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ABSTRACT 

Knowledge acquisition is typically the bottleneck of expert system development. Thus, 

knowledge engineers strive to automate knowledge acquisition with the development of 

knowledge acquisition tools. Problem-solving strategies are the core of domain-specific 

knowledge acquisition tools. By reviewing problem-solving strategies we can gain insight into 

how they are used to guide knowledge acquisition tools during the interrogation of domain 

experts. 

One objective of this thesis is to provide an overview/tutorial of problem-solving strategies for 

expert systems. A secondary purpose is to specify how problem-solving strategies can be used 

to enhance the capabilities of knowledge acquisition tools. Three implementations of domain

specific knowledge acquisition tools will be reviewed. Emphasis is placed on applicable 

domains, knowledge representation, and problem-solving strategies. 

Specifically, the problem-solving strategies cover-and-differentiate, propose-and-revise, and 

acquire-and-present will be discussed. In addition, the knowledge acquisition tools MOLE, 

SALT, and LAPS are reviewed. 
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1 . Introduction 

1.1 Purpose 

One objective of this thesis is to provide an overview/tutorial of problem-solving strategies for 

V 
expert systems. A secondary purpose is to specify how problem-solving strategies can be used 

to enhance the capabilities of knowledge acquisition tools. Emphasis is placed on applicable 

domains, and existing implementations of the propose-and-revise and cover-and-differentiate 

problem-solving strategies. 

1.2 Overview of Thesis 

The following is a general description of each section of this thesis: 

Section 1.4 

Section 2.1 

Section 2.2 

Section 2.3 

Section 2.4 

Section 3.1 

Section 3.2 

Section 3.3 

Section 3.4 

Section 4 

' 

outlines the relationship between expert knowledge, expert systems, and 

knowledge acquisition. 

defines problem-solving strategies and how they are used. 

defines the cover-and-differentiate problem-solving strategy. 

defines the propose-and-revise problem-solving strategy. 

defines the acquire-and-present problem-solving strategy. 

gives a brief history of knowledge acquisition tools. 

outlines the importance of knowledge acquisition tools. 

gives a detailed description of SALT, a knowledge acquisition tool which 

uses the propose-and-revise problem-solving strategy. 

gives a detailed description of MOLE, a knowledge acquisition tool which 

uses the cover-and-differentiate problem-solving strategy. 

provides a summary of the thesis. 
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1 .3 Background 

Knowledge acquisition is the process of acquiring knowledge from a human expert in a 

particular field for the development of an expert system. Discussed below are key terms, an 

overview of expert systems, and an overview of expert knowledge. The overview of expert 

systems will explain the relationship between knowledge acquisition and the development of 

an expert system. The overview of expert knowledge will give a detailed description of what 

knowledge is and how it is acquired. 

An overview of expert systems is necessary because the main goal of the automation of 

knowledge acquisition is to aid in the development of expert systems. An overview of expert 

knowledge is essential to understanding the complexity of the knowledge acquisition process. 

The accuracy of an expert system is dependent on the quality of knowledge acquired from the 

expert. 

1.3. 1 Key Terms 

The following terms are used in this paper and are defined to familiarize the reader with the 

current technical terms dealing with knowledge acquisition. 

Domain Expert: 

A person who has expertise in a certain field or domain. 

Control Knowledge: 

Knowledge which controls the direction the inference engine takes towards 

determining a solution. 

3 
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Expert Systems: 

Knowledge-based programs which are designed to emulate the problem-solving 

techniques of a human expert in a specific domain. 

Knowledge Acquisition: 

The process by which knowledge is acquired from a human domain expert and 

transformed into structured rules for expert system inferencing. 

Knowledge Engineer: 

The person responsible for acqumng, structuring and programming expert 

knowledge. 

1.3.2 Overview of Expert Systems 

An expert system is a computer program designed to emulate the problem solving techniques 

of an expert in a specific field. An expert system consists of two essential parts: a knowledge

base, and an inference engine. The knowledge-base is where the knowledge acquired from the 

~ 

domain expert is stored, while the inference engine is responsible for drawing conclusions from 

that knowledge. 

In order for the expert system to formulate conclusions which directly reflect those of the 

domain expert, all information stored in the expert system's knowledge base must be retrieved 

directly from the human expert. It is the knowledge engineer's job to retrieve all information 

needed to fill the knowledge-base from the domain expert. This time-intensive procedure is 

referred to as the "knowledge acquisition .Process" and is usually the bottleneck of expert 

system development. It is for this reason that knowledge engineers strive to automate the 

4 



knowledge acquisition process. 

1 .3.3 Overview of Expert Knowledge ... 

~ r 
Knowledge is defined as information which has been retrieved, categorized, used, and updated. 

"' •. 

When a piece of information is retrieved by a human, it is categorized to reflect the relationship . 

between that piece of knowledge and all other pieces of knowledge currently stored in the 

human's'mind. As the human uses that piece of knowledge, new relationships between other 

pieces of knowledge may be discovered. The knowledge pieces are then updated to reflect 

the new relationships. 

Knowledge is constantly being retrieved, categorized and updated. For example, suppose a 

child met a black dog for the first time. During the meeting, the dog happened to bite the 
I 

. ... ...... ~ 

child. Figure 1 shows the way the child might represent the information retrieved about the 

dog. 

BITE 

DOGS ME 

..- , Figure 1. Example 1.a 

Figure 1 shows that there is a single piece of knowledge which represents dogs. The 

relationship between the child and dogs shows that dogs bite. 
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The next encounter the child has is with a brown dog. This dog does not bite the child, but 

instead licks the child's face. This is new information which the child must add to his or her 

internal knowledge base. The new information is added to the knowledge currently stored. 

The old knowledge must now be updated. The way in which the child would now represent 

the knowledge of dogs is show in figure 2. 

BLACK 
BITE 

DOGS ME 

LICK 
BROWN 

Figure 2. Example 1.b 

Figure 2 shows that the piece of knowledge representing dogs is now broken into two separate 

categories: black dogs and brown dogs. The relationship between the child and dogs gave 

been revised to represent that black dogs bite and brown dogs lick. 

The next encounter the child has is with a black dog. This dog does not bite the child, but 

again licks the child's face. The child's internal knowledge base is once again reorganized to 

6 



represent the newly acquired knowledge. Figure 3 shows how the child's knowledge of dogs 

might finally be represented. 

DOGS 

Figure 3. Example 1.c 

BITING 
DOGS 

LICKING 
DOGS 

BITE 

ME 

LICK 

Figure 3 shows that the piece of knowledge representing dogs is now broken into two new 

categories: biting dogs and licking dogs. The relationship between the child and dogs has been 

further revised to represent that biting dogs bite and licking dogs lick. 

This was a simple example of how human knowledge is continually being updated as new 

information is acquired. It was through experience that the child was able to acquire new 

information about dogs. It was also through experience that the child was able to refine his 

or her existing knowledge about dogs. 
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Expert knowledge, or expertise, is defined as the level of experience an expert has in a 

particular domain. A goal of the knowledge acquisition process is to capture the expertise of 

the domain expert. Through experience, the mind is able to make interconnections between 

separate pieces of knowledge currently stored. Experience is the way unrelated facts are 

transformed into expert knowledge [McGraw 891. 

Experience is what gives an expert expertise in a specific domain. That same experience often 

makes verbalizing his or her thinking process difficult. The more experience a human has 

performing a specific task, the more that task becomes second nature to him or her. The 

intermediate steps taken to solve the problem usually become "rules of thumb", or heuristics. 

These are not easily deciphered by the knowledge engineer because the intermediate steps 

used to form the conclusion are hidden. When forming conclusions, the domain expert may 

unconsciously be taking into consideration other related facts. Because the expert is using 

"rules of thumb", verbalizing his or her own thinking process becomes difficult. 

When a domain expert is supplying knowledge about how to perform a task or solve a problem, 

important information is often unintentionally left out. It is difficult for the human expert to 

convey all of the outside information which contributes to the decisions the he or she makes. 

If a driver is asked how to explain the steps involved in driving a car the answer might be 

similar to: 

1) GET INTO CAR 

2) START ENGINE 

3) DRIVE CAR 

4) TURN ENGINE OFF 

5) GET OUT OF CAR 

8 



c> 

Although this set of steps is adequate for driving under normal conditions, there is information 

missing. If the knowledge engineer would have asked the driver to list the steps taken to drive 

a car in the rain the following list might have been given: 

\ ', .... 

1) GET INTO CAR 

2) START ENGINE 

I. 

3) TURN ON WIPERS 

4) DRIVE 

5) TURN ENGINE OFF 

6) GET OUT OF CAR 

The fact that the weather has an effect on the decisions made during a driving session was 

left out the first time. This is because the driver does not consciously ask himself or herself 

"Is it raining out? If so, then I'd better put the wipers on.", but the weather is outside 

information which has an effect on the steps the driver will take. To complete the knowledge

base on how to drive a car other information such as time of day, temperature, and driving 

conditions would need to be included. 

Figure 4 shows the factors which influence the decisions humans make when solving a 

l 

problem or completing a task. 

9 
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OUTSIDE 
INFORMATION 

GENERAL 

KNOWLEDGE 

HEURISTICS 
.RULES OF THUMB. 

Figure 4. Three factors which influence 

human decision-making. 

DECISIONS 

By asking the driver the appropriate questions, obtaining all of the outside information, general 

knowledge, and heuristics which influence driving decisions would be simple for the knowledge 

engineer. On the other hand, when the domain becomes more complex and foreign to the 

knowledge engineer, the missing information becomes more difficult to extract from the expert. 

If the knowledge engineer knew nothing about driving, the first explanation might have seemed 

to be a suitable one. Because the knowledge engineer usually has limited knowledge of the 

domain with which he or she is working, detecting when information is missing is not an easy 

task. 
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The process of acquiring expert knowledge is difficult and has not been well defined. The 

ways to acquire knowledge .are usually domain-specific and not easily generalized for all 

domains. The knowledge engineer must conceptualize the structure of the expert's knowledge, 

and the way in which he or she uses it in order to solve a problem. In addition, conveying each 

step taken when performing a task or solving a problem is difficult for a human. For these 

reasons, knowledge acquisition tools try to emulate the problem-solving techniques of an 

expert. By mimicking the inference process of the human, the knowledge acquisition tool 

simplifies the process of finding inconsistencies and incompleteness in the knowledge-base. 

Knowledge acquisition tools which predefine a problem-solving strategy have the advantage 

of understanding how the knowledge will be used in order to solve a problem. 

2. Problem-Solving Techniques 

Problem-solving is defined as the identification, selection, and implementation of a sequence 

of actions that accomplish some task within a specific domain [McDermott 88]. Discussed 

below is an overview of problem solving techniques followed by a description of three common 

problem-solving techniques: cover_ and_ differentiate, propose-and-revise, and acquire-and

present. Tools which use the propose-and-revise, and cover-and-differentiate methods will be 

• 
discussed later. The acquire-and-present method will not be referred to in later discussions so 

therefore, only a brief review is given. 

2. 1 Overview 

Problem-solving strategies are designed to mimic the problem solving techniques of a human 

expert. Many knowledge acquisition tools use problem solving strategies to predefine how the 

inference engine will use the domain knowledge. The choice of a problem-solving strategy is 

1 1 



domain dependent and affects the organization of the extracted knowledge. A problem-solving 

strategy must be specific enough to guide the domain expert in defining, analyzing, and testing 

a knowledge-base [Klinker 881. 

When designing a general expert system, a knowledge engineer strives to create a domain

independent inference engine with a domain-specific knowledge base. Separating the inference 

engine from the knowledge base allows an expert system to be used for many different 

domains. Limiting an inference engine to using a specific problem-solving strategy limits the 

domains with which it can be used. On the other hand, using a specific problem-solving 

strategy increases the inference ca(tabilities for the domains with which it can be used. 

A problem-solving method defines the flow of control of the system. It controls the sequence 

of events needed to form a conclusion, and is designed to emulate the way in which a domain 

expert solves a problem. At each step of the inference process, the problem-solving method 

provides a way of identifying possible actions. From that list of actions, the problem solver 

determines the best possible action. The knowledge used to control the problem solver is 

stored in the inference engine and is separate from the knowledge base. 

Figure 5 presents an overview of the interdependencies between a knowledge acquisition tool 

and its generated expert systems adapted from Klinker' s overview of KNACK [Klinker 88]. 

12 
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USER SOLUTION 

Figure 5. Overview of interdependencies between 
knowledge acquisition tools and expert systems. 
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Tools which automate the knowledge acquisition process often use a single problem-solving 

strategy. Although many exist, the three common problem-solving strategies discussed below 

include: cover-and-differentiate, propose-and-revise, acquire-and-present. 

2.2 Cover-and-Differentiate 

\) 

The cover-and-differentiate method of problem-solving is defined as the cyclic process of 

finding a set of initial symptoms, generating a set of explanations for the symptoms, and 

differentiating between the possible explanations in order to converge on a single solution. The 

cover-and-differentiate problem-solving strategy is intended to be used primarily for diagnostic 

tasks. These are tasks which choose a solution (or diagnosis) from a set gf possible solutions. 

Diagnosing diseases would be an example of this type of problem. A knowledge-based system 

using the propose-and-revise method would select a solution from a predefined set of solutions 

rather than constructing a unique solution. 

An expert solves a problem using the cover-and-differentiate method by first proposing possible 

solutions that will provide an explanation for the initial symptoms. These solutions are referred 

to as the covering knowledge. For example, suppose the initial symptom is: The car won't 

start. The set of covering knowledge might consist of the following: 

1 ) The battery is dead. 

2) The car is out of gas. 

3) The starter is broken. 

The goal of the problem-solver is to converge on a single solution from this set of _solutions. 

Each solution in the set represents a possible candidate for the final solution. The expert will 

proceed by searching for information that will differentiate the candidate solutions. To 

' 

differentiate the first candidate from the set of candidates, the following differentiating 
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knowledge might be obtained: 

1) If the battery is dead the lights will not go on. 

The next step in this process would be to obtain knowledge which would differentiate the 

second explanation from the competing explanations in the set. This is an iterative process 

of obtaining covering knowledge and then differentiating between the parts until all of the 

covering knowledge has been differentiated. When all of the differentiating knowledge is 

acquired, the expert is able to choose a final solution by either confirming that solution or 

rejecting all competing solutions. 

The cover-and-differentiate problem-solving method clan be classified by the following two rules 

[Eshelman 87]: 

1) For each symptom or abnormal event, propose a set of covering 

alternatives or explanations. 

2) Seek information that will help differentiate these alternatives. 

Many problems such as diagnosing diseases, or diagnosing engine problems, can be solved by 

the process of finding a set of possible solutions and then differentiating between them is a 

common way for domain experts to solve a problem. Cover-and-differentiate is a common 

method of solving diagnostic problems. 

Knowledge acquisition tools which use the cover-and-differentiate method of problem-solving 

must focus on this method while acquiring the knowledge from the expert. Extracting 

knowledge from a domain expert using the cover-and-differentiate method can be cumbersome. 

Although experts tend to have little problem providing an initial set of symptoms and providing 

possible explanations for them, domain experts tend to find it more difficult to provide 

adequate differentiating knowledge. Human experts typically find it difficult to specify exactly 

15 



how a piece of information helps to differentiate possible solutions. 

MOLE, a knowledge acquisition tool developed by Carnegie Mellon University, generates expert 

systems that use the cover_ and_ differentiate problem-solving method. MOLE seeks to elicit 

the differentiating knowledge from the expert without requiring the expert to have a deep 

understanding of how it is structured. By separating the covering knowledge from the 

differentiating knowledge, MOLE is able to disambiguate an under-specified knowledge base 

and to interactively refine an incomplete knowledge baseJEshelman 871. MOLE is discussed 

in detail in section 3.3. 

2.3 Propose-and-Revise 

The propose-and-revise method of problem-solving is defined as the cyclic process of proposing 

a design, checking for violations of design constraints, and revising the design according to 

constraint violations. The propose-and-revise problem-solving strategy is intended to be used 

primarily for constraint-satisfaction tasks. These are tasks which need a designed solution, 

including values for all design arguments, which meet all defined constraints. Creating a 

schedule would be a simple example of this type of problem. A knowledge-based system using 

the propose-and-revise method would construct a solution or design rather than select an 

exist.ing one. 
' 

A solution generate using the propose-and-revise method is constructed by first proposing 

values for the design parameters one at a time. Each parameter value is checked to see if it 

violates any of the predefined constraints on the design. If a constraint is violated, the system 

., 

will make a correction by changing the design values accordingly. The way in which the 

system determines an appropriate correction is system dependent. Some systems may choose 
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the least costly change and apply it to the design. This process of proposing a design and 

revising it accordingly is continued until all design parameters have values which do not violate 

design constraints. 

The propose-and-revise method is uses the following process to control the problem-solving 

process [McDermott 881: . 
~ 

1). Extend a design by assigning a value to a design parameter. 

2). Identify constraint violations on the extension just formed; 

if none, go to step 1 . 

3). Generate a set of potential corrections for the constraint violation. 

4). Select the least costly correction not yet attempted. 

5). Tentatively modify the design according to the chosen correction. 

6). Identify constraint violations on the modification just formed; 

if any, go to 4. 

7). If the design is incomplete, go to 1 . 

The following example shows how these steps are used to solve a constraint-satisfaction task. 

The example problem will be to design the perfect family. The following is a list of all design 

parameters and how each will obtain an initial value. 

DESIGN PARAMETERS: 

Age-of-father 

Age-of-mother 

Age-of-son 

Age-of-daughter 

INITIAL VALUES: 

From user 

- (Age-of-fat her - 1 ) 

- (Age-of-father - 25) 

= (Age-of-brother - 2) 

17 



Each design parameter has at least one design constrain in this example. A design constraint 

limits the values of the parameters. The design parameters for this example have the following 

design constraints: 

DESIGN PARAMETERS: 

Age-of-father 

Age-of-mother 

Age-of-son 

Age-of-daughter 

CONSTRAINTS: 

',; 

> Age-of-mother 

< Age-of-father 

< Age-of-mother 

- (Age-of-father + 25) 

- (Age-of-brother + 2) 

< Age-of-mother 

< (41 - Age-of-mother) 

For an actual task, all constraints would also include a set of one or more corrections in the 

event that the constraint is violated. For this example, the only constraint which will need a 

. ., 

correction is the third constraint on the parameter Age-of-daughter. The correction for this 

constraint would be to set the Age-of-mother = (40 - Age-of-daughter). The following set of 
) 

steps shows how this example problem can be solved using the propose-and-revise problem-

solving strategy. Each step will be numbered corresponding to one of the seven propose-and-

revise problem-solving steps previously defined. 

Step 1. Acquire Age-of-father from user. (Age-of-father = 35) 

Step 2. No constrainrviolations found. 

Step 1. Acquire Age-of-mother from equation. (Age-of-mother = 34) 

Step 2. No constraint violations found. 

Step 1. Acquire Age-of-son from equation. (Age-of-son - 10) 

Step 2. No constraint violations found. 
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Step 1 . Acquire Age-of-daughter from equation. (Age-of-daughter = 8) 

Step 2. Constrain violation : (Age-of-daughter < 41 - Age-of-mother) 

Step 3. Set of corrections : (Age-of-mother = 40 - Age-of-daughter) 

Step 4. Select least costly correction. 

Step 5. Modify design. (Age-of-mother = 32) 

Step 6. No constraint violations found. 

Step 7. Design complete: 

Age-of-father = 35 

Age-of-mother = 32 

Age-of-son = 1 0 

Age-of-daughter = 8 

The design is complete because all design parameters have values and no constraints are 

violated. By using the propose-and-revise problem-solving strategy we were able to create a 

design of the perfect family which met all predefined design constraints. 

This problem-solving method is used by SALT, a knowledge acquisition tool developed at 

Carnegie Mellon University. SALT will be described in more detail later. 

2.4 Acquire-and-Present 

The acquire-and-present problem-solving method is defined as a process of acqu1nng all 

necessary information from the expert and then presenting a report of the acquired information. 

This method used primarily for reporting tasks. The acquire-and-present method is 

........ 
complementary to the problem-solving strategies previously described. While other problem-

solving strategies concentrate on the inferencing process, acquire-and-present ~oncentrates 
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on the extraction of knowledge and the generation of a report from that knowledge. It is most 

useful for tasks which reQuire a large amount of information to be acQuired and presented in 

a standard form [Klinker 88]. 

In order to be suitable for the acQuire-and-present problem-solving method, a task must have 

the following characteristics [McDermott 881: 

1) It is possible to document the task with a report. 

2) A report for the task will cover a relatively small set of concepts. 

A task is most suitable for the acquire-and-present method if it is not just possible, but 

essential to document the task with a report. 

The following are a- set of steps which the acquire-and-present problem-solver takes in order 

to perform a task [McDermott]: 

1 ) Identifies all relevant pieces of information that are appropriate to 

acquire next. 

2) From that set of relevant pieces, one piece of information is chosen 

to be acQuired . 

.. 
3) A strategy is chosen for acQuiring the information. 

4) Applies the strategy towards acQuiring the information. 

5) Integrates the new information with the information previously 

acQuired. 

6) Repeats these steps until all relevant information is acQuired. 

7) Generates a report which documents the task. 
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KNACK, a knowledge acquisition tool developed by Carnegie Mellon University, is an example 

of a knowledge acquisition tool which uses the acquire-and-present problem-solving method. 

KNACK generates an expert system capable of producing structured reports about a specific 

domain. KNACK structures the report according to the information provided by the domain 

expert. The domain knowledge acquired from the expert specifies how to generate a report 

about the specific domain. KNACK acquires the domain knowledge by simply having the 

domain expert enter the following information [McDermott 881: 
~ 

1 ) A domain model 

2) A sample report 

3) Sample strategies for acquiring specific information 

One of the goals of KNACK was to be simple enough for a domain expert with no programming 

experience to be able to easily enter his or her domain knowledge. 

Some of the tasks KNACK has been used for include: assisting with the creation of a project 

proposal, assisting with the definition of requirements for software systems, and reporting on 

designs of electromechanical systems that may be suboptimal form a hardening perspective. 

To give an indepth descrjption of how the acquire-and-present method is used, an example of 

a KNACK-built system for creating project proposals follows. 

One of the fist steps in starting a new project is the creation of a project proposal. The 

proposal must contain all relevant information concerning the project in a concise, descriptive 

manner. The purpose of an expert system developed by KNACK is to help the project leader 

create the proposal. The expert system will ask the project leader information such as 

" 
objectives, functionality, and methodology. After obtaining all necessary information from the 

project leader, the expert system will generate a proposal [McDermott 88]. 
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The knowledge acquisition tool used to create the expert system will acquire all domain

specific information from the domain expert. [McDermott 881 provides an example of task

specific knowledge entered by the domain expert: 

DOMAIN: Assisting with the creation of a project proposal: 

Domain model: project, objective, task, software (concepts); name, 

description (concept characteristics for software); KNACK, WRINGER 

(concept representatives for software). 

Sample report fragment: The objective of the NAC WRINGER project 

is to refine KNACK, a knowledge-acquisition tool currently being 

developed at CM U, so that it can be used to build expert systems that 

assist with the design of computer networks. 

Sample strategy: (Question) What are the objectives of the NAC 

WRING ER project? 

This information is what the expert system uses to guide the questioning of the project leader. 

Because the acquire-and-present problem-solving ~trategy is complementary to other strategies, 

it is possible to use a acquire-and-present in conjunction with other methods. The acquire-and

present method can act as a front end to systems which require a large amount of information 

to be input. It can also be used as a back end for systems which require reports to be 

generated. A later version of KNACK combines the acquire-and-present method with the 

propose-and-revise method to broaden the scope of the propose-and-revise systems. 

Combining the two problem-solving strategies produces expert systems which can handle 

constructive tasks that need to acquire a large amount of information or require that a 

document be produced. 

When specifying a problem-solving strategy, a knowledge acquisition tool must use the 

framework provided by the problem-solving strategy to extract knowledge from the domain 

expert. This is a weakness in that the expert may be required to enter knowledge in a 

structured format that is unfamiliar to him or her [Klinker 881. 
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3. Knowledge Acquisition tools 

Knowledge acquisition tools are defined as tools which automate the process of extracting 

knowledge from a domain expert in order to develop an expert system. Discussed below is a 

history and overview of knowledge acquisition tools followed by descriptions of a few of the 

tools researched along with some insights obtained from each. Each is an example of a 

specialized knowledge acquisition tool which uses one of the previously defined problem 

solving methods. 

3.1 History 

Developers of expert systems have come to find that the task of knowledge acquisition is 

usually the most difficult. It is a slow process which can significantly effect the development 

time of any knowledge-based system. For this reason, much work is being done on the 

automation of knowledge acquisition. Research is being done world wide on the development 

of knowledge acquisition tools as a means of decreasing the time involved in developing an 

expert system. 

By 1985, knowledge acquisition had become such a prominent area of research that the 

American Association of Artificial Intelligence (AAAI) agreed to sponsor the first Knowledge

based Systems for Knowledge Acquisition Workshop (KAW). It was organized in hopes of 

preventing the duplication of research and providing a means by which all current research 

could be shared and hopefully integrated. As a result of this first Knowledge Acquisition 

Workshop, organizations including the Institute of Electrical Engineers, and the Association of 

Computing Machinery sponsored subsequent workshops [Boose 88a]. 
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Besides preventing the duplication of research, the collaboration of research relevant to the 

automation of knowledge extraction, allows knowledge engineers to learn from the limitations 

encountered with previously developed tools. Researching existing tools gives the needed 

basis for beginning design on a knowledge acquisition tool. 

3.2 Overview 

Tools developed to automate the knowledge acquisition process can be broken into two 

distinct categories: general tools, and specialized tools. General tools such as CYC [Lenat 86] 

and SOAR [Laird 871 make no assumptions about the problem-solving methods. Other tools 

such as SALT, KNACK, and MORE focus on a single problem-solving strategy. Although 

specialized tools are limited to specific domains, in those specific domains they are more 

powerful then general tools. 

In conjunction with a tool's problem-solving method, another useful distinction between 

automated, spedialized knowledge acquisition tools is whether they create expert systems that 

select or that construct a solution [Clancey 841. MOLE is an example of a knowledge 

acquisition tool which selects a solution from a predefined set, while SALT constructs a 

solution which fits a set of constraints [Klinker 88]. 

3.3 SALT 

SALT is an example of a knowledge acquisition tool which uses the propose-and-revise method 

of problem-solving. Discussed below is SALT' s history, problem-solving str~tegy, acquiring the 

knowledge base, knowledge representation, convergence, troubleshooting the knowledge-base, 

and the sun1mary. 
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3.3.1 History 

SALT is a knowledge acquisition tool designed at Carnegie Mellon University. SALT generates 

a domain-specific knowledge base compiled into rules in OPS5 [Morik 88]. SALT has been used 
-~-,, 

successfully to develop two commercial expert systems. VT, the first expert system developed 

using SALT, has been used by Westinghouse Elevator Company to custom design elevator 

systems. One year after the expert system began operation, the number of rules in the 

knowledge base had tripled. The second expert system developed using SALT was a prototype 

for a flow_ shop scheduler. The schedular routes an order for an escalator or elevator system 

from the department for engineering, to the manufacturing department, and finally to the 

department responsible for delivering it [Stout 881. 

/ 

Using the propose-and-revise problem-solving strategy limits the domains which SALT can be 

applied. On the other hand, SALT gains power from its understanding of the propose-and

revise method. The expert systems generated by SALT have dealt with domains where the 

propose-and-revise method of problem-solving is preferred. 

3.3.2 Problem-solving Strategy 

SALT is used for generating expert systems which use a propose-and-revise problem-solving 

strategy. Because SALT predefines its problem-solving strategy to be propose-and-revise, it 

is limited to creating expert systems for synthesis-type domains. Synthesis-type domains 

involve problems which are solved by constructing solutions rather than choosing from a set 

of solutions [Garg-Janardan 881. 

The propose-and-revise method of problem-solving is defined as the cyclic process of proposing 
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a design, checking for violations of design constraints, and revising the design according to 

constraint violations. This process of proposing a design and revising it accordingly is 

continued until all design parameters have values which do not violate design constraints. The 

propose-and-revise problem-solving strategy is discussed in detail in section 2.3. 

By assuming the propose-and-revise method to be the problem solving strategy used by the 

expert system, SALT is able to easily structure the knowledge acquired from the domain expert 
I 

in order to form a working expert system. The following sections will describe how SALT' s 

problem-solving technique is used in representing, analyzing, and applying domain-specific 

knowledge. 

3.3.3 Acquiring the Knowledge-base 

The knowledge acquisition techniques used by SALT are highly dependent on the chosen 

problem-solving strategy. Predefining the problem-solving strategy gives the knowledge 

acquisition tool an understanding what type of knowledge the problem-solver will need in order 

to solve a problem. The propose-and-revise method guides the knowledge acquisition process. 

The three kinds of knowledge SALT' s propose-and-revise problem solver needs to acquire from 

the domain expert take the following form [Marcus 881: 

1 . PROPOSE-A-DESIGN-EXTENSION 

2. IDENTIFY-A-CONSTRAINT on a part of the design 

3. PROPOSE-A-FIX for a constraint violation 

The "PROPOSE-A-DESIGN-EXTENSION" is used to define design parameters and propose initial 

values for those parameters. The "IDENTIFY-A-CONSTRAINT" is used to define constraints 

placed on the design parameters. These are conditions the design parameters must meet in 

order for the design to be accepted. The "PROPOSE-A-FIX" is information supplied by the 
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domain expert which defines a set of possible corrections for. constraint violations. This will 

give possible design corrections in the event that a value for a design parameter violates a 

\ 
I 

design constraint. 
() 

SALT interacts with the user via a simple interface. SALT' s main interface is the following list 

of possible choices [Marcus 881: 

1 . PROCEDURE 

2. CONSTRAINT 

3. FIX 

4. EXIT 

Enter a procedure for a value 

Enter constraints on a value 

Enter remedies for a constraint violation 

Exit interviewer 

Enter your command [ EXIT 1 : 

If the user entered· the choice "PROCEDURE", SALT would display an interface to except 

specifics about a procedure. A procedure is used to determine a value for a design parameter. 

A guideline which SALT sets for procedures is that for every design parameter there must be 

a corresponding procedure. A procedure takes many forms including: asking the user of the 

expert system, a database look-up, or a mathematical calculation. When entering the 

procedure, the domain expert is urged to take into account all design constraints which effect 

the specification of a value. 

If the user entered the choice "CONSTRAINT", SALT would display an interface to except 

specifics about a design constraint. The user is expected to define a constraint for each design 

parameter and supply a procedure for determining the value of the constraint. The constraint 

is used to identify limits which have not already been defined in a procedure. 
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If the user entered the choice "FIX", he or she would be prompted to specify a potential 

remedy for a specific constraint violation. A fix is used to define revisions of the design 

parameters in the event that a design constraint is violated. During inferencing; SALT chooses 

the least costly fix and applies it to the design. SALT allows the user to begin the interview 

by entering a procedure, constraint, or a fix. 

It is not enough for the knowledge acquisition tool to create an expert system. The ability to 

maintain an expert system by means of' adding knowledge incrementally is an essential 

capability of a knowledge acquisition tool. SALT organizes pieces of the knowledge-base as 

they are added over time. It keeps track of links between datum and cues the user for 

appropriate links. SALT also warns the user of missing pieces or inconsistencies in the 

knowledge base. 

Experts enter knowledge into SALT' s knowledge base through a user interface. Experts find 

it easy to list constraints for a solution and can produce values for individual design 

parameters. It is not easy for the domain expert to have a complete understanding of how all 

of the pieces of the knowledge fit together. For this reason, SALT allows the user to enter the 

knowledge piecemeal. SALT keeps track of the structure of the forming knowledge base. 

SALT will prompt the user when an appropriate link is missing. SALT also keeps track of 

inconsistencies in the knowledge base. This takes the burden of identifying how all of the 

steps fit together off of both the knowledge engineer and the domain expert [Marcus 88]. 

In order to detect inconsistencies or incompleteness in the knowledge-base, SALT must store 

the extracted knowledge in a structured manner. The following section describes, in detail, 

SALT' s method of knowledge representation. 
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3.3.4 Knowledge Representation 

Knowledge extracted from an expert must have some structured form of representation in 

~. 

order to be properly processed by the expert system. It is virtually impossible to represent the 

I 

knowledge in the same way in which it is represented in the human mind. Knowledge with in 

a human mind is said to have an implicit form of representation. The knowledge is stored in 

a manner in which can cannot be examined by the conscious mind. In contrast, computers 

' 

represent knowledge in explicit forms. All of the knowledge is accessible and may be reduced 

to a standard form of binary values. The process of knowledge acquisition is the process of 

transforming implicit knowledge into an explicit form [Brule 891. 

SALT uses a dependency network to represent its pieces of knowledge and how they interact 

with one another during problem-solving. Each node in the dependency network represents 
,. 

a design parameter. The nodes in the network are linked together with three types of links: 

contributes, constrains, and suggests-revision-of. For the link from node A to node 8, the 

following definitions apply [Marcus 88]: 

Contributes: 

A contributes to B if A is used in a procedure to specify a value 

for 8. 

Constrains: 

If A 1s a constraint and B is a design parameter, then A 

constrains B if the value of A places some restriction on the 

value of 8. 
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Suggests-revision-of: 

If A is the name of a constraint then A suggests-revision~of B 

if a violation of A suggests a change to be made to the current 

value of 8. 

When new information is entered into the knowledge base, SALT may create a new node to 
•c .. 

represent that piece of knowledge. Each time a new node is created, the system checks for 

possible links to or from that node. SALT expects a "contributes-to" link to each node in the 

dependency network unless it is a constant or an input node. A constant node is defined as 

a node representing a value which is initialized to some constant value. An input node is 

defined as a node representing a value which must be imputed by the user. 

Representing the imputed knowledge in a standard form allows SALT to troubleshoot the 

knowledge-base. The following section describes how SALT is able to use the dependency 

network and the propose-and-revise problem-solving strategy to insure that the imputed 

knowledge is capable of converging on a single solution. 

3.3.5 Convergence 

SALT uses the propose-and-revise problem-solving strategy to insure that the knowledge 

acquired from the expert can converge on a solution. The propose-and-revise problem-solving 

strategy needs to control the inferencing in the event that a proposed design violates a 

constraint. Control knowledge guides the expert system in choosing proper actions to propose 

a fix for violated constraints. While the problem solver is trying to converge on a solution, it 

is also trying to optimize that solution. When the user supplies the fixes for constraints, 

information regarding feasibility and preferability is also entered. 
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When imputing the corrections for constraint violations, it is difficult for the user to recall all 

contributors to some constraint violation. For this reason, SALT provides the user with a list 

of design parameters which contribute to the current constraint violation. 

\ 
' 

All constraint corrections must be less desirable than the original proposed values. The user 

specifies the preference of individual constraint revisions using integers, one being the most , 

preferred. The integers correspond to a list of reasons why a revision could be less preferred 

than the original value proposed. This list is 'supplied by the domain expert. The following list 
I 

was used for the SALT generated expert system, VT, and provides an example of how a 

domain expert specifies his or her preferences. 

1 . Causes no problem 
2. Increases maintenance requirements 
3. Makes installation difficult 
4. Changes minor equipment sizing 
5. Violates minor equipment constraint 
6. Changes minor contract specifications 
7. Requires special part design 
8. Changes major equipment sizing 
9. Changes the building dimensions 
1 0. Changes major contract specifications 
11 . Increases maintenance costs 
12. Compromises system performance 

The information provided for a correction guides the problem-solver in the revision of the 

proposed value. The problem-solver will begin a revision of the design when the first constraint 

violation occurs. The most preferred change is chosen first for the revision. If the constraint 

on that value is still violated, the next preferred change is chosen. This continues until a 

suitable value is found which satisfies all constraints . 

.. 

The problem-solver must also consider that it is possible that a solution for one constraint 

violation may effect other constraint violations. Only if the effects of a fix do not effect other 

constraints is the revised value considered to be the most preferred. Because fixes may 
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aggravate other constraint violations, thrashing is a problem which must be addressed. SALT 

alerts the user of possible thrashing by producing a list of chains of interacting fixes. Each 

chain in the list represents a constraint whose change make other constraints more likely to 

be violated. 

3.3.6 Troubleshooting the Knowledge-base 

Using the dependency network, and the propose-and-revise method of problem-solving, SALT 

is able to troubleshoot the knowledge-base. It is the task of the problem solver to find a path 

through the dependency network which satisfies all design constraints and which converges 

on a single solution. SALT uses completeness checking to insure that the acquired domain 

knowledge is complete enough to form a working expert system. By using the propose-and

revise method of problem solving, SALT can run sample cases to check the completeness of 

the knowledge base. SALT also uses the propose-and-revise method to insure that the expert 

system will be able to converge on a solution. 

SALT troubleshoots the imputed knowledge during the knowledge acquisition procpss by using 

its understanding of how the propose-and-revise problem solver will use the knowledge. SALT 

detects cycles in the dependency network and guides the user in breaking them. The problem

solver of a least-commitment expert system would consider all relevant information at each 

step of the inference process. SALT uses a least-commitment compilation strategy. Each 

procedure is compiled with data-driven control. A procedure to determine a parameter value 

will be eligible for use only after all values contributing to that procedure have been specified. 

If there is a cycle in the dependency network, the requirements for the procedures in that cycle 

will never be met. 
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If the problem-solver reaches a cycle, it will get stuck. An example of how SALT handles a 

cycle in the dependency network is shown by using procedures from the SALT-generated 

expert system, VT. If the following procedures were entered into VT: 

HOIST-CABLE-QUANTITY -
SUSPENDED-LOAD/HOIST-CABLE-STRENGTH 

HOIST-CABLE-WEIGHT -
HOIST-CABLE-UNIT-WEIGHT * 
HOIST-CABLE-QUANTITY * HOIST-CABLE-LENGTH 

CABLE-WEIGHT -
HOIST-CABLE-WEIGHT + COMP-CABLE-WEIGHT 

SUSPENDED-LOAD -
CABLE-WEIGHT + CAR-WEIGHT 

a cycle would be formed in the network. The values for HOIST-CABLE-QUANTITY, HOIST

CABLE-WEIGHT, CABLE-WEIGHT, and SUSPENDED-LOAD create a cycle because they are 

each dependent on one or more of each other. SALT detects such cycles and prompts the user 

with an appropriate message. The following is an example of a message generated by SALT 

regarding the cycle previously described [Marcus 88]: 

In the procedures I have been given, there is a loop. The list below 

shows the values on the loop; each value uses the one below it and the 

last uses the first: 

1 HOIST-CABLE-QUANTITY 
2 SUSPENDED-LOAD 
3 CABLE-WEIGHT 
4 HOIST-CABLE-WEIGHT 

:-., 

In order to use any procedure, I need some way of getting a first 

estimate for one of the manes on the list. Which one do you wish to 

estimate? 

This will guide the user in correcting the cycle formed by the imputed knowledge. SALT is able 

to aid the domain expert in entering correct knowledge without the domain expert needing to 

structure the knowledge in advance. This is only one of the strengths SALT gained by 

33 



predefining the problem-solving strategy. The following section gives a brief summary of the 

strengths of SALT. 

3.3.7 Summary 

The predefined problem-solving technique gives SALT the ability to control the incoming 

knowledge in several different ways. SALT is able to identify relevant domain knowledge, 

detect potential weaknesses in the expert system and analyze test case coverage. In addition, 

SALT can detect cycles in the knowledge-base and guide the user in breaking them. Along 

with proposing a solution to some problem, an expert system developed using SALT can give 

explanations of conclusions formed. SALT uses knowledge about the propose-and-revise 

problem-solving strategy to analyze test case coverage. 

SALT proved to be successful in using the propose-and-revise problem-solving strategy to guide 

the knowledge acquisition process. Because of the advantages of predefining a problem

solving strategy, the number of domain-specific knowledge acquisition tools such as SALT is 

increasing. The next section gives an example of another domain-specific knowledge 

acquisition tool developed by Carnegie Mellon University. 

3.4 MOLE 

MOLE is an example of a knowledge acquisition tool which uses the cover_and_differentiate 

method of problem-solving. Discussed below are MORE's history, problem-solving strategy, 

knowledge representation, control knowledge, acquiring the knowledge-base, acquiring the 

initial symptoms, acquiring covering knowledge, acquiring differentiating knowledge, and the 

summary. 
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3.4.1 History 

MOLE is a knowledge acquisition tool designed at Carnegie Mellon University. It is used for 

generating expert systems which use a cover-and-differentiate problem-solving strategy. 

Because MOLE predefines its problem-solving strategy to be cover-and-differentiate, it is limited 

to creating expert systems for diagnostic-type domains. Diagnostic-type problems are solved 

by selecting a solution from a set of possible solutions. This is unlike synthesis-type problems 

. which are solved by constructing original solutions. 

3.4.2 Problem-solving strategy 
I 

Mole predefines its problem-solving strategy to be the cover-and-differentiate method. The 

goal of a cover-and-differentiate problem-solver is to select a solution (or explanation) from a 

set of solutions based on an initial set of symptoms. 

An expert solves a problem using the cover-and-differentiate problem-solving strategy by first 

looking at the initial symptoms. Based on the initial symptoms, a set of solutions which can 

explain the symptoms is generated. This set of solutions is called the covering knowledge. 

Each solution in the set of covering knowledge is a candidate for the final solution. Once the 

covering knowledge is found, the expert searches for differentiating knowledge. The 

differentiating knowledge would be any information which would clarify the differences 

between the candidates in the covering knowledge. The ultimate goal of the problem-solver 

is to find enough differentiating knowledge to eliminate all possible solution candidates except 

one. 

MORE separates the covering knowledge from the differentiating knowledge to gain control 
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over the knowledge and to provide a systematic way of extracting it. The cover-and

differentiate method is described in detail in section 2. 2. 

Separating the covering knowledge from the differentiating knowledge enables MOLE to 

standardize the knowledge representation. The following section describes how MOLE uses 

the cover-and-differentiate method to guide the knowledge representation. 

3.4.3 Knowledge Representation 

The knowledge base representation is formed by the cover-and-differentiate problem-solving 

strategy. The knowledge base is represented in the form of a network of nodes representing 

symptoms and explanations for the symptoms. The each root node in the network represents 
'.,,,. u • - ;, 

a final solution to a set of sympfoms. Figure 6 shows the following example of a small part 

of a knowledge-base built by MOLE for the diagnosing of automobile engine problems [Kahn 

88]: 

The three root nodes: worn crankshaft bearings, worn cylinders, and ignition problems all 

represent final solutions or explanations. The initial symptoms include: lack of power, 

excessive engine noise, and engine misfiring. This is a simple example of a MORE knowledge 

network. In a complete knowledge base, intermediate explanation nodes would be included 

in the network. Each intermediate explanation would explain the node below it and would 

likewise be explained by the node above it. 
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Because MOLE represents its knowledge in a structured form, it is able to develop standard 

control knowledge for cover-and-differentiate problem-solving. The following section will 

describe MOLE' s control knowledge and how it manipulates knowledge in the knowledge-base. 

3.4.4 Control Knowledge 

The control knowledge iflefined as the search strategy followed by the expert system's 

inference engine. MOLE' s control knowledge follows the cover-and-differentiate problem

solving strategy. The control knowledge of MOLE is guided by both strong and weak 

'II 

constraints. The strong constraint strictly confines the search strategy, while the weak 
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constraints simply guide the search strategy. 

MOLE's control knowledge must meet the following strong constraint [Kahn 88]: 

( 1) If an event has at least one potential explanation, the final 

diagnosis must include at least one of these potential explanations. 

This constraint can be describe in terms of exhaustivity. Exhaustivity can be interpreted to 

mean that every symptom has a cause [Kahn 88]. The strong constraint defines that from 

each symptom node on the knowledge-base network, there must be a path which ultimately 

leads to a final explanation. The exhaustivity assumption makes it possible to confirm a 

hypothesis by ruling out all of the competitors. 

MOLE's search strategy must also meet the following weak constraints [Kahn 88]: 

(1) For any symptom or state, a single pathway leading to a 

top-level explanation is preferred. 

(2) It is preferable that the various pathways leading from the 

bottom-level symptoms should converge on as few top-level 

explanations as possible. 

The first weak constraints is to stress simplicity in explanations. The second weak constraint 

states that each set of symptoms should converge on at most one explanation. ·The weak 

constraints guide the search strategy to keep the explanations as simple as possible. At the 

end of a search, the final subgraph should form a tree with all activated symptoms connected 

to a single root hypothesis. 

MOLE assl:fmes exhaustivity through its strong constraint on the search strategy. MOLE also 

assumes exclusivity. Exclusivity prevents MOLE from accepting two explanations when one 

is sufficient. In effect, MOLE is assuming that the alternative explanations for a symptom are 

mutually exclusive. Once there is evidence of a hypothesis, all competitors are eliminated. 
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Combining the assumption of exhaustivity with the assumption of exclusivity, MOLE has a 

strict search strategy which it follows. Because a symptom must be explained exhaustively 

by some hypothesis, a candidate hypothesis can be confirmed by ruling out its competitors. 

Furthermore, because only one hypothesis is likely to be true exclusively, a candidate 

hypothesis can be rejected if there is independent evidence for one or more of its competitors 

but not for it [Kahn 88]. 

3.4.5 Acquiring the Knowledge-Base 

MOLE acquires the knowledge needs to fill the knowledge base via a user interface. MOLE 

assumes that the knowledge acquisition tool should be able to take the place of the knowledge 

engineer. In order for MOLE to be able to completely remove the need for a knowledge 

engineer to help the domain expert, there are two main problems MOLE seeks to overcome. 

The two most troublesome feature of the knowledge acquisition process are indeterminateness 

and incompleteness [Kahn 881: 

- Indeterminateness: 
When specifying associations between events, the expert is 

likely to be fairly vague about the nature of these associations 

and events. 

- Incompleteness: 
The expert will probably forget to specify certain pieces of 

knowledge. 

Indeterminateness implies that some domain experts are not accustomed to supplying their 

knowledge in the form which will fit the problem-solving method being used by the knowledge 

acquisition tool. MOLE tries to be robust enough to handle input from the domain expert which 

is ambiguous. 
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Incompleteness implies that it is expected that a domain expert will leave out some pertinent 

information. For this reason, MOLE allows the knowledge base to be updated incremental. 

New knowledge may be added to the knowledge base or old knowledge may be refined. 

3.4.6 Acquiring the Initial Symptoms 

MOLE begins a new knowledge acquisition session by asking the expert to list some of the 

complaints or symptoms that would tell a potential user there is a problem to be diagnosed. 

The following is an example of MOLE acquiring knowledge for the expert system that 

diagnoses problems associated with a coal-burning power plant [Kahn 881: 

List possible complaints or symptoms that 
might need to be diagnosed: 

Complaint: 
> > l NONE] loss-in-gas 

LOSS-IN-GAS I YES NO 1 
Status: NEW 
Method: ASK 
Default Value: NONE 

> > Confirm (Yes, No): f YES J < er> 

Complaint: 
> > l DONE J high-fly-ash-flow 

HIGH-FLY-ASH-FLOW l YES NO 1 
Status: NEW 
Method: ASK 
Default Value: NONE 

> > Confirm (Yes, No): I YES 1 <er> 

Complaint: 
> > f NONE J high-bottom-ash-flow 

HIGH-BOTTOM-ASH-FLOW I YES NO 1 
Status: NEW 
Method: ASK 
Default Value: NONE 

> > Confirm (Yes; No): l YES J <er> 
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Complaint: 
> > I DONE 1 dark-ash 

DARK-ASH I YES NO 1 
Status: NE\AI 
Method: ASK 
Default Value: NONE 

> > Confirm (Yes, No): I YES 1 <er> 

Complaint: 
> > I DONE 1 <er> 

In this example, the expert has entered four complaints that require diagnosis. The fields 

status, method, and default value are all set with default values which the user has the option 

of changing. Status field tells whether or not the symptom is new to the system. The method 

field specifies what method the expert system should use to acquire the value of the symptom. 

The method field defaults to asking the user. The default value field specifies default value for 

the symptom. MOLE assumes the default value to be valid unless there is proof otherwise. 

3.4. 7 Acquiring Covering Knowledge 

MOLE tries to acquire covering knowledge from the domain expert after the initial complaints 

are entered. Using the same example as above, an example of how MOLE precedes to extract 

the covering knowledge from the expert follows: 

List possible explanations for 
LOSS-IN-GAS: 

Possible explanation for LOSS-IN-GAS: 
> > I NONE] low-heat-transfer 

LO\AI-HEAT-TRANSFER I YES NO J 
Status: NE\AI 
Method: INFER 
Default Value: NONE 

> > Confirm (Yes, No): I YES J <er> 
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Possible explanation for LOSS-IN-GAS: 

> > f NONE J excess-air high 

EXCESS-AIR HIGH l HIGH NORMAL LOW 1 

Status: NEVI/ 

Method: INFER 

Default Value: NONE 

> > Confirm (Yes, No): f YES J < er> 

Possible explanation for LOSS-IN-GAS: 

>> [NONE] <er> 

The default value for method is "infer" which means that the value will be obtained indirectly 

rather than asking the user. The default value for any event is "YES" but other values such 

as "HIGH", "NORMAL", or "LOW" may be used. This process of acquiring the covering 

knowledge is repeated until all of the c-omplaint have potential explanations. 

When all complaints have potential explanations, MOLE seeks higher-level explanations. As 

the knowledge is entered by the domain expert, MOLE builds a network of nodes and links to 

represent the forming knowledge base. The nodes on the network represent states or events 

while the links represent explanatory relations between the nodes. This initial network is 

referred to as the explanation space of the system. 

3.4.8 Acquiring Differentiating Knowledge 

MOLE begins Acquiring the differentiating knowledge after the covering knowledge has been 

entered by the domain expert. MOLE seeks to acquire enough knowledge to differentiate each 

candidate explanation. 

MOLE seeks to create as much of the differentiating knowledge as possible before asking the 

domain expert for help. Some of the explanations do not need differentiating knowledge. 

Other differentiating knowledge can be inferred from the network. When acquiring 
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differentiating knowledge from the expert, MOLE tries to exploit the existing knowledge rather 

than add new knowledge to the knowledge base. 

3.4.9 Summary 

The predefined problem-solving technique gives MOLE the ability to control the incoming 

knowledge in several different ways. MOLE is able to identify relevant domain knowledge, 

detect potential weaknesses in the expert system and analyze test case coverage. Along with 

\. 

proposing a solution to some problem, an expert system developed using MOLE can give 

explanations of conclusions formed. MOLE uses knowledge about the cover-and-differentiate 

problem-solving strategy to analyze test case coverage. MOLE proved to be successful in 

using the cover-and-differentiate problem-solving strategy to guide the knowledge acquisition 

process. 

4. Thesis Summary 

Because of the advantages of predefining a problem-solving strategy, the number of domain

specific knowledge acquisition tools such as MOLE and SLAT is increasing. Tools such as 

LAPS predefine more than one problem-solving strategy. Although predefining problem-solving 

strategies strengthens the knowledge extraction capabilities of knowledge acquisition tools, 

knowledge acquisition is still considered to be the bottleneck of expert system development. 

Future Knowledge Acquisition Workshops (KAW) will bring the Al community closer to 

eliminating the problems associated with knowledge acquisition. The KAW was organized in 

hopes of preventing the duplication of research and providing a means by which all current 
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research could be shared and hopefully integrated. In addition, the KAW will allow knowledge 

engineers to learn from the limitations ~ncountered with previously developed tools. 
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