A study of DC-DC converters with focus on analysis techniques and current mode control

Douglas B. Lebo
Lehigh University

Follow this and additional works at: https:// preserve.lehigh.edu/etd
Part of the Electrical and Computer Engineering Commons

Recommended Citation

Lebo, Douglas B., "A study of DC-DC converters with focus on analysis techniques and current mode control" (1991). Theses and Dissertations. 5460.
https://preserve.lehigh.edu/etd/5460

A Study of DC-DC Converters

With Focus on Analysis Techniques and Current Mode Control
by
Douglas B. Lebo

A Thesis
Presented to the Graduate Committee
of
Lehigh University
in Candidacy for the Degree of
Master of Science
in
Electrical Engineering

Lehigh University

This thesis is accepted and approved in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering.

$\frac{5 / 6 / 91}{\text { Date }}$

$\frac{5 / 6 / 91}{\text { Date }}$

Acknowledgments

I would like to thank the following people for motivating me to write this paper:
My wife, for putting up with my physical and sometimes mental absence while working on, or thinking about this paper; and for pushing me to finish what was started.

My parents, for encouraging me to pursue higher education; and providing me with the opportunity to do so.

My advisor, who taught me a great deal when I was an undergraduate. Who shed light on the process of writing this paper; and gave me insight into the problem at hand, yet let me pursue the topic without interference.

My Grandfather, Homer C. Althouse, who got me interested in electronics many years ago; and who taught me much about problem solving and "Good old down home ingenuity". I dedicate this work in memory of him.

Table of Contents

Abstract 1
Introduction 2
Basic Topologies 6
The Buck Converter 7
The Flyback Boost Converter 10
The Boost - Buck Converter 13
Creation of "New" Topologies from Existing Ones 14
The CUK Converter 15
Discontinuous Operation 19
Current mode control 24
Analysis Techniques 38
State Space Averaging 39
Extending State Space Averaging into a Computer Model 54
Continuous Mode Boost Converter Model 55
Discontinuous Mode Boost Model 60
Modeling Current Mode Control. 64
Integrating Discontinuous and Continuous Mode Models 68
Design of a Boost Converter With the Aid of Pspice 73
Design Verification 99
Conclusion 105
Bibliography 106
Vita. 108
List of Figures
Figure 1 - Pulse Width Modulation Definitions, 5
Figure 2 - Buck Converter. 8
Figure 3 - Buck Converter Equations 8
Figure 4 - Boost Converter 10
Figure 5 - Boost Converter Equations 10
Figure 6 - Boost - Buck Converter. 12
Figure 7 - Boost - Buck Converter Equations 12
Figure 8 - The Creation of the Boost-Buck Converter from the Boost and Buck Topologies 14
Figure 9 - The CUK Converter 16
Figure 10- CUK Converter Equations Part 1 17
Figure 11 - CUK Converter Equations Part 2 18
Figure 12 - Continuous vs Discontinuous Mode Inductor Currents. 21
Figure 13 - Boost Regulator Operating in Discontinuous Mode. 22
Figure 14 - Impact of Discontinuous Mode on the Boost Regulator Input to Output Voltage Function 23
Figure 15 - Boost-Buck Regulator with a Voltage Feedback Loop 25
Figure 16 - Boost Regulator with Voltage and Current Feedback. (Current Mode) 27
Figure 17 - Boost Regulator with Current Mode Feedback. 30
Figure 18-Plot Showing Subharmonic Instability. 32
Figure 19-Magnified Second Cycle of Previous Plot 32
Figure 20 - Plot Showing Lack of Subharmonic Instability 33
Figure 21 - Magnified Second Cycle of Previous Plot 33
Figure 22 - Quantitative Subharmonic Instability Derivation 35
Figure 23 - Slope to Duty Cycle Linkage 37
Figure 24 - Linear LCR circuit with Conventional and State Notation. 40
Figure 25 - Linear State Analysis of a LCR Circuit. 41
Figure 26 - Generalized State Equations for a n Switch Condition Network 42
Figure 27 - Sampled Data State Equations 45
Figure 28 - Sampled Data State Equations. 46
Figure 29 - State Equations for a Two Condition System. 48
Figure 30 - State Space Averaged Matrix Definitions. 48
Figure 31 - State Space Averaged Matrix Definitions Extended to 3 and n Switch Conditions. 49
Figure 32 - Application of Small Signal Approximation to the Nonlinear System 50
Figure 33 - Small Signal State Equations 51
Figure 34 - Small Signal State Equation Definitions 52
Figure 35 - Flow Diagram Depicting Feedback and Feedforward Control 53
Figure 36 - General State Space Averaged and Linearized System Representation 54
Figure 37 - Switch Replacement Model for a Boost Converter 55
Figure 38 - Spice Model of a Continuous Mode Duty Cycle Controlled Boost Regulator 58
Figure 39 - Boost Converter Simulation. 59
Figure 40 - Pspice Boost Converter Gain and Phase Plot 60
Figure 41 - Discontinuous Mode Switch Terminal Conditions. 61 61
Figure 42 - Discontinuous Mode Average Terminal Conditions. 62
Figure 43 - Discontinuous Mode Model. 63 63
Figure 44 - Duty Cycle to Current Mode Control. 64 64
Figure 45 - Spice Model of a Continuous Current Mode Controlled Boost Regulator 66
Figure 46 - Boost Converter Hybrid Model. 67
Figure 47 - Discontinuous vs Continuous Operation 69 69
Figure 48 - Discontinuous vs Continuous Operation 70 70
Figure 49 - Converter Design Specifications 74
Figure 50 - Design Equations Part 1 76
Figure 51 - Design Equations Part 2 77 77
Figure 52 - Calculation of Error Amplifier Model Parameters 80 80
Figure 53 - Final Model of Boost Converter 82 82
Figure 54 - DC simulation of Finished Circuit 83 83
Figure 55 - Error Amplifier Model for Phase and Gain Simulations. 84 84
Figure 56-150 ohm Load Gain Plot With No Compensation. 86 86
Figure 57-150 ohm Load Phase Plot With No Compensation. 87 87
Figure 58 - Calculation of Component Values to Obtain Desired Pole Zero 89
Location
Location
Figure 59 - Gain and Phase for Initial Pole Location. 91
Figure 60 - Gain and Phase for Pole Moved to 0.45 Hz 92
Figure 61-50 ohm Load Gain and Phase for Nominal Input. 93
Figure 62-50 ohm Load Gain and Phase for Minimum Input. 94
Figure 63-50 ohm Load Gain and Phase for Maximum Input. 95
Figure 64-150 ohm Load Gain and Phase for Minimum Input 96
Figure 65-150 ohm Load Gain and Phase for Maximum Input. 97
Figure 66 - Prototype Circuit With Component Values 98
Figure 67 - Variable Load Test Circuit 99
Figure 68 - Transient Response. 100
Figure 69 - Phase and Gain Bench Test Circuit. 102
Figure 70 - Measured Gain and Phase of Regulator for Vc to Vout. 103
Figure 71 - Simulated Gain and Phase of Regulator for Vc to Vout 104
\square
Abstract

Switch mode DC-DC converters are becoming increasingly prevalent in today's miniaturized low power equipment. This paper investigates single inductor pulse width modulated converter topologies, and the analysis tools available to deal with these circuits. The Boost, Buck, Boost-Buck, and CUK topologies are introduced, and the large signal operation of each is discussed. Discontinuous operation, Duty cycle control, and Current mode control are presented as generalized extensions of the previous topologies. State Space Averaging and Linearization is introduced as a method of representing a time variant circuit as a time invariant one to facilitate small signal analysis. Nonlinear time invariant circuit models to aid in the characterization of converter circuits are derived from the concepts of state space averaging . These models are transformed into spice models using the nonlinear dependent source feature of spice. A sample Boost converter is designed using the spice models as a tool to compensate the feedback loop of the converter and a comparison is done between the real life implementation of the circuit and the predictions made by the model.

Introduction

Today's ever decreasing packaging volume requirements coupled with the increased use of battery powered applications has led to a wide spread adoption of Switch Mode power supplies in many applications. From commanding just 17% of the power supply market in 1979, the switch mode power supply market has grown to capture 63% of the market by year end of 1989.1 Design of these supplies has long been considered a black art left to a vendor with a proven track record, while leaving small applications such as on card regulation to single chip power miserly linear solutions or expensive hybrid IC switch mode supplies. Recent offerings by semiconductor manufacturers of new control integrated circuits and complete "drop in solutions" has given the novice a path to the successful design of supplies provided that the semiconductor manufacturer's design notes are followed. Many of the predesigned integrated circuit solutions reduce the effort required to design a circuit at the expense of providing less than optimal efficiency and load regulation. While the simplification of switch mode power supply design has led to increased use, some designers are not comfortable using or modifying existing circuits which use a technology that they do not fully understand. It is the author's opinion that much of the reluctance of designers
to use switchmode power supplies comes from a lack of understanding coupled with an extensive history of horror stories involving these circuits. This paper is intended to familiarize designers with some of the design strategies, analysis tools, and circuit topologies used for these circuits so they can be better equipped in the design, and selection processes of switch mode supplies.

As with any regulator circuit, there is a mechanism for controlling the flow of energy to the load to achieve regulation. Switching regulators store a fixed amount of energy supplied by the input source in the magnetic field of an inductor, and then later release the stored energy to the load. Storage and release of energy is governed by the circuits switch mechanism. Altering the output voltage of the supply is implemented by regulating the ratio of energy storage time to energy release time. This differs from the regulation mechanism in a linear supply which essentially operates as a variable resistive voltage divider to dissipate unused energy. Switching regulator control techniques will all center around the modulation of the switch on time to off time ratio since energy transfer is governed by the switching modulation method. Some of the modulation methods used are: fixed switch on time with variable switch off time, fixed switch off time with variable on time, and fixed cycle time where the sum
of the switch on and off time is constant. The latter is simply pulse width modulation of a fixed frequency clock and is by far the dominant method in use today for switch mode DC-DC converters. Pulse width modulation (PWM) control's key advantage is that the lowest frequency component of ripple generated by the switching action is constant lending to a simple output filter implementation to achieve low output ripple. However, other modulation methods are used to meet special performance requirements. Fixed on-variable off time is used by some of the single IC regulator solutions offered by IC vendors such as Linear Technologies. For example, the quiescent current of the LT-1073 is considerably lower than in a typical PWM controlled circuit. Throughout this paper we will focus on PWM so some definitions are in order. If one defines T to be the constant period of the clock and D the variable duty cycle of the switch, then switch on time will be denoted as $\left(t_{o n}=D \cdot T\right)$ and switch off time denoted as $\left(t_{\text {off }}=(1-D)^{\cdot} T\right) . \quad($ See figure 1$)$

Figure 1 - Pulse Width Modulation Definitions.

Pulse width modulated switch mode supplies can be divided into one of the two following basic types: The Forward Converter Topology where current from the source flows from the source into the load during the switch on time; and the Flyback topology where energy is transferred from the source to the inductor during switch on time, and from the inductor to the load during switch off time. There is some discrepancy in the literature on these definitions especially concerning flyback topologies, so the reader should be aware of the use of them when reading other literature on the subject.

Independent of what topology is used it is of the utmost importance to fully understand where energy is being supplied from, stored in, and dissipated to during each portion of the clock. For the purposes of the initial discussion of each topoloyy, we will assume that there is energy stored in the inductor at the end of each cycle implying that there is current flow through the inductor.

Basic Topologies

Depending on the topology chosen, converters can produce an output voltage which has a magnitude greater or less than the input while maintaining or reversing the polarity relationship between the input and output. The Buck converter produces an output which is less in magnitude, and the same polarity as the input. The Boost topology maintains the polarity of the input, yet produces an output magnitude greater than that of the input. A Boost-Buck converter inverts the polarity of the input, but can produce an output voltage with a magnitude above or below that of the input.

The Buck Converter

A simplified diagram of a forward buck converter is shown in figure 2. As suggested by its name, the buck converter produces an output voltage which is less than the input potential.

Figure 2 - Buck Converter.
(A) $\left.\right|_{L(t)}:=\left[\begin{array}{ll}V & -V \\ \text { in } & \text { out }\end{array}\right] \begin{aligned} & 1 \\ & -t+1 \\ & L\end{aligned} \quad$ For $(0<t<D T)$

(D)
(E)

$$
\begin{aligned}
& I_{L(T)}:=1_{0} \quad 0:=\frac{1}{L} T\left[\begin{array}{c}
D V-V \quad-V(1-D) \\
\text { in. out } \\
D
\end{array}\right] \\
& \text { (F) } V_{\text {out }}:=D V_{\text {in }}-V_{D}(1-D) \text { Since } I_{0} \text { is steady state }
\end{aligned}
$$

Figure 3 - Buck Converter Equations.

To analyze the large signal behavior of the circuit, piecewise linear analysis techniques will be used in conjunction with making the assumption that the output of the supply is an ideal voltage source of magnitude Vout. If one assumes that the filter cap is large enough to maintain an approximately constant output voltage throughout a cycle then when the switch is closed at the beginning of a clock cycle, the inductor current will start to rise approximating a liner ramp as described in figure 3A. At the end of the switch dutycycle, the switch opens up defining the maximum inductor current as approximately that described in figure 3B. The voltage across the inductor will instantaneously reverse and increase in magnitude until the voltage across it is a diode drop above the output voltage; there it will remain clamped as long as there is energy stored in the inductor. Energy stored in the inductor is now discharged according to equation $3 C$ until the end of the clock cycle T. Since the circuit is assumed to be in a steady state condition, the energy stored in the inductor at the start of the next cycle must equal that stored at the beginning of the present cycle. By invoking an inductor current boundary condition at the switch turn on point of the second cycle $\left[I_{0}(T-)=I_{0}(T+)\right]$, a solution for the output voltage as a function of input voltage and duty cycle can be realized as carried out in figures 3 E and 3 F .

The Flyback Boost Converter

Figure 4 - Boost Converter.
(A). $\quad \underset{L(t)}{ }:=\left[\begin{array}{ll}1 & V \\ 0 & -t \\ 0 & \text { in } L\end{array}\right]$ For $0<t<D T$
(B)

$$
I_{L(D T)}:=\left[\begin{array}{ccc}
1 & 1 & V \\
0 & \text { in } L & T
\end{array}\right] \quad \text { For } t=D T
$$

(C)

(E)

$$
\begin{aligned}
& 1 \\
& L(T) \\
& 0
\end{aligned} \quad 0:=\frac{1}{L} T\left[\begin{array}{l}
V \\
i n
\end{array} \quad\left[\begin{array}{l}
V \\
\text { out }
\end{array} \quad \begin{array}{l}
V
\end{array}\right]\left(\begin{array}{ll}
1 & -D) \\
&
\end{array}\right]\right.
$$

(F)

$$
v_{\text {out }}:=v_{\text {in }} \frac{1}{1-D}-V_{D}(1-D) \quad \text { For i } 0
$$

Figure 5 - Boost Converter Equations.

A flyback boost converter is pictured in figure 4. Boost converters use the same four basic components that their forward counterparts do, yet produce an output voltage which is greater than the input potential. During the switch on time interval the inductor is connected across the input source, while during the switch off period it is in series with the source and load. Effectively, the potential induced across the inductor is added to the input source there by boosting the output voltage above the input voltage. Since the inductor is across the source when the switch is closed, the inductor charging current is simply a linear ramp described by the equation in figure 5A. When the switch opens at the end of the duty cycle interval $t=D T$, the energy stored in the inductor is at its maximum and the voltage across the inductor reverses and rises until the blocking diode conducts. At this point, the voltage across the inductor is clamped to ($\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {Diode }}$) so the energy stored in the magnetic field of the inductor is discharged into the load as described by the equation in figure 5 C . If a steady state condition is assumed where the minimum inductor current I_{0} is the same for all cycles of the clock; equation 5D can be solved for V out as a function of $V_{i n}$ as carried out in figures 5 E and 5 F .

Figure 6 - Boost - Buck Converter.

(B)

$$
I_{L(D T)}:=\left[\begin{array}{llll}
1 & +V & 1 \\
0 & \text { in } L & T
\end{array}\right] \quad \text { For } t=D T
$$

(C)
(E)

$$
l_{L(T)}:=\frac{1}{0} \quad 0:=\frac{1}{L} T\left[\begin{array}{l}
V \\
\text { in }
\end{array}+\left[\begin{array}{ll}
V & -V \\
\text { out } & D
\end{array}\right] \frac{1-D}{D}\right]
$$

(F)

$$
V_{\text {out }}:=v_{\text {in }}\left[\frac{-D}{1-D}\right] \quad \text { For } v=0 \quad 1 \quad 0
$$

Figure 7 - Boost - Buck Converter Equations

The Boost - Buck Converter

A simplified boost-buck flyback converter is shown in figure 6. The boost-buck regulator differs from the boost topology in that the inductor voltage is not added to the input voltage during the energy transfer period. This allows the magnitude of the output voltage to span from zero to above the input voltage depending on the switch duty cycle. The energy storage phase is the same as that of the boost converter, so the same equations for inductor charging current may be utilized. When the switch opens up at the end of the inductor charging phase, the potential across the inductor reverses and is clamped to Vout by the charge on the output capacitor. Consequently, the energy stored in the inductor is discharged as a current ramp until the end of the clock cycle as described by figure 7C. Again assuming a steady state condition for the minimum inductor current I_{0}, the output voltage can be calculated as demonstrated in equations 7 E and 7 F .

Creation of "New" Topologies from Existing Ones

Figure 8 - The Creation of the Boost-Buck Converter from the Boost and Buck Topologies.

Although some consider the boost-buck converter to be a basic topology it can be thought of as a cascade of a buck and a boost converter. Consider the circuit shown in figure 8A consisting of a buck converter feeding the input of a boost converter. If one were to synchronize the switches it can be seen that during switch on time the current flows from the source to ground via the switches (Figure 8B). As discussed before, the only parameter which matters when the switch opens is the amount of
energy stored in each inductor. The capacitor C1, located between the two converters, does little to alter this. By removing capacitor C1, and combining L1 and L2 into L a non-inverting two switch topology emerges (Figure 8D). The two switches can be combined into one by observing that both are only needed if polarity reversal is not desirable. Further reduction can be obtained by noting that the current flow in switch two is unidirectional so it can be replaced by a diode yielding the boost-buck topology as discused before (Figure 8 E and 8 F). If one examines the function for $V_{\text {out }}$ previously derived in figure 7, one finds that it is the product of the boost and buck converter output voltage functions, further indicating the relationship between the topologies.

The CUK Converter

It can be observed from this discussion that "new" converter topologies can be synthesized from combinations of the basic boost or buck converter. As previously demonstrated, a boost buck converter is simply the cascade of two basic topologies. Of particular importance is the Cuk converter (Pronounced "Chook". Named after Dr. Slobodan Cuk) which is generated by preceding the buck converter with a boost converter; a reverse of the boostbuck topology (Figure 9A).

Figure 9 - The CUK Converter.

As before, integration of the two topologies starts with removing the diode and switch combinations by replacing them with there ideal switch counterparts (figure 9A to 9B). The second integrating step is observing the energy sources and sinks during each switch state. During the switch on period both inductors are being charged, one from the source and one from C1. During the switch off period inductor Ll is transferring its stored energy to Cl and inductor L 2 is transferring its stored energy to the load filtered by C2. The load and the source are completely isolated during both periods of the clock. In
this case, it is observed that the filter capacitor can not be omitted since energy stored in it during the switch off period is required to supply the second stage when the switches are on. By using the previous observations, the circuit in figure 9 B can be transformed to that in figure 9 C by moving Cl and combining S 1 and S 2 . The circuit in figure 9C charges both inductors during the switch on period and discharges them during the switch off period. However, one functional difference does exist between figure 9 B and 9C. The polarity of the output is inverted because the reference side of $C 1$ is flipped between switch states.

Figure 10 - CUK Converter Equations Part 1.

Figure 11 - CUK Converter Equations Part 2.

Now that the CUK topology has been defined, the previously used analysis techniques can be applied to solve for $V_{\text {out }}$ and the inductor currents. With the switch closed inductor L 1 is being charged across the input source, so the current can again be described as a linear ramp defined in figure 10A. To describe the current in L2, an assumption needs to be made about the voltage across Cl. The voltage across Cl should be relatively constant over a clock cycle since it is essentially the output filter capacitor of a boost regulator. With this assumption in hand, the current through L2 is simply another linear ramp described by figure 11A. When the
switch opens, inductor L1 transfers its stored energy to C1. As discussed before, the voltage across C1 is relatively constant so the discharge current of Ll can be approximated by the equation in figure 10C. Inductor L2 is clamped across the output voltage during the switch off period, so the energy stored in it is discharged as described by figure 11c. By solving for the inductor currents at the end of each cycle, two expressions emerge: one for $V_{C 1}$ as a function of $V_{\text {in }}$ and one for $V_{\text {out }}$ as a function of V_{C} (Figures 10 F and 11F). Combining the two expressions yields the input voltage to output voltage function described in figure 11F. Comparing this with the individual functions of the boost and the buck converter shows that the CUK converter DC input to output function is the product of the two elementary converter input to output functions, as one would expect.

Discontinuous Operation

Up to this point we have assumed that the inductor current never reaches zero before the end of a clock cycle which implies that the load current is sufficient to maintain energy transfer during switch off time. As long as the load current is great enough to sink the energy from the inductor, the average charge on the filter capacitor will remain unchanged indicating that the output
voltage will remain constant (Figure 12A). If the output current is decreased to the point where the incremental energy stored in the inductor is greater than that consumed by the load; the excess energy will be dumped into the filter capacitor causing the output voltage of the circuit to increase until a new steady state output power is reached. An increase in steady state output voltage causes the inductor to discharge at a grater rate so the inductor current will reach zero before the end of the clock cycle as shown in figure 12B. This mode of operation is termed discontinuous operation since the inductor current flow is no longer continuous.

Figure 12 - Continuous vs Discontinuous Mode Inductor Currents.

It should be noted that determining the mode of operation the circuit is in, is of the utmost importance when evaluating control loop stability since the loop gain of the control loop depends on the mode of operation. The boundary of continuous to discontinuous operation is termed the critical load current and is defined as the load condition that causes the inductor current to just reach zero at the end of a cycle (Figure 12C).

Figure 13 - Boost Regulator Operating in Discontinuous Mode.

Consider the operation of the boost converter operating in discontinuous conduction mode shown in figure 13. To analyze the properties of the discontinuous mode circuit we will assume that the inductor current reaches zero at a point in time located between DT and T defined as $x T$, and that the load voltage has stabilized to some steady state value define as $\mathrm{V}_{\text {out }}$.

Figure 14 - Impact of Discontinuous Mode on the Boost Regulator Input to Output Voltage Function.

For discontinuous operation the inductor always starts charging from a totally discharged state since all stored energy is expelled within each cycle of the clock. As a result, the inductor charging current becomes a simple function of duty cycle and input voltage (figure 14A). When the switch opens up the inductor discharges at a rate controlled by the difference between the input and output voltages described by the equation in figure 14B. By integrating the inductor current over the time which current is flowing to the output a solution for the output current as a function of dutycycle, input
voltage, and time point $x T$ is obtained. The arbitrary time point $x T$ is simply the solution of equation 14 B for $I_{L}(t)=0$. Combining equations 14 D and 14 E and solving the quadratic for $V_{\text {out }}$ yields the discontinuous output voltage function in equation 14F. An insight into the consequence of discontinuous mode operation can be seen by comparing equation 14 F to the continuous case output equation. For the continuous case the output voltage is only dependent on duty cycle while for the discontinuous case the output voltage is a function of the load, inductor value, clock period, and duty cycle.

Current mode control

Up until now we have assumed the presence of a feedback loop which adjusts the pulse width of the switch to achieve output voltage regulation. Figure 15A shows a boost-buck requlator with such a voltage feedback loop.

Figure 15 - Boost-Buck Regulator with a Voltage Feedback Loop.

The feedback loop consists of an error amplifier which feeds a correction signal to the pulse width modulator to correct for a difference between the output and the desired output or reference. For a constant output load and input condition, the switch will remain at a constant duty cycle D_{1} and consequently the peak inductor current will remain constant at $I_{P 0}$ (See figure 15B). If the input voltage is suddenly increased then the energy stored in the inductor must rise to a new value I_{pl} and the output voltage must also rise until the feedback loop
responds, many clock cycles later, by decreasing the duty cycle to reduce the energy stored in the inductor. Since the source and load are disconnected during the energy storage and transfer periods, the energy transferred to the load must have been completely stored in the inductor at one time (See figure 15C). With this in mind, it stands to reason that controlling the peak inductor current in a boost-buck regulator is equivalent to controlling the output voltage for a given output load condition. If the voltage control loop were eliminated and replaced with a circuit which always charges the inductor to a preset value on every clock cycle then a change in $V_{\text {in }}$ would not produce a change in $V_{\text {out }}$ since the energy stored in the inductor is constant (See figure 17). Of course this is assuming that the output load condition is constant.

Figure 16 - Boost Regulator with Voltage and Current Feedback. (Current Mode)

Unfortunately load conditions do vary, so the previous concept must be integrated into a circuit which controls both peak inductor current and output voltage. The regulator shown in figure 16 has a secondary feedback loop which controls the peak inductor current on every cycle as a function of the error voltage generated by a primary voltage control feedback loop. The peak inductor current is fixed for a given set of output load conditions by the secondary current feedback loop. Regulating the peak inductor current inside the voltage feedback loop is
termed current mode control. An error signal, representing output voltage error generated from the voltage feedback loop, controls the peak inductor current and therefore the peak energy stored in the inductor. If Vin should change, the current feedback loop compensates by turning the switch off earlier or later depending on the polarity of the disturbance. Current mode control can be viewed as regulating the internal magnetic state of the system by using the inductor current state variable as a source of feedback. One benefit of controlling the peak inductor current on a cycle by cycle basis is that cycle by cycle current limiting can easily be added to a current mode regulator by limiting the current feedback reference signal. Cycle by cycle current limit can be used to prevent inductor saturation. Inductor saturation can be disastrous since the incremental inductance of a non air core inductor decreases to a near core-less value during saturation. A sharp decrease in inductance leads to a rapid increase in inductor current since the inductor is across a voltage source with a very low series resistance. The rate of rise of switch current is inversely proportional to the inductance, so decreasing the inductance results in a runaway rise in inductor and therefore switch current. High current stress of the switch leads to semiconductor reliability limitations and consequently should be avoided at all costs if future
component failures are to be avoided. Converters using current mode control may have their outputs paralleled without the fear of one supply current hogging. This often is a requirement for high reliability systems.

Current mode control is not without some problems. When used in the boost topology duty cycles must be limited to less than 50% in order to prevent sub-harmonic instability. Sub-harmonic instability is a oscillatory effect which occurs independent of the presence of the primary voltage feedback loop. Consider the operation of the open loop current mode boost converter in figure 17.

Figure 17 - Boost Regulator with Current Mode Feedback.

The waveforms shown look reasonable as derived from simple energy transfer methods but deficiencies are hidden in this type of analysis. Complications begin to show up if one inserts a small one cycle long glitch in the inductor current and follows the added current through successive cycles of the clock. The glitch can be viewed as a change in inductor charging slope perhaps caused by a disturbance in $V_{\text {in }}$ which causes the inductor current at the end of the clock cycle not to equal the inductor current at the beginning of the cycle.

Consider the waveform shown in figure 18 where the inductor current relative to the minimum steady state inductor current is plotted against time. The first cycle displayed shows the inductor charging from $I_{\text {min }}$ to the peak current set point $I_{\max }$ with a slope of m_{1} and then discharging from $I_{\max }$ to $I_{\min }$ with a slope of m_{2}. On the second cycle the glitch energy is added to alter the charging rate so the inductor charges with a slope of \{ ml + del \} where del is caused by a glitch added to the supply of the regulator. For the case shown, the glitch causes the inductor to reach $I_{\text {max }}$ earlier than expected. The inductor now discharges until the end of the clock cycle to a lower current than from which it began. The current is plotted as relative to "ideal current" so the graphed current at the end of each cycle is the glitch current for that cycle resulting from the initial glitch during the second cycle. Figure 19 provides a magnified view of the inductor current on the second cycle of the clock. Successive cycles of the clock depict the propagation of the glitch energy added on cycle number two through the next eight cycles. If we evaluate the glitch at the end of each clock interval it is obvious from figure 18 that the inductor current is unstable for this condition in view of the glitch energy growing from one cycle to the next.

Figure 18 - Plot Showing Subharmonic Instability.

Figure 19 - Magnified Second Cycle of Previous Plot.

Figure 20 - Plot Showing Lack of Subharmonic Instability.

Figure 21 - Magnified Second Cycle of Previous Plot.

If we change the duty cycle of the regulator to 33% as shown in figure 20; and again insert the glitch energy on cycle number two, a different result is uncovered. The added glitch energy decays to zero over the next few cycles of the clock. A dramatic difference between the 66% duty cycle case and the 33% duty cycle case is demonstrated by the need to plot the glitch energy at ten times its actual value for the 33% case to even see its effect on successive cycles. For the 33% duty cycle case the added glitch energy decays instead of growing as it did before which indicates that the system is stable.

A more quantitative solution to the problem can be obtained by assigning the notation d_{n} as the current glitch magnitude on clock cycle number n and d_{n+k} as the magnitude of the initial glitch current after k clock cycles from n. One can develop a open form expression for the glitch current by inserting the initial glitch on cycle n and developing an expression for the glitch size on cycle $n+1, n+2, \cdots$, and $n+k$ as done in figures $22 \mathrm{C}-$ 22G. A closed form expression for the glitch current can be realized by substituting equation 22 C into equation 22 H and reducing the infinite sum as demonstrated in equation 22 H .

(A)	
	$\delta_{n+1}+i_{1}:=i_{2}-m_{2}\left[\begin{array}{ll}1 & -d_{n} \\ & n\end{array}\right] \cdot$Minimum current on the next cycle after the initial gliteh was added.
(E)	
(F)	
(I	

Figure 22 - Quantitative Subharmonic Instability Derivation.

The closed form expression in figure $22 I$ indicates that the glitch current decays for the condition of the time rate of inductor charge current greater than the time rate of discharge. In the opposite condition the glitch current grows leading us to the conclusion that the system is unstable.

Intuitively one can translate the inductor charging slope boundary condition ($\mathrm{m}_{1}=\mathrm{m}_{2}$) to the condition where duty cycle equals fifty percent ($D=0.5$) ; therefore a current mode boost regulator operating in continuous conduction mode is unstable for duty factors greater than fifty percent (Figure 23). This finding concurs with the previous graphic exampie. It should be noted that this condition does not occur if the regulator in operating in discontinuous mode.

Figure 23 - Slope to Duty Cycle Linkage

Fortunately there are ways to alleviate subharmonic instability without limiting the duty cycle of the regulator to less then fifty percent. A technique known as slope compensation modulates the current feedback loop's peak inductor current set point as a function of switch duty cycle. This is accomplished by deriving a ramp from the clock and adding it to the sensed inductor current or to the voltage error amplifier output. Some integrated controllers such as the National LM1577-xx provide slope compensation within the IC while others
require the user to add peripheral circuitry to accomplish the task.

Analysis Techniques

At first look one might be tempted to consider a raw transient analysis approach using a generalized analysis program such as Spice for the analysis of switching regulator circuits. The drawbacks of this approach are that simulation times will be excessive and the stability of the control loop is often ignored due to the neglect of small signal analysis. Spice can only perform a small signal analysis in one state of the circuit at a time unless something is done to generate a circuit model which represents both states in one circuit.

It soon becomes obvious that more than one analysis technique may be required for every design. One technique is needed to determine the large signal state of the magnetics while another is needed to determine the stability of the feedback loop(s), input impedance, and output impedance. Small signal approaches must somehow combine the small signal models of the various switch states into one simulateble model which can be used to predict control loop stability. To be of any use, a solution must characterize the input to output path as well as the duty cycle to output of the circuit under
study. Modeling and analysis techniques must provide design insight into the circuit operation as well as solve the problem at hand. In the quest for accurate design tools the need for non-laborious solutions must not be overlooked.

State Space Averaging

State space averaging is a technique which is an extension of state variable analysis techniques used in linear circuit analysis. Let us first consider the state variable analysis of the linear time invariant LCR circuit shown in Figure 24A.

Figure 24 - Linear LCR circuit with Conventional and state Notation.

By writing a loop equation for $V_{\text {out }}$ and a node equation for I_{L} one can rearrange the terms of each equation to solve for the derivatives of the inductor state I_{L} and the capacitor state V_{C} (See figure 25A and 25B). This now can be written in the general form shown in figure 25C where vector X represents the states of the two energy storing elements, vector U represents the input(s) to the system, matrix A describes the sourceless properties of the network, and matrix B describes the reaction of the system to the source vector. A solution for the state variables of the system may be solved for by converting the
derivatives to a Laplace transform representation and applying the manipulation shown in figures 25 D and 25E.
(A) $\frac{d}{d t} V$ out $:=\frac{1}{C} \quad L+\frac{-1}{R C} V C+\frac{-1}{C} 1$ out
(B.) $\int_{d t}^{d} \quad:=-\frac{1}{L} \quad \frac{1}{d}+\frac{-v}{L}$ in

General State Equation

Laplace Representation
(D) $\quad \overline{\mathbf{S} \times(S)}:=\vec{A} \overrightarrow{\times(S)}+\vec{B} \overrightarrow{U(S)}$.

Solution for state variables
(E) $\overrightarrow{x(S)}:=\left[\begin{array}{rr}\overrightarrow{-} & \overrightarrow{-} \\ S & 1\end{array}\right]^{-1} \vec{A} \vec{B} \overrightarrow{U(S)}$

Solution for output variables

$$
\overrightarrow{\mathrm{A}}:=\left[\begin{array}{cc}
0 & -1 \\
1 & -1 \\
- & - \\
C & R
\end{array}\right] \quad \overrightarrow{\mathrm{L}} . \quad \mathrm{B}:=\left[\begin{array}{cc}
0 & - \\
-1 & \mathrm{~L} \\
-\mathrm{C} & 0
\end{array}\right]
$$

$$
\overrightarrow{Y(S)}:=\left[\begin{array}{c}
V \\
\text { out } \\
1 \\
R
\end{array}\right] \overrightarrow{\mathrm{C}}:=\left[\begin{array}{ll}
0 & 1 \\
0 & - \\
& R
\end{array}\right]
$$

$$
\text { (F) } \overrightarrow{Y(S)}:=\vec{C} \overrightarrow{X(S)}+\vec{D} \overrightarrow{U(S)} \text {. Where } \cdots \vec{D}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Figure 25 - Linear State Analysis of a LCR Circuit.

In most cases the state variables are not the variables of interest so a method to obtain the desired output variables is needed. The desired output variables represented by $Y(S)$ in figure $24 C$ and $25 F$ are simply a sum of the state variables $X(S)$ and the input source vector $U(S)$ weighted by the matrices C and D.

In order to apply the previously described technique to any system, the state variables must be a continuous linear function of time. Obviously switching regulators meet this criteria within each condition of the switch since they are combinations of linear circuit elements, but fail to meet the criteria across switch transition boundaries. If one were to separate the system into equivalent linear circuits for each condition of the system; the state variables within each time cell of these linear circuits could be solved for in a piecewise manner using the previously mentioned techniques provided that the boundary condition between each switch condition is known (See figure 26).

Generalized state equations for n time periods within a period $k T \quad(k>=0$
note that there are n unique A and B matrices pairs one for each state of the system.

$$
\begin{array}{lc}
x^{\prime}(t)=A_{1} x(t)+B_{1} u(t) & \left\{k T<t<k T+t_{1}-\right\} \\
x^{\prime}(t)=A_{2} x(t)+B_{2} u(t) & \left\{k T+t_{1}+<t<k T+t_{2}-\right\} \\
x^{\prime}(t)=A_{3} x(t)+B_{3} u(t) & \left\{k T+t_{2}+<t<k T+t_{3}-\right\}
\end{array}
$$

$$
x^{\prime}(t)=A_{n} x(t)+B_{n} u(t)
$$

$$
\left\{\mathrm{kT}+\mathrm{t}_{\mathrm{n}-1}+<\mathrm{t}<(\mathrm{k}+1) \mathrm{T}-\right\}
$$

Figure 26 - Generalized state Equations for a n Switch Condition Network.

Solving the separate state equations at each boundary condition for every clock cycle would become a computation intensive task which negates the original intent of modeling the system to allow classical small signal analysis techniques to be utilized. Since the switching regulator is discontinuous by its nature, it is necessary to force the system into a continuous representation by ignoring the switching components present in the state variables. In short, we are only interested in the value of the state variables $X(t)$ just before a change in system condition such as a switch transition point.

For initial discussion sake, let's consider the case of a system with two switch states ($n=2$). If we redefine the switch condition time intervals $\left\{t_{1}, t_{2}, \ldots t_{n}\right\}$ shown in figure 26 as percentages of the periodic interval $T ; t_{1}$ on the kth cycle would be denoted $\left\{\mathrm{d}_{<1, k>T}\right\}$. Two state equations are now needed to describe the system, one for each switch condition. The first. state equation describes the system during the time period $\mathrm{d}_{<1,} \mathrm{k}>\mathrm{T}$, where the switch is closed while a second state equation is needed for the time period $d_{<2, k>T}=\left\{1-d_{<1, k>T}\right\}$, where the switch is off. Matrices A_{1} and B_{1} describe the system while the switch is on and matrices A_{2} and B_{2} describe the system when the switch is off. In order to merge the two state equations into one, we must ignore the switching
components present in $X(t)$ which implies that we are sampling $X(t)$ just before the switch transition points but not during the actual transition where a discontinuity in the signal is known to exist. We can consider $\mathrm{X}(\mathrm{kT})$ and $X((k+d) T)$ to be a sampled data representation of a continuous version of $X(t)$ with samples at the beginning of the respective interval; whether it be the switch opening or switch closing interval. Two state equations may now be written in figures 27A-D using the sampled data signal in place of the previously used continuous signals $X(t)$ and $U(t)$. If we assume that the clock interval T is much smaller than the smallest period of interest desired from the analysis, then the derivative of the discrete state variables $\mathrm{X}(\mathrm{kT})$ and $\mathrm{X}(\mathrm{kT}+\mathrm{dT})$ may be approximated by calculating the slope with respect to time between samples (figures 27E and 27F).
(A) $\frac{d}{d t} \overline{x(t)}:=\vec{A} \overline{x(t)}+\overrightarrow{B_{1}} \overrightarrow{U(t)}$
(B) $\frac{d}{d t} \overrightarrow{x(t)}:=\vec{A} \overrightarrow{X(t)}+\overrightarrow{B_{2}} \overrightarrow{U(t)}$

Two State equations one for each switch condition
(c) $\frac{d}{d t} \overline{\times(K T)}:=\vec{A} \overline{X(K T)}+\vec{B} \overrightarrow{U(K, T)} \quad \begin{aligned} & \text { Evaluated at } \\ & \text { beginning of cycle } k\end{aligned}$
(D) $\frac{d}{d t} \overline{x((k+d) T)}:=\bar{A} \overline{x((k+d) T)}+\vec{B} \overline{U((k+d) T)} \quad \begin{aligned} & \text { Evaluated at end } \\ & \text { duty cycle } k\end{aligned}$
(E) $\frac{d}{d t} \overline{x(K T)}:=\left[\frac{\overline{x((k+d) T)}-\overline{x(k T)}}{d T}\right] \quad \begin{aligned} & \text { Slope at beginning } \\ & \text { of cycle } k\end{aligned}$
(F.) $\frac{d}{d t} \overline{x((k+d) T)}:=\left[\frac{\overline{x((k+1) T)}-\overline{x((k+d) T)}}{(1-d) T}\right]$

Slope at end of duty cyclek

Aproximate derivatives of x

Figure 27 - Sampled Data State Equations.

Inserting the approximated derivatives into the generalized state equation for each switch condition and changing the dependent variable time to the sample time generates a state equation for each switch condition on the kth cycle as detailed in figures 27 E and 27 F .
(A) $\left[\frac{\overline{X((k+d) T)}-\overrightarrow{X(k T)}}{\overline{d T}}\right]:=\left[\begin{array}{l}\vec{A} \overrightarrow{X(k T)}+\vec{B} U(k T) \\ 1\end{array}\right] \begin{aligned} & \text { Switch closed } \\ & \text { evaluated beginning } \\ & \text { of the cycle }\end{aligned}$
(B) $\left[\frac{\overline{X((k+1) T)}-\overrightarrow{X((k+d) T)}}{(1-d) T}\right]:=[\vec{A} \overrightarrow{X((k+d) T)}+\vec{B} U((k+d) T)] \quad 0$

Switch open evaluated at the beginning of the duty cycle
(C)

$$
\overrightarrow{X((k+d) T)}:=d T\left[\vec{A} \overrightarrow{X(k T)}+\overrightarrow{B_{1}} U(k T)\right]+\overrightarrow{X(k T)}
$$

(D)

$$
\overline{X((k+1) T)}:=(1-d) T[\vec{A} \overline{X((k+d) T)}+\vec{B} \overline{U((k+d) T)}]+\overline{X((k+d) T)}
$$

Figure 28 - Sampled Data State Equations.

By choosing the beginning of the clock cycle as the reference point and applying the manipulations in figures 28A and 28B; an equation representing the value of the sampled state variables on the next clock cycle as a function of the current clock cycle is formed in figure 28C and 28D. The equation in figure 29A has terms which are first and second order functions of the clock period T that we have already assumed to be small compared to the period of interest. By setting second order time terms to zero and approximating the source vector U at time (k+dT) with its derivative in equation 29B, a function which
describes the state difference between successive cycles emerges in figures 29C and 29D. The expression in figure 29D is obviously the original approximation of the derivative of the state variable $x(t)$ evaluated from the samples at k. It should be reiterated that this is an approximation which holds true as long as T is small compared to the period of the input signal $U(t)$ and the yet to be defined duty cycle signal $d(s)$.

Comparing the equation in figure 29D to the general form of a state equation for a continuous system previously introduced in figure 25 C , one can see the similarities between the two cases. New matrices A and B are formed which are a weighted sum of the matrices A_{1}, A_{2}, B_{1}, and B_{2}; previously defined for each switch condition (Figure 30).
(A)
(B) $\overline{U((k+d) T)}:=\left[\overline{U(\dot{k} \cdot T)}+d T \frac{d}{d t} \overrightarrow{U(k \cdot T)}\right]$
(C)

$$
[\overline{x((k+1) T)}-\overline{x(k T)}]:=[(1-d) \vec{T} \overrightarrow{X(k T)}]+\left[\begin{array}{c}
(1-d) \vec{T} \overrightarrow{U(k T)} \\
\hline
\end{array}\right]
$$

$$
+d T \overline{A_{i}} \overline{X(k T)}+d T \vec{B} \overline{U(k T)}
$$

Figure 29 - State Equations for a Two Condition System.

Coefficient matrices for state space averaged system.

$$
\begin{aligned}
& A=A_{1} d+A_{2}(1-d) \\
& B=B_{1} d+B_{2}(1-d)
\end{aligned}
$$

Figure 30 - State Space Averaged Matrix Definitions.

The result demonstrates that the continuous state and source matrices are functions of the matrices associated with each switch condition weighted by the time the respective switch condition is valid. One can now easily expand this to include more than two switch conditions as presented below in figure 31.

$$
\begin{aligned}
& +[(1-d) T \vec{A} \overline{X(k T)}]+\left[(1-d) \vec{T} \overrightarrow{\mathrm{~B}_{2}} \overline{U(\langle k+d) T} \bar{T}\right] \\
& +d T \vec{A} \overline{X(k T)}+d T \vec{B} \overline{U(k T)}+\overrightarrow{X(k T)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (B) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (C) } \\
& \vec{A}:=\overrightarrow{A_{1}} \cdot \dot{d}+\overrightarrow{A_{2}} \cdot{ }_{2}+\ldots+\overrightarrow{A_{n-1}} \cdot{ }_{n-1}+\overrightarrow{A_{n}} \cdot\left[1-\sum_{j}{ }_{j}{ }_{j}\right] \begin{array}{l}
j=1 \text { to } n-1 \\
\begin{array}{l}
n \text { switch } \\
\text { conditions }
\end{array}
\end{array} \\
& \text { (D) } \\
& \vec{B}:=\overrightarrow{B_{1}} \cdot d_{1}+\overrightarrow{B_{2}} \cdot d \underset{n}{ }+\ldots+\overrightarrow{B_{n-1}} d \underset{n-1}{ }+\overrightarrow{B_{n}}\left[1-\sum_{j} d\right]
\end{aligned}
$$

Figure 31 - State Space Averaged Matrix Definitions Extended to 3 and n Switch Conditions.

Up until now we have considered $X(t), U(t)$, and $d(t)$ to be continuous but not necessarily linear. In order to use analysis techniques such as Laplace transforms the signal must be linearized around a point of interest much in the same way small signal parameters for a bipolar transistor are a linearization of a nonlinear device around a point of interest designated as the bias point. For the case of a switching regulator, the bias point also includes the duty cycle of the converter which must first be calculated from large signal models.

Small signal representation of X, U, and D

$$
\text { Signal }=\text { Bias Point }+ \text { Small signal }
$$

(A)

$$
\vec{x}:=\left[\begin{array}{cr}
\vec{x}+\vec{x} \\
0
\end{array}\right] \quad \vec{u}:=\left[\begin{array}{cc}
\vec{U} & -\vec{u} \\
0 &
\end{array}\right] \quad D:=\left[\begin{array}{l}
D+d \\
0
\end{array}\right]
$$

State space averaged general state equotions
(B)

$$
\underset{d}{d} \vec{X}:=\overrightarrow{A X}+\vec{B} \cup \vec{A}:=\vec{A} D+\vec{A}(1-D) \quad \vec{B}:=\vec{B} D+\vec{B}(1-D)
$$

(C)

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{ll}
\vec{X} & \vec{x} \\
0
\end{array}\right]:=\left[\begin{array}{l}
\vec{A} \\
1
\end{array}\left[\begin{array}{ll}
D & +d \\
0
\end{array}\right]+\vec{A}\left[\begin{array}{cc}
1-D & -d \\
0 & d
\end{array}\right]\left[\begin{array}{ll}
\vec{x} & -\vec{x} \\
0
\end{array}\right]\right. \\
& +\left[\begin{array}{l}
\vec{B} \\
1
\end{array}\left[\begin{array}{ll}
D & +d \\
0
\end{array}\right]+\vec{B}\left[\begin{array}{cc}
1-D & -d \\
2
\end{array}\right]\left[\begin{array}{ll}
\vec{U} & \vec{U} \\
0
\end{array}\right]\right.
\end{aligned}
$$

Figure 32 - Application of Small Signal Approximation to the Nonlinear System.

To linearize the system consider the general form of the state equations and redefine the state variables and source variables as the sum of a small signal part and a bias point as defined in figure 32 A .

$$
\begin{aligned}
& \text { (A) Small signal representation of } x, U \text {, and } D \text {. } \\
& \text { Remove secondorder small signal product terms. }
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\bar{B}\left[\begin{array}{l}
D \\
0
\end{array}\right]+\vec{B}\left[\begin{array}{cc}
1-D & 0
\end{array}\right]\right] \vec{\cup} \\
& \left.+\left[\begin{array}{lll}
\vec{A} & D \\
1 & 0 & \vec{A} \\
2 & 0 & \left.\begin{array}{lll}
1 & - & \\
& & 0
\end{array}\right]
\end{array}\right] \overrightarrow{\times}+\left[\begin{array}{lll}
\vec{B} & 0 & \vec{B} \\
1 & 0 & 2
\end{array} \begin{array}{lll}
1 & - & 0 \\
& & 0
\end{array}\right]\right] \vec{u}
\end{aligned}
$$

Figure 33 - Small Signal State Equations.

Substituting this into the general state equation yields a general form of the system in figure 33C. Note that products of small signal terms are ignored since it is assumed that the small signal part of each component is small compared to the bias point. By rearranging the equation to force it to look like the general state space
averaging equation for a nonlinear circuit it becomes easier to understand the significance of each term (Figure 33B). It can be seen that the small signal part of X and U both under go the same transformation as in the case of the non-linear system, but added to the response is a term which is dependent upon the small signal variation of the duty cycle signal $D(t)$ (Figure 33B). A new general state equation appears which has three components, though two are identical to the non-linear case. The new component is defined as matrix E, and represents the systems response to small signal changes in duty cycle (Figure 33C).

Now that a linearized representation exists, Laplace transforms can be used to rearrange and solve for state variables X as a function of input and duty cycle as described below in figure 34.

```
(A) }\mp@subsup{\int}{dt}{d}-X:=\vec{A}\cdotX+\vec{B}\cdotU+\vec{E}\cdot\vec{d
```


Convert to Splane
(C)

$$
\overrightarrow{X(s)}:=[s \cdot \vec{I}-\vec{A}]^{-1} \cdot \vec{B} \cdot \overrightarrow{U(s)}+[s \cdot \vec{I}-\vec{A}]^{-1} \cdot \vec{E} \cdot \overrightarrow{d(s)}
$$

Figure 34 - Small Signal State Equation Definitions.

Figure 35 - Flow Diagram Depicting Feedback and Feedforward Control.

With the switching portion of the requlator described, the regulator control loop needs to be added to the mathematical representation to complete the system. If the duty cycle control signal $D(s)$ is formed form a general feedback model as shown in figure 35; $D(s)$ is a function of the input vector and the state vector of the system. For a simple system where $V_{\text {out }}$ is the capacitor state and $V_{\text {in }}$ is the only component of the input vector then the control path from $V_{\text {in }}(s)$ to $D(s)$ is feed-forward control, and the path from $V_{\text {out }}(s)$ to $D(s)$ is feedback
control. By defining a gain matrix Q and F in each path a general feedback/forward model can be obtained (Figure 36). This model describes the basic small signal function of the switching regulator.

(A)	
(B)	$X(S):=[S \cdot I-\vec{A}-\vec{E} \cdot \overrightarrow{F(S)}]^{-1} \cdot[\vec{B}+\vec{E} \cdot \overrightarrow{Q(S)}] \overrightarrow{U(S)}$ Solve for the state variables

Figure 36 - General State Space Averaged and Linearized System Representation.

Extending State Space Averaging into a Computer Model

Although state space averaging yields a small signal solution, it does so at the expense of simplicity. We can however use the success of state space averaging to introduce a less cumbersome analysis method.

State space averaging removes the switch from the circuit by redefining the inductor currents and capacitor voltages as weighted averages dependent on duty cycle. At
the circuit level removal of the switch could be translated into removing the switch and replacing it with dependent current or voltage sources to mimic the average in circuit terminal conditions of the switch.

Figure 37 - Switch Replacement Model for a Boost Converter.

Continuous Mode Boost Converter Model

Consider the operation of the continuous mode boost converter shown in figure 37A. When the switch is activated over the duty cycle time 0 to $D T$, the inductor node voltage $V_{\text {IND }}$ is zero and the current I, into the
output capacitor, is zero as shown in figure 37B. During the switch rest interval DT to T, the inductor node potential is equivalent to the voltage across the output capacitor V_{C}, and the switch current is equivalent to the inductor current I_{L} (Figure 37C). From this analogy the time averaged inductor node voltage is:

$$
\mathrm{V}_{\text {IND }}=\left[\mathrm{V}_{\mathrm{OUT}}{ }^{\circ}(1-\mathrm{D})\right]
$$

and the time averaged switch to output node current is:

$$
I=\left[I_{L} \cdot(1-D)\right]
$$

These average switch terminal conditions can be preserved in absence of the switch by inserting a voltage controlled voltage source in series with the inductor which is dependent on the output voltage, and a current controlled current source in parallel with the output capacitor which is dependent on the average inductor current (See figure 37D) .

The model presented in figure 37D is non linear; consequently conventional circuit analysis techniques can not be used without linearizing the non linear dependent sources. Fortunately the circuit shown in figure 37 D can be simulated using the nonlinear dependent source feature of Spice or in this case Pspicel. (All further references to Spice will refer to the Pspice version 3.08

[^0]implementation of Spice). A spice model of the equivalent circuit in figure 37A is shown in figure 38 where the duty cycle D is modeled as V_{D} and the ESR of the capacitor and inductor are also included in the model.

Figure 38 - Spice Model of a Continuous Mode Duty Cycle Controlled Boost Regulator.

A demonstration of the continuous mode model is shown in figure 39 where a DC sweep was used to obtain the DC output voltage, input current, and load current as a function of duty cycle. The small signal gain and phase of the regulator from the duty cycle port to the output is shown in figure 40 was obtained by a AC analysis with the duty cycle generator set to 0.66 VDC (66%).

Figure 39 - Boost Converter Simulation.

Figure 40 - Pspice Boost Converter Gain and Phase Plot.

Discontinuous Mode Boost Model

Unfortunately, the previously described model is only valid for continuous operation, nevertheless one can derive a similar model for discontinuous operation by writing equations to describe the switch terminal conditions for discontinuous operation (See figure 41A41C) .

Figure 41 - Discontinuous Mode Switch Terminal Conditions.

Discontinuous operation adds a third equivalent circuit shown in figure 41 C to the system describing the system when the inductor current is zero. The additional condition leaves no current flowing in either switch implying that the condition, and consequently the average circuit, must be modeled using a norton equivalent for the inductor side of the switch as shown in figure 41D.

Figure 42 - Discontinuous Mode Average Terminal Conditions.

To derive the dependency of each source in the model, we have to define an average inductor current $I_{\text {Lavg }}$ for the purpose of modeling the input side of the switch, and an average output current $I_{\text {out }}$ to model the output side of the switch. Before this can be accomplished, an expression for the inductor current $I_{L}(t)$ must be derived for the inductor charging interval \{ 0 to DT \}, the inductor discharging interval \{ $D T$ to $\left(D+D_{2}\right) T$ \}, and the discontinuous interval ($\left(\mathrm{D}+\mathrm{D}_{2}\right) \mathrm{T}$ to T$\}$ (Figures 42A-42C). $I_{\text {Lavg }}$ is found by integrating $I_{L}(t)$ from 0 to T, and $I_{\text {out }}$
is found by integrating $I_{L}(t)$ from $D T$ to T (Figures 42D42G). With the source dependencies known, the model is completed by inserting them into there respective places as shown in figure 43.

Figure 43 - Discontinuous Mode Model.

Modeling Current Mode Control

(A)	$I_{L(t)}:=\left[\begin{array}{l}1 \\ 0\end{array}\right.$
(B)	
(C)	
(D)	Where lout is the average $1_{0}:=\frac{\text { lout }}{1-D}-\frac{V i n D T}{2 L} \quad 1_{0}:=I_{\text {Lmin }}$ current leaving the inductor and 10 is the minimum inductor current.
(E)	
(F)	Peak Inductor current $I_{L \text { max }}:=L_{L(D T)}:=\left[\begin{array}{l} L_{\text {max }} \\ 0+\operatorname{vin} \frac{1}{L} D T \end{array}\right]$
(G)	$\left[\begin{array}{llll}\text { L } \\ \text { Lmax }\end{array}\right.$
(H)	$D:=\frac{2 L}{V i n T}\left[\frac{V c}{R s}-\operatorname{l}_{\text {Lavg }}\right]$ Current mode Duty cyc!e control function for continuous conduction

Figure 44 - Duty Cycle to Current Mode Control.

Al.l the models discussed up to this point have all been duty cycle controlled, but current mode control can easily be added by noting that current mode control is simply a method of varying duty cycle to achieve a desired peak inductor current. If one defines current mode control as an input to the system Vc/Rs which sets the peak inductor current to Imax by varying the duty cycle then one can derive a function $D($ Imax $)$ to describe current mode control. To accomplish this, the previously derived
inductor current equations for the boost converter need to be modified to include $I_{\max }$. $I_{\text {max }}$ is simply the inductor current function $I_{L}(t)$ evaluated at the switch turn off point DT (Figure 44F). The average inductor output current $I_{\text {out, }}$ the average inductor current $I_{\text {Lavg, }}$ and $I_{\max }$ are combined to yield the function in figure 44 H which is duty cycle as a function of $V_{i n}, I_{\text {max }}$, and $I_{\text {Lavg }}$. Implementation of this function in the form of a model is shown in figure 45 where the duty cycle generator V_{D} from the duty cycle model in figure 38 has been replaced by a dependent source E_{D} whose voltage is dependent on the equation is figure 44 H . A similar argument could be used to add slope compensation to this model since slope compensation is merely changing the current set point as a function of duty cycle.

Figure 45 - Spice Model of a Continuous Current Mode Controlled Boost Regulator.

Integrating Discontinuous and Continuous Mode Models

As previously discussed, the continuous model and the discontinuous model are separate; forcing the user to take note of the mode in which the converter is in before a simulation can be initiated. A model which implements both the discontinuous and continuous mode models by switching between the two model topologies is shown in figure 46.1 Mode switching is implemented in the model by using "ideal" diodes to change the model topology between the two equivalent circuits (An ideal diode is modeled by decreasing the emission coefficient to near zero in the spice diode model statement).

[^1]

Figure 47 - Discontinuous vs Continuous Operation.

Input current model

$\rightarrow-$ Dis I , Dis $V \rightarrow$ Dis I , Cont $V \rightarrow$ Cont I, Dis $V \rightarrow$ Cont I, Cont
Output current model

\rightarrow Dis I , Dis $\mathrm{V} \rightarrow$ Dis I , Cont $V \rightarrow$ Cont I , Dis $V \rightarrow$ Cont I , Cont

Figure 48 - Discontinuous vs Continuous Operation.

Equations describing the different switch terminal conditions which must be emulated by the model are defined in figure 47. From the previous models, it is evident that the inductor-switch node must see a current source with the dependency described by equation 47 C when in discontinuous mode, and a voltage source with the dependency described by equation 47 B when in continuous mode. The switch ouput is modeled by a current source in both cases but the source dependencies are different between modes (See figure 47 E and 47 F).

Switching between the two models is done by noting that the input current computed by the discontinuous mode model is less than that computed by the continuous mode model for continuous operation while the output voltage computed by the discontinuous mode formula is greater than that computed by the continuous mode formula when in discontinuous mode. Dependent source HCONT, and diode D1 generates the average inductor voltage according to the continuous mode model such that the dependent source can only sink current from the inductor at node 11. A current calculated from the discontinuous mode model is pulled from node 11 by dependent current source FIDIS. If the regulator is in continuous mode; the input current is more than the discontinuous model predicts via dependent source FIDIS so current flows into HCONT through D1 to make up
the difference (Essentially a voltage source in parallel with a current source). If the regulator is in discontinuous mode the output voltage of the regulator rises above that of the continuous case which causes dependent source HCONT to rise above $V_{\text {in }}$ and turn off diode D1 leaving the inductor current as that produced by discontinuous model source FIDIS.

Output current is modeled in both modes by dependent source FIOUT which monitors the current in independent source V8. Source V8 and diodes D10 and D11 form a circuit which steers the lesser of the two currents FCONT or (GDIS1 + FERR) through source V8. Source GDIS1 produces the output current according to the discontinuous model described by equation 47 E while source FCONT1 produces a current according to the continuous model equation 47 F . When in discontinuous mode the current predicted by GDIS1 is always less than that predicted by FCONT so the model should pick the lesser of the two when in discontinuous mode. However the opposite is true in continuous mode. When in continuous mode the current produced by GDIS1 is less than that produced by FCONT so we need to pick the larger of the two in continuous mode. Switching is accomplished by detecting which mode the converter is in by monitoring the current in the continuous mode input source HCONT. If there is no
current flow in HCONT, signifying discontinuous mode, then the circuit takes the lesser of the two currents generated by GDISI and FCONT. If there is current flow in HCONT, an error current is generated by FERR which is dependent on the current flowing in HCONT.. The error current is added to source GDIS1 to make the sum of the two greater than FCONT causing FCONT to flow through source V8.

Because this is a behavioral model certain restrictions need to be applied to it to prevent the occurrence of illegal conditions which can mathematically occur in the model but can not occur in a physical circuit. Some of these conditions are negative duty cycle, negative output voltage, duty cycles greater than unity, and Vout < Vin. Sources V11A, V11B, VDLIM, ELIM, and diodes D7, 9, 4 all serve to prevent such occurrences. To safeguard against convergence problems 1 gigohm resistors are placed in parallel with current sources which do not have a DC load path. Design of a Boost Converter With the Aid of Pspice

To verify the hybrid converter computer model a sample design using the linear technologies LT-1070 boost converter was undertaken and the feedback loop stability was analyzed. A continuous conduction current mode boost
regulator with a duty cycle greater than 50% was chosen because according to the literature it is the most difficult configuration to compensate due to a right half plane zero in the response.

A supply with the following specifications was desired:

Input Voltage $\mathrm{Vin}=5 \mathrm{~V}+/-1 \mathrm{~V}$
Output Voltage Vout $=15 \mathrm{~V}$
Maximum output current Ioutmax $=300 \mathrm{~mA}$
Nominal output current Ioutnom $=100 \mathrm{~mA}$
Minimum output current . 060 mA
Maximum output ripple Vriprms= $100 \mathrm{mVp}-\mathrm{p}$
Frequency of operation 40 KHZ (fixed by controller choice)
Current mode control.
Figure 49 - Converter Design Specifications.

Design of the converter started with determining the inductance which has the following influences on the design.

1) L determines the peak inductor current ripple and consequently the peak switch current. The peak switch current coupled with the inductance determines the maximum power output of the supply.
2) The LT1070 has current mode control built in with a fixed amount of slope compensation to make the regulator stable for duty cycles beyond 50\%. Since the slope compensation is not user adjustable, its presence imparts a maximum inductor current discharging slope and consequently a minimum inductance limit below which subharmonic oscillations will occur.
3) Also limiting the minimum inductance is the desire to stay in continuous conduction mode for the specified load variations.
4) Increasing inductance reduces the supplies ability to respond to changing load conditions due to the stored energy in the inductor. It is advantageous to keep the inductance low to optimize the transient response.

In an effort to convey the design philosophy used figures 50 and 51 were created to show the calculations and tradeoffs used to obtain the final design.

Desired output Voltage	Input Voltage Range	Clock Period	Output current range
		-6	
Vout : $=15 \mathrm{~V}$	Vin $:=5 \mathrm{~V}$	$\mathrm{T}:=2510 \mathrm{~S}$	Iomax : $=0.300 \mathrm{~A}$
	$\mathrm{Vmax}:=6 \mathrm{~V}$		Ionom $:=0.100 \mathrm{~A}$
	$\mathrm{Vmin}:=4 \mathrm{~V}$.		lomin $:=.06 \mathrm{~A}$
Reference Vref	Vref : $=1.244 \mathrm{~V}$	Slope	5
voltage		Compensation	$\mathrm{M}:=210 \mathrm{Amps} / \mathrm{sec}$

$\operatorname{Dn}(\operatorname{Vin}):=1-\frac{\operatorname{Vin}}{}$| $D n(V i n)=0.667$ | Compute duty cycle required to |
| :--- | :--- |
| $\operatorname{Dn}\left(V_{\max }\right)=0.6$ | obtain output voltage Vout for |
| $\operatorname{Dn}(\operatorname{Vmin})=0.733$ | range of Vin. |

DC_gain \(:=\left[\begin{array}{l}Vout

Vref\end{array}\right] \quad D C\) gain $=12.058 \quad$| Gain required to bring |
| :--- |
| reference voltage up to |
| output voltage. |

Choose RFB1 keeping in mind that bias current of error amp introduces an error voltage across the parallel combination.
RFB1 $:=110$ ohms RFB2 $:=\frac{\text { RFB1 }}{\text { DC_gain-1 }} \quad$ RFB2 $=9.04310^{3}$ ohms

Calculate the minimum inductance required for stability with slope compensation.

Lmin $:=\left[\frac{\text { Vout }-2 \text { Vmin }}{M}\right] \quad L \min =3.510^{-5} \mathrm{H}$

Compute Critical Inductance in henrys at minimum output current lomin maximum input voltage.

$$
D:=D n\left(V_{\max }\right) \quad D \doteq 0.6
$$

Critical inductance is bigger than Lmin so set inductor to nearest standard value above Lcrit.

Figure 50 - Design Equations Part 1.

```
For the chosen value of L compute the Inductor
V:= Vmin
current parameters in Amps at maximum output
D := Dn(V)
```

current minimum output current.

Peak to Peak Inductor current.
$\operatorname{Ipp}(D, V \mathrm{Vin}):=\left[\frac{\mathrm{D} T \mathrm{Vin}}{\mathrm{L}}\right]$ $\operatorname{Ipp}(D, V)=0.262 \quad A$
$\operatorname{lovg}($ lout, $D):=\left[\frac{\text { lout }}{1-D}\right]$
Average Inductor current.
$\operatorname{lavg}(\operatorname{lomax}, \mathrm{D})=1.125 \mathrm{~A}$

Ipk (lout, $D, V i n):=\left[\begin{array}{l}\text { lout } \\ \frac{1 p p(D, V i n)}{2-D}+\frac{1}{2}\end{array}\right] \quad \begin{aligned} & \text { Peak Inductor current. } \\ & \text { Ipk }(\text { lomax }, D, V)=1.256\end{aligned}$ A
Minimum Inductor current $\operatorname{Imin}(l o u t, D, V i n):=(\operatorname{lpk}(l o u t, D, V i n)-\operatorname{lpp}(D, V i n)) \quad \operatorname{lmin}(1$ omax, $D, V)=0.994$

Choose output capoci.tor based on ripple from est and charge exchange
Ripple from Ripple from
charge exchange ESR
$\operatorname{Vrc}:=.050 \mathrm{~V} \quad$ Vesr $:=.05 \mathrm{~V}$
$C(D$, lout $):=\frac{\text { lout } D T}{\text { Vrc }} \quad \operatorname{Cesr}($ lout $, D, V$ in $):=\frac{\text { Vesr }}{\text { lpk(lout, } D, V i n)}$

```
            Worst case component values
```



```
    Nominal case component values
        -5
C(Dn(Vin),lonom) = 3.333 10 F Cesr(Ionom,Dn(Vin),Vin)=0.111 ohms
Since a 100UF copacitor with on esr of . }100\mathrm{ is the best which is
available it is necessary to recalculate the impact of this on
total ripple. If further improvement is needed then an adioional
ouptu filter or on increase in inductance is required.
            -6
Choose C := 100 10: F and Cesr :=. 100 ohms
Vrip(lout,D,Vin)}:=\frac{\mathrm{ lout DT}}{C}+\mathrm{ Cesr Ipk(lout,D,Vin) Total ripple
Vrip(Iomax,Dn(Vmin),Vmin) = 0.181 V Worst cose
Vrip(lonom,Dn(Vin),Vin) = 0.062 V Nominal
```

For the design case chosen the duty cycle range was determined and then the critical inductance was calculated. Next the minimum inductance required to keep the regulator free from subharmonic instability with the internally fixed slope compensation of the LT1070 was calculated. In this case, the critical inductance proved to be the limiting factor for minimum inductance so the inductor was chosen to be a standard value slightly above the critical inductance. The inductor current parameters $I_{\text {max }}, I_{\text {min }}$, and $I_{p p}$ were calculated at the worst case condition of minimum duty cycle with maximum load current, and were compared to the peak switch current specification of the LT107.0 and the saturation current spec of the inductor.

Determining the output filter capacitor capacitance, voltage rating, and equivalent series resistance (ESR) at the frequency of the clock was done with output ripple as the primary concern. Output ripple is caused by the peak to peak inductor current generating an IR drop across the ESR of the output capacitor; and by discharge of the output capacitor during the inductor charging period, or addition of charge during the inductor discharge period. As a first approximation, half the ripple was designated to be ESR induced, and half charge exchange induced. Maximum ripple voltage occurs at minimum input voltage
with maximum output current, so the component values were initially calculated at this point. This yielded a rather stringent requirement on the ESR, so a compromise described in figure 51 was made to allow capacitor with an ESR of 0.10 ohms to be used. The ripple current rating of the capacitor was then checked to verify that it was less than the peak to peak inductor current.

To adapt the model in figure 46 to the LT1070, information regarding slope compensation, error amplifier topology, current mode control implementation, and DC reference implementation were obtained or inferred from the LT1070 data sheet. The data sheet refers to error amplifier with a transconductance GMEA, open loop gain AV, and a single pole high frequency roll-off shown in a gainphase plot. From this a model which implements this behavior was implemented as shown in figure 52 where feedback loop compensation has been added by the series RC network RCMP and CCMP which generates a zero and a pole described in figure 52D in the error amplifier response.

Figure 52 - Calculation of Error Amplifier Model Parameters.

The current control signal port and the current mode sensing mechanism of the LT-1070 are slightly different than originally discussed in the current mode boost model. Potential across the current sense resistor is amplified by a factor of six so the resistor R_{S} in the model is entered in as 6 times its actual value in the block diagram of the LT-1070.

The final model of the LT1070 with all the parameters calculated, the error amplifier added, and the nominal output load added is shown in figures 52 and 53. To check the model a simulation of $V_{\text {out, }} I_{i n}, I_{\text {out, }} D$, and ($I_{\text {out }} /(1-D)$) versus V_{C} into a fixed load was run and checked to make sure that the numbers seemed reasonable (Figure 54) (Note that ($I_{\text {out }}$ (1-D)) and $I_{\text {in }}$ track each other as they should). Next the feedback loop was closed and the DC bias point was calculated to find the nominal values of duty cycle and V_{C} for the purpose of double checking them against the design points. The duty cycle came out to 66% as expected with the model in continuous mode.

Figure 54 - DC simulation of Finished Circuit.

Figure 55 - Error Amplifier Model for Phase and Gain Simulations.

Simulation of the loop gain and phase requires the feedback loop to be open for the frequencies of interest. Modifications to the model were made to severely attenuate the AC components of the feedback while still passing the DC portion of the feedback signal making it possible for pspice to converge on the correct bias point. A test signal to evaluate the loop gain and phase was injected by current source IT at the inverting input of the error amp as shown in figure 55. The error amp compensation network
was disconnected to remove any compensation and the gain and phase of the regulator for the nominal load condition of $\mathrm{RL}=150$ ohms was simulated. From the gain and phase plot the location of the compensation pole and zero was determined using the method described below.

Boost converter model of LT1070 No compensation RL=150 Vin=5 Date/Time run: 04/25/91 08:02:23 Temperature: 27.0

$10 \mathrm{mh} 100 \mathrm{mh} \quad 1.0 \mathrm{~h}$ 10h $100 \mathrm{~h} \quad 1.0 \mathrm{Kh}$ 10Kh 100Kh $\square v(72) / v(68) \backsim v(56) / v(101) \cdot v(68) / v(101) \cdot 1 \vee \operatorname{pwr}(10, \log 10(81 /$ frequency $))$ - $\operatorname{pwr}(10, \log 10(810 /$ frequency $)$)

Frequency

```
& RCMP and CCMP disconnected
& Node 56 - Feedback divider (cut point)
& Node 68 - Current control port V ( Error amp out)
& Node 72 - Supply output Vout
& Node 101 - Error amp - input
```

Figure 56 - 150 ohm Load Gain Plot With No Compensation.

Figure 57-150 ohm Load Phase Plot With No Compensation.

Compensation of the regulator was approached by a graphical method using the previous plots to compensate the error amplifier to yield a design goal of 45 degrees of phase margin for the regulator-error amplifier cascade. To accomplish this, the frequency at which there is a 135 degrees $(90+45)$ of phase margin was located on the phase plot in figure 57 and transferred to the gain plot unity gain line in figure 56. If this frequency were to be used to implement a single dominate pole compensation network the unity gain crossing point would have 45 degrees of phase margin. To find the location of the dominate pole, the unity gain point is extended upward at a slope of negative one decade in gain per decade in frequency to where it crosses the gain of the error amp - regulator cascade. The intersection point is the location of dominate pole pl which would provide a stable closed loop system. Since we are using a zero-pole compensating network, we can assume that a factor of ten improvement in unity gain cut off frequency can be obtained over the dominate pole network scheme due the phase lead of the zero. The pole pl was moved a factor of ten higher to location p 2 to reflect the use of such a scheme.

With the pole located, the location of the zero needs to be determined. The zero should be located at as low a frequency as possible to maintain the loop gain but not so
low that the unity gain cross over point is raised to where the system becomes unstable. This point is chosen from figures 56 and 57 to be 100 Hz .
(A)

Error Amp	Error Amp
Transconductance	Gain
GEA $:=440010^{-6}$ mhos	A.V $:=800$

(B)

REA $:=\left[\frac{A V}{G E A}\right] \quad$ REA $=1.8210^{5} \quad$| Error amp ouput resistance in |
| :--- |
| ohms calculated from data |
| sheet GEA and AV |

$\overline{(C)} P:=300000$
Model Error amp pole at P
hertz with capacitor CEA
colculated from phase gain
plot from data sheet.
$C E A=.2 .9210$
(D) Zero Pole compensation network forms a zero pole dependent on
external components CCMP and RCMP and internal output resistance REA.
Zero $:=100 \quad$ Pole $:=.25 \quad$ RCMP $:=0$ RCMP \lll REA
CCMP $:=\left[\frac{1}{2}(\right.$ RCMP + REA $)$ POIe $]$
RCMP $:=\left[\frac{1}{2 \text { (Zero) CCMP }}\right]$
Pbgain : $=\left[\frac{\text { RCMP REA GEA }}{\text { RCMP + REA }}\right]$
CCMP $=3.5 \cdot 10^{-6} \quad$ RCMP $=4.5510^{2}$
Pbgain $=2$

Figure 58 - Calculation of Component Values to Obtain Desired Pole Zero Location.

The calculation of the component values to set pole and zero is carried out in figure 58. To check the polezero location the calculated value of REA and CEA were entered into the model and the gain and phase were again plotted. It was observed that the phase margin was 70
degrees so the pole was move up to raise the cut off frequency and reduce the phase margin.

A check of the regulator compensation for the new pole location was accomplished by simulating the gain and phase for all four combinations of load and input voltage (See figures 60 - 65). From these plots it can bee see that the phase margin is the worst for minimum input voltage maximum load but all cases fall within the design goal of 45 degrees.

Figure 59 - Gain and Phase for Initial Pole Location.

Figure 60 - Gain and Phase for Pole Moved to 0.45 Hz .

Figure 61-50 ohm Load Gain and Phase for Nominal Input.

Figure 62-50 ohm Load Gain and Phase for Minimum Input.

Figure 63-50 ohm Load Gain and Phase for Maximum Input.

Figure 64-150 ohm Load Gain and Phase for Minimum Input.

Figure 65 - 150 ohm Load Gain and Phase for Maximum Input.

Figure 66 - Prototype Circuit With Component Values.

Figure 67 - Variable Load Test Circuit.

Design Verification

To check the model accuracy, the circuit was constructed per the schematic in figure 66. Although when powered up, the circuit appeared to be stable, the stability was further scrutinized by pulsing the output current between maximum output current $I_{\max }$ and the nominal output current $I_{\text {nom, }}$ while monitoring the output for sustained ringing (See figure 67 for the test setup and figure 68 for output waveforms). The circuit was found to be stable as predicted by the simulations.

Measurement of the open loop gain and phase for the purpose of checking the pspice model was accomplished using the test circuit shown in figure 69. Accurately measuring $V_{\text {out }}$ in the presence of the output ripple signal proved to be troublesome. A scope with digital averaging was utilized to average out signals which were nonsynchronous to the input test signal.

Plots of the measured gain and phase are shown in figure 70 where it can be seen that the gain and phase agree with the simulation for frequencies below 5 KHZ , but the phase tends to be larger than that predicted by the model for higher frequencies. Causes of the disagreement in phase are most likely linked to the frequency limitations of the sampled data nature of the models as discussed in the state space averaging section of this paper. The model is ideally only usable for frequencies up to one half the switching frequency, (20 KHZ in the case of this circuit) so it is not at all suspicious that the phase is going awry for frequencies within 2 octaves of the theoretical limit.

Figure 69 - Phase and Gain Bench Test Circuit.


```
Vin = 5VDC, Vout = 15VDC, Rload = 150, Vout_AC = 50-100mvrms
```

Figure 70 - Measured Gain and Phase of Regulator for V_{c} to $V_{\text {out }}$.

Figure 71 - Simulated Gain and Phase of Regulator for V_{c} to $V_{\text {out }}$.

Conclusion

We have discussed basic converter topologies and their large and small signal behavior. Large signal analysis was used to gain an understanding of the basic operation of each converter type. State space averaging and linearization was introduced as a method of predicting small signal behavior of the circuit. Because of the laborious tasks required to use state space averaging and linearization, an average topology model was introduced using the concepts demonstrated by state space averaging. This non-linear model was linearized through the use of Pspice non-linear dependent sources. The Pspice average model was verified using a sample design of a current mode converter. It was found that the average model performs well as a design tool but tends to predict a phase shift less than reality.

Bibliography

[1] Mitchell, Daniel M., "DC-DC Switching Regulator Analysis" McGraw-Hill. 1988.
[2] Kilgenstein, Otmar, "Switched-mode Power Supplies in Practice" Wiley. 1989.
[3] Pressman, Abraham I., "Switching and Linear Power Supply Converter Design" Hayden. 1989.
[4] Billings, Keith, "Switchmode Power supply Handbook" McGraw-Hill. 1989.
[5] Brown, Marty, "Practical Power Supply Design" Academic Press. 1990.
[6] Redl, Richard and Sokal, Nathan O., "Superiority of Current Mode Control for Stability Over Wide Ranges of Output Capacitance and ESR" PESC. 1988.
[7] Chryssis, G., "High Frequency Switching Power Supplies" McGraw-Hill. 1984.
[8] Wood, Peter, "Switching Power Converters" Litton Educational Publishing. 1981.
[9] Hnatek, Eugene R., "Design of Solid State Power Supplies" VAN NOSTRAND REINHOLD. 1989.
[10] Severns Rudolf P., "Modern DC to DC Switchmode Power Converter circuits" VAN NOSTRAND REINHOLD. 1984.
[11] Park, J. N., "A dual Mode Forward/Flyback Converter" General Electric Corporate Research and Development IEEE. 1982.
[12] Shortt, D. J. and Lee, F. C., "An Improved Switching Converter Model Using Discrete and Average Techniques" Electrical Engineering department, Virginia Polytechnic Institute. 1984.
[13] Sable; Dan M., Ridley, Ray B., and Cho, B. H., "Comparison of Performance of Single Loop and Current Injection Control for PWM Converters Which Operate in Both Continuous and Discontinuous Modes of Operation" Virginia Polytechnic Institute. IEEE. 1990.
[14] Severns, Rudolf P., "High Frequency Switching Regulator Techniques" Magnavox Advanced Products Division IEEE. 1978.
[15] Griffin, Ralph, "Spice Modeling for Switching Power Converters with Crossover Between Continuous and Discontinuous Conduction Modes" Allied Bendix Aerospace, PESC. 1988.
[16] Witulski, Arthur F. and Erickson, Robert. W. "Extension of State Space Averaging to Resonant Switches and Beyond" Department of Electrical Engineering University of Colorado, IEEE. 1989.
[17] Hsu, Shi-ping, "Modeling and Analysis of Switching DC to DC Converters in Constant-Frequency CurrentProgrammed Mode" California Institute of Technology, IEEE. 1979.
[18] Deisch, Cecil W., "Simple Switching Control Method Changes Converter into a Current Source" Bell Laboratories, IEEE. 1978.
[19] Andreycak, William M., "1.5MHz Current Mode IC Controlled 50 Watt Power Supply" Unitrode Integrated Circuits corp. HFPC. 1968.
[20] Redl, Richard, "Stability Analysis of Constant Frequency Current Mode Controlled Switching Regulators Above 50% Duty Ratio" Technical University of Budapest. IEEE. 1982.
[21] Szepesi, Thomas, "A New Breed of Power and Control IC's for DC-DC Converter Applications" National Semiconductor. PC. 1989.
[22] Bloom, Gordon and Severns, Rudy, "The Generalized use of Integrated Magnetics and Zero-Ripple Techniques in Switch Mode Power Converters" Bloom associates IEEE. 1984.
[23] Wong, Ronald C., "A Fast Algorithm for the TimeDomain Simulation of Switched-Mode Piecewise-Linear Systems" Department of Electrical Engineering Duke University IEEE. 1984.

Vita

The author was born October 24, 1960 in Orange, New Jersey to Virginia A. Lebo, and James B. Lebo. At the Age of four he moved to LongIsland New York where he resided until 1983. He attended Lehigh University from August, 1979 to May, 1983 where he obtained a Bachelors of Science in Electrical Engineering. After graduating from Lehigh University, he became employed by AT\&T Microelectronics in Reading, PA designing test systems and test applications for production testing of bipolar integrated circuits. In 1988 he was married to Ruth A. Klischer. He and his wife live in Birdsboro PA. While working at AT\&T he pursued a Masters of Science in Electrical Engineering from Lehigh University for which this paper is a part of.

[^0]: 1 Pspice is a registered trademark of Microsim Corporation.

[^1]: 1 Spice modeling for switching power converters with crossover between continuous and discontinuous conduction modes [15].

