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Abstract 

One of the most heavily studied optimiza~Jon 

problems in the field of ~operations research is the 

traveling salesman problem. Traditional local search 

approachs to solving this problem search in solution 

space, usually in a 2 or 3 interchanging neighborhood. 

In this· thesis, a novel algorithm based on· problem 

space search is examined. 

This algorithm is ·based on the fact that tiny 

perturbations to the problem will, when operated on by 

a heuristic, generate a search neighborhood that yields 

better results than traditional neighborhoods. The 

"Jiggling" algorithm uses the space filling curve 

heuristic to generate the novel neighborhood that is 

defined by the perturbations. 

The Jiggling algorithm is found to be competitive 

with current methods. However, when Jiggling and 2-

··opt are combined into a two stage heuristic, substantial 
"' 

I 

improvement results. 
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1. . Introduction 

The Traveling Salesman Problem (TSP) is a 

classic optimization problem which although simple to 

describe, belongs to a category of problems which are 

very difficult to solve to optimality. This is true because 

the required ~olution time grows exponentially in the 

size of the problem. Problems such as this are said to 

belong to the class NP- Complete. The- travelling 

salesman problem can be stated: given a group of cities 

and the distance between each city, find the shortest 

tour that visits each city once and only once and returns 

to the starting point. [Wasserman 1989]. This problem 

is trivial for a small number of cities, however, as the 

number of cities, n, increases the difficulty in "solving 

the problem to optimality increases at the previously 

mentioned exponential rate. The traveling salesman is 

probably the most studied of the _ many combinatorial 

optimization problems. Much of this study has focused 
. 

on heuristic solution techniques. The focus of this 

thesis is a TSP heuristic which operates by introducing 
. . 

perturbations to the problem, hence the term problem 

space search. 
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1.1 Combinatorial Optimization 

Combinatorics is the study of arrangements: given . 

a set of items, e.g. cities, which way should the cities be 

_ arranged so that the tour length is minimized. A 

subgroup of combinatorics is discrete or combinatorial 

optimization. Combinatorial optimization is ~ analysis 

of problems which are modeled as either the 

minimization or maximization of a value measure over a 

feasible space involving mutually exclusive, logical 

constraints. In the case of the traveling salesman 

problem, the objective measure is a minimization of the 
~ 

tour length, i.e. total distance travelled between cities:·· 

while the constraints are that each city must be visited 

once and only once and that the solution is a valid tour. 

Other combinatorial optimization problems include: 

The postm~~·s problem, the knapsack problem, the 

maximum flow problem and various machine. scheduling 

problems. 

These problems, however, have not received the 

attention that the traveling salesman has. This is, no 

doubt, because of the simplicity of the problem as well 
~ " 

as its many appllcatioris including basic routing 

3 
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problems, VLSI chip design and printed circuit board 

design. 

There are several types of traveling salesman 

problems. Their differences are based on the 

properties of the distances or costs between nodes. 

Given a cost matrix C, the distance between the cities 

can be represented by Cij. A TSP is said to be 

symmetric if Cij = Cji, i.e. one whose distance from one 

city to another is always the same amount no matter 
• 

what order the cities ar~ visited. A non-symmetric TSP 

would be one whose costs are different depending on 

the order ·of visitation. 

The next type of TSP is one in which the triangle 

inequality holds. . This says that Cik <= Cfj + Cjk· This 

property is very important for many of the tour 

construction heuristics. A planar TSP is simply one 

whose node coordinates exist in a plane. 

An important consid,eration for(oplanar traveling 

salesman problems is the way in which the costs, or 
' 

distances, are measured. One method is the taxi cab 

metric. In this method the distance between nodes is· 

calculated as the sum of the absolute differences in the 

x and y coordinates. In the Euclidean metric, these 
I 

distances are calculated ·~~Jng Euclidean distances, the 
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square root of the sum of the squares of the differences 

of the x and y coordinates. 

In this thesis a new heuristic for the planar TSP 

will be described. All of the problems will be created by 

filling a unit square with a specified number of 

randomly chosen cities. The Euclidean ~etric will be 

used for S·tudy, however, the proposed methods will 

work for any metric. 

1.2 NP- Complete 

Combinatorial Optimization problems are difficult 

to solve due to the tremendous size of the solution 

space, and the fact that each solution must be 

investigated (either implicitly or explicitly) to guarantee 

. optimality. The size of the solution space grows . 

exponentially with the problem size. The traveling 
. n! 

salesman problem of size n cities contains 2-n unique 

tours. ro evaluate all of these tours would literally take 

forever.'1 When n is only 30 there exists 4.4 *103 0 

different tours. Considering the arithmetic required to 

compute a single tour, a 10-mflops computer would 

require 4.2 *10 17 years. to evaluate all of the tours 

(Davis 1989). ~learly, one must use· a differ~nt method 
. . 
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than trying every possible combination. Hence, the 

need to study combinatorial optimization. While much 

progress has been made , in Implicit en~meration 

approaches, e.g. Held and Karp (1970), the largest 

problems which have been solved optimally are limited 1 

to a few hundred cities. Traditionally, heuristics and 

algorithms have been used to 'solve' large traveling 

salesman problems rather than enumeration methods. 

A heuristic is a method of arriving at a solution using 

rules of thumb. An example would be to always travel 

next to the unvisited city closest to the current city , 

and repeat until all cities have be,en selected. 

Optimization problems can be divided into three 

classes, the optimization version, the evaluation version 

and the recognition version. These versions can be 

defined as follows: Optimization version - given the 

problem find the optimal feasible solµtion; The 

Evaluation version - find the cost of the optimal 

solution; the Recognition version- given an instance of 

a problem is there a feasible solution? The recognition 
. 

version requires only a· yes or no answer. It can also be 

seen that the recognition version is no harder than the 

evaluation version, .which itself is no harder than the 

optimization version. 

6 
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One can now use these definitions to deter111ine 

whether a problem falls into the category of P or NP. A 

problem is said to be in the class P if it can be solved by 

a polynomial-time algorithm. An example of such a 

problem would be the graph connectedness problem. 

Given a graph G, is G connected? This question can be 

easily answered in polynomial time using an efficient 

heuristic. 

A problem which can not be solved using · a 

polynomial time algorithm but for which there exists a 

polynomial time algorithm to verify a 'yes' answer to the 
( 

problem is said to be in the class of NP problems. The 

traveling salesman problem has been shown to be in NP 

(Garey and Johnson 1979). 

A recognition problem that is known to be in NP 

is said to be NP complete if all problems in NP 

polynomially transform to that problem. These two 

properties have been observed for the traveling 

salesman and so the TSP is in NP complete. This is 

important to recognize because there is no known 

algorithm which will optimally solve large traveling 

salesman pr:oblems in polynomial time. Knowing this, 
u 

heuristics which try to obtain the best possible solution 

. are the only reasonable alternative. 
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1.3 Local Search 

As a reasonable alternative to complete 

enumeration a common heuristic known as local search 

is often used. A local search is simply a trial and error 
I 

process which looks at a neighborhood of solutions in 

search of a better one. These methods generally run 

until no further improvement can be made and a 

solution is accepted to be at best optimal and at least 

locally optimal. A solution is locally optimal if the 

solution is the best in the surro1:1nding neig;hborhood, 

where a neighborhood is loosely defined to be a solution 

set that contains solutions which are "close" to the 

current solution. The terin local search comes from 

the idea of searching such a local neighborhood of 

solutions. 

Within local search there are two 'primary sea.,rch 
" 

strategies. They are hillclimbing and steepest descent. 

In hillclimbing a new solution is compared to the 

current solution and accepted if the new solution is 

better. In \ steepest descent, all neighboring solutions 
. 

are· evaluated before the best is chosen· as the next 

incumbent. Th·ese solutions are chosen from a 

8 
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"neighborhood" of solutions which borders. on the 

current solution. The term neighborhood refers to a 

collection of solutions which are "close" to a current 

solution. ( 

Often, the most important part of a local search is 

the neighborhood definition. One can choose a large 
.-

neighborhood at each step, but this requires a greater 

amount of searching. Alternatively, one can choose a 

small neighborhood which takes less time to search, 

but the chance of finding an improved solution 

decreases. This is because a search has a greater 

chance of getting "stuck" in a local optimum. 

The key to local search is the specification of the 

neighborhood. In this thesis, a novel neighborhood for 

the planar TSP is investigated. This neighborhood is 

created by introducing small perturbations . in the 

problem space. The conjecture is that the 

perturbations will provide a search space that is useful 

in finding good solutions. 



• 

2. Traveling Salesman Heuristics 

Since an optimal solution can not be found for 

"" large problems, researchers have used many heuristics 

algorithms to find solutions for TSP problems. These 

heuristics fall into three categories. The first are tour 

construction procedures which generate a single 

solution using common sense rules. The second class 

are termed tour improvement. These are self-

descriptive in that they attempt to find a better tour by 

improving upon an initial tour. The last group is 

composite procedures. These procedures are a hybrid 

of the first two classes where a better than random 

initial solution is used and then a tour improveme~t 

process is applied to obtain an even better solution. 

This composite procedure seems to work better than 

the other two for the obvious reason that an 

improvement over a good starting solution is better 

than merely a good starting solution or an improvement 
f 

over a random solution.~ 

A fundamental tour construction procedure is the 

nearest neighbor heuristic. This algorithllJ. is intuitive. 

1. Start with any city as incumbant. 

10 
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2~ Find the incumbent city's nearest neighbor, i.e. the 

closest city that ,is not already in the tour, and add that 
• 

" 

city to th_e tour as the incumbant. 

3. Goto step 2 until all cities. have been visited. 

4. Connect the first and last cities. • 

Rosenkrantz, Stearns and Lewis ( 197 4) researched this 

procedure and found that the worst case behavior for 

the nearest neighbor heuristic is 0.5*[log(n)] + 0.5. 

Another ~,· .. common group of procedures for 

constructing .tours are the insertion procedures. These 

include: nearest insertion, cheapest insertion, arbitrary 

insertion, and farthest insertion. An insertion 

procedure takes a subtour and chooses (inserts) a city 

which is not in the tour. This choice can be made on 

the basis of various criteria, hence, the various 

procedures. 

Briefly, the nearest insertion procedure· chooses 

the next unvisited city. cJosest to. the current subtour .. ,, 

This is repeated until all cities have been included in 

the tour. The next common insertion algorithm is the 

cheapest ··1nsertion procedure. This differs slightly from 
~~ ~ 

0 

the neare~t insertion in that the added area generated 

by two new arcs ·· must be minimized. The farthest 

insertion procedure starts from a degenerate tour and 

1 1 
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repeatedly chooses the non-tour city with the maximum 

distance to its nearest neighbor among the subtour 

cities. These insertion procedures do a relatively good 

job - roughly 25%., over the.~Held- Karp lower bound 1 

(Johnson·· 1990). 

The Held- Karp lower bound is a lower bound that 

is created by an iterative process which is based on the 

relationship between the symmetric traveling salesman 

problem and the minimum spanning tree problem. 

This approach is based on the idea that a minimum 

weight l~tree is easy to compute. At each iteration the 

1-tree problem is revised by adding and changing node 
. 

weJghts such that the lower bound will increase. 

Two algorithms worthy of separate note are the 
' 

Double Minimum Spanning Tree and the Christofides 

Heuristic, which is a variant of the Double MST. The 

Double Minimum Spanning Tree Heuristic constructs a 

graph consisting of a minimum spanning tree for the 

cities. Then it constructs an Euler Cycle (a graph in 

which each edge is traversed exactly once (Minieka 

1978)). A tour is then derived by traversing the eye.le 

and taking the cities in the order in which they are first 

encountered. The Christofides' Heuristic is similar in 

that a minimal spanning tree must be constructed as 

·f 1 2 

~;, . 



the first step. The second step is to identify all of the 

odd degree nodes in that spanning tree. It proceeds by 

solving a minimum cost perfect matching on the odd 

degree nodes using the original cost matrix. It then 

adds the branches from the matching solution to the 

branches already in the minimum spanning tree 

therefore obtaining an Euler cycle. The result is a 

subgraph with all nodes having an even degree. The 

final step is to remove polygons over the nodes with 

degree greater than 2 thus transfor1ning the Euler cycle 

into a Hamiltonian Cycle. It has been found (Golden 

1979) than the worst case behavior of the Christofides 

Heuristic is 1. 5, and is generally in the area of 9o/o over 

the Held- Karp lower bound (Johnson 1990). 

These algorithms and heuristics are used to find 

tours in all types of traveling salesman problems. The 

·fallowing algorithms can only be used when the cities 

can be,. represented as points on a plane. These 

algorithms include the Strip, Space Filling Curve, 

Recursive CJustering and Karp's Partitioning Algorithm. 

The strip algorithm divides the unit area into sqrt(n) 

strips. A tour is then constructed by moving down the 

leftmost strip, ordering the cities by height. Once the 

, first strip is completed move up the second . strip and · 

13 
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then down the third, and so on, until all of the strips 

are completedl The final city is then connected to the 

first to complete the tour. This method usually gives a' 

result roughly 300!& over the Held Karp lower bound but 

performs much more poorly on real-world instances 

than on uniform random problems (Johnson 1990). 

The space filling curve (SFC) heuristic creates a 
' 

tour by visiting cities in the order in which they appear 
• 

along a space filling curve. This method, first suggested 

by
1 
Bartholdi and Platzman (1985) is known to be the 

fastest tour construction heuristic (Johnson 1990). 

The SFC maps points in two dimensional Euclidean 

space into a single dimension. Any point on a unit 
'" 

square can be mapped to the unit interval via a space 

filing curve. The unit square is divided into four 

quadrants and each quadrant is then divided many 

times over to give many tiny regions. These regions are 

then ordered recursively to provide a transformation 

that orders each city. Th:is ordering is then the tour. 

The· tours that are created by the· space filling curve 

heuristic are usually about 25% over the expected 

optimal. The expected optimal is found to be 

. 756*sqrt(N), and tl)e expected. space filling curve 
' 

distance is .956*sqrt(N) (Bartholdi and Platzmah 

14 
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1985). A comparison of expected and computer 

generated SFC values is contained in table 1. In this 
I 

table, it can be seen that the average tour lengths 

generated for the test problems are consistent with 

Bartholdi and Platzman's expected values. 

Because of its speed and good performance, the 

space filling curve heuristic is used to provide the 

initial solution before the jiggling procedure is 

implemented in the research. The space filling curve 

works because cities are grouped together and then 

arranged in a logical order. That is, cities which are 

close in the plane tend to be close after being mapped 

to the unit interval. A principle advantage of this 

heuristic is its speed. This is because once the location 

values for each node are deter111ined~ only one sort is 

required. A drawback to the SFC is that in the worst 

case solutions can be six times the optimal (Bartholdi 

and Pl~tzm~ 1987). 

Litke has suggested a Recursive Clustering 

algorithm which is a divide and conquer algorithm that 

gathers points which are close to each other into 

. clusters and then applies an exhaustive search to find 

the optimal tour within a particular cluster (Litke 

1984). 
• 
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SFC COMPARISON 

cmES EXPOPIM EXPSFC . CALCSFC CALC/EXP 
1000 24.1914 30.2314 30.3008 1.0023 
2000 34.2118 42.7536 43.3657 1.0143 
3000 41.9008 52.3623 53.4592 1.0209 

·4000 48.3828 60.4627 60.8467 1.0064 
5000 54.0937 67.5994 68.6908 1.0161 
6000 59.2566 74.0514 74.2456 1.0026 
7000 64.0045 79.9847 80.4646 1.0060 
8000 68.4237 85.5072 87.6996 1.0256 
9000 72.5743 90.6941 90.4870 0.9977 
10000 76.5000 65.6000 

·' 

95.9812 1.4631 . 

b 

1bis table shows the expected and calculated values of the Space Filling Cur 

Table I ) . , 

. / 



The last of the standard construction algorithms 

is the Karp Partitioning Algorithm. This is a 

decomposition algorithm in which the cities are 
·~;, 

partitioned recursively by cuts through median cities 

until no more than a given number of cities are in any 
/ 

single partition. Dynamic programming is then applied 

to find the optimal subtour for each partition and the 

partitions are then connected to fo1111 a complete tour. 

Of all of these unit square techniques, Litke's 

Clustering Algorithm gives the best results, although it 

does require more time. Here, one finds the first 

indication that it is necessary to find a good balance 

between the speed of an algorithm and the results that 

are given by the algorithm. For example, the farthest 

insertion method will almost always give a better result 

than the space filing curve, but the time required to do 

so is many, many times greater (Johnson 1990). 

~ 

2.1 Tour Improvement Procedures 

Tour construction methods can be augmented 

using tour improvement procedures. These. algorithms 

are usually local optimization teci~ques. They look to 

find a neighboring tour which is better than the current 

17 

·., 



... 

tour. The best known tour improvement heuristics are 

the 2-opt, 3-opt and the Lin-Kernighan. All of these 

heuristics are based on branch exchange which means 

tha~ edges in the current tour are swapped or reversed 

if a better tour is found. These al actually· 

neighborhood definitions rather than heuristics because 

various neighboring solutions are evaluated. 

In the 2-opt procedure two cities, A and C are 

chosen randomly. The distances from A to its 

successor city B and from C to its successor city D are 

evaluated. If swapping the arcs, i.e. A to D and C to B, 

instead of A to B and C to D give a shorter tour, then 
" 

accept the new tour. The same general concept applies 

to three opt where three arcs are chosen and the 

various combinations of new arcs are evaluated to try to 

identify a shorter tour. 

The Lin-Kernighan procedure goes beyond what 

would be the next normal progression - 4-opt .. Anew 
"I 

tour is a neighbor of the current tour if it is shorter and 

can be__. obtained by breaking a 3-opt and then 

performing a greedy search. 
'\\ 

The 2-opt and 3-opt procedures can be modi£fied 

by limiting the neighborhood search space. This could 

be done, for example, by choosing the first city 

1 8 
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randomly and the second by choosing a city that is 

within a certain number of cities on the current tour. 

An example would be a modified 2-opt with a modifying 

value of 10. Once the first city is chosen the second 

city is chosen to be within 10 cities from the first on 

the current tour. 

An improvement on this modified 2-opt is a 

converging modified 2-opt where initially, the 

modifying size is 100 then 50, 25 20 ... and so on. This 

allows the neighborhood size to shrink as the tour 

length is decreased, therefore improving the efficiency 

of the neighborhood search as an optima is approached. 

This is because during the first 2-opt, a neighborhood 

of ··arcs within 100 of each other on the tour is 

examined. This size is gradually reduced which shrinks 
B 

the search neighborhood and allows the search to 

investigate only small changes in the tour. . 

2.2 Probabilistic Local Search 

Up until now, new tours have only been accepted 

if their tour length is shorter than the current best 

tour. However, it h~s been suggested that occasionally 

accepting a tour whose length is longer than the 

,, \ 
' • 

..:·c.-
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current tour may allow the_ search to escape local 

minima. The most common technique to accomplish 

this is Simulated Annealing. The general philosophy 

of simulated annealing is to thoroughly investigate the 
, 

space of possible solutions. First proposed by 

Metropolis, simulated annealing draws on concepts 

from statistical mechanics. Tours which are longer 

than the current tour are accepted given a logarithmic 

probability which depends on a temperature parameter. 

First, the similarity to statistical mechanics will be 

discussed followed by Simulated Annealing's application 

to combinatorial optimization. 

Simulated annealing so titled because it is Just 

that: a model of annealing. Annealing refers to the 

cooling of metal or glass in order to overcome regions 

of stress that can be farmed if the material is cooled 

improperly. The material starts at a high temperature 

and this temperature is cooled according to a specific 

schedule. This is done. to allow the molecules to lose 

energy gradually, which leaves a structure stable. 

Conversely, if the material is cooled quickly (or 

quenched) it will "freeze" in an unstable, high energy 

state. 

20 
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An initial temperature is stated and decreased as 

the number of iterations is increased. This decreases 

. the probability of accepting an inferior solution as . time 

goes on, causing the algorithm to settle in a local 

minima, which is hopefully (because of sometimes 

accepting a poorer tour) a global minima. One of the 

drawbacks to simulated annealing is the large number 

of iterations that is required to arrive at a minima. This 

is because initially many inferior solutions are accepted, 

and simulated annealing thoroughly searches that the 

entire space of solutions to arrive at its solution. 

When applied to the traveling salesman problem, 
, 

simulated- annealing often takes the following form. An 

initial temperature level is defined. This temperature 

is lowered by some multiplicative factor during each 

iteration until a minimum temperature is reached. 

Decreasing the temperature decreases the probability of 

accepting an inferior solution. In this way niany 

solutions are i11vestigated initially in the search but as 

the search · progresses fewer and fewer inferior 

solutions are· accepted and the solution converges to a 

local minima which is hoped to be global. 

Of these aforementioned local search techniques 

a common factor is . that they all focus on the search 
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heuristic or algorithm as an area to improve upon. A 

recent development in computing which may prove 

useful in solving the traveling salesman problem is 

neural networks. A neural network works on the 

premise that a set of neurons can provide a solution to a 

problem based on analog, rather t~an digital, 

information. A neural net simulation programs an 

analog circuit to to run on a digital machine processor. 

Because of this hardware restriction, neural networks 

have not been able to solve TSP's larger than 30 cities. 

However, new processors have been designed 

specifically to handle neural network computations. 

These may provide better solutions on larger problems. 

in the .. future. 
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3. Jiggling Algorithm 

All of the previously discussed methods of 

obtaining a solution tour rely on changing the search 

heuristic. A different . approach would be to define a 

different neighborhood. Here it is proposed to perturb 

the actual problem, then apply a standard heuristic 

such as the space filling curve in an attempt to obtain 

more , inforn1atlon about the problem and make the 

search more efficient. This novel neighborhood 

definition is based on the fact that a heuristic is simply 

a mapping from a problem to a solution. Knowing that a 

heuristic problem pair (h,p) is an encoding of a 

solution, a subset of the solution space can be 

generated by a set of heuristics, i.e. the heuristics 

generate a subset of solutions. Similarly, a subset of 

solutions may be generated by the application of a single 

heuristic to perturbed versions of the original problem. 

This means a subset of solutions can be generated by 

perturbing the original problem data (e.g. by changing 

the locations of the cities in a planar TSP, processing 

times in a Job scheduling problem, etc.). Solution 
t 

subsets may also be generated by simultaneously varying 

heuristics and problems (Storer, Vaccari & Wu 1989). 
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When local search is based on problem 

perturbation neighborhoods, it is neces_sary to evaluate 

the objective function (tour length) using the original 

problem data. A neighboring solution sequence is 

generated by applying the algorithm to the perturbed 

problem, and then the tour is evaluated using the 

original locations of the cities. Hence, the term 

problem search. 

For the traveling salesman problem, such a 

search could be most easily accomplished by changing 

the locations of cities. Possible methods including 

rotating, shrinking and jiggling the city locations. 

Rotating the cities requires that all of the cities be 

rotated a given amount about the center point of the 

unit square. This maintains their relative positions, and 

allows the cities to be repositioned within the space 

filling curve. Rotating is an attempt to avoid the 

problems that occur when two cities are very close, yet 

separated by an SFC boundary. To overcome this, a new 
e; 

problem space -is created by rotating. When the same 

space filing curve is reapplied, a different ordering of 

cities may be returned .. Toe rotation angle thus defl~es 

a ~ingle dimensional .search space. 

24 
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A second method of problem perturbations is 

shrinkage. This requires decreasing the size of the 

problem, and applying the original space filling curve to 

obtain a tour which is different from the tour which is 

created on the full sized problem. 

Both of these methods have shown encouragi11:g 
-· 

results (Storer 1987), but neither gives a near optiIIlal 

arrangement of cities. A new transform idea is that of 

Jiggling. Jiggling is a tour improvement procedure 

which allows each city to move a random amount The 

space filling curve is the reapplied to check if such a 

perturbation creates an improved tour. It seems 

reasonable that an optimal configuration should not be 

too far from the original configuration. So, there should 

be an optimal tour configuration of cities that resembles 

the original locations of the cities. This is due to the 

· fact that the space filling curve preserves nearness and 

gives reasonably good tours (Storer 1987). The result is 

an entirely new way to define a neighborhood of 

solutions. 

The evaluation considers the original city 
• Q 

locations, but evaluates any possible change in the tour 

to see if the new tour is better than the incumbent one. 

The jiggling procedure is a variation of a 3ropt 
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neighborhood search, but it is an informed variation. 

This is due to the nature of the swap: when cities are 

jiggled one at a time, the problem is changed only 

slightly. In this heuristic, once the city location is 

perturbed, Its Jiggled location is arranged according to 

the space filing curve heuristic. If the tour changes, the 

tour length is evaluated to see if an improvement 

occurs. This heuristic is intuitively good because it is 

fast (only a single SFC value is calculated), and a high 

quality neighborhood of solutions (problem space rather 

than solution space) can be explored. 

The actual heuristic is as fallows: 

1. Jiggle the location of a randomly selected city. 

The ·distance to jiggle is chosen randomly from a 

uniform distribution on both the X and Y coordinate, 

subject to the constraint that the city remains inside 

the unit square. The direction to Jiggle is also chosen 

randomly. 

2. Reorder the city in the space filling curve 

heuristic unit interval 

3. Evaluate the chabge in tour length. 

4. If the new solu_tion is an improvement, -accept 

the new tour. 
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An important consideration of this algorithm is 

computational speed. Often, a tradeoff occurs when 

more CPU time is required for each iteration. 

Hopefully, an increased processing time will be justified 

by better solutions. The important difference between 

problem space perturbation heuristics such as rotating 

and shrinking, and jiggling is that the former require 

the._entlre space filing curve heuristic to be run for all of 

the cities, while Jiggling only needs an individual SFC 

value for the Jiggled city. Because of this, Jiggling is 

much faster. 

·within each iteration, there are several important 

parameters. The .first is the distance to jiggle. 

Empirical results indicate that a good way of selecting a 

distance is by choosing a random distance from a 

uniform distribution. It is necessary to find the best 

distance to jiggle so that the perturbations are large 

enough to generate new solutions, but not so large as to 

generate poor solutions. 

One of the niceties of jiggling is that it is a local 

search method, and is therefore easily transformable to 

handle advanced search tec~niques such as simulated 

annealing. Standard simulated annealing can 'be· used to 
. 

' )~ 
occasionally accept inferior solutions. Or, a 
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temperature scheme can be used to change the Jiggling 

parameter. 

One potential , problem with the Jiggling heuristic 

is that it may yield the same solution before and after 

the jiggle. The chance of this occurring increases for 

smaller Jiggle sizes. As mentioned above, it is desirable 

to find a good jiggle distance to overcome. this problem. 

But this phenomena can also be used advantageously. 

When the tour is the same, the heuristic can be 

modified to accept the new location if it is closer to its 

original location and the tour is unchflllged. Termed 

pseudo-annealing this technique helps prevent the 

problem from diverging from the original, and at the 

same time continues to progress through the search 

space even though the same solution is produced. 

Another method that has given good results 

involves changing the perturbation size. Originally, the 

length of the jiggle was chosen from a uniform 

distribution with constant range. However, it has been 

found that by varying this Jiggle length, the size of the 

search neighborhood 1s changed, thus allowing a more 
<'..; 

diverse search. This variation was implemented by 

geometrically increasing the jiggle size to a given limit 

and then returning to the original size and starting 
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again. This "rippling" effect allows the neighborhood 

size to expand and contract, instead of fixing it 

constant. For many iterations, this rippling of the 
\ 

Jiggle size lets certain sf all perturbations balance 
+' 

against larger ones, and seems to give better results. 

, 
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4. Experimentation 

The generic jiggling algorithm was implemented 

in a FORTRAN77 program on a SUN 4/280 computer. 

The program works as follows: 

1. The problem is created. N cities are randomly 

generated on a unit square. 

2. The space filling curve values for each city are 

found and sorted, and an initial tour is created. 

Forward and Backward pointer are assigned to all cities 

so that the tour may be traversed in either direction. 

3. The jiggling heuristic is implemented for a 

specified number of iterations. 

a. City Bis randomly chosen as the city to jiggle. 
~ 

A precedes B, while C follows Bin the current tour. 

b·. A new SFC value is found for city B. 

c. Depending on the value found in b. the new 

position in the tour is found by either searching forward 

or backward in the tour using the pointers. This 

enhancement improves the computational speed of the 

algorithm. 
,, 

d. The difference between the new and current 

tour is calculated. If the difference is positive, the new 

tour is automatically accepted. Otherwise, the pseudo 

30 



, 

., 

annealing criteria is checked to determine if the tour is 

accepted. 

4 The converging 2-opt procedure is applied to 

the tour resulting from the jiggling heuristic. 
!' 

lni~ally, it was necessary to specify many of the r 
parameters involved with the search. Using just a 

straight forward hillclimbing version of Jiggling, the 

fundamental jiggling parameters were examined. _This 

was done by ignoring the running time i.e. number of 

iterations. Allowing the jiggling heuristic to run for up 

to one million iterations on problems of size 1000 to 
I 

10,000 cities, it was found that the best results were 

obtained when the jiggle distance was chosen from a 

uniform distribution having a range parameter of 0.02 

to 0.03. Because it worked better for all of the larger 

problems, the value of .02 was chosen as the base value 

for use during further experimentation. 

The next step was to implement a simulated 

annealing temperature scheme on the jiggling heuristic. 
,.., 

A standard scheme was used to vary the probability of 
' ' 
0 

accepting an inferior tour; an· initial temperature was 
~ 

geometrically decreased 
' ' 

·;~, 

during eacp iteration. 
. '-i ... 

' • ' j 

However, the results of the simulated anhealing were 

not" as good as expected. Sometimes, simulated 
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annealing versions of the jiggling heuristic provided a 

better solution than straight hillclimbing, but usually, 

this was not the case. It was found that using a scheme 

which only allowed a few initial inferior solutions to be 

accepted worked better than a scheme which accepted 

many inferior solutions. In this latter case at least five 

times as many iterations were required to obtain the 

similar results. And although it was tried with each 

additional variation, simulated annealing did not prove 

to be worth the large additional computational time that 

was required. This is because the Jiggling algorithm 

converges very quickly initially. This is the important 

constraint on the Jiggling heuristic. Initially the tour is 

reduced rapidly, but as the tour converges towards a 

local optimum, the jiggling heuristic's ability to improve 

the tour decreases. This can be measured by finding 

the ratio of iterations that improve the tour as 

compared to the number of iterations completed. This 

"slope" can be seen in figure 1, as the slope is initially 

much greater than later stages of the heuristic. u·sing 

the 1000 city problem as an example, the tour is 

reduced from about 30 to about 27.5 in the first 10,000 

iterations. In the next 20,000 iterations, that value is 

only reduced to about 27 .2, and it takes an additional 
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70,000 iterations to reduce the tour to 27.0. Figure 1 

is for the 1000 city problem, but the curve is similar for 

all size pl"flblems. Because of this property, simulated 

annealing did not have the anticipated results. 

After finding simulated annealing to be 

disappointing, another modification using the idea of 

accepting non-superior tours was implemented. As 

previously discussed, pseudo-annealing is a variation 
' 

which accepts a new solution if the tour doesn't change, 

but the location of the jiggled city is closer to the 

original. This pseudo-annealing worked well and was 

incorporated into the foundation of the jiggling 

algorithm. 

At this point, the , jiggling heuristic, i.e. with 

pseudo- annealing and a fixed jiggle distance parameter 

of .02 gave results of about 15o/o above the expected 
t', 

optimal. As previously defined, the expected optimal 

for TSP's uniformly distributed on a unit square is 

calculated as . 765*sqr1:(N) (Beadwood et al). To further 

improve on this value, an alternate method in 

conjunction with the jiggling was tested. 

In this new method, the jiggling algorithm was 

followed by a 2-opt neighborhood search. This 

procedure is intuitively good because jiggling is· a 3-opt 

34 

., 



,. 

procedure, which searches different spaces than a 2-

opt. Thus, jiggling was followed by modified 2-opt in a 

composite procedure. Not surprisingly, the modified 2-

opt improved the solution, but only a small amount. 

The modified 2-opt procedure was repeated a number 

of times, but the results did not Justify the extra time 

required. Next, the modified 2-opt was repeated a 

number of times with varying modifying factors. That 

is, once Jiggling is completed, start with a modifying 
. . 

factor of 100, once this modified 2~opt is completed, 

continue with a factor of 5~0, then 20 and so on until the 

modifying factor is 3. This "converging" 2-opt. 

procedure was found to give good results when 

preceded by jiggling. It was necessary to determine if 

these results were due to the power of converging 2-
,· 

opt or to jiggling. The converging 2-opt procedure was 

applied to initial tours that had not undergone the 

jiggling algorithm, and the results were not as good as 

those of jiggling. Alone, jiggling and the converging 2-

opt procedure give acceptable results, but when 

combined the resulting tours are much better. An 

explanation for this is that two different neighborhoods 

are searched. A 3-opt neighborhood by Jiggling and a 

2-opt neighborhood by· the converging 2-opt. · Once the 
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3-opt neighborhood search is completed, the 

converging 2-opt is then able to search different 

neighborhoods as the search continues. By allowing the 
t 

modifying factor to be reduced, the search 

neighborhood size is reduced as the tour length 

pr9gresses towards a minima. A "diverging" 2-opt 

method was tried, i.e. modifying factor increased from 

3 to 5 and so on up to 100, but results were poor 

because the search initially exhausted the 2-opt 

neighborhood, and the later searches were impractical. 

The results of the various 2-opts are shown in table 2 

and figure 2. It can be seen of the 2-opts, the 

converging 2-opt is clearly the best of those tried. 

The converging 2-opt procedure was appended to 

jiggling heuristic. The converging 2-opt could not be 

modified, so attention was once again focused on the 
,:, 

jiggling pi;ocedure. As previously discussed, the jiggling 

algorithm is productive initially but slows considerably 

as the iterations increase and the tour length decreases. 

Would there be a way to extend the length of time that 

jiggling is productive? Many variations of the jigg1ing 
' 

heuristic were tried. Examples of modifications that 

were tried include: "Always ,.Jiggle cities towards the · 

center", "always jiggle away from the center", "jiggle 
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cmES 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 
10000 

w 
....J 

2-0PT COMPARISON 

EXPOPIM MOD 20PT I MOD 20Pf 3 STD 20PT excess CONVG 20PT excess 
24.1914 27.2058 27.9032 28.1345 1.1630 27.1564 
34.2118 38.7731 39.2887 41.0061 1.1986 38.1951 
41.9008 47.2285 48.6136 49.5354 1.1822 46.9711 
48.3828 55.2967 56.3268 57.7908 1.1944 53.6810 
54.0937 61.4308 63.1885 64.3253 1.1891 60.0722 
59.2566 67.4225 69.0780 70.6917 1.1930 65.9709 
64.0045 73.1543 74.3702 76.3264 1.1925 70.5849 
68.4237 77.6620 79.6073. 82.1273 1.2003 . 76.2693 
72.5743 82.5147 84.3945 86.7181 1.1949 80.6148 
76.5000 87.3221 88.7986 91.3656 1.1943 84.7682 

4 . .. 

This table show the comparison of 2opts to the expected optimal. 

Column 3 is a modified 2opt with a modifying factor of 1. 
Column 4 "is a modified 2opt with a modifying factor of. 3. 
Column 5 is a standard 2opt. 
Column 6 is the amount above optimal for the standard 2opt. 
Column 7 is a Converging 2opt alone. 
Column 8 is the amount above optimal for the converging 2opt. 

Table 2 

,I 

1.1226 
1.1164 
1.1210 
1.1095 
1.1105 
1.1133 
l.·1028 
1.1147 
1.1108 

.. " 1.1081 .. 
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left or right but not up or down." None of these 

variations proved to work better than the original 

method. 

Variations in the length of jiggle were also tried. 

A simulated annealing type of cooling schedule was used 

on the jiggle distance. Starting with an initial jiggle 

length of 0.03, decrease this value was decreased each 
l 

iteration by a factor of 0.99 .. This heuristic did not 

prove to be useful. Neither did the opposite, increasing 

the jiggle length each iteration by a factor of 1.001. 

However, the rippling method discussed earlier proved 

to be very useful. Starting with a jiggle distance of 0.02, 

increase this value during. each iteration until a 

maximum Jiggle distance is reached and then return to 

the original value of 0.02. The tours which resulted 

were in almost all cases better than the tour which 

resulted with constant jiggle sizes. This is because this 

rippling Jiggle size variation allows the 3-opt 

neighborhood search space to vary as the tour is 

decreased. · The space varies from a distance of .02 to 

the maximum jiggle distance (MJD). This MJD is · a 

factor of the size o~ the problem. For problems with 

1000 cities a good a~ is .04 while a problem with 

10,000 cities may have a good MJD .. of .065 .. 
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Finally, the number of iterations for jiggling and 

the modifying factors of the converging two-opt 

.6 procedure were tied to the size of the problem. In 

order the meet all of the previously mentioned criteria 

(especially allowing the algorithm to be productive for 

as long as possible while not allowing too many 

unproductive iterations), the number of iterations was 

set at twenty times the number of cities in the problem. 
'( 

In order to provide an acceptable search neighborhood 

for the converging two-opt the modifying factors were 

set in accordance with the problem size. The first 

modifyipg factor is set at .1 *N, the second at .05*N, and 

continues to a final value of.003*N. This makes sure 

that larger neighborhoods are searched in larger 

problems, and time is not wasted searching large 

neighborhoods in smaller problems. For example, the 

first modifying factor on the 1000 city problem is 100 , 

while on the 10,000 city problem the first modifying 

factor is 1000. These different factors give similar 

neighborhood sizes for their respective problems. 

Tbe final Jiggling algorithm contains the following 

refinements: 

. 1. The number jiggle iterations equals 20 times 

the number of cities 

~J 
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2. Pseudo-annealing to preserve the original 

problem 

3. Rippling of the Jiggle distance to provide a 

changing search neighborhood size. 

4. A converging two-opt procedure which 

converges. at a rate dependent on the size of the 

problem. 

Using· the aforementioned algorithm to find the 

final tours, the best and average results for this 

heuristic are given in table 3. These results are 

encouraging as they compare favorably to three- opt 

procedures, and comparably to two-opt procedures of a 

similar computational time J length. A comparison of 

CPU times is displayed in table 4. 

~. 
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FINAL RESULTS 

CITIES EXPOPTM JIGGLING std dev CONV 20PT std dev BEST RESULT excess 
ALONE ADDED 

1000 24.1914 27.3556 0.265 26.7883 0.316 26.1054 
2000 34.2118 38.7940 0.254 38.1076 0.374 37.3356 
3000 41.9008 47.8410 0.677 46.1228 0.322 45.6813 
4000 48.3828 55.3714 0.331 53.3122 0.144 53.1786 
5000 54.0937 61.8029 0.341 59.7094 0.381 59.0660 
6000· 59.2566 67.0036 0.297 64.8605 0.238 63.4971 
7000 64.0045 72.2370 0.420 70.2415. 0.287 69.9470 
8000 , 68.4237 78.6350 0.698 . 75.7291 0.314 75.3243 
9000 72.5743 82.7017 0.401 79.6576 0.336 79.1819 
10000 76.5000 86.9423 0.321 83.8537 0.286 83.6009 

\,.~ 
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THIS TABLE SHOW THE AVERAGE RESULTS OF JIGGLING ALONE 
AND THE COMPLETE JIGGLING HEURISTIC INCLUDING 
rnE ADDmON OF THE CONVERGING lWO OPT. 

Column 3 contains the results of the average of at least 8 problems of the 
jiggling heuristic before the converging 2 opt was added. 

·• 
Column 4 is the standard deviation of the jiggling alone. 
Column 5 is the average of at least 8 problems of the complete heuristic. 
Column4 6 is the standard deviation of the complete heuristic. 
Column 7 is the single best result for the given size problem. 
Column 8, is the amount above optimal of the best· solution. 

Table 3 ·· 

1.0791 
1.0913 
1.0902 
1.0991 
1.0919 
1.0716 
1.0928 
1.1009 
1.0910 
1.0928 
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CPU TIME COMPARISON 

CITIES JIGGLES CONY 20PT TOTAL JIGGLING MOD 20PT 
ALONE ADDED ALGORITHM 

1000 28.83 4.33 33.16 
2000 62.83 18.80 81.63 
3000 89.50 49.00 138.50 
4000 122.80 104.20 227.00 
5000 147.73 153.00 300.73 · 
6000 180.33 227.00 407.33 
7000 209.75 330.00 539.75 
8000 241.37 324.00 565.37 
9000 267.46 386.00 653.46 
10000 282.00 578.00 860.00 

• Times are always larger than Jiggles Alone. 
AVERAGE TIMES ARE IN UNITS OF CPU SECONDS 

Column 2 is Jiggling part of complete heuristic. 
Column 3 is Converging 2opt part of complete heuristic. 
Column 4 is Total heuristic time. 
Column 5 is Time for Converging 2opt from initial tour. 

Table 4 
. . 

0 

11.67 
53.00 
119.00 
234.00 
310.00 
• 
• 
• 
• 
• 
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5. Summary 

The jiggling procedure discussed in this thesis 

works as well as it does because it is an inforn1ed three­

opt neighborhood definition. This novel definition 

provides a search space that is different from those 

which are commonly explored. 

The jiggling heuristic improves the initial tour 

about halfway from the space filling curve to the 

expected optimal. Figure 3 is a good example of this. As 

compared to some standard procedures, the problem 

space perturbation heuristic of Jiggling alone seems to 

work comparably to a modified 2-opt procedure. The 

addition of a converging 2-opt procedure to the Jiggling 

algorithm decreases the tour in a relatively short period 

of time. 

The final analysis of the complete heuristic 

indicates the following. The results of the Jiggling part 

alone compare favorably to a standard 2-opt or 3-opt 

search. The results of the complete algorithm, with the 

Jiggling followed by converging 2-opt, are mor~ 

favorable than thos;.9;'2 single neighbQrhood search, or 

a combined searchqf similar neighborhoods. This 

comparison can be seen in table 5. 
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Further experimentation may be needed to 

improve the jiggling heuristic to a point ··where it 

provides near optimal solutions. Toe area which might 

be likely to yield the greatest improvement is 

increasing the length of time that jiggling is productive. · 

This will provide a better neighborhood which can be 

search efficiently for a longer period of time. 

For large problems, the jiggling heuristic . has 

given some very encouraging initial results. The 2-opt 
, 

was once considered the best solution space, but it has 

since been improved on with 3-opt and the Lin-

Kernighan search space. Jiggling is a new 

neighborhood definition which has great potential to be 

similarly improved upon. 

,. 

,• 
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CCMPARIS()\J OF PROCEDURES 

,,, 
: 

CITIES EXPOfYfM BESf CONVER STD20PT SID30PT 
, ..... , .... 

JIGGLING 20PT 
1000 24.1914 26.1054 27.1564 28.1345 29.5091 

2000 34.2118 37.3356 38.1951 41.0061 42.3733 

3000 41.9008 46.0253 46.9711 49.5354 52.0817 

~ 4000 48.3828 53.1786 53.6810 57.7908 59.8123 

°' 5000 54.0937 59.3685 60.0722 64.3253 67.3416 

6000 59.2566 63.4971 65.9709 70.6917 74.1692 
7000 64.0045 69.9552 70.5849 76.3264 79.7335 

8000 68.4237 75.3243 76.5849 82.1273 85.3647 

9000 72.5743 79.1819 80.6148 86.7181 90.6947 

10000 76.5000 83.6009 84.7682. 91.3656 95.6562 

'Ibis table shows the results of the jiggling algorithm compared to other procedures. 

Table 5 
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