receiver and add the

WaitingSimulationObject to the pending request

queue. When a customer does become available,

resume the receiver and return the customer's

WaitingSimulationObject.

31

producedBy: ·aCustomer

private

Get service for aCustomer, if a server is

available. Otherwise, add the request to the

pending request queue.

getServiceFor: aC.ustomerRequest

giveService

setName: aString

Send a server the customer request,

aCustomerRequest, if a server is available,

otherwise answer #none.

Answer the first customer request in the pending

request queue if one exists. Otherwise, answer

#none.

Call super setName (from Resource class),

then initialize wholsWaiting (the instance

variable that keeps track of whether customers or

servers are in the pending request queue) to

#none.

32

IV. The Network Simulation Framework

A. Overview

Computer networks, like other real-world systems, consist of independent entities

(objects) sending random traffic into a shared system [ZDL90]. This thesis models

each network node, its messages, and the _network as separate Smalltalk-80 instances

and classes. This approach allows maximum flexibility and ease of understanding.

This section will explain the network simulation framework in Smalltalk-80

terminology. The tools employed here are direct extensions of the simulation tools

proposed by [GoR83] and explained in Section II.C.

!·first present a conceptual·view of a computer network, taken roughly from [KiL87].

This conceptual model is purposefully vague, to allow extension to a variety of network

architectures, but is based inherently on a CSMA/CD (Carrier Sense Multiple Access

with Collision Detection) type of network. In this model_, messages are generated and

enter an outgoing message queue at the source node. A node must sense when the

network becomes idle, at which time it can start to serve the message at the head of the

queue. It is assumed that the message· contains addressing information.. The source

node does not know how to deliver a message, it can only send it out onto the network.

The network, in turn, can pass the message on to the destination node, where it is

received. Figure 4 depicts this conceptual network model.

33

r------------------- 1

I SOURCE NODE
I
I
I

I

outgoing
message
queue

I I

L-----·---------------~

r----------,
NETWORK I

I

L----------~

r--------------------,

I
I

DESTINATION NODE

incoming
message -----1

queue

L----------- --------~

Figure 4. Conceptual Model of a Computer Network

Three types of SimulationObjects implement this conceptual model:

NetworkMessages, a Network, and NetworkNodes. The framework defines

NetworkMessages and Networks as renewable (coordinated) resources. Defining

resources in this way allows messages to enter and leave the simulation in a pseudo

real-time fashion. It also allows for the possibility of the network leaving the

simulation for periods of time to simulate network down time. The NetworkNode then

becomes the "server" of the system. Since the network nodes are the only active

entities in a real-world network, this representation is not only functionally correct, but

easy to grasp.

The three objects described above are controlled by the NetworkSimulation object.

NetworkSimulation does not r~present ru:i-object in the conceptual model; it functions

as the coordinator of the three "real" SimulationObjects. These four classes make up

34

the network simulation framework. The roles and relationships of these classes are

shown in Figure 5.

aNetworkMessage A NetworkMessage enters and becomes a
customer. After being served, it leaves.

eventQueue

A Network enters and becomes a customer.
aNetwork After being served, it keeps asking to be

served, until the simulation ends.

~:;;;:.t aNetworkSlmulatlon

A NetworkSimulation schedules all
events, handles resource requests
(to serve or to be served), and
performs timekeeping.

A NetworkNode enters and continually
aNetworkNode tries to serve NetworkMessages. If

none to send, do localProcessing.

Figure 5. Roles Within the Network Simulation Framework

1. Architecture of the Model

A subclass of Simulation called NetworkSimulation controls the operation of the

network model. It maintains global parameters (stop Time, logfile, etc.), accumulates

the overall statistics of the system (the number of simulation objects that have ent~red,

exited, etc.), ·and maintains a link to the Network instance through its instance

variables. An instance creation method of this class also creates the network and

network nodes. When adding a user interface (See Section m.D), the

NetworkSimulation instance is referenced as the model in the MVC architecture

35

[GoR83].

As with its superclass, NetworkSimulation performs the bulk of th~ work in th~se

simulations. It coordinates resources, schedules the arrival/exit of all objects, handles

event execution, and perfonns the timekeeping. NetworkSimulation has already

implemented the enter:, exit:, defineArrivalSchedule and defineResources

methods discussed in Section 11.C.2. As with any Smalltalk-80 class,

NetworkSimulation can be extended via subclasses, however, it is already complete as

defined in the framework.

No two computer networks behave the same. Not only are there a wide variety of

network architectures and protocols from which to choose, but each network is affected

by the individual characteristics of its nodes. So, the ·network simulation-framework

contains only vague descriptions for networks and nodes; two abstract classes, Network

and NetworkNode. Subclasses of Network set their own parameters, define their own

statistics, calculate their own service times and do their own statistics gathering.

Subclasses of NetworkNode define their own statistics, statistics collection, traffic and

local processing tasks. The network simulation framework class hierarchy is shown in

Figure 6.

36

.. " ~
class: SlmulatlonObject

: superclass: Object
class

variables: (none)
instance

variables: (none)

cl~s: Slmulatlon
:SUperclass: Object

cl~s
i variables: (none)
: instance

.

. .

. .

.

. . : variables: currentTlme
. eventaueue

processCount : .
. resources :

class: EventMonHor
: superclass: SlmulatlonObject

class
variables: DataRle
instance

.

.

class: NetworkSlmulatlon
superclass: Slmulatlon

class
variables: (none)
instance

variables: (none) .

variables: currentTlme
eventQueue
processCount
resources

parameters
statlsUcs
network

class: NetworkNode .
: superclass: EventMonHor

.

class
variables: DataRle
instance

variables: parameters
statlsUcs

.

(user defined subclasses)

class: NetworkMessage
superclass: EventMonHor

cl~,
variables: DataRle
instance

variables: parameters
statistics

Figure 6. Class Hierarchy

.

..................................... . .
class: Network .

.
: superclass: EventMonltor . . .

class
variables: DataFlle
instance

variables: parameters
statistics
nodes

(user defined subclasses)

. . .

The instances created during the simulation are all linked in some way through their

37

instance variables. The NetworkSimulation links to the Network with its network

instance variable. Network is, in tum, linked to the NetworkNodes via its nodes

instance variable. NetworkMessages enter the simulation as customers, and are.

therefore linked to the resources instance variable of NetworkSimulation., through

instances of ResourceCoordinator. Figure· 7 depicts these linkages.

38

I aDlctlonary I I aSortedCollectlon aResource aStrlng I
Coordinator ~

I afloat I aSymbo1 1 aNetworkSlmulatlon I
resourceName

I \

who ls Waiting -------parameters eventOueue awaiting &Network
statistics current Tin:~ pen jing

SlmulatlonObject Message

network\ \rocessCount I

" amount parameters resource~ 1-~ , resource statistics
anlnteger aSorted

. .
I Collection

.
I &Dictionary

.
1 / - .

I 'I -
awaiting aNetwork

aSet . SlmulatlonObject Message .
.
N, . amount parameters ,,

\
. resource statistics

&Network

~ &Dictionary &Resource aStr1ng I
parameters- Coordinator ~

statistics :- '&Dictionary I I aSymbo1 I I
-- -- resource Name ··-- -- ----who ls Waiting

awaiting &Network I I

ing pen< SlmulatlonObject Message
anOrderedCollectlon

amount parameters

1 ... N
1-~ resource statistics

I "" &Sorted
.

+
.

Collection
. .

aNetworkNode . . . aNetworkNode
.

Ill. I - .
''I -

parameters - - parameters --- awaiting &Network
SlmulatlonObject Message

statistics - statistics -

amount parameters
&Dictionary ~ aDlctlonary ~

~

resource statistics

a Dictionary I -
I

aDlctlonary I_
I

Figure 7. Linking of Instance Variables

An instance of the user-defined NetworkNode subclass enters the simulation at time

zero, schedules its traffic, then enters an infinite loop, continuously checking for

messages to send. An instance of the user-defined Network subclass also enters at time

39

zero. However, its only function is to continuously-renew its own resource (signaling to

all nodes that it is idle). The nodes grab the network, hold it for some time, then release

it.

NetworkMessage scheduling is requested by each NetworkNode instance. They

enter the simulation as renewable resources, linked via the NetworkSimulation

resources instance variable. NetworkMessage instances merely enter the simulation

asking for service, get serviced, then exit after recording statistics.

2. Customers, Servers and Resources

The network simulation framework makes use of coordinated resources to model the

server/client relationship between messages and nodes (sending) and between nodes

and networks-(delivering). In this model, the node is the server of both messages and

the network. Since it is the hardware, software, and firmware of the network node that

implements a networking protocol, it is logical to make the node the active element.

The analogy of a network message as a customer is almost intuitive. In store-and

forward (packet-switched) networks, one can actually visualize a message passing from

node to node, much like a customer at the unemployment office being passed from line

to line [BeG87].

It is not as easy to visualize the network as a customer of the node. In CSMA/CD

protocols, however, this relationship is somewhat straightforwarq. The node must sense

that the media is idle, then transmit its message, freeing up the network afterwards

[KiL87]. In this sense, the network acts ~ a resource that is acquired and released by

40

nodes on demand.

Having defined messages and the network as resources (customers), we need to f\Irther

identify whether they are static or dynamic [GoR83]. Since messages entering and

leaving the system is precisely the phenomenon to model, messages are defined as

dynamic. And, although the current framework does not model dynamic routing and

network down time, the possibility of further development along these lines prompted

me to define the network as a dynamic resource as well. Figure 8 depicts the interaction

between a node and its message resources.

41

1 acquireResource: aResource
resource Name Coordinator

I 3 detect: [:each I
each name= resourceName] (nil) --

2 provideResourceFor: resources

resource Name (aSet)
- 4 aResource

I - aNetwork I

Slmulatlon ~- · ·~ aResource ~- ··· Coordinator
aNetwork . Coordinator .

Node ~· aResource
• aResource ~····s

It I Coordinator
Coordinator

-. . . 6 acquire . 11 7 removef irst _
. -. . pending (aSortedCollectlon)

awaiting
Slmulatlon e:::! ••••••••••

awaiting
Object 9 le:!:· ••••••••••• ~ awaiting awaiting

Slmulatlon
Object 8 (nll) Slmulatlon Simulation

Object Object

(a) aNetworkNode obtains a ResourceCoordinator from the NetworkSimulation and sends

it the message "acquire" to get the WaitingSimulationObject. Message sequencing

can be seen by the numeric message labels (1-9).

resource awaiting value - -
aNetwork - resource

Slmulatlon
Node k· ... aNetwork ~- ... Object ~- .. -~ N tw k le:!· •••• (aNetworkMessage)

a e or
Message Message

(b) aNetworkNode retrieves the actual NetworkMessage instance from the

WaitingSimulationObject.

Figure 8. The Model Resources

3. The Life Cycle of a NetworkMessage

The most thorough understanding of the model is achieved by following the life cycle

of a message as it flows through the simulation. I will trace a message sent from node

A to node B.

42

At t = 0, node A schedules the arrival of its outgoing messages, including the one in

question (call it message X). An instance of NetworkMessage gets placed into the

eventOueue of the NetworkSimulation instance with an associated startup time (t =

t).
start

At t = tstart, message X enters the simulation as an active object. After recording its

entrance time into the simulation, it requests service as a 'MessageFromA' resource.

In so doing, aWaitingSimulationObject (whose resource is the NetworkMessage

object itself) is placed into the pending queue of the appropriate

ResourceCoordinator in NetworkSimulation instance's resources pool. The

message is suspended until served (for an undetermined amount of time, t queue}.

When nod~ A becqmes free of serving other messages to be sent out onto the network,

or of performing local processing, it will see that message X needs service (if no

messages are queued in front of message X). If the network is free as well, node A

acquires the message and the network. If the message is too long or too short, it must

be processed (broken into smaller messages or padded up to the minimum length). The

time it takes to process the message will be denoted t . . ~oc

Now the node holds (itself and the resources it has acquired, the network and the

message) to account for the service time (t serve> or transmission time. The node then

asks the network to deliver message X.

At t = t . = t + t + t + t , the message is delivered to the receiving node (B). exit start queue proc serve

Now, node A resumes the message and the network. Message X merely exits the

simulation, after recording its exit time and other relevant statistics.

43

A timeline of a message's life cycle is depicted in Figure 9.

Simulation NetworkMessage start start done
starts enters simulation processin\ transmitting transmitting

/ ~ ~
I \I

. I
;;,. ...

t t proc t serve queue

t = 0 t=t t=t exit start

Figure 9. Timeline of a NetworkMessage

4. Statistics Gathering

The primary purpose of performing simulations is to learn something· useful about the

system under analysis. Most often this information takes the form of statistics. The

statistics gathered by the network simulation framework are completely user-defined.

Each simulation object maintains- its own statistics. Since messages carry their own

statistics, any object that interacts with a message may serve as an accumulation point.

Statistics that involve many messages (number sent, average delays, etc.) may be

accumulated at the nodes, in the network, or by the simiµation controller.

For the Network and NetworkNode objects, statistics gathering is· completely in the

hands of the framework implementor through subclasses. The statistics collected by

NetworkMessages are just the times that it entered the simulation, left the outgoing

message queue, started transmission and finished transmission. As the

NetworkMessage is passed from the source node to the network to the destination

node, these message statistics can be accumulated. Each node can maintain its own:

44

statistics, while the network can maintain the overall network statistics.

The NetworkSimulation currently maintains just the number of simulation objects

entering and exiting the simulation. Since a link is maintained to the network, the

NetworkSimulation object does not need to maintain network·statistics itself; it can

access the information from the network.

B. Implementing the Framework- Class Descriptions

After implementing the generic Smalltalk-80 simulation classes discussed in Section II,

there are minimally six additional classes required to implement the network simulation

framework. All classes are subclasses of the generic simulation classes in [GoR83], and

require only minimal additional pr~gramming. In this section, I will fully describe the

protocol of the four classes of the framework. Full implementation descriptions are

located in Appendix B.

The framework for network simulation defines four classes (two of them abstract) to

extend the general simulation capabilities of Simulation and EventMonitor to better fit

our needs. NetworkSimulation and NetworkMessage instances can be used without

any additional programming. On the other hand, Network and NetworkNode are

abstract classes; subclasses must implement certain features that have been left out.

Since every network and node behaves ·uniquely, it is best to force a unique definition

from the user.

To describe the classes of the framework, I will again use the protocol description

[GoR83]. The implementation descriptions are provided in Appendix B.

45

1. NetworkSimulation

NetworkSimulation class protocol

instance creation

network: aNetworkClass nodes: nodeArray logfile: aFilename

stopTime: anlnteger
Answer an instance of NetworkSimulation. Call
initialize:nodes:logfile:stopTime: to set up
instance variables.

NetworkSimulation _instance protocol

.
accessmg

logfile: aFileStream

network

network: aNetwork

parameters

statistics

stopTime

stopTime: anlnteger

Set the logfile parameter to aFileStream.

Answer the network to simulate.

Set the network instance variable.

Answer the parameters dictionary.

Answer the statistics dictionary.

Answer the simulation stop time.

Set the simulation stop time.

46

initialization

initialize: aNetworkClass nodes: nodeArray logfile: aStream

stopTime: anlnteger

defineArrivalSchedule

define Resources

statistics

printStatistic~On: a Stream

simulation control

enter: anObject

exit: anObject

proceedUntilStopTime

2. Network (Abstract Class)

Network instance protocol

.
accessmg

addNode: aNetworkNode

nodes

Create the parameters and statistics instance
variables (dictionaries). Set network to a new
instance of aNetworkClass, its nodes to new
instances of the classes in nodeArray, logfile to
aStream and stop Time to anlnteger.

Schedule the arrival of the network and its nodes
into the simulation at time zero.

Define the network and the messages as the
(coordinated) resources of the simulation. Th~y
will act as customers.

Print the simulation statistics on aStream.

Record an object's entrance into the simulation.

Record an object's exit from the simulation.

Send self proceed until the current time =
stop Time.

Add a new node to the network.

Answer the network nodes as
anOrderedCollection.

47

nodes: anArray

parameters

statistics

initialization

initialize

setParameters

setStatistics

siin ulation control

tasks

message handling

deliver: aNetworkMessage

Add each network node in anArray.

Answer the dictionary of parameters.

Answer the dictionary of statistics.

Set up instance variables, call setParameters and
setStatistics.

Set the bit rate, minimum/maximum packet sizes,
and overhead bits.

Set the initial values in the statistics dictionary -
subclass responsibility.

What the network does after startUp. Here, an
endless loop to replenish the network resource.

Deliver the message, can be used to gather
statistics, log events, etc~ - subclass responsibility.

service Time: aNetworkMessage
Answer the time to service a message in msec -
subclass responsibility.

printing

pri ntOn: aStream How the network will print itself.

statistics

doStatistics: aNetworkMessage
Collect statistics after delivery of
aNetworkMessage - subclass responsibility.

incrementStatistic: aSymbol by: aNumber
Increment the statistic, aSymbol, by aNumber.

48

pri ntStatisticsOn: a Stream

3. NetworkNode (Abstract Class)

NetworkNode class protocol

instance creation

Step through the statistics dictionary, printing
each key and value on aStream.

address: aString network: aNetwork

NetworkNode instance protocol

.
accessmg

address

address: aString

network

network: aNetwork

parameters

statistics

initialization

initialize

setStatistics

Answer an instance of NetworkNode whose
address is aString and resides on aNetwork.

Answer the String representing the receiver's
network address.

Set the receiver's node address to th·e String·,
aString.

Answer the network to which the node is
connected.

Set the network to which the· node is connected.

Answer the dictionary of node parameters.

Answer the dictionary of node statistics.

Initialize the receiver's instance variables and:call
setStatistics.

Set the initial value of any statistics to be collected
- subclass responsibility.

49

simulation control

local Processing

tasks

message scheduling

Define local processing tasks of the node - subclass
responsibility.

What the node does after startup - schedule
traffic originating from the node, check for
outgoing messages, send if the network available,
otherwise process local jobs.

broadcastMessageStream: aDist fixedlength: anlnteger
Schedule fixed-length messages to all nodes using
aDist for frequency.

broadcastMessageStream: a Dist variablelength: bDist
Schedule variable-length messages to all nodes
using aDist for frequency and bDist for length.

messageStream: aDist to: anAddress fixedlength: anlnteger
Schedule fixed-length messages to the node at
anAddress, using aDist for frequency.

messageStream: aDist to: anAddress variablelength: bDist

random Destination

Schedule variable-length messages to the node at
anAddress, using aDist for frequency and bDist
for length.

Answer another network node, selected at random.

randomMessageStream: aDist fixedlength: anlnteger
Schedule fixed-length messages to random nodes
using aD ist for frequency.

randomMessageStream: aDist variablelength: bDist

traffic

Schedule variable-length messages to random
nodes using a Dist for frequency and bDist for
length.

Schedule messages generated from this node -
subclass responsibility.

50

message handling

isNetworkA vail able Answer true if network is idle.

makePackets: aNetworkMessage

messages ToSend

Break aNetworkMessage into smaller messages
(packets) according to the network parameter,
#maxPacketSize. Answer the size of the first
packet (i.e., #maxPacketSize) to transmit and
schedule the rest as independent messages.

Answer true if there are messages to send from
this node.

receiveMessage: aNetworkMessage

send Message

statistics

Receive aNetworkMessage - acts as a place to
gather statistics.

Send a message onto the network. If network is
idle, acquire the message at the head of the
outgoing queue, acquire the network, hold for the
transmission time (provided by self network
serviceTime: aNetworkMessage), ask the
network to deliver the message, and finally
resume the network and the message. If network
busy or no messages to send, do local processing.

doReceiveStatistics: aNetworkMessage
Gather relevant statistics aftet receiving a message -
subclass responsibility.

doSendStatistics: aNetworkMessage
Gather relevant statistics after sending a message -
subclass responsibility.

incrementStatistic: aSymbol by: aNumber
Increment the statistic, aSymbol, by aNumber.

printStatisticsOn: a Stream Step through the statistics dictionary, printing
each key and value on aStream.

51

printing

·printOn: aStream How the node will print its~lf.

4. NetworkMessage

NetworkMessage class protocol

instance creation

from: aString to: bString length: aNumber

NetworkMessage instance protocol

initialization

initialize

accessmg

from

from: aString

length

length: anlnteger

to

to: aString

statistics

entrance Time

receivedAt: currentTime

Answer a new instance of NetworkMessage with
from, to and length initialized.

Initialize instance variables and call setStatistics.

Answer the source address.

Set the source address to aString.

Answer the receiver's length (bits).

Set the receive(s length to anlnteger (bits).

Answer the destination address.

Set the destination address to aString.

Answer the ·tune the receiver entered the simulation.

Tell the receiver that it has been received at the
destination node - set #timeToTransmit.

52

setStatisti.cs

startProcessingAt: currentTime

timelnQueue

timeToProcess

time To Transmit

printing

printOn: aStream

simulation control

tasks

Set up the initial values for the receiver's
stati~tics.

Tell the receiver that it has been removed from the
outgoing queue and is being processed before
transmission - set .#timelnQueue.

Answer the amount of time the receiver spent in
the outgoing message queue.

Answer the amount of time it took to process the
receiver before transmission.

Answer the amount of time it took to transmit the
.

receiver.

How a message prints itself.

What a message does after entering the simulation.
It merely produces itself as a resource.

C. Expanding the Framework - Implementing Subclasses

As mentioned previously, the framework classes Network and NetworkNode are

abstract_; subclasses must be defined to implement methods pwposely left undefined in

the abstract classes [GoR83]. This section will describe how to implement these

subclasses to handle a variety of real-world systems.

53

1. Network Subclasses

A subclass of Network needs to specify setParameters, setStatistics,

serviceTime:, and doStatistics: methods. The setParameters and

setStatistics methods are invoked by the initialize method just after the network

enters the simulation (at time zero). As their names imply, they are used to set the

network parameters such as bit rate, minimum packet size, etc., and to set initial values

for statistics. The serviceTime: method is invoked in response to a message from a

network node. Its purpose is to tell the node how long it should hold to· sim u1ate the

message transmission time. Finally, the doStatlstlcs: method is called just after

message delivery and is used to update user-defined statistics (defined in

setStatistlcs).

a. Implementing a setParameters method

The parameters defined in the setParameters method are intended to be accessed

only by other user-defined methods (especially serviceTime:). Therefore, the choice

of parameters to set (and use) is entirely up to the user. The parameters already defined

include bitRate, minPacketSize, maxPacketSize, overheadBits,

propagationTime, bitErrorRate, and collisionProbability.

For an errorless virtual circuit network, it would be feasible to use just the bitRate and

prop~gationTime parameters ·as the notions of packets, collisions, and errors would

not exist [BeG87]. The service time would merely be:

(bits to send) / (bit rate) + (propagation time)

54

On a real-world CSMA/CD network such as commercial Ethernet, all of the above

parameters, except propagationTime, would be needed to calculate the service time or

to split large messages into smaller ones (packets) [GbR87]. A setParameters

method for a commercial Ethernet network would look like:

setParameters
self bit Rate: 1 0000000. "1 O Mbps"
self minPacketSize: 368. "368 bits"
self maxPacketSize: 12000. "12,000 bits"
self overheadBits: 208. "208 bits"
self propagationTime: 0. "negligible for Ethernet"

b. Implementing a setStatistics method

The only purpose of the setStatistics method is to initially set all user-defined

statistics values to zero (or some other value, if necessary}. A series of messages sent to

the statistics instance variable (a Dictionary) is all that is required. The message to

send is at: aKey put: a Value, where aKey is the statistic to collect, expressed as a

symbol, and a Value is the initial value desired (usually .0). A typical implementation

of setStatistics might resemble the following.

setStatistics
statistics at: #numberOfMessagesSent put: 0.
statistics at: #numberOfBitsSent put: 0.
statistics at: #totalTimeTransmitting put: O

This method can be simplified somewhat by making use of the "for-loop" control

structure shown previously in Section 11.A.4:

55

setStatistics
#(#numberOfMessagesSent #numberOfBitsSent #totalTimeTransmitting)

do: [:key I statistics at: key put:O]

c. Implementing a serviceTime: method

The delay· a message encounters from source to destination may be broken down _into

four components: processing delay, queuing delay, transmission delay, and propagation

delay [BeG87]. In most cases, the processing delay may be neglected, if the computing

resources of each node are not .constrained (unless one is attempting to compare

different processing schemes - for example, the transport control protocol, TCP, versus

the user datagram protocol, UDP). For our purposes, fr is enough just to be concerned

with qu~uing, transmission, and propagation delays.

The simulation framework is structured such that the queuing delay is completely

simulated (i.e., no computations involved - contention for the network· is the only

factor). Once a message has made it to the network (finished queuing), it is only

necessary to simulate the transmission and _propagation delay.

To tell the sending node how long to hold the network.before releasing it, a

serviceTime: method is defined. The following implementation will suffice for most

errorless networks [BeG87].

56

serviceTime: aNetworkMessage
l'f. aNetworkMessage length + self overhead Bits) * (self bit Rate)

+ (self propagationTime)

One can_sitnulate the effects of errors and collisions by randomly adding delay to the

above service time. This level of detail may be beyond the needs of most network

managers.

d. Implementing a doStatistics: method

The doStatistics: method is invoked from the deliver: method and provides the

itnplementor the opportunity to accumulate statistics previously initialized· in the

setStatistics method. Since this method is called just after message delivery, all the

NetworkMessage statistics are available. The message just delivered is sent as an

argument to doStatistics. A message as been provided by the Network class to assist

in gathering statistics. The expression "self incrementStatistic: aSymbol by:

aNumber" will increment any statistic previously defined in the setStatistics

method.

An itnplementation that makes use of the statistics- defined in the setStatistics

example above is shown below. This ex.ample simply takes the old values and adds the

current message's data to them.

57

doStatistics: aNetworkMessage
self incrementStatistic: #numberOfMessagesSent by: 1.

self incrementStatistic: #nu mberOfBitsSent

by: (aNetworkMessage length+ self overheadBits).

self incrementStatistic: #totalTimeTransmitting

by: (aNetworkMessage timeToTransmit)

2. NetworkNode Subclasses

Subclasses of NetworkNode like subclasses of Network must handle their own

statistics initializations and manipulations. Since the sending statistics and receiving

statistics are usually of interest to network managers, separate methods are defined. In

addition to the statistics methods (setStatistics, doSendStatistics,

doReceiveStatistics), a traffic method and a localProcessing method must be

defined by these subclasses. The traffic and localProcessing are used to specify the

individual node characteristics.

a. Implementing a setStatistics method

The NetworkNode implementation of setStatistics is functionally equivalent to that

of the Network. An example is shown below where both send and receive statistics are

desired.

setStatistics
#(#numberOfMessagesSent #numberOfBitsSent #totalTimelnQueue

#totalTime To Process #totalTime To Transmit #numberOfMessagesReceived

#numberOfBitsReceived) do: [:key I statistics at: key put: O]

58

b. Implementing a traffic method

The traffic method must describe the message traffic generated by the node. This is

done by sending messages to the node itself. Messages have been implemented to

define broadcast messages (sent to all nodes), random messages (sent to a random

node) and directed messages (sent to a selected node). These messages are detailed in

Section II.B .C, under the message category "message scheduling." The example below

sets up two message streams. The first sends variable length messages (uniformly

distributed from 500 to 50,000 bits) to randomly selected nodes with a frequency

exponentially distributed with a mean of 50 mil)iseconds. The second sends a fixed

length message (128 bits) to node 'D' with a frequency exponentially dis~buted with a

mean of 25 milliseconds.

traffic
self random MessageStream: {Exponential mean: 50.)

variablelength: {Uniform from: 500 to: 50000).
self messageStream: {Exponential mean: 25)

to: 'D' fixedlength: 128

c. Implementing a localProcessing method

The localProcessing method must cause some time to elapse from the simulated

clock, simulating the node being busy with local processing demands. The longer the

delay, the more "busy" the node appears to be. A simple method to simulate a 1

millisecond local processing delay is shown below.

59

local Processing
self holdFor: 1

d. Implementing a doSendStatistics: method

This method is invoked just after a message has been sent from the node, and is

functionally equivalent to the Network doStatistics method. Shown below is an

example that uses the statistics initialized previously. Note that the NetworkNode

class provides the same incrementStatistic:by: as the Network class.

doSendStatistics aNetworkMessage
self incrementStatistic: #numberOfMessagesSent by: 1.
self incrementStatistic: #numberOfBitsSent

by: (aNetworkMessage length).
self incrementStatistic: #totalTimelnQueue

by: (aNetworkMessage timelnQueue)
self incrementStatistic: #totalTimeToProcess

by: (aNetworkMessage timeToProcess).
self incrementStatistic: #totalTime To Transmit

by: (aNetworkMessage timeToTransmit)

e. Implementing a doReceiveStatistics: method

The doReceiveStatistics is invoked by the Network just after a message has been

delivered to the node. It accumulates the receive statistics at this node. An example is

shown below. The incrementStatistic method is employed one~ again.

60

doReceiveStatistics aNetworkMessage
self incrementStatistic: #numberOfMessagesReceived by: 1.
self incrementStatistic: #numberOfBitsReceived

by: aNetworkMessage length

D. Designing a User Interface

The framework for network simulation presented in this thesis has shown a "hands-on"

approach to the problem of developing flexible, yet simple network models. It relies on

the implementor being able to actually program in Smalltalk-80. There are instances.

where one would like a slightly less detailed interface to the simulation model. Even

though this would sacrifice flexibility, in environments where the network is stable,

flexibility is not a major concern.

The network simulation framework does not dir·ectly address the problem of designing a

high-level front-end. Smalltalk-80 does make this easy to develop. The following

subsection suggests ways to approach the problem of designing the user interface. The

description is conceptual in nature; the interested reader is directed to [GoR83] and

[Par90] for more concrete descriptions of user-interface implementations. This

discussion is intended for the knowledgeabl~ software developer who would like to

extend. the network simulation framework.

There are three ways in which a user can interact with the framework:· setting object

parameters, defining object behaviors, and viewing simulation results (statistics). Since

each object in the simulation maintains its own parameters and statistics, it would make

sense to use an object-oriented front-end. A possible user interface might be

61

implemented as depicted in Figure 10.

time (msec)
000048.56
000048.56
000049.0
000049.0
000049.0

NETWORK SIMULATION

Logfile: 'network.events'
stopTime: 1000

currentTime: 30.14
eventslnQueue: 234

event
MSGS(A, E, 65536 bits) enters
MSGS(A, E, 65536 bits) wants to get service as MessageFromA
FileServer(A) wants to serve for MessageFromA
FileServer(A) can serve MSGS(A, E, 65536 bits)
FileServer(A) wants to serve for LAN

__ ___.___..___ __
parameters
statistics
methods
delete

parameters statistics

Figure 10. Proposed User Interface

The two window panes at the top interact with the NetworkSimulation object Action

buttons for simulation control appear on the left; overall simulation statistics and

62

parameters appear on the right. The lowest window pane would show network events

(e.g., messages entering, resources being coordinated, etc~) in the same format as the

sim~lation logfile. The middle pane·of the window would be used to select simulation

.objects (the network or a node) and to bring up a.new window to interact with the

objects parameters, statistics, or methods.

Objectworks\Smalltalk release 4 provides the ability to attach several cliff erent views

(from the MVC paradigm) to a display window [Par90]. The ScehduledWindow class

obtains a window from the host system's window manager. The CompositePart class

enables the programmer to tack multiple views onto the window. Several predefined

controllers (called PluggableAdaptors) have been provided to handle such things as

selector buttons, scrollable menus, etc. Not only should these cl.asses be employed, but

also several classes that make up a part of the programmer's ·interlace.

1. Interacting with the Simulation

The upper window panes interact with the NetworkSimulation object. The action

buttons should be implemented as instances of class LabeledBooleanView, attached

to PluggableAdaptors that send the appropriate message to the NetworkSimulation

object.[Par90]. For example, the ·"step" button might send the message proceed

whereas the "continue" button might send the message proceedUntilStopTime. The

upper right pane could be constructed of many StringHolderViews that relate back to

individual instance variables of the NetworkSimulation. Or, a single TextHolderView

can be constructed .to interact with all the instance variables. [Par90]

63

2. Interacting with SimulationObjects

Interaction with the network and nodes should be more object-oriented. It would seem

best that the user point to an object and receive a menu that allows modifying/viewing

parameters, modifying/viewing statistics, modifying/viewing m_ethods. If the user

wants the ability to change the network topology, one might consider adding a "delete"

option to the object menu, then offering a one item ("add node") menu when no object

is selected. The ability to create context sensitive action menus is described in [Par90].

Once this controller·is developed, standard views taken from the system itself should be

used to actually interact with the objects. Fot instance, when the user selects

"parameters" from an object menu, the program would merely create an Inspector on

that object's patameters dictionary (i.e., aNetworkNode parameters inspect). The

user would thus be able to view or modify any parameter. Similarly, an Inspector

would be created for the "statistics" option.

The "methods" option might bring up a Browser on the selected object's class (i.e.,

aNetworkNode browse). The "add" and "delete" options would have to be custom

programmed (i.e., link "add" to the Network's addNode: method, program a new

deleteNode: method).

3. Event Logging

The Smalltalk-80 programming environment _provides the T extCollector and

T extCollectorView classes for displaying simple messages. An instance of

TextCollectorView behaves just like a Stream, the underlying mechanism behind the

64

network simulation framework's event logfile. hnplementfug the event-monitoring

pane is as simple as creating a TextCollectorView, and setting the s4llulation logfile to

that instance.

65

V. Example: Evaluating LAN Expansion

The following section will show an example of applying the network simulation

framework to a real-world example, evaluating the effect on message delay time and

effective data rate after adding nodes to an existing network. By doing this analysis it

can be determined whether the current network can handle the additional load. In

approaching this problem, the initial network is described first. Then, class descriptions

for the LAN are shown (classes Workstation, FileServer, and LAN). Network

statistics will be shown for the existing network. Then, after adding the additional

nodes, network statistics will be shown and compared to the previous results.

A. The Existing LAN

The LAN to be simulated consists of five dataless workstations (i.e., they contain only

enough disk space for the operating system and memory swapping) .and one ftle server

connected to an IEEE 802.3 CSMA/CD ethernet. The file server will be addressed as

'A'; the workstations will use addresses 'B', 'C', etc. It is as.sumed that the

workstations are all used similarly and can be modeled.as one Smalltalk-80 class

(identical traffic patterns and local processing demands). It is also assumed that the file

server is dedicated (i.e., it is not used for general-purpose computing and therefore has

few local processing demands).

Since the workstations are dataless, al) data must be retrieved from the file server. The

traffic from the workstations to the file server will consist of requests for data. It is

assumed that the workstations are·used primaril.Y for enginee~g CAD work. Based on

my experience in industry, this type of activity is charac.terized by heavy local

66

processing demands (graphics, statistical analysis, etc.) and heavy demands for data (3-

.D graphics ftles, large data collection .files, etc.) Distributed processing is not assumed,

therefore traffic from workstation to workstation should be virtually nonexistent.

One popular network: architecture allows transmission of up to 8192 bytes per ftle

server request [Sun90]. Given that the applications are dealing with large· quantities of

data, it is reasonable to assume that maximum size blocks will be requested by the

workstations. The file server's traffic can be.characterized by randomly address fixed

size messages (8192 bytes * 8 bits/byte = 65,536 bytes), with a frequency N times

higher than an individual workstation's requests for data, where N is the number of

client workstations on the network.

A workstation's stream of requests to the file server is characterized by small, nearly

fixed-length messages (they just tell the file serv.er what file, and disk block within that

file is requested). U sjng the same network architecture as above, these request

messages would typically be about 300 bytes (2400 bits) long [Sun90l The frequency

of these requests depends on the requirements of the application running on the

workstation. For engineering CAD, these requirements can be as high as a screen-full

of high-resolution graphics every 10 seconds (1 screen-full= 2000 bits x 2000 bits...:.. 4

Mbits = 61 maximum size blocks; 61 block requests/ 10000 milliseconds= 1 request

every 164 milliseconds).

B. Classes Workstation, FileServer and LAN

File servers and workstations are much alike. Many manufacturers market high-end

workstations as file servers. It would therefore behoove us to make use of this

67

similarity when designing the subclass hierarchy for the LAN model. We make

Workstation a subclass of NetworkNode, and FileServer a subclass of Workstation.

(We could have just as easily made Workstation a subclass of FileServer.) The LAN

class is a subclass of Network.

The following class descriptions will use the implementation description notation of

[GoR83]. Note that FileServer need only implement the localProcessing and

traffic methods; the rest are inherited from Workstation.

class name
superclass
instance methods

Workstation
Network Node

subclass responsibility

traffic
"Identify traffic generated by the receiver, requests for
a block of data roughly every 164 milliseconds."
self messageStream: (Exponential mean: 164)

to: 'A' fixedlength: 2400

localProcessing
"Workstations have heavy local demands, so hold for 5
milliseconds whenever not trying to serve messages."
self holdFor: 5

setStatistics
"Identify and initialize statistics."
#(#numberOfMessagesSent #totalTimelnOueue #averageTimelnQueue)

do: [:key I statistics at: key put: O]

68

doSendStatistics: aNetworkMessage
"Collect statistics after a message is sent from the receiver."

self incrementStatistic: #numberOfMessagesSent by: 1

self incrementStatistic: #totalTimelnQueue

by: aNetworkMessage timelnQueue.
statistics at: #averageTimelnQueue

put: (statistics at: #totalTimelnQueue) /
(statistics at: #numberOfMessagesSent}

doReceiveStatistics: aNetworkMessage
"Not interested in any receive statistics, just answer the receiver."

/'Self

class name
superclass
instance methods

FileServer
Workstation

subclass responsibility

traffic
"Identify traffic generated by the receiver, satisfying

workstation requests for a block of data roughly every

164/(# of workstation) milliseconds."
self randomMessageStream:

(Exponential mean: 164 / (self network nodes size - 1))

fixedlength: (8192 * 8)

local Processing
"A file server should have little to do locally, hold

for just 1 millisecond whenever not trying to .serve messages."

self holdFor: 1

class name
.superclass
instance methods

LAN
Network

69

subclass responsibility

serviceTime: aNetworkMessage
"Answer the time to send a message, aNetworkMessage, in msec. 11

r..f.. (aNetworkMessage length + self overhead Bits)
/ self bitRate * 1000) asFloat

setParameters
"Initialize the network parameters. 11

self bitRate: 10000000.
self minPacketSize: 368.
self maxPacketSize: 12000.
self overheadBits: 208

setStatistics
"Identify and initialize statistics. 11

#(#numberOfMessagesSent #totalTimelnQueue #averageTimelnQueue
#totalDelayTime #averageDelayTime #totalBitsSent
averageEff ective Data Rate #totalTi me Transmitting #pe rcentld le Ti me)

do: [:key I statistics at: key put: O]

70

doStatistics: aNetworkMessage
"Collect statistics after a message is sent by the receiver."
self incrementStatistic: #numberOfMessagesSent by: 1.
self incrementStatistic: #totalTimelnQueue

by: (aNetworkMessage timelnQueue).
statistics at: #averageTimelnQueue

put: (statistics at: #totalTimelnQueue) /
(statistics at: #numberOfMessagesSent).

self incrementStatistic: #totalDelayTime
by: (Simulation active time) - (aNetworkMessage entranceTime).

statistics at: #averageDelayTime
put: (statistics at: #totalDelayTime) /

(statistics at: #numberOfMessagesSent).
self incrementStatistic: #totalBitsSent

by: (aNetworkMessage length).
statistics at: #averageEffectiveDataRate

put: ((statistics at: #totalBitsSent) /
(statistics at: #totalDelayTime) * 1000).

self incrementStatistic: #totalTimeTransmitting
by: (aNetworkMessage timeToTransmit).

statistics at: #percentldleTime
put: 1.0 - ((statistics at: #totalTimeTransmitting) /

(Simulation active time))

C. Results

F·our simulations were performed using the classes described above. The first run

simulated the existing network (i.e., five workstations). Succeeding simulation runs

modeled networks of 10, 15 and 20 workstations. The following Smalltalk-80 code was

executed from a workspace to perform the first simulation run. Similar code was used

for the other three runs.

71

I aSim·ulation statFile I 'Temporary variables."

aSimulation == "Create the coordinator, an instance of NetworkSimulation."
network: LAN
nodes: #{#{'A' FileServer) #('B' Workstation) #('C' Workstation)

#('D' Workstation) #('E' Workstation) #('F' Workstation))
logfile: 'network.events'
stopTime: 2000. "2000 msec."

aSimulation proceedUntilStopTime. "Run .the simulation."

statFile = (Filename named: 'network.stats') writeStream. "Record the _statistics."
aSimulation printStatisticsOn: statFile.

aSimulation logfile close.
stat File close.

"Close opened files."

The file "network.stats" is then examined to retrieve the average message delay and

effective data rate for each simulation run. This file looks like:

Overall Simulation Statistics - a NetworkSimulation

41-1
399

Network Statistics - LAN

391.382
3830816
399
0.804232
6.12366
1.35139e6
2834.72
2443.34

#numberOfObjectsEntered
#numberOfObjectsExited

#totalTi me Transmitting
#totalBitsSent
#numberOfMessagesSent
#percentldle Time
#averageTimelnQueue
#averageEffectiveDataRate
#totalDelayTime
#totalTimelnQueue

72

7.10457 #averageDelayTime

Node Statistics - FileServer(A)

337
6.57629
2216.21

•
•
•

#numberOfMessagesSent
#average TimelnQueue
#totalTi me I nQueu e

Using these statistics files, the following table was compiled to show the various effects

.0f increasing the number of workstations on the network in question.

Number of Workstations

Statistic 5 10 15 20

of messages sent 399 827 1033 1139

amount of data sent (Kbits) 3831 8099 9763 10542

of messages not sent 6 4 68 216

% network idle time 80.4 58.6 50.1 46.1

average delay (msec) 7 14 53 158

eff data rate (Kbps) 1351 699 179 59

The results of these simulations show that the network performance becomes

73

significantly degraded at a point somewhere between 10 and 15 nodes on the network.

Ethernet provides a 10 Mbps medium, yet contention for the media reduces the

effective data rate to less than 200 Kbps for networks of more than 10 nodes. An

average one-way message delay of 50 - 150 milliseconds (as seen in the 10 and .15 node

networks) can add 6 - 18 seconds for each 4 MB screen-full of data. This amount of

one-way delay would certainly be perceptible. Note also that many messages are not

d~livered, indicating that the network is bottlenecked and just cannot keep up with the

traffic demands. The effect on the network is shown graphically in Figure 11 .

1000

Effective Data

Rate in Kbps

(solid line)

100 •• •• •••• •• •• •• •• ••

•• •• •• ••

a•

••

•••• ••••••

••

••

•• •• • •• •• ····
••

..
•• . .

••

•• ••
•• •• ••

------------r-------------r-----------
5 10 15 20

Number of Workstations

Figure 11. The Effects of Network Expansion

74

100

Ave Delay

in msec

(dotted line)

10

VI. Conclusion

The purpose of this paper was to present an object-oriented framework for developing

computer network simulations. This framework ·was presented as an extension of the

Smalltalk-80 general simulation tools proposed by [GoR83]. Statistics gathering,

object interaction, and resource coordination were added to make these classes more

amenable to the task of simulating computer networks.

The underlying theme throughout this project has been to bring simulation into the

hands of the computer network manager. This was accomplishw in two ways. First,

by selecting a programming language that inherently mimicked the system to be

modeled, the concepts of the language were easy to grasp and apply. Second, by

implementing much of the detail behind the simulation, little was asked of the network

manager other than knowing how his network operated. As is shown in the example in

Section IV, little programming is required once the framework has been implemented in

Smalltalk-80.

Still, h_owever, the framework does not sacrifice its flexibility for the sake of simplicity.

As with all the Smalltalk ~80 environment, the computer network simulation framework

is modifiable and open for extension at every level of detail. The user interlace was

already mentioned as likely target for extension (Section ill.D). Introducing the effect

of collisions and errors into the Network serviceTime: method was also mentioned.

There are many other areas for future development.

One could define subclasses of Netw.ork that implement the setParameters and

serviceTime methods for various standard networks (e.g., SNA, IBM's Standard

75

Networ~ Architecture, DECNET, Digital Equipment Corporation's NETwork

architecture, MAP,the Manuafacturing Automation Protocol, etc.)

The more adventuresome developer might want to rewrite the sendMessage and

receiveMessage methods of NetworkNode to more exactly model a particular

networking protocol (i.e., breaking down the message processing delay into its

components, introducing delay into the media access method, sending message

acknowledgements, etc.)

The network simulation framework should therefore be viewed more as a new approach

than as a complete solution. It does not provide an '·'idiot-proof' front-end, nor does it

provide an infinite level of detail. It is meant for the neither the casual.user, nor the

networking protocol developer. It functions as a core set oftools, around which a

computer networking simulation system can be developed by someone heeding little

more than basic computer programming knowledge.

76

VII. References

[ASA85] M. Alam, A. Sood, S Akhtar, 1985. "Performance Simulation Model of a
Multiple Bus Computer Network Using SLAM", Proceedings of the 1985
Summer Computer Simulation Conference p294-298.

[Bac87] Bacon, et al, 1987. "Nest: A Network Simulation and Prototyping Tool",
TechnicalReport, IBM T. J. Watson Research Center.

[BeG87] D. Bertsekas, R. Gallager, 1987. Data Networks Prentice-Hall, Englewood
Cliffs, NJ, pl 11-283.

[Coo86] S. Cook, 1986. "Languages and Object-Oriented Programming", Software
Engineering Journal vl n2 (March 1986) p73-80.

[DeP85] C. Dembeck, C. Porter, 1985. "SIMNET: A Network Simulation Model",
Proceedings of the 1985 IEEE Conference on Computer Simulation p707-

710.

[FLM90] V. Frost, W. LaRue, A. McKee, A. Emstein, P. Kishore, M. Gormish,
1990. "A tool for local area network modeling and analysis", Simulation,
November 1990, p283-298.

[GbR87] P. Gburzynski, P. Rudnicki, 1987. "A Better-than-Token Protocol with
Bounded Packet Delay Time for Ethernet-type LAN's", Proceedings of the
1987 IEEE Symposium on Simulation of Computer Networks, p110""117.

[GoR83] A. Goldberg, D. Robson, 1983. Smalltalk-BO: The Language and Its
Implementation, Addison-Wesley, Reading, MA, p5-73,417-533.

[HeM88] H. Heffes, B. Melamed, 1988. "Visuai Simulation of Teletraffic Models",
Proceedings of the 12th International Teletraffic Congress (ITC).

[Hie88] L. Hiebert, 1988. "AI and Network Planning", AI Expert, v3, n9,
September 1988, p26-33.

[JaJ87] A. Jayasumana, G. Jayasumana, 1987. "Simulation and Performance
Evaluation of 802.4 Priority Scheme", Proceedings of the 1987 IEEE
Symposium on Simulation of Computer Networks, p232-238.

[KiL87] M. Kim, H. Lin, 1987. "Modeling and Simulation of Channel Access
Protocols for Integrated Networks", Proceedings of the 1987 IEEE
Symposium on Simulation of Computer Networks, p118-122.

77

[Nic88] S. J. Nichols, et al, 1988. "Design of a High Speed Simulation Tool for
WAN Using Parallel Processing", Microprocessing and
Microprogramming v25 p327-332.

[Par90] ParcPlace Systems, 1990. Objectworks\Smalltalk User's Guide, ParcPlace
Systems, Mountain View, CA, pl-18,89-106,149-164,189-206.

[Sun90] Sun Microsystems, 1990. Sun0S 4.1 Network Programming Guide, Sun
Microsystems.

[Woo90] P. Woodbury, 1990. "Object-Oriented Menu-Driven Front-End For
Simulation of Manufacturing Systems", Master's Thesis, Department of
Computer Science and Electrical Engineering, Lehigh University.

[ZDL90] L. Zahn, T. Dineen, P. Leach, E. Martin, N. Mishkin, J. Pato, G. Wyant,
1990. Network Computing Architecture, Prentice-Hall, Englewood Cliffs,
NJ, pl-39.

[ZTD88] Wei-Dong Zhan, Thanawastien S., Delcambre L, 1988. "SIMNETMAN:
An Expert Workstation for Designing Rule-Based Network Management
Systems", IEEE Network (September 1988) p35-42.

78

VIII. Appendix A - Simulation Framework Implementation

Object subclass: #SimulationObject
instanceVariableNames:"
classVariableNames: "
pool Dictionaries: "
category: 'Simulation-General'!

!SimulationObject methodsFor: 'task language'!

acquire: amount ofResource: resourceName
"Get the resource and then tell it to acquire amount of it. Answers
an instance of StaticResource"

"(Simulation active provideResourceFor: resourceName)
acquire: amount
with Priority: 0 !

acquire: amount
ofResource: resourceName
withPriority: priority
"(Simulation active provideResourceFor: resourceName)

acquire: amount
withPriority: priority!

acquireResource: resourceName
/\(Simulation active provideResourceFor: resourceName)

acquire!

amountOfResource: resourceName
"(Simulation active provideResourceFor: resourceName)

amountAvailable!

holdFor: aTimeDelay
Simulation active delayFor: aTimeDelay!

inquireFor: amount ofResource: resourceName
/\(Simulation active provideResourceFor: resourceName)

amountAvailable >= amount!

79

numberOf ProvidersOfResource: resourceName
I resource I
resource := Simulation active provideResourceFor: resourceName.
resource serversWaiting

ifTrue: [#esource queuelength]
if False: [!{)] !

numberOfRequestersOfResource: resourceName
I resource I
resource := Simulation active provideResourceFor: resourceName.
resource customersWaiting

ifTrue: [#esource queuelength]
ifFalse: [!{)]!

produce: amount ofResource: resourceName
Simulation active produce: amount of: resourceName!

produceResource: resourceName
/\(Simulation active provideResourceFor: resourceName)

produced By: self!

release: aWaitingSimulationObject
PaWaitingSimulationObject!

resourceAvailable: resourceName
"Does the active simulation have a resource with this
attribute available?"
!Simulation active includesResourceFor: resourceName!

resume: anEvent
Pan Event resume!

stopSimulation
Simulation active finishUp! !

!SimulationObject methodsFor: 'simulation control'!

finishUp
''Tell the simulation that the receiver is done with its tasks."
Simulation active exit: self!

80

startup
Simulation active enter: self.
"First tell the simulation that the receiver is beginning to do my tasks."

self tasks.
self finishUp. !

tasks
"Do .nothing. Subclasses will schedule activities."
ASelf! !·

!Si'm.ulationObject methodsFor: 'initialization'!

initialize
"Do nothing. Subclasses will initialize instance variables."
!'Self! !

''-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ''!

SimulationObject class
instanceVariableNames: "!

!SimulationObject class methodsFor: 'instance creation'!

new
!'Super new initializ~ ! I

81

SimulationObject subclass: #EventMonitor

instanceVariableNames: 'label '
classVariableNames: 'Counter DataFile '

poolDictionaries: "
category: 'Simulation-General'!

!EventMonitor methods For: 'private'!

timeStamp
!now I
DataFile er.
now := Simulation active time asFloat.

"Pad left margin with zeroes."
(5 to: 1 by: -1) do: [:i I now< (10.0 raisedTo: i)

ifTrue: [O printOn: DataFile]].

now printOn: DataFile digits:4.
DataFile tab.
self printOn: DataFile ! !

!EventMonitor methodsFor: 'task language'·!

acquire: amount ofResource: resourceName

I waiting I
"Store fact that resource is being requested."

self timeStamp.
Data File nextPutAII: ' requests '.
amount printOn: DataFile.
DataFile nextPutAII: 'of ',resourceName.

"Now try to get the resource."
waiting := super acquire: amount

ofResource: resourceName.

"Returns here when resource is obtained; store the fact."

self timeStamp.
DataFile nextPutAII: 'obtained '.
amount printOn: DataFile.
DataFile nextPutAII: 'of ',resourceName.

A waiting!

acquire: amount

82

ofResource: resourceName
withPriority: priorityNumber

I waiting I
"Store fact that resource is being requested."
self timeStamp.
DataFile nextPutAII: ' requests '.
amount printOn: DataFile.
DataFile nextPutAII: ' at priority '.
priorityNumber printOn: DataFile.
DataFile nextPutAII: 'of ',resourceName.
"Now try to get the resource."
waiting := super acquire: amount

ofResource: resourceName
withPriority: priorityNumber.

"Returns here when resource is obtained; store the fact."
self timeStamp.
Data File nextPutAII: ' obtained '.
amount printOn: DataFile.
DataFile nextPutAII: ' of ',resourceName.

"waiting!

acquireResource: resourceName
I anEvent I
"Store fact that resource is being requested"
self timeStamp.
Data File nextPutAII: ' wants to serve for '.
DataFile nextPutAII: resourceName.
"Now try to get the resource."
anEvent := super acquireResource: resourceName.
"Returns here when resource is obtained; store the fact."
self timeStamp.
Data File nextPutAII: ' can serve '.
anEvent resource printOn: DataFile.
~nEvent!

amountOfResource: resourceName
I amount I
self timeStamp.
amount := super amountOfResource: resourceName.
DataFile nextPutAII: ' '.

83

amount printOn: DataFile.
DataFile nextPutAII: 'in', resourceName!

holdFor: aTimeDelay
self timeStamp.
Data File nextPutAII: ' holds for '.
aTimeDelay printOn: DataFile.
super holdFor: a TimeDelay !

produce: amount ofResource: resourceName
self timeStamp.
DataFile nextPutAII: ' produces '.
amount printOn: DataFile.
DataFile nextPutAII: 'of ', resourceName.
super produce: amount ofResource: resourceName!

produceResource: resourceName
self timeStamp.
DataFile nextPutAII: 'wants to get service as'.
DataFile nextPutAII: resourceName.
super produceResource: resourceName!

release: waiting
self timeStamp.
DataFile nextPutAII: ' releases '.
waiting amount printOn: DataFile.
DataFile nextPutAII: 'of ',waiting.
super release: waiting!

resume: anEvent
self timeStamp.
DataFile nextPutAII: ' resumes '.
anEvent resource printOn: DataFile.
super resume: anEvent! I

!EventMonitor methods For: 'scheduling'!

finishUp
super finishUp.
self timeStamp.

84

·DataFile nextPutAII: 'exits '!

startup
self timeStamp.
Data File nextPutAII: ' enters '.
super startUp! !

!EventMonitor methodsFor: 'accessing'!

label
"label!

setlabel
Counter := Counter + 1 .
label := Counter printStrin_g ! !

!EventMonitor methodsFor: ;initialization'!

initialize
super initialize.
self setlabel! !

"-- -- -- -- -- -- ~- -- -- -- -- -- -- -- -- -- .;._ -- "!

EventMonitor class
instance VariableNames: '' !

!EventMonitor class methodsFor: 'initialization'!

file: aFile
DataFile := aFile.
Counter := O! !

85

Object subclass: #DelayedEvent
instanceVariableNames: 'resumptionSemaphore resumptionCondition '

classVariableNames: "
poo1Dictionaries: "
category: 'Simulation-General'!

!DelayedEvent methodsFor: 'private'!

initialize
resumptionSemaphore := Semaphore new!

setCondition: anObject
self initialize.
resumptionCondition := anObject! !

!DelayedEvent methodsFor: 'scheduling'!

pause
Simulation active stopProcess.
resumptionSemaphore wait!

resume
Simulation active startProcess.
resumptionSemaphore signal.
/'lesumptionCondition ! !

!DelayedEvent methodsFor: 'comparing'!

<= aDelayedEvent
resumptionCondition isNil

ifTrue: [Arue]
if False: [l'lesumptionCondition <= aDelayedEvent condition]! !

!DelayedEvent methodsFor: 'accessing'!

condition
/'lesumptionCondition !

condition: anObject

86

resumptionCondition := anObject! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

DelayedEvent class
instanceVariableNames: "!

!DelayedEvent class methodsFor: 'instance creation'!

new
.,.super new initialize!

onCondition: anObject
.,.super new setCondition: anObject! !

87

DelayedEvent subclass: #WaitingSimulationObject
instanceVariableNames: 'amount resource '
classVariableNames: "
poo1Dictionaries: "
category: 'Simulation-General'!

!WaitingSimulationObject methodsFor: 'private'!

setAmount: aNumber resource: aResource
amount := aNumber.
resource := aResource! !

!WaitingSimulationObject methods For: 'task language'!

consume: aNumber
amount := (amount - aNumber) max: O!

release
resource produce: amount.
amount:= O!

release: anAmount
resource produce: anAmount.
amount := amount - anAmount! !

!WaitingSimulationObject methodsFor: 'accessing'!

amount
A.amount!

name
Hesource name!

resource
A resource!

resource: aResource
resource := aResource! !

''-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- '' !

88

WaitingSimulationObject class
instanceVariableNames: "!

!WaitingSimu lationObject class methods For: 'instance creation'!

for: amount of: aResource withPriority: aNumber
A (self onCondition: aNumber) setAmount: amount resource: aResource!

for: amount withPriority: aNumber
A (self onCondition: aNumber) setAmount: amount resource: nil! !

89

Object subclass: #Simulation
instanceVariableNames: 'resources currentTime eventQueue processCount '
classVariableNames: 'RunningSimulation '
poo1Dictionaries: "
category: 'Simulation-General'!

!Simulation methodsFor: 'simulation control'!

atEnd
"Push the simulation to the point of readiness to continue and then
answer whether it is ready to continue."
[self readyToContinue]

whileFalse: [Processor yield].
AeventQueue isEmpty!

enter: anObject
,ASelf !

exit: anObject
,ASelf!

finishUp
"Empty out the eventQueue."
eventQueue := Sorted Collection new.
/\nil!

proceed
I eventProcess I
[self readyToContinue] whileFalse: [Processor yield].
eventQueue isEmpty

ifTrue: [,ASelf finishUp]
ifFalse: [eventProcess := eventQueue removeFirst.

currentTime := eventProcess condition.
eventProcess resume]!

startup
self activate.
self defineResources.
self defineArrivalSchedule! !

90

!Simulation methodsFor: 'accessing'!

includesResourceFor: resourceName
I test I
test := resources

detect: [:each I each name= resourceName]
ifNone: [nil].

Aest notNil !

provideResourceFor: resourceName
Hesources detect: [:each I each name= resourceName]!

self defineArrivalSchedule !

time
/'CurrentTime ! !

!Simulation methodsFor: 'private'!

readyToContinue
fi)rocessCount = O!

schedule: aBlock
startingAt: timelnteger
andThenEvery: aProbabilityDistribution

self newProcessFor:
['This is the first time to do the action."
self delayUntil: timelnteger.
"Do the action."
self newProcessFor: aBlock copy.
aProbabilityDistribution

do: [:nextTimeDelay I
"For each sample from the distribution,
delay the amount sampled,"
self delayFor: nextTimeDelay.
'ihen do the action."
self newProcessFor: aBlock copy]]! !

!Simulation methodsFor: 'scheduling'!

9.1

delayFor: timeDelay
self delayUntil: currentTime + timeDelay!

delayUntil: aTime
I delayEvent I
delayEvent := DelayedEvent onCondition: aTime.
eventQueue add: delayEvent.
delayEvent pause.!

newProcessFor: aBlock
self startProcess.
[aBlock value.

self stopProcess] fork!

start Process
processCount := processCount + 1 !

stopP rocess
processCount := processCount - 1 ! !

!Simulation methodsFor: 'task language'!

coordinate: resourceName
(self includesResourceFor: resourceName)

ifFalse: [resources add:
(ResourceCoordinator named: resourceName)]!

produce: amount of: resourceName
(self includesResourceFor: resourceName)

ifTrue: [(self provideResourceFor: resourceName) produce: a.mount]
ifFalse: [resources add:

(ResourceProvider named: resourceName with: amount)]!

schedule: actionBlock after: timeDelaylnteger
self schedule: actionBlock at: currentTime + timeDelaylnteger!

schedule: aBlock at: timelnteger
''This is the mechanism for scheduling a single action."
self newProcessFor:

[self delayUntil: timelnteger.

92

aBlock value]!

scheduleArrivalOf: aSimulationObjectClass

accordingTo: aProbabilityDistribution
''This means start now."
self scheduleArrivalOf: aSimulationObjectClass

accordingT o: aProbabilityDistribution

startingAt: currentTime!

scheduleArrivalOf: aSimulationObjectClass

accordingTo: aProbabilityDistribution
startingAt: timelnteger
"Note that aSimulationObjectClass is the class SimulationObject or

one of its subclasses. The real work is done in the private message

schedule: startingAt: andThenEvery:."

self schedule: [aSimulationObjectClass new startUp]

startingAt: timelnteger
andThenEvery: aProbabilityDistribution !

scheduleArrivalOf: aSimulationObject at: timelnteger

self schedule: [aSimulationObject startUp] at: timelnteger! !

!Simulation methodsFor: 'initialization'!

activate
''This instance is now the active simulation."

RunningSimulation := self.!

defineArrivalSchedu le
"A subclass specifies the schedule by which s·imulation objects

dynamically enter into the simulation."

/'Self!

define Resources
"A subclass specifies the simulation objects that are initially

entered into the simulation."
/'Self!

initialize
resources := Set new ..

93

currentTime := 0.0.
processCount := 0.
eventQueue := Sorted Collection new! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Simulation class
instanceVariableNames: "!

!Simulation class methodsFor: 'accessing'!

active
A RunningSimulation ! !

!Simulation class methodsFor: 'instance creation'!

new
t-Super new initialize! !

94

Object subclass: #Resource
instanceVariableNames: 'pending resourceName'
classVariableNames: "
pool Dictionaries: "
category: 'Simulation-Resources'!

!Resource methodsFor: 'private'!

provide Resources
ASelf!

setName: aString
resourceName := aString.
pending := SortedCollection new! !

!Resource methods For: 'accessing'!

.
acquire

ASelf!

addRequest: aWaitingSimulationObject
pending add: aWaitingSimulationObject.
self provideResources.
aWaitingSimulationObject pause!

name
AresourceName! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 11·1

Resource class
instanceVariableNames: "!

!Resource class methodsFor: 'instance creation'!

named: resourceName
ASelf new setName: resourceName! !

95

Resource subclass: #ResourceProvider
instanceVariableNames: 'amountAvailable'
classVariableNames: "
poo1Dictionaries: "
category: 'Simulation-Resources'!

t
!ResourceProvider methodsFor: 'accessing'!

amou ntA vailable
AamountAvailable! !

!ResourceProvider methods For: 'private'!

provide Resources
I waiting I

[pending is Empty not
and: [pending first amount<= amountAvailable]]

while True:
[waiting := pending removeFirst.
amountAvailable := amountAvailable - waiting amount.
waiting resume]!

setName: aResourceName with: amount
super setName: aResourceName.
amountAvailable := amount! !

!ResourceProvider methodsFor: 'task language'!

acquire: amountNeeded withPriority: priorityNumber

I waiting I
waiting := WaitingSimulationObject

for: amountNeeded
of: self
withPriority: priorityNumber.

self addRequest: waiting.
A Waiting!

produce: amount
amountAvailable := amountAvailable + amount.

96

self provideResources ! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ResourceProvider class
instanceVariableNames: "!

!Resource Provider class methods For: 'instance creation'!

named: aResourceName
.ASelf new setName: aResourceName with: O!

named: aResourceName with: amount
.ASelf new setName: aResourceName with: amount! !

97

Resource subclass: #ResourceCoordinator
instanceVariableNames: 'wholsWaiting '
classVariableNames: "
poo1Dictionaries: "
category: 'Simulation-Resources'!

!ResourceCoordinator methodsFor: 'accessing'!

customers Waiting
AWholsWaiting == #customer!

queueLength
l'i)ending size!

servers Waiting
AWholsWaiting == #server! !

!ResourceCoordinator methodsFor: 'task language'!

.
acquire

I waiting I
self customersWaiting iffrue: [t-self giveService].
"get here if there is no customer waiting for the service"
waiting := WaitingSimulationObject for: 1 withPriority: 0.

wholsWaiting := #server.
self addRequest: waiting.
A waiting resource!

producedBy: aCustomer
!waiting I
waiting := WaitingSimulationObject for: 1

of: a Customer
withPriority: 0.

self servers Waiting iff rue: [A self getServiceFor: waiting].
wholsWaiting := #customer.
self addRequest: waiting! !

!ResourceCoordinator methodsFor: 'private'!

98

getServiceFor: aCustomerRequest
I aServerRequest I
aServerRequest := pending removeFirst.
pending isEmpty ifTrue: [wholsWaiting := #none].
aServerRequest resource: aCustomerRequest.
aServerRequest resume.
aCustomerRequest pause!

giveService
I aCustomerRequest I
aCustomerRequest := pending removeFirst.
pending isEmpty ifTrue: [wholsWaiting := #none].
A aCustomerRequest!

setName: aString
super setName: aString.
wholsWaiting := #none! !

99

IX. Appendix B - Network Simulation Framework Implementation

EventMonitor subclass: #NetworkMessage
instanceVariableNames: 'parameters statistics'
classVariableNames: "
poo1Dictionaries: "
category: 'Simulation-Data Networks'!

!NetworkMessage methodsFor: 'simula~ion control'!

tasks
"All a NetworkMessage needs to do is to ask for service."

self produceResource: 'MessageFrom'· , self from! !

!NetworkMessage methodsFor: 'statistics'!

entrance Time
"Answer the time that the receiver entered the simulation."

!'Statistics at: #entrance Time!

receivedAt: currentTime
"Set the amount of time it took to transmit the message."

statistics at: #timeToTransmit
put: currentTime -

(self entrance Time + self timelnQueue + self timeToProcess')!

setStatistics
"Set up initial values for the receiver's statistics."

statistics at: #timelnQueue put: 0.
statistics at: #timeToProcess put: 0.
statistics at: #timeToTransmit put: 0.

100

statistics at: #entranceTime put: (Simulation active time)!

startProcessingAt: currentTime
"Set the amount of time the message waited in queue."

statistics at: #timelnQueue
put: currentTime - self entranceTime!

startTransmittingAt: currentTime
"Set the amount of time to process the message before transmitting."

statistics at: #timeToProcess
put: currentTime - (self entranceTime + self timelnQueue)-!

timelnQueue
"Answer the amount of time the receiver spent in the outgoing
message queue."

/'Statistics at: #timelnQueue !

time To Process
"Answer the amount of time it took to process the receiver prior to
transmission."

/'Statistics at: #timeToProcess!.

timeToTransmit
"Answer the time it took to transmit the re.ceiver."

/'Statistics at: #timeToTransmit! !

!NetworkMessage methods For: 'accessing'!

from
"Answer the address of the source node of the receiver."

tparameters at: #from!

from: aStri ng
"Set the address of the receiver;s source node to the String, aString."

101

;4i)arameters at: #from put: aString !

length
·"Answer the length of the receiver, in bits."

pParameters at: #length!

length: an Integer
"Set the length of the receiver, in bits."

pParameters at: #length put: anlnteger!

to
"Answer the destination address of the receiver."

pParameters at: #to!

to: aString
"Set the receiver's destination address to the String, aString."

pParameters at: #to put: aString! !

!NetworkMessage methodsFor: 9printing'!

pri ntOn: aStream
"Define how a NetworkMessage prints its·elf."

aStream nextPutAII: 'MSG' ,self label.
aStream nextPutAII: '(',self from,', ',self to,', '.
self length printOn: aStream.
aStream nextPutAII: ' bits)'! !

!NetworkMessage methodsFor: 'initialization'!

initialize
"Set up instance variables (dictionaries 'parameters' and 'statistics')."

super initialize.
parameters := Dictionary new: 20.
statistics := Dictionary new: 40.

102

self set Statistics! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

NetworkMessage class
instanceVariableNames: "!

!NetworkMessage class methodsFor: 'instance creation'!

from: aString to: bString length: aNumber
"Answer an instance of NetworkMessage of length aNumber. Set to
from and to addresses to aString and bString, respectively."

I aNetworkMessage I
aNetworkMessage := super new.
aNetworkMessage from: aString.
aNetworkMessage to: bString.

"Make sure length is an integer number of bits."
aNetworkMessage length: (aNumber asFloat truncated).
PaNetworkMessage! !

103

EventMonitor subclass: #NetworkNode
instanceVariableNames: 'parameters statistics'
classVariableNames: "
poolDictionaries: "
category: 'Simulation-Data Networks'!

!NetworkNode methodsFor: 'message scheduling'!

broadcastMessageStream: aDist fixedlength: anlnteger
"Ask the simulation to schedule fixed length messages (anlnteger bits long)
destined for all nodes on the network. Schedule them to occur according
to the distribution, aDist."

self network nodes do: [:eachNode I self= eachNode
ifFalse: [Simulation active

schedule: [(NetworkMessage
from: self address
to: eachNode address
length: anlnteger) startUp]

startingAt: aDist next
andThenEvery: aDist]] !

broadcastMessageStream: aDist variablelength: bDist
"Ask the simulation to schedule variable length messages destined
for all nodes on the network. Schedule them to occur according to
the distribution, aDist. Vary the length according
to the distribution, bDist."

self network nodes do: [:eachNode I self= eachNode
ifFalse: [Simulation active

schedule: [(NetworkMessage
from: self address
to: eachNode address
length: bDist next) startUp]

startingAt: aDist next
andThenEvery: aDist]] !

messageStream: aDist to: anAddress fixedlength: anlnteger
"Ask the simulation to schedule fixed length messages (anlnteger

104

bits long) destined for a particular node on the network (anAddress).
Schedule them to occur according to the distribution, aDist."

Simulation active
schedule: [(NetworkMessage

from: self address
to: anAddress
length: anlnteger) startUp]

startingAt: aDist next
andThenEvery: aDist!

messageStream: aDist to: anAddress variablelength: bDist
"Ask the simulation to schedule variable length messages destined
for a particular node on the network (anAddress). Schedule them
to occur according to the distribution, aDist. Vary the length
according to the distribution, bDist."

Simulation active
schedule: [(NetworkMessage

from: self address
to: anAddress
length: bDist next) startUp]

startingAt: aDist next
andThenEvery: aDist!

random Destination
"Answer another node on the network, selected at. random. Used for
sending messages to other nodes at random. This method should not
be modified ! ! "

I aSampleSpace destination I

"Create a sampling space consisting of all nodes on the network."
aSampleSpace := SampleSpace data: (self network nodes).

"Choose one at random."
destination := aSampleSpace next.

"Keep choosing if self was chosen."
[(self = destination)] whileTrue: [destination := aSampleSpace next].

105

"Return the node selected."
!'destination!

randomMessageStream: aDist fixedlength: anlnteger
"Ask the simulation to schedule fixed length messages (anlnteger
bits long) destined for randomly selected nodes on the network.
Schedule them to occur according to the distribution,
aDist."

Simulation active
schedule: [(NetworkMessage

from: self address
to: self randomDestination address
length: anlnteger) startUp]

startingAt: aDist next
andThenEvery: aDist!

randomMessageStream: a Dist variable Length: bDist
"Ask the simulation to schedule variable length messages destined

traffic

for randomly selected nodes on the network. Schedule them to
occur according to the distribution, aDist. Vary the length
according to the distribution, bDist."

Simula ti on active
schedule: [(NetworkMessage

from: self address
to: (self randomDestination address)
length: bDist next) startUp]

startingAt: aDist next
andThenEvery: aDist!

"Define traffic generated by this node. This method is invoked
by the tasks method, and is executed just after the node enters
the simulation. The messages broadcastMessageStream ... ,
messageStream ... , and randomMessageStream ... can be sent to
self for scheduling standard traffic patterns. Subclasses must
implement this method."

"Example (random traffic to random destinations):

106

self
randomMessageStream: (Exponential mean: 5)
variablelength: (Uniform from: 10 to: 10000)."

/'Self! !

!NetworkNode methodsFor: 'message handling'!

isNetworkA vailable
"Answer whether the network is ·idle. Do this by checking if the
resource exists. Return a boolean value. This method should
not be modified !!"

r{ self numberOf RequestersOf Resource:
(self network class name asString)) > O!

makePackets: aNetworkMessage
"Make packets out of aNetworkMessage, answer the length of the first
packet to transmit. Packets are created as new instances of
NetworkMessage. Create maximum length packets until
aNetworkMessage is exhausted. Create a partial packet for what is left
over. Note that the current NetworkMessage will be sent out as a
maximum size packet, therefore, create one less full packet than is
necessary. This method should not be modified !!"

I fullPackets leftover now I

"Record the current time so that Simulation does not get confused
with two messages later on."

now := Simulation active time.

"Determine how many full packets are required (integer division)."
fullPackets := aNetworkMessage length// self network maxPacketSize.

"Remember the left over bits."
leftOver := aNetworkMessage length self network maxPacketSize.

"Create one less than the number of full packets required."
[full Packets > 1]

while True:

107

"Ask Simulation to do the scheduling; send each packet ASAP."

[Simulation active schedule: [(NetworkMessage

from: self address
to: aNetworkMessage to

length: self network maxPacketSize) startUp]

at: now.

"Decrement the counter."
fullPackets := fullPackets - 1].

"Schedule the partial packet for the left over bits."

Simulation active schedule: [(NetworkMessage

from: self address
to: aNetworkMessage to
length: leftover) startUp]

at: now.

"Answer the new size that aNetworkMessage should be."

/'Self network maxPacketSize!

messagesToSend
"Answer whether there are any messages for this node to send.

Do this by checking for the resource, 'MessageFrom(address)',

where address is this node's address. Return a boolean value.

This method shou Id not be modified ! !"

r{self numberOfRequestersOfResource: 'MessageFrom', self address) > O!

receiveMessage: aNetworkMessage

''This method merely serves as a place to do statistics g·athering. ''

aNetworkMessage receivedAt: Simulation active time.

self doReceiveStatistics: aNetworkMessage!

send Message
"Send a message. This first checks to see if the network is idle.

If not, the node will merely perform localProcessing, then exit. If

the network is idle, the node acquires a message resource and

the network resource. Note that with coordinated resources, you

must first acquire the resource, then ask the resource for the

108

object (aNetworkMessage). Once resources are acquired, the
message is packetized {if necessary) or padded (if necessary) to
fit within the packet size bounds of the network. It is up to this
method to simulate the network service time and to log the sending
of a message. Remember to resume resources when done. Great
care should be taken when modifying this method."

I msgResource msg netResource I

"Is network idle ?"
self isNetworkAvailable

"Network is idle, okay to send."
ifTrue:

"Acquire the message resource."
[msgResource := self

acquireResource: 'MessageFrom' , self address.

"Get the actual object, an instance of NetworkMessage,
and mark the time for statistics gathering."
msg := msgResource resource.
·msg startProcessingAt: Simulation active time.

"Fix up message length, either break into smaller messages ... "
(msg length> self network maxPacketSize)

ifTrue: [msg length: (self makePackets: msg)].

" ... or pad to the minimum."
(msg length < self network minPacketSize)

ifTrue: [msg length: self network minPacketSizeJ.

"Acquire the network."
netResou rce := self

acquireResource: (self network class name asString).

"Log a message being sent to the logfile, and mark the
time for statistics gathering."
self timeStamp.
DataFile nextPutAII: 'sending '.

109

msg printOn: DataFile.
msg startTransmittingAt: Simulation active time.

"Simulate the network service time."

self holdFor: (self network serviceTime: msg).

"Ask the network to deliver the message."

self network deliver: msg.

"Collect statistics."
self doSendStatistics: msg.

"Free up the network and the message."

self resume: netResource.
self resume: msgResource]

"Network is busy, go do something else."

if False:
[self localProcessing]! !

!NetworkNode methodsFor: 'simulation control'!

local Processing

tasks

'The purpose of this method is to define what the node does when it is

not sending messages. This includes times when no messages are

queued up and times when messages are queued, but the network is

busy. Somewhere in this method a 'holdFor:' message must be sent to

self. If time is not elapsed during this method, a race condition will

develop."

"Hold for one millisecond."
self holdFor: 1 !

"D.efine the tasks that this node will perform from the time it enters the

simulation until it exits. This method has been set up in a very generic

manner, and should not need much tailoring. It serves to call the

traffic method (to schedule message streams), and then enters an

infinite loop. Within this loop it is checking for messages to send,

sending them if they exist, or performing local processing if there are

110

no messages to send."

"Schedule traffic streams."
self traffic.

"Loop forever."
[true]

"Any messages to send ?"
whileTrue: [self messagesToSend

"Yes - send them."
ifTrue: [self sendMessage]

"No - do something else."
ifFalse: [self localProcessing]]! !

!NetworkNode methods For: 'initialization'!

initialize
"This method sets up the instance variables for the node. 'parameters'
and 'statistics' are both defined as dictionaries. Internal methods
require these variables to respond to the standard dictionary protocol.
Modifying this method is not recommended !!"

parameters := Dictionary new: 10.
statistics := Dictionary new: 40.
self setStatistics !

setStatistics
"Set up the initial entries in the statistics dictionary. Subclasses
must implement."

/'Self! !

!NetworkNode methodsFor: 'accessing'!

address
"Answer this node's address as stored in the parameters dictionary."

111

/'Self parameters at: #address!

address: aString
"Store the node's address in the parameters dictionary."

/'Self parameters at: #_address put: aString !

network
"Answer the network to which this node is connected."

/'Self parameters at: #network!

network:aNetwork
"Store the node's network in the parameters dictionary."

/'Self parameters at: #network put: aNetwork!

parameters
"Answer this node's parameters dictionary."

'1)arameters !

statistics
"Answer this node's statistics dictionary."

/'Statistics! !

!NetworkNode methodsFor: 'statistics'!

doReceiveStatistics: aNetworkMessage
"Handle statistics gathering after receipt of a message. Subclasses
must implement."

/'Self!

doSendStatistics: aNetworkMessage
"Handle statistics gathering after transmission of a message. Subclasses
must implement."

/'Self!

112

incrementStatistic: aSymbol by: aNumber
"Increment the statistic stored as aSymbol by aNumber."

statistics at: aSymbol put: (statistics at: aSymbol) + aNumber!

printStatisticsOn: aStream
"Print the node statistics to the Stream, aStream."

aStream er.
aStream nextPutAII: 'Node Statistics - '.
self printOn: aStream.
aStream er.
aStream er.
statistics keysAndValuesDo:

[:stat :val I val printOn: aStream.
aStream tab.
stat printOn: aStream.
aStream er].

a Stream er.! !

!NetworkNode methodsFor: 'printing'!

printOn: aStream
"Print the node's class and address on aStream."

aStream nextPutAII: self class name asString,'(',self address,')'! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

NetworkNode class
instanceVariableNames: "!

!NetworkNode class methodsFor: 'instance creation'!

address: aString network: aNetwork
"Answer an instance of NetworkNode with address set to aString and
on the network aNetwork."

I aNetworkNode I
aNetworkNode := super new.

113

aNetworkNode address: aString.
aNetworkNode network: aNetwork.
;,.aNetworkNode ! !

114

\

Simulation subclass: #NetworkSimulation
instanceVariableNames: 'parameters statistics network '

classVariableNames: "
poolDictionaries: "
category: 'Simulation-Data Networks'!

!NetworkSimulation methodsFor: 'accessing'!

logfile-
"Answer the simulation's event logging file."

/'Self parameters at: #logfile !

logfile: aFileStream
"Set the simulation's event logg_ing file to aStream."

/'Self parameters at: #logfile put: aFileStream !

network
"Answer the network object of the simulation."

.l'lletwork !

network: aNetwork
"Set the network object to be simulated to aNetwork."

.l'lletwork := aNetwork!

parameters
"Answer the dictionary of simulation parameters."

ti)arameters !

statistics
"Answer the dictionary of simulation statistics."

/'Statistics!

stopTime

115

"Answer the simulation scheduled stop time."

.ASelf parameters at: #stop Ti me!

stopTime: anlnteger
"Set the simulation stop time to anlnteger (milliseconds) . ."

.ASelf parameters at: #stopTime put: anlnteger! !

!NetworkSimulation methodsFor: 'initialization'!

defineArrivalSchedule
"Schedule the arrival of static objects to the simulation (the network
and the nodes). All static objects enter at time zero. Also schedule
the finishUp method to clean things up after stopping. This method
should not be modified !!"

"First the network."
self scheduleArrivalOf: (self network) at: 0.

'Then each node."
(self network nodes) do:

[:eachNode I self scheduleArrivalOf: eachNode at: 0.0].

"Schedule cleanup. 11

self schedule: [self finishUp]
at: self stopTime!

define Resources
"Establish what resources will be present in the simulation. Resources
must be defined for the network and for messages. Since the nodes will
need to communicate with the network and messages to service them,
these resources must be 'coordinated'. This method should not be
modified 11"

self coordinate: (self network class name asString).
(self network nodes) do:

[:eachNode I self coordinate: 'MessageFrom', eachNode address]!

initialize: aNetworkClass nodes: nodeArray logfile: aStream stopTime: anlnteger

116

"Initialize the simulation. Set the network to be simulated to an
instance of aNetworkClass. Step through the nodeArray generating
instances and linking them to the network. Set up instance variables
for the 'parameters' and 'statistics' dictionaries. Set the logfile to
aStream, and stop time to an Integer. This method should not
be modified."

I aNetwork I

"Do any initialization performed by the Simulation class."
super initialize.

"Create the dictionaries."
parameters := Dictionary new: 10.
statistics := Dictionary new: 20.
self setStatistics.

"Set logfile and stop Time."
self logfile: aStream.
self stopTime: anlnteger.

"Create the network. 11

aNetwork := aNetworkClass new.

"Add the nodes."
nodeArray do:

[:eachNode I aNetwork addNode:
I

"Create an instance of the class provided in the nodeArray."
((Smalltalk at: (each Node last) asSymbol)

"address:network: is the instance creation method
for nodes. 11

address: (eachNode first) network: aNetwork)).

"Link the network to the simulation."
self network: aNetwork!

setStatistics
"Set up the initial entries in the statistics dictionary."

117

statistics at: #numberOfObjectsEntered put: 0.
statistics at: #numberOfObjectsExited put: O! !

!NetworkSimulation methodsFor: 'statistics'!

printStatisticsOn: · aStream
"Print the overall simulation statistics on aStream. Then ask network
to print statistics on aStream_."

aStream er.
aStream er.
aStream nextPutAII: 'Overall Simulation Statistics - '.
self printOn: aStream.
aStream er.
statistics keysAndValuesDo:

[:stat :val I val printOn: aStream.
aStream tab.
stat printOn: aStream.
aStream er].

aStream er.

"Now call the network to print its statistics."
network printStatisticsOn: aStream ! !

!NetworkSimulation methodsFor: 'simulation control'!

enter: anObject
statistics at: #numberOfObjectsEntered

put: (statistics at: #numberOfObjectsEntered) + 1 !

exit: anObject
statistics at: #numberOfObjectsExited

put: (statistics at: #numberOfObjectsExited} + 1 !.

proceedUntilStop Time
[self time< self stopTime]

whileTrue: [self proceed].
/'Self! !

"-- -- -- -- -- _.:. -- -- -- -- -- -- -- -- -- -- -- -·- "!

118

\

NetworkSimulation class
instanceVariableNames: "!

!NetworkSimulation class methodsFor: 'instance creation'!

network: aNetworkClass nodes: anArray logfile: aString stopTime: anlnteger
"Answer an instance of NetworkSimulation, with an instance of
aNetworkClass to be simulated. Add the nodes from anArray
to the network. Set the event logging file to the file named
aString. Set the stopTime to anlnteger. This method should not
be modified ! !"

"Example:

Network Simulation
network: Network
nodes: #(#('A' NetworkNode) #('B' NetworkNode))
logfile: 'netsim .events'
stop Time: 1000.

returns a simulation of a Network, with two nodes, of type
'NetworkNode' that logs events to the file 'netsim.events', and stops
after 1000 milliseconds."

I aSimulation aFileStream I

"Create a writeStream that ·writes to the file named aString."
aFileStream := (Filename named: aString) writeStream.

"Set event logging file for other objects in the simulation."
aNetworkClass file: aFileStream.
NetworkMessage file: aFileStream.
NetworkNode file: aFileStream.

"Create a new instance, and initialize it."
aSimulation := super new

initialize: aNetworkClass
nodes: anArray
logfile: aFileStream

119

"Get things going."
aSimulation startup.

stopTime: anlnteger.

"Answer the instance of NetworkSimulation."
,r,aSimulation! !

120

EventMonitor subclass: #Network
instanceVariableNames: 'parameters statistics nodes'
classVariableNames: "
poolDictionaries: "
category: 'Simulation-Data Networks'!

!Network methodsFor: 'simulation cont.rol'!

tasks
"Define the tasks that the network will perform from the time it enters the
simulation until it exits. This method has been set up in a very generic
manner, and should not need much tailoring. It merely has to keep
reproducing the network resource (since nodes effectively consume it
when they grab it."

[true]
while True:

[self produceResource: (self class name)]! !

!Network methodsFor: 'statistics'!

doStatistics: aNetworkMessage
"Do statistics gathering after a message has been delivered."

PSelf!

incrementStatistic: aSymbol by: aNumber
"Increment the statistic stored as aSymbol by aNumber."

statistics at: aSymbol put: (statistics at: aSymbol) + aNun1ber!

pri ntStatisticsOn: a Stream
"Print the network statistics to the Stream, aStream."

aStream er.
aStream nextPutAII: 'Network Statistics - '.
self printOn: a Stream.
aStream er.
aStream er.

121

statisti.cs keysAndValuesDo:
[:stat :val I val printOn: aStream.

aStream tab.

aStream er.

stat printOn: aStream.
aStream er].

nodes do: [:each I each printStatisticsOn: aStream]! !

!Network methodsFor: 'printing'!

printOn: aStream
"Print the network's class on aStream."

aStream nextPutAII: self class name asString ! !

!Network methodsFor: 'accessing'!

addNode: aNetworkNode
"Add a node to the network - store it in the OrderedCollection, nodes. 11

Modes add: aNetworkNode !

bitErrorRate
"Answer the bit-error-rate of the network."

ASelf parameters at: #bitErrorRate !

bitErrorRate: aNumber
"Set the bit-error-rate of the network - store in parameters. 11

ASelf parameters at: #bitErrorRate put: aNumber!

bitRate
"Answer the network's bit rate (transmission speed) in bits per second.

11

ASelf parameters at: #bitRate !

bitRate: anlnteger
"Set the network's bit rate (transmission speed) - store in parameters.

11

122

/'Self parameters at: #bitRate put: anlnteger!

collision Probability
"Answer the probability of a collision on the network."

/'Self parameters at: #collisionProbability!

collisionProbability: aNumber
"Set the probability of a collision on the network - store in parameters."

/'Self parameters at: #collisionProbability put: aNumber!

maxPacketSize
"Answer the network's maximum packet size in bits."

/'Self parameters at: #maxPacketSize !

max P acketSize: an Integer
"Set the network's maximum packet size - store in parameters. 11

/'Self parameters at: #·maxPacketSize put: an Integer!

minPacketSize
"Answer the network's minimum packet size in bits."

/'Self parameters at: #minPacketSize!

minPacketSize: anlnteger
"Set the network's minimum packet size - store ih paramters."

/'Self parameters at: #minPacketSize put: anlnteger!

nodes
"Answer the nodes connected to the network - as an OrderedCollection. 11

J'l1odes!

nodes: anArray
"Add nodes listed in anArray to the network."

123

anArray do: [:i I self addNode: i]!

overhead Bits
"Answer the number of overhead bits per packet required by the network."

.ASelf parameters at: #overhead Bits!

overheadBits: anlnteger
"Set the number of overhead bits per packet to anlnteger - store
in parameters."

.ASelf parameters at: #overheadBits put: anlnteger!

parameters
"Answer the dictionary of network parameters."

!'parameters!

propagation Time
"Answer the network's propogation time in milliseconds."

.ASelf parameters at: #propagation Time!

propagationTime: aNumber
"Set the network's propagation time - store in parameters."

.ASelf parameters at: #propagationTime put: aNumber!

statistics
"Answer the dictionary of network statistics."

.AStatistics ! !

!Network methodsFor: 'initialization'!

initialize
"Set up the instance variables (dictionaries 'parameters' and 'statistics',
and the ordered collection, 'nodes'). Call setParameters to establish
the network's parameters."

124

parameters := Dictionary new: 20.
statistics := Dictionary new: 40.
nodes := OrderedCollection new.
self setParameters.
self setStatistics !

setP arameters
"Store the network's parameters. At a minimum, bitRate, minPacketSize,
and maxPacketSize should be specified. Subclasses must implement"

/'Self!

setStatistics
"Set up the initial entries in the statistics dictionary. Subclasses
must implement."

/'Self! !

!Network methodsFor: 'message handling'!

deliver: aNetworkMessage
"Deliver a message. This method serves as a statistics gathering and
event monitoring point in addition to actually passing the message to
the receiver."

self timeStamp.
DataFile nextPutAII: ' delivering '.
aNetworkMessage printOn: DataFile.

"Send the NetworkMessage to all nodes with address= to."
self nodes do:

[:each I each address = aNetworkMessage to
ifT rue: [each receive Message: aNetworkMessage]].

self doStatistics: aNetworkMessage!

serviceTime: aNetworkMessage
"Answer the time to send a message in milliseconds. Only use
parameters that are defined in setParameters. Subclasses
must implement"

125

!6elfl I

126

X. Biography

Bruce R. V arnerin was born of Lawrence and:-Marie V amerin in Summit, NJ. on

January 10, 1964. He attended Purdue University and was awarded a B.S. in Computer

and Electrical Engineering in 1985. Since then, he has worked for AT&1'

Microelectronics in Allentown; PA. As a Member of Technical Staff, his

responsibilities include international wide~area-network management, distributed

database design and development, local-area-network design and general systems

engineering. Bruce will receive -an M.S. in Computer Science from Lehigh University

inJune, 1991. >~---··--
r·

127

	Lehigh University
	Lehigh Preserve
	1991

	An object-oriented framework for computer network simulations
	Bruce R. Varnerin
	Recommended Citation

	tmp.1551882614.pdf.q6rW4

