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ABSTRACT

A modification of the classical boundary element method 1s presented for the
numerical solution of the Laplace equation when singularities occur on the boundary.
The approach provides a local treatment of boundary singularities by incorporating the
analytical nature of the solution near the singularity directly in the numerical algorithm.

The modified method is applied to some typical examples and numerical results are given.

[



1. Introduction

Problems involving Laplace or Poisson equations arise in a wide variety of
engineering applications, and in recent years the boundary element method has become a
popular solution technique. In this method, the governing field equations are recast into
a system of coupled integral equations which apply only on the boundary of the solution
domain. The method uses the known boundary data to compute the unknown boundary
data and then the solution at interior points, if required. This means that the system of
algebraic equations generated by the boundary integral equation method is considerably
smaller than that generated by an equivalent finite difference method or finite element

method. It follows that the boundary integral equation method is an effective tool for

the numerical solution of the Laplace equation.

It is also well known that the presence of boundary singularities tends to degrade
the accuracy of the numerical solution. Consequently, considerable attention has been
given in recent times to seeking modifications of the classical method in which special
treatment is afforded to singular points. In particular, Symm (1977) showed how the
classical boundary integral equation method could be globally modified to incorporate
the analytical nature of a singularity whenever it occured on the boundary of the
solution domain. Later on, Xanthis et al. (1980) suggested a method in which the
analytlcal nature of the singularity is incorporated into the boundary integral method by
‘ntroduction of special functional behavior over those segments of the boundary nearest

singular point on the boundary. More recently, Ingham and Kelmanson (1984) developed

1 alternative method of local treatment of the boundary singularity.

In this thesis, another method of local treatment of boundary singularities 1s
presented. It is illustrated lL)Ay an application to some typical examples of two
dimensional steady state heat transfer. Analytical results for all the integrations
associated with the boundary integral method that are generatedjby incorporating the
analytical nature of the singularity have been obtained. Numerical results obtained with

the new procedure are found. ta compare with those obtained from Symm’s (1977)
method.

The basic ideas behind the boundary integral method are described in Chapter 2.
In Chapter 3, the singularities due to a sudden change of boundary condition are
discussed and some current methods used to treat the singularities are described. In

Chapter 4 the arf]?tw results needed for local treatment of singularities are presented.
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In Chapter 5, the method 1is applied to two relatively difficult problems and the results

are shown to compare quite favorably with previous numerical solutions of the problem.




2. The*:ﬁoun’dary Integral Method

2.1 The Laplace Equation -

The Laplace equation is usually the mathematical statement of some

conservation principle. For example, in steady state heat conduction prgblems, the

material temperature T(x,y) satisfies:

2
T -y, (2.1)

which is obtained by applying the principle of conservation of energy to a differential
element of the material. A typical application 1s illustrated in figure 2.1(a) where two
sides of a rectangular region are at a given temperature, one side is insulated and theﬁ
bottom face is exposed to a free convective flow. The objective in this problem 1is to
determine the temperature distribution within the solid by solving the Laplace equation
(2.1) subject to the given thermal boundary conditions. Another classical example is to
evaluate the deflection of a membrane which is stretched over some region D of the x-y

plane bounded by a curve C (figure 2.1(b)). The displacement w(x,y) is governed by

0°w _ o, | (2.2)

with given w on the boundary curve C.

In general, the Laplace equation 1s

82¢ 62¢
Vg = —% + —5 = 0, 2.3
d x° +(’3y | (2:3)

for two dimensional problems, or

0%¢

bl Z2 = 0’ “ | (2.4)

2 2
Vi = g‘;% + g—% +
for three dimensional problems. Boundary conditions for a well-posed problem must be
spec1ﬁed on a closed curve in two dimensions and on a closed surface in three
dimensions. Generally, such boundary conditions involve either known values of ¢ or its
normal derivative g—ﬁ- The first type of problem is known as the “Dirichlet Problem” for
o domain D wherein the value of ¢ is specified evérywhere on the boundary C (figure

2.2). One physical interpretation of the solution ¢(x,y) is that it is the temperature




I' ="1,

thermal insulation

vir =0

convecthion

Figute 2.1(a) A typical thermal problem

W

Figurc 2. 1 (b) Stretched membrane.
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distribution in a uniform heat-conducting body occupying the domain D, when the

temperature distribution on the boundary C is fixed.

The second type of problem is known as a “Neumann Problem” for the domain

D when the value of thg normal derivative of ¢ is specified at all locations on the
boundary C. (figure 2.3). It is common to denote the outward normal derivative of ¢ on
the boundary as ¢p=0¢/dn and call it the flux since physically it represents a flow of
some quantity across the boundary. In general, it is also necessafy to specify the value of

¢ for at least one point on the boundary to render the solution unique.

The third type of problem is known as “Robin’s problem” when a linear
combination of ¢ and ¢ép Iis specified onl the boundary. A typical example of this
boundary condition occurs in convection heat transfer where a surface is cooled or
heated by a fnoving fluid stream (figure 2.1(a)). Nonlinear boundary conditions are also
possible but these are outside of the scope of this thesis.

In engineering practice, it is often necéssary to deal with “mixed” boundary
conditions where ¢ is specified along a portion of the boundary and ¢p is given along the

other parts. In this thesis, such “mixed” boundary conditions are of interest since a

singularity-often occurs at the location where the boundary condition changes from one

form to another.

2.2 Green’s Indentity and Green’s Functions

Consider now any two scalar functions ¢(x,y,z) and ¥(x,y,z) having continuous

-

first derivatives and defined in a domain D. For any vector Q the Gauss divergence

theorem applied for a volume V yields

JVV-QdV::Jﬁ-st, (2.5)

S

where the first integral is carried out over the volume V and the second is over the

bounding surface s(c.f. figure 2.4(a)); in addition, 2 is the outward normal vector to s.

Substituting Q — ¢V into equation (2.5) gives

j V-($V$)dV = j 2-($V9) ds. (2.6)
v s ‘




Figurc 2. 2. Dirichlet problcm.

Figure 2. 3. Neumann problem.




Since

V-(¢Vy) = Vé- VY + ¢V-9, (2.7)
and

3-(6VY) = ¢ -V = ¢ 2L, (2.8)
it follows that equation (2.6) can be written as

[ (799 + 69241 aV = [¢5L . (2.9)

& s

This equation is known as «Green’s First Identity”. But ¢ and v can be interchanged to

give

J (V$-Vo + pV2-¢] dV = [ Y %‘E ds. (2.10)

V S

Subtracting this equation from (2.9), yields «Green’s Second Identity”, viz.

(6 2 - v W¥as. (2.11)

For two dimensional problems, the volume integral may be written as an area (x—\'y

plane) integral and the surface integral may be converted into a contour integral,

according to

j [6VZY — W” ¢] dA = J (¢ %lﬁ — ¢ %’—ﬁ)ds, (2.12)

A C

where the area A is bounded by the closed curve C in the x—y plane (see figure (2.4.b)).

The two dimensional Green’s function is defined ‘as a solution of the differential

equation

s




Figurc 2. 4 (a) Gauss divergence thcorem

Iigure 2.4 (b) Arca cnclosed by contour C.




ViG(x,y) = 6(x — X0, ¥ — Yo)» (2.13)
where 6(§,n) is the two-dimensional delta function defined by
§(x — X,y — ¥o) = 0, for | (x,¥) # (X0¥0)> (2.14)
and
0,  (Xg,Yo)notin A

[[ 6 G—x0y-va)ds = (2.15)
A 1, (x09YO)€A '

The delta function has the so-called “sifting property”,

[[ 8 G=x0r y=ya) tCe3)ds = flxova) (2.16)
A

and may be interpreted as a point source of unit strength. Consider the radially

symmetric solution of the differential.equation (2.13), which in polar coordinates (R,0)

is,
1.8 (pdGy ., 1,9°Gy_
R aR (R 8R ) + R2( 302 ) - 6 (R) . (2'17)
—
where R = J(x—xo)z + (y—yo)® measures radial distance from the point (xXg,yq) as
indicated in figure 2.5.
For a symmetric solutioh,
0G _
50 = 0,
| and equation becomes
1.0 (r2G) = |
1.0 RS ) =15(R) o (2.18)

Unless R = 0, (i.e. x=Xg, Y=Yo)>

i

§(R) =0 for R>‘O.}




Figure 2. 5. Coordinate system near the sources point.

n
A
{xg:¥,) Bounding
curve C
o
v S
XsY)

_ - )

Figure 2. 6. Gcometry associated with the boundary integral formula.




Thus, the general solution is given by
G(R) = Alog R + B, (2.19)

where A and B are constants to be determined. To this end, equation (2.18) can be

integrated over a circle C centered at (xq,yo) with arbitrary radius Ry #0 to obtain

JJ V3G dx dy = JJ §(x—xg, Y—Yo)dx dy = 1. (2.20)
A |

The left hand can be simplified by using the two dimensional version of the divergence

theorem, viz.

JJ V-VG dx dy = I n-VG ds = J %% ds, (2.21)
A C C
where i is the unit normal pointing outward from the to curve C, dG/0On is the normal

derivative in the direction i1 and ds is a differential element along C. In the present case,

we have ds = Rydf and

2T

J J Q-g R, Rod
0

A= AL - (2.22)

On the other hand, B remains arbitrary. Since we are mainly interested in the singular

- part of Green’s function G, it is natural to choose B = 0 . Therefore,
G(R) = log R ‘. (2.23)

which is called the principal Green’s function or the fundameéntal solution. Very often,

11




Green’s functions are constructed to satisfy specific boundary conditions for certain
geometric situations. However, all Green’s functions in two-dimensions contain a
singular part and a regular part. The singular part is the fundamental solution while
the regular part is constructed to satisfy certain boundary conditions for specific

geometrical situations. In most applications of the boundary integral method, however,

only the principal Green’s function is needed.

2.3 The Boundary Integral Formulation in Two Dimensions

At this stage, Green’s identities and the principal Green’s function can be
employed to obtain the boundary integral formulation in two dimensions. In

equation(2.13), we take 1¥(x,y) to be the principal Green’s function G such that

P

2 2
VZG — _a___x__ + __% = ¢ (X—'X()) y'—yO))

(&)
X
QD |

and

6* 8*
V2¢=5—)-% +_—% = (.

dy
Then it follows that
J [¢V2G — GV? ¢] dA = J (¢ Q—Cﬁi — QG g%’)ds. (2.24)
A C

However, the left side of equation (2.24) becomes

J‘ﬁ 6 (x—xg, y—Yo) dA = ¢(x0aYO)a
A

and consequently

brove) = | 638 -G ghlas (2.25)
C

where (x,, ¥o) is an arbitrary point within the area A. C is the boundary curve of A and

9 denotes the derivative in the outward normal direction to curve G (see ﬁgtire 2.6).

dn

Equation (2.25) yields a formula to compute ¢ at any point (X, yo) in area A in
d¢

terms of a line integral around the boundary curve C, provided that both ¢ or ¢n = 3

are known on C. In general, however, either ¢ or ¢, is given on each segment of the

12




boundary curve C, but not both. An algorithm must be found to determine the
unknown boundary data from the given boundary data. To this end, the principal

Green’s function in equation (2.23) is substituted into equation (2.25) which becomes

_ 1 ¥i) _ 0¢

b(roo) = 3= | 16 flog R —log Rzl ds (2.26)
C

for (xq,yp) within A. Now, let the point (Xq,yo) approach the contour C from the

interior and suppose for the moment that the limiting location of (xg,y,) is at a “corner”
on C, with §. measuring the interior angle of the contour as indicated in figure 2.7 . For
4 smooth contour, it is easy to see that 9. = w. Then let C¢ be the arc of the small

circle with radius ¢ and C! be the remaining portion of C. The integration along C can

be divided into two parts, viz.

J = LETO[I * [ | (2.27)

C ¢! Ce

First, along C¢, we have

G _ 0 _1 'A
anlOg R |R'—‘-€ = gﬁlog R IR"—’C = € (228)

and ds = ¢ df', where 9! is the polar angle ranging from 0 to 2r—0.. Thus,

1 d
leo2 I[cf)alogR logR ]ds
Ce
am-0.

: 0
Lé-l-nooél;fj [?—logcg—cg]edt?',

|
e
=
[ \)
N ""
O ey
©-
Ve
b
o
<
=)
j
o,
D

_ 273;- 0. é (Xg:¥0) - | (2.29)

Substituting in equation(2.26) and letting ¢~0 to yields

0. ¢ (X0:Y0) = j [¢ log R — log R ] ds (2.30) -
L o

13




re 2. 7. Indenting the contour near the ficld point when

Figu

( xg , ¥.0 ) is at a corncr of the contour.

y
¥
interval points
nodal points
CBIEM.

Figure 2. 8. Nodal points and interval points associated with
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for (xg,yp) on C at a corner. In the case of smooth contour C at (xq,yo), we have

76 (xove) = | [ ¢ Zlog R log R 9 ] ds, (2.31)
C

for (xg,yo) on C only. It is worthwhile to note that in equation (2.30) and (2.31), C is

actually the contour C' in the limit e»0 and, consequently, the integrals must be

interpreted as Cauchy principal value integrals.

The main task of the boundary integral method is then to discretize the integral
equation (2.30) to determine the unknown boundary data. Once the boundary data are
fully determined (ie, all values of ¢(x,y) and ¢p are known along C), the values of d(x,y)

in the interior may be evaluated by equation(2.26), viz.

6 (xoy) = g | 1 ¢ Flog R — log R2% s (2.32)
C

for (xq,yp) within A.

2.4 The Classical Boundary Element Method

There is a variety of ways to discretize the boundary contour C. In the classical
boundary element method (CBEM), the contour C is split into a number of equal
segments, the ends of which will be referred as interval points as indicated in figure 2.8;
all corners or ends of a segment of a specific boundary condition are taken at interval
points. In this study, the geometries of main interest are such that C consists of
straight lines which meet at right angled corners. Then, all the corner points coincide

with interval points. On the other hand, the nodal points are defined as the midpoints of

each interval as indicated schematically in figure 2.8.

On each segment of the contour C, it is assumed that either ¢ or ¢n is known.
Let s; denote the jth interval point with coordinates (xJ,yJ), the next interval point is
Si410 with coordinate (x, i1 y1+1) The values of ¢ and ¢n at the nodal point of this
segment are denoted by ¢; and d> as shown in figure 2.9. The main idea in the CBEM

is to assume ¢ and ¢' are approximately constant over each interval and equal to their

values at nodal point. Thus the values of ¢; and ¢;- may be removed from the integral

over each piece of the boundary, Viz.

Si+1 Si+1 ;
I ¢ an (log R) ds ~ ¢; I —a—% log R ds, | | (2.33)
S . 8. ; : |

J : o J




TR
—t—*
Sj Sj*]
(x5594) (xj+]’yj+l)

Figure 2. 9. The j th scgment on the boundary.

j+1 interval point

jth interval
point

ith nodal point

Figure 2. 10. Gecometry and notation for analytical evaluation of

cocfficients in CBEM.
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it Si+1 |
I (log R) 92 ds = ¢’ J (log R) ds. (2.34)
Sj . Sj
It is worthwhile to recall that ¢j' is just a shorthand notation to denote the outward
normal gradient of ¢ at nodal point of the jth segment; R is the radial distance from

some other boundary point to the jth segment on the boundary.

Recall that equation (2.30) is valid for any boundary point (Xg,Yo) and, in the

classical boundary element method, it is chosen to be the ith nodal point. The

discretized form of the equation (2.30) is

o Cih “it
T, = Z (45]. J -(%(log Ri)d8—¢j' J (log R,-)ds). (2.35)
= 5
(i= 1,2,...,n)

Now define constants a;; and §;; by

By = | &log Rods, ' ' (2.36)

a;; = J (log R;)ds. _( (2.37)

Then, equation'(2.35) becomes

TP, = Z ﬂ;‘j ¢j - Z a;; ¢j’- (2-38)
j=1 j=1
(i=1,2,...n)

The coefficients a;; and B; j may be obtained analytically for the contours which are

composed of strdight lines and, in this case, it can be shown that (Jaswon and Symm,

1977)

a;; = a;cos ﬂjlog(%i) + h;(logb; — 1) + a;¥;sin(8; ), (2.39)

17




and
Bi; = ¥, ‘ (2.40)

where a and b are distances from the ith nodal point to the ends of the the interval as
indicated in Figure 2.10; ¢ and ( are respectively interval angles at nodal point P, and

interval point s;; h;is the mesh length of the jth interval.

r

9
For a more concise form of equation (2.38), we set

and

A (2.42)

i) i)

I
Q

where 6, ; 1s Kronecker delta. Then,

N N
Z B;; ¢; — 2 Ay ¢j' =0 (2.43)
=1 =1

(i=1,2,. N) \ o

or in matrix form
B] § = [A] §' | (2.44)

When the element coefficients A;; and B;; have been evaluated, a rearrangement of
equation (2.44) can be made in such a way so that all of the unknowns (either the ¢; or

the ¢%) are put on the left side and with the known boundary data on the righthand

side. The resulting form is

c X =d, (2.45)

.
which represents N linear equations with N unknowns. The solution of the equation

(2.45) is easily obtained using standard methods.

Note that as the mesh is decreased by a factor of 2, on each successive mesh the
nodal points in the previous mesh become the interval points in the following mesh. To

- compare the accuracy of each calculation, we can compute values of ¢ and ¢' on the

18
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\

contour at specific locations via the formula.

n

Té(s) = i Bi; ¢ — Z o ¢j'a (2.46)

j:l j::]

where s is any point on the boundary except for a corner point; ¢ and ¢! are assumed to
have been obtained from a solution of equation (2.45). The coefficients a,; and f,; can
be evaluated for each point s on the boundary from equations(2.39) and (2.40). In a

similar manner, we can compute the ¢ values in the interior points in terms of boundary

values of ¢ and d)', according to

n

2mh(p) = Y Bpi b5 — 3 ¥p; b5 (2.47)
j=1

=1

where P is any interior point.

19




3. Singularities

3.1 Basic problems and mathematical model

In the solution of the Laplace equation, the occurence of singular fluxes or
irregular behavior in ¢ near the boundary is quite common. In such regions, the
variation in ¢ may be quite intense and the fluxes may be quité large and vary sharply.
The term irregularity is used to imply that there is a neighborhood near a particular
point where the solution is varying very rapidly. As a consequence, gradients of the
solution will be large near this point and the normal derivative may be very large or
even undefined. Generally speaking, singularities are expected at any point where there

is a corner in the boundary contour or at any point where there is an abrupt change in

boundary conditions as shown in figure 3.1.

Since most numerical methods are based on the assumption that the solution.
may be represented locally by a Taylor series expansion, relatively large numerical errors
may be incurred in the vicinity of singularities. In problems with corners, the boundary
condition is also often different on each side of the corner. In addition, even in cases
where the boundary conditions are continuous at the corner from one side to another,

the geometry itself can cause trouble in the numerical scheme.

There is a wide variety of possible types of changes in boundary conditions along
the boundary that may be encountered when solving Laplace equations. In this paper,
however, our attention will be focussed on the situation where the boundary conditions
at x=x, change from a given value §=¢, for x<x, to an insulated condition for x > xq
on a straight line as indicated in figure 3.2. It is expected that there must be a region
near x, with intense variation in the selution for ¢.. To determine the nature of this
variation, a polar coordinate system is chosen such that x, is the center of the
coordinate system as indicated in figure 3.2. Then, the Laplace equation in polar form is

0% , 19 9%¢

2, _ 09 __Q 1 — ,
V¢—6r2 + 7 3 + 3 52 0. (3.1)

Applying the method of separation of variables, viz.
b (r,0) =P (6) R (1), o (3.2)

and substituting into equation (3.1) yields

290
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(a) Corner singularity (b) Abrupt change in boundary conditions.

Figuure 3. 1. Expected singular points

Vig =0

i
=
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ate system near a point where the boundary conditions

Figure 3. 2. Local coordin

change abruptly on. & straight line.
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P (9) R"(r) + -P-%-Q R'(r) + & RP(9) =0, (3.3)
r
and accordingly

" ' "
2 R +I.BR______EP__.___A2, (3.4)

r ——

R

where ) is the real separation constant. The solutions for R(r) equation are of tha form,
R(r) = C  + Dr?, | - (3.5)
and it is necessary to take D = 0 to get bounded solution as r—0. Thus,
R(r) = C % (3.6)
The solutions for the 8 equation are of the form,

P(f) = A cos A0 + B sin A0, (3.7)

where A and B are arbitrary constants. The objective is now to find out a functional
form near the singularity (r=0) which satisfies not only the Laplace equation, but also

the boundary conditions. For simplicity, make the transformati(;n
A
¢ = ¢ — ¢o | (3.8)

A
Then, ¢ satisfies the Laplace equation and has boundary conditions

3 =0 ford = m, r >0, (3.9)
9 A
-3-53 =0 ford =0, r > 0. | (3.10)

equation (3.9) is obvious from the condition ¢ = ¢p at § = = while equation (3.10)

" follows from the fact g—% = 0 at 6 = 0. Since

0¢

~r = cos ¥

gx

¢ sin § 09 ‘
3 39 (3.11)




P (6) R"(r) + f-(-r-‘-’) R/(r) + ;1-2- R P''(6) = 0, (3.3)

and accordingly

=
+
-3
=3
I

"
— -EI-)—- = A%, (3.4)

where ) is the real separation constant. The solutions for R(r) equation are of the form,

R(r) = C A 4+ D r'A, (3.5)

and it is necessary to take D = 0 to get bounded solution as r—0. Thus,
Py

R(r) = C . (3.6)
The solutions for the 8 equation are of the form,
P(6) = A cos A0 + B sin A0, (3.7)

where A and B are arbitrary constants. The objective is now to find out a functional

form near the singularity (r=0) which satisfies not only the Laplace equation, but also

the boundary conditions. For simplicity, make the transformation

A
¢ = ¢ — o (3-8)
Then, 3 satisfies the Laplace equation and has boundary conditions
A .
¢ =0 for§ = n, r > 0, (3.9)
5 A
-ggi =0 for 0 = 0, r > 0. (3.10)

equation (3.9) is obvious from the condition ¢ = ¢, at § = = while equation (3.10)

follows from the fact g—g—, — 0 at § = 0. Since

-a—é = cos 0

dx

0¢ _ sing 09
Or r 00’ (3.11)

» ]




d¢ . 0¢ cos § 09
oy =l 5 t T 3

¢ _ _
_6—5_0 for 6 =0, r >0,

and therefore

|
|-e->
|
o

Now from equation (3.7), we have

%%::——/\Asin0+/\Bcos,\0,

-

and to satisfy (3.10), B = 0. Therefore

P(8) = A cos A,

and to satisfy equation (3.9), P(7) = 0 which results in

A cos Ar = 0.

It follows that in order to have nontrival solution, we must have

At = (n + -12- ) @, n = 0,1,2,...

and consequently

o0

- L |
3(1‘,9) = Z Cnr( +2) . COS (n+%) 9,

n—0

or, in terms of ¢

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)




o(r,0) = do + }: Cnr( . COS (n+-12-) 0. (3.19)
n=—0
The gradient is given by
9 o, (0] .
'a% == Y Car P (n4)) sin (n+3) 6, (3.20)

and this (along with equation (3.19)) gives a local solution in the vicinity of the singular
point Xg.

Since our particular interest is in how ¢ and ¢' behave along the boundary, it is

of interest to examine the local solution on each side of x=x,. On the right side of X,

(6 = 0), we have from (3.19) and (3.20):

w

1 3
¢ (r,0) = ¢ + Co r’ + C, r2 4 -, | (3.21)

$g = 0, (3.22)
where © = x—xXg; (X > Xg). On the left side of xq, (#=7), we have

_ 1 ol 43 _ 9
bg=— 5 Cop 72011 2C, 4 (3.24)

where
r = (xg—X);  (X¢>X)

It is worthwhile to note that equations (3.21) and (3.24) show the functional form of the

solution near the singularity. However, the coefficients Cn are unknown constants which

are not easily evaluated and depend on the rest of the boundary conditions in the

problem. To develop an accurate numerical algorithm, it is necessary to find a way to

calculate these constants in the course of the solution of the boundary integral

equations.
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3.2 Previous Studies

Many efforts have been made to deal with singularities on the boundary. One of
the first and most effective methods is due to Symm (1973). The basis of Symm’s
method is to deal with a global pertubation function consisting of the actual function
minus the singular parts. This global transformation will produce a function which is

“almost” regular near the singularity. In this manner, good accuracy can be achieved

near the irregularity.

To illustrate Symm’s method, consider the model problem example shown in
figure 3.3. We wish to solve the Laplace equation with given boundary conditions. It is
obvious that there is an abrupt change in boundary conditions at point 0, and a
singularity is anticipated there. We first examine the numerical results of the boundary
integral dmethod obtained by ignoring the presence of the singularity. Applying the
c]assical; boundary integral method, we start with the very coarse mesh consisting of
n = 6 intervals and all the corners being interval points as shown in figure 3.4. We may
then successively refine the mesh with n=12, 24, 48 and 96. Some results obtained by
Symm (1973) are ‘shown in figure 3.5. Note that there isw a very slow convergence on

successive meshes, particularly near the singularity at peint 0. The values near 0 have

changed almost 3% from n=48 to n=96.

Symm’s treatment of the singularity will now be considered. Beginning with

isolating the algebraic form of the singularity given in equations (3.19), we have the

following expansions near O:

1

é(r,0) = ¢o + io: Cnr(n+2) © COS (n+-512) 0

n=—0
~ 500 + Co 1/ *cos(§) + C, %/ "cos3 + ..., (3.27)
where the constants Cg, Cy, ... are unknowns. Next, introduce a global perturbation

function which is the actual function ¢ minus first terms of the local irregularity,

according to,

A

d~¢— Cy r1/2cos(%) — G, rs/zsin(%), - (3.28)

It is worthwhile to note that the dominant irregularities in the solution near O have

subtracted out while the other high order terms have been omitted. Thus, & is actually
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Figure 3. 3. Modecl problem to Nustrate Symm’s mcthod.
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igure 3. 4. Coarsc mesh for the model problem (n=26).




for the modei problem of figure 3. 3.

595 602 L 1 6350 | 651 | 678 | 709 | 7uk | 783 824, | 867 911 | 956
593 6CO 611 627 648 67l 705 | 741 779 621 864 909 | 955
592 599 | 610 | 626 | 64 673 | 704 | 739 | 778 819 | 663 908 | 95L
594 595 605 | 623 6L, | 674 705 739 | 719 821 865 910 | 955
587 793 601, | 620 | 641 667 | 699 735 | 775 818 | 8€2 908 | 954
550 592 603 | 618 | 639 665 697 733 774 8416 | 861 907 | 953
577 583 | 5o | 610 | 631 | 658 | 692 | W0 | 715 817 | 862 908 | 954
57 552 532 | 607 | 528 | o5 | 688 726 | 768 813 | 859 906 | 953
575 581 5914 606 626 653 686 72 767 812 858 905 | 952
£ 567 | 577 | 591 | 611 g | 676 | 718 | 76k 811 | 853 908 | Y53
561 R66 575 A, 608 635 671 713 159 807 856 904 | 952
550 565 57, 587 607 | 53 | 669 744 757 805 | 85. 903 | 951
_—-———T————"
5L.3 5.7 555 566 58L. 612 653 703 155 806 855 0L | 952
- 53 546 553 564 584 | 608 64.7 697 749 801 852 902 | 9%1
542 SL5 553 563 580 606 6L 693 L6 799 850 901 | 950
522 hal 528 535 546 570 623 686 746 801 853 903 | 952
522 52L | 528 534 | S5 566 612 678 740 796 | 849 900 | 951
522 521, 27 | 534 | 5S4 | 564 | 608 | 674 | 738 793 | 8u7 699 | 950
500 4,99 501 L99 4,98 L95 | 578 6717 IS 800 853 903 | 953
500 500 500 £00 500 499 555 . | 667 736 794 | 8u8 900 | 951
| 500 | 500 | 500 - 732 8.6 | 695 | 950
: ' : .' '. A
| | n=2L
. . = n=48
Figure 3. 5. Results obtained by Symm ( 1973 ) using the classical method =96




“almost” regular near O.

The next aspect of Symm’s method is that it is necessary to construct the

boundary conditions for @ around the entire contour; while this task is easily

accomplished for one singularity, it can be very tedious for two or more singularities. In

the present problem, we have

(1) on OA: ¢' =0, (3.29)
(2) on AB: ¢ = 1000 — Co rl/zcos(%) - G, r3/2cos§2-q, (3.30)
(3) on BC: d;' = —-% Co r-l/zsin(%) + % C, rl/zsin(%), (3.31)
(4) on CD: @ = % Co r-l/zcos\(?%) — % C, r1/2cos(%), (3.32)1

(3.33)

(5) on DO: & = 500.

Since & satisfies the Laplace equation, it also satisfies the discretized boundary integral

formula (2.38). By substituting the known boundary conditions for @, we readily obtain

(c.f. figure 3.4)
OA,BC,CD DO

/
AD ABDO

+ Co Eo" + Cl Eoi’ (3.34)

(3.35)

9




interval points

Sn S,
- | \0 } \o
n 1 2
O

nodal points

Figure 3. 6. Numbcring scheme necar singularity.
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g,; 1 cos(30)

Eoi - =
AB
— % a;; rl/zsin(%)
BC
1/2
— % XI:) a;; T / cos(%), (3.36)

fori = 1,2,..., n. Since Cy and C, are also unknowns, equation (3.34) now consists of N
equations for n + 2 unknowns. Two additional equations are necessary to solve the

system. In Symm’s method, those two additional equations are given by:

&, = 500 (3.37)
$,/ =0 (3.38)

where the subscripts are numbered in a counter-clock wise direction as shown in figure
3.6.

At this stage it is possible to carry out the numerical calculation to solve for the
global perturbation function @, and then the actual function ¢. Some results obtained by
Symm (1973) are shown in figure 3.7, which are believed to be accurate to at least five
significant figures. The results are compared in figure 3.7 with an independent and
highly accurate computation based on a conformal mapping method due to Whiteman
and Papamichael (1971). It is worthwhile to note that now there is a dramatic increase
of accuracy near the singularity. Also, the constants C, and C; are given in figure 3.8

where it may be noted that rapid converge takes place with increasing n.

Symm (1973) also solved another example problem using the same technique

which has a weaker singularity near O and is shown in figure 3.9. The constants

associated with the singularity are presented in figure 3. 10(a).

Symm’s method is very effective in producing accurate results for problems with

strong singularities. On the other hand, Bowever, this approach can become tedious if

more than one singular point occurs. The approach is tedious to program for the

problems with multiple singularities because of the global transformations required for

each singular point.

Another approach has been presented by Xanthis, Bernal and Atkinson (1981)

where the singularity is locally treated near the point in question without introducing a
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Figure 3.7. Solution obtained by Symm (1973) which accounts for the singularity at O.




n Co C1

6 1567.05 3.59
12 152.13 41.61
24 161.75 4.68
18 151.65 4.69
96 161.63 4.71

Figure 3.8. The constants associated with the singularity problem of figure 3.3.

$=1

b

Figure 3. 9 . Another example problem having a boundary singularity.
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global transformation. The local approach is a more convenient method when there are

more than one singularity.

To illustrate this local approach, we again consider the example shown in figure

3.3 The solution near the singularity 0 is of the form:

é(r, 8) ~ 500 + Co rl/zcos(-g) — G, rs/zcos%g 4oee (3.39)
¢'(r,0) ~ ——% Co r-l/zsin(%) + % C, rl/zsin(%g) 4., (3.40)

where C, and C, are unknowns. For 9 = 0, we have

é, = 500 + Co REIeY 3 (3.41)

= 0 (3.42)

Q:lQ)
DIS-

¢1, — %’ '9:0

For § = w, we have

n = 500, (3.43)

bn = — % Co r-1/2+ % Cy r1/2 + - (3.44)

Here, only two terms expansion are used and higher order terms which are small as r—-0
are omitted. The main idea of the local treatment is to use the above expansion about
the singularity to represent ¢, and qbn' over the intervals on either side of the singular

point O as shown in figure 3.6. The unknowns on the two intervals on either side of O

now are C, and C, instead of ¢, and én'.

Next, substituting them into the boundary integral equation formula (2.31)

yields
S2
Th; = j[ 500 + Cor /2+ C, r3/2] ( 3% log R )ds
S1
n %i+1 o1 %i+1
+Z¢JJ g—)ﬁlongs— ¢J'J log R ds
J=2 SJ j=1 S]
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8y
- ] [ 4 Co My 3 C /7 log R ds (3.45)

. 8n

(i=12,.,n ) (

The integers over the intervals surrounding the singular point O can be written in"k&.hc
form
82
[500 + Cor /2 + Cyr 32 ] 6n log R ds = 500 3;; + Co€io + Ci€;1 (3.46)
where°1
$2
€y = E 9 log R ds , (3.47)
51
S .
€ = r3/ * 9 log R ds, ' (3.48)
S1
and
$1
J [— —%— Co r—1/2+ % C, r1/2] log R ds = — Coﬂ.o + g Cini (3.49)
°N
where,
§1
Nio = j /% log R ds, (3.50)
°N
Sy
Ny = J 2 log R ds (3.51)
Sn

Now, equation (3.45) may be rewritten as

¢ + 500 ﬂ + COGtO + Cletl

(3.52)

i T ‘% CoNio — % Cimi1s

for (1 = 1,2,...,n).
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_ I [— —%— Co r-l/z-{— % C, rl/z] log R ds (3.45)
Sn
(i =12,...,n )

The integers over the . itervals surrounding the singular point O can be written in the

form
82
(500 + Co RCRSe 5@5 log R ds = 500 B;; + Coeio + Cicins (3.46)
where®1
52
_ [ 2 3.47
c,-o_.Jr 6nlongs (3.47)
51
S4 .
[ 2 (3.48)
1= | T 34 log R ds, (3.48)
51
and
S1
] [— & Co VA 3 C, /) log R ds = — & Comio + 3 Cymi (3.49)
N
where,
51
Nio = J i/ log R ds, (3.50)
N
51
= | e R s (3.51)
Sn
Now, equation (3.45) may be rewritten as
o n
Z ¢ + 500 ﬂ + COGgO + letl
n-1 |
Z C0'7t0 - '3' C11i15 (3.52)

for (i = 1,2,...,11).&
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This gives n linear equations for n unknowns including the constants C, and C,
associated with the singularity. The solution of equation (3.52) would be straightforward
provided that the integrals in equations (3.47) to (3.51) can be evaluated. At present,
analytical results have not been obtained and the integrals were evaluated numerically
using Gaussian quadrature. Inghaéb\and Kelmanson (1984) solved the same example as

that shown in figure 3.9 using this type of procedure. His results of constants associated

with the singularity are presented in figure 3. 10(b).

3.3 Another Approach of Local Treatment

The method of Ingham and Kelmanson (1982) uses two terms in an expansion of
analytical representation of the boundary singularity. When the procedure is
incorporated into the classical boundary integral equation Wmethod, both the potential
term on the righthand side of O and the flux term on the lefthand side of O are treated.
In this study, another arrangement was tried such that only the flux terms are
incorporated into the classicat method; this is because the major trouble associated with
slow convergence around the singular point is caused by the large flux magnitudes near
the singularity. In this procedure, two terms in the expansion for the flux are still used

but only in the two intervals to the left of the point 0 (where ¢ = 500 is given). Thus in

these in_\tervals

o =~ 1co r-1/2_,_%g1 M (3.53)

where r varies from 0 to h for the interval n (closest to 0) and from h to 2h over interval

(n - 1) (one interval to the right of 0).

Substitution of this expression into the classical boundary integral formula (2.31)

yields
n n-2 ,
o = Z Bijb; — Z ¢; ij
i=1 j=1
+ % CO( M50 + ’7,2 )— % Cl( N1 + n‘3 )a (3.54)
where
Sy |
Nio = I r-l/2 log R ds, ” (3.55)




( a ) Symm’s method

B

n CO 1
30 —0.48358 0.02987
60 —0.48353 0.02988

( b ) Ingham’s method

n Co Ca
30 —0.4843 0.0313
60 —0.4844 0.0314

Figure 3. 10. Computed results for constants associated with the singularity

for the example of figure 3. 9.
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(3.56)

(3.57)

Sn
J rl/2 log R ds. (3.58)

Sp-1

Nis —

an be readily solved for the model problems provided the

Equation (3.54) c
| be

integrals (3.55) - (3.58) ca

n be evaluated. Analytical solutions for these integrals wil

obtained.
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4. Analytical Results of Local Treatment of Singularties

4.1 Introduction

As we discussed in Chapter 3, the local approach of treatment of singularities
has definite advantages over Symm’s (1973) method since we do not need to modify the
boundary integral method globally. This process is probably the easist way to deal with
singularities from the point of view of programming. In this chapter, the objective is to

complete analytic solutiong of the integrals defined from (3.55) to (3.58).

First, we rewrite the integrals in question again as:

S1
J r.l/2 log R; ds, (4.1)

Sn

Il

Nio

Ni1 (4.2)

I
= —
H
b
~
N
o
o
=~
.
2

Ni2 (4-3)

I
ey
H
_
~~
™~
o
0w
~
o
L

/
Niz = I ok log R; ds, (4.4)

for (i= 1,2,..., n ). Here R; 's the distance from the ith nodal point to the interval in
question; ds is the differential element of the contour and r is the distance from the

singular point as shown in figure 4.1. The nodal points are numbered in a similar way

to interval points, as indicated in figure 4.2.

The major difficulty associated with the integrations in equations (4.1) - (4.4) is
that it is not possible to give simple analytic results for all nodal positions. Instead, care.
must be taken for each part of the contour. As far as the given example problem is

concerned, the whole contour C was split into 3 parts as shown in figure 4.2. These are

as follows:




th jodal point )

" ( i

4. 1. Geometry and notation for linc integral.

[Figure

C B
position 3
position 2
Sn S, S,
P } - -+ . J A

- D
Lposi tion t'_l 0

Figure 4.2. Calculation scheme for line integral and three types of positions for

the i** nodal point.
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(1) When the ith nodal point is on the interval closest to singularity (i.e., at position

1).

(2) When the ith nodal point is at any other position on line DA, (a=0o0ra=nr- ).

(3) The rest of the contour (i.e., when the ith nodal point is not collinear with 0).

It is also very important to note that we have three different variables, i.e.,, R, T
and s. To carry the calculation out, we need to make suitable transformations with care.
In the following two sections, each type of integration will be treated separately. In
section 4.2, the integrations for positions of the type (1) and (2) above will be carried
out while the third type will be treated in section 4.3.

4.2 Integrals Along Intervals Collinear With the Singular Point

First, we can have a general formula for integral (4.1) and (4.2), such as
Sy |
N; = J r’ log R; ds, i= 1,2,..., m, (4.5)
Sn
where y=—1/2 and 1/2 respectively. sp denotes the interval point just before the
singular point. s is the singular point (as shown in figure 4.3), r is the distance from the

singular point and R, is the distance from the ith nodal point to the interval [sn, S1)-

The line integral is along the contour in the counter-clockwise direction. From the

cosine law, we have

R, = (b? 4 r* — 2br cosc )1/2, (4.6)
and with s the integrationvariable define

f=|S—Sn|, (47)
tlhen, |

£ =hi—T, (4.8)
and)
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ation over the interval adjacent to the singularity.
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a L

Figure 4.4. Geometry for the calculation when the nodal point lies in the interval

adjacent to the singularity.




ds = d¢ = — dr, (4.9)

As s moves frgm Sp to S;, r changes from h to 0, so that
h
n; = J r” log (b? + r? — 2br cosa )1/2dr, | (4.10)
0

for i= 1,2,..., n which is valid for all the nodal points except for i = n when the nodal

point lies on the interval-of integration; this special case will now be treated separately.

When the nth nodal point is snside the interval from Sy to S, as shown in figure

4.4, the line integral is split into two parts, according to

Py 51
N = I r’ log R 1, dsL*+ I r’ log R r dsp (4.11)
Sn |

where R._; and R represent Ry on the left side and right side respectively, as shown in
nL nRR

figure 4.4. We have

Ry, = (r—b)=r1— h (4.12)
R o =(b-r)=1- (4.13)
TR r 5 = Ty :
and ds = —dr; thus
Pp h
j " log R 1 ds = j 7 log (r—3 )dr, (4.14)
Sn h/2
and
S h/2 |
r’ log R,gds = j r' log (%—r) dr (4.15)
0




For vy = —1/2, we have

h h/2
Mo = I r.l/2 log r dr + I r-l/z log (-21‘}—1) dr
) |

0

h
+ J r.l/2 log (1 — -th_) dr.
h/2

It can be shown (see Appendix A)
) .
J r-l/2 log rdr = 2h1/2 (logh — 2),

0
h/2
-1/2 h 3/2 1/2
r log(j,z-}—l) dr = 2°/°(log 2) h ",
0

-1/2 TN ,/
/% log (1— &) dr

2

\"_‘05"

h

_ _h1/2{ (1+21/2) 2 log 2 + 21/210g( 21;2— 1y y.
2" +1

and therefore

1/2 1/2 /2 _
Mo = h/{2logh—-4—210g2 — 2/ log( 21/2 1)}
2 +1
Let /2
1{0=4+‘2log2+2‘/2log( 21/2—1)}
27 +1

— 2.8933934005589685652,

and finally we have,

1/2
nno=h/ { 2log h — Ko}
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)




Consider next the integral for v = 1/2 for which

h h/2
My = J rl/2 log r dr + j rl/2 log (%‘;—- 1) dr
0 0
+J % 1og (1- D) dr. (4.23)
h/2

The necessary integrals are evaluated in Appendix B and it follows that

My = -:1; b/ %{ 2 1og h — K;) (4.24)

where K, is a constant defined by

K, = % + 2 + 21/2log tan(-’-é—) + 2 log 2

— 3.4731772141727629253 (4.25)

Thus far, the two line integrals have been derived for the interval adjacent to the
singularity when the point P lies along a line collinear with the segment but P lies inside
the segment. Now consider those line integrals with @ = 0 or m; that is, when P lies
outside the segment adjacent to O. When the nodal point is on the right hand side of
the singular point, a = 7. Wher it is on the left hand side, a=0. (c.f. figure 4.5).

From equation (4.10), if o = 0, we have then,

h
Ny = I r’ log (b2 + 12 — 2br )1/2-dr
0

h
= J t” log (b — r )dr (4.26)
0
For y = — 1/2 and for =0, we have
h
N = J T2 0 (b — 1 )dr (4.27)
0

and it is shown in Appendix C that
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Figure 4. 5 (b) P, is to the left of the singulé\.rity.




N, = 2 b %log (b—h)— 4 h!/?
1/2  ,1/2
_ 2% log ( b. ™ b 72 ), for a=0 (4.28)
b’ "+ h
For v = 1/2, we have
h
Nio = J rl/2 log (b — r )dr (4.29)
\ 0

a;;%d it is shown in Appendix C that for a=0

[2 L 1]2
— h - )—2bh1/2— % h3/2], for a=0. (4.30)

1
3/2 3/2
Ni1 — %[h / log (b—h)—b / log ( b1/2 1/
b® +h

Now consider nodal points on the right side of the singular point, so that a=m.

We have
h
N = J r'log (b* + r* + 2br)1/ ‘dr
0
h
— J r'log (b+r) dr, (4.31)
0
and for y=-—1/2,
h
Nio = J rcl/zlog (b+r)dr | (4.32)
A |

It is shown in Appendix B that

1/2 ‘
Nio = 2h1/2log (b+h) — 4h1/2+4b1/2tan'1}—1—1—/-—2, for a=w (4.33)
b
//
| For y=1/2,
h -
Ni= Jrl/zlog(b-l—r)dr | | (4.34)
0 ‘ ' ,

and it is shown in Appendix B that

il S i e Sy
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1/2
na = 2 { 1%/ %log (b+h)+2bh1/ 2 g3/ 2tan'1(1—1-1—7;)—%h3/ . (4.35)
b
So far, line integrals along the straight line containg the field point have been evaluated.

Now situations will be considered where the field point in not collinear with the interval

under consideration. We have now ( for a#0 or 7 )

h .

n; = J r'log (b? 4 r? — 2brcos a)1/2dr
0

— -12- I r'log (b? + r? — 2brcos a) dr . (4.36)
0

Integrating by parts yields

h .
n; = 2(71+1) r7+llog (b%? + r? — 2brcos a)(l) :

h
v+1
1 J' r(r bcosa)dr,

(7+1) ) b2 + r? — 2brcos «
‘and thus
_ 1 7+1 2 2
n; = 5 +1) h''log (b° + h 2bh cos «)
h
1 J r7+2— b cos a-r7+1 dr
(y+1) ) b2 + r? — 2brcos «
=1 — (7_1}_1) ( ‘1‘2 — b cosa I3 ) | | (4.37)
where
_ 1 v+1 2 2
I, = 3(7+1) h” " log (b* + h® — 2bh cos a), (4.38)
: T . (4:39)
2-_-0b2+1'2—-2b1'cosa: o '
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I T r7+1 d . (4.40)
3 b2+1‘2—2brcosazr ’ .

0

and y=—1/2 or 1/2.

The integrals in equations (4.39) and (4.40) can be expressed in terms of and

integral J, /2(0) defined by

J = f X1/2 d 4.41
o) = | X (4.41)

x2 — 2bcos a X + b?

0

To evaluate this integral define

£ =bcosa,n=Dbsnc (4.42)
T = € + 117 o beia (443)
and then it can be shown ( see appendix E ) that
J1/2(a) = 1/21. { sin% Jp(a) + cos% Jp(a)} (4.44)
b’ sina
where Jy (o) and Jp(a) fﬂe defined by
1 h — 2 cos —g—(bh)1/2+ b |
Ji(a) = 5 log ( 2 72 ) (4.45)
h + 2 cos-5(bh) " + b
_1 hl/2 +b1/2cos e
Jp(a) = tan ( )
/2. o
b’ sin —
1/2 L1/2
b < —h
— tan™ ( “1‘;32 2 ) o ' (4.46)
b/ “sin 5 |




Two other integrals occur in the evaluation of equation (4.39) and (4.40). The first

of these

h .
3/2
J — X d 4.47

3/2(a) l x2 — 2bcos a x + b? x ( )

is evaluated in Appendix F and is given by

1/2 1 /9
J3/2(a) — b { sin(g—zg) Ji () + cos(%a—) Jp(a)}+ 2h / (4.48)

sIn

The second of these integrals is also evaluated in Appendix F and is gaven by

h X5/2
J = d
5/2(a) J)’xz—chosax+‘b2 )
3/2
— gina { sin(5—2-‘-’) Ji(a) + 008(5-29!) Jp(a)}
+ 4b cos « hl/2 + % h3/2 (4-49)

We may write the results for equation (4.37) in a concise form by also defining
Jo(a) = log (b* + h? — 2bh cos «) | (4.50)
Thus, for y=—1/2 , we have from equation (4.37)
N0 = hl/zJO(a) — 2(J3/2(‘a)- b cos a J1/2(a)) (4.51)
Now for y=1/2, we vha,ve from equation (4.37)
.1_h3/2.]0(a — %(Jsh(a)- b cos o Jg/z(a)) . (4.52)

Note that the J(a) functions depend upon the geometry of the boundary contour only.
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4.3 Line Integrals Over Intevals Remote From The Singular Point

Based upon the analytical results for line integrals over the interval nearest the
singular point, we can easily carry out those integrals over the intervals remote from the

singular point . We can simply use the idea of superposition of line integrals. Begining

with
Sn
N9 = J r-l/2 log R ds (4.53)
Sp-1
51 51
= r-l/2 log Rds — J' r-l/2 log R ds
Sn-1 Sn
51
= J r—l/2 log Rds — 70
Sp-1
Thus, Sy
Nio + M2 = I 1‘_1/2 log R ds (4.54)
Sn-1
Similarly, we have
51
M+ Mz = J rl/2 log R ds (4.55)
Sp—1

These two integrals are of the same form as those we treated in the last section . The

only difference is that the integral interval is now from 0 to 2h instead of from 0 to h.
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5. Numerical Results and Conclusions

5.1 Numerical Results

In this section, we apply the modified boundary integral equation method with the
preéent local treatment of singularities to the earlier examples shown in figure 3.3 and
figure 3.9. We will use both two terms and three terms in the expansion near the
singular point.

In figure 5.1 , the constants associated with the singualrity for the example 1n
figure 3.9 are presented for the mesh size n = 30 and n = 60. It is easy to see that the
rate of convergence is rapid enough to be comparable with that of Symm’s (1973)
method as well as that of Ingham and Kelmanson (1984) . As a matter of fact, the first
constant C, obtained with the present method using a two term expansion is only 0.14
% in error from that of Symm’s method. However, the second singularity constant C, of
the present method differs by 3 % from Symm’s result, but is almost the same as that of
Ingham and kelmarson . On the other hand, better accuracy 1s achieved for both Co and

~ C, using the present method with a three term expansion. The maximum error is only

0.03 % as compared to Symm’s results.

In figure 5.2, the singularity constants for the example shown in figure 3.3 are
presented. Even though the singularity is now much stronger at the origin O , the

maximum error for both constants obtained by the present method with a three term

expansion is only 0.3 %. *

5. 2 Conclusions

A modification of the classical bouﬂdary integral equation method has been
presented which enables accurate treatment of Lapla(:e equations containing boundary
singularities. This method reQuires a slié\ht modification of the classical method with the
reward of a dramatic inprovement in the rate of convergence of ‘results throughout the
entire solution. Since the analytical results of those integrals for the analytical nature of

the singularity have been obtained, the present method provides a very simple and

o1




efficient approch to treat boundary singularities locally. In particular, whenever there
are more than one boundary singularity, this method can be simply applied at each
singular point with very little extra effort. From the point of view of programming, the

present method is relatively easy to impliment.
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( a ) Two term expansion

n CO Cl
30 —(.48265 0.03015
60 —0.48267 0.03118

( b ) Three term expansion

Il CO Cl C2
30 —(.4836 0.02988 —0.00007
60 —0.4834 0.02987 —0.00003

Figure 5. 1. Computed results for constants associated with the singularity

for the example of figure 3. 9.




( a ) Two term expansion

n CO Ci
48 151.31 3.99
96 151.36 3.88

( b ) Three term expansion

n Co Ci C2
48 150.97 4.754 0.157
96 151.58 4.713 0.134

Figure 5. 2. Computed results for constants associated with the singularity

for the example of figure 3. 3.
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Appendix A

In this appendix, the analytical formulae for the integral in equation (4.16) are

derived. We have

81
[ r-1/2 log R; ds

Sn

Py 5)
= [ r-l/2 log R; ds + J r.l/2 log R,; ds
Sn Py

h
J r—l/2 log r dr + I r-l/2 log ( % — 1 )dr
0 0

h
+ I % Jog (1= 2 )ar (A.1)
b

where b = h/2. Each of these integrals will be denoted by I, I, and I respectively.

The evaluation of I; is immediate and gives

h
I, = I Y% o 1 dr = 21 Ylog b — a2 (A.2)
0

I'he second integral is

b .
I, = I 1-"/2 log (2 — 1)dr . (A.3)

0

and to evaluate,let r = b cos’x for which

dr = —2b cosx-sinx dx. (A.4)

T'herefore,

w[2
1f2 .
I,=| 4b’ - sinx log (\}tan x )dx
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— -—4b1/2{ lim [ — cos ¢ - log (tan € ) + log tan (5) ]
() | 2

+ lim [ cos 7 - log ( tan 7 ) — log tan (g) ]

- /2

—4b‘/2{ lim [ — log ( tan € ) + log tan () ]
-0 2

_ b 10g 2.

Lastly, consider the integral

h 2b
13:Jr—1/210g(1—%)dr=J—ll/——;log(l—lf))dr.
b b !

To solve, let

r = bsec’x, (b<x<2b)
so that

dr = 2b sec*x tan#x-dx,

and consequently

7/[4
1/2 :
I; = J 4b ' " log ( sin x )- d (secx)
0 7/4
_ a2 :
= 4b "~ { sec x- log din x — J cscx dx }

0

= 4bl/2 lim0 { secx log sinx — log tan ( x/2 )}
€

= 4b1/2{ [21/2log sin (w/4) — log [tan (7/8)]}
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— lim_{ sece log (sine) — log tan (€/2)} (A.9)

€

Notc that

limO { sece log (sin €) — log tan (e/2)} =0 (A.10)
€~
lim { log ¢ — log ( €/2) } = + log 2 (A.11)
0
and it follows that
1/2
I, = NS 2" ?1og 2 — log [tan (v/8) — log 2 }. (A.12)
Consequently, we have (summing all three contributions)
51
J r.l/2 log R; ds = 2hl/2(log h —2)
SN
1/ 21/2
+4b " { — S5 log 2 — log [tan (v/8)} . (A.13)
This expression may be simplified somewhat by noting that
1/2
log tan(X) = log tan | (3)/2] = L 1og ( 2 —1 ), (A.14)
8 4 2 1/2
27 + 1
and thus
81
~1/2 1/2 ,
r log R; ds = h {2log h — Kg}, (A.15)
SN
where
a9
K, =4 —2log?2 — 2" "log( )} (A.16)
1/2
2 41
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Appendix B

In this appendix, the analytical formulae for the integral in equation (4.23) are

derived. We have

S

I r”l/2 log R; ds
Sn
h b h
== J 1'-1/2 log r dr + J' r-l/2 log ( —ll? — 1)dr + I r-l/2 log ( 1— l-l? )dr, (B.1)
0 0 b
where b = h/2. Each integral in equation (B.1) will be denoted by I, I and I,

respectively. By an integration by parts, it follows that

}. (B.2)

It

h
[, = J Y og 1 de = %lﬁ/z{ log h —
0

I'he second integral is

b
12: Jrl/zlog(%-—l)dr,
0

and setting r = b cos’x, it follows that

/2
1/2 9 :
I, = b/ *. cos x - log (tan’x )-b-2 sinx cosx dx
0

w/[2

3
= —4b1/2-b J — log(tanx)-d(@—%—l). | (B.3)
0

lntegrating by parts gives

w2

3/2 _
I, :—_-—%b / [ cos®x-log(tanx)] 7/% — J tc:rsl’;(dx (B.4)
0
and since ~
j ccg;)l(]()l(x = log |tan%| + cosx , (B.5)
1/2 |
I, = -2-3—h3/ ®(log2 — 1). (B.6)
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[.astly consider

I, = I 1'1/2 log ( 1— %.)dr : (B.7)
b

and since b = h/2,

2b
I, = [ 22 g (1= b)dr
b

(B.8)

Introduce the variable x defined by

r = bsec’x; (b<r <2b) (B.9)

and equation (B.8) becomes

s . )

I, = [ bl/zsécx- log (1 — cos?x) 2bsec®x-tanx-dx

0
/4
L 1f2 : 2
— 4b ' °.b | log(sinx)-sec”x-d-secx

0

= %ba/z{ sec3x - log(sinx) — log(tan(’?ﬁ)) - secx};/2. (B.10)

Taking the limits indicated, it can be shown that

[, = — :};113/2{ 2log 2 + 2'/? log 2 + 2/ ?log tan® + 2 — 2\ %y (B.11)
|

Consequently, it follows that

Sy
11,3/2

j r-1/2 log R;ds = I, + Iy + I3 = 3 {2log h — K,} (B.12)

Sn

where the constant K, is given by

K,=35+t2+ 21/210g tan% + 2 log 2

ol

— 3.4731772141727629253. (B.13)

el T ag TR s e
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Appendix  C

In this appendix, the evaluation of equation (4.27) is considered. For o = 0 and

v = -1/2, we have

h
Nip = I r-l/z log ( b* — 2br + r’) / dr
) -
h
:'-,‘Zjlog(b——r)drl/2
b
— o1 log (b — h) + 21, (C.1)
where
h .1/2
I, = J bl — l_dl‘ : (C.2)
b

: : \1/2
et r = b sin®x; then, sinx = (I‘-)) / and

. Therefore
b ]

r — 0 at x = 0 and at r=h, x= izarcsin(%)l/z

sinzxdx

COSX

I, = op'/?

ch——,>¢

2
2b1/2 (1 —COS X)dx

COSX

|

© e, 4

2b1/2

(secx — cosx) dx

°_§XD

1/2 X . X
— 2b ' “[ log(seckx + tank) | — sinx | ]
0o . 0

= 2bl/2[ log(secx + tank) — sinx | . (C.3)
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y 1/2
Since SCCX = (b—-h) i tanx = (b h) /
we have
1/2  1/2 1/2 1/2 ,
(SCC)‘( + tani() — b + h — ( b + h )1/2.
(g RVEE
Then,
, . . b1/2+ h1/2
log (secx + tank) = 5 log T 1)2
b® —h

and I, can be written

I, = 2b1/2{ 1 og NS NN }

b1/2_ ll1/2 b1/2
/2 b/ 24 0'/? /2
— b { log — = — — 2 } (C.4)
b/ - h
Thus, it follows that .
1/2
7;, = 2h " log(b — h) + 2I,
1/2 1/2
— 2111/2log(b — h) + 4111/2-— 2b1/210g ( t;/z t l:/2 ) : (C.5)
b® — h

Next, consider the situation a = 0, v = + —%— , for which
h
N1 = J rl/2 log (b — r )dr
) ,
h i
%Jl%(b—r)dr/ | (C.6)
0

By an integration by parts, it follows

3/2
1 =3[ ’log(b—r)1|+2]b__rdr
0

— %h3/ “log(b — h) + % I, (C.7)




where

h h )
1/2
I, = Jbr——rdr = J r (bf_r)dr
0 0 ‘

2,3/ (C.8)

:b10~§

‘I'herefore, we have

I, = bl, — 3113/2
, 1/2 1/2 e
. 3/2 o b’"+h 3 1f2 9 3/2 (
— b {log, YERRNTE 2bh 21 } (C.9)
b h
and consequently
h
] N = [rl/z log (b — r )d v
0
— %hd/zlog(b ~h)+21 (C.10)




Appendix D

In this appendix, the evaluation of cquation (4.32) is considered. IFor a = ,

and v =-1/2, we have

h
N0 = J rcl/2 log (b + r )dr
0

h
= 2 I log (b +r )drl/2 (D.1)
0

By an integration by parts, we have

1/2 h ! 1,1/2
;0 = 2r log(b + r)] | +2[b+ dr
0 4 r

= 2h1/2log(b +h)+ 21, (D.2)
here,
where h r1/2 |
I, = Ib-}-l‘dr ([).3)
0
Py o : o 2 v —fpan- (I 1/2 oy -
T'o evaluate the integral (D.3), let r = b tan®x and thus x =tan (B) . Letteing X
:-:tan'l(%-;)l/2 , we have
X
I, = I 2b1/2tan2x-dx
0 .
X
= 2b1/2 I (sec’x — 1)dx (D.4)
0

By integration, |

1/2

- “17h
X=tan (3)
I, = 2b1/2 { tanx — x } |
0
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1/2 1/2
— 2b1/2 { !;—;7—2- — arctan( ii;—ﬁ)}

. 1/2
— 211}/2—— 2b1/2tan'l( hT/_i )
b

By substitution of I, into equation (D.2), we have
1/2
n:s = 2h" log(b + h) + 21,

— oh Ylog(b + h) — /24 abY 2tan"( h
b

l.astly for the caseof a = and v = —%— , we have
h
= J rl/?' log (b + r )dr
0
h
= % jlog (b+r )(11'3/2
0

By an integration by parts, it follows that

h
|
0

+

IS
Spu—_
Lo |

W
~~
| &)
e
H

3/2
Mi1 Z%[f/log(b+f)

:%h3/210g(b + h) + :% I,

r

1/2
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Il
O Sy =
Hv—-
S~
N
—~
-
|
c
+|o
Lo |
N’
c.
o |

h
= 2113/2| — b 12 ’ (DIO)
37 0
b/ | .
where [, = j br+ - dr is known from equation (D.5). Thus, we have
0

2tan—l(h)l/.z. (D.11)

2 (D.12)
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A ppendix E

In this appendix, the analytical formula for the integral in equation ( 4.41) is

derived. We have for € =bcos @ ,n = b sin «

1) = J 2 dt (E.1)

where the subscript 1/2 is a convenient notation associated with the power of t in the

C 1/2
numerator. By multiplying a common factor (nt ') through both numerator and

denominator, we have

nt-dt

Jl 2(oz) = _. ;
/ l (Utl/ ) [(€ — 6)*+ 9]

_ T ___-:_l_ ( — ”)t') | ,
=l J (55 ) e ovme-o=m" (52

where I, denotes the imaginary part. By adding a real term and then making

simplifications it can be shown that

% (é(f—-t) +n2) — int)
Jiple) = ~lm J ( ;;17 R GEOET) GEDE S
_ T  (etin)l (6=t) — in)
= ~Im l ( nt}/z) (¢ — t)n+ in][(€ — t)'—- in]dt
= Iy, l ( n—t—}—ﬁ ) : _f:;"__ ; dt (E. 3)

To evaluate the integral first define 7 = § + in and equation (3) becomes

ARG =Im{ I(" 1/2)(r7—t)dt}
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L { I_ln_f (ln ( iz _ t1/2) In ( T1/2+ ¢ /2))1';}
T1/2 T1/2 3 x1/21 |
::Im —-7—’- [ln T1/2 . x1/2 ] } (E4)

T'he result may be writen in real form by first recalling that
T:§+in:bcosa+ibsina=be‘a

1'herefore

1/2 1/2 1f2
J1/2(a) = Im { I_7_7_ In ( :1/2:; );1/2 )}

= Im { T 2, (- IO cos(a/2) +ib' *sin(a/2) - M
i (b /3 003(0/2)+ib1/2sin(a/2)+ xl/2)

1/2 ”

= Im { /B [ln (b / sm(a/2) + l(b / (.OS(a/Q)_ 3 / )

n (_bl/zsin(a/?-) + i(bl/zcos(a/2)+ xl/z)}

b— 2 cos(o:/?)bl/2 /2 + x )1/2
1/2 1/2

|
=
o
-‘
:‘ =
<}
oS
—~

b + 2 cos(a/2)b

x1/2+ b1/2cos(a/2)) _ tan ( b1/2cos(a/2) — x—1/2) ] }

b %sin(a/2) b2 sin(a/2)

(E.5)




Now, we define the following real functions:

Jj (@) +1 Jp(a)

1/2 1/2
b— 2cos(a/2)b" x" + x
Ji (a) = % log , , (E.6)
. : ( b + 2 cos(a/2)b,1/2xl/2+ X
xl/2 l/2(‘,()5 a 1/2cos al2) — xl/2
Jp(a) = tan'l( 1/-2 b ( /2)) — tan ( b v ( [2) ) (E.7)
b’ " sin(a/2) b’ sin(a/2)
cquation (E.5) can be writen according to
1/2
/(@) =T { T ( J(e) +idp@) )}
1/2 iaf2
= 1 { Ypatra (@) +i32() )}
= bl/ziin - ( cos% Jp(a) + sin% Jpla) ) : (E.8)
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Appendix I

In this appendix, the analytical formulae for the integrals (4.47) and (4.49) are
derived based on the results obtained in Appendix E. We define integrals Ja/z(a) and

.]5/2(a) as follows :

% 3/2
_ t .
Js/z(a) = J dt , (F.1)

—
O(C—t)+n"

_ ( ki
Jg /(@) = I dt . (F.2)

b (6-t)'+ 7’

Again, the subscript 3/2 or 5/2 is just a notation corresponding to the power of t in the
numerator. Beginning with the equation (I.1) and using the same mcthod as In

Appendix L5,

. ___X Nk _ 11/ t
Yapal®) = l(t - &)+ nzdt - l Y- o nzdt

% 1f2 _
t nt
l T [(€ — t)+ in)[(§ — t)— in]dt

o
I j
0

I

1/2 o
t 17t
(Y% ) o= —m™

(F.3)
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3/2 1/2 1/2
_ T T —X ;
=T In ( 7 1/2) , (F.5)
T + X
f /
_ T _ o Mt T .
Iy = J Lodt =2 ] (F.6)
o 7Nt

It follows that

¥ 3/2
__ t

3/2 1/2 1/2
= Im { T In ( T1/2 ~ xl/2) T 2
| S

} (F.7)

In a similar manner,

I
oy
g
—
© Sy, 4
P ammua N
|
HU
al ©
<
N’
~~~
h‘
| |9
-
N—
c.
=

— mx _ _tT t
I J;i ntl/z)(’r— t)dt
(AR P
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where

]
)

I

Sy
o
ot

I
=

|

Im(J3+Jq+J5)

J,,J, and J5 are defined as follows :

nt
_ T5/2 - ( T1/2 B x1/2)
T 7_1/2 N x1/2 ’

I'inally, we have the analytic form for the integral 1s

X t5/2
J = dt = 1 J J J
5/2 1/2 1/2 12 .2
T T — X T | 2 3/2 T
-0 ln( 1/2 1/2) +2x 7 gy X

(F.8)

(F.9)

(F.10)

(F.11)

(F.12)
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