Lehigh University
Lehigh Preserve

Theses and Dissertations

1991
Random growth in two dimensional hexagonal
mesh

Edmond H. Atiyeh
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Mechanical Engineering Commons

Recommended Citation

Atiyeh, Edmond H., "Random growth in two dimensional hexagonal mesh" (1991). Theses and Dissertations. 5432.
https://preservelehigh.edu/etd/5432

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.


https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F5432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5432?utm_source=preserve.lehigh.edu%2Fetd%2F5432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Random Growth In Two Dimensional Hexagonal Mesh

By
Edmond H. Atiyeh

A Thesis
Presented To The Graduate Committee
Of Lehigh University
In The Candidacy For The Degree Of

Master Of Science

In

Mechanical Engineering

Lehigh University
May 1991




This Thesis is accepted and approved in partial fulfillment

of the requirements of the Master of Science in Mechanical

Engineering.

Wia%g [77/

Professor D. G. Harlow :

Thesis Advisor

chairman of Department

ii




Acknowledgment

I would like to express my gratitude to my advisor Doctor
D. Garry Harlow for his guidance and encouragement over the

years which made this work possible.

I would also like to thank my family for their support,

and especially my wife Andrea for her patience throughout

the duration of this project.

iii




Table of Content

Page
Chapter 1
1.0: Abstract. | | 1
1.1: Introduction. 2
1.2: Mesh Definition and Structure. 4
1.3: Model Definition. 10
1.3.1: Percolation growth model. 12
1.3.2: Mechanical failure growth model. 14
Chapter 2
2.0: Existing models. 19
5.1: Richardson's growth model. 20
2.2: Hooke-type spring model. 21
5.3: Elastic percolation model. 22
Chapter 3
3.0: Computer simulation development. 24
3.1; Computer simulation program. 25
3.1.1: Other computer programs. 32
3.2: Growth profile and results. 34
3.2.1: Gp model. 34
3.2.2: Gq model. 42
3.2.3: Mp model. N 47
3.2.4: Mpc model. - 52
Chapter 4
4.0: Random growth model analysis. 56
4.1: Percolation growth model analysis. , 56

4.2: Mechanical failure growth model analysis. 58

iv




Chapter 5

5.0: Conclusion.

5.1: Future development.

Bibliography

Appendix A

Vita

Page

62

63
67
70

74




Figure List

Page
Figure 1, Hexagonal Mesh. 7
Figure 2, Square Mesh. NN 8
Figure 3, Triangular Mesh. 9
Figure 4, Mpc Model Nodal Conditions. 18
Figure 5, Mesh Construction. 28
Figure 6, Nodal Matrix Definition. 29
Figure 7, Gp model graphical output, with p=0.80. 37
- Figure 8, Gp model graphical output, with p=0.90. 38
Figure 9, Gp model graphical output, with p=0.70. 39
Figure 10, Gp model graphical output, with p=0.50. 40
Figure 11, Gp model graphical output, with p=0.10. 41
Figure 12, Gq model graphical output. 43
Figure 13, Gq model, data graph A. 45
Figure 14, Gq model, graph A. 46
Figure 15, Mp model graphical output. 48
Figure 16, Mp model, data graph A. 50
Figure 17, Mp model, data graph B. . 51
Figure 18, Mpc model, graphical output(loop back). 53

Figure 19, Mpc model, graphical output (failed sample). 55

vi




1.0: Abstract.

The characteristics of simple random growth in two
dimensional hexagonal mesh are studied and analyzed. A
numerical solution of four growth models each emulating
processes arising in the growth of an epidemic and
mechanical fracture are presented. The development of
computer simulation programs for each model, provided a
graphical and statistical results that describes the mesh's
response to the growth processes chosen. The epidemic
processes which is represented by two percolation models,
illustrates the fact that the use of a hexagonal element
mesh does not effect or alter the deterministic behavior
expected.‘ The failure of the two mechanical growth models
in providing a comprehensive conclusion, necessitate
additional evaluation of each model definition and its given
parameters. The validity of using a hexagonal mesh to study

the mechanical failure growth models remains in question.




1.1 Introduction.

Random growth models have been used to describe a large

variety of naturally and artificially spreading phenomena in
nature. Applications for these models include processes

1,2,3
arising in the growth of an epidemic, and mechanical

5
fracture. In recent years, the development and

availability of high-speed computers have attracted
increased interest in the development of computer simulation
techniques that are used to study the growth process in
these models. Prior to the presentation of the techniques
and their results, a description of the random growth models
and their relationship to the problems that they emulated

would help the reader 1in understanding the basic concept of

random growth.

one of the major scientific goals 1is to obtain a
solution for complex engineering problems at minimal cost in
resources and equipment. Examples of these problems in the
topics outlined above can be found in the study of random
growth behavior of an infected cell in a body, the spread of
an epidemic in nature, and the gr;wth of a fracture in an
object. A person knowledgeable in these topics may not find |

it difficult to define the governing equations and béundary

conditions for these problems, put the analytical solution




can be complicated and in some cases it is not achievable.
Several alternatives are available to overcome these
challenges. One possibility is to reduce the complexity of
the problem by making simplified assumptions that ignore the
difficulties presented and reduce the problem to one that
could be handled. The reliability of this method is not
desirable in all cases, and sometimes this procedure leads
to inaccuracies and wrong conclusions. A more viable
alternative is to retain the complexities of the problem and
/attemﬁt to find an approximate numerical solution and
analysis. The numerical analysis method begins by modeling
the problem with a region of space in which a particular
phenomenon is occurring. This region possesses all the
unknowns that are dictated by the problem definition and
conditions. To reduce the problem to one of finite number
of unknowns, the region is divided into elements. These
elements contain specific nodes or nodal points at which the
approximating function are defined in terms of random

| 4
variables at each node. This region is defined as a mesh

or network within a given boundary that contains uniform

elements. The mesh definition and structure varies for each

random growth model.

To develop a better understanding of these models,
computer 51mu1atlon techniques are used to study the growth
 phenomena in a suitably defined mesh. The reiglts obtained

3




from these analyses reflect the global behavior of thé

3 ,
problem that is emulated by these conditions. To establish

a solid foundation for the numerical solution approach, it
is important to fully understand and evaluate the simple |
random growth in a given mesh without considering the
complexities dictated by the specified requirements and mesh

construction.

o

The intent of this paper is to present a computer
analysis of several random growth models imposed on a two
dimensional hexagonal mesh. The structure of a two
dimensional hexagonal mesh is described in section 1.2. The
mesh structure provides a simple node layout for growth
analysis. The simplicity of the node layout yields an
efficient computer program that requires minimal computing
time to generate data bases. Since large data bases can be

generated economically, they can be used to study model

behavior.

1.2: Mesh Definition and Structure
\

A mesh is constructed from individual elements
contained within a known boundary. The shape of these
elements is uniform within a given mesh. The most common
shapes of elements used inﬂsimulatién techniques are square,
‘triangular, and hexagonal. An element is constructed from

4




nodes positioned along its perimeter. These nodes are
considered as sites where the probability of status change
could occur at a given time interval. The passage OX link
for random growth between nodes is restricted to be along
the perimeter of the element only. These links can be
described as bonds between nodes such that these bonds will
conform to the geometric shape of the defined element. Both

nodes and bonds are shared by neighboring elements.

Each mesh is given a set of conditions that models the
object behavior. These conditions are then applied to nodes
contained within the mesh. The bond effect on mesh response
to random growth is dependent on the given conditions. In
some models the bonds are defined as having no influence on

1,2
node status at any given step. However, more detailed

" models necessitate added complexities of bond

5,6
specifications, which do have a direct impact on the

growth process.

The relative size or scale of a particular mesh,fand
elements contained within, is considered irrélevant to the
size of the physical object or the natural phenomena that
the model represents. A mesh could be viewed on a
microscopic or on an infinitely large scale. For example,
the same mesh structure used to des;ribe an epidemic growth
process for an infected cell in a body could be used to

5




describe the outbreak of measles in a population, or the

3 N
spread of a forest fire. It is true that each of these

growth models require a different set of conditions and
their actual size varies, however the basic approach to the
numerical solution remains the same.

The choice of element type in a mesh is a matter of

4
engineering judgment based on accumulated experience. In

some cases it is possible to choose the elements in a way
that leads to an exact representation, but this occurs only
in special cases. For example, a model that emulates a
support structure that consist of several trusses which
possess a specific uniform geometric shape. The most
logical element shape should be that of the actual physical
geometric shape. The reasoning behind choosing a hexagonal
mesh to that of a square or triangular, is related to its
geometric structure. The geometric structure of a hexagonal
mesh shown in Figure 1, is such that a typical node is
surrounded by three neighbors, with an exception of nodes
along the mesh boundary. In the case of square or
triangular meéh the node layout increases in complexity.

For example, a non-boundary node in a square mesh shown in
Figure 2, is surrounded by four neighbors. A typical non-
boundary node in a triangular mesh shown in Figure 3, is
surrounded by six neighbors. .Since the relative sca}e of an
element is irrelevant to the mesh size, the added complexity

_to the node layout may not be necessary.

6
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1.3: Model Definition.

The computer simulation techniques and programs are
based on two growth models with variation of each. The

models depicted are the percolation growth model, and the

mechanical failure growth model.

The percolation growth model is chosen to represent a
simple random growth process in a suitably defined hexagonal
mesh. This mesh exhibits the same structure as defined
previously in section 1.2. An analogy of the word
percolation is one pased on visualizing the mesh as a fluid
flow network. Within this network are bonds and nodes
acting as pipes and valves. The probability of node/valve
failure is considered as a random variable which designates
its status. If a node/valve fails it is considered open,
otherwise it remain closed until such time where the failure
occurs. When a node fails the fluid is permitted to freely
flow through the connecting bonds/pipes. If the nodal
probability of failure increases to a point where the entire
network is saturated, the~mesh is considered as reaching its
critical probability of failure. This analogy is used to
describe the random growth in the two models presented in
section 1.3.1. In substituting an epidemic process for the
fluid flow process, the model will then emulate the nodes as
cells and the bonds as a path in which the epidemic 1is

spread throughout the network.
| 10




4 of the process the growth 1is represented by a

At the en
The size and shape of t

he cluster

cluster of failed nodes.

is dependent on the probability of nodal failure. Various

havior are studied by altering the definition of

growth be

the nodal probability of failure.

The mechanlcal failure growth models differ from the
y their definition of the growth process

percolatlon models b

ponds. This 1s achieved by

relatlve to the mesh nodes and

using the hexagonal mesh construction previously defined and

altering the definition of the nodes relative to the
are considered as sites

corresponding bonds. The nodes

rowth is allowed to propagates along the

where the g

d on the given probability of nodal

connecting bonds base

failure. For example, 1f the model emulates the study of a

fracture growth in an object that is subjected to an

external force, the me

The location of each node is arbi

s contained within . The mechanical failure

of element
growth models described in section 1.3.2 are chosen to

he added complexities. An

emulate simple problems without t

example of these models lies in the need to analyze the

fracture propagation that originate from a void in a

mechanical shaft, or a structural member that is subjected

to various loading conditions.

%
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1.3.1: Percolation growth model.

The percolation growth model is based on an example

2
given by Richardson. This model emulates the spread of

infection in a body. The infection is originated from a
single cell where an infected cell is represented by a "1"
status, otherwise it is considered healthy and represented
by a "0". The Gp model is described as being a honeycomb
(hexagonal element) mesh Z, of n dimensional space having a
node at the geometric»center, such that Z has central
symmetry. The initial conditions at time t=0, is such that
the node at center is "1", and all other nodes are "O0".
Time is assumed to progress in discrete jumps
(t=0,1,2,...). Assume that if a node is "1" at time t, it
remains "1" at all future times. If a node is "0" at time
t, and all of its neighbors are "O" at that time, then it
remains "0" at time t+l1. However, if a node is "O" at time
t, and at least one of its neighbors is "1" at that time,
then it becomes "1" at time t+1 with probability p and
remains "0" with probability of 1-p. The probability p is
an independent random variable, such that p belongs to

0,1].

To reduce the model complexity, additional restrictions
and/or assumptions are added to the basic definition. These
‘restrictions are related to the overall shape of the mesh,

12




orientation of elements contained within, conditipn of nodes
along mesh boundary, and the effect of bonds on the growth
process. It is assumed that the overall shape of a mesh is
a square with m x m dimensions, that contains hexagonal
elements such that one of the three bonds formed at the
triple-junction node is parallel to the X-axis (Figure 1).
The growth or passage between two adjacent nodes located
along the boundary is not permitted. The reasoning behind
this assumption is to eliminate the possibility of having
what could be described as a loop back growth. Therefore,
the passage to and from a node along the boundary is via
neighboring nodes that are not located along the boundary.
The bonds are assumed to have no effect on the percolation
growth process. They are used as a conduit between
neighboring nodes. The growth progression through a bond is
considered complete for all times if and only if the two

defining nodes obtain the same status "l1" at any given time.

To obtain a variation to the Gp model, consider a Gq
model such that all the conditions, restrictions, and
assumptions defined for the Gp model remain the same except
for the probability of growth. If a node is "0o" at time t
and at least one of its neighbors is "1" at that time, then
it becomes m1" at time t+1 with probability q and remains
no" with probability of 1-q, where g=(1/i), and i is defined

as the number of nodes with "0" status at time t, such that

13




a

each have at least one of their neighbors with "1" status.
The nodes that define the value of i, are located around the
cluster. For example, at time t=0 the cluster consist of a
single failed node at mesh center. The single node is
surrounded by three nodes in which the growth could spread.
The value of i at this time is equal to three, and the value

of p is equal to 1/3. This process continues until the

growth is stopped.

The two percolation growth models Gp and Ggq, emulates
two different epidemic processes. This is achieved by
altering the probability of failure for each. The Two
models should provide sufficient details to study the mesh
response to each growth. In the Gp model, p is defined as a
random variable with its value remaining constant for each
sample. The value of q in the Gq model is a dependent
random variable, where q is inversely proportionate to the
number of nodes surrounding the cluster at each time step.
The results and analysis of these models found in chapters 3
and 4, will illustrate the basic difference between the two

growth processes and their effect on the mesh.

1.3.2: Mechanical failure growth model.

" The mechanical failure growth model is derived from the

general failure of an object under a tensile force. TwoO

14




models are developed to define this behavior, the Mp model
and the Mpc model. Both models share basic definitions and
mesh construction. Each has a two dimensional hexagonai
mesh Z of m x m dimensions that is subjected to a tensile
force along the boundaries parallel to the X-axis. The node’
at the center, which provides mesh Z with central symmetry
is assumed to be "1" at time t=0, and all other nodes are
wo" at the same time. This indicates that the node at

center has failed and all other nodes are normal.

The conditions for growth between two adjacent nodes
along the mesh boundary and element orientation remains the
same as in the Gp model. Additionally, the growth
progression within mesh Z is conducted along the leading
nodes of the fracture path, no secondary fractures are

allowed to branch off this growth profile.

The Mp model is used to emulate the fracture growth in
an object such that the probability of fracture growth is
conducted along the weakest node surrounding its leading
nodes. To simplify this model, it is assumed that the nodal
bonds have no effect on the growth process. They are
considered as being the defining shape of the fracture
profile. In order to avoid loop back growth, the fracture
progression can not be repeated along a failed bond, where a

. failed bond is categorized as having its defining nodes

15




achieving a failed status at time t, which will remain as
such for all future time. A bond is considered normal if at

least one of its defining nodes is no" at any given time.

The probablllty of fracture growth is defined such that
as time progresses in discrete jumps, the probability of
node failure is considered only at the neighboring nodes
surrounding the fracture of two leading nodes.ﬁ It should be
noted that at time t=1, the fracture starts at a single
triple junction node as defined by the initial conditions at
time t=0. The probability of fracture growth at time t is
defined as a random variable p, such that
p=max(p1,p2,...,pk), where pk's are random variables
indicating the probability of failure of each neighboring

node surrounding the fracture two leading nodes.

The Mpc model varies from the Mp by the bond
orientation relative to the X and Y-axis. The probability
of fracture propagation through the mesh is affected by the
number of horizontal bonds that surrounds its leading
nodes. Instead of allowing the fracture to seek the weakest
l1ink in the network, the fracture is probabilistically
trained to seek the shortest route to the boundaries that
are perpendicular to the direction of the force applied.
This is achiéved by defining the probability of fracture

growth at time t as a random variable g, such that g

16




belongs to [0,1].“’As time progresses in discrete jumps, the
probability of nodal failure of each node surrounding the
fracture leading nodes is defined as a function of pc which
belongs to [0,1]. The value pcC is equal to 1/c, such that c
is a constant. Figure 4, illustrates the various
conditions that apply during the nodal simulatioﬁ. It
should be noted that condition 1, 1is applicable at time t=1
only. The fracture failure originates at a single node
failure. The remaining conditions in this figure occur at
any given time t greater than 1. To eliminate having
invalid inequalities shown in Figure 4, additional
restrictions are applied to the value of c, such that c is

greater than 6.

The results and analysis for these models are
illustrated in chapters 3 and 4, respectively. The effect

of the growth behavior on the hexagonal mesh are presented

and analyzed.

17




g>(1-2pc)

NS(12>——~ 2pc<q<(1-2pc)
q<2pc

CONDITION 1

5<q<. 75 75¢q<1.0 azl-pc
| pc<g<.5 NS(2)
NS(1) ) NS(2)
NS( 1) .5<g<1-pc
g<.25 .25<g<. 3
g{pcC

CONDITION 2 | CONDITION 3
' ayl-2pc g=0

NS(1)
3pc<g<l-2pc

gl2pc

2pc<g<3p¢c
CONDITION 4

NS(2)

pc=1/c.where ¢ is a constant, such that c>2.
= probability of fracture growth at time 1.

NOTE : | | |

- NS(1), and NS(2) for conditions 2,3,and 4

indicates the fracture location at time
-2 and 1t-1.

Mpc MODEL NODAL CONDITIONS

FIGURE 4
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2.0: Existing models.

A variety of compatible models exist in the fields of
percolation and mechanical failure topics. Each of these
" models are targeted to a specific application that dictates
a2 set of conditions used to obtain final results in the

study of random growth behavior in an applicable mesh.

For unspecified reasons, the majority of referenced
authors selected the use of a square Or triangular mesh
structure for their computer simulation analysis, and 1in

some cases referred to possible results that could be

obtained by using a hexagonal mesh.

The following sections in this chapter will highlight
these compatible models, and the specific results that are
related to the models given in chapter one. It should be
noted that this outline is not a comprehensive study of
these models. For material omitted, the reader should refer

to the sources listed in the reference table.

19




2.1: Richardson's growth model.

Richardson's growth model (Gp) described in section

1.2.1, was introduced by Richardson in his paper titled

2
"RANDOM GROWTH IN A TESSELLATION". Richardson applied the

Gp model on a square tessellation for various probability
values (p), with different number of time discrete
intervals{ The basic results obtained are directly related
to the overall shape of the random growth profile. In his
conclusion, Richardson stated that as p approaches 1 the
growth profile edges become smooth with a diamond-like
shape. Conversely, as p decreases the roughness of the

growth profile shape increases, and become circular.

The proof for the model behavior was later expanded

3,8
upon by Durrett. Durrett's use of the same model did not

provide any jndication of the effect of substituting a
hexagonal mesh for the square tessellation. His analysis

did confirm the growth profile as stated by Richardson.

7 |
Meakin, in similar analysis hinted that if similar

procedures and conditions are applied to a large hexagonal
mesh, the growth distortion could take on a hexagonal shape

as p approaches 1. similarly as p decreases the roughness

20




of the growth profile shape increases, and becomes circular.
It should be noted that the results obtained by Meakin are
based on a similar model to that of Richardson. The
deviation is induced to the conditions applied to the nodal
interaction with the basic growth cluster. In addition, the

mesh size used is relatively large compared to that used in

the previous analysis.
2.2: Hooke-type spring model.

A variation of the classical Hooke-type spring model

9
was used by Beale and Srolovitz. In their study, they

evaluated the elastic fracture growth in random material

such as minerals and ceramics.

The model construction is based on a two dimensional
triangular network of springs. Initial conditions and
elastic parameters govern the status of each spring at
various steps. The status of each spring is-‘defined as
being present (normal) or absent (failed) from the systenmn.
The mesh is subjected to a uniform external strain applied
in the X- direction, which continues until no connected path
exist across the sample. The boundary conditions are
maintained in the horizontal direction, while the top and

bottom surfaces are free.

21




In their conclusion, the mesh breakdown process was

described as having two steps of failure. The first step

defect crack which results in a system with zero elastic
modules. Hence, under a large strain a fracture forms

across the entire sample resulting in the system failure.

Of particular interest from the results obtained in
this model, is the system or mesh behavior during the second
step of breakdown. The fracture propagation conditions are
similar to the mechanical failure growth model given in
section 1.3.2. These similarities are reflected by the
fracture growth. The fracture is originated from a given
area (single nodal failure verses critical crack failure).
Additionally, the basic assumption that the system in the
second step of failure has no elastic properties also apply
to the Mp and Mpc models. The intent of this comparison is

to evaluate the results of the Mp and the Mpc models

relative to that of the models used by Beale and Srolovitz.

>.3: Elastic percolation model.

6 .
The three models used by sahimi and Goddard, are based

on a random network of two dimensional triangular Hooke-type

springs. Each having a special case in which both the

22




spring constants and the critical strain are stochastic

quantities.

In their analysis, they stated that a single crack 1is
formed which propagates throughout the mesh, hence splitting
it into two pieces. Additionally, they stated that the
crack tip or leading edges, seek the easiest path through
the mesh or network. Their observation regarding side

branches occurrence to the fracture is assumed as having no

statistical value.

similarly, the results and observations made about the
crack growth in these models are similar to that of the
parameters given to the Mp and Mpc models. The intent is to
compare the results of the Mp and Mpc models to that of
Sahimi and Goddard. This evaluation should illustrate the

effect of the fracture growth propagation in a hexagonal

mesh model.

23




3.0: Computer simulation development.

The development and execution of the computer

programs, is carried out on a compatible wnIBM" PC-XT
computer.

Intel 8086 main processor, 640 K-bytes of main memory ,

and PC-DOS 3.10 as an operating system.

WATFOR-77 fortran compiler and editor are used for

writing, compiling and executing the program source

code.

The computer hardware computing capabilities are

jdetermined by the size of its memory and its central

processing unit (CPU) type. These limitation affécted

f the program output data. Hence, in order to

to execute the simulation

+he size O

decrease the time required

program for each sample, the mesh overall size is

1imited to a specific number of elements within 1it.

it was observed that a

3,530 nodes. This equates to about 42 by 42 hexagonal

elements.

-XT, and PC-DOS are registered trademarks of

1 W“IBM" PC

International Business Machines corporation.

1! WATFOR-77 is a registered trademark of the University

of Waterloo.
24




In the previous chapter, two assumptions were
stated regarding the mesh size and symmetry. The mesh
could be viewed on a microscopic or an infinitely large
scale. In some models the mesh does not reflect the
actual physical size of the region in which the growth
phenomena is occurring. The data and analysis obtained
from the simulation, is used to statistically estimate
the global behavior of the entire space. For example,
if the model emulates the spread of infection in a body,
the mesh and its contents are not a true representation
of the body. The mesh and its nodes are but a small
sample in which the random growth is studied.
Therefore, the limitation imposed by the number of
elements allowed in a given mesh should not effect the

output data that describe the growth behavior in the

given model.

3.1: Computer simulation program.

The computer program developed for the analysis of
the random growth models is formatted into several
modules or subroutines, each addressing the general and
specific requirements given in the model definition.

The basic objective is targeted to the user interface.

A user friendly prégram provides an easier interface and
flexibility. By minimizing the time reqﬁired for
program input and setup, which in turn reduces the time

25




required by the user to generate large numbers of output

data, is viewed as being essential to the model

analysis.

Some of the general features and flexibility of the
program are common to the input data required, mesh
nodal matrix, graphical and statistical output. For
example, the program used to simulate the Gp model
requires minimal input. The user has to input the
number of nodes along the X-axis and the Y-axis (Figure
5 ), the number of time steps or intervals, the number
of samples desired for this specific run, and finally in
this example only the nodal probability value p (Section

1.3.1).

The construction of the nodal matrix is carried out
by the computer program. This matrix contains vital
nodai information regarding each node identification
number, node position relative to its surrounding
neighbors, node boundary condition if applicable, and
node status at each time interval. During the execution
of the program, the information contained in the nodal

matrix is stored, retrieved, and updated at every time

step.

To minimize the storage space allocation for the




nodal matrix, hence increase the computer program
efficiency, a nodal jdentification procedure was
developed. The specific geometric properties of the
hexagonal element mesh were used to define the
conditions of the nodes to each node in question at the

required time interval.

Figure 5 illustrates the input required for a
typical mesh, the mesh orientation relative to the axis,
"Qand-each node numbering sequence, which is stored ih the
nodal matrix NODE. The size of matrix NODE is NN by 5,
where NN is the total number of nodes contained within

the mesh, such that NN=(NX) (NY) (2) .

Figure 6 shows the various conditions and values
assigned to the nodal matrix. The status of each node
is defined by the value of NODE (NNi,4), and
NODE (NNi,5). When NODE (NNi,5) equals one, node NNi has
failed, and when NODE(NNi,5) equals zero, node NNi is
normal. It should be noted that the value of
NODE (NNi,4) and NODE(NNi,5) are equal. NODE(NNi,4) is
used internally to the program as a counter for various

steps taken during each time interval.

The graphical output generated is relatively simplz

and self explanatory. Several selected examples are

27




INPUTS:

Number of
~ Number of
Number of
Number of

Where,

nodes along the X-axis: NX=4
nodes along the Y-axis: NY=4

discrete time intervales:

samples to be evaluated

A and

M

B are constants.

ESH CONSTRUCT ION

FIGURE 5
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Ni+1 | Ni+1

rui:>-—~ Ni+NY1l  Ni-NYI ~——4<5i

Ni-1 Ni-1
NODE (NN, 1)=N1 NODE (NN, 1)=Ni
NODE (NN, 2) =1 NODE (NN, 2) =0
FIGURE 3a FIGURE 3b

Where . NYL=NY*2

If NODE(NN,2)=-1 This implies that fthe node
‘s located along mesh boundary.

cvaluation of NODE(NN,3) is required such that
NODE (NN, 3)=C.

If C=1; Node Ni is along fthe X-axis boundary.

1f C=2: Node Ni is along the boundaries parallel
to the Y-axis.

If C=-1: Node Ni is along the boundary parallel
to the X-axis. |

NODAL MATRIX DEFINITION

FIGURE 6
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shown in the following sections of this chapter. The
use of the final stored values of NODE(NNi,5) which is
either a zero or one, indicates the status of node NNi.
The program will generate and store the graphical output
of each sample with a set of one's and zero's defining

the random growth profile.

To further reduce the output data files, and limit
the memory size required by the program, some of the
statistical data used during and/or at the final steps
of the program are not printed. This data is found in
the source code under debug routine headings. At the
discretion of the user these subroutine could be
activated and printed for additional statistical

information.

Typical to all of the computer simulation programs,
the type of the random number generator used has a

direct impact on the results obtained. 1In this project,

10,11
two random number generators are used. ; Each random

number generator subroutine provides a set of random
numbers having a uniform distribution. It should be
noted that regardless of which subroutine is used,
extensive evaluation and testing is required to insure
the validity of these numbers. A hint to the reader
regarding this issue could be summarized by stating that
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the mean value of a set of uniformly distributed random
numbers ranging from zero to one, should be one half,

with a standard deviation equal to 0.2887.

The random number generator produces a sequence of
numbers between zero and unity. To initialize this
sequence a seed is required. If this seed remains
constant throughout the simulation program, SOME of the
samples will yield identical results. Therefore, 1in
order to generate large numbers of different samples,
the random generator seed should be randomly selected
and utilized by the program for each run. Hence, an
argument to reset the seed is incorporated in the main

computer simulation program.

The computer program used to simulate the random
growth profile for the various models, requires
alteration and modifications to the specific modules
that address unique conditions that applies to each
model. Hence, each model has it's individual progranm,
however the basic structure of each remains the samé. A
helpful hint to the reader is related to the management
of these files. The naming convention for each file
should reflect the model name, and its revision level.
Implementing this procedure would avoid misplacement or

misuse of old files.
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3.1.1} Other computer programs.

Two computer programs are used to analyze the
statistical output for each model. The first program
will fit an equation to a set of data. The least
squares method is used for the curve fitting program.
This program is written in Basic and is compatible with
the hardware listed in section 3.0. The program fits a
straight line, an exponential curve, and a power curve
to a given set of X, Y coordinate points. Coordinate
points are imported from the statistical output data
files generated by the main simulation program. To help
determine which equation best fits the data, the
following information is printed for each equation:

Coefficient of determination (1.0 is a perfect fit).

Coefficient of correlation (1.0 is a perfect fit).

standard error of estimate (0.0 is a perfect fit).
After the first step has been completed, one or more of
the three equations are chosen to calculate the Y

intercept for a specific value of X.

Upon completion of the curve fitting program, the
data associated with the equation chosen that best fit
the modeled data is again imported to a plotting
program. This program is a standard software package

called LOTUS, which is commercially available.
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LOTUS is a copyright of Lotus Development Corporation.
For operation and use of this software package, the .
reader should refer to the documentation that is

provided with this package.
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3.2: Growth profile and results.

The results obtained from the computer simulation
programs describing each model growth profile, are
presented in the following sections of this chapter.

The presentation covers the standard procedure and steps
taken throughout the development of each model. 1In
addition, selected graphical and statistical data

obtained from the simulation programs, are presented.

It should be stated that during the initial stages of
the project development, considerable amount of time was
consumed in understanding of the fundamental
characteristics and behavior of each model. The various
observation made based on these experiments,

necessitated additional simulation time.

The model analysis includes a description of some of
the observations, however, the elementary notes are

omitted for added clarity.

3.2.1: Gp model.

The computer simulation results obtained for the Gp
model are derived from two sets of data, each contain'

nine different runs having ten mesh samples each.
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The nodal probability value p for each run is

incremented by one tenth (0.10), starting with p eqﬁal/

to 0.10, and ending with p equal to 0.90.

The difference between the two sets is in the mesh

size. For the first set the mesh size 1is relatively
small. The mesh is constructed from 20 by 20 elements,

which equates to 800 nodes. However, for the second set

the mesh contained 42 by 42 elements, which equates to

3,528 nodes. From experimentation, the value of the

time discrete parameter (NTIME) is determined as being

and 30 for the second.

of actual CPU time.

The growth profile shape generated from both sets is

identical. Therefore, the presentation is focused on

the second set in order to avoid repetitions.

The shape of the growth profile obtained, 1is observed

at three different ranges of the nodal probability Pp.

The three ranges are at the upper, middle, and lower

th profile at the upper

range. The shape of the grow
0 and 0.90, is

value of p, such that p ranges between 0.8
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clearly defined by Figure 7 and 8. These figﬁres show
that the growth profile take on a hexagonal shape, at p
equal to 0.80 and 0.90 respectively. This hexagonal
shape is symmetrical around the mesh initial point of

failure that is defined in the model initial conditions.

As p decreases and enters into the second range, the
growth profile shape increases in roughness. Fiqgure 9,
shows a typical growth profile for p equal to 0.70. It
should be noted that the shape is not yet circular, but
instead a £ransformation occurs between the nodal

probability values of 0.70 and 0.80.

The transformation of the growth shape profile
continues for values of p ranging between 0.40 and
0.60. Figure 10 shows the grcwth profile shape for p
equal to 0.50 which indicates that the shape become more
circular. Further evaluation of this figure indicates
that the growth shape is not‘exactly circular. Several
normal nodes are contained within a circle drawn around
the growth contour. This circle has its center at the
initial point of failure (fixed at mesh center), and a
radius r encompassing the outer edges of the cluster.
The indication that the growth profile losses its
symmetrical behavior, continues into the lower range of

the nodal probability (p ranges between 0.10 and 0.20).
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FIGURE 7
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Gp model graphical output, with p=0.70.

FIGURE 9
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Figure 11 shows such results for p equal to 0.10. It is
obvious that the growth profile in Figure 11 for p equal
to 0.10, at NTIME equal's to 30 is relatively small. An

average of about 37 failed nodes are contained within

probability of nodal failure. Therefore, additional
data is required to further study this behavior for the
same value of p at different time interval value.

Additional simulation was carried out at NTIME values

equal to 40, 45, 49, and 50.

The results from the simulation at the various values
of NTIME did not yield any change to the growth profile
shape. Hence no clear observation could be drawn
regarding this pehavior, except for the fact that as
NTIME increases, the nodal growth rate increases and
eventually encompasses the entire mesh ( at NTIME equal
50) . This observation was made for all values of p.

Further analysis of this model are presented in next

chapter.
3.2.2: Gqg model.

The graphical output data obtained from the
simulation for the percolation model Gq yield the

observation that the random growth profile has no
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specific geometric shape. The occurrence of sporadic
branching and irregular shape as shown in Figure 12
indicates that the growth prdfile is not symmetrical

around the initial point of failure.

Further eValuation of the statistical output data
indicates that the growth process weakens as time
progfess. Using the plotting program previously
described in section 3.1.1, a plot of the nodal
probability of failure verses time indicate that the
value of 9 (g=1/n) decreases as time progresses.
Figures 13, illustrates a selected sample data. The
curve fitting programs indicate that the statistical
output data is best fitted by an equation of a power
curve such that g(t)=A*t~(B). Figures 14, represent a
plot of the estimated equation for the selected sample.
This behavior indicates that as time progresses, the
number of failed nodes increases and the probability of
failure decreases. It is estimated that the value of A
is equal to 0.541, and the value of B is equal to

-0.595.
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3.2.3: Mp model.

During the initial development of the simulation
program for the Mp model an evaluation of the graphical
and statistical results did not provide a clear
indication of how the fracture growth formation and
propagation occurs throughout the mesh, hence alteration

to the graphical and statistical output were deemed

necessary.

This alteration is related to the sequence of nodal -
failure at a given time, where each failed node is
numbered in order of its failure at the same time
interval. Similarly, the node number and its order of
failure at the same time including the probability of

failure are added to the statistical data output.

The results obtained from the graphical output
indicates that the fracture growth propagation
throughout the mesh along its leading nodes does not
follow a consistent path or a deterministic behavior.
The crack tendency to loop back on its previous path and
the occurrence of artificial growth prevents the mesh
from failing. Figure 15, illustrate a typical graphical
output which clearly shows this behavior. Therefore, nd
conclusive results could be drawn from the computer
simulation program graphical output data.
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An evaluation to the statistical output data
indicates that their is no correlation between the value

of p and the sequence of failure at the same time step.

4

Figure 16 illustrates a plot of the sample data
presented 1in Appendix A. This figure clearly indicates
that the data are badly scattered. The results obtained
by applying the curve-fitting program to the sample
data, indicates that the correlation coefficient value
is less than 0.04. For example, the equation of a
straight line obtained, is F(t)=0.777+(-0.004*t), with a
correlation coefficient equal to 0.068. The correlation
coefficient for an exponential curve is 0.083.
Similarly the correlation coefficient for a power curve

is .047. The above curves are illustrated in Figure 17.

The lack of comprehensive results from the graphical
and statistical output data necessitate further
evaluation of the probability of fracture growth p. The

Mp model as defined earlier in section 1.3.2 emulates a

network. To satisfy these requirements, p is defined to
be equal to the maximum of (pl,p2,..-,PkK). The pk's are
independent random variables that each equates to the
probability of failure of the neighboring nodes in

question at the desired time step.
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civen these conditions the fracture is allowed to
propagates freely through the mesh along its weakest

nodes. This "free flow" behavior which prevented the

mesh from breaking is reflected by the data.

Further analysis of this model are presented in chapter

4.
3.2.4: Mpc model.

The computer simulation carried out for the Mpc model
at various values of c (section 1.3.2), indicates that
at the lower values of c (pcC inversely proportional to
c) the growth propagation through the mesh has the
tendency to loop back on its previous path, which
prevents the mesh from failing. The sporadic occurrence

- of artificial growth is also observed. It should be
noted that these conditions are present regardless the

size of the given mesh.

Figure 18, shows a typical graphical output
indicating that one fracture edge reached the boundary,

with the other looping back on its previous path.

By incriminating the value of ¢ (in increments of

50), the results obtained from the graphical output
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indicates that the occurrence of artificial growth and
loop back condition decreases accordingly. At higher
values of ¢ (c ranges between 500 to 800) the
probabiiity of fracture growth along the horizontal
ponds is increased accordingly (section 1.3.2). The
growth profile propagation tﬁrough the mesh becomes more

apparent that is, the mesh failure is achieved for every

sample.

The fact that pc decreases as C increases, which
decreases the probability of failure along the nodes
diagonal to the fracture leading nodes, enhances the
probability of failure along the nodes parallel to the X-
axis. After evaluating several of the graphical data
output, it is observed that there exists an envelope in
which the fracture growth occurs. This envelope is
defined by the initial point of failure , and propagates
through the mesh along four lines, to form two
triangular envelopes. The defining edges of this

envelope are shown in figure 19.

A plot of the fracture probability of growth q verses
time t, obtained from the statistical output data are
similar to the previous plot presented for the MpcC
model. The data is again badly scattered, and no
correlation exists between the two values. These plots

are omitted to avoid repetition.
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4.0: Random growth model analysis.

4.1: Percolation growth model.

The growth profile obtained from the percolation growth
models Gp, and Gq, varies in shape and statistical
characteristics. It should not be surprising that the
results are different. The fundamental difference between
the two models is induced by the definition of each model
nodal probability of failure p and q,'at a given time t. 1In
the Gp model, p is constant at all times, where for the Gqgq
model, g is a variable that is dependent on the number of

failed nodes i surrounding the growth cluster at the same

time t, such that g=1/1.

The analysis is focused on the common behavior of the
mesh response to these conditions which is dependent on its
critical probability of failure. The final growth profile
shape and its characteristic are also dependent on the
closeness of the conditions given, to that of the mesh

critical probability.

It is observed that the mesh response is different,
based upon achieving and /or exceeding its critical
probability, to that of the opposite. The mesh critical
probability could be defined as a function of nodal
probability of failure at time ¢t, humber of failed nodes at
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the same time, and the number of time discrete jumps t.

The results obtained from the Gp model compared to the
results obtained from the existing models, indicates that
the growth shape profile for the hexagonal mesh is indeed
similar to that of a square mesh. The deterministic shape
of the growth profile at higher values of p, with its
symmetrical properties, lead to the observation that the
rate of nodal breakdown exceed the mesh critical probability
of failure. Surpassing this threshold, the mesh breakdown

is apparent from the figures presented.

¢

The opposite apply at the lower value of p, where the
growth process rate is slowed due to the low probability of
nodal failure, which in turn reduces the number of failed
nodes at any given time. Thus reducing the number of failed
nodes at the end of the time discrete interval (NTIME). To
further illustrate this behavior, an examination of the
statistical output of the Gq model indicates that the growth
propagation rate is slowed as gq decreases. This requires
an increase of the value of the time discrete intervals
NTIME. For example, the value of NTIME used in the Gqg model
is extremely larger than that used for the Gp model. The
fact that for lower values of p the number of failed nodes
at the end of each run amounts to few nodes, indidétes that

the correlation between the number of nodes that have at
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least one of their neighbors with a failed status verses

time, is dependent on the nodal probability of failure.

The difficulties in measuring the mesh critical
probability of failure is imposed by the lack of statistical
'output data generated from the model computer simulation
program. The expectation of having a set or déterministic
value for the mesh critical probability did not necessitate
the need for this data. Hence, no quantitative analysis
could be included to obtain the relationship between the
parameters that defines the mesh critical probability. The
mesh's critical probability of failure is extremely

important to the analysis of these models.
4.2: Mechanical failure growth model analysis.

The definition of the mechanical failure growth model
Stated in section 1.3.2, is based on the general failure of
a mechanical object under a tensile force. It is assumed
that this force is applied along the mesh boundaries that
are parallel to the X-axis. The typical or classical mesh
response to these conditions is expected to result in the
mesh failure such that a fracture will originate from the
single point of failure and will propagate through the mesh
along a path that leads to the boundaries perpendicular to

that at which the force is applied, in this case the Y-axis.
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The result obtained from the Mp model clearly indicates that
the parameters and conditions applied to this model does not
simulate the conditions of an object undef”a tensile force.
The repeated occurrence of artificial failure, and the
constant tendency of the fracture to loop back on its
previous path, indicates that the nodes surrounding the
fracture leading nodes are independent to each others
status, and to that of the fracture. In the definition of
the Mp model it is assumed that the nodal bonds have no
effect on the gfbwth process, and the probability of
fracture growth at time t (larger than zero) is defined as
p, such that p=max(pl,p2,...pPK) (section 1.3.2). The
assumption that these conditions simulate the physical
object is false. These conditions provide an environment
where the nodes in question at time t are independent of the
status of the fracture length, direction, the number of
failed nodes at the same time, and the direction of the
force applied. This evaluation explain the occurrence of
artificial failure. An artificial failure is considered
when the mesh fails due to a fracture that takes a path

parallel to that of the force applied.

Even though the Mp model failed in providing a
meaningful graphical and statistical results that simulate
the intended conditions imposed, the result obtained

provides a foundation for the Mpc model development.
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The technical difficulties and their solution encountered
during the development of the computer prbgram are
incorporated in the Mpc model. For example, additional
debug routines are added to the computer source code to
allow additional statistical output which showed detailed
analysis at each time step. Furthermore, additional steps
are taken to minimize the time required by the user to
modify the value of the main parameter C. This allowed the
generation of large amount of data at various values, which

intern illustrated the model failure growth propagation.

Regardless of the failure or success of these models 1in
showing the final fracture propagation and profile, the
analysis should be focused on the validity of choosing a
hexagonal mesh to emulate the mechanical failure growth
model, and evaluation of the basic model definition and
assumptions. The basic difference between a hexagonal mesh
and a triangular mesh is in the node orientation relative to
the axes. For example, the fracture leading nodes for a
hexagonal mesh at any given time are surrounded by at least
two nodes, such that the relative orientation of these nodes
changes , from one node on the horizontal path, with the
other on a diagonal path, to both nodes on a diagonal path.
In a triangular mesh the fracture leading nodes are
surrounded by five nodes, such that at any given time their

exists at least one node along a horizontal path.
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Therefore, the probability of the fracture to propagate
along the shortest route to the boundaries is enhanced by

having at least one horizontal bond surrounding the leading

node at any given time step.

The occurrence of fracture loop back condition in the
Mp model, and specifically at the lower values of c In the
Mpc model is surprising. Such a poor performance shown by
the Mpc model could be contributed to its definition and
assumption, however in the Mpc model, the nodal probability
of failure of the horizontal nodes is(higher'than that of a
diagonally positioned nodes. Hence, it could be stated that

the hexagonal mesh structure induce such a behavior.
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' 5.0: Conclusion.

The definition, results, and analysis of the random
growth models depicted for the computer simulation programs
11lustrates the expected and the simulated behavior of a

hexagonal mesh response and failure.

The mesh response to the random growth process as
outlined by the Gp, and Gq models in the percolation growth
study, clearly indicates that the use of a héxagonal element
mesh does not effect or alter the deterministic behavior
expected. The mesh structure provides a simple node layout,
which results in an efficient computer progran. Hence,
large amount of graphical and statistical data could be
generated economically. The deficiency noted in the
computer program in providing additional statistical data to
enable further evaluation of the pehavior of the mesh
critical probability could be easily resolved by adding

several statements in the program source code.

The mesh response for the mechanical failure models is
not as clearly defined. The fact that the statistical and
graphical results shows the unpredictable mesh response to
these conditions clearly 1ndlcates that the use of a
’hexagonal mesh contrlbutes to this behav1or. Hence, caution

should be taken in selecting the use of this mesh structure
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verses that of a triangulaf element mesh. However, if it is
necessary to use a hexagonal mesh for the computer

simulation, care must be taken to address the dlfflcultles

encountered. This could be achieved by altering the model

phenomenon that they describe. For example, in the
definition of the Mp model it is assumed that the bonds have
no effect on the fracture propagation, the fracture 1is
allowed to travel freely along the weakest link in the
mesh. In comparison to the true physical object, the
horizontal bonds relative orientation to the direction of
the force applied are weaker than the diagonal bonds. The
Mpc model which adheres to these assumptions showed similar
symptoms at the 1ower values of the constant c, however the
fracture growth at the higher values of cC did provide the
expected results. In the following section, several
suggestions are recommended for future development which

attempt to eliminate this undesirable response.
5.1:»Future developnent.

The analysis and results of the percolation and
mechanical growth models presented in previous chapters,
‘necessitate the need for further development and

enhancements.

Future development of the percolétion models should
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‘begin by modifying the computer simulation program. These
modifications are targeted to inclﬁde pertinent statistical
output data that pertain to the mesh critical probability of
failure. The correlation between the parameters that
describe the mesh's response to the modeled growth, will
determine the mesh critical probability of failure. The
mesh critical probability of failure is defined as a
function of the nodal probability of failure at time t,
number of failed nodes at the same time, and the number of
time discrete jumps t. It should be noted that the value of
the nodal probability (p), defined in the Gp model is
constant for each program run, where each run contain
several mesh samples. Therefore, the focus should be
concentrated on the correlation between the number of failed
nodes, and the value of the time parameter. It is
recommended to follow the steps presented in the preceding
chapters. For example, The computer programs outlined in
chapter 3, provide a good foundation for manipulating the
data obtained from the main computer simulation program.

The ease in transferring the data from one program to
another have proven valuable. These programs will reduce

the user interface time that is required for data analysis.

Another challenging objective is related to the two
computer programs presented in section 3.1.1. The |
development is targeted to incorporating the curve fitting
program into the LOTUS software package. This task will
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require a solid knowledge of the LOTUS software and its
capabilities. It is highly recommended that prior to
experimenting with other growth models, the user should
compare the accuracy of the results obtained from the
modified programs to that of the models presented in this
paper. Upon finalization of the computer programs the user
could experiment with various growth models. Several growth

2 3
models are presented by Richardson, and Durrett. The

complexity of these model varies for each. It is
recommended to begin by choosing simple models during the

initial phase of the development.

The failure of the mechanical growth models in
providing meaningful graphical and statistical results that
describe the mesh's response to the conditions given,
necessitate a comprehensive evaluation of the basic
assumption that govern the growth processes. It is
recommended to introduce several new restrictions regarding
the bond effect on the probability of fracture growth. The
bonds should be treated as members connecting each node.
For example, each bond is treated as a simple supported
beam. The amount of deflection in each beam is determined
by its relative orientation to the axis, the direction of
the force applied on the mesh, and the number of failed

nodes at the same time. It is difficult to judge if the
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above model enhancements will yield to a definite
conclusion. The validity of using a hexagonal mesh

construction to study the mechanical growth failure remains

uncertain.

66




Bibliography

(1) Eden ,M. "A Two Dimensional Growth
Process." Proceedings of the
Fourth Berkeley Symposium on
Mathematical Statistics and
Probability. Volume IV, Biology
and problems of health, edited by
J. Neyman (1961).

(2) Richardson ,D. "Random Growth In A

‘ Tessellation". Proc.lCambridge

Philos. Soc., Vol. 74 (1973), pp.
515-528.

(3) Durrett ,R. "Crabgrass,Measles, and Gypsy
Moth: An Introduction to
Interacting Particle Systems."
The Mathematical Intelligencer,
Vol. 10 (1988), No. 2,, pp. 37-
47 .

(4) Hubner K, and Thornton E. A. The Finite
Element Method for Engineers.
Second edition. Johon Wiley and

Sons, 1982.

67




(5)

(6)

(7)

(8)

Herrmann

Sahimi

Meakin

Durrett

,Hans Ja,IAlex Hansen, and
Stephane Roux "Fracture of
disordered, elastic lattices in
two dimension;." Physical Review
B, Vol. 39 (1989), No. 1, PP. 637-
648. '

M., and Goddard, J. D. wgElastic
percolation models for cohesive
mechanical failure in
heterogeneous systems." Physical
Review B, Vol. 33 (1986), No. 11,
pp. 7848-7851.

, Paul "Universality,
nonuniversality, and the effects
of anisotropy on diffusion-
limited aggregation." Physical
Review A, Vol 33 (1986), No. 5,
pp. 3371-3382.

' R., and Liggett, T. M. "The
Shape Of The Limit Set In
Richardson's Growth." The Annals

of Probability, Vol. 9 (1981),

No. 2, pp. 186-193.

68




(9)

(10)

(11)

Beale

Brice

Miller

,P. D., and Srolovitz, D. J.
wgplastic fracture in random
materials." Physical Review B,

vol. 37 (1988), No. 10, pp. 5500-

5507.

,Carnahan Applied Numerical

Methods. John Wiley and Sons,

Inc., 1969.

,A. R. Fortran Programs for
Scientists and Engineers. Second

Edition. Sybex Inc., 1988.

69




Appendix A

70




Mp model statistical sample data.

NTIME Probability p
2 0.7781
3 0.3516
4 0.7377
5 0.9688
6 0.9159
7 0.8591
8 0.6951
9 0.9145

10 0.8113

11 0.7586

12 0.9548

13 0.9032

14 .~ 0.8322

15 0.5856

16 0.9379

17 - 0.6849

18 0.7699

19 0.6700

20 0.6374

21 0.9143

22 0.8850

23 0.3332

24 0.6628

25 0.9668

26 0.7188

27 0.3412

28 - 0.5143

29 - 0.8427

30 0.4842

31 0.5672

32 0.9857

33 0.7987

34 0.9895

35 0.8777

36 0.6867

37 0.4188

38 0.7413

.39 0.6243

40 -~ 0.8931

41 0.9965

42 | 0.7633

43 0.9394

44 0.9664

45 -~ 0.8656

46 0.6311

47 0.8427

48 0.9895

49 - 0.5665

50 0.7629

51 0.7394
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
o8
99
100
101
102
103
104
105

0.7869
0.6520
0.9640
0.9042
0.8437
0.5408
0.4315
0.9635
0.7576
0.6242
0.7957
0.7606
0.8216
0.8551
0.9351
0.8453
0.4586
0.9421
0.2524
0.9262
0.9411
0.8432
0.9622
0.7150
0.9234
0.9515
0.7845
0.2986
0.7114
0.8205
0.9599
0.8339
0.5813
0.9349
0.7290

0.4177

0.9885
0.6534
0.6458
0.7519
0.9208
0.9904
0.6808
0.4934
0.7410
0.3623

0.8643

0.6741
0.8610
0.2794
0.9270
0.9428
0.8814
0.8565
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106
107
108
109
110
111
112
113
114
115
116

0.6812
0.4648
0.5772
0.7579
0.5988
0.9320
0.8317
0.4756
0.4449
0.9393
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