
Lehigh University
Lehigh Preserve

Theses and Dissertations

1990

A prototype control and data path synthesis system
William R. Migatz
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Migatz, William R., "A prototype control and data path synthesis system" (1990). Theses and Dissertations. 5416.
https://preserve.lehigh.edu/etd/5416

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5416?utm_source=preserve.lehigh.edu%2Fetd%2F5416&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

-

A PROTOTYPE CONTROL

AND

DATA PATH SYNTHESIS SYSTEM

by

William R. Migatz

:7

l

A Thesis

Presented to the Graduate Committee

of Le,high University

in Candidacy for the Degree of

Master of Science

•
Ill

Electrical Engineering

Lehigh University

1990

This thesis is accepted in partial fulfillment of the requirements for the

degree of Master of Scien.ce.

(date)

t
,•'

Professor in Charge

Chairman of Department

••
11

ACKNOWLEDGEMENTS
1

'

The author would like to express his appreciation to the following ·people

for their contributions:

Dr. Frank Hielscher, for his guidance and suggestions.

Dr. J. Bhasker, for his guidance and insight that was crucial during the early
,

stages of the system's development.

My parents, Melvin and Jean Migatz, for their support and encouragement

without which I could not have completed this thesis .

•

• •• m

•

Table of Contents

ABSTRACT 1

. 1. INTRODUCTION 2
2. THE GENERAL APPROACH TO HIGH LEVEL 7

SYNTHESIS
3. CONTROL AND DATA PATH SYNTHESIS SYSTEM

3 .1 Goals and Restrictions
3.2 System Input
3.3 The Scheduler
3.4 Variable Lifetime Determination
3.5 Register Allocation
3.6 Data Path Generation
3.7 Control Generation
3 .8 Area and Delay Calculations
3.9 System Control

4. RESULTS AND CONCLUSIONS
4.1 Results
4.2 Limitations
4.3 Future Improvements
4.4 Summary

Appendix A. SYSTEM FLOW DIAGRAMS
A.1 CaDSS SYSTEM FLOW CHART
A.2 SYSTEM FILE STRUCTURE
A.3 FLOW CHART FOR ASAP (SCHEDULER)
A.4 FLOW CHART FOR DPG (DATA PATH GENERATOR)

Appendix B. PROGRAM INPUT AND OUTPUT FOR
SAMPLE RUN

22
22
23
24
31
35
38
44
47
53

56
56
57
60
61

63
63
64
67
68

A 69

B.1 TESTSCHEDll.DAT 69
B.2 TESTSCHEDll.PRM 71
B.3 FUNCTOP.TECH 71
B.4 CNTRLOP.TECH 72
B.5 EXEC.STATS 72
B.6 INTERMED.DAT 73
B.7 INTERMED.OUT 74
B.8 CNTRL.INT 75
B.9 LIFEDAT.INT 76
B.10 LIFETIMES.INT 77
B.11 REGASSIGN.INT 78
B.12 VARASSIGN.INT 79
B.13 DATAPATH.SPEC 80
B.14 RTL DIAGRAM OF THE DATA PATH DESCRIBED IN 82

DATAP ATH.SPEC
B.15 COMB02.INT 83
B.16 COMBOl.ESIN 86

•
IV

-'!I • .,.

~'
\

\ .

.... '1

B.17 COMB02.ES1N
B.18 COMBOl.SPEC
B.19 COMB02.SPEC
B.20 STATS.SPEC
B.21 CADSS.OUT

REFERENCES
VITA

•

V

87
88
89
90.
90

99
101

\'
\

List of Figures

Figure 2-1: DFG for a Square Root Algorithm 8
Figure 2-2: A Schedule For a DFG 11
Figure 2-3: An Example of Multicycling 12
Figure 2-4: Example ASAP and List Schedules of a DFG 14
Figure 2-5: Variable Lifetimes 18
Figure 3-1: A CDFG with a Conditional 25
Figure 3-2: A Data Path that Includes Control 27
Figure 3-3: A Data Path Without Control 29
Figure 3-4: Illustration of Variable Lifetime Evalution for Loops (L 1 32

... L4 represent loop bodies and 1 ... 30 represent control
steps) ' ,

Figure 3-5: Illustration of Variable Lifetime Evalution for If 34
Constructs

Figure 3-6: Illustration of Variable Lifetime Evalution for a Variable 35
with MlJ].biple Lifetimes

Figure 3-7: Example of Register Allocation Using the REAL 37
Algorithm

Figure 3-8: Data Path Generated by CaDSS 40
Figure 3-9: Data Structure Used by DPG to Represent the 42

Generated Data Path
Figure 3-10: Representatiion of the Controller FSM Generated by 45

CaDSS
Figure 3-11: Schedule of a Code Segment 46
Figure 3-12: CaDSS' Implementation of a Combinational Logic 49

Circuit
Figure 3-13: Sample Algorithm Block and its Delay as Calculated by 51

CaDSS

., I!.

' '

..

ABSTRACT

This thesis describes a prototype high level synthesis system that

attempts to take the delay and the area of both the data path and the controller

into account. The system takes as its input an intermediate form (closely "'
_;

related to a data flow graph) describing an algorithm and technology files along

with both area and time constraints. The output ge~erated by the system is a

description of both the data path and the controller along with estimates of the
c•

design's delay and area. Furthermore, this system rejects the idea that the

delay of a design can be described by its clock cycle length and defines the delay

as the total time of execution of the algorithm given certain statistical

information regardin/1.oops and conditional statements.

The system is iterative in nature, making incremental changes to the

design on each pass. The design process itself starts with operation scheduling

using a modified as soon as possible scheduling algorithm. This generates the

schedule of operations. At this point, information used to. determine variable

lifetimes (the control steps during which variables must be stored in registers) is

generated and information regarding the next state sequencing is generated.

Next, variable lifetimes are determined~ 1 and register allocation is performed.

Once register allocation is performed, data path allocation and module binding

are completed. At that point all of the information needed to generate a

controller is available. The controller is generated and area and speed

estimates are calculated. The algorithm i~rates by adding functional units and,

once again, generating a new design to determine the effect on the design.

1

' -r,

..

Chapter 1
INTRODUCTION

~

Since the advent of the integrated circuit both the transistor density and

the size of integrated circuits have been steadily increasing. At the present time

chips with over a million transistors already exist. It is predicted that by the

year 2000, logic devices with up to 50 million transistors [10] on a single die will

be manufactured! Obviously, the increasing transistor count allows increasingly

more complex designs to be placed on a single chip. At first glance it would be

assumed that a direct result of this would be increasingly long design times for

those chips. This, however, is not the case. If the design methodology remains

at its current state of the art, within a few years it will be impossible for a logic

device to be designed that takes full advantage of the maximum attainable

transistor density and die size. The designs will have become so large that there

will be no way for them to be verified by the existing methodologies. Thus, new

design methodologies _must and are being developed.

Before exploring these new design methodologies (which are being

developed primarily for digital integrated circuits), it is necessary to understand

what methods have been used in the past and what methods are being used

today. When integrated circuits first appeared there were only a handful of

transistors on each chip. As a result, it was possible to do the design, verify its

functionality, and even lay out the masks completely by h~p.d. Later, as the
.:..

numbe~ of transistors increased, this became increasingly difficult. In the

1970's circuit analysis software such as SPICE [17] began to be used to verify

the design. Also, software was developed that allowed the designer to layout the

.

chips' masks on a computer. This type of "hand" layout has become known as

full custom design and for some specialized applications is still used today.

2

I

Soon, howevJr, these tools became inadequate for. most designs. Logic analysis
·1

tools were developed to check the functionality and timing of digital circuits~

Still, the design task itself was left completely up to the design team.

Eventually what can be categorized as low level synthesis tools were developed.

They allowed a designer to give a transistor description of certain circuits and

the synthesis tools would use this design to produce the masks. What followed

are the tools that are the main design tools used today. They are mostly logic

circuit minimization software, silicon compilers, and logic synthesis software.

Logic circuit minimization software usually tries to minimize the size of logic

equations based on some cost function such as the number of literals or the

number of product terms. An example of this would be ESPRESSO [6], a

program developed at the University of California at Berkeley. A silicon

compiler generates a mask for a regular logic structure such as a PLA or a

ROM. This is a relatively simple task in that the format of a ROM or a PLA

remains roughly the same from one ROM or PLA to the next and in that the

structure is quite regular (many similar substructures). Several silicon

compilers are commercially available today. Finally, logic synthesis takes a set

of logic equations, minimizes them based on one or more cost criteria, and maps

them into a particular technology. The cost criteria are usually area and delay.

Two-.logic synthesis tools are MIS [14] and SOCRATES [16].

All of these design tools that are being used today are helpful. However,

even some of today's largest designs have pushed these design tools past their

useful limits. These tools still force the designer to come up with the

architecture and a register transfer level (RTL) design. This in itself is no small

task. Any given algorithm can be implemented in a large number of different

RTL designs. Each one of these designs has its own unique characteri$tics in

that each design requires a different amount of chip area and has a different

3

~ ,.
'-J·····

•

. r , -

delay. Currently it is left up to the designer to come up with a design that

meets the area and delay constraints. This design space, however, is too large

for a computer to search through every possible design, let alone a human

designer. An expert designer must use~is experience to determine what type of

design has a good chance of meeting the design specifications. The problem is

further complicated by the fact that design decisions at high levels affect the
..•

lower levels and vice versa [1] [11]. For instance, what may appear to be a good

RTL design may use a vast amount of area because of low level routing

problems.

An entirely new type of design methodology is ~urrently being developed
' \ I

by both universities and industry. The design methodology is called high level

synthesis. The object of such a system is to take as its input an algorithmic

description of the functions a chip is to perform (this is written is some high

level language such as C or Pascal [8] or i~~}hardware description language

'

such as ISPS or VHDL), along with area and timing constraints, and to produce

an RTL description of a logic circuit that implements the algorithm's function

and also meets the area and time constraints. From there, tools such as the

ones being used today should be capable of generating the masks that

implement the RTL design. This sounds like the impossible dream. However,

enough research has already been done and enough experimental systems have

been developed to prove that this is not only possible ~ut practical. In fact, for

the first time, corporations are seriously looking at these systems and in some

cases are starting to very cautiously use them.

Why such a dramatic approach to the design problem? Well it has already

I ~ 1:, ,.

been mentioned how, without such a new method, designs that take full

advantage of the ever increasing transistor density and die size will not be able

to be designed. There are also many other reasons. The world being what it is,

4

the most important of these reasons is financial .. As the complexity of chips

grows so does the design time. With design time now extending from months to

years, it is becoming more and more difficult for a company to hit the market

window for a design [18]. It is hoped that such systems will cut design time

down to weeks or months, thus, making it easier to hit the market window.

Also, along with the reduction in design time will come a reduction in the

manpower [18] necessary to produce a design. The result of both of these factors

will be a less costly product. A high level synthesis system that uses good

heuristics will be able to search through a design space more efficiently than a

human designer. Since a synthesis system might be able to produce a design in

a number of hours it would be possible for a designer to chose from a number of

machine generated designs from different areas of the design space [18]. Also, if

a high level synthes~s system can be shown to always produce correct designs,

the likelyhood of an error being made during the design process dramatically

decreases. Furthermore, these systems· can be designed to keep track of and

document the design through its various st~ges. Finally, such systems would

ultimately allow people who are not experts in chip design to do just that -

design a chip. More people will be able to take advantage of the technology.

Today, a large number of experimental high level synthesis systems exist.

Most of these systems concentrate on the generation of the datapath. The

consideration of the controller for the datapath (control is rarely incorporated

into the data path but, rather, kept as a separate unit) is treated as an

afterthought that is a consequence of the datapath. In this thesis a prototype

synthesis system is presented that attempts to take into account the effect of the

controller on the chip's overall area and speed.

In chapter 2 of this thesis a description of the overall approach to high

level synthesis is given. Such questions as: What is high level synthesis? and

5

"$.

' I

"
•·.""\

How does it work? will be answered in detail. Chapter 3 will explain what is

different about the Control and Data path Synthesis System, and how the

system works. Chapter 4 will present some of the results obtained from the

synthesis system and will draw some conclusions from these results as well as

from several problems encountered in its development. The advantages as well

as the shortcomings of the system will be discussed.

. .

6

. '

)

I

Chapter 2
> .•

THE GENERAL APPROACH TO HIGH
LEVEL SYNTHESIS

The start and end points of the digital integrated circuit design process

have not been changed by high level synthesis. The starting point always has

been some behavioral description of the functions that the chip is to perform

along with area and timing constraints. The end point is the masks used to

manufacture the chips. High level synthesis is generally concerned with going

from the behavioral description to the register transfer level description. This is

usually done in two major steps. The first step involves the translation of the

behavioral description into a more useful form which is either a data flow graph
,

(DFG) or a control and data flow graph (CDFG). The second step is to take this

form and use it to generate a register transfer level description of a circuit that

performs the specified functions.

A DFG is a representation of the operations that must be performed on

the data. The DFG shows the ordering of the operations to be performed based
. '

on their data dependencies [18]. For example, given the two operations: C = A

+ B and E = C~- D, it is clear that the subtraction operation must follow the

addition operation because it relies on the result of the addition for one of its

inputs. A CDFG also includes control constructs such as branch and join

operations to represent the control flow of the behavioral description. The

Design Automation Assistant (DAA) [3], [2] high level synthesis system, which

was designed at AT&T Bell Laboratories, used a type of CDFG known as the

"value trace". If a CDFG is not used, the control may be kept separate from the

data flow in some other form. Figure 2-1 lists part of an algorithm used to

compute the square root of X along with its DFG representation and a

r:
\

7

;·:;

Y = 0.22222 + 0.8889 * X;

I:= 0;
DO UNTIL I > 3 LOOP

Y := 0.5 * (Y + X/Y)

l:::;:l+l;

ENDDO;

X

0.5

i.

0.22

+

y

.-

- .,4

0.88 X

I

+
y

3

>

cntrl_cond

Figure 2-1: DFG fqr a Square Root Algorithm

. ·J!' ' .

'

8

' '

1

+

I

e, \ • ,"-4;·, ... ~

,·):IL· 1

representation of its control [18]. Once the behavioral description has been

? converted into a DFG or CDFG, numerous compiler-like optimizations can be

performed. Some of the optimizations that can be performed are dead-code

elimination, constant propagation, common subexpression elimination, in-line

expansion of procedures, and loop unrolling. Because of its close relation to

optimizing compilers much is known about this step.

The second major step is to go from the data,,'flow graph to the register

transfer level description. This is what is emphasized in this thesis. This step
u

is further subdivided into two subtasks known as scheduling and allocation.

Scheduling refers to the assignment of operations in the DFG to control steps. A

control step is a period of time during which the data path is configured for a

predetermined data flow. In simpler terms, a control step corresponds directly

to one clock cycle. The goal here is to minimize the amount of time or the

number of control steps needed in ord~r to complete the execution of the

program (program refers to the algorithm that the chip is to implement).

Allocation involves the assignment of operations to functional units, the

assignment of variables to registers, and the assignment of communications

paths to buses and multiplexers. The goal here is to minimize the amount of

hardware needed.
.,..,,,;·"

Most existing synthesis systems use scheduling as the first step. Here

operations must be assigned to particular control steps based on certain

constraints. One such constraint is the data dependencies. These dependencies

are made explicit by the structure of the DFG. Other possible constraints (the

existence of which depend upon the scheduling algorithm used) are the length of

the clock cycle and the number of functional units available to perform each

operation. Each operation must be implemented by a particular functional unit

and each functional unit necessarily requires a finite amount of time to

9

.

complete its operation. The total amount of time needed to complete a sequence

of scheduled operations cannot exceed the length of the clock cycle. Limits may

be placed on the number of functional units to be used. For instance, if only

three adders are to be used, then no more than three additions may be

performed in any given control step. Figure 2-2 shows a DFG and lists the

delays of the functional units that will be used to perform the various

operations. The length of the clock cycle is also given. The table gives one

possible schedule which meets the constraints. Time allows the fourth addition

operation (operation 5) to be scheduled in the first clock cycle but the resource

limits allow only three addition operations to be scheduled. In control step 2,

only operations 5 and 6 can be scheduled due to time constraints and data

dependencies. In control step 3, only addition operations 8 and 9 are scheduled

despite the availability of three adders. · This is because 3 additions in series

plus the register delay would have a total delay of 16ns which is longer than the

clock cycle length of 14ns. This is also why only one operation is scheduled in

clock cycles 4 and 5. The dotted lines show the schedule listed in the table.

As can be seen from operations 4 and 7 in the example in figure 2-2 one

operation may use the output of another operation as its input within the same

control step. This is known as chaining. Chaining makes better use of the

available time [4]. If one operation has a considerably longer delay than the

other operations and chaining is not allowed, then much of the control step may

be wasted executing only one operation when more of the shorter ones could be

executed. Figure 2-3 demonstrates what is known as multicycling. That is the

use of an operation that needs so much time to complete that it extends beyond

the end of the clock cycle. In fact, it is possible for an operation to be scheduled

that takes several clock cycles to complete. Multicycling is not always used. Its

use depends upon the synthesis system and whether or not such a functional

10

~.

3 + delay 5ns
1 * delay 12ns
1 - delay 5ns
1 and delay lns
reg. delay lns,
clock cycle 14ris ·

cc = clock cycle

one clock
cycle

A

1

5

cc # + + + * - and

1
2
3
4
5

1 2 3 6 4 7
5
8 9
10

11

B C D

8

10

11

· Figure 2-2: A Schedule For a DFG

E F

cc

cc 2

cc 3

cc 4

cc 5

unit is available. Multicycling allows the clock cycle length to be shorter than

the longest functional unit delay. Also, if the multicycled unit allows new data

to be input while it is still working on data obtained in the previous clock cycle,

then that unit is pipelined [4].

11

\

•

...

*

Figure 2-3: An Example of Multicycling

It would ~be ··nice to obtain the "optimal" schedule and use that. However,

no such algorithm exists to obtain such a schedule and, for any practically sized

problem, the time required to do an exhaustive search is unreasonably long. As

a result, several algorithms have been developed to generate schedules. There
,,/

are two classes of algorithms: transformational and iterative/constructive.,

Transformational algorithms start with a base schedule and perform various

combinations of serial and parallel transformations that bring the schedule

12

t ..

I
f

closer to the imposed constraints. The Yorktown Silicon Compiler and the

CAMAD design system both use such a technique. Iterative/constructive

algorithms are somewhat more popular. They generate a schedule by

examining each operation and deciding which control step it belongs to. There

are several iterative/constructive scheduling algorithms including "as soon as.

possible", "as late as possible", list, and "force directed" scheduling [18].

The two simplest scheduling algorithms are "as soon as possible"

scheduling (ASAP) and "as late as possible" scheduling (ALAP). In ASAP

scl).eduling, the operations are sorted topologically. Operations that don't have

any data dependencies are assign·ed to level 1. Operations that have data

dependencies only on level 1 are assigned to level two. Operations that are

dependent upon operations from level 2 are assigned to level 3;. The operations
'

are assigned to various levels in that manner until there are no more operations

to be assigned to a level. ·For ASAP scheduling it is necessary to know how

many of each type of functional unit is to be used. This determines what is

known as the resource limits. Operations are selected from this topological list

"

in order and assigned to the earlies~ control step that is allowed based upon the ,

data dependencies, resource limits, and time constraints. Figure 2-4 shows a

DFG and its ASAP schedule based on the given constraints. ASAP scheduling

has been used in the CMUDA [2] (developed at Carnegie Mellon), MIMOLA
i..'.

[13] (developed at the University of Kiel in West Germany), and Flamel

[8] (developed at Stanford University) high level synthesis systems. ALAP

scheduling is the same as ASAP scheduling except that operations are

scheduled in the last possible control step that they can be scheduled.

ASAP scheduling has one major problem. Operations on the critical path

are not identified and thus all of one type of functional unit may be used up in

one cloc~ cycle by operations that are not on the critical path. The result of this

13

1 (2) 2 (3)

4 (1)

"

The numbers in parenthesis
represent the maximum path
length from the operation
to the end of the block. The
other numbers are the oper
ation numbers.

ASAP

c.c. # + +

1 1 2

2 3 5

3 6 7

4 8

2 + delay 5ns

3 (4) 1 and delay lns

1 - delay 5ns

reg. delay lns

5 (3)
clock cycle 14ns

6 (2)

7 (1)

8 (0)

List

and c.c. # + +

1 3 2 5

4 2 1 6 7

3 8

Figure 2-4: Example ASAP and List Schedules of a DFG

and

4

is that the length of the schedule becomes longer than necessary. This can be

14

'.' ",. --. ;_

·:r

seen in figure 2-4 where operations 1 and 2 are scheduled first, forcing operation

3 to be postponed until the next control step. Since operation 3 is on the critical

path, the schedule becomes one control step longer than necessary. List

scheduling attempts to overcome this problem. In list scheduling, the

operations that can be scheduled in each control step (this is determined by the

data dependencies) are ordered by some priority function. The ones with the
Q

highest priority are scheduled first assuming all data dependencies, · resource

limits, and time constraints are met. When no more operations can be

scheduled in the control step, the next control step is scheduled. The priority

function can vary in this . algorithm but is designed to locate operations on the

critical path. The BUD [1] system used list scheduling. In figure 2-4 a list

schedule for the given DFG is also given. The numbers in parenthesis on the

DFG represent the maximum path length from the operation to the end of the
i

I

block. This is the priority function used here. It can be seen that since

operation 3 is at the top of the critical path, it has the highest priority and is

thus scheduled first. The result is that fewer control steps are needed than in

the ASAP schedule.

There is another scheduling algorithm known as force· directed

·Scheduling [5], [7]. Though this algorithm is not used in the synthesis system

that is described in this thesis it is worth noting. The algorithm attempts to

balance the concurrency of operations by placing similar operations in different

control steps. This tends to reduce the number of functional units needed. It

starts by determining the time frame into which each operation can be

scheduled. This is done by determining both the ASAP and ALAP schedules. It

also determines the probability of the operation being assigned to a control step.

(If it can be assigned to 4 control steps then it has a probability of 0.25 that it

will be assigned to any one of those steps.) Next a distribution graph is

15

..
·~.

generated. This graph uses the information about the time frames to add the
,.

probabilities of each type of operation for each control step. Finally operations

are assigned to the control ~,tep that has the least force associated with it. The

force of assigning an operation to a control step is the difference between the

distribution value of that control step and the average of the distribution values

for the control steps within the operation's time fr/e. This algorithm was first

used in the HAL [9] system which was developed at Carleton University in

Canada.

As previously mentioned, allocation involves the assignment of operations

to specific functional units, the assignment of variables to registers, and the

generation of communications paths (ie. the wiring of buses and

multiplexers) [18]. The allocation of operations refers to the assignment of

operations to functional units. This is straight forward if only one of each type

' .

of functional unit is used. However, if, for instance, two or more adders are used

then a decision as to what addition operation should be bound to what adder

must be made. The decisGn could be based on a number of criteria one of which

may be which assignment would cause the least increase in wiring. Module

binding is closely related to functional unit allocation. This involves selecting

the proper functional unit to perform the operation. For instance, a library

containing several adders each with different areas and delays might be used.

Module binding would then involve selecting the one that will help most to meet

the overall area and timing requirements. Sometimes special synthesis

software can be used at this point to actually custom-generate a more ideal

functional unit. This, however, requires considerably more time. Usually a

number of multi-operation ALU's are used and the decision when to use an ALU

and when to use a separate functional unit, as well as what functions should be

combined into one ALU, go under the heading of module binding. Variables·

16

must be allocated to registers. Each time the output of some operation extends

beyond the control step in which it is first defined, that variable must be

assigned to a register. Variables with disjoint lifetimes may be assigned to the

same register. (The lifetime of a variable refers to the clock cycles during which .

it must be saved for use as the input to other operations.) For example, in figure

2-5 variables A, C, and D have disjoint lifetimes and may be assigned to the

same register. One method of allocating variables to registers might be to

allocate the variables in such a way that a minimum number of registers is

used. Finally, the communications paths must be generated. This involves

determining how the various functional units are wired to each other and to the

registers. It also must be determined when to use buses and when to use·

multiplexers. Buses have the advantage of decreasing the amount of wiring

necessary but they are often slower than multiplexers [18].

All of these allocation problems are interrelated. Solving them

independently results in a solution that is less than optimal. For instance, if

variables are assigned to registers in such a way that a minimum number of

registers are used the savings in area might be offset by a corresponding

increase in wiring cost because the resulting interconnections of the registers to

the functional units may have caused an increase in the size or number of

multiplexers or increased the length of the wires. Furthermore, an increase in

the amount of wiring usually will result in a decrease in speed because of an

increase in the capacitance associated with the wiring. Thus, ideally, all of

these allocations problems must be solved together to get optimal results. This

problem, however, becomes too complex for any reasonably large design and, as

a result, the allocation problems are usually solved separately or possibly two

problems might be solved in conjunction with each other and the rest solved

separately.)

17

1 :

A B C D E
cc 1

cc2
.

cc3

cc4
.

cc5
.

cc6

cc7

cc8

Figure 2-5: Variable Lifetimes

Allocation algorithms can also be broken up into two classes:

iterative/constructive and global [18]. Iterative/constructive algorithms select

an operation (or a variable or an interconnection) to be assigned, make the

assignment, and then iterate the process until it is completed. How the

selection is made varies from system to s·ystem. If a global criterion is used, all

possible items are examined before the selection is made. What selection metric
C

is used, of course, depends upon what is being allocated. Global seletion would

tend to produce the best results but requires the most CPU time. When a local

criterion is used the items .are selected in some predetermined order that

usually is closely related to ~he DFG. This requires less CPU time but the

results are not as good as when global criteria are used. Algorithms of the

18

\

global class are based upon graph theory. · Often the elements that are to be

assigned to hardware are represented by nodes and those elements that can

share the same piece of hardware have their corresponding nodes connected by

arcs. The objective is to find sets of nodes that are all connected to one another.

These would be elements that could share the same hardware. This is known in

mathematical terms as the clique partitioning problem. The heuristics used to

solve this problem, however, at best guarantee near optimal solutions.

Most of the problems described so far, including scheduling and the

various allocation problems are known to be NP hard. This means that the

number of steps required to find an optimal solution grows exponentially with

the amount of input data. For instance, the time required to find an optimal

schedule grows exponentially with the number of nodes in the DFG. This forces

the use of heuristic algorithms such as the ones that have been described. All of

these algorithms produce suboptimal solutions but produce them within a more

acceptable time frame. To further complicate this problem, as was seen with

allocation, many of the <'subproblems are interdependent. If this is not bad

enough, the concepts of scheduling and data path allocation are themselves

interdependent. The delays of the various functional units are needed in order

to determine an accurate schedule. However, this cannot be known until

allocation and module binding have been completed. The decision as to what

operation to bind to which functional unit requires the knowledge of what

operations are done in parallel or are disjoint. This can be found only from the

schedule.

Up to now what has been described are the methods used to generate the

data path. This is because most systems concentrate on the data path. A

number of systems do generate the controller but that is the last stag~. of the
I\

high level synthesis process. No consideration is given during the design of the

19

data path as to what effect various decisions will have on the controller. As a

result, it is quite possible for those systems to design a data path that meets all

the area and timing specifications but that has a controller that is so large or

slow that it causes the overall design to violate one or more of these

specifications. The prototype synthesis system described in the remaining

chapters of this thesis makes an attempt to take into account the controller's

delay and a:rea. ·

While not taking the controller's area and delay into account is a major

oversight, it is also an intentional one. It is very difficult to estimate the delay

and size of the controller until the controller has already been designed. Since

the way the controller functions is entirely dependent upon the data path it is

even more difficult to determine what effect a particular decision in the data

path generation will have on the controller when the data path is not completely

designed.

There a two different ways to build a controller. The controller can be

microcoded qr it can be designed as a finite state machine. A microcoded

controller is relatively easy to design and a number of microcode compaction

algorithms exist [12] and have been used for some time. This type of controller

is, however, relatively iarge. A finite state machine (FSM) controller can be

designed with the use of PLA's or random logic. A controller designed with

PLA's will probably be smaller than a microcode controller but will also be

somewhat slow. FSM controllers designed using random logic generally

generate the smallest and fastest controllers. These controllers, however, take

more time to generate and few systems (MIS and Socrates) exist that minimize

multilevel random logic to meet both area and timing constraints.

At the present time the algorithms that exist to solve each of the

individual tasks in isolation perform well. The problem is largely how ·to find a

20

,
' ; . 'l',l;,,,,..,

good solution to the entire problem of high level synthesis while still being able

to get results in a few hours. There are several other problems involving the

concept as a whole. Somehow the design has to be verified. This may either

entail proving that the synthesis system always produces an operable design or

proving each individual design. It is also desirable to integrate all levels of

design from behavioral to physical into some common data structure. Problems

exist with designing systems that meet timing constraints designed to allow

interfacing with other systems. Finally, integrating the design of the controller

along with the design of the data path is a problem that needs to be researched.

One such solution to that problem is discussed in the the following chapters.

21

Chapter3
CONTROL DATA PATH

SYNTHESIS SYSTEM

3.1 Goals and Restrictions

The Control and Data Path Synthesis System (CaDSS) was designed as a

prototype high level synthesis system that attempts to take the area and delay

of the controller into account when generating the register transfer level

description of its input algorithm. This is a prototype system designed for the

purpose of including control in the design process. As a result, certain

limitations were placed on the system in order to make it easier to develop.

Most notable is that the input to the system is not a true behavioral description

of the algorithm to be implemented, rather, it is an intermediate form that is

more closely related to a form that can be directly translated into a DFG. The

translation from a behavioral description into an optimized DFG or CDFG is not

directly related to the goal of this system and was thus considered unnecessary

to implement. Also, limits were placed on the design process itself. First of all,

all functional units are assumed to have the same bit width which is

unspecified. Secondly, only one type of each functional unit is allowed and no

multi-operation arithmetic and logic units can be used. Also, all functional

units must be binary in nature (they have two input strings). The system does

not take advantage of the use of buses in its RTL description but, instead, relies

-.

entirely on multiplexers. Finally, in its calculations of area and delay,

interconnect is not taken into account. All of these limitations were placed on

the system so that its design could be expedited.

22

3.2 System Input

There are five input files to CaDSS. Two of the input· files are technology

files. They contain information about the components that will be used to

generate the RTL design. The first file, functop.tech, contains the information

about the various datapath operators. The information in this file is the

operator's symbol, the functional unit's delay, whether or not the operation is

commutative, and the area required by the functional unit. A sample

technology file can be found in appendix B. It is worth noting that the functional

units used for control purposes, such as various types of comparators, are

treated just like any other functional unit and are thus included in this file. The

file, cntrlop.tech, contains information about the various gates used to generate

the controller. The format for this file along with a sample input file is also in

appendix B. The primary input file is filename.dat. This is the file that contains

the algorithm to be implemented. It consists of a series of binary operators and

control constructs. Each assignment statement is of the form vl = v2 op v3.

Here vl, v2, and v3 are variables that can be any name up to 25 characters in

length except for reserved words. Also, if the name starts with an i or an I the

variable is considered to be an external input. The control constructs were

limited so that the software design would be expedited. They are if then, if then

else, goto label, label, and if then goto label. The names of the constructs are self

explanatory. There are, however, certain restrictions on their.use. No loops or

conditional statements m.ay be •exited except by the normal terminating

statements. Also, if then else statements are limited to one else clause. Goto

statements should not be used except to defme an infinite loop. A sample input

file is found in appendix B. Another input file filename.prm contains the

acceptable area and delay along with a number of other parameters. Finally,

the last input file is exec.stats. It contains statistical information about loops

23

and conditional statements that are used in calculating the design's delay. A

copy of the file along with its format can be found in appendix B. The purpose of

this file will be described later on in this chapter. A diagram showing the
\ ..

. L-
relationships between the various files and the programs t~ are associated

with can be found in appendix A. ')

3.3 The Scheduler

The program used to do the scheduling is called asap. This program uses

two input files: functop.tech and intermed.dat. The file functop.tech is the

previously described technology file. The file intermed.dat is a file derived from

the intermediate form input file. Essentially, it is a copy of that file with the
/

numbers of each type of functional unit used explicitly listed in the beginninf ;-/
'. /-

Also, in this file (as well as in the algorithm file) is a number representing the

length of the clock cycle. In reality, the clock cycle -may be longer or shorter

than this number. Rather than the clock cycle length, what it actually specifies

is the maximum delay through the data path. Thus if operations are chained

together the delay of the chain will never exceed that number. Naturally, this

number must be greater than or equal to the delay of 1t1e slowest functional unit

plus the register delay.

One of the problems associated with generating a schedule from the

intermediate form of the input file is how to handle control constructs such as

branches and loops. There are several ways that branches, in particular, can be

designed into the hardware. Figure 3-1 shows a CDFG that illustrates this.

The fork node represents an if then else construct where one of two possible

blocks of operations are executed depending upon whether or not v3 > v2.

Despite the-fact that this fork node (and later on the join node) represent control

constructs, it is possible to implement this structure in the data path without

24

V3

id

1RUE

V3 V2

fork

V3>V2

V3

V2

V2

FALSE
id

V6''
V6' ~----1-c-------:---:---~~-----

• •
JOlll

V6 •
1e

+

Figure 3-1: A CDFG with a Conditional

25

the need for the controller to be concerned about ·the result of the comparison

between v2 and v3. Figure 3-2 shows the arrangement of a data path for such

an implementation. Note t~at only the operations between the fork and join

nodes are implemented in this data path. The operations for both possible paths

of execution are carried out and the output from the proper path is selected by a

multiplexer with its select line connected to a comparator. This implementation

has the advantage of being very fast. It is not necessary for the result of the

comparison between v2 and v3 to be known before the operations in the if then

else structure are executed. In fact, when the variables that are used to select

the branch are not used in either of the branches, the operations that generate

those variables can be done in parallel with the branch. As a result, this is a
•

very fast implementation. This implementation also has its drawbacks,
" .

however. The most obvious one is that it uses a large number of functional

units thus increasing the area of the data path. The other drawback is that it

can only be used on a practical basis for short ,branches that can be completed in

one control step. For longer branches that span several control steps, resources

are used to do the operations in both branches. However, here this causes a

reduction in speed because rather than splitt1ng the resources between the two

branches the functional units could have been configured to handle the selected

branch. All of the resources could then have been used for that branch, thus

reducing the time need·ed to complete it. Also, if one branch is shorter than the

other this method causes the delay to be at least as long as the delay of the

longest branch and possibly much longer.

It was decided not to use the previously described method of integrating

'

some of the control into the data path. Rather, the method of keeping all of the

control in the controller was used. Using this method, the result of v3 > v2

must be known before any operations in the if then else construct can be

26

id V3 V2 id

V3

1

V2
V6

Figure 3-2: A Data Path that Includes Control

executed. Once this is known the controller wil1Dconfigure the datapath in the

next control step to implement the correct branch. Figure 3-3 shows the data

path for this type of an implementation. (Here the construct is implemented

using only one clock cycle.) The controller configures the datapath by using the

select lines of the multiplexers to change the inputs of the functional units·. This

method is somewhat slower for short branches, but for long branches it makes

much more efficient use of the available resources. Also, the number of clock

cycles needed to execute a given branch will be equal to the number that that

branch can be scheduled into, not the number required by the longest branch.
"

27

This method also has the advantage of being easier to implement. It has its

disadvantages, however. In particular, if an if construct has branches that are

very short (can be implemented in under a clock cycle) then one entire clock

cycle must be dedicated to the branch. Any operations before and after the if

construct will be done in separate control steps. As a result, for short branches,

the resources and time may be uiSed inefficiently.

The name asap is somewhat of a misnomer. The scheduling algorithm

used is actually a cross between ASAP and list scheduling. A DFG is generated

and the nodes are sorted topologically. However, the nodes on each level are

then sorted by some priority function. Next, nodes are scheduled level by level

but, since the nodes on each level are sorted by a priority function, for each level

the nodes with the highest priority are scheduled first. The priority function

used here is the length of the longest path from the node to the end· of the block.

The advantage of this algorithm is that it has the simplicity of an ASAP

algorithm yet it has some o·f the ability of a list scheduling algorithm to locate

nodes on the critical path.

Besides scheduling, this program must also keep track of control. As the

input. file is read line by line a DFG is generated until a control construct (if,

else, end of an if branch, if then goto, goto, or label) is encountered. The

operation within the control condition of the if (if that is what was encountered)

is then added to the DFG and the DFG is scheduled. A note is made that the

control construct was encountered along with the clock cycle it was encountered

in. If it was an if, if then else, or if then goto, it is kept track of it so that

information abo~t the various blocks of the statement can be added once they .

are known. The DFG is then cleared and a new one is generated from the next

set of operations. At the end of the program all of the labels in the control

statements are replaced by the corresponding control steps and a file known as
.

.

28

V3 id V2

V2 id

>)-----,

\

Figure 3-3: A Data Path Without Control

• cntrl.int is generated from this control information. The format of the file along

with a sample file is shown in appendix B. It is used to generate the circuitry

that controls the next state sequencing.

It is also necessary to keep track of information about the variables that

29

l.../

are used. This is needed so that variable lifetimes can be determined. A

variable can be used in two ways: it can be defined or it can be accessed. The

two :can best be described by an example. The variable vl is defined in the

following statement: vl = v2 + ib. It is accessed in this statement: v4 = vl - v3.

Each time a node is scheduled a note is made if a variable was defined1rr it was

defined, the control step in which it was defined is added to a list. If the

variable was accessed then the control step that it was used in is noted and is

also placed on the list. Every time a variable is accessed the control step in

which it is accessed replaces the last time it was accessed. When the program is

completed a file called lifedat.int is generated. It consists of a list of the variable

names along with a sequence of control steps during which each variable was

defined or accessed. The format for this file only with a sample file can be found

in appendix B.

To summarize the operation of this scheduling program, after the

technology file is read, the algorithm file is read in one line at a time and

graphed until a control construct (label, if, else, if then goto, or end of a structure

ie. "}") is encountered. At that time the DFG is scheduled and the results output

to a file listing the operations scheduled for each control step. As the various

operations are being graphed information regarding the variables' usage is

updated. Also, each time a control construct is encountered it is added to a list

of the control constructs. This list contains information about the control steps

in which it occurs and the control steps that it spans. Once the end of the input

file is reached the last block of statements is scheduled. All of the labels used in

the control statements are replaced with their corresponding control step.

Finally, the control and variable information are output to their appropriate

files. A flow chart describing the operation of this program can be found in

appendix A.

30

/

3.4 Variable Lifetinie Deten11ination

The next step in the synthesis process is to determine exactly what the

lifetimes of each variable are. The lifetime of a variable is the period of time

that starts with the first time it is defined and continues until the last time it is

accessed. It is necessary to know the lifetimes of all the variables because those

variables with disjoint lifetimes can share a common register. This eliminates

the need for the existence of one register per variable. For code without any

control constructs the lifetime of a variable becomes obvious; however, with
./,'"

control constructs it is slightly more complex. 'Fhe existence of loops and

conditional statements has an effect upon the lifetimes of variables.

Loop_s present the biggest problem in determining the · lifetime of a

variable. If a variable is used but not defined within a loop the lifetime of the

variable must extend at least to the end of the loop. This is because, since in a

loop several control steps may be repeated, the variable must stay alive in those

control steps so that it is available in the control steps that do access it. This

can best be shown by example. In figure 3-4 variable vl is first defined within

loop nllmbet 1. It is not used inside loop 3 but it is used inside loop 4. Since

loop 2 contains loop 4 that has a statement that accesses vl, loop 2 does in fact

contain a statement that accesses vl. The numbers on the right hand side of

figure 3-4 represent the control steps during which loops begin and end. Since

loop 2 is the outermost loop that contains an access of vl, but not a definition, in

order for vl to still be available in successive iterations of loop 2 vl must be

alive for the entire span of loop 2. Thus vl's lifetime starts in control step 2

when it is defined and ends at control step 24 when loop 2 ends.

If and if then else constructs cause fewer problems. If a variable is used in

both branches of an if then else statement then its lifetime must consist of at

least part of both branches. If it is used in only one branch then it only has to

31

ti

' ,. .

Ll
1

Vl = ia + ib

L2 4

8
L3

.___ _______ ~ 12

L4
14

.

V56 .Vl + V45

18

'-------------------'24

30

Figure 3-4: Illustration of Variable Lifetime Evalution for Loops

(Ll ... L4 represent loop bodies and 1 ... 30 represent control steps)

exist over the number of control steps spanned by that branch. (Note, however,

that if the variable is used after the construct its lifetime will necessarily span

32

'

both branches.) In figure 3-5 variable vl is defined in control step 1 and is used

in both branches of if2. It is used in only one branch of ifl and, as a result, its

lifetime does not have to be in the else clause of ifl. Here, minimally, it could

have a lifetime from control steps 1 through 7, and 12 through 13. This is one

lifetime, not two, since only one branch or the other of if2 is executed. To make

it easier to represent, however, the lifetime, in this program, is calculated as

control steps 1 through 13 which is somewhat less efficient.

There is one final problem of a variable having multiple lifetimes. If a

variable is defined and then accessed within several control steps and then not

used for several control steps and then redefined, it will have two disjoint

lifetimes. This is illustrated in figure 3-6 where vl has lifetimes 3 through 10

and 14 through 22. Note, however, that if its second definition was vl = v2 + vl,

then it would only have one lifetime because that statement requires a usage of

vl.

The program genlife uses two input files and generates one output file.

The input files are cntrl.int (which contains information about loops and

conditional statements) and lifedat.int, both of which are output files of the

scheduler. Its output file is lifetimes.int. The format for this file and a sample

file can be found in appendix B. Notice that, since the external inputs are never

assigned to registers, they have zero lifetimes. The lifetimes listed for

cntrl_cond can also be ignored. Cntrl_cond is a variable that represents the

outcome of a comparison in a conditional statement and is never stored in a

register.

33

eel Vl = ic * id

cc2
cc3

IF2

cell
IFl

ccl2

ELSE2

cc16

cc20

cc21

ELSEl

cc40.

cc4

IF3

cc9

V21 =Vl + VS

V25 = V12 * Vl

cc7

cc13

Figure 3-5: Illustration of Variable Lifetime Evalution for If Constructs

34

/

cc2

•
•
•

cclO

•
•
•

cc14

•
•
•

cc21

vl = ie * ih

v20=vl-v19
C' -.....<

vl = v30 + v28

v45 = v43 - vl

Figure 3-6: Illustration of Variable Lifetime Evalution for a Variable
with Multiple Lifetimes

3.5 Register Allocation

Register allocation is the assignment of variables to registers with the

goal of minimizing some cost function. The program used in this system, regal,

attempts to minimize the number of registers used to store the variables. The

algorithm used to perform the allocation was adapted from REAL, [15] a

register allocation program developed by Tadi Kurdahi and Alice Parker of the

University of Southern California. The algorithm·they developed is in turn an

adaptation of the left edge algorithm that is used for channel routing. This is a

simple algorithm that works as follows. The wire segments are sorted in

increasing order of the coordinates of their left edges. The first wire segment is

35

T . ;

assigned to the first track. The first wire that does not overlap the wire just

assigned to the track is also assigned to that track. When no more wires can be

assigned to the track a new track is used until it is also full. The algorithm is

completed when all of the wires have been assigned to a track. The algorithm

used by REAL works exactly the same way except that rather than wires and

tracks, variables (whose starting and ending coordinates are their birth and

death times) and registers are used. It has been shown that, for a DFG with no

conditional branches, the algorithm is optimal and is prob~bly optimal for the

modification made for its use with conditional branches. Figure 3-7 gives an

example of the use of this algorithm. The left hand side of figure 3-7 shows a

sorted list of variable lifetimes. The right hand side ·shows the register

assignments after the use of the algorithm.

Regal works in an almost identical manner. The input to regal is

lifetimes.int. The variable lifetimes are read in and sorted. When a variable

has multiple lifetimes each lifetime is essentially treated as a separate variable

(as in effect they are) and may be assigned to different registers. The sort is

done by increasing order of the birth times. The algorithm then proceeds as

before with variables with disjoint lifetimes acting as nonoverlapping wires.

Conditional branches are not a problem here since each branch is assigned to
()

separate groups of control steps. Thus, as far as the algorithm is concerned, it

does not see any conditional branches. The· output of this program consists of

two files: varassign.int and regassign.int. The file varassign.int consists of a list

of variables. For each variable is given a list of the registers it is assigned to

and the lifetime for which it is assigned to each register. The file regassign.int

gives a .. list of registers. For each register is given a list of the variables assigned

to it and the lifetim~s for which each variable is assigned to that register. A

sample of each of these files along with their formats is given in appendix B.

36

1
2

3

4

5

6 7

8

3

Rl R2 R3
1

2

5

6

_s

Figure 3-7: Example of Register Allocation Using the REAL Algorithm

37

"~ .- ."

3.6 Data Path Generation

The next step in the process is to use the sched1Jle and the register

allocations to generate a data path that is capable of implementing the

schedule. Since this synthesis system is not attempting to generate a

specialized architecture, the data path should idealy be made as general as

possible. That is, as few restrictions as possible should be placed on the form of

the data path. To limit the complexity of the system, however, it was necessary

to place some limits on the structure of the data path. One restriction is that no

buses are used, and as a result all wiring must go through multiplexers.

Secondly, only one type of functional unit may be used to implement each binary

operator. For example, a carry propagate adder or a carry look ahead adder

may be used but both cannot be used in the same design. This simplifies the

problem of operation binding.

These restrictions do, to some extent, force the data path into a particular

format (although it is a general one). Each functional unit has a multiplexer at

each of its inputs. The multiplexer select lines determine what the inputs to the

functional unit are. Each register also must have a multiplexer at its input.

This is unusual, but the original premise was not to use bus structures. The

inputs to the multiplexers can be either external inputs, outputs of functional

units, or outputs of registers. The controller is responsible for determining the

settings of the select lines as well as the load lines of the registers. Figure 3-8

shows what the general format looks like. Also, in appendix B is an RTL

diagram of the data path that was generated for the example used in appendix

B up to this point. One part of the data path should be noted· to be fairly

specific. That part is the circuitry used to determine the value of cntrl_cond. As

mentioned earlier, cntrl_cond represents the result of some comparison done in

a conditional statement. This result must be fed back to the controller to

38

determine what the next state will be. Only a single bit is sent back to the

controller. The multiplexer is used to determine which of the functional units

(these functional units should be types of comparators) is being used to

determine cntrl_cond for the present control step.

The datapath generator program (DPG) uses several input files. The most

obvious and important of these is the schedule file, intermed.out. This file,

which is the output of the scheduler, contains a list of control steps and the

operations scheduled to be performed during each step. Also used as an input is

intermed.dat (the input to the scheduler). It is used only to determine how

many of each type of functional unit is available. The technology file,

functop.tech, is needed. This, besides defining the type of operations available,

will also be used to provide information on whether or not the operations are

commutative. Finally, both varassign.int and regassign.int are used. Despite

the fact that they contain identical information, both are necessary because the

two different formats are convenient for accessing the information in different

ways. For instance, varassign.int is useful for determining which register a

variable is assigned to during a given control step; while regassign.int is useful

for determining during what control steps a register contains no useful

information (ie. its load line can be a don't care).

The actual flow of the program is fairly simple. For each control step the

operations that are to be allocated to functional units are read in from the

schedule file and graphed (placed into a DFG). When the end of the control step

is reached, the operations are allocated to functional units, the interconnect of

the functional units is determined, and the control information is determined.

After all of the operations have been allocated the registers are checked to see if

any are not holding a variable and their load lines are set to don't cares. Then

the information about the control (multiplexer selects and register load lines) for

39

select

••• • •••

• • • • •• • ••

rl m

load

•••

cntrl cond

Figure 3-8: Data Path Generated by CaDSS

40

that control step is output to a file combo2.int. This process is repeated until·

there are no more control steps for which allocation is to be performed. Finally,

the specification for the data path is output to the file datapath.spec. The

formats and examples of both of these files can be found in appendix B. Also in
'

appendix A is a flow chart showing the flow of this program.

The question that remains to be answered about DPG is how is the

allocation actually performed? The first step is to use the information that is

already known about the data path to set up a data structure that will be used

to represent the data path. The information that is known at the start of

execution of the DPG is how many of each type of functional unit will be used

and how many registers will be used. The data structure that is set up to

represent that data path is shown in figure 3-9. The structure consists of 3

main substructures: f_u_type, f_u_node_type, and f_u_edge_type. Initially, an

array of n of the f_u_type substructure is generated. Here n is the number of

different types of functional units plus one. This structure contains information

about each type of functional unit such as its symbol, whether or not it is

commutative, and how many of that type of functional unit will be used.

Element zero of the array refers to the registers. Each of these substructures

also points to an array of the substructure f_u_node_type. This array has the

same number of elements as there are functional units of that type. There is

one extra element in the register array. That extra. element is used to represent

cntrl_cond which has much the same characteristics as a register. The

f_u_node_type substructure contains information that is used both in control

generation and data path generation. It has three fields for the number of

inputs to the multiplexers on its left and right inputs and for the number of

outputs. Also, there are two fields to determine what the multiplexer select

lines should be in the current control step. There is a field used only for

41

\

f_u_Jype 0

(reg)

f_u_type 1

f_u_type 2

•
• •

f_u_type n

f_u_type

f u num - -
symbol

-

commutative
of fu.'s

- -

- .

•
•
•

..

1 in

\., .A./' ti

f _u _node_type

~ r

-- f_u_type 0
....

unitO

--- f_u_type 1
....

unitO

f_u_node_type

num_left_inputs
num __ ri_ght_inputs

num-"-outputs
left mux select -· ·-
right_mux_select
load

bound

f_u_type
f u num - -
symbol

\., A/ el

~

f_u_type 0 • • • unit 1

f_u_type 1 • • •
unit 1

'

• • •

f_u_type

f u num

f_u_type
1---11....i f u n um - - - -

symbol symbol

\.,

f _u _edge _type f_u_edge_type f_u_edge_type f_u_edge_type

Figure 3-9: Data Structure Used by DPG to Represent
the Generated Data Path

42

-

)

registers to determine if the register should be loaded. Finally, there is a binary

field that is true if an operation has been bound to the functional unit in the

current control step. The substructure also points to three linked lists of the
.

substructure f_u_edge_type that determines what the various multiplexer

inputs are. These linked lists are actually generated as the data path is

determined. The substructure f_u_edge_type has two fields to represent the

functional unit or register it is connected to. These two fields are the functional

unit type and the functional unit number. If an input to the multiplexer is an

external input then a fielct;tnat points to its symbol in a symbol table is used.

The program starts ~ith the DFG for the control step it is working on.

The nodes are examined one node at a time starting with the nodes on the first

topological level and working toward the bottom of the DFG. For each node it

determines what type of functional unit is necessary to implement it (a fairly

obvious decision) and then determines which of the various functional units of

that type should be used. This is done by checking the linked lists of f_u_edge

type for each functional unit and finding out how many connections already

exist on the unit. The output is also checked to see if an appropriate register

connection exists and how many of the output connections go to the appropriate

type of functional unit. If the operation is commutative the left and right inputs

of the operation are swapped and the functional units are rechecked. The

operation is then bound to the functional unit with the most similar connections.

Any connections that must be added to that functional unit are then added by

adding an f_u_edge_type substructure to the end of the appropriate linked list

(l_in, r_in, or out). The number of inputs and outputs are then updated and the

multiplexer select settings are determined by searching through the linked lists.

If_ the output of the functional unit goes to a register then its inputs and

multiplexer settings are updated and its load field is set to 1. Once all of the

43

\

.·,:-1 .. , .• ,,

nodes in the DFG have been processed, the registers are checked to see if they

are currently holding any variables. If not, their load lines are set to a don't

care state. The control information is then output to the file combo2.int. The

control information consists of multiplexer select line settings and load line

values. Before the next control step is processed the DFG nodes are freed and

all of the control information is set back to don't care values except for the load

lines which are set to O (do not load).

The algorithm just described attempts to minimize interconnect by

minimizing the size of the multiplexers. The algorithm is not ideal and, as a

result, does not guarantee optimal results. When it checks output connections it

can only check to see that the present functional unit has connectio.ns to a

functional unit of the proper type since it has no way of knowing what

functional unit that operation will actually be assigned to. Also, it does not

check to see what effect binding an operation to a particular functional unit will

have on the other functional units that have yet to have operations bound to

them. Furthermore, since initially all of the functional units have no

connections the majority of the operations are assigned to the first functional

unit of the proper type. Thus the first functional unit of each type tends to have

the largest input multiplexers.

3. 7 Control Generation

The next step is the generation of a control unit. The purpose of the

control unit is to determine the configuration of the data path from one control

. step to the next. For the data path being used this simply means determining

the values of the multiplexer select lines as well as the register load lines. As

mentioned earlier the control unit can be designed either using a microcode

ROM or using a finite state machine. This system uses a finite state machine

44

for the controller. Again, it is best to restrict the architecture of the controller

as little as possible.

cntrl cond

Combol

s
t

a

·t

e

F

F'

s

Combo2
outputs

to
data
path

Figure 3-10: Representatiion of the Controller FSM Generated by CaDSS

Figure 3-10 shows the design of the controller used by CaDSS. Combol

and Combo2 are blocks of combinational logic and the state flip flops hold the

present control step number. Combol is used to determine the next control

step. Its inputs are the present control step and cntrl_cond which is the result

of the conditional statement that is presently being evaluated. This is usually a

fairly small logic block in comparison to Combo2. Figure 3-11 shows a small

segment of code broken up into control steps. If v3 > v2 then Combol sequences

through the control steps as follows: eel, cc2, cc3, cc5 and cc6. If v3 :::; v2 then

the sequence is as follows: eel, cc2, cc4, cc5, and cc6. Combo2 determines the

45

configuration of the data path. Each control step will have its own data path

configuration. Combo2 has one output for each register load line and a series of

outputs for each multiplexer select in the data path.

eel

ee2

ee3

ee4

ee5

vl = ia * ib

v2 = vl + ie

v3=v2-vl

v4 = v3 + ia

if v3 > v2 then {

v5 =v4 + v3

v6 =v5 * vl

}

else {

}

v5 = v4 - v3

v6 =v5 * v2

v7 =v5 +v6

v8 = v7 * ie

v9 = v8 - v4

vlO =v7 + v8

,,

Figure 3-11: Schedule of a Code Segment

46

t

The two control files, cntrl.int and combo2.int are all of the files that are

necessary to develop a specification of the logic used to imp!ement Combol and

Combo2. The PLA minimization program ESPRESSO [6], which was developed

at the University of California at Berkely, is used to generate the logic

descriptions. Cntrl.int contains all of the pertinent information needed to

generate combol. The control steps are assumed to change sequentially unless

some form of control statement implies otherwise. These statements are

described in cntrl.int. Cqmbo2.int contains the multiplexer select line settings

as well as the load line settings for each control step. The programs cntrl2esp

and c2toesp conve!t cntrl.int to combol.esin and combo2.int to combo2.esin. The

two .esin files are both in a format that is readable by ESPRESSO. When the

conversions are made the various don't care conditions are converted to an

ESPRESSO readable format also. Samples of the files along with their formats

are in appendix B. ESPRESSO is then used to generate a minimized two level

description of the logic circuits. At the conclusion of this step a design that

implements the functionality of the input algorithm exists.

3.8 Area and Delay Calculations

Now that a design exists that meets the algorithm's functionality it is

necessary to determine whether it meets the area and speed specifications. This

involves several steps. First, the area and the delay of the controller must be

calculated. Second, the area and delay for the data path must be calculated. At

this point it is possible to determine whether or not the design meets the area

requirements. The speed requirements on this system however are based on an

overall expected delay for the execution of the entire algorithm to be

implemented. This will be described in more detail shortly.

The controller area and delay is calculated first. These two costs are, of

47

course, dependent upon how the combinational logic blocks are implemented.

ESPRESSO does a minimization for a PLA. This forces the use of either a PLA

or a two level design with random logic gates. The latter was chosen because of

the availability of information on the AT&T 1.25um standard cell library. It is

assumed that the inputs to the controller have input buffers and the outputs to

the data path use output buffers. Inside the combinational logic blocks only

NAND gates, NOR gates, and inverters are used. The gates have either 2, 3, or

4 inputs. If any gate requires more than 4 inputs it is broken up into several

gates using multiple levels that implement the same function. In general, the

logic is implemented just as a PLA would be implemented with NAND gates

used for both planes. Figure 3-12 shows a combinational logic circuit and how it

would be implemented by CaDSS. When a gate must be broken up because it is

too large the gates that replace it will alternate between NAND and NOR gates.

If it ends up with a NOR gate at the final level then the NOR must be followed

by an inverter.

The program that does the area and delay calculations is combocost. It

uses as its input the ESPRESSO output files combol.spec and combo2.spec as

well as a technology file defining the controller gates, cntrlop.tech. The

technology file contains information about the size of the various gates as well

as their delays. The format of this file can be found in appendix B along with an

example of the file. The delay specification consists of two numbers: a base

delay and a delay factor. The base delay is the delay for a gate with a fanout of

1 and the delay factor is the increase in delay for each additional fanout. Thus

the total delay is calculated as follows:

delay= base_delay + (fanout - 1) * delay_factor.

This formula was determined from the AT&T l.25um standard cell catalogue

48

1
•
• • 2,~.___--

23

24

27
28
29-.___--

30:-D 33-· _ ___.

1
4

5
8
9

17.

21

22

27 •
29:

.___ __

•
• •

Figure 3-12: CaDSS' Implementation of a Combinational Logic Circuit

49

\
\,

which uses standard cells whose published delays apparently increase linearly

with fanout.

Combocost first checks the output of ESPRESSO to see which outputs

have identical functions. It then eliminates the duplicate functions. Once that

is done, it proceeds to break the gates up as described previously and calculates

delays and areas taking fanout into account. The outputs of each combinational

logic block are assumed to have a fanout of 1. The total area and delay of the

combinational logic block is then output to the file stats.spec. See appendix B

for this file.

The next step is to calculate the area of the datapath and add that to

stats.spec. This is done by dparea. It does this by simply adding up the area of

the functional units (functop.tech contains the area for each functional unit).

Interconnect is not taken into account when calculating either the area or the

delay of the data path. T_he delay of the data path was already calculated by

asap and appended to stats.spec. This was done in asap because it was already

necessary for it to keep track of the delays to make sure that the delay of the

data path did not exceed its maximum allowable delay.

Next, the total area of the design and the minimum clock cycle length

must be calculated. This is done by the program exectime. The total area is

simply the area of the datapath plus the two combinational logic circuits plus

the flip flops used to implement the state register in the controller. The clock

cycle length is the delay of the controller (delay of combo 1, combo 2, and the

state flip flops) plus the delay of the data path.

The program exectime also performs one other functi~n, which is, in fact,

its main function. The function is to determine the total execution delay of the
&

_ algorithm. The delay that the synthesis system tries to meet is the delay of the

execution of the total algorithm. In the ftle exec.stats is a list of the loops and

50

eel

cc5

loop 1:

cc6

cc8
if vlO < v20 then {

cc9

cc12
}
else {

cc13

cc20
}

cc21

cc24

if vlOO > vlOl then goto loopl

cc26

cc27

5 cc's

3 cc's

clock cycle = 1 OOns
loop 1 3 times
ifl 0.63

.

3
2.52
2.96

4cc's * 0.63 = 2.52
4

12.48 * 3 = 37.44

8·cc 's *(1-0.63)=2.96

4 cc's

2 cc's
5 + 37.44 + 2 = 44.44 cc's

44.44 * lOOns = 4,444.0 ns
delay

Figure 3-13: Sample Algorithm Block and its Delay as Calculated by CaDSS

the average number of times they are expected to be executed. The loops are

listed in increasing order of their starting points. Also listed in increasing_ order

are the conditional statements if then and if then else. For the conditional

51

statements the probability that the true branch will be executed is given. For
J

loops, the delay of the loop is calculated by multiplying the number of control

steps within the loop by the number of times that loop is executed followed by

the length of the clock cycle. For an if statement, the delay is the number of

control steps needed to execute the contents of the if multiplied by the

probability of its execution multiplied by the clock cycle length. For an if then

else, the delay is the sum of the of probability that the true branch will be

executed multiplied by the number of control steps within it and the probability
•

that the false branch will be executed multiplied by the number of control steps
~

in the false branch. This is again multiplied by the clock cycle length. Figure

3-13 gives a sample algorithm block and its delay.

The reason for calculating the algorithm delay in this manner rather than

simply calculating the length of the clock cycle is that that does not give very

much information about the design's performance. If very few functional units

are used in the data path then the clock cycle may be very short but it will

require many clock cycles to execute the entire algorithm. If many functional

units are used, the length of the clock cycle may be very long but it will then

take relatively few clock cycles to execute the entire algorithm. As a result, the

total time needed to execute the entire algorithm (based on the statistical

information in exec.stats) should give a much more accurate measure of the

design's performance.

52

3.9 Systeni Control

What has been described up to this point are the various programs that

are sequenced through to generate and evaluate a design. What has yet to be

described is the method used to change the design so that it meets the area and

performance criteria. The program that handles this is CaDSS. It uses as its

input files the algorithm file filename.dat and a parameter file filename.prm.

Its job is to sequence through the set of previously described programs changing

the number of functional units on each pass through the sequence.

The first function of this program is to generate the file intermed.dat from

the schedule file. (Intermed.dat is just filename.dat in a form that is easier for

the programs to read.) The various programs are then sequenced through in the

described order. Then the program adds an additional unit and generates a new

design. The functional unit added is the smallest unit. The idea here is to see if

the performance and area can be improved by adding an operator. It makes

sense to add the smallest functional unit first because it adds the least amount

of area to the data path but still has the potential of increasing the speed

because it tends to parallelize the data path. (Remember that it is possible for

the addition of a functional unit to decrease the area of a design because the

resulting controller may be smaller.) If this results in an improvement then

another of this operator is added and the process iterates. This is repeated until

the design passes through several iterations without improvement. The number

of iterations that the design has to pass through without improvement is

specified by the parameter failure_iterations in the .prm file. Once this number

of failing iterations is reached the next smallest functional unit is added and the

process is repeated until all of the functional units have been tried. Each time

the best design is kept. Once all of the functional units have been used the

process restarts from the smallest unit again to see if adding more functional

53

units to the current design can improve it. This continues until one pass

through all of the functional units is made without improving the design or until

a design is reached that meets all the design specifications. The file stats.spec

contains the area and timing information for the current design. A flow chart

can be found in appendix A describing the operation of the program.

The question remains of how it is determined whether or not the present

design is an improvement over the last design. In the past attempts where

made to achieve an optimal design by minimizing a cost function such as:

areaxtime2a O ~a~ 1 ~

Here, however, specific area and time specifications are given and the goal is to

meet those specifications. As a result, a somewhat different approach is taken.

Each time a design is completed CaDSS computes the discrepancy of the area

and delay from the goals. The formulas used are:

pda = (area - spec_area) / spec_area
pdt = (delay - spec_delay) / spec_delay

where pda is the percent deviation of the area and pdt is the percent deviation of

the time (delay). Whichever discrepancy is larger determines what must be

minimized next. Thus if pda is largest then the area must be minimized even if

delay increases somewhat. The formula used to determine the acceptable

discrepancies is:

if pdt > pda
npda - pda + (beta* ((alpha* pdt) - pda))
npdt - pdt

else
npdt - pdt + (beta* (pda - (alpha* pdt)))
npda - pda

54

where npda is the new percent discrepancy in area that will be accepted and

npdt is the new percent discrepancy in time that will be accepted. Alpha is a

factor expressing the relative importance of time over area and beta is a factor

determining how much of the difference between pda and the adjusted pdt will

be added to the next acceptable percent discrepancy. These parameters are

taken from the .prm file. This allows one cost to actually increase if the other

one is further from the goal. How much of an increase is allowed is a function of

the difference between the adjusted pdt and pda. The greater this difference the

larger the allowed increase.

55
< •

\

Chapter4
RESULTS AND CONCLUSIONS

4.1 Results

One of the major problems with high level synthesis systems is the

question of how to verify that they are producing functionally correct designs,

. let alone near optimal designs. The whole purpose of synthesis systems is to

produce a design in a matter of hours that is comparable in quality to a design

that a design team would produce in weeks or months. This makes it very

difficult to check the designs produced by a synthesis system. The only practical

way to test a system is to have it produce an extremely small design and verify

it. Even doing this, the verification process is very time consuming and the

problem of determining the optimality of the design is still difficult at best.

Keeping this in mind, CaDSS was tested in two different ways. First of

all, during the development of the system, each individual program was tested

on several customized input files. This demonstrated the individual

functionality of each of the programs. Secondly, the system as a whole was

tested on several small examples. Based on the results of these tests it was

determined that CaDSS apparently produces functionally correct designs. To
':)

determine how optimal the designs are, however, is very difficult. It would

require accurate information about functional unit sizes and delays that are not

available at this time. The other questions as to how the data path affects the

controller and if, in fact, the addition of a functional unit to the data path can

actually decrease the size of a design by decreasing the complexity of the

controller are harder to answer. It is certainly a fact that adding a functional

unit may decrease the complexity of the controller but as to whether or not the

resulting decrease in the size of the controller will off set the increase in the size

56

..

of the data path is harder to determine. To do this CaDSS would have to be run

on a design that is relatively large (so that the controller itself is of a significant

size). This would make it extremely difficult to verify the functionality of the

design. Also, again, this would require accurate information on the size and

delays of the various functional units and the logic gates used in the controller.

App.endix B contains all.of the input, output, and intermediate files for a sample

run of CaDSS, and includes a diagram of the data path that CaDSS generated.

The algorithm itself does not perform any useful function and should be viewed

only as a demonstration. The algorithm used for this sample run was designed
i~

so as to produce small output and intermediate files so that they could be shown

here. It was also designed to show how CaDSS handles looping and conditional

branches:.

4.2 Limitations

Certain limitations were known about the system before its design was

completed because they were the result of the constraints placed on the design

itself. This includes the use of an intermediate form to describe the algorithm

and the assumption that this form has been pre-optimized and will, thus,

generate an optimized DFG. Other restrictions involve the data path. These

include the restriction to the use of binary operations, the restriction against

using buses, and the use of the same generic bit width for all operations.

Though these are significant limitations, they were and are considered to be

irrelevant to the purpose of CaDSS, namely to provide a prototype high level

synthesis system that takes both the data path and the controller into account.

There were, however, a number of problems that showed up after the

design was completed and tested that are quite relevant to the purpose of

CaDSS. Two of these problems involve the algorithm that sequences through

57

the various programs. It is subject to two significant problems, the first one

involving the quality of the results and the second involving the time needed for

execution. The first problem involves getting stuck in local minima. It is

possible that during the process of adding functional units, a design is reached

that is minimal (in either time or area) compared to all of the designs around it

but is not an overall minimum (optimum) design. In other words, unless a very

large number of functional units are added or an exceptionally large increase in

either area or delay is accepted there may be no way to reach the optimal

design. There are two ways that CaDSS can overcome this problem. They are

increasing the failure iterations parameter or increasing the beta parameter.

However, the result of increasing either of these parameters, especially the

failure iterations, is an increase in the number of design iterations and

consequently an increase in the CPU time needed to find a good design.

Furthermore, the ideal value -of those parameters will likely change from one

input algorithm and from one technology file to another. There is no way to

determine exactly what those parameters should be.

The second problem involves the speed of the algorithm. The algorithm

that controls the sequencing of the program is iterative in nature. It will likely

iterate through the design process dozens of times for even an extremely small

design and possibly hundreds of times for a large design. This can be very time

consuming, especially if one or :more of the programs it must sequence through

requires a large amount of CPU time. Unfortunately, one of the programs is

slow even on small designs. ESPRESSO must be run twice; once to generate

combol and once to generate combo2. Combo2 is generally much larger than

combol and requires more CPU time. For the test algorithms used so far

ESPRESSO accounts for well over 50 percent of the CPU time required for each

pass. That means that, at least for small designs, ESPRESSO is extremely

58

costly in terms of CPU time. What is not known, however, is how the time

required for ESPRESSO to minimize a two level design increases with the

number of functions it must minimize. It is possible that after a point the

addition of more functional units does not cause a significant increase in the run

time of ESPRESSO.

Unfortunately, there are other problems associated with the use of

ESPRESSO. ESPRESSO is a PLA minimization program and, as a result, it

can only be used to minimize logic functions for a two level implementation. In

general, however, a two level implementation is neither the smallest

implementation of a combinational logic block nor, due largely to fanout induced

delays, the fastest implementation. As a result, the controller that is designed

by CaDSS is itself not optimal in terms of area or speed.

There are, of course, numerous other limitations on CaDSS' performance.

These limitations are, however, more tradeoffs between the ease of the design of

CaDSS and its ability to produce good designs than they are flaws in its

methods of operation. They are decisions such as the use of a modified ASAP

scheduling algorithm rather than a true list scheduling algorithm. Also, the

algorithm used to perform data path allocation, though relatively simple,

certainly does not obtain optimal results. Ideally, scheduling, allocation, and

module binding should .be performed simultaneously for the best results.

Exploring all three simultaneously without using an absolutely unreasonable

amount of CPU time is, however, difficult at best. As can be seen, these short

comings do not reflect flaws in the general approach of CaDSS.

59

4.3 Future hnprovements

There would appear to be two critical problems with the approach to high

level synthesis taken by the CaDSS system. They are the use of ESPRESSO

and the iterative nature of the algorithm that sequences through the various

programs. ESPRESSO presents a problem with its ability to effectively

minimize the combinational logic both in terms of area and speed as well as

potentially presenting problems with the amount of CPU time that it requires.

The iterative nature of the main controlling algorithm of CaDSS presents a

problem due to the inherently large amount of CPU time it requires.

The inability of ESPRESSO to minimize delays through combinational

logic and its limitation to two level logic can easily be corrected. There have

been attempts to develop systems that minimize multilevel logic blocks to meet

both timing and area constraints. These include Socrates [16] and more

recently MIS. [14] Using these systems would, however, make the problems of

the CaDSS' run time even worse. It would appear that ESPRESSO already

causes problems with the amount of CPU time it requires. MIS and Socrates

will almost certainly require even more CPU time because of the inherently

more complex nature of the problem that they attempt to solve.

There are other methods that might be employed to reduce the CPU time

the system requires to produce a design. One obvious solution is to modify the

system so that it can produce a design in one pass through the design process.

It is probably possible to produce a good data path design in one pass through

the design process but to be able to optimize both the data path and the

controller in that way is nearly impossible at this time. As explained earlier,

the design of the controller relies completely on the data path design and, as a

result, the controller cannot be completely specified until the data path design is

completed. Further, it is not known exactly how the data path design affects the
(

60

controller. These two facts suggest that until more is known about how the data

path affects the controller (if in fact that can be generalized at all) that an

iterative design pyocess is necessary if the controller is to be taken into account.

That suggests another method of improving the system. Since it would

seem that the minimization of the combinational logic for the controller uses a

significant percentage of the CPU time required by the system that some

method could be used to minimize that time. There are two possible approaches

to this problem. The obvious one would be to develop faster logic minimization

algorithms. These are problems that have been worked on for some time and

are currently being worked on by various groups. The second approach would

be not to generate the combinational logic during each pass but rather to simply

estimate its size. When a design is chosen the combinational logic could then be

generated that one time. Again, the problem here is to develop the algorithms

to do this.

4.4 Sum.mary

This thesis presented a prototype high level synthesis system (CaDSS).

The purpose of such a system is to take a behavioral (algorithmic) description of

a chip and produce a register transfer level description of the chip. What sets

this system apart from other high level synthesis systems that have been

developed so far is that it attempts to take into account the effects that the data

path has on the controller. That is, it attempts to find what effects an increase

in the size of·the data path has on the size and speed of the controller. It also

defines the speed of the chip in terms of the total execution time of the

algorithm rather than in terms of the clock cycle length.

CaDSS consists of a series of programs written in the C programming

language. (These programs are kept on file in Lehigh University's Computer

61

Science and Electrical Engineering Department.) The progTams perform a

series of task,s including scheduling of operations, determining the lifetimes of

variables, register allocation, data path allocation and module binding, and

control generation. Several iterations are made through the design process.

Each iteration adds an additional functional unit to the data path. The process

is completed when either the area and timing requirements are met or no

improvements are made to the design by the addition of a given number of

functional units.

The CaDSS system was found to produce functionally correct designs.

The approach taken appears to be valid but has some inherent difficulties most

of which involve the amount of time the system requires to run to completion.

The goal of minimizing control along with the data path would benefit high level

synthesis systems by producing designs that are both smaller and faster and, as

a result, more research in this area would be beneficial.

62

Appendix A
SYSTEM FLOW DIAG S

A.I CaDSS SYSTEM FLOW CHART

TRUE

BEGIN

generate
intermed.dat

current f.u. = smallest
inner_loop_improve =
FALSE

sequence through design
steps and calculate
descrepancies from area
and time goals

YES .--------.

END

inner_loop_
'>---I-- •

add
t--___.,.. current Improve=

functional
unit

TRUE

YES add next smallest
functional unit

* The design is always assumed
to be improved on the first
pass through the design
process

63

A.2 SYSTEM FILE STRUCTURE

The following two pages are a representation of the file structure used by

CaDSS. Ellipses represent input and output files. The heavy lined ellipses are

user generated input files. The lighter lined ellipses are generated by CaDSS.

The rectangles represent the various programs within the system.

64

CADSS

intermed. dat

ASAP

GENLIFE

lifetimes.int

REGAL

regassign.int

CNTRL2ESP DPG

combol.esin datapath.spec combo2.int

C2TOESP

combo2.esin

65

combo 1.esin combo2.esin

ESPRESSO

combo2.spec

COMBOCOST

data path. spec

DPAREA

cntrl.int stats.spec

EXECTIME

exec.stats stats.spec . ·

infile.dat

CADSS

-' .
/'

66

"

A.3 FLOW CHART FOR ASAP (SCHEDULER)

schedule the
DFG

delete DFG

· output variable
infonnation

replace labels
in control
construct with
control steps

output control
information

END

YES

BEGIN

read
functop. tech

read a line
from data files

NO

YES~----

NO

graph the
line

update
information
on variables

67

update
control
inf onnation

schedule
DFGand
output the
schedule

delete the
DFG

...

\
\

A.4 FLOW CHART FOR DPG (DATA PATH GENERATOR)

generate info. for
final control step

output data path
specification

END

BEGIN

read in
varassign.int

read in
re gassign.int

read in tech file
and data for # of
functional units

read in line from
sched. file

YES

YES

allocate node to
functional unit

go to next node

NO

68

NO

YES

NO

graph
line

l

find don't car
load lines

output control

clearDFG

....

•

,;

AppendixB
INPUT OUTPUT FOR A

SAMPLE RUN

B.1 TESTSCHED11.DAT

This is the primary input file for a sample run of CaDSS. It was designed

primarily for demonstration purposes and does not implement a useful

algorithm. It was chosen for the small size of the resulting intermediate and

output files. Furthermore, it demonstrates the way in which CaDSS

implements looping structures and conditional branches.

format:

#elk _per num

#op num

;this is a number representing
;a pseudo clock cycle length
;optional specification of the
;initial number of each type of
;functional unit

The rest of the file contains the algorithm. For this example, the algorithm is:

#c1k_per 40.0
vl .

* ib - ia -
v2

.
+ id - J.C -

v3 id +
. - ie -

vl ih vl --
loopl:

v4 = vl * v3
vs = v4 and v2
if vs > v4 then {

v6 -- vs - v4
v7 - v6 * v4 -
v8 - v7 - - v2

}
else {

v6 - vs + v4 -
v7 - vs - - v2
v8 - v7 * v6 -

}

69

~"-0
1

j

v9 = v8 - v6
vlO = v9 + v7
vll = v10 * ib
v12 = vlO - v2

if v12 > vlO goto loopl
v13 = v12 + vll
v14 = v13 + vlO
v15 = v14 - v6
v16 = v13 * v14

70

,,, I

B.2 TESTSCHED11.PRM

This is an input file that specifies the various control parameters used by

CaDSS.

alpha 1.2
beta 0.8
max area 800000.5 -max delay 2900.5 -failure iterations 2 -

B.3 FUNCTOP.TECH

This is the functional unit technology file. It lists all of the functional

units that CaDSS has available to use in its design process. Each unit is

described by a symbol, its delay, whether or not it is a commutative operator,

and by its area.

format:

#£unct units num -
reg delay area
fu delay c area

#funct units 5 -reg 5.0 42250.0

;number of types of £.u.'s
;delay and area for a register
;functional unit, its delay, its
; area, and c for comrnutative or n
;if not

+ 5.0 C 63375.0
- 5.0 n 71825.0
and 1.0 C 16900.Q
* 20.0 C 226562.5
> 5.0 n 60153.2

71

. ., .

'<

. .

B.4 CNTRLOP.TECH

· This is the control unit technology file. The control unit is restricted to

the use of a handful of gates. These are input and output buffers, registers,

inverters, and nand and nor gates of various sizes. Each gate is described by its
'

number of inputs, its area, its delay for a fanout of 1, and a factor used in

calculating the delay for larger fanouts.

format:

op si~e~base_delay delay_factor area

inbuff 1 2.98 0.6678 1024.3
inrb 1 2.01 0.5678 528.125
nd 2 2.29 0.7933 792.188
nd 3 2.75 1.1378 1056.25
nd 4 3.02 1.5267 1320.3125
nr 2 2.04 1.31 792.188
nr 3 2.53 2.0356 1056.25
nr 4 3.73 2.5889 1320.313
outbuff 1 4.00 3.01 2500.221
creg 5.0 5545.3125

B.5 EXEC.STATS

This file lists each loop or if statement. The letter 1 specifies a loop. The

first number is the loop number counting from the top and the second number is

the average number of times that loop is executed. The letter i specifies an if or

an if then else statement. The first number is the number of the if statement

counting from the top of the file and the second number is the percentage of the

time that the true branch of the if is executed.

1 0 8
i O 0.25

72

B.6 INTERMED.DAT

This file has the same general format as the input data file. The only

difference is that the various parameters are a set number of spaces apart. This

simply makes it easier for CaDSS to change their values.

#and 1
#> 1
#+ 2
#- 1
#* 1
#clk_per 40.000000
vl = ia * ib
v2 = ic + id
v3 =id+ ie
vl = ih - vl
1oopl:

v4 = vl * v3
vS = v4 and v2
if v5 > v4 then {

v6 = v5 - v4
v7 = v6 * v4
v8 = v7 - v2

}
e1se

v6
v7
v8

}

{
--
--
--

vs + v4
v5 v2
v7 * v6

v9· = v8 - v6
vlO = v9 + v7
vll = vlO * ib
v12 = vlO - v2

if v12 > vlO goto
v13 - v12 + vll -
v14 - vl3 + vlO -
v15 - v14 - v6 -
v16 - v13 * v14 -

loopl

73

B. 7 INTERMED.OUT

This is an intermediate file generated by asap that specifies which

operations are to be performed in each control step.

-o,·
"' ,/

Each line of this file has the format:

var3 = var2 op varl

and #cc n is spe~ifies the control step that the operations
that follow have been scheduled into.

#cc 1
vl •

* ib - ia -
v3 id +

. - ie -
v2

.
+ id - .l..C -

vl - ih - vl -
#cc 2
v4 = vl * v3
vS = v4 and v2
cntrl cond = vS > v4 -
#cc 3
v6 = vS - v4
v7 = v6 * v4
#cc 4
v8 = v7 - v2
#cc 5
v7 = vS - v2
v6 = vS + v4
v8 = v7 * v6
#cc 6
v9 = v8 - v6
vlO = v9 + v7
vll = vlO * ib
#cc 7
v12 = vlO - v2
cntrl cond = v12 -
#cc 8
v13 - v12 + vll -
v14 - v13 + vlO -
v16 - v13 * v14 -
vlS - v14 - v6 -

> vlO

74

B.8 CNTRL.INT

This file is generated by asap. It contains information about the control

structures within the algorithm and the control steps in which they occur. The

first line of the file gives that total number of control steps. The subsequent

lines have one of the following 4 formats:

c ift var 1 cond var2 f c

c ifte varl cond var2 fc end

c iftg.varl cond var2 g

c goto g

These four formats correspond respectively to the following four

statements: if then, if then else, if then goto, and goto. The letter c corresponds

to the control step in which the control construct is first ehcountered. fc is the

first control step executed ·if the test fails. end is the next state following an if

then else construct. g is the state that control is passed to by an if then goto or a

goto control construct.

#numstates 8
2 ifte vS > v4 5 6
7 iftg v12 > vlO 2

75
·1,

'

. I·

·1

•it;.

B.9 LIFEDAT.INT

This file is generated by asap and contains information used to fmd the

lifetimes of all of the variables. The first line gives the number of states. Each

subsequent line starts with a variable name fallowed by a sequence of number

pairs. The first number is either a O or a 1 and the second number represents a

control step. If the first number is a 1 then the variable was defined in the

specified control step. If it is a O then the variable was simply accessed in the

specified control step. Only the last access of a variable before a definition is

listed. Also external inputs are always followed by the pair: 0 0.

#states 8
.

0 0 ia
ib 0 0
vl 1 1 0 1 1 1 0 2
• 0 0 l.C

id 0 0
v2 1 1 0 7
.

0 0 ie
v3 1 1 0 2
ih 0 0
v4 1 2 0 5
vs 1 2 0 5
cntr1 cond 1 2 1 7 -
v6 1 3 0 3 1 5 0 8
v7 1 3 0 4 1 5 0 6
v8 1 4 1 5 0 6
v9 1 6 0 6
vlO 1 6 0 8
vll 1 6 0 8
v12 1 7 0 8
v13 1 8 0 8
v14 1 8 0 8
vlS 1 8
v16 1 8

76

·,

..

B.10 LIFETIMES.INT

The file is generated by genlife. It contains a listing of all of the variables

and their lifetimes. The first line specifies the number of control steps. The

subsequent lines start with a variable name which is followed by a series of

number pairs. Each pair specifies the control steps in which the variable is born

and in which it dies.

#states 8
. 0 0 ia
ib 0 0
vl 1 7
.

0 0 ic
id 0 0
v2 1 7
.

0 0 ie
v3 1 7
ih 0 0
v4 2 5
vs 2 5
cntrl cond 2 2 7 7 -
v6 3 8
v7 3 6
v8 4 6
v9 6 6
vlO 6 8
vll 6 8
v12 7 8
v13 8 8
v14 8 8
vlS 8 8
v16 8 8

77 -~
'

B.11 REGASSIGN.INT

This file is generated by genlife. It lists each register. For each register

information regarding the variables it holds and their lifetimes are given. The

first two lines specify the number of registers and the number of control steps.

The subsequent lines first specify a register. Then for that register each

variable that is assigned to it along with the control steps for which it is

assigned are listed.

#regs 8
#states 8
reg 0
vl 1 7
reg 1
v2 1 7
reg 2
v3 1 7
reg 3
v4 2 5
vlO 6 8
reg 4
vs 2 5
vll 6 8
reg 5 I
v6 3 8
reg 6
v7 3 6
v12 7 8
reg 7
v8 4 6

\

78

B.12 V ARASSIGN.INT
,
'

This file lists each variable the register it is assigned to and the control

steps for which it is assigned to that register. The first two lines again specify

the number of registers and the number of control steps. Each of the

subsequent lines starts with a variable name and is followed by a trio of

numbers. The first number specifies the register that the variable is assigned to

and the remaining two numbers specify the lifetime for which it is assigned to .

that register. If the first number is a -1, it was not necessary to assign that

variable to a register.

#regs 8
#states 8
ia -1 1 8
ib -1 1 8
vl O 1 7
ic -1 1 8
id -1 1 8
v2 1 1 7
ie -1 1 8
v3 2 1 7
ih -1 1 8
v4 3 2 5
vs 4 2 5
cntr1 cond -1 1 8 -
v6 5 3 8
v7 6 3 6
v8 7 4 6
v9 -1 0 0
vlO 3 6 8
vll 4 6 8
v12 6 7 8
v13 -1 0 0
v14 -1 0 0
vl5 -1 0 0
v16 -1 0 0

79

B.13 DATAPATH.SPEC

This file is generated by the program dpg. It describes the data path

generated by CaDSS. The first line specifies the total number of functional

units. For the subsequent lines, a '#' starts the description of a functional unit

type by giving the number of functional units of that type. For registers that is

followed by the number of each register along with the number of inputs that is
j

has. Then the inputs to the mux that go into each register are specified starting

with the input that is selected by a O at the mux select line. For other

functional units, the number of left and right inputs are specified and then

listed on the subsequent lines.

#num func units: 5 - -
#reg 8
reg O num inputs: 1 -
inputs: - 0
reg 1 num inputs: 1 -
inputs: + 0
reg 2 num inputs: 1 -
inputs: + 1

(

reg 3 num inputs: 2 -
inputs: * 0 + 0
reg 4 num inputs: 2 -inputs: and O * 0
reg 5 num inputs: 2 -
inputs: - 0 + 0
reg 6 num inputs: 2 -
inputs: * 0 - 0
reg 7 num inputs: 2 -
inputs: - 0 * 0
#cntr1 cond num inputs: 1 - -
inputs: > 0
#+ 2
+ 0 num 1 inputs: 3 num r inputs: 3 - - - -
left inputs: id reg 3 reg 6 -right inputs: ic reg 4 - 0 -+ 1 num 1 inputs: 2 num r inputs: 2 - - - -
left inputs: ie reg 3 -right inputs: id+ 0 -#- 1
- 0 num 1 inputs: 6 num r inputs: 4 - - - -left inputs: ih reg 4 reg 6 reg 7 reg 3 + 1 -right inputs: * 0 reg 3 reg 1 reg 5 -

80

\

#and 1
and O num 1 inputs: 1 num r inputs: 1 - - - -
left inputs: reg 1 -
right inputs: * 0 -#* 1
* 0 num 1 inputs: 5 num r inputs: 4 - - - -
left inputs: ib reg 2 reg 3 + 0 + 1 -
right inputs: ia reg O - 0 + 0 -
#> 1
> 0 num 1 inputs: 2 num r inputs: 2 - - - -
left inputs: and O - 0 -
right inputs: * 0 reg 3 -

81

id r3 r6 ic r4 - ie r3 id +O. ih r4 r6 r7r3+ 1 * r3 rl r5 ib r2 r3+o + 1 iarO -+o

rl and - * r3
*

cntrl cond

+O +1 * +O and* - +O * - - *

tO rl r2 r3 r4 r5 r6 r7

' ' ' '

B.15 COMB02.INT

This file is generated by dpg. It specifies the control line settings for the

multiplexors and registers in the data path. The first line specifies the number

of control steps. Each #cc line specifies the control step that is to be described.

Each line describes the configuration of one functional unit or register. For

example, the line:

+ 0 l_mux_sel: 0 r_mux_sel: 1

says that adder number O should have a O at its left mux select line and a 1 at

its right mux select line. Registers only have one mux but they use load to

determine whether they should be loaded (1) or not (0) during the current

control step. Note that a -1 specifies a don't care condition.

#num states: 8 -#cc 1
reg 0 load: 1 mux sel: 0 -reg 1 J.oad: 1 mux sel: 0 -
reg 2 load: 1 mux sel: 0 -
reg 3 J.oad: -1 mux sel.: -1 -
reg 4 J.oad: -1 mux sel: -1 -
reg 5 J.oad: -1 mux sel: -1 -reg 6 1oad: -1 mux sel.: -1 -reg 7 load: -1 mux sel: -1 -cntr1 cond mux select -1 ~ - - \

+ 0 1 mux se1: 0 r mux sel: 0 - - - -
+ 1 1 mux se1: 0 r mux sel: 0 - - - -- 0 1 mux seJ.: 0 r mux sel: 0 - - - -
and 0 1 mux sel: -1 r mux se1: -1 - - - -
* 0 1 mux se1: 0 r mux seJ.: 0 - - - -
> 0 1 mux se1: -1 r mux sel: -1 - - - -#cc 2
reg 0 J.oad: 0 mux sel: -1 -reg 1 load: 0 mux sel: -1 -reg 2 load: 0 mux sel: -1 -
reg 3 load: 1 mux sel: 0 -reg 4 load: 1 mux sel: 0 -reg 5 load: -1 mux sel: -1 -
reg 6 load: -1 mux sel: -1 -·reg 7 load: -1 mux sel: -1 -

83

cntrl cond mux select 0 - -+ 0 1 mux sel: -1 r mux sel: - - - -+ 1 1 mux sel: -1 r mux sel: - - - -
- 0 1 mux sel: -1 r mux sel: - - - -
and O 1 mux se1 : 0 r mux sel: - - - -* 0 1 mux sel: 1 r mux sel: 1 - - - -> 0 1 mux sel: 0 r mux sel: 0 - - - -
#cc 3
reg O load: 0 mux sel: -1 -reg 1 load: 0 mux sel: -1 -
reg 2 load: 0 mux sel: -1 -
reg 3 load: 0 mux sel: -reg 4 load: 0 mux se1: -
reg 5 load: 1 mux sel: -
reg 6 load: 1 mux sel: -reg 7 load: -1 mux sel: -
cntrl cond mux select -1 - -

-1
-1
0
0
-1

+ 0 1 mux sel: -1 r mux sel: - - - -+ 1 1 mux sel: -1 r mux sel: - - - -
- 0 1 mux sel: 1 r mux sel: - - - - 1
and O 1 mux sel : -1 r mux sel: - - - -* 0 1 mux sel: 2 r mux sel: 2 - - - -

-1
-1
-1

0

-1
-1

> 0 1 mux sel: -1 r mux sel: -1
#cc
reg
reg

- -
4
0 load:
1 load:

reg 2 load:
reg 3 load:
reg
reg
reg

4 load:
5
6

load:
load:

- -
0 mux sel: -1 -
0 mux sel: -1

mux sel: -1 -
mux sel: -1 -
mux sel: -1 -

0
0
0
0
0

mux sel: -1 -
mux sel: -1 -

reg 7 load: 1 mux sel: 0 -cntrl cond mux select -1 - -+ 0 1 mux sel: ~1 r mux sel: - - - -+ 1 1 mux sel: -1 r mux sel: - - - -
- 0 1 mux sel: 2 r mux sel: 2 - - - -

-1
-1

-1

and O 1 mux sel : -1 r mux sel: -1 - - - -* 0 1 mux sel: -1 r mux sel: -1 - - - -> 0 1 mux sel: -1 r mux sel: - -
#cc 5
reg O load:
reg 1 load:
reg 2 load:
reg 3 load:

load:
load:

-
0 mux sel: -
0 mux sel:
0
0
0
1

mux sel: -mux sel: -
mux sel: -mux sel: -

reg 4
reg 5
reg 6
reg 7
cntrl

load: 1 mux sel: -load: 1 mux se1: -cond mux select -1 - -

-
-1
-1
-1
-1
-1
1
1
1

84

-1

+ 0 1 mux sel: - -+ 1 1 mux sel: - -
- 0 1 mux sel: - -

'1
-1
1

and O 1 mux sel: - -* 0 1 mux sel: 3 - -

r mux sel: - -r mux sel: - -
1
-1

r mux sel: 2 - --.1 r mux sel : - -r mux sel: 2 - -> 0 1 mux sel: -1 r mux sel: -1 - - - -#cc 6
reg O load: 0 mux sel: -reg 1 load: 0 mux sel: -reg 2 load: 0 mux sel: -reg 3 load: 1 mux sel: -reg 4 load: 1 mux sel: -reg 5 load: 0 mux sel: -reg 6 load: 0 mux sel: -

-1
-1
-1
1
1
-1
-1

reg 7 load: 0 mux sel: -1 -cntrl cond mux select -1 - -+ 0 1 mux sel: 2 r mux sel: - - - - 2
+ 1 1 mux sel: -1 r mux sel: -1

r mux sel: 3
- - - -- 0 1 mux sel: 3 - - - -and O 1 mux sel: -1 r mux sel: - - - -* 0 1 mux sel: 0 r mux sel: 3 - - - -> 0 1 mux sel: -1 r mux sel: -1 - -#cc 7

reg 0
reg 1
reg 2

load:
load:
load:

- -
0 mux sel: -1 -0 mux sel: -1 -
0 mux sel: -1

reg 3 load: 0 mux sel: -1 -reg 4 load: 0 mux sel: -1 -reg 5 load: 0 mux sel: -1 -reg 6 load: 1 mux sel: 1 -reg 7 load: -1 mux sel: -1 -cntrl cond mux select 0 - -+ 0 1 mux sel: -1 r mux sel: - - - - -1
+ 1 1 mux sel: -1 r mux sel: -1

r mux sel: 2
- - - -- 0 1 mux sel: 4 - - - -

-1

-1

and O 1 mux sel: -1 r mux sel: -1 - - - -* 0 1 mux sel: -1 r mux sel: -1 - - -> 0 1 mux sel: 1, r mux sel: 1
#cc
reg
reg
reg
reg
reg
reg
reg

- - - -8
0 load: -1 mux sel: -1 -1 load: -1 mux sel: -1 -load: -1 mux sel: -1 -2
3 load: 0 mux sel: -1 -4 load: 0 mux sel: -1 -5 load: 0 mux sel: -1 -6 load: 0 mux sel: -1 -reg 7 load: -1 mux sel: -1 -cntrl cond mux select -1 - -+ 0 1 mux sel: 2 r mux se1:
-\ - - -

85

1

/

+ 1 1 mux sel: 1 r mux se1: 1 - - - -- 0 1 mux sel: 5 r mux se1: 3 - - - -
and 0 1 mux sel: -1 r mux sel: -1 - - - -
* 0 1 mux sel: 4 r mux se1: 3 - - - -
> 0 1 mux sel: -1 r mux sel.: -1 - - - -

B.16 COMB01.ESIN

This is a description of combinational unit number 1 (combo 1) that is in

an ESPRESSO readable input format.

#combinationa1 circuit number 1
.i 4
.o 3
.i1b ps 2 ps 1 ps O cntrl. cond - - - -
.ob ns 2 ns 1 ns 0 - - -
.type fr
0000 001
0001 001
0010 100
0011 010
0100 011
0101 011
0110 101
0111 101
1000 101
1001 101
1010 110
1011 110
1100 111
1101 001
1110 111
1111 111
.e

86

'\,,

~-. ~~~

I

B.17 COMB02.ESIN

This is a description of combinational circuit number 2 (combo 2) that is in

an ESPRESSO readable input format.

#combination circuit 2
.i 3
.o 31
.type fr
.ilb s2 sl sO
.ob load regO load regl load reg2 reg3 0 load reg3 - - - - -reg4 0 load reg4 reg5 0 load regs reg6 0 load reg6 - - - - - -reg7 0 load reg7 +o 1 1 +o 1 0 +0 r 1 +or O +1 1 0 - - -- -- -- -- --+1 r O -0 1 2 -0 1 1 -0 1 0 -0 r 1 -0 r O *O 1 2 -- -- -- -- -- -- --*O 1 1 *O 1 0 *Or 1 *Or O >0 1 0 >0 r 0 - - - - - - - - - -.type fr
000 111----------0000000000000000--
001 0000101-----------------0010100
010 ooo-o-00101--.------0010101010--
011 000-0-0-0-001------01010-------
100 000-0-01111110101--0011001110--
101 0001111-0-0-01010--0111100011--
110 000-0-0-011--------10010-----11
111 ----0-0-0-0--1001111011110011-
.e

87

...

- -

B.18 COMB01.SPEC

•

This is the ESPRESSO output that describes the minimized combo 1.

#combinational circuit number 1
.i 4
.o 3
.ilb ps 2 ps 1 ps O cntrl cond - - - -.ob ns 2 ns 1 ns 0 - - -
.p 8
010- 010
-011 010
11-0 110
10-- 100
--10 100
1-1- 010
--0- 001
-11- 101
.e

88

B.19 COMB02.SPEC

This is the ESPRESSO output the describes the minimized combo2.

#combination circuit 2
.i 3
.o 31
.i1b s2 sl sO
.ob load regO load regl load reg2 reg3 0 load reg3 - - - - -

reg4 0 load reg4 regs O load regs reg6 0 load reg6 - - - - - -
reg7 0 load reg7 +o 1 1 +o 1 0 +or 1 +or O +1 1 0 - - -- -- -- --- --
+1 r O -0 1 2 -0 1 1 -0 1 0 -0 r 1 -0 r O *O 1 2 - - - - - - - - - - - - - -*O 1 1 *O 1 0 *Or 1 *Or O >0 1 0 >0 r 0 - - - - - - - - - - - -

.p 8
000 1110000000000000000000000000000
100 0000000010000000000001000000000
11- 0000000000000000100100001000000
-01 0000101000000001000010000000100
0-1 0000000000001000000010100010000
010 0000000010100000000001010101000
1-1 0001010000000100011001110001100
1-0 0000000101111010100000100111011
.e

89

B.20 STATS.SPEC

This is the output file that describes the specifications met by the current . ().

data path. It gives the data path delay, the area and delay of the combinational

logic units, the data path area, the design's total area, the minimum length of

the clock cycle, and the total execution delay.

data_J?ath_delay: 35.000000
combol: area: 21368.175781 delay: 13.887800
combo2: area: 67213.046875 de1ay: 21.539600
data_J?ath_area 840190.687500
total area: 945407.875000 -clock cyc1e time: 75.427399 - -total execution delay: 2715.386353 - -

B.21 CADSS.OUT

This is the screen output of CADSS listing the the number of functional

units used in each pass and the resulting delay and area estimates.

pass: 1
trying: and 1 > 1 + 1 - 1 * 1
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp

l

espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 925612.687500

0.165864
best operator: and 1

delay: 3381.589600 pda: 0.157015 pdt:

90

pass: 2
trying: and 2 > 1 + 1 - 1 * 1
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 942512.687500 delay: 3381.589600 pd.a: 0.178140 pdt:

0.165864
best operator: and 1
pass: 3
trying: and 3 > 1 + 1 - 1 * 1
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 959412.687500 delay: 3381.589600 pd.a: 0.199265 pdt:

0.165864
best operator: and 1
pass: 4
trying: and 1 > 2 + 1 - 1 * 1
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 985765.875000 delay: 3381.589600 pd.a: 0.232207 pdt:

91

0.165864
best operator:> 1
pass: 5
trying: and 1 > 3 + 1 - 1 * 1
asap
gen1ife
rega1
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1045919.125000 de1ay: 3381.589600 pd.a: 0.307398 pdt:

0.165864
best operator:> 1
pass: 6
trying: and 1 > 1 + 2 - 1 * 1
asap
genlife
regal
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 945407.875000 delay: 2715.386475 pda: 0.181759 pdt:

-0.063821
best operator:+ 2
pass: 7
trying: and 1 > 1 + 3 - 1 * 1
asap
gen1ife
rega1
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea

92
•

exectime
area: 1008782.875000 delay: 2715.386475 pd.a: 0.260978 pdt:

-0~063821
best operator:+ 2
pass: 8
trying: and 1 > 1 + 4 - 1 * 1
asap
genlife
regal
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1072157.875000 delay: 2715.386475 pd.a: 0.340197 pdt:

-0.063821
best operator:+ 2
pass: 9
trying: and 1 > 1 + 2 - 2 * 1
asap
ge.nlife
regal
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1053549.750000 delay: 1981.446899 pd.a: 0.316936 pdt:

-0.316860
best operator: - 1
pass: 10
trying: and 1 > 1 + 2 - 3 * 1
asap
genlife
regal
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol

93

combocost combo2
dparea
exectime
area: 1125374.750000 delay: 1981.446899 pd.a: 0.406718 pdt:

-0.316860
best operator: - 1
pass: 11
trying: and 1 > 1 + 2 - 1 * 2
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1171970.375000 delay: 2715.386475 pd.a: 0.464962 pdt:

-0.063821
best operator: * 1
pass: 12
trying: and 1 > 1 + 2 - 1 * 3
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1398532.875000 delay: 2715.386475 pda: 0.748165 pdt:

-0.063821
best operator: * 1
pass: 13
trying: and 1 > 1 + 2 - 1 * 1
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp

94

espresso combo2
combocost combol
combocost combo2
dparea
exectime

' ,

area: 945407.875000 de1ay: 2715.386475 pd.a: 0.181759 pdt:
-0.063821

best operator: and 1
pass: 14
trying: and 2 > 1 + 2 - 1 * 1
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 962307.875000 delay: 2715.386475 pda: 0.202884 pdt:

-0.063821
best operator: and 1
pass: 15
trying: and 1 > 2 + 2 - 1 * 1
asap
gen1ife
regal
dpg
·cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1005561.062500 delay: 2715.386475 pd.a: 0.256951 pdt:

-0.063821
best operator:> 1
pass: 16
trying: and 1 > 3 + 2 - 1 * 1
asap
genlife
regal
dpg
cntrl2esp

95

e~presso ,,_combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1065714.250000 de1ay: 2715.386475 pd.a: 0.332142 pdt:

-0.063821
best operator:> 1
pass: 17
trying: and 1 > 1 + 3 - 1 * 1
asap
gen1ife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime

,,

area: 1008782.875000 delay: 2715.386475 pd.a: 0.260978 pdt:
-0.063821

best operator:+ 2
pass: 18
trying: and 1 > 1 + 4 - 1 * 1
asap
gen1ife
regal
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime.
area: 1072157.875000 delay: 2715.386475 pd.a: 0.340197 pdt:

-0.063821
best operator:+ 2
pass: 19
trying: and 1 > 1 + 2 - 2 * 1
asap
genlife
regal

96

dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
com.bocost combol
combocost combo2
dparea
exectime
area: 1053549.750000 de1ay: 1981.446899 pd.a: 0.316936 pdt:

-0.316860
best operator: - 1
pass: 20
trying: and 1 > 1 + 2 - 3 * 1
asap
genlife
rega1
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1125374.750000

-0.316860
best operator: - 1
pass: 21

de1ay: 1981.446899 pd.a: 0.406718 pdt:

trying: and 1 > 1 + 2 - 1 * 2
asap
genlife
rega1
dpg
cntr12esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1171970.375000 de1ay: 2715.386475 pda: 0.464962 pdt:

-0.063821
best operator:* 1
pass: 22
trying: and 1 > 1 + 2 - 1 * 3
asap

97

.... :iO -

)
'

genlife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
area: 1398532.875000 delay: 2715.386475 pd.a: 0.748165 pdt:

-0.063821
best operator: * 1
asap
genlife
regal
dpg
cntrl2esp
espresso combol
c2toesp
espresso combo2
combocost combol
combocost combo2
dparea
exectime
unable to meat both area and time criteria.
This information can be found int stats.spec.

'

98

REFERENCES
1. M. C. McFarland, S.J. and T. J. Kowalski. Assisting the DAA: The Use of
Global Analysis in an Expert System. AT&T Bell Laboratories, October 1986.

2. C. Y. Hitchcock III and D. E. Thomas. A Method of Automatic Data Path
Synthesis. Proceedings of the 20th Design Automation Conference, Miami
Beach, Florida, 1983, pp. 484-489.

3. T. J. Kowalski and D. E. Thomas. The VLSI Design Automation Assistant:
What's in a Knowledge Base. Proceeding of the 22nd Design Automation
Conference, Las Vegas, Nevada, 1985, pp. 252-258.

4. B. M. Pangrle and D. D. Gajski. "Design Tools for Intelligent Silicon
Compilation". IEEE Transactions on Computer-Aided Design CAD-6 (November
1987), 1098-1112.

5. P. G. Paulin and J. P. Knight. "Algorithms for High-Level Synthesis". IEEE
Design & Test-of Computers 6 (December 1989), 18-31.

6. R. Rudell et al. ESPRESSO. Dept. of Electrical Engineering and Computer
Science, University of California, Berkeley, California 94 720, 1985.

7. P. G. Paulin and J. P. Knight. Force-Directed Scheduling in Automatic Data
Path Synthesis. Proceedings of the 24th Design Automation Conference, Miami
Beach, Florida, 1987, pp. 195-202.

8. H. Trickey. "Flamel: A High-Level Hardware Compiler". IEEE
Transactions on Computer-Aided Design CAD-6 (March 1987), 259-269.

9. P.G. Paulin et al. HAL: A Multi-Paradigm Approach to Automatic Data
Path Synthesis. Proceedings of the 23rd Design Automation Conference, Las
Vegas, Nevada, 1986, pp. 263-270.

10. P. P. Gelsinger et al. Microprocessors Circa 2000. Intel Corporation, 1989.
As presented at a Lehigh Univeristy IEEE student branch meeting.

11. M. C. McFarland, S.J .. Using Bottom-Up Design Techniques in the
Synthesis of Digital Hardware from. Abstract Behavioral Descriptions.
Proceedings of the 23rd Design Automation Conference, Las Vegas, Nevada,
1986, pp. 474-480.

12. J. Fisher. "Trace Scheduling: A Technique for Global Microcode
Compaction". IEEE Transactions on Computers C-30 (July 1981), 478-490.

13. P. Marwedel. A New Synthesis Algorithm for the MIMOLA Software
System. Proceedings of the 23rd Design Automation Conference, Las Vegas,
Nevada, 1986, pp. 271-277.

14. R. K. Brayton et al. "MIS: A Multiple-Level Logic Optimization System".
IEEE Transactions on Computer-Aided Design CAD-6 (November 1987),
1062-1081.

99

'
\

-r

'/,-

15. F. J. Kurdahi and A. C. Parker. REAL: A Program for REgister ALlocation.
Proceedings of the 24th Design Automation Conference, Miami Beach, Florida,
1987, pp. 210-215.

16. D. Gregory et al. SOCRATES: A System For Automatically Synthesizing
and Optimizing Combinational Logic. Proceedings of the 23rd Design
Automation Conference, Las Vegas, Nevada, 1986, pp. 79-85.

17. L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor
Circuits. Tech. Rept. ERL-M520, Electronics Research Laboratory, University
of California, Berkely, 1975.

18. M. C. McFarland, A. C. Parker, R. Camposano. Tutorial on High-Level
Synthesis. Proceedings of the 25th Design Automation Conference, Anaheim,
California, 1988, pp. 330-336.

lf r

100

•

VITA

William Richard Migatz was born in Port Jefferson Station, New York on

April 6, 1966 to Melvin and Jean Migatz. He graduated from Comsewogue

Senior High School in June, 1984. In May, 1988, he graduated summa cum

laude from Manhattan College, receiving a Bachelor of Science Degree in

Electrical Engineering with a minor in Computer Science.

101

	Lehigh University
	Lehigh Preserve
	1990

	A prototype control and data path synthesis system
	William R. Migatz
	Recommended Citation

	tmp.1551882614.pdf.krheQ

