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ABSTRACT 

A modification of the classical boundary element method is presented for the 

numerical solution of the Laplace equation when singularities occur on the boundary. 

The approach provides a local treatment of boundary singularities by incorporating the 

analytical nature of the solution near the singularity directly in the numerical algorithm. 

The modified method is applied to some typical examples and numerical results are given. 

r; 
' 
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1. Introduction 

Problems involving Laplace or Poisson equations arise in a wide variety of 

engineering applications, and in recent years the boundary element method has become a 

popular solution technique. In this method, the governing field equations are recast into 

a system of coupled integral equations which apply only on the boundary of the solution 

'• 

domain. The method uses the known boundary data to compute the unknown boundary 

data and then the solution at interior points, if required. This means that the system of 

algebraic equations generated by the boundary integral equation method is considerably 

smaller than that generated by an equivalent finite difference method or finite element 

method. It follows that the boundary integral equation method is an effective tool for 

the numerical solution of the Laplace equation. 

It is also well known that the presence of boundary singularities tends to degrade 

the accuracy of the numerical solution. Consequently, considerable attention has been 

given in recen~ times to seeking modifications of the classical method in which special 
: 

treatment is afforded to singular points. In particular, Symm (1977) showed how the 

classical boundary integral equation method could be globally modified to incorporate 

the analytical nature of a singularity whenever it occured on the boundary of the 

solution domain. Later on, Xanthis et al. (1980) suggested a method in which the 

analytical nature of the singularity is incorporated into the boundary integral method by 

introduction of special functional behavior over those segments of the boundary nearest 

singular point on the boundary. More recently, Ingham and Kelmanson (1984) developed 

an alternative method of local treatment of the boundary singularity. 

In this thesis, another method of local treatment of boundary singularities is 
,. 

presented. It is jllustrated ''6y an application to some typical examples of two 

dimensional steady state heat transfer. Analytical , results for ail the integrations 

associated with the boundary integral method that are generated by incorporating the 

analytical nature of the singularity have been obtained. Numerical results obtained with 

the new procedure are found- to compare with those obtained from Symm's (1977) 

method. 

The basic ideas behind the boundary integral method are described in Chapter 2. 

In Chapter 3, the singularities due to a sudden change of boundary condition are 

discussed and some current methods used to treat the singularities are described. In 

Chapter 4, the anafyti-6 results needed for local. treatment of singularities are presented. 

la 



In Chapter 5, the method is applied to two relatively difficult problems and the results 

are shown to compare quite favorably with previous numerical solutions of the problem. 

,, 
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') 



2.1 The Laplace Equation 

.. 

2. The---Boundary Integral Method 

,., 
. I 

The Laplace equation is usually the mathematical statement of some 

conservation principle. For example, in steady state heat conduction problems, the 
~ 

material temperature T(x,y) satisfies: 

a2 T a2 T 
{) x2 + {) y2 = 0, 

(2.1) 

which is obtained by applying the principle of conservation of energy to a differential 

element of the material. A typical application is illustrated in figure 2.1( a) where two 
1) 

sides of a rectangular region are at a given temperature, one side is insulated and the 

bottom face is exposed to a free convective flow. The objective in this problem is to 

determine the temperature distribution within the solid by solving the Laplace equation 

(2.1) subject to the given thermal boundary conditions. Another classical example is to 

evaluate the deflection of a membrane which is stretched over some region D of the x-y 

plane bounded by a curve C {figure 2.l(b)). The displacement w(x,y) is governed by 

82w + _8_2 w_ 
a x2 {) y2 

0, 

with given w on the boundary curve C. 

In general, the Laplace equation is 

for two dimensional problems, or 

v2 ~ = a2 <I> a2 <I> a2 <I> 

.,, {) x2 + {) y2 + {) z2 - 0, 

(2.2) 

(2.3) 

(2.4) 

for three dimensional problems. Boundary conditions for a well-posed problem must be 

specified on a closed curve in two dimensions and on a closed surface in three 

dimensions. Generally, such boundary conditions involve either known values of </> or its 

normal derivative 0~. The first type of problem is known as the "Dirichlet Problem" for 
n , 

a domain D wherein the value of </> is specified everywhere on the boundary C (figure 

2.2). One physical interpretation of the solution </>{x,y) is that it is the temperature 

3 ' 
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distribution in a uniform heat-conducting body occupying the domain D, when the 

temperature distribution on the boundary C is fixed. 

The second type of problem is known as a "Neumann Problem" for the domain 

D when the value of the norma:l derivative of </, is specified at all locations on the 

. 

boundary C. {figure 2.3). It is common to denote the outward normal derivative of</, on 

the boundary as </Jn =8</,/ lJn and call it the flux since physically it represents a flow of 

some quantity across the boundary. In general, it is also necessary to specify the value of 

</> for at least one point on the boundary to render the solution unique. 

The third type of problem is known as "Robin's problem" when a linear 

combination of </, and </>n is specified on the boundary. A typical example of this 

boundary condition occurs in convection heat transfer where a surface is cooled or 

heated by a moving fluid stream (figure 2.l(a)). Nonlinear boundary conditions are also 

possible but these are outside of the scope of this thesis. 

\ 

In engineering practice, it is often necessary to deal with "mixed" boundary 

conditions where </, is specified along a portion of the boundary and 4'n is given along the 

other parts. In this thesis, such "mixed" boundary conditions are of interest since a 

singularity,. often occurs at the location where the boundary condition changes from one 

form to another. 

2.2 Green's Indentity and Green's Functions 

Consider now any two scalar functions </,{x,y ,z) and 1/J(x,y,z) having continuous 
-. 

first derivatives and defined in a domain D. For any vector Q the Gauss divergence 

theorem applied for a volume V yields 

J 
... J... ... 

V V · Q dV = 
8 

n · Q ds, 
(2.5) 

where the first integral is carried out over the volume V and the second is over the 

bounding surface s(c.f. figure 2.4(a)); in addition, ii is the outward normal vector to s . 

... 
Substituting Q = </,Vtp into equation (2.5) gives 

J \7·(1/,V,P)dV = J ii·(l/,V,P) ds. 
(2.6) 

V s 

5 
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Since 

V·(</>Vt/J) = V</>·Vt/J + </>V·t/J, 
(2.7) 

and 

ii-(tpv'tp) = "'ii-v'tp = "'~. (2.8) 

it follows that equation (2.6) can be written as 

J [v't/l·v'tfa + t/lv'2·1P] dV = J tp ~ ds. 
(2.9) 

V s 

This equation is known as "Green's First Identity". But </> and 1/J can be interchanged to 

• give 

J [v'tfa·v't/l + tpv'2·t/l] dV = J tp ~ ds. 
(2.10) 

V s 

Subtracting this equation from (2.9), yields "Green's Second Identity", viz. 

J [tpv'2tp - tpv'2 tp] dV = J (4' ~ - tp ~)ds. (2.11) 

V s 

For two dimensional problems, the volume integral may be written as an area (x-y 
'; 

plane) integral and the surface integral may be converted into a contour integral, 

according to 

J [q,V2 '¢, - ~V2 4>] dA = J (<P q_i. - 1P ~)ds on on ' 
(2.12) 

A C 

where the area A is bounded by the closed curve C in the x-y plane (see figure (2.4.b )). 

The two dimensional Green's function is defined· as a solution of the differential 

equation 
'i) 

' 

7 
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V2G(x,y) = c5(x - Xo, Y - Yo), 

t ' f 

where c5( e ,1J) is the two-dimensional delta function defined by'' 

c5(x - x0 , y - y 0 ) = 0, for ( x,y) -:/:- ( Xo ,Yo), 

and 

0, (x0 , y 0 ) not in A 

J J 6 (x-x0 , y-y0 ) ds = 

A 1, ... 

The delta function has the so-called "sifting property", 

J J 6 (x-x0 , y-y0 ) f(x,y)ds = f(x0 ,y0 ), 

A 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

and may be interpreted as a point source of unit strength. Consider the radially 

symmetric solution of the differential equation (2.13), which in polar coordinates (R,O) 

. . 

1s, 

(2.17) 

where R = ~ (x-x0 ) 2 + (y-y0 ) 2 measuresf~ial distance from the point (x0 ,y0 ) as 

indicated in figure 2.5. 

For a symmetric solution, 

8G ·ao = o, 

and equation becomes 

fi at. (R z~ ) = 6 (R), 
(2.18) 

Unless R = 0, (i.e. x=x0 , Y=Yo), 
1--,·~ ... '.(' ;, ·, .. 

c5(R) = 0 for R>O. 

9 
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Th us, the general solution is given by 

G(R) = A log R + B, (2.19) 

where A and B are constants to be determined. To this end, equation (2.18) can be 

integrated over a circle C centered at (x0 ,y0 ) with arbitrary radius R0 /0 to obtain 
:, 

ff V 2 G dx dy = ff 6(x-x0 , y-y0 )dx dy = 1. 

A A 

(2.20) 

The left hand can be simplified by using the two dimensional version of the divergence 

theorem, viz. 

ff V·VG dx dy = f ii-VG ds = f i~ ds, 

A C C 

(2.21) 

wl1ere ii is the unit normal pointing outward from the to curve C, 8G/8n is the normal 

derivative in the direction ii and ds is a differential element along C. In the present case, 

we have ds = R0 d0 and 

Tl1us 

21[' 

f i~ <ls = f 8G I R dO {)R R=R0 ° 
C 0 

21r 

- f {) 
BR {A log R + B) IR=Ro R 0d8, 

0 

21r 

- J -ti R0d0 = 21r A. 

0 

A - 1 -27r· 
(2.22) 

On the other hand, B remains arbitrary. Since we are mainly interested in the singular 

part of Green's function G, it is natural to choose B = 0 . Therefore, 

G(R) = i log R (2.23) 

which is called the principal Gr~en's .functio~ or the fundamebtal ~9lution. Very often, 

11 



Green's functions are constructed to satisfy specific boundary conditions for certain 
I 

geometric situations. 1Iowever, all Green's functions in t-wo-dimensions contain a 

singular part and a regular part. The singular part is the fundamental solution wl1ile 

the regular part is constructed to satisfy certain boundary conditions for specific 

geometrical situations. In most applications of the boundary integral method, however, 

only the principal Green's function is needed.,: 

2.3 The Boundary Integral Formulation in Two Dimensions 

At this stage, Green's identities and the principal Green's function can be 

employed to obtain the boundary integral formulation in two dimensions. In 

equation(2.13), we talie 1/;(x,y) to be the principal Green's function G such that 

6 (x-x0 , y-y0 ), 

and 

Then it follows that 

J [<PV 2G - GV 2 <p] dA = J (<Pi~ - G ~)ds. 

A C 

llowever, the left side of equation (2.24) becomes 

J <p 6 (x-x0 , y-y0 ) dA = 'P(xo,Yo), 

A 

hnd consequently 

¢(xo,Yo) = J [¢ 8G - G ~] ds 
8n 8n ' 

C 

(2.24) 

(2.25) 

where (x0 , y0 ) is an arbitrary point within the area A. ·C is the boundary curve of A and 

/n denotes the derivative in the outward normal direction to curve C (see fig.ire 2.6). 

Equation (2.25) yields a formula to compute <Pat any point (x0 , y 0 ) in area A in 

terms of a line integral around the boundary curve C, provided that both <p or <Pn = ~ 
are known on C. In general, l1owever, either <P or <Pn is given on each segment of the 

12 



. .., 

boundary curve C, but not botl1. An algorithm must be found to detern1ine the 

unknown boundary data from the given boundary data. To this end, the principal 

Green's function in equation (2.23) is substituted into equation (2.25) which becomes 

1 J o 8</, 
¢(x0 ,y0 ) = 27r [¢ onlog R - log Ran] ds (2.26) 

C 

for (x0 ,y0 ) within A. Now, let the point (x0 ,y0 ) approach the contour C from the 
I 

interior and suppose for the moment that the limiting location of (x0 ,y0 ) is at a "corner" 

on C, with Oc measuring the interior angle of the contour as indicated in figure 2. 7 . For 

a smooth contour, it is easy to see that O c = 1r. Then let Cf be the arc of the small 

circle with radius f and C1 be the remaining portion of C. The integration along C can 

be divided into two parts, viz. 

First, along Ct:, we have 

and ds = f d01, where 01 is the polar angle ranging from O to 21r-Oc. Thus, 

21f'-0c 

Lim _l_ J [ ~ - log c ql ] t: d01 

{-+0 27f' £ on ' 
0 

21f'-0c 

Lim -2
1 J </> (x0 ,y0 ) d81, 

i-+0 1r 
0 

21r- Be ..J.. ( ) = 211" ~ xo,Yo · 

Substituting in equation(2.26) and letting t:-+0 to yields 

De ¢> (x0 ,y0 ) = J [ ¢> fnlog R - log R :: ] ds 

,. ,._ C 

13 

(2.27) 

(2.28) 

(2.29) 

(2.30) , 
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for (x0 ,y0 ) on C at a corner. In the case of smooth contour C at (x0 ,y0 ), we have 

I a o</J · 
1r</> ( Xo ,Yo~) = [ </> 8n log R - log R 8R ] ds, (2.31) 

C 

for (x0 ,y0 ) on C only. It is worthwhile to note that in equation (2.30) and (2.31), C is 

actually the contour C1 in the limit t-+0 and, consequently, the integrals must be 

interpreted as Cauchy principal value integrals. 

The main task of the boundary integral method is then to discretize the integral 

equation (2.30) to determine the unkn·own boundary data. Once the boundary data are 

fully determined (ie, all values of </>(x,y) and <Pn are known along C), the .values of ¢(x,y) 

in the interior may be evaluated by equation(2.26), viz. 

<P (x0 ,y0 ) = "1i J [ <P Ir.log R - log R g: ] ds 

C 

for (x0 ,y0 ) within A. 

2.4 The Classical Boundary Element Method 

(2.32-) 

There is a variety of ways to discretize the boundary contour C. In the classical 

boundary element method (CBEM), the contour C is split into a number of equal 
,, 

segments, the ends of which will be referred as interval points as indicated in figure 2.8; 

all corners or ends of a segment of a specific boundary condition are taken at interval 

points. In this study, the geometries of main interest are such that C consists of 

s~raight lines which meet at right angled corners. Then, all the corner points coincide 

with interval points. On the other hand, the nodal points are defined as the midpoints of 

each interval as indicated schematically in figure 2.8. 

On each segment of the contour C, it is assumed that either <P or </>n is known. 

Let s; denote the jth interval point with coordinates (xj,Y;); the next interval point is 

s;+i' with coordinate (x;+i' yi+ 1). The values of <p and <Pn at the nodal point of this 

segment are denoted by <Pj and <I>;' as shown in figure 2.9. The main idea in the CBEM 

is to assume </, and <JJ' are approximately constant over each interval and equal to their 

values at nodal point. Thus the values of¢; and </J'; may be removed from the integral 

over each piece of the boundary, viz. 

s;+1 s;+1 

f <J, fn (log R) ds ~ 'P; f 8</> 
lJR log R ds, (2.33) 

s; s; 

15 
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s;+1 s;+1 

J ( log R) ~ ds ~ qi/ J (log R) ds. 

s; s; 

(2.34) 

It is worthwhile to recall that qi/ is just a shorthand notation to denote the outward 
' 

normal gradient of qi at nodal point of the jth segment; R is the radial distance from 

some other boundary point to the jth segment on the boundary. 

Recall that equation (2.30) is valid for any boundary point (x0 ,y0 ) and, in the 

classical boundary element method, it is chosen to be the ith nodal point. The 

discretized form of the equation (2.30) is 

( i= 1,2, ... ,n) 

Now define constants aii and f3i; by 

s;+1 

/3 ;; J /n(log R;)ds, 

Si 

s;+1 

o:;; J (log R; )ds. 

Si 

Then, equation (2.35) becomes 

( i = 1,2, ... n) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

The coeffici~nts o:;; and /3;; may be obtained analytically for the contours which are 

composed of straight lines and, in this case, it can be shown that (Jaswon and Symm, 

1977) 

a;; = a;cos /3 ;log{?.) + h ;(logb; - 1) + a(lf ;sin('tJ; ), 

' 

(2.39) 

17 



and 

(2.40) 

where a and b are distances from the ith nodal point to the ends of the the interval as 

indicated in Figure 2.10; 1P and /3 are respectively interval angles at nodal point Pi and 

interval point s;; h; is the mesh length of the jth interval. 
r 
~ 

For a more concise form of equation (2.38), we set 

B .. /3 ij - 7r 6 .. 
IJ IJ 

and 

A .. IJ 
a .. IJ 

where 6ij is Kronecker delta. Then, 

N 
" B-. A.. L..t 1) V'1 
j=l 

N - '°' A .. A.·' 
~ IJ V' J 
j=l 

(i=l,2, ... N) 

or in matrix form 

(B] J - [A) J' 

0 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

When the element coefficients Ai; and Bij have been evaluated, a rearrangement of 

equation (2.44) can be made in such a way so that all of the unknowns ( either the <Pi or 

the 'Pi) are put on the left side and with the known boundary data on the righthand 

side. The resulting form is 

-+ ... 

C X = d, 
(2.45) 

·' 

which represents N linear equations with N unknowns. The solution of the equation 

(2.45) is easily obtained using standard methods. 

Note that as the mesh is decreased by a factor of 2, on each successive mesh the 

nodal points in the previous mesh become the interval points in the following mesh. To 

compare the accuracy of each calculation, we can compute values of <J, and <J,1 on tl1e 
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contour at specific locations via the formula. 

n n 

-,r<J>(s) = E /3;; 4>; - E a,; 4>/, 
;=1 ;=1 

(2.46) 

where s is any point on the boundary except for a corner point; <P and <P' are assumed to 

have been obtained from a solution of equation (2.45). The coefficients a,; and /3 ,; can 

be evaluated for each point s on the boundary from equations(2.39) and (2.40). In a 

similar manner, we can compute the </> values in the interior points in terms of boundary 

values of </> and </>1, according to 

(2.47) 

\ 

where P is any interior point. 

,, 
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3. Singularities 

3.1 Basic problems and mathematical model 

In the solution of the Laplace equation, the occurence of singular fluxes or 

irregular behavior in <f, near the boundary is quite common. In such regions, the 

variation in </, may be quite intense and the fluxes may be quite large and vary sharply. 

The term irregularity is used to imply that there is a neighborhood near a particular 

paint where the solution is varying very rapidly. As a consequence, gradients of the 
' 

solution will be large near this point and the normal derivative may be very large or 

even undefined. Generally speaking, singularities are expected at any point where there 

is a corner in the boundary· contour or at any point where there is an abrupt change in 

boundary conditions as shown in figure 3.1. 

Since most numerical methods are based on the assumption that the solution. 

may be represented locally by a Taylor series expansion, relatively large numerical errors 

may be incurred in the vicinity of singularities. In problems with corners, the boundary 

condition is also often different on each side of the corner. In addition, even in cases 

where the boundary conditions are continuous at the corner from one side to another, 

the _geometry itself can cause trouble in the numerical scheme. 

There is a wide variety of possible types of changes in boundary conditions along 

the boundary that may be encountered when solving Laplace equations. In this paper, 

J1owever, our attention will be focussed on the situation where the boundary conditions 

at x=xo change from a given value ¢=</Jo for x<x0 to an insulated condition for x > x 0 

on a straight line as indicated in figure 3.2. It is expected that there must be a region 

near x
0 

with intense variation in the solution for <J,. To determine the nature of this 

variation, a polar coordinate system is chosen such that x0 is the center of the 

coordinate system as indicated in figure 3.2. Then, the Laplace equation in polar form is 

{j2,,J. 
+ _l_ 'P 0 

r2 a 82 = . (3.1) 

Applying the method of separation of variables, viz. 

¢, (r, (J) = P (6) R (r), (3.2) 

and substituting into equation (3.1) yields 
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( a) Corner singularity 
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(b) Abrupt change in boundary condit.ions. 
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Figuure 3. 1. Expected eingular points 
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P (0) R11(r) + P~O) R'(r) + ~ R P"(O) = 0, 
r 

,, 

and accordingly 

r 2 ~, + r !tR' = P11 
_ , 2 -p-", 

(3.3) 

(3.4) 

where ,.\ is the real separation constant. The solutions for R(r) equation are of th~ form, 

and it is necessary to take D = 0 to get bounded solution as r-+O. Thus, 

,.\ 
R(r) = Cr . 

The solutions for the (} equation are of the form, 

P( 0) = A cos ,.\{} + B sin ,.\(), 

(3.5) 

(3.6) 

(3. 7) 

where A and B are arbitrary constants. The objective is now to find out a functional 
•, 

form near the singularity (r=O) which satisfies not only the Laplace equation, but 'also 
!J'-

t he boundary conditions. For simplicity, make the transformation 

" 4' = 4' - tPo · 
(3.8) 

" Then, <f, satisfies the Laplace equation and has boundary conditions 

" <f, = 0 for (} = 1r, r > 0, 
(3.9) 

" a <P 
88 = O for O = 0, r > 0. 

(3.10) 

,, 

equation (3.9) is obvious from the condition ef, - t/>0 at () = ,r while equation (3.10) 

follows from the fact ~ = 0 at O = 0. Since 

8¢ 8</, 
8x = cos O 8r 

. ' 

sin (} 8</, 
r 89' 

nn 

(3.11) 



P (/J) R"(r) + P~/J) R1(r) + -\ R P11(/J) = 0, 
r 

(3.3) 

and accordingly 

(3.4) 

where ~ is the real separation constant. The solutions for R(r) equation are of the form, 

R(r) = C r~ + D r-~, 

and it is necessary to take D = 0 to get bounded solution as r.-.O. Thus, -·, 
,\ 

R{r) = Cr . 

The solutions for the (} equation are of the form, 

P( 0) = A cos )..0 + B sin ,\(}, 

(3.5) 

(3.6) 

(3.7) 

·-
where A and B are arbitrary constants. The objective is now to find out a functional 

form near the singularity (r=O) which satisfies not only the Laplace equation, but also 

the boundary conditions. For simplicity, make the transformation 

A 

¢ = ¢ - <Po· 
(3.8) 

" Then, <f, satisfies the Laplace equation and has boundary conditions 

A 

¢ = 0 for (J = 1r, r > 0, 
(3.9) 

" 8 if, 
80 = O for O = 0, r > O. 

(3.10) 

equation (3.9) is obvious from the condition <f, = f'o at /J = 1r while equation (3.10) 

follows from the fact U = 0 at /J = 0. Since 

8"' = cos O 8¢ 8x Fr 

-

sin (} 8</, 
r 89' 

(3.11) 

o· .-



{)q, 8</, 
Dy = sin O Fr + cos O 8</, 

r 80' 

on O = 0 and r > 0, it follows that 

8</, -Dy 
1 8</, 
f lfij = o. 

Thus, 

8¢ 
89 = 0 for (} = 0, r > O, 

and therefore 

A 

8</, 80 = 0. 

Now from equation (3.7), we have 

I = -A A sin () + A B cos AO, 

and to satisfy (3.10), B = 0. Therefore 

' ;· 

P( 0) = A cos >..O, 

~-

and to satisfy equation (3.9), P( 1r) = 0 which results in 

A cos >..1r = 0. 

It follows that in order to have nontrival solution, we must have 

.\,r = (n + ~) ,r, n = 0,1,2, ... 

and consequently 

A oo (n+!) 1 
<J,(r,O) = ~ Cnr · cos (n+2) O, 

n=O 

or, in terms of ¢ 

23 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 



</J( r ,8) = <Po + 
(3.19) 

The gradient is given by 

8</) - (3.20) 
-89 

and this ( along with equation (3.19)) gives a local solution in the vicinity of the singular 

point x 0 . 

Since our particular interest is in how ef, and 4,' behave along the boundary, it is 

of interest to examine the local solution on each side of x=xo. On the right side of x0 , 

(0 = 0), we have from (3.19) and (3.20): 

1 3 - -
<p ( r ,0) = <Po + C0 r 2 + C1 r

2 + · · ·, 
(3.21) 

<Pe = o, 
(3.22) 

wl1ere r = x-x0 ; (x > x0 ). On the left side of x0 , ( 0 = 1r ), we have 

<P = <Po, 
(3.23) 

1 1 3 C 1/2 5 a/2 
Co 1 / 2 + 2 1 r - 2 C 2 r + ... ' 

r 

(3.24) 

r = (x0 -x); (x0 >x). 

It is worthwhile to note that equations (3.21) and (3.24) show the functional form of the 

solution near the singularity. However, the coefficients Cn are unknown constants which 

are not easily evaluated and depend on the rest of the boundary conditions in the 

problem. To develop an accurate numerical algorithm, it is necessary to find a way to 

calculate these constants in the course of the solution of the boundary integral 
-· -

equations. 

--- -



3.2 Previous Studies 

Many efforts have been made to deal with singularities on the boundary. One of 

the first and most effective methods is due to Symm (1973). The basis of Symm's 

method is to deal with a global pertu bation function consisting of the actual function 

minus the singular parts. This global transformation will produce a function which is 

"almost" regular near the singularity. In this manner, good accuracy can be achieved 

near the irregularity. 

To illustrate Symm 's method, consider the model problem example shown in 

figure 3.3. We wish to solve the Laplace equation with given boundary conditions. It is 

obvious that there is an abrupt change in boundary conditions at point 0, and a 

singularity is anticipated there. We first examine the numerical results of the boundary 

integral method obtained by ignoring the presence of the singularity. Applying the 
ii 
? classical boundary integral method, we start with the very coarse mesh consisting o{ 

n = 6 intervals and all the corners being interval points as shown in figure 3.4. We m~y 

then successively refine the mesh with n=12, 24, 48 and 96. Some results obtained by 

Symm (1973) are :shown in figure 3.5. Note that there is a very slow convergence on 

succe,ssive meshes, particularly near the singularity at pqint 0. The values near O have 

changed almost 3% from n=48 to n=96. 

Symm's treatment of the singularity will now be considered. Beginning with 

isolating the algebraic form of the ~ingularity given in equations (3.19), we have the 

following expansions near O: 

oo (n+!) 1 
<f>(r,O) = ¢0 + E Cnr 2 

• cos (n+ 2) 0, 
n=O 

(3.27) 

where the constants C
0

, C1, ••• are unknowns. Next, introduce a global perturbation 

function which is the actual function </> minus first terms of the local irregularity, 

according to, 

, (3.28) 

It is worthwhile to note that the dominant irregularities in the solution near O have 

subtracted out while the other high order terms have been omitted. Thus, q, is actually 

-~ .. ..-... - ' _ ... - .:, -. /.:._ .· '• ·.. . . -•~ -. - .Jfi-. . , . 

' 

... 
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C 

D 

595 602 614 630 651 678 709 744 763 

,93 6CO 6\ 1 627 648 674 705 74-1 779 

5~2 .599 610 626 6!t7 673 704 139 778 

5b8 595 
,.. 0,.. 
0 ,:, 623 644 '7 .. 0 , 703 739 n9 

587 ~93 60J+- 620 641 667 699 735 · 77'; 

.',oo 592 603 618 639 66; 697 733 774 

5i7 583 59L.. 610 631 658 692 -,-o '~ 773 

576 502 592 607 ,~a . . 688 726· 768 u, I 0!)4. 

575 561 591 606 626 653 686 724. 767 

r-., 2 _,_ 567 577 591 611 639 676 718 7b4. 

561 566 575 559 608 635 671 713 759 

,ao j6; 571., 587 607 531 .. 669 711 757 

54.3 547 555 566 584. 612 653 703 755 

51 .. 3 546 553 564 581 608 64.7 697 749 

Sl..2 546 553 563 sao 606 64A. 693 746 

522 c;..,4 528 535 546 570 623 686 746 
., '-

522 521.. 528 5~ 545 566 612 678 740 

522 521 .. 527 534 S.' 1 • I f 564. 608 671+ 736 

500 499 501 4-99 i.-98 495 _ 578 6TI 743 

500 500 500 500 500 4-99 555 .. 667 736 

500 500 500 -oo 
' 500 500 539 662 732 

0 

Figure 3. 5. Results obtained by Symm ( 1973 ) using the classical method 

for the model problem of figure 3. 3. 
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824 867 
821 864. 
819 663 

821 865 
818 862 
816 861 

817 862 
813 859 
812 858 

811 859 
807 856 
805 851. 

806 855 
801 852 
799 850 

801 S53 
796 Bl+9 
793 847 

800 853 
794 84.8 
791 ~ 

911 
909 
908 

910 
90~ 
907 

908 
906 
905 
9Cc 
904. 
903 

90~ 
902 
901 

903 
900 
899 

903 
900 
699 

. 

B 
956 
955 
954-

955 
95lt-
953 

954-
953 
9;2 

953 
~·52 
9'51 

qc;2 
• • 

951 
950 

95-2 
951 
950 

953 
951 
9~0 

A 

n:24. 
n::48 
n: 6 



"almost" regular near O. 

The next aspect of Symm 's method is that it is necessary to construct the 

boundary conditions for iii around the entire contour; while this task is easily 

accomplished for one singularity, it can be very tedious for two or more singularities. In 

the present problem, we have 

(1) on OA: <P 1 == 0, 
(3.29) 

(3.30) 

(3.31) 

(3.32) 

(5) on DO: <J = 500. 
(3.33) 

Since iii satisfies the Laplace equation, it also satisfies the discretized boundary integral 

formula (2.38). By substituting the known boundary conditions for iii, we readily obtain 

( c.f. figure 3.4) 

,r~i = E Pi; iii;+ 500 E Pi; 
OA,BC,CD DO 

+ 1000 E P;; - L 
AB AB,D0 

+ Co Eoi + C1 Eoi' 

where 

E1i = E 1/2 o - {3 if r cos(2) 
AB 

+l E -1/2 . o ai; r s1n{2) 
2 

BC 

1 E -1/2 o - - ai; r cos(2), 
2 

CD 

a .. ~. I ,, , 

28 

(3.34) 

(3.35) 

b. 



i11 tcrv al points 

------•------411-----•------+-t -----•i-----f-
n 1 2 

() 

n<Jclal J>oints 
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(3.36) 

for i == 1,2, ... , n. Since C 0 and C 1 are also unknowns, equation (3.34) now consists of N 

equations for n + 2 unknowns. Two additional equations are necessary to solve the 

system. In Symm 's method, those two additional equations are given by: 

(Pl= 500 
(3.37) 

(3.38) 

where the subscripts are numbered in a counter-clock wise direction as shown in figure 

3.6. 

At this stage it is possible to carry out the numerical calculation to solve for the 

global perturbation function <P, and then the actual function ¢. Some results obtained by 

Symm (1973) are shown in figure 3.7, which are believed to be accurate to at least five 

significant figures. The results are compared in figure 3. 7 with an independent and 

highly accurate computation based on a conformal mapping method due to Whiteman 

and Papamichael (1971). It is worthwhile to note that now there is a dramatic increase 

of accuracy near the singularity. Also, the constants Co and Ci are given in figure 3.8 

where it may be noted that rapid converge takes place with increasing n. 

Symm (1973) also solved another example problem using the same technique 

which has a weaker singularity near O and is shown in figure 3.9. The co11stants 

associated with the singularity are presented in figure 3. lO(a). 

Symm 's method is very effective in producing accurate results for problems with 

strong singularities. On the other hand, however, this approach can become tedious if 

more than one singular point occurs. The approach is tedious to program for the 

problems with multiple singularities because of the global tral},Sformations required for 

each singular point. 

Another approach has been presented by Xanthis, Bernal and Atkinson (1981) 

where the singularity is locally treated near the point in question without introducing a 
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Figure 3. 7. Solution obtained by Symm (1973) which accounts for the singularity at O. 
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Figure 3.8. The constants associated with the singularity problem of figure 3.3 . 
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global transformation. The local approach is a more convenient method when there are 

more tl1an one singularity. 

To illustrate this local approach, we again consider the example shown in figure 

3.3. The solution near the singularity O is of the form: 

where C0 and C1 are unknowns. For O = 0, we have 

1/2 3/2 
</, 1 = 500 + Co r + C1 r + · · · 

, 1 8</J I 
<P1 = f 80 O=o 

For O = 1r, we have 

<Pn = 500, 

0 

A. ' . 1 C -1/ 2 3 C t/ 2 
v,n = - 2 o r + 2 1 r + · · ·. 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

Here, only two terms expansion are used and higher order terms which are small as r-+0 

are omitted. The main idea of the local treatment is to use the above expansion about 

the singularity to represent <Pi and <Pn' over the intervals on either side of the singular 

point O as shown in figure 3.6. The unknowns on the two intervals on either side of 0 

now are C 0 and C1 instead of </, 1 and <Pn 1• 

Next, substituting them into the boundary integral equation formula (2.31) 

yields 

1/2 3/2 8 Co r + C1 r ] ( 8n log R )ds 

n 
+ E <I>; 

;=2 
a - log R ds -
8n 

s;+1 
n-1 ·J 
~ <P/ log R ds 

s; 

33 

• 
•' 

• 



81 

- J [- t Co r- 1
/

2 + ~ C1 r
1

/
2

) log R d1 

Bn 

( i = 1,2, ... ,n ) 

The integers over the intervals surrounding the singular point O can be writtr.n jn1\hr, 

form 

S2 J [ 500 + Co /f 2 + C 1 /f 2
] fr. log R ds == 500 /Jil + C0 c;o + C 1cii, 

where 8 1 

and 
'· 

S2 

l;o == J /f 2 Jn log R ds , 

S1 

S2 

til - J r3
/

2 /n log R ds, 

S1 

' ... 

' 

St 

J 
1 -1/2 3 1/2 1 3 [-
2 

Cor +2C1 r JlogRds==-2Co'1;o+2C177;i 

SN 

,vhere, 

S1 

J -1/2 
7Jio = r log R ds, 

SN 

1/2 r log R ds. 

Now, equation (3.45) may be rewritten as 

n 
7r 4'; == E fJ ;;4>; + 500 (3 ii+ C0 t iO + C1 til 

;=2 
n-1 1 3 - E 4>/ o;; + 2 Co77;o - 2 C177H• 
;=1 

for ( i = 1,2, ... ,n). 

34 

(3.46) 

(3.47) 

(3.48)' 

(3.49) 

(3.50) 

(3.51) 

(3.52) 



f 

81 

J 1 -1/2 3 1/2 [- 2 Co r + 2 C 1 r ] log R ds 
(3.45) 

( i = 1,2, ... ,n ) 

The integers over the intervals surrounding the singular point O can be written in the 

form 

S2 

J [ 500 + 
where 8 1 

and 

S2 

f;o = J /f 2 fn log R ds , 

81 

82 

£ii - J r3
/

2 /n log R ds, 

81 

" 

' 

S1 

J 
1 -1/2 3 1/2 1 3 (-

2
Cor + 2 C1 r ]logRds=-2Co'1w+2C1'1i1 

SN 

,vhere, 

S1 

J -1/2 
'1io = r log R ds, 

SN 

1/2 r log R ds. 

Now, equation (3.45) may be rewritten as 

n 
'If' ~i = ~ /3,;~; + 500 /3il + C0 t:,0 + C1£il 

;=2 

for ( i = 1,2, ... ,n). 

34 

( 3.46) 

(3.4 7) 

1(3.48)' 

(3.49) 

(3.50) 

(3.51) 

(3.52) 



This gives n linear equations for n unknowns including the constants C0 and C1 

associated with the singularity. The solution of equation (3.52) would be straightforward 

provided that the integrals in equations (3.47) to (3.51) can be evaluated. At present, 

analytical results have not been obtained and the integrals were evaluated numerically 
\ 

using Gaussian quadrature. lnghaijl---and Kelmanson (1984) solved the same example as 

that shown in figure 3.9 using this type of procedure. His results of constants associated 

with the singularity are presented in figure 3. lO(b ). 

3. 3 Another Approach of Local Treatment 

The method of Ingham and Kelmanson (1982) uses two terms in an expansion of 

analytical representation of the boundary singularity. 0 When the procedure is 

incorporated into the classical boundary integral equation method, both the potential 

term on the righthand side of O and the flux term on the lefthand side of O are treated. 

In this study, another arrangement was tried such that only the flux terms are 

incorporated into the classicat method; this is because the major trouble associated with 

slow convergence around the singular point is caused by the large flux magnitudes near 

the singularity. In this procedure, two terms in the expansion for the flux are still used 

but only in the two intervals to the left of the point O (where 4> = 500 is given). Thus in 

these intervals 

' 1 -1/2 3 1/2 
</J = - 2 Co r + 2 C1 r + · · ·, 

(3.53) 

where r varies from O to h for the interval n ( closest to 0) and from h to 2h over interval 

( n - 1) ( one interval to the right of 0). 

yields 

where 

Substitution of this expression into the classical boundary integral formula (2.31) 

n-2 

E 
;=t 

81 

J -1/2 
'1io = r log R ds, 

Sn 

., 

.. 

A.. .I O·. 
'P J IJ 

--

(3.54) 

(3.55) 



( a ) Syr111n 's rncthod 

n (~1 

30 -0.48358 0.02987 

60 -0.48353 0.02988 

( b ) Ingham 's method 

n C1 

30 -0.4843 0.0313 

60 -0.4844 0.0314 

Fig11re 3. 10. Computed results for constants associated witl1 the singularity 

for tl1e exam pie of figure 3. 9. 
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'T7 i 1 

1/2 
r log R ds, 

(3.56) 

-1/2 
r log R ds, 

(3.57) 

1/2 
r log R ds. 

(3.58) 

Equation (3.54) can be readily solved for the model problems provided the 

integrals (3.55) - (3.58) can be evaluated. Analytical solutions for these integrals will be 

obtained. 

:. . , ~ (.~ ... :.--- -~ - ' .• . . ,o_ ---. 



4. Analytical Results of Local Treatment of Singularties 

4.1 Introduction 

As we discussed in Chapter 3, the local approach of treatment of singularities 

has definite advantages over Symm's (1973) method since we do not need to modify the 

boundary integral method globally. This process is probably the easist way to deal with 

singularities from the point of view of programming. In this chapter, the objective is to 

complete analytic solutionlf of the integrals defined from (3.55) to (3.58). 

First, we rewrite the integrals in question again as: 

S1 

T/;o - J r- 1
/

2 log R; ds, 

Sn 

1/2 r log Ri ds, 

-1/2 r log Ri ds, 

1/2 r log Ri ds, 

( 4.1) 

( 4.2) 

(4.3) 

I 

( 4.4) 

for ( i= 1,2, ... , n ). Here R; is the distance from the ith nodal point to the interval in 

question; ds is the differential element of the contour and r is the distance from the 

singular point as shown in figure 4.1. The nodal points are numbered in a similar way 

to interval points, as indicated in figure 4.2. 

The major difficulty associated with the integrations in equations ( 4.1) - ( 4.4) is 

that it is not possible to give simple analytic results for all nodal positions. Instead, care. 

must be taken for each part of the contour. As far as the given example problem is 

concerned, the whole contour C was split into 3 parts as shown in figure 4.2. These are 

as follows: 

....... ' .. ...:.\: 
-.;:!_.;. _ _,., -.-~ ·';,. 38 



C 

.o 

I l ~ ( it h 110(1 al p(>i n I; ) 
I 

r· I 

4, I 

I s, 

Figure 4. 1. Geometry and notation for line integral. 

0 

a.-----------------------------~---; 

s n 

• t • f>OS l ; I OIi 

. l . ') r,os 1. ; 1 or, -

s, 

() . l . 1 f> 0 S l ; 1 () ll 

s,. 

Figure 4.2. Calculation scheme for line integral and three types of positions for 

the ith nodal point. 
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( 1) When the ith nodal point is on the interval closest to singularity (i.e., at position 

1 ). 

(2) When the ith nodal point is at ~ny other position on line DA, ( a = 0 or a = .. ). 

(3) The rest of the contour (i.e., when the ith nodal point is not collinear with 0). 

It is also very important to note that we have three different variables, i.e., R, r 

and s. To carry the calculation out, we need to make suitable transformations with care. 

In the following two sections, each type of integration will be treated separately. In 

section 4.2, the integrations for positions of the type ( 1) and (2) above will be carried 

out while the tl1ird type will be treated in section 4.3. 

4.2 Integrals Along Intervals Collinear With the Singular Point 

First, we can have a general formula for integral ( 4.1) and ( 4.2), such as 

81 

11; - J r -r log R; ds, i= 1,2, ... , n, 
( 4.5) 

Sn 
where r=-1/2 and 1/2 respectively. sn denotes the interval point just before the 

singular point. s
1 

is the singular point ( as shown in figure 4.3), r is the distance from the 

singular point and Ri is the distance from the ith nodal point to the interval [sn, s1]. 

The line integral is along the contour in the counter-clockwise direction. From the 

cosine law, we have 

and with s the integration variable define 
~ 

e = I s - Sn I ' 

then, 

and 

( 4.6) 

( 4.7) 

( 4.8) 



C 

D 

> 

,, . 
JJ 

I 

n 

oi 

s 
n S1 S2 A 

t· () 
'• ' 

11 

(i'igure 4. :J. (]corr1etry for the intcgraf;ion over the interval adjacent t<J t.he singnla.rif.y. 

s 
n. 

--

-, 
e --

I, 

--

RnL 
- -
~ - -

rt, 

~ -
l.. 

--

RnR r· 
- - .... 
- - . 

l, 

Figure 4.4. Geometry for the calculation when the nodal point lies in the interval 

adjacent to the singularity . 
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ds =de= - dr, 
( 4.9) 

As s moves frqm Sn to S1 , r changes from h to 0, so that 

h 

'Ii - J r 'Y log (b2 + r2 - 2hr coso )
1

/
2 
dr, , ( 4.10) 

0 

for i= 1,2, ... , n which is valid for all the nodal points except for i = n when the nodal 

point lies on the in terval"Of integration; this special case will now be treated separately. 

When the nth nodal point is inside the interval from Sn to S1 as shown in figure 

4.4, the line integral is split into two parts, according to 

Pn 

TJn - I ( 4.11) 

Sn 

where R
11

L and R
11

R represent Rn on the left side and right side respectively, as shown in 

figure 4.4. We have 

RnL = (r- b ) = r - ~. 

RnR = (b- r) = ~ - r, 

and ds = -dr; thus 

and 

Pn h 

J r 'Y log R0 L ds - J r r Jog (r-~ )dr, 

Sn h/2 

81 

J r 'Y log RnR ds -

Pn 

h/2 

J r 'Y log (~-r) dr 

0 

~ .. • F - ' ' ,r 

( 4.12) 

( 4.13) 

(4.14) 

( 4.15) 

,· .• .;· . ·!· ,_"- .,_ '.-" }-. 
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For r = -1/2, we have 

h h/2 

'1no = J r- 1/
2 log r dr + J r- 1'/2 log (fr-1) dr 

0 0 

h 

+ J -1/2 h r log (1 - 2r) dr. 

h/2 

It can be shown (see Appendix A) 

h J r- 1/ 2 log r dr = 2h1
/

2 
( log h - 2 ), 

0 

h/2 

J r-1/ 2 log ( fr- 1) dr = 231\log 2) h 
112, 

0 

and therefore 

11no 
1/2 1/2 ( 

1
/

2 
) - h { 2 log h - 4 - 2log 2 - 2 log 2 / - 1 } 

21 2 + 1 

Let 
_- 1/2 ( 1/2 ) 

K0 = 4 + 2 log 2 + 2 log 2
112 -

1 } 
_ 2 + 1 

= 2.8933934005589685652, 

and finally we have, 

1/2 
11no = h { 2log h - 1(0 } 
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( 4.16) 

( 4.17) 

( 4.18) 

( 4.19) 

(4.20) 

, (4.21) 

( 4.22) 



I 

Consider next the integral for "Y = 1/2 for which 

h h/2 

'lnl = J r'/2 log r dr + J r'/ 2 
log (fr- 1) dr 

oh o 

+ J r1
/

2 log (1- fr) dr. 

h/2 
The necessary integrals are evaluated in Appendix B and it follows that 

1 3/2 
1ln1 = 3 h { 2 log h - Ki} 

where 1{1 is a constant defined by 

= 3.4731772141727629253 

(4.23) 

( 4.24) 

(4.25) 

Thus far, the two line integrals have been derived for the interval adjacent to the 

singularity when the point P lies along a line collinear with the segment but P lies inside 

the segment. Now consider those line integrals with a = 0 or ,r; that is, when P lies 

outside the segment adjacent to O. When the nodal point is on the right hand side of 

the singular point, a = ,r. When it is on the left hand side, a=O. ( c.f. figure 4.5). 

From equation ( 4.10), if o = 0, we have then, 

h 
T/; - J r'Y log (b2 + r2 

- 2br )
1
/~dr 

0 

h 

= J 
.-

r "Y log (b - r )dr 

0 

For "Y = - 1/2 and for a=O, we have 

h 

J -1/2 
'7i = r log (b - r )dr 

0 

and it is shown in Appendix C that 
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( 4.26) 

(4.27) 
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Figure -1. 5 ( a) P. is to the right or the singularil;y. 
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Figure -1. 5 (h) Pi is to t.hc ten. or the singularity . 
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J 

I 
_/ 

1/io 

For , = 1/2, we have 

h 

TJio = J /f 2 log (b - r )dr 

0 

a~ it is shown in Appendix C that for a=O 

( 4.28) 

( 4.29) 

( 4.30) 

Now consider nodal points on the right side of the singular point, so that a=1r. 

We have 

h ,. 

TJ; = J r'Ylog {b2 + r2 + 2br)
1

/
2dr 

0 

h 

= J r'Ylog (b+r) dr, 

0 

and for ,=-1/2, 

h 

J 
-1/2 

"lio = r log (b+r)dr 

0 

It is shown in Appendix B that 

1/2 1/2 1/2 h 1/ 2 

T/io = 2h log {b+h) - 4h +4b tan-1 / , for 0=1r 

For 1=1/2, 

h 

I 1/2 
1Jit = r log(b+r )dr 

0 

and it is shown in Appendix B that 

• • ~ • ' - -· 5 •· - • • • ., .... 
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( 4.31) 

( 4.32) 

( 4.33) 

{4.34) 

., ~ -.... . =-- ·-: . - ; -'f ~. - ·_,.; . \,.: 
. <'. ~ . -. ~---~. ... • •• 

\ 

_.·. '-<" '··· 



( 4.35) 

So far, line integrals along the straight line containg the field point have been evaluated. 

Now situations will be considered where the field point in not collinear with the interval 

under consideration. We have now ( for o#O or 7r ) 

h • 
T/i = J r"'log (b2 + r 2 

- 2brcos o)
1

/
2
dr 

ho 

= ~ J r "'log (b2 + r 2 - 2brcos o) dr . 

0 

Integrating by parts yields 

h 1'+1 
1 J r ( r-bcos a ) d 

- (,+1) b2 + r2 - 2brcos a r' 
0 

and thus 

T/i = 2('i'~l) h ..,+1log (b2 + h 2 
- 2bh cos a) 

1'+2 1'+1 r - b cos a· r dr 
b2 + r2 - 2brcos a 

= 11 - ( 1 1) ( 12 - b coso 13 ) r+ .. 

where 

I = 1 h "Y+ 1log (b2 + h2 - 2bh cos a) 
1 2(1+1) ' 

--, . ,- . "·,,. ' --.~-- """.~' 

_,.,.. I .,.~. _,- - ' 
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( 4.36) 

( 4.37) 

( 4.38) 

{ 4.39) 
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"!;, • . -- . - .... . • ·-

h 

J 
1+1 

r dr 
b2 + r 2 - 2brcos o ' 

( 4.40) 

0 

and ,=-1/2 or 1/2. 

The integrals in equations ( 4.39) and ( 4.40) can be expressed in terms of and 

integral J1/ 2 (a) defined by 

h 1/2 

J (a) == J x dx 
1/2 x 2 - 2bcos a x + b 2 

0 

To evaluate this integral define 

e == b cos a, 71 == b sin a 

and then it can be shown ( see appendix E ) that 

J1/2(a) = 1/21. { sin2 JL(a) + cos2 JT(a)} 
b SIIlQ 

where JL(a) and JT(a) are defined by 

. a 1/2 
h - 2 cos 2(bh) + b) 

1/2 
h + 2 cos ~ (bh) + b 

h1/2 b1/2 a 
+ cos 2 ) 

- tan-1 ( 

b1/2 . a · 
Slil-2 

b1/2 a h1/2 
cos- -

2 ) 

b1/2 . Q 
Slll-2 

•c; ,·'-.?: , 

. . ._.. ~- . 
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( 4.42) 

( 4.43) 

( 4.44) 

( 4.45) 
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. ( 4.46) 
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Two other integrals occur in the evaluation of equation ( 4.39) and ( 4.40). The first 

of these 

h 3/2 

J (o:) = J X dx 
3/2 x 2 - 2bcos o: x + b2 

( 4.47) 

0 

is evaluated in Appendix F and is given by 

( 4.48) 

The second of these integrals is also evaluated in Appendix F and is gaven by 

h s/2 
J ( 0:) == J X dx 

s/2 x2 - 2b cos a x + b2 
0 

( 4.49) 

We may write the results for equation ( 4.37) in a concise form by also defining 

J0(o:) == log (b2 + h 2 - 2bh cos o:) ( 4.50) 

Thus, for ,==-1/2, we have from equation (4.37) 

1/2 . 
1/io == h J0(o:) - 2(J / (o:)- b cos a J / (a)) 3 2 1 2 

( 4.51) 

Now for ,=1/2, we have from equation {4.37) 

' 
( 4.52) 

Note that the J(o:) functions depend upon the geometry of the boundary contour only . 

• 
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4.3 Line Integrals Over Intevals Remote From The Singular Point 

Based upon the analytical results for line integrals over the interval nearest the 

singular point, we can easily carry out those integrals over the intervals remote from the 

singular point . We can simply use the idea of superposition of line integrals. Begining 

with 

-1/2 
r log R ds 

Thus, 

s n-1 

-1/2 
r . log R ds 

-1/2 r log R ds 

1/io + 1/i2 

Similarly, we have 

1/il + 1/i3 

-1/2 
r log R ds 

-1/2 r log R ds 

1/2 r log R ds 

( 4.53) 

( 4.54) 

( 4.55) 

These two integrals are of the same form as those we treated in the last section . The 

only difference is that the integral interval is now from O to 2h instead of from O to h . 

\~ 
. , ·~ .. ,. '' ... " 

... < • ', ·-
. ,}" ,~ ~ ·' . . ... 
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5. Numerical Results and Conclusions 

5.1 Numerical Results 

In this section, we apply the modified boundary integral equation method with the 

present local treatment of singularities to the earlier examples shown in figure 3.3 and 

figure 3.9. We will use both two terms and three terms in the expansion near the 

singular point. 

In figure 5.1 , the constants associated with the singualrity for the example in 

figure 3.9 are presented for the mesh size n == 30 and n == 60. It is easy to see that the 

rate of convergence is - rapid enough to be comparable with that of Symm 's ( 1973) 

method as well as that of Ingham and Kelmanson (1984) . As a matter of fact, the first 

constant C0 obtained with the present method using a two term expansion is only 0.14 

% in error from that of Symm's method. However, the second singularity constant C 1 of 

the present method differs by 3 % from Symm's result, but is almost the same as that of 

Ingham and kelmarson . On the other hand, better accuracy is achieved for both Co and 

C1 using the present method with a three term expansion. The maximum error is only 

0.03 % as compared to Symm's results. 

In figure 5.2, the singularity constants for the example shown in figure 3.3 are 

presented. Even though the singularity is now much stronger at the origin O , the 

maximum error for both constants obtained by the present method with a three term 

expansion is only 0.3 %. 

5. 2 Conclusions 

A modification of the classical boundary integral· equation method has been 

presented which enables accurate treatment of Laplace equations containing boundary 

singularities. This method requires a slight modification of the classical method with the 

reward of a dramatic inprovement in the rate of convergence of results throughout the 

entire solution. Since the analytical results of those integrals for the analytical nature of 

the singularity have been obtained, the pres~nt method provides a very simple and 
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efficient approch to treat boundary singularities locally. In particular, whenever there 

are more than one boundary singularity, this method can be simply applied at each 

singular point with very little extra effort. From the point of view of programming, the 

present method is relatively easy to impliment. 

,· • 
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( a ) Two tcr1n expansion 

n C1 

30 -0.48265 0.03015 

60 -0.48267 0.03118 

( b ) Three term expansion 

n C1 

30 -0.4836 0.02988 -0.000()7 

60 -0.4834 0.02987 -0.00003 

Figure 5. 1. Com1>uted results for consta11ts associated witl1 the singularity 

for the exarr1ple of figure 3. 9. 
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( a ) 'I'wo term ex1>ansion 

n C1 

48 151.31 3.99 

96 151.36 3.88 

( b ) Three term ex1>ansion 

n C1 

48 150.97 4.754 0.157 

96 151.58 4.713 0.134 

Figure 5. 2. Computed results for co11stants associated with tl1e si11gularity 

for tl1e exarnple of figure 3. 3. 
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Appendix A 

111 tl1is appendix, the analytical formulae for the integral in equation ( 4.16) are 

derived. We have 

Sn 

Pn s l 

== r log Ri ds + I 1/2 I -1/2 
r log Ri ds 

h 

r log r dr + J 
1/2 

0 

11 

Pn 

b 

J r- 1
/

2 log { ~ - 1 )dr 

0 

+ J r - l / 
2 log ( 1- ~ )d r , 

b 

(A.l) 

wl1ere b = 11/2. Eacl1 of these integrals will be denoted by 11, 12 a11d 13 respectively. 

rl'he evaluation of 11 is immediate and gives 

11 

J 
-1/2 1/2 1/2 

11 == r log r dr == 211 log 11 - 411 

0 

'.l'he second ir1 tcgral is 

b 

12 = J r- 1
/

2 log { ~ - 1 )dr 

0 

a.n<l to evaluate, let r == b cos2x for which 

dr = -2b cosx•sinx dx. 

~l'l1crefore, 

0 

. ' .. , ~ ·, •.. .,,v-. 
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(A.4) 
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= -4b 1/
2 

{ Jim [ - cos c · log ( tan c ) + log tan ( 2£) ] 
c-+0 · 

+ Jim ( cos 71 • log ( tan 71 ) - log tan (~) ] 
,1-+1r / 2 

1/2 == -4b { lim [ - log ( tan f) + log tan (-2£)] 
t-+0 

JJastly, consider tl1e integral 

h 2b 

13 == J r- 1
/

2 log ( 1- ~ )dr = J 1 log ( 1 - ~ ) dr . 1/2 
b b r 

']'o solve, let 

r == b scc2x, ( b :5 x :5 2b ) 

SC) tl1at 

dr == 2b sec2x tan x·dx, 

and consequently 

1r/4 
13 = J 4b 1/

2 
• log ( sin x )· d (secx) 

0 r/4 

/ 

1/2 J :...._ 4b { sec x· log din x - cscx dx } 
0 

= 4b1
/

2 Jim { secx log sinx - log tan ( x/2 )} 
t-+0 

1/2 1/2 . · = 4 b { [ 2 log sin ( 1r / 4) - log [ tan ( 7r / 8)]} 
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(A.6) 

,: 
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·...'.·· 

' ,, 

- Jim { sect: log (sint) - log tan ( c/2) } 
t-+0 

N c>t.c tl1at 

lirr1 { sect log (sin £) - log tan ( c/2 ) } = 0 
{-+0 

lim { log f - log ( c/2 ) } == + log 2 
i-+0 

a.n<l it follows tl1at 

1/2 1/2 21/ 2 

13 == 4b { 2 log 2 - Jog (tan (1r/8) - log 2 }. 

Consequently, we have (surr1ming all three contributions) 

S1 

f -1/2 1/2 
r log Ri <ls == 2h (log h - 2 ) 

s N 

1/2 1/2 
+ 41) { - 2 

2 log 2 - log [tan ( 1r /8)} . 

'I'lais ex1>ressior1 may be sirn1>lifie<l so1newhat by notir1g that 

1/2 
log tan(g) = log tan [ (!)/2 J = ~ log ( 2 / - 1 ) , 

21 2 + 1 

a.nd thus 

81 

f 1/2 1/2 
r - log Ri <ls == l1 { 2 log h - K0 } , 

where 
1/2 21/2 - 1 

K0 == 4 - 2 log 2 - 2 log( / ) } . 
21 2 + 1 
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Appendix B 

In this appendix, the analytical forn1ulae for the integral in equation ( 4.23) are 

derived. We have 

h b h 

I -1/2 
r log r dr + f r-1

/
2 log ( ~ - 1 )dr + f r-1

/
2 log ( 1- ~ )dr, (B.l) 

0 0 b 

where b 11/2. Each integral in equation (B.l) will be denoted by 11, 12 and 13 

rcs1>cctively. Dy an integration by parts, it follows that 

11 

I -1/2 
11 = r log r dr = 

0 

'l'hc second integral is 

b 

f 1/2 b 
12 == r log ( f - 1 )<lr , 

0 

an<J setting r == l> cos 2x, it follows that 

7r /2 
12 = f 1//2

• cos x · log (t_an 2x }·b·2 sinx cosx dx 

0 7f /2 
1/2 I 3 

-4b ·b - log(tanx)·d(co3 x). 

0 

l II tegrating by parts gives 

I 

,1nd since ... 

f cosxclx = log ltan~I + cosx 
tanx 2 ' 

1f /2 

-I 
0 
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cosxdx 
tanx 

(B.2) 

( Il.3) 

(B.4) 

(8.5) 

(B.6) 



IJ,1stly consider 

t1 

J 1/2 b 13 == r log ( 1- f .)dr, 

b 

a.nd since b = 11/2, 

2b 

I _ J 1/2 
3 - r log ( 1 - ~ ) dr. 

b 

lutroduce the variable x defined by 

( b~ r ~ 2l> ). 

an<l equation (B.8) becon1es 

1r/4 
1

3 
= J b1/ 2secx· log (1 - cos2x) 2bsec2x·tanx·dx 

0 

7f / 4 

og SlilX •SCC X. •secx -- 4b1
/

2 ·b J I ( . ) 2 d 

0 

rl1 aking tl1e lirr1its indicated, it can be shown that 

. 1 3/2 1/2 1/2 1/2 
1

3 
= ...:... 3h { 2log 2 + 2 log 2 + 2 log tanJ + 2 - 2 } 

\. 
r 

(~c>11scq11cntly, it follows that 

wl1ere tl1e constant K1 is given by 

= 3.4731772141727629253. 

- ,•"Tl",__ 'Jo:, 
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(B.7) 

(B.8) 

(B.9) 

(B.10) 

(B.11) 

(8.12) 

(8.13) 

.... 



'-.., 1-1 
J 

Ap1>cn<lix C 

I 

' 

In this appe11dix, tl1e evaluation of equation ( 4.27) is consi<Jcre<l. }.'or a = 0 and 

1 == -1/2, we l1ave 

\vhcrc 

}1 

1/;
0 

= J r- 1
/

2 log ( b2 - 2hr + r2 )
1

/
2 
dr 

0 

h 
= 2 J log ( b - r )d/f 2 

b 

1 / '}, 
== 2h l<>g (b - 11) + 210 

' 

lt 1/ 2 
J r 

Io == b - rdr . 

h 

. 2 . (r)t/2 
I Jct r = h sin x; tl1e11, s1nx == b and 

r = 0 at x = 0 and at r = h, x = X = arc sin (~)
1

/
2

• Therefore, 

,.. 
X 

I - 2b 1/2 J si112xdx 
0 - cosx 

0 

A 

X 

- 2bl/2 J (1 -COS2X)dx 
- cosx 

0 

... 
X 

= 2b (secx - cosx) cJx 1/2 f 
0 

= 2b1
/

2
( log(secX + tanX) f - sinx f] 

0 , 0 

= 2b1
/

2
( )og(sec:X: + tan:X:) - sinx] . 
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-J 

Si IICC 
_ _ ( l> )1/ 2 

sccx - b-h , 

we have 
b1/2 + h1/2 

b1/2_ h1/2 

1'hc11, 

log (secX + tanX) = ~ log 

=( 

b1/2 + h1/2 

b1/2 _ h1/2 

a.ud 10 can be written 

1/2{ 1 10 == 2b 2 log 
b 1/ 2 + 111/ 2 

b1/2_ h1/2 

- b1
/

2
{ 1 l - 2 og 

'J'hus, it follows that 

b1/2 + h1/2 

b1/2_ h1/2 

1/2 
1Jio = 2h log{b - h) + 210 

1/2 1/2 1/2 ( == 2h log(b - h) + 411 - 2b log 

Next, consider the situation a = 0, r = + ~ , for which 

11 

'f/ i1 = J / f 2 
log ( b - r )d r 

0 

h 

= j J 1og ( b - r )d/f 2 

0 

fjY. an integration by parts, it follows 

h / 
2 3/2 h 21 3 2 

1J i 1 == 3 [ r log( b - r)] I + 3 hr _ r dr 
0 0 

- 2 3/2 2 - 3h log(b - h) + 3 11 , 
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where 

11 3/2 
11 = J b - r dr 

0 

11 

J //2 ( r ) dr 
b - r 

0 

= b 10 - j 1//2 (C.8) 

'J'hcreforc, we have 

3/2{ == b log 

a.n<l consequently 

h · J 1/2 rJ i 1 == r log ( b - r )<Ir 

0 

(C.9) 

( C.10) 



Appendix D 

In tl1is appe11dix, the evaluation of equation ( 4.32) is considered. l"or o = 1r, 

and 'Y = -1/2, we l1ave 

}1 

IJ;o = J r- 1
/

2 
log ( b + r )dr 

0 

h 

J 1/2 
== 2 log ( b + r )dr 

0 

lly au in tegratio11 by parts, we have 

where 

11 / 
1/2 h J 1 2 

IJ i O = 2r log( b + r)] 6 + 2 hr + r d r 
0 

' 

1/2 = 2h log(b + h) + 2 12 

l1 1/ 2 
J hr+ r dr 
0 

• 

(D.l) 

(D.2) 

(D.3) 

To evaluate the integral (D.3), let r = b tan2x and thus x =tan- 1(£//2
. Letteing X 

2b 1/
2tan 2x·dx 

;', 

... 
X 

= 2b1
/

2 J (sec2x - l)dx 
0 

lly integration, ., 

,.. - -l(h)1/2 
I 

X-tan -6 
1 2 

12 = 2b { tanx - x } I 
0 
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l!y substitution of 12 into equation (D.2), we have 

1/2 
1Jio == 2h log{b + h) + 21 2 

Lastly for the case of a = -,r an<l 'Y = ~ , we have 

h 

1/il = J /f 2 log ( b + r )<lr 

0 

11 

= ~ J log ( b + r )<l/f 2 

0 

lly ar1 in tcgration by parts, it follows tl1at 

7J i 1 

whcr<! 

13 = 
la 3/2 
J l' 

b + r dr . 
0 

'J.'his int.cgral can be evaluated as follows : tt 

11 

J 1/2 ( r ) d 
13 r b. + r r ' 

0 

65 

(D.5) 

(D.6) 

(D.7) 

(D.8) 
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h 1/2 
where 12 = J hr+ r dr is known from equation (D.5). Thus, we have 

0 

- 21 3/2 - 2bl 1/2 2b3/2 .. -1(h)1/2 - 3 1 1 + tan b . 

S11bstituti11g tl1is result into tl1e e<111ation (D.8), we have 

h 

11 i 1 = J / / 2 
log ( b + r )d r 

0 

- 2 l 3/21 (b h) 21 a/2 2h1/2b 2b3/2 -1(h)1/2 - 3 1 og + - 3 1 + - ta11 b . 
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Appendix E 

In tl1is appendix, the analytical formula for the integral in equation ( 4.41) is 

derived. We have for { = b cos a , fJ = b sin o 

J / (o:) 
l 2 

X 1/2 

f t 2 2dt 
( {-t) + 1J 

0 

(E.l) 

where tl1e subscript 1/2 is a co11venient notation associated with the power of t in tl1e 

1/2 
11urnerator. Dy multiplying a cornrr1on factor (11t ) through both nurnerator and 

dcn(1rr1inator, we have 

X 

== 11n J ( 1 ) ( - i11t) d 
-1/2 ~[(~e---t~)-+-i11~H~<e--~t)~--i~111 t · 

0 11t 

(E.2) 

where 110 denotes the imagir1ary part. By adding a real terrr1 ,1n<l then maki11g 

sirn1>lifications it can be shown tl1at 

J / (a) == -Im 
1 2 

( {(e-t) +112) - iqt) 

[< e - t) + i11J[( e - t) - i11J<lt 

,, 

-Irr1 
(e+i11)[ ({-t) - ir1] d 

re~ - t) + i11Jrce - t) - i11J t 

X 

-I1r1 f ( i ) e +i11 dt 
1/2 e + i11 - t · 

O T}t 

(E. 3) 

'T'o eval11ate the ir1tegral i~rst define T = e + i1] and equation (3) becorr1cs 

X 

=Im J ( 1 ) ( T ) dt -:- 1/2 T - t 
0 77t 

67 



== Im 

=lu1 

IX } Tl/2 

- 1/2 'I [ 
0 2t 

1 1 dt 
1/2 1/2 + 1/2 1/2 

T -t T +t 

1 1 )dt 
1/2 1/2 2t1/2 

T + t 

1/2 1/2 1/21 
r [ In r - x ] 
~ 1/2 1/2 

T + X 

'l'he rcst1lt may be writer1 in real form by first recalling that 

T = e + i7J = b COS O + ib sin O = b CiO 

'J'hcrefc>rc 

' 

{ 

1/ 2 1/2 . 1/2 1/2 

== Irn r TJ [ ln (b sin(a/2) + i(b cos(o/2)- x ) 

1/2 
= Im { r 11 [ log ( 

1/2 1/2 
b - 2 cos(a/2)1> x + x )1/2 

1/2 1/2 
b + 2 cos(o/2)b x + x 

1/ 2 1/ 2 
( 

x + b cos( o:/2)) ( 
+ i [ tan- 1 -----~- - tan 

b t/ 2 sin( o./2) 

(E.4) 

(E.5) 



Now, we define the follc>wing real functions: 

1/2 1/2 
b - 2 cos(o/2)b x + x) 

1/2' 1/2 ' 
b + 2 cos(a/2)b 1 x + x 

(E.6) 
... 

1/2 1/2 1/2 1/2 
1( x + b cos( o:/2)) ( b cos( a/2) - x ) Jr

1
,(o:) = tan- --

1
----~ - tan ---1----- . (E.7) 

b1 2 sin(o/2) b
1 2 

sin(o/2) 

equation (E.5) can be writen according to 

. 

b1/2 ia/2 ·· 
= Im { b sin o ( JL(o) + i JT(o) )} 

(E.8) 

69 



.. . 

Appendix F 

In this appendix, the analytical forrr1ulae for the integrals ( 4.47) and ( 4.49) are 

derived based on the results obtained in Appendix E. We define integrals J / (a) and 
3 2 

.1 5 /'l.(o) as follows: 

X 3/2 

J a/2(0) == J t dt 
< e-i)2+ 11 2 

' 
0 

( F.1) 

X s/2 
J (a) - J t dt 
s/2 - ( e-t)2+ 1/2 . 

0 

(F.2) 

Aga.in, tlte sul>script 3/2 or 5/2 is just a notation corres1>onding to the power oft in the 

11 urncrator. Beginning with the equatio11 (F.l) an<l using the san1c rncthocJ as in 

A 1>1>cn<lix E, 

X 3/2 

J (a) - J t dt -
a/2 - (t _ !)2+ T/2 -

0 

X 

J 1/2 t d 
t t 

(t - e)2+ 7]2 
0 

Jx t1/2 77t 

TJ • [(! - t)+ i77][(e - t)- i77]dt 
0 

- ir1t dt 

[(e - t) + i11Jf(e - t) - i11J 

e + irJ dt 
e + i11 - t 

( l" .3) 

'l'<> evaluate this integral, Jet T = { + i71 and then 

= Im t dt 
T - t 

., 

70 



X 

== J J ( _ r ) T - ( T - t) dt 
In 1/2 T - t 

0 71t 

X 

= Im{ J ( - :12 )-r_r _t dt + 
0 11t 

l)c11(>ting the two integrals as J 1 and J 2 according to 

X 

Jl= T J ( !12) T ~ t dt 
0 71t 

== T J / (a) 
1 2 

3/2 ( 1/2 1/2) 
T I T - X 

== ri7 n / / ' 1 2 1 2 
T + X 

X 

J2 == J T dt 
1/2 

O TJt 

It fo]lows that 

- 2 1/2 T 
- X 1J . 

X a/2 
J (a) - J t dt 3/2 - Ct _ e)2+ 11 2 

0 

3/2 1/2 1/2 / 
{ T ( T X ) 2Xt 2 ~ } == 1111 1J 111 1/2 - 1/2 + ., 

·. T + X 

J n a si1r1 ilar rn an ner, 

J I (a) = 5 2 

X 5/2· 

J t dt 
< e-t)2+ 1/2 

0 

X 

= I J (- tr ) ( t ) dt 
ID 1/2 T - t 

0 11t 
X 

= Im _ J ( _ tr ) ( T - ( T - t )) dt 
1/2 T - t 

0 71t 

71 

,. , 

(F.4) 

(F.5) 

(F.6) 

( lt'. 7) 



== Im 

X X 

I ( _ tr ) ( r ) dt + J ( tr ) dt 
t/2 T - t 1/2 

0 ,,t O ,,t 

== Irn 

== 1111 

X 

I ( _ r 2 ) ( T - ( T - t )) dt + i ! X 3 /
2 dt 

1/2 T - t 3 f/ 
0 77t 

== Im 

X 

I ( _ r 2 
) ( r - 1) dt + i r x3

/
2 dt 

1/2 T - t 3 1J 

0 11t 

where J 3 , J 4 and J5 are defined as follows : 

l dt 
T - t 

s/2 ( 1/2 1/2) 
r In r - x 
~ 1/2 1/2 ' 

T + X 

X 

J 
2 

T dt 
1/2 

0 11t 

_ 2 1/2 T2 

- X 'if ' 

li'inally, we l1ave the a11alytic forr11 for the integral is 

J / (a) 
5 2 

X s/2 

I t 
( 2 2dt = Im ( J3 + J4 + ls ) 
t - ~) + 7} 

0 

s/2 ( 1/2 1/2) 1/2 2 2 3/2 
T J T -X 2 T + T 

fJ D 1/2 - 1/2 + X 1/ 3X ij 

T + X 
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