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abstract

Recently it has been shown by Professor Frey that by applying
a new generalized modeling technique any nonlinear network
composed of two-terminal devices can be replaced by an associated
linear network L. The structure of the network L together with the
models allow the determination\og network equations ig the standard
form X = Au + BF(X). Based on the associated network L and its
standard form equation, a method to implement a digital equivalent
from nonlinear analog networks was developed. The digital
equivalent network contains a solve-for-F(X) subnetwork N which
solves for F(X) according to equation X(n) = w(n)-BF[X(n)]. In this
work a standard subnetwork N has been designed to operate in the
equivalent DSP network. The designed subnetwork N provides
means to adjust w(n) and B depending on the particular application
and nonlinear devices. Networks with exponential and polynomial
nonlinearities are studied in detail.The concept of a Programmable
Polynomial Module is introduced and employed in the standard
subnetwork N to implement an arbitrary nonlinear characteristic.

Experimental results are shown in comparison to simulation.




Chapter1
INTRODUCTION

Sophisticated signal processing algorithms and hardware are
prevalent in a wide range of systems, from highly specialized
military systems through industrial applications to low cost, high-
volume consumer electronics.

n

The field of signal processing has always behefited from a close

coupling between the theory, applications, and technologies for

implementing signal processing systems. Prior to the 1960’s, the

technology for signal processing was almost exclusively continuous
time analog technology. By' this time, computers were few,very
expensive,not very powerful and reliable and hard to program and
use. The rapid evolution of digital computers and microprocessors
together with some important theoretical developments caused a
major shift to digital technologies, giving rise to the field of digital
signal processing.

- Digital networks have several advantages over their analog

counterparts : S
e Higher stablity. They are considerably less subject to
noise than analog networks.

e More reliable. They are far less sensitive to variation of
component parameter values. Simple error detection and
correction mechanisms can be used in digital networks.

e Higher maintainability. They need no adjustments and
no requirements for trimming and calibration process.

e Lower cost. The adcances of microelectronics technology
1n recent years have made complex systems at very low

g W"z
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cost but its impact has been larger in digital systems.
Moreover, a general purpose digital system can be
programmed for a particular processing task,
eliminating the need to have different systems for each
task.

e and In most cases, more accurate than analog systems
due to the fact that the infinite small resolution that is
theoretically possible in analog area can never be
realized because of noise.

Because of above reasons, analog electronics are normally only

tollerated in the absence of digital integrated circuits either fast

enough to do a task or priced low enough. This critical problems in
terms of speed and low operating frequency, however, have been the
subject of several current promising researches and the convergence
to a beter solution is becoming more and more realistic.

Nevertheless, there are circumstances beyond the scope of
digital signal processing. How to convert a nonlinear analog network

into a digital equivalent is still an unsolved problem.

To digitalize an analog system, depending on particular
application one may use one of several available mapping techniques
, e.g Euler, impulse invariant, bilinear etc..; to map a transfer
function from S- domain into Z- domain. Inherently, these mapping
techniques require a Laplace transfer function of the network must
be existed, which is just a matter of algebra for linear analog
networks. For nonlinear networks, however, it’s imposible to obtain a
Laplace transfer function. Thus, so far there is no avalaible method
to implement a digital equivalent from nonlinear analog networks.

Extensive works have been devoted to the area of nonlinear




network by Dr. Douglas Frey, a professor of Computer Science and
Electrical Engineering Department at Lehigh University. Currently,
he is searching a general method to implement digital equivalents
from nonlinear analog networks, The basic principles of his method,
~ reported in [1], may open a new direction to complete the picture of
digital signal processing area.

It’s the interest in his idea has lead me to this study to explore
a small part of his idea and hopefully have certain contribution to
later researches involve in nonlinear digital signal processing.

In this study the whole scheme is presented in chapter 2.
Chapter 3 discusses several circuit topologies to realize the standard
equation incorporated with DSP network from nonlinear analog
structures. The concept of a Programmable Polynomial Module is

introduced and designed in chapter 4 to implement an arbitrary

nonlinear characteristic . Chapter 5 derives necessary and sufficient
conditions imposed on network topology and properties of nonlinear
devices to guarantee the existence of a digital equivalent network.
Consecutive chapters report experiment and circuit simulation

results to verify theoretical study.




Chapter 2
Digital processing from nonlinear
analog networks
-The whole scheme-

Although the understanding of nonlinear networks has become
more advanced in the past few decades , their applications are only
beginning to be explored . An increasing interest in nonlinear
networks can be perceived in the signal community by this time.
There are considerable works have dedicated to nonlinear networks
both in theory and practical applications [2],[3].

Having been classically regarded in the calculation of DC
operating points for transistor circuits, or in control and system
identification topics, nonlinear structures are now being collected
and adapted for signal processing purposes. A good deal of
applications on nonlinear structures is being directed to develop
synthetic generation mechanisms to evaluate or design processing
systems. That is the case of image processing and pattern recognition
area where linear filtering methods have proved to be of limited help
and nonlinear methods seem to be more adequate and more powerful
to solve the problems [4]. Several nonlinear prediction shemes were
proposed in [5] and [6].

As a result of increasing applications,nonlinear network has
found itself particularly interested in the field of digital signal

processing. It’s well known that the ultimate performance in speech
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processing and digital communication can’t be realized with linear
time-invariant filters and equalizers. This is just a typical
circumstance where nonlinear schemes are so desired.
Unfortunately, there is no available general method to implement a
digital equivalent from a nonlinear analog network as in the linear
case.

The traditional techniques in digital signal processing based
strongly on a well-established linear analog network theory. In most
of situations, a linear analog network with well -known advantages
is replaced by an digital equivalent one without significant
impairment. The task of replacement involves mapping the network
transfer function from S-domain into Z-domain by one of several
available techniques. These traditional techniques can’t be applied to
nonlinear analog networks where due to their nonlinear nature the
Laplace transformation gives no help. Theoretically, one may obtain
a transfer function for a given nonlinear network as it was derived in
[7] via Fourier-Borel transforms, but it’s impractical.

Recently, it was shown by Frey in [1] that by a new approach
the problem can be solved and a general method to digitalize
nonlinear analog structures is possible. The solution in [1] has a
particular importance in that it might be the key idea to the future
nonlinear digital signal processing.



&

2.1 MODELING NONLINEAR COMPONENTS AND
STANDARD FORM EQUATION FOR
NONLINEAR NETWORKS.

Modeling is of fundamental importance in the study of
nonlinear network. By a simple generalized modeling technique, a
standard form equation was derived in [8] by Frey.

By Frey, any two terminal nonlinear element, either resistive
or reactive, can be modeled by using linear components in
combination with dependent sources. Two terminal elements are
devices which may be characterized simply by a relationship between
its two fundamental electrical variables: the voltage v across its
terminals and the current i that flows through the element from one
terminal to the other. For a resistor,the relationship is algebraic,
while derivatives are required for the characterization of an incuctor
or a capacitor. The simplest two-terminal resistors are those in
which the relationship between their voltage and current is
expressed by specifying the value of one of these variables as a
single-valued function of the other variable. This is ,by far, the most
common situation. A tunnel diode, for example, is a nonlinear
resistor that is usually characterized in this manner.

In [8], there are two general models were suggested . In figure
2.1a a current-controlled voltage source and a voltage-controlled
current source are used with the linear component Z and in the
figure 2.1b the model has a voltage controlled voltage source and a

current-controlled current source.




fig. 2.1a fig. 2.1b

figure 2.1

Generalized model for two-terminal nonlinearity




The voltage and current sources are designated through the
functions f1 and f2 as shown, where for a given nonlinear component,
one of these functions will be constant. In certain cases f1 and f2 may
be differentiated with respect to time. Due to the simple relationship
between voltage and current in a linear resistor both models in
figure 2.1 are completely equivalent for the case of nonlinear
resistance. Voltage-controlled capacitors and current-controlled
inductors can be modeled by using the network of figure 2.1a where
f1 and f2 are differentiated with respect to time, the model in figure
2.1b is suitable for charge- controlled capacitors and flux-controlled
inductors.

Let a nonlinear network N be given. Assume that N contains
only resitive nonlinearities. We establish the associated linear
network L by replacing all nonlinear components with applicable
models. The associated network then is composed of linear
components, independent sources and dependent sources.

By treating all nonlinear dependent sources as though they
were independent sources we may use the results of linear network

analysis to obtain equation:
YVN = al.u + azF(V) (21)

Where:
Y: Nodal admittance n x n matrix
Vn: n-vector node voltage. n is the number of nodes in network

excluded datum ( ground node ). For simplicity of notation, all




vectors in this section are column vector .

a;: Real n x m matrix, where m the is number of independent
sources . It has only 1’s, -1’s, and 0’s as entries.

u: m-vector , stands for independent branch voltage sources and
link current sources.

ao: Real n x k matrix, where k is the number of n(?nlinearities
in network.

F(v): Dependent sources modeling nonlinearities, a mapping of
RK into RE.

v: k-vector composed of branch voltages and link currents. The
branch voltages are those associated with linear components
introduced to the network by using nonlinear models of figure 2.1 |,
and the link currents are those associated with linear components in
the links introduced through the models. n-vector Vy and k-vector v

can be written as:

v=M.Vy (2.2)
From (2.1) : |
Vy =YLlaju+YLla,F(v) (2.3)
And from (2.2):
v=M,Y1a;.u+M_.YLa,Fv) (2.4)
Denote
A= MV.Y'l.al
B=M_.Y1la,
Equation (2.4) becomes :

v = Au + BF(v) | (2.5)

10




%n equation (2.5) , the matrice A and B are ether constant or linear
operator and are determined by the network topology. These
matrices are not affected by changes in the values of the independent
sources. F(v) has the simple form given by :

F(v) = [f;(v)),f5(vo),... £ (vi)IT

The standard form of equation (2.5) was derived for the case of
purely resistive nonlinear network, which is similar to that derived

by Sanberg and Wilson in [9]:
AF(x)+Bx =c (2.6)

also for the purely resistive networks. It turned out that
equation (2.9) 1s also true for general nonlinear networks composed
not only resistive nonlinearities but also reactive nonlinearities , as

\
A Y

it was derived by Frey in [8]:
x = Au + BF(x ) (2.7)

Therefore we can consider equation (2.5) or (2.6) as a particular case
of generalized equation (2.7). Equation (2.7) is of fundamental
importance in the study of nonlinear network. In fact, by using (2.7)
a new approach to the periodic steady state problem in nonlinear
circuits were developed in [10] which can help to solve the problem in
nonlinear circuit simulation, namely finding steady state response
- without having to integrate through the transient regime.

With the aid of immediate variable v, we can solve for f{v) from
equation (2.5). Once F(v) is solved we can calculate all node voltages
according to equation (2.3). Output vector y is easily obtained from

node voltage vector by:

11




y = M,.Vy (2.8)

2.2 DIGITAL PROCESSING FROM NONLINEAR
NETWORKS.

As it has been shown above, the asociated network of a given
nonlinear network is completely described by equations (2.3) through
(2.5) and equation (2.8).

The associated network is depicted in figure 2.2.

To implement the associated network in figure 2.2 into digital
equivalent we need some special modification for subcircuit N .

Rewrite equation (2.5):

v = Au + BF(v)

Where A = MV.Y‘l.al

B=M_Y1la,

In continuous time domain , we have the Volterra equation:

! t
v(t)=joa(t—T)u('c)d‘c+job(t—'c)f[v(‘c)]dt

Where v(t), a(t), u(t), b(t), and flv(t)] are inverse Laplace of v(s), A(s),
u(s), B(s) and F[v(s)] respectively. In discrete time domain, all

convolution integrals are replaced by convolution sums:

n n

v(in)=>» a(n—ku(k)+y bn—k)iv(k)]
2 b bl

Or
(2.9)

n—1

v(n)=>" a(n—kuk)+ 26 b(n—k)v(k)]+b(0)v(n)]
k=0 | k=

In (2.9) the first term a(n)*u(n) can be calculated easily since it




Y-1
y=Vo

Linear network
L

F(v)

Solve for F(v)

N

Figure 2.2

The :associated network for a given nonlinear network
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1s the solution of linear problem. The second term represents the
past history of the process up to index time (n-1). If at index n, we
know all the past values of flv(n)] then equation (2.9) enable us to
compute the present value of f{v(n)] at index n .

Denote

n

n—1
w(n)=§6a(n—k)u(k)+26b(n—k)f[v(k)]
k._:

k=
w(n) can be written as :

_ (2.10)
wi=Y a@ku®+Y bnk)F vk
k=0 k=0
Where:

FIv(k)]= {J(‘)[v<ifcf>]k =i1£ k<n

Equation (2.10) indecates that w(n) is the result of two discrete-
time convolutions. These two convolutions are the outputs of two
linear time-invariant systems a(n) and b(n) . Where a(n) and b(n) are
determined entirely by the given network topology.

Then
vin)=w(n)+b(0).F[v(n)] (2.11)

To see how equation (2.11) works, let begin at starting point, n
= (0, we have :
w(0) = a(0).u(0)
and
v(0) = w(0) + b(0).F[v(0)]
_ From this equation we can solve for F[v(0)]

Atn=1:

14




w(1) = a(1).u(0) + a(0).u(1) + b(1).F[v(0)]

and :

v(1) = w(1) + b(0).F[v(1)]

This equation in turn used to solve for F[v(1)].

The process repeats in this manner.

In general, the subcircuit N receives internal input w(n) and
generates output F[v(n)] according to equation (2.11) Internal inpﬁt
w(n) is determined by linear networks a(n), b(n) and also by the past
values of F[v(n)] as indicated in equation (2.10)

The question now is how to get a correct value of w(n) at index
n . This can be solved by note that from equation (2.10):

w(n)=a(n)*u(n)+b(n)*F"[v(n)] (2.12)
Where * denotes the convolujtion sum in discrete time
domain.F"[v(n)] is equal to F[v(n)] at all index k<n-1

Equation (2.12) implies that we can solve the problem by
forcing output of subcircuit N to zero at index n as shown in figure
2.3

To make the network in figure 2.3 work properly, we need to
initialize switch S at position 1 at every index n. The switch S has to
switch back to its normal position, position 2, before the next index
(n+1) begins. At index (n+1) switch S switches to position 1 again
and the cycle is repeatted. At index n the past values of F[v(n)],i.e
F"[v(n)], enter linear filter b(n) , the output of linear filter b(n) is
added to the output of linear filter a(n) to form internal signal w(n).
The internal signal w(n) is then received by sub-network N to

15




Flv(n)]

b(n)

Figure 2.3

Digitalized Solve-for-F[v(n)] Circuit

16




- 1
Y

u(n e Vo(n)
Linear network L

Solve for F[v(n)]

F[v(n)]

Figure 2.4

Digital equivalent network
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generate F[v(n)]. This new value of fl[v(n)] will update the linear
filter b(n) and an up-to-date signal will appear at output of b(n). This
updated signal in turn will update consecutive stages of the non-
linear DSP network.

In summary, by using a generalized modeling technique,any
given nonlinear analog network N can be replaced by an associated
linear network L. All of the topological properties of N are preserved
in L. A digital equivalent network for the associated network L then
can be obtained as it was shown in the above procedure. The digital
equivalent network for the associated network of figure 2.2 is shown
in figure 2.4.

Next section demonstrates how the process works by a simple

circuit with one nonlinear component.

2.3 CIRCUIT DEMONSTRATION:

Let consider a simple circuit with a diode used as a nonlinear
element in figure 2.5a. By modeling diodeD with a linear resistor r
and a voltage-controlled current source f(v), we have the associated

network in figure 2.5b.

18




Figure 2.5a ' Figure 2.5b

Figure 2.5

A simple nonlinear circuit and its associated circuit

Note voltage equation :

| 0 V1 U
/7 et /rescl 1 V2 Fv)
wWe can
write 1 0 \/ 1 : 0
= u + f(v)
-1/r  1/r+1/R+SC V2 0 |

This is a form of equation (2.1) Y.Vn=al.U+ a2.f(v)

ANnd

V1 l 3 |

= -1, U + - | .
Y Y f(v) (2.12)

V2 | 'O ] |
- v 1
v=Mv.Vn=|l —l|

| V2

19




I ST
r(1/r+1/R+SC) (1/r+1/R+SC)
This is of the form v = Au+BF(v)

Note that

1
r(1/r+1/R+SC)

Where H(S) is the transfer function of the circuit if we depress the
nonlinear function f{v)

F(v)

=H(S)

We can write:

v(s) = [1-H(S)]U(S) - rH(S)F[v(S)]
Denote 1 - H(S) = G(s)

v(S) = G(S)U(S) - rH(S)F[v(S)]
And v(n) = g(n)*u(n)-rh(n)*f[v(n)]

n n—-1
v(n>=§g<n—k>u(k>—r2 h(n=R)fVE)}-rhO)v(m)]
k= k=0

Denote

n—1

%g(n—k)u(k)—rfbh(n—k)ﬂv(k)]=w(n)
= k=

We have : | _
Y(n) = w(n) - r.h(0).flv(n)] (2.13)

This is the form of equation (2.11) that we have derived above.

From (2.12) output V.
1 1

0 2—r( 1/r+1/R+SC) U+( 1/r+1/R+SC )F(v)

Or
V, = HS)U(S) + rH(S)F[v(S)]
And

20




u(n) g(n)

h(n)

Flv(n)] Solve for

Flv(n)]

Figure 2.6a

+
output
»é »>

Vo(n)

Digital implementation of circuit in fig. 2.5a
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v,(n) = h(n)*u(n) + rh(n)*f[v(n)] (2.14)
From (2.13) and (2.14) , the digital implementation of the original
nonlinear analog circuit is depicted in figure 2.6a.

At index n switch S is at position 1 ,we have w(n)=
u(n)*g(n)-rh(n)*F"[v(n)]. The solve-for -F[v(n)] circuitd receives this
signal w(n) and generate F[v(n)], F[v(n)] is fed to the input of rh(n)
circuit through the contact at position 2 of switch S. This new
Flv(nm)] updates the memory of digital filter rh(n) which in turn
updates the output signal V (n).

We have

1
r(1/R+1/r+SC)

H(S)=

Denote

1
R

1 1

+-=—

r R
1

\—
HES) r(1/R’+SC)

Using bilinear maping
2 1-z-1
I 14z-1
to map H(S) into H(Z), we obtain:

1
r(1/R'+2C(1-Z-Y/T(1+Z-1))

S....

H(Z)=

We can write H(Z) under the form:

a(1+4Z71)

H(Z)=
1-bZ-1

Where:

22




Input
u(n) b F
' a
6 e —>
\i b ' Output
1 l 5 ' Vo(n)
— Solve-for-
Flv(n w(n
[v(n)] v (n)
Circuit
Figure 2.6b

Digital equivalent network of circuit in fig. 2.5a
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R

S R+(CRA/T
, 2CR-T

" 2CR'+T

T is the sampling period.

G(S)=1-H(S); G(Z)=1-H(Z)
(1-a)+cZ}

G(Z)=
1-bZ-1

Where c=-(a+b).The digital equivalent circuit of this simple example
is shown in figure 2.6b.

In this chapter a new method to realize digital equivalents from
nonlinear analog networks as well as a particular process on a
simple circuit have been presented. The digital equivalent network
contains a sub-network N which solves for F[v(n)] according to
equation (2.11).

In practical network, the matrix b(0) in equation (2.11) is
usually a negative matrix as we saw in equation (2.13) of the

example circuit. Thus , in general, equation (2.11) can be written as :
v(n)=w(n)-BF[v(n)] (2.15)

Providing that B is a non-negative matrix.

In the following chapter, the subcircuit to solve for F(v)
associadted with equation (2.15) are explored. Several circuit
topologies and designs will be proposed for different nonlinear

characteristics.




Chapter 3
Circuit topologies to realize
equation
x =w - BF(x) incorporated with DSP
network

Chapter 2 has shown that for a given nonlinear network

comprises of linear devices and two - terminal nonlinear devices
together with independent sources, we can replace all nonlinearities

by suitable models and obtain a standard equation has the form :
X = Au + BF(x) (3.1)

Where A and B are linear operators depend only on network
topology, vector u stands for network inputs, vector x represents
branch voltages and link currents associated with nonlinear models,
and F(X) consists of dependent sources generated from the models.
The task of finding a digital equivalent from the given

nonlinear network involves in finding the solution of equation:
x(n) = w(n) - BF[x(n)] (3.2)

Where w(n) is an internal signal vector determined by network

topology as well as the past values of F[x(n)] up to index (n-1)

(3.3)
n n—1

w(n)=%a(n—k)u(k)+z b(n—k)F[x(k)]
k= k=0

25




U(n)

a(n)

b(n) >C§

F[x(n)] Solve for F[x(n)]| w(n)

N

Figure 3.1

Simplified equivalent DSP network
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3.1 A HARDWARE APPROACH

Figure (3.1) shows how equation (3.2) works in the associated
DSP network.

The subcircuit N receives input w(n) and generates output
F[x(n)] according to equation (3.2) . Finding such a solution can be
achieved by a software approach which utilizes some numerical
method, such as Newton - Raphson, or Lin - Bairston method and
their variations... The software solution , however , is not always
convergent and more importantly, it’s usually not fast enough to be
implemented in real time.

The solution therefore is prefered to a hardware approach with
the cost of some extra circuitries added to the DSP network as shown
in figure 3.2 .

We have now:
x(t) = w(t) - BF[x(t)] (3.4)

In figure 3.2 DAC and ADC are digital-to-analog and analog-to-
digital converters. w(n) is converted to analog form by the DAC . The
solve-for-fx] circuit now operates in continuous time domain. The
analog output fx(t)] of the solve-for -F[x] circuit is then converted
back to digital form by the ADC. We will see later that the DAC is a
part of Solve-For-F[x(t)] circuit if they are well designed; and
therefore the fact that a DAC is added to the network is not a serious
problem, and the practical network of figure 3.2 can be more

simplified.
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3.2 FIRST ORDER EQUATION

3.2.1 Circuit topology

We consider first the case when the given network contains
only one non-linearity.

In this circumstance, equation (3.4) contains only constants,
variable and nonlinear function in R1.

If we agree that F[x] is a voltage-controlled current source with
nonlinear characteristics and that F[x] can be either a one-port or
two-port network, then the circuit topologies in figure 3.4 will be a
good candidate for realization of equation (3.4)

In figure (3.4) D{w(n)} : Binary code of w(n)

And

I, = f5(V,epDIW(D))

With £, 1s a function defined by DAC. From the circuit of figure

3.4, either a or b, we can derive easily:

x = Bl A - BF[x]
x =Bf) (V ., D{w(n)}) - BF[x] (3.5)

In which we can design the D/A converter such that:
Bf (V. D{W(n)}) = w(t) (3.6)

Equation (3.6) indicates that we can adjust w(t) depending on
particular given nonlinear network.

The settling time of a DAC can be on the order of a fraction of a
micro-second. Op-amp gain -bandwith product will have a large
impact on the settling time of the entire circuit. With a high speed

Op-amp the over all settling time can be achieved in a range of few
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‘ Figure 3.3

A model for equation (3.4)
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b. Two-port F(x)

Figure 3.4 Circuit realization of equation (3.4)
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hundreds of nano seconds.

3.2.2 Programming gain B

- In equation (3.4) , depends on particular nonlinear element , we
may desire to change the gain B. A convenient way is to replace the
fixed impedence B in figure 3.4 by a multiplying DAC with an R-2R
ladder in figure 3.5:

Due to the virtual ground at inverting node of Op-amp, the
voltages at node A, B, C, D are constant regardless of switch
positions.

Vp =21V =22V = 273V, = 29V

And:

I, =21 = 22, = 2-3; = 2-3V/2R

Io =Db1I; +boly + byl + byl

Where b.’s are digital bits applied to switches.

I5=V/R(b;21 + 1522 +bg23 +b,24)

Denote:

4
i=1
We have:
I,=DV/R
In general , for a multiplying DAC configuration of figure 3.5

the current I is a function of input voltage V, ladder resistor R and

digital code D.
I,=f(V,R,D)=DV/R | (3.7)

Now let consider the circuit of figure 3.6. In figure 3.6 both DAC 1

32




R1
v Y N\
@) QO QO O O QO QO QO
b1| |b2l |b3| |b4l
| >l
lo
Figure 3.5

Current-mode R-2R ladder 4 bit Multiplier
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Programming gain B for one-port f(x)
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and ADC 2 are multiplying DAC type of figure 3.5, with the resistor
ladders R;-2R; and R,-2R, respectively. D1 is the binary code of
input w(n), D2 is the programming binary code, used to program the
gain B

We caﬁ analyze circuit of figure 3.6 easily by superposition
principle:

1.Circuit without current source F(x)

From DAC 11, = -f;(V_R;,D1) = -D1V__/R,

From DAC 2 I, = f5(x1,R5,D2) = D2x,/R,,
(3.8)

2.Circuit without current source f1

We have:

Flx] = - f5(x9,R5,D2) = -D2x5/R,
Xg = - F[x]Ro/D2 (3.9)

From (3.8) and (3.9)

X = Xl <+ Xz
. (3.10)
D
A

*=VrefR p3” D2

Equation (3.10) explicitly shows a way to program the gain B by
programming the binary code D2.

Note that DAC 1 and DAC 2 can use the available op-amp OA
in figure 3.6 as a part of their circuits. Therefore actually DAC 1 and
DAC2 contain only resistor ladder and transistor switches , this fact

makes the circuit in figure 3.6 becomes more simpler than it appears.
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One drawback of circuit in figure 3.6 is the gain B is reversely
proportignal to D2. When nonlinear funcion F[x] is generated by a
two-pori(: neé@bi'k, We can modify the circuit in figure 3.6 to avoid
this problem . A modification is shown in figure 3.7 for two-port
nonlinear F[x]

In the circuit of figure 3.5, V = RI, replace this in equation (3.7)

we get
I,=1D (3.11)

Equation (3.11) indicates that the multiplying DAC type of figure 3.5
can be used as a programmable current amplifier (PCA). In figure
3.7 DAC 2 controls output current F[x] by means of programming
binary code D2.

We have from figure 3.7:
X=- refDlRB/Rl - RBDZF[XJ (312)

In this case the gain B is directly proportional to binary code D2

3.3 SECOND AND HIGHER ORDER EQUATIONS

3.3.1 Second order equation

When The given network has two nonlinearities characterized
by F;[x4] and F,[x,] , the standard form equation (3.4) gives a second
order equation:

X; = Wy - B3 F1(xy) - B1oFo(x)

X9 = Wg - Bg1F1(x9) - BooFo(x9)

A model for this second order equation is shown in figure 3.8

When all nonlinearities are simulated by two-port networks,
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Programming gain B for two-port F(x)
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w1

w2

figure 3.8

A model for second order equation
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it’s straight forward to get a circuit configuration to realize this
second order equation. Such a circuit configuration is shown in figure
3.9

When function F1(x1) and F2(x2) are generated by one-port
network, we need some modification from the circuit of figure 3.9.
Let consider the circuit of figure 3.10

In figure 3.10, the output current I, of digital-to-analog
converter:

Ip = fVyer,D)

At output of op-amp

Vo1 = B1fViepD) - ByFy[xy]

We also have

Vo1 = %1 + Byl [x]

Therefore:

X1 + BoFylx;] = B1fvye,D) - By Fylx]
X]. = Blf(Vref,D) - (Bl + Bz)Fl[Xl]

If now we make B; + By, =By then
Vo= B,F,[x,] (3.14)

Equation (3.13) give the desired coefficient B11. Voltage V  is fed to
another circuit with similar configuration to provide the coefficient
B21. The entire modified configuration for one-port nonlinear
functions F[x]'s is shown in figure 3.11.

In figure 3.11 , it’s straight forward to show that:
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Figure 3.9

Circuit for 2nd order equation with two-port F(x)
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figure 3.10

Circuit configuration for one-port F(x)
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Py

(3.15)

(3.17)

Byo=Bo+B'yo ' (3.18)
And
X)=wW1-B11F1(x9)-B1oFa(xo)
Xg=Wg-Bg;1F1(x1)-BaoFo(xg)
Note that the voltages x; and x, are not at Op-amp outputs,
but this causes no problem because in the associated DSP network

what we need are F{[x;] and Fylx,] rather than x, and x,.

To program the coefficients Bij’s, we can use the circuits of
multiplying DAC type to replace fixed resistors Bij as in the case of

first order equation.

3.3.2 Higher order equations
Thanks to the simplicity in circuit topology , the network of
either figure 3.9 or figure 3.11 can be generalized for higher order

equations. Figure 3.12 shows a network for 3rd order equation.

X1 =wl-By;Fy(xg) - BygFa(xy) - B13F3(x3)
X9 = W2 - Bg; Fy(x9) - BygFa(xg) - BogFa(x3)

x3 = w3 - By F;(x,) - B3oFo(x9) - B3gFg(x3)

In figure 3.12, Bij 's are designed according to following conditions:

42




4— x1 ——p

[ F1(x1)
D1 B'21
|
Vref 1 B1
re DAC
1 |
| B'1
<4 X 2 >
B'2
F2(x2)
D2 B'12
I -
Vref 2 B2
re DAC J
’ )
Figure 3.11 m—— .

Circuit for 2nd order equation with one-port F(x)
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Figure 3.12

Circuit for a third order equation
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3 3 -
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In generalto create an nth order subcircuit N to solve for F(x) =
[f1(x1),f2(x2),..,fn(xn)]T we need 2n dp-amp’s and n multiplying -type
DAC which consists of only resistor ladders and transistor switches.
Due to the low resistor ratio in R-2R ladders, an nth order subcircuit

N can be well fabricated by monolithic integrated circuit technology.
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Chapter 4
Programmable Polynomial Module
incorporated with nonlinear DSP
network

In this chapter we design a polynomial module which will be
used in associate with nonlinear DSP network. The polynomial
module generates function :

f(x)=i axt

i=0
Where coefficients a;’s can be programmed by the user to make

the module becomes versatile. Such a module can simulate arbitrary
nonlinear characteristics because in some interest range of variable x
any differentiable function can be represented by a polynomial form.
We restricted ourselves to design ‘a module with voltage-
controlled current source output rather than other forms. A current
source output turned out to be the most convenient way when it was
used with associated nonlinear DSP network as we already shown in
chapter 3. With high speed and performance required for associated
nonlinear DSP network in mind we prefered to bipolar technology.
Bipolars provide fast current switching and true output current
source or sink capability. When used in nonsaturating current-
steering mode, bipolar transistors switch very rapidly, typically
within nano-seconds. Moreover, with true current source or sink
capability, the module output can be converted to a voltage merely by

a resistor termination, thus avoiding the additional delays of an I-V
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converter.

4.1 THE PRINCIPLE

+ The heart of our module is the transconductance multiplier of
figure 4.1, consisting of differential pair Q5 and Q, to provide
variable transconductance.Since its conception was introduced [11]
the linearized transconductance multiplier rapidly gained acceptance
as the prefered approach to the realization of monolithic analog
multipliers, and its simplicity has commended it for use in low-cost
modular design. Accuracy of these units and drift and noise
performance have been developped, future improvements in
precision bipolar technology will almost certainly result in accuracies
of 0.1 percent becoming commonplace.

In figure 4.1, diode D1 and D2 are used do provide the proper
base driver for the differential pair Q3 and Q.
By Kirchoff’s voltage law, Vp; + VBEQ4 = Vpo + VBEQS
Vb1 - Vb2 = VBEQ3 - VBEQ4 ‘ (4.1)

Assume negligible base currents :

I; = Igy[eVDrV1 - 1] = Ig1eVDr/Vr

And
From (4.1) |

Vrin[l;/Ig;] - Vyln[Io/Ige] = Vpin[Ig/Igg] - Vipln[I,/Ig,]

If the transistors are well matched, then
And:
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Transconductance multiplier
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Figure 4.2

Differential V-l converter
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4.2)
QUSAETA
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Equation (4.2) indidcates the circuit’s ability to multiply different
current ( I; - I ) by total emitter current ( Io+14).
The differential current I; - I, can be obtained from the

emitter-degenerated amplifier in figure 4.2

In figure 4.2

I, =1+1

Io=1-1

1=1/2(17 - Io) (4.3)
By Kirchoff’s voltage law : p
x = VpgQ1 + Ri- Vpgqo (4.4)
From (4.3) and (4.4) :
x = R/2(1; - I5) + VpIn[I4/15] (4.5)

In a well- designed circuit the 2nd term of the right hand side
in equation (4.5) is neglible compared to other terms, therefore to a

first approximation

(4.6)

2

Equation (4.6) already gives 1lst order power of x; all we need 1is

converting differential output into single ended output. This is a
straight forward task. For higher order power of x, equation (4.2) and
(4.6) associate with circuits of figure (4.1) and (4.2) respectively can

be arranged in some way as we will see in the following section.
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4.2 SQUARE LAW CIRCUIT CONFIGURATION
Let now add another differential pair Q5 Qg to the circuit of

figure 4.1.
From figure 4.3 , besides equation (4.2) we have:
4.7)
UI)UgH )
6 T U+
From (4.2) and (4.7)
(4.8)
LT )T 20 1y
(3 4) (6 5/ I.+1 VT8

1772

The difference I, -Ig can be obtained from input x in the same way of
figure 4.2, thus equation (4.8) already indicates a square law
chareristics.

A complete square law circuit is shown in figure 4.4

In figure 4.4,
(=h)I-Tg)
UL (I +l,)

(4.9)
2

o X
Out l{1 RZIx

|

In figure 4.4, M;, My, and M, are current mirrors, either Widlar type
or for more accurate, Wilson type.

Note that we have something in common between Q; Qg and
Qg Qqq circuits, this permits us to simplify the circuit of figure 4.4
further as shown in figure 4.5.

The circuit basically remain the same, except for now the

differential pairs Q7 Qg and Qg Q1 are driven by the same current
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Square law circuit
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Figure 4.5

Simplified square law circuit
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source I. In practice, transistors Q; and Qg can be merged to
form a single transistor with double collectors. The same is applied
for transistors Qg and Q;

Again, ignore the base currents, we have

I{+I;=1+1

Iy+Ig=1-1

(£1+I7) - (Ig + Ig) = 2i

Note also I; =I5 and I, = I

Therefore

I - I, =17 -Ig=i= xRg

And; + =1, +Ig=1

The output current I of circuit in figure 4.5 now becomes

; Uy =)U7=1g)
o Uyl

4.10)
%2

[ =—

" RGI
In general if we have n differential pairs connected as in figure 4.7,

then it’s easy to prove that :

11_12=I3_I4=...=12n_1—12n

| (4.11)
Izn—1'12n=il=n2;G
And
Li+lo = Ig+]=...=1y 1+I5.
(4.12)

21
IZn—-l +12n =—

n
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Figure 4.7 Multiple differential V-1 converter
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Equation (4.11) and (4.12) will be used later when we want to

generate an nth order polynomial .

4.3 POLYNOMIAL MODULE

An expansion of circuit in figure 4.5 will generate a cubic law
function as well as any other higher order power function.
Let consider the circuit of figure 4.8

Apply the above results:
I - 8_[1 1~1p]l3~14]
[11+],]
(U—Ig)I5—1¢)
Ig=1¢=
(I +Tg)
(=) 3=I)U5Tg)
ST ([ L)+
(Uy=Ip)U3~14)U5~I¢)
ST ([ )5,

From equation (4.11) and (4.12) :

TR AL
11y,
AL
1+5]

Ig=11o=

. (4.13)
ZX :
3(R)3I2

19'110=

The differential output I4-I,, is easily converted into a single
output by some additional current mirrors. Note that diode-
connected Q3 Q4 and Q; Qg are ready to form current mirrors if we
want to get 1st order and 2nd order power terms.

As it was mentioned above, an arbitrary order power term can

be generated in the same manner. It’s straight forward to find a
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Figure 4.8
A cubic law circuit
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closed form for a kth order power term.
1,1,
[ +,]%1

I outk™
2% 1, 20 1
I outkz(E—R—C;)k/ (—;)k
2xk

n( RG)k[k—l

I outk™

Denote

(4.14)
2

a,=
“n(R )1k \

Then

I, =apx" (4.15)

In equation (4.14), n is the highest order available in the
polynomial module. It will be set up depending on practical
application of the module.

The polynomial will have following form

n
1 out— 2 I outk

k=1
n
I outzz a Lx"
k=1

I = oxk
"“"él n(R;)kIx1

(4.16)
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4.4 DESIGN CONSIDERATION

4.4.1 Voltage-current converter stage

The main cause of error is the logarithmic term that we

omitted in equation (4.11) x = VBEQZ * Rgi - VBEQZ

Iy, I
S [s
IZn—l
x=VTln———+RGi
12n
. X VT 12n—1
= In
RG RG IZn
And
21
lon1~Ton=
2X 2VT 12n—1

In
I 2n

T
n— n nRG nRG
The output current of a kth order power has the form:

;Y 2n1~T2nl*
outk K

Where K is a scale factor, depends upon resistor R; and

current source 1.
2V I,
G G 2n
2x .1
I, =[—1k
ideal
ea nRs; K

Denote error ¢:
I ideal /f outk
E=
Iideal
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 (2x/nR GY*~{2x/nR G~V p/nR g)in(ly,_y/1,,)1*
(2x/nR )¢

€

(4.17)

Vo I
e=1-[1—L Inf2> 11k
X 121'1

We also have;

2x

In. =y =
2n—-1 42

n n nR

And;:

| 21
12n—1+12nz—

n

Therefore:

(4.18)
I x

I = —t —
2n—1
n nRg .

(4.19)
I x

"SRG
Replace (4.18) and (4.19) into (4.17):

Vr  I/ntx/nRg L
tc'-_1_[I—E_IM[I/n—x/nRG]]

VTI InRG+nx

k
bs vn[InRG—nx]]

I

e=1-[1-

(4.20)

8=1'[1~; ln[IRG-X ]]‘

Figure 4.9a shows error ¢ as a function of input voltage x at
different values of k and figure 4.9b shows ¢ as a function of k at a

typical values of x.
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¢ is negligible when input voltage < 5 Volts and n < 4. ¢
increases for larger input voltage x and power order n . This error
can be compensated either by trimming the gain resistor Ry or by
using another transistor pair to cancel the affect of logarithmic term
as in figure 4.10

In figure 4.10:

Vi=Veeo1*VeEosRGi—VBEQ3—V BEQ2HY >
Vi=Vo=Vee01=VBEQ3tVBEQ4VBEO2 R

h L

If Q3 and Q4 have fairly high B’s then I; = I3 and I, = I,
therefore:

V;-Vy=-Rai

Thus the logarithmic term is canceled by Q3 and Q4. In practice
, to maintain transistors Q3 and Q4 in conduction region even with

large change of differential input we can insert a diode Zener in the

paths between the bases and collectors of Q3 and Q4.

4.4.2 Transistor mismatch
The second source of error is due to transistor mismatch in the
multiplying cores.Let consider again the output of square term in the

polynomial module in figure 4.11. Taking a closer look at the
multiplying core Q1 Q2 Q3 Q4 we have:

VBEQ1*VBEQ4=VBEQ2t VBEQS
Vrpin(I 1/1g1)+Vrpin(I 4/IS4)=VT]n(Iz/ISZ)+VTln(IS/IS 4)

In(I,1g9/Iolg1)=In(I51g,/T41g3)
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Compensated logarithmic error
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Therefore
Iig Ilgy
Llgy I
Iy I3lglgy
I, Ijlglg

Ideally if all transistors in the multiplying core are well
matched, then the ratio of reverse bias saturation current Ig’s in the
right-hand side of this equation would equal to 1. In a practical
situation , we always have some degree of mismatch between
transistors.

The reverse bias saturation current of a long-base p-n junction
is defined by:

Ig=qA[D

Where

pPno/Lip + Dypy/Lip]
q:electron charge

Ajunction cross section area.

Dp:diffusion coefficient of hole

Dn:di fusion coefficient of electron

P, minority carrier ( hole) concentration at equilibrium in n
region.

npo:minority carrier (electron) concentratin at equilibrium in p
region.

Lp:hole diffusion length.

L_:electron diffusiion length.
In these factors defining saturation current Ig, all of them

except for junction cross section area can be well controlled
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Square term output of the polynomial module
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by fabrication process and their variation ,if any, will equally
affect on every transistor. Thus the main source that cause Ig
mismatch is the area mismatch of emitter-base junctions.

We can write
Isifsa _A1A4
Ieolss  ArAs

Where A; to A, are junction areas of Q; to Q4

Denote the area mismatch factor
, AA,
(=1-
ArA3

usually this is a very small number, within the range 2 percent. Now

we have
I; I;(1-04)
I, I,
Iy(l-0y) I
I, I,
=1

In(1-04)—I =
3 1/714
11+12

[I3(1=0t )+, (4.21)

The same arguement for the multiplying core Q1 Q2 Q5 Q6 we have:

(4.22)
I1=I,

16(1—%)—15—11”2[16(l—oz2)+15]

0= | Ards
AxAg
denotes the area mismatch of Q1 Q2 Q5 Q6 core
From (4.21) and (4.22) we have
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(I3 +H5)—(I 4 +1g)+0n1 c—0uy I3

Ry
7 (st UsH ol 13
1+
Or
(I 3+I 5 (I 4+I 6)+021 6—‘11] 3
II—I?'/I . 11—1 ; ;
172 —
; RTANE 11+1r2(°‘2 6~%1'3)
(4.23)
LI Ii-1
UyH Ly Tgh (0l 3) 1)
Iy+l, 1+

Note that we have an offset term
11,

(Oolg-f5)G D)

compared with the ideal case. Obviously , in an ideal situation ,

0l;=0=0 then equation (4.23) reduces to the usual form:

I1-I,
s+~ g)=(— I Iy)
Iy+I,

Let ¢ denotes this offset term, we can express € in terms of

input voltage x and area mismatch factors al and o2

We have
I, I, I+l I+,
From equation (4.11) and (4.12)

I x
I7=_+_
n nRG

21
Ii+1,=—
2y

And hence
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Similarly:

1 x
I=(=

I x
7 RA % nR
¢! n Nig

Also from (4.11) and (4.12):

-1 2 X
I+I, Rl

Replace this value and above values of I3 and I; into the

equation of ¢, we have after simplifying:
(4.24)

j Y |
-E[—(ag'al)*‘

2 (oc1+0t2)x+ (0p=0iq) 2 (0lg+01p) 3

X X
2Rg  2(Rp)2I 2(Rp)312

Equation (4.24) shows that due to area mismatch we have a DC
output offset of I(c,-04)/2 and other distortions corresponding to
higher order of input x. Equation (4.24) also shows that ¢ is reversely
proportional to the highest order n of the polynomial module.

In prac?ice, by careful layout , we can arrange the transistors in
the multiplying cores such a way that o; and o, are very small and
the error due to area mismatch can be limitted within a negligible
number. .

Other errors caused by ohmic resistances ‘at base-emitter

junctions and by finite  are of second order effect, they are usually
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very small . Transistors with large ohmic resistances and B in the

neighborhood of 100 can be used without serious problem.

4.4.3 Maximum input voltage swing

Our polynomial circuit works properly so long as all npn
transistors sink current.

Ii=Ig=....=l5  1>0

Io=I4=...=l >0

From equation (4.11) and (4.12)

I,=l=...=I =+

1 3 2n—1 n n‘RG
I x

Iy=l\=...=], =——

2742 2n n nRG

The constraint for input voltage:

-IRg<x<+IRg

It 1s seen from equation (4.20) that when input x approaches
the product IR;, the logarithmic error caused by voltage-current
converter stage increases significantly. As a rule of thumb, the

maximum voltage swing xjr,.is usually chosen such that
XMax=8-I1Rq (4.25)

Where g is dimensionless factor ranges from 0.5 to 0.8

4.4.4 Maximum output current

The kth term in the module:
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2

n(RG)klk-f‘
2x]
n(R ¥
2xk]
g

I

outk™

I

outk™

I —
outk
n(xMax)k

Thué
200"
n(xMax)k
I utkMax:gk%’ (4.26)

o

I outkMax—8

I

outMax

depends on "tail” current I, the highest order n and the
chosen factor g. |

The choice for R; and I, therefore,is decided by the range of the
operating input voltage and the maximum current at the output

according to equation (4.25) and equation (4.26).

4.5 PROGRAMMING COEFFICIENTS a.’s
The module generates polynomial:

J‘(x)=g ax’

As we have mentioned earlier, the module is used with the
associated DSP network where any nonlinear device can be replaced
by this module with certain allowable tolerance. The coefficients a;’s
may vary for each nonlinearity, therefore we need to provide some
way to program coefficients a;’'s to make the module becomes more

versaltile.
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Several schemes can be used to change a current gain, e.g,
some variations of Widlar or Wilson current mirror; where the
output current can be varied by mean of a potentionmeter. We prefer
here to program the current gain, and hence the coefficients a,’s,
digitally by a binary code that will be entered by the user.

Let consider the R-2R network of figure 4.12a. To achieve

“current ratioes at collectors, all transistors are kept at equal
base-emitter voltages while emitter areas are binary ratioed.

Ignore base currents : VBEQ4 + 2RI, = VBEQS + 2RIz + R(I+1g)

I5 =1g
V1~ln——+2RI 4=V7Jn——+4RI 5
Igy Igs

Or:
Ilgs

v
i

5154

I, =211,

Similarly I, = 2-11,,...

We have:

I, =211

I =221

I, =291

I, =241

This relationship holds to a high degree of accuracy thanks to

the excellent matching and tracking characteristics of monolithic

- BJTs.
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Figure 4.12a

R-2R current ladder
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Now if we use a binary code to control switch S; to S, as in
figure 4.12b, we can program the output current I ..

In general:
4.27)

Iozi b2
The CiIl’Cilit of figure 4.12b can only sink current I , to program
I, in both directions, we may use the circuit of figure 4.13 in which
another bit,b_. . was introduced to control the sign ( or direction ) of

sign’
output current I .

if bSl =
Slgn {O othervnse

Lout =15 - Isign

out"Im(zl_l b, z-l'b )

(4.28)

Equation (4.28) shows that by an additional sign bit , we can
program the output current in both directions. This Programmable
Current Amplifier (PCA) can be used to program coefficients a;’s of
the polynomial module.

One drawback of this circuit is the input current can only flow
into the programming circuit; this may cause problem. As an

alternative , we can use the current mode multiplying DAC type of
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Figure 4.12b

Multiplying 4 bit R-2R DAC
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figure 3.5 in chapter3, where the input current can flow in both
directions. ‘

Figure 4.14 shows a polynomial module with programmable
coefficients. M’s are current mirrors, to avoid an output offset
current Wilson current mirrors should be used.

PCA1 , PCA2, PCA3 are Programmable Current Amplifiers.
Each PCA can be programmed independently by different
programming codes. Each programming code includes a sign bit b

and other multiplying bit b,’s.
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Programmable current amplier ( PCA)
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"Programmable Polynomial Module
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Chapter 5
Existence and uniqueness of
solution for the equation x=w-BF(x)
of nonlinear networks

In chapter 3 we have explored several circuit topologies to
realize equation x=w-BF(x) wherein we inherently have assumed
that this standard equation converges to a solution. This is not
always the case. Depending on nonlinear mapping F(x) and the
network topology B, the standard equation may give no solution or it
may give more than one solution.

In general , the study for existence and uniqueness of solution
for the equation of nonlinear networks involves many issues and in
fact, so far there is no generally applicable theory for the
determination of nonlinear network solution. Dealing with these
1ssues in detail, therefore, is beyond the scope of this work. What we
hope here is that by employing several recent contributions to the
problem of nonlinear network solution we may derive some results

applied for our network equation.

5.1 BACKGROUND

Several attemps have been devoted to provide a reasonably
comprehensive study of solution for nonlinear networks. As early as
in the years of fourties, nonlinear resistive networks were studied by

Duffin [12]. His basic theorem stated that a network of nonlinear

resistors, each of which is characterized by a continuous strictly
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monotone increasing function that map the real line onto itself, and

independent voltage and current sources has a unique solution.

Duffin’s treatment of existence was limited to certain case of
strictly monotone nonlinear resistive networks and the result of his
work is far from being a necessary condition, because it’s clear that
many resistive networks containing voltage or current- controlled

elements whose characteristics saturate also have a unique solution.

This occurs when the network’s topology is such that the
noninvertibility of the i-v characteristic functions of certain elements
is of no consequence.

Since saturating i-v characteristics are often used in models of
common two-terminal semiconductor devices, it’s important to be
able to identify these networks. Some early attempts at dealing with
such networks are contained in papers by Desoer and Katzenelson
[13], and later by Desoer and Wu [14]. Their studies concerned in
physical structure of the nonlinear networks, and included some
topological conditions for the existence and uniqueness of network
solution.

Recently, several results have been contributed to this issue by
Wilson and Sandberg in their papers [9], [15]. Concerning nonlinear
network analysis they have shown that for an n-port resistive
network, the problem of determing a solution for the network is
equivalent to the problem of solving equation AF(x)+Bx=c where
k=1,2...n the component x; of the vector x=(x1,x2,...xn)T

corresponds to the port variable at the kb port. X), 18 the controlling
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variable of the kP nonlinear resist or. The nonlinear mapping F
characterizes the nonlinear resistors and is defined , for all n-vector
x, by F(x)=(f1(x1),f2(x2)...fo(xn))T. A and B are nxn matrices of real
number and c denotes a real n-vector. A and B provide the
characterization of the linear portion of the network. Wilson and
Sandberg have made significant advance to the analysis of nonlinear
resistive networks. Two following theorems of their work are
reproduced here because it is somewhat related to the study of our
network equation

Sandberg and Wilson’s 1st theorem

Let Fe u" be the set of all strictly increasing functions mapping
R™ into itsfelf, and let (A,B) be a passive pair of real nxn matrices,

then there exists a unique solution of AF(x) +Bx=C (1) for each C in

R™ if and only if B(F) A N(B) = {6}, if
B(F)NN(B)# {6}

then there exists some Ce R" such that (1) has no solution.

In there theorem, B(F) is the set of all points x in R™ for which
F[x] 1s bounded as x— <

N(B) is the null space of B, the set of all real n-vector x such Bx
= 0, where 6 denotes the origin of n-space R

A pair (A,B) is calaled a passive pair if it possesses the
following property: for each pair of n-vector (x,y) satisfying Ax=By it
follows that

: xT.y>0.

According to Sandberg and Wilson when all linear resistors in the n-
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port network have non-negative resistance or conductance values
then the matrices A and B associated with the n-port network
contains a passive pair (A,B).

The notation
B(F)NN(B)={6)

simply means that there exists no real n-vector x#6 for which BX=6
and /im|F[px]| < e when p — s,

The nature of the matrix B sets specific limitations on the
manner in which the nonlinear resistor i-v characteristic functions fi

are permitted to saturate. The relation
B(F)NN(B)

relates the nature of nonlinear resistor i-v characteristic functions f;,
to the pertinent aspects of the topological structure of the network
represented by matrix B. From the result of Desoer and Wu, the
relation PB(F) N N(B) = {6} will be satisfied once conditions for
topological structure in Desoer and Wu ’s theorem are satisfied.

For networks containing resistors whose characteristics are not
necessarily monotone-increasing , Sandberg and Wilson have shown
thaﬂs :

Sandberg and Wilson’s 2nd theorem

Let F be a nonlinear mapping with all the components f;_ are
eventually strictly increasing , let (A,B) be a passive pair of real nxn
madtrices. Then there exists at least one solution of (1) for each real
n-vector C if B(F) n N(B)={(6}

In this theorem , eventually strictly increasing function is a
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function that is strictly increasing at large values of controlling

variable.

5.2 EXISTENCE AND UNIQUENESS OF SOLUTION
FOR EQUATION x=w-BF(x)

We now use the above results to develop some criteria for the

existence and uniqueness of solution of our equation
x=w-BF(x) (5.1)

Recall that x and w are real n-vectors, F(x) is a nonlinear mapping
which maps R™ into RP such that F(x)=[fl(x1),f2(x2),...fn(xn)]T, and B
1s real nxn matrix determined by the network topology.

Assume that matrix B is non-singular,i.e. detB)z0, then

equation (5.1) is equivalent to:
Ax+F(x)=C (5.2)

Where
A=B-1
C=Blw

5.2.1 Nonlinearities with strictly monotone-increasing
characteristics.
5.2.1.1 Sufficient condition for the uniqueness of solution for
x=w-BF(x)
When all the nonlinearities are characterized by strictly
increasing functions,we can apply the following theorem proven by
Wilson in [16]

Wilson’s theorem
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Equation Ax+F(x)=C possesses a unique solution whenever two
following conditions are satisfied:

(1)All components of F(x) are strictly monotone-increasing
function, mapping from R onto R

(11)Matrix A is a weakly row-sum dominant matrix, i.e;

n

a;2 3, laf

j=lgi
for i=1,2,....n

By relating the theorem of Wilson for equation (5.2) we can
immediately derive the following result for equation (5.1):
Result 1
Equation x=w-BF(x) possesses a unique solution for every w in
R™ whenever two following conditions are satisfied:
(1). All the components };-(x), Jj=L2..n of F(x) are strictly
increasing functions, mapping the real line onto itself.
(it). Determinant of matrix B, det(B)#20 and B! is a weakly
row-sum dominant matrix.

In result 1, condition det(B)#0 is necessary to guarantee the

existence of B-1.The above result is stated as a sufficient condition. A

condition which is both sufficient and necessary will be stated in

term of a class of Po matrices.
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5.2.1.2 Necessary and sufficient condition for the uniquenéss
of solution for equation x=w-BF(x)
Class Po matrix definition
The class of matrix A satisfying one of the following equivalent
conditions is denoted by Po :
(1).All principal minors of A are non-negative
(i1).For each vector x#60, there exists a index k such that
X, #20
and x, y}. > 0 where y=Ax
(i11).For each vector x#6 there exists a diagonal matrix D >6
such that <x,D_x> and <Ax,D_x> are greater than or equal 0.

Where <x,y> denotes the inner product of vector x and y,

n

<7C,)’>=2 XY
I=

(iv).Every real Eigenvalue of A as well as of each principal
submatrix of A is non-negative.

(v).For every diagonal matrix D > 6
det(D+A)#(

In the above properties , a principal submatrix of square matrix A is
any square submatrix of A whose main diagonal is contained in the
main diagonal of A.

The determinant of a principal submatrix is called principal
minor.

Class of function definition

1-For all o, with

—0 S Q<P <400




let I(at,B) denotes the intermal :
I(o,B)={x:0 < x < B}
2-For each positive integer n and each pair of n-vectors o, let

f™(a,B;R™) denotes the set of mappings from
I(a,B1)xI(00,B5)x...xI(0. B ) onto R™ defined by F is in f*(a,B;R™) if

and only if there exists , for i=1,2..n, strictly increasing functions f;
mapping (o;,B;) onto R! such that for =x=(x1x2,..xn)T,
F(x)=[f1(x1),f2(x2),..fa(xn)]7.

3-Let the set of strictly increasing mappings from R? onto
I(oy,B)xI(00,Bo)x. . xI(a B, ) be similarly defined and denoted
(R a,pB).

In the above definition, I(a;,B1)xI(00,B9)x..xI(0. ,B. ) denotes the
Cartesian product of closed interval in Rl. Also note that F is in
f(a,B;RD) if and only if F-! is in fA(RD;a,B)

Sandberg and Wilson proved in [17] that:

Sandberg and Wilson ’s theorem

There exists a unique solution of F(x)+Ax=C for each F in
f(a,B;R™) and each C in R™ if and only if A is in Po.

Apply for our equation, we have a similar result:

Result 2

There exists a unique solution for equation x=w-BF(x) for every
F in fYo.B;R") and every w in R"™ if and only if B is in Po and
det(B)#0. ‘

Again, the additional condition det(B)20 to guarantee B-1

exists.Also notice that,according to Sandberg and Wilson, if Be Po
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and det(B)#0 then B~' e Po

When the mapping f{.) is in f(R™;0.,) then we can easily prove
the following statement:

Result 3

There exists a unique solution for equation x=w-BF(x) for every
Fin fY(R™;0’B) and every w in R" if and only if B is in Po.

Proof of result 3: .

As it was mentioned earlier if Fe f(R™0.B) then F-1 exists and
Fle f(a,B;R™)

From equation x+BF(x) =w (1)

We have the equivalent equation: F-1(y)+By=w (2)

According to the above theorem of Sandberg and Wilson ,
equation (2) has a unique solution if and only if Be Po, so does

equation (1)

5.2.2 Nonlinearities with non-monotone characteristics
In the previous section we have studied the standard equation
x+BF(x) =w in which the functions fj’s are strictly monotone
increasing. For such a situation the conditions for the solution’s
uniqueness had aready been established. We now consider equations
in which the nonlinear functions f;-’s are continuous but not
necessarily monotone. In contrast to the monotone case , we have
known at the beginning of this chapter that in such situations the

equation may possess more than one solution. We will restrict

ourselves to study hetre only nonlinearities with eventually strictly
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increasing characteristics. An eventually strictly increasing function
is a function that is strictly increasing for all large values of variable,
i-v characteristics of a tunnel-diode is a typical example of this type
of function.

In [4] Sandberg and Wilson have shown that the equation
AF(x) +Bx=C , in which F(x) composed of eventually strictly
increasing functions has at least one solution if : ‘

(1). For each diagonal matrix D =diag(d1,d2,..dn) with each k,
dy =+1 or -1, there exists a real n-vector p such that

DATp>6

DBTp>6

D(A+B)Ip>6
Where 0 is the origin of R
(11). And

B(F)NN(B)={6}

We can apply the above result of Sandberg and Wilson to derive
a condition for our equation x+BF(x) =w

Rewrite BF(x) +Ix =w

Where I is the identity matrix.

Obwviously the null space of I, N(I)={6}, therefore condition (i1) of
Sandberg and Wilson’s theorem is immediately satisfied. Now we
consider condition (i).

Let D be a diagonal matrix with entries are either +1’s or -1’s.

Let p be a real n-vector.

Denote M=DBTp
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¢
;
{
d10..0 b11 b21 bnt p1
M. 0 d2..0 b21 b22 b2n p2
0 0..dn bnt bn2...bnn pn
d1.p1.b11 + d1.p2.b21 +....d1.pnbn1
d2.p1.b12 + d2.p2.b22 +.....dn.pn.bn2
dn.p1.bin + d2.p2.b2n +.....dn.pn.bnn
If we choose p1 =di
p2 = d2
- pn =dn
Then
d12b11 + d1d2.b21 +.......d1dn.bn1
M = | d2d1.b12 + dZb22 +......d2dn.bn2 (1)
dnd1.b1n + dnd2.b2n+......dn2bnn

Because dk is equal either +1or -1, therefore:

b11 - { |b21] +..]b31] +......|bn1]| }
M >= | b22-{|b12] + |b32] +.......|bn2| }
bnn - { [b1n| + |b2n] + .....| bn-1,n| }

Thus if the matrix B has the property that :

n

bjj?‘ 2 1b 'Jl‘

i=1,i#j
That is B is a weakly column-sum dominant matrix , then M>6

2- denote N=DITp = Dp
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dl0....0||pl dlpl
N =|0 d2....0|| p2 d2p2
0 0....dn llpn dnpn

r

The vector that we have chosen, p;=d;, therefore N>6

3-Denote Q=D(B+I)Tp

d10....0||b11+1 b21.....bn1J|pl
Q=|0d2...0|bl2 b22+1 .. bn2||p2
0.0....dn|jbln b2n.....bnn+1| pn

d14(b11+1)+d1d2b21+......... d1dnbnl
Q=|d2d1b12+ d22(b22+1)+........d2dnbn2 | (II)
dnd1bln+ dnd2b2n+............. dn?(bnn+1)
Compare (I) and (II) we have: Q> M

e

Therefore: Q > 0 if b is weakly column-sum dominant.

We érrive to following result which can be considered as a
corollary of Sandberg and Wilson ’s theorem:

Result 4

Equation x=w-BF(x) in which F(x) consists of eventually strictly
monotone increasing functions mapping from R™ into R™ possesses at
least one solution for every weR"™ if B is a weakly column-sum

dominant matrix.

From the above results , we have the following remarks:

1-For nonlinear network with exponential characteristics, then

the necessary and sufficient condition above for strictly increasing

89




nonlinearities can be applied ( result 2). Due to this condition we
have : the equation x=w-BF(x) possesses a unique solution if and
only if B is in Po and det(B)#0

In a first order circuit, if B>0 then B is in Po( by using the first
property (i) of Po matrix) and therefore there exists a unique
solution. As we have mentioned in chapter 2, in practical network,
matrix B in our standard equation is a non-negative matrix, this
implies that the first order network with exponential charactristics
always converges to a stable state ( unique solution)

In a second order circuit,the condition B ¢ Po is equivalent to:

B{;20 (a) (usually satisfied)

B5,20 (b) (usually satisfied)

And

Det(B)>0 (c)

The above remark can be verified in the next chapter when we
make an experiment with a second order circuit consisting of two p-n
junctions; a unique steady state is reached whenever conditions
(a),(b), and (c¢) are satisfied.

9-For nonlinear network with polynomial characteristics, in
general there is no conclusion about the network solution.Depending
on whether or not the polynomial is strictly increasing or eventually
strictly increasing , the available theory on nonlinear network
analysis may or may not apply.

Although recently many contributions to the issue of existence

and uniqueness of nonlinear network solution have brought to a
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— \rather complete theory to take form, there still exists many gaps in
fheory and points of departure for further extensions. All the studies
by far were restricted to a somewhat narrow domain, namely the
nonlinear functions which characterize nonlinearities in the network
were restricted to either monotone increasing or eventually
monotone-increasing functions. Generally applicable criteria for the
determination of nonlinear network solution needs further future

developments.
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. Chapter 6 W
Experiment and Circuit simulation
results

Previous chapters have presented theoretical study of digital
implementation from nonlinear analog networks. Based on a new
method proposed in [1] by Dr. Frey, any nonlinear analog networks

composed of two-terminal nonlinear devices can be implemented by a

digital equivalent which preserves all topological properties of the
original network. The new digital equivalent network contains a
linear subnetwork L which is determined entirely by the original
circuit topology and a nonlinear subnetwork N to solve for F(x)

according to equation:
x(n) = w(n) -BF[x(n)] | (6.1)

Where x,w are k-vectors with k is the number of nonlinearities
in the network. F(x) is a diagonal mapping from RE into RE. w(n) is
an internal signal and is the input of subnetwork N. w(n) depends on
both circuit topology and nonlinear device characteristics.

Thanks to the simplicity of standard form (6.1), we have shown
that a generalized implementation of subnetwork N can be obtained
for different nonlinear analog networks. This implementation also
provides programmable parameters which permits the user to
program subnetwork N +to satisfy a specific application.
Experimental results and circuit simulation of subnetwork N with its

associated equation (6.1) are reported in this chapter.
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6.1 EXPERIMENTAL RESULTS WITH
EXPONENTIAL NONLINEARITIES

Making use of the exponential characteristics of a p-n junction
diode, any exponential nonlinearity can be replaced by a standard
diode , provided that the gain B in equation (6.1) is programmable.

The current-voltage characteristics of a p-n junction diode is

defined by:

I=fx)=Igg(e¥Vt -1) _ (6.2)
Equation (6.2) can be approximated by the perfectly exponential law:

I=Ipge™Vt

Where

I=Diode conduction current
Ipg = Reverse bias saturation current
x = Voltage across the junction

Vt 1s the thermal voltage, Vt = kT/q

In the standard equation
x(t) = w(t) -BF[x(t)] (6.3)

Ipg can be lumped into the programmable gain B , thus with a
fixed diode we can program B to satisfy any exponential nonlinearity
characterized by f(x)=z;1e]DX

Figure 6.1 shows an experiment circuit to solve a first order
equation with exponential characteristics. In figure 6.1, DAC 0800 is
a monolithic 8-bit high -speed current-output digital-to-analog
converter with typical settling time of 100 nano seconds. It’s used

here to convert the digital input w(n) into analog input w(t). b;b,...bg
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Figure 6.1

First order experiment circuit
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represents the binary code of digital signal w(n) that comes
from the linear subnetwork L in the associated DSP network. The

circuit of figure 6.1 solves the first order equation:
x(t) = RI,, - Rf[x(t)] (6.4)

In equation (6.4), I is a funcion of binary code b; and reference
voltage Vref. We can determine I from the diagram of DAC 0800 in
figure 6.2.

From figure 6.2:
6.5
. | (6.5)
10=1,.n2 b2
=1
From figure 6.1:
T _Vref
"R
ref
Therefore:
(6.6)

V 8
_ g —i_
x(1) . fRi=§1 b,27" —Rf{x(r)]

Diode 1N4148 was used as an exponential nonlinearity with

the characteristics:

f(x)=Ipgex/V?

At room temperature (25°C):

f(x)=2.8*1014¢39-4x (6.7)

Table 6.1 lists output x measured from experiment circuit and
calculated from equation (6.6) and (6.7) at different binary codes b.’s.
These values of output x are plotted in figure 6.3. Figure 6.3 also

shows a transient response of output x when a pulse is applied at by,
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Figure 6.2

Block diagram of DAC 0800
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owndy

bib2....b8

00011111
00101111
00111111
01011111
01101111
01111111
11011111
11101111
11110011
11111111
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lo (mA) Measured x
0.256 0.111
0.390 0.169
0.522 0.225
0.786 - 0.337
0.920 0.392
1.050 0.440
1.846 0.577
1.980 0.588
2.012 0.589
2.120 0.597

Table 6.1

table6. 1

Calculated x

0.112
0.171
0.229
0.344
0.403
0.459
0.598
0.604
0.605
0.609
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by and by while other bits remain at logic 1. The measured

settling time 1 for the first order circuit is 0.5 uS.

A second order circuit was set up in figure 6.4. Again we used two
DAC 0800’s and four LF356 op-amp ’s. Diode D1 1s diode D above,
IRSl=2.8*10'14 Amps. D2 is a diode-connected transistor 2N3904.
The measured reverse saturation current Igpgo of diode-connected
2N3904 is 1.35*10°14 Amps.

Figure 6.4 corresponds to the second order equation:

x1=Rql51 -(R1+Rapf1(xq) -Ryofalxo)

x9=Roloa -Ro1f1(xy) (Ro+Rp9)fa(xp)

With the component values shown and with:

f,(x,) = 2.8%10-14ex1/t

fo(xo) = 1.35*10-14ex2Vt 1/Vt=39.4 at 25° C.

We have:
x;=101 ; -0.34*109394x; .5 26*109e3%94x, (6.8)
X5=101 5 -0.062*10739-4X; 5 4*109e394%; (6.9)
WhereI ; andI , arein mA , and :
(6.10)
’4110321; 2
(6.11)

I,= "’ﬂ103 b’ 2
7 refZ 1-21
Varying the input codes b; and b’; of DAC 1 and DAC 2 and




01 B2 oo b8 . Kt
R21 D1
| - R1 10K
Vrefi Rref1 ] /\/ 1

/\ 1 <4— 01
10V e 14 4 )
‘ DACO0800 )
A—ts . PSS
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Figure 6.4
Second order experiment circuit
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measure the voltages x; and x, across diode D1 and D2 we
have the result listed in table 6.2. Input codes b, and b’; are used to
compute I ; and I, according to equations (6.10) and (6.11).
Equation (6.8) and (6.9) then are used to compute x; and x,. The
calculated values of x; and x, are also listed in table 6.2 to compare
with the measured values. Figure 6.5a and 6.5b show plots of x; and
Xo, Including both values measured from experiment and calculated
from above equations. The plots indicate a good agreement between
theoretical study and practical circuit. The degree of good match
between the two varies slightly from one point to another; this is due
to the bulk resistance of diodes that we ignored in calculation . The
transient response of x; and x, are plotted in figure 6.6 when a pulse
is applied at bit b; of DAC 1 while other bits remain at logic 1.

A first order equation and a second order equation with
exponential nonlinearities in figure 6.7a and 6.7b were also
simulated by using Spice program. These circuit employed Op-Amp
LF356 with gain-bandwidth product GBP = 5MHz. In both circuits,
w(t) stands for output of a digital-to-analog converter which converts
digital signal w(n). Diode D infigure 6.7a was chosen to have a
typical reverse bias saturation current IRS = 5.10°13 Amps. Diode D
was used again in figure 6.7b and was named DI1. Igq = Ipg =
5.1013 Amps. Diode D2 has Ipg, = 1012 Amps. To get a transient
response of the circuit, w(t) s are pulses which flip between two

levels corresponding to two different states of binary code w(n).
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Figure 6.5a Second order experiment circuit results

Figure 6.5a Second order experiment circuit result
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0.7
0.6 vu/
0.5
)
©
Z
x 0.4
0.3 ——3—  Measured x1
* Calculated x1
'.,
0.2 r r , : —_— _
0 1 2 3 4
lo1+l02 (mA)
.
table6.2a Thu, Apr 26,
DAC 1 code DAC 2 code lo1 (mA) lo2 (mA)  Measured x1  Calculated x1 i
1 00000011 00000011 0.025 0.012 0.233 0.250
2 00111111 00011111 0.125 0.058 0.573 0.592
3 00111111 00111111 0.520 0.246 0.550 0.584 |
4 01111111 00111111 1.050 0.246 0.600 0.602 |
5 01111111 01111111 1.050 0.490 0.582 0.602 |
6 10001111 10001111 1.190 0.558 0.590 0.605 ;
7 11001111 10001111 1.720 0.558 0.620 0.621 'g
8 11111111 01111111 2.120 0.490 0.636 0.629 |
g 11111111 11111111 2.120 0.990 0.618 0.620

O A ————— ————rat———-——— &




0.6
0.5
0.4
Q)
E. 0.3
o~ ]
>
0.2 -
ﬁ 10, Measured x2
0.17 \ Calculated x2
0.0 , - r .
0 1 2 3 4
lo1+lo2 (mA)
table6.2b Thu, Apr 26,
DAC 1 code DAC 2 code lo1 (mA) lo2 (mA) Measured x2  Calculated x2
1 00000011 00000011 0.025 0.012 0.114 0.120
2 oo111111 00011111 0.125 0.058 0.341 0.363
3 00111111 00111111 0.520 0.246 0.484 0.491
4 o1111111 00111111 1.050 0.246 0.431 0.448
5 01111111 01111111 1.050 0.490 -0.512 0.512
6 10001111 10001111 1.190 0.558 . 0.516 0.516
7 11001111 10001111 1.720 0.558 ° 0.504 0.506
8 11111111 01111111 2.120 0.490 0.470 0.478.
9 11111111 2.120 0.990 0.539 0.532

Figure 6.5b Second order experiment circuit results

11111111

Figure 6.5hb

103

» -

Second order experiment circuit result



1 | !

111D

- —— St s > .

——p -

T T 1Ll Ll Ll it il g1

T

T L T T T T T T S O T S A T S S T I O O

RN

g

MS
AN

|

L
i
i

L
)
]
]

|
!
|

|
l

44— %lu'
— — c—

b — e — — vtllﬁ e
- — —

A T T O O

B O

Figure 6.6

Transient response of second order circui

woki

104

. R A DL T T T e S S T T T P S L L T T

. . < e
g Eo b e N A e R RS



With the component values shown and at the high voltage level
w(t) = 1.5 volts, the steady state solution of the circuit in fingure 6.7a
1S:

x =1.5-103.5.10"13 ex/Vt

x =1.5-5.10"10 ¢x/Vt

At 300 K degree 1/Vt = 38.7 volt'! The solution of this equation
1s x=0.55 volts, this result agrees with Spice result plotted in figure
6.8. The settling time is in the order of 1pusec.

Figure 6.7b corresponds to the second order equation:

x1(t) = wl(t)-B11.f1[x1(t)]-B12.f2[x2(t)]

x2(t) = w2(t)-B21.f1[x1(t)]-B22.£2[x2(t)]

Where:

Bll1 =1K+2K=3K

B22 = 398K + 2K = 400K

B12 = (B22-R2).R1/R1’ = 99.5K

B21 = (B11-R1).R2/R2’ = 2K

f1(x1) = IRS1.e4*VkT = 51013 ex1/Vt

f2(x2) = IRS2.e9x2k.T - 1(-12 (x2/Vt

When wl(t) = 2 volts and w2(t) = 3 volts, the steaty state

solution:

x1=2-1.5%10"9*Xl/Vt _ gg 5*1(-9%ex2/Vt
x2=3-10'9*eX1/Vt ) 4*10-7*ex2/Vt

These two equations give x1=0.525 volts and x2=0.398 volts.
The same results were obtained by Spice in figure 6.9. Figure
6.9a plots the input voltages wl(t) , w2(t) and figure 6.9b plots
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figure6.7b

Second order exponential circuit- Spice simulation
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the output voltages x1 and x2 across diodes D1 and D2 respectively.

6.2 CIRCUIT SIMULATION RESULTS WITH
SQUARE LAW NONLINEAR CHARACTERISTICS

6.2.1 First order circuit

A first order circuit with square law characteristics is depicted
in figure 6.10.

In figure 6.10, the square law function f(x) was designed to
operate in an input voltage range from -10 volts to +10 volts and a
maximum output current 1mA. The square law circuit and its
output were plotted in figure 6.11.

Applying the results of chapter 4 to the circuit of figure 6.11a,

we have:
I 21
outmax n

Where n is the highest order power in the circuit, n=2
21
Ioutmaxz'le

Therefore the tail current I=I 1mA

outmax =

Maximum output voltage:

Xmax = RGI
(Gain resistor
X

R:max
Gy

_10volts

R, ™ =10Kohm

With these values of tail current I and gain resistor Ry, from
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First order circuit with square law characteristics

T(x)

- Figure 6.11Db

5 2
f(x) = 10 x
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2
Designed circuit to generate f(x) = ax
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equation (4.15) in chapter 4, we have:

2.x°
2R

I =f(x)=

out -

I out=f(x)=10‘5x2 | (Amps)

The first order equation associates with circuit in figure 6.10:

x=w(t) - Rf{x)

When input w(t) is at high logic level state, w(t) = 5 volts,
output x is the solution of equation:

x = 5-10%103%109*x?

x=5-0.1x2

A positive root of this equation solved by hand is 3.66 volts, this
result agrees with Spice result shown in figure 6.12. Settling time

=]pusec.

6.2.2 Second order circuit

In this case:

x1=w;-Ry;2;x12%-R;5a,x22

x2=wy-Ry;a1x1%-Ropasx2?

Using the results of chapter 4 for two-port f(x), we designed a
second order circuit in figure 6.13. Two square law functions fl1(x1)
and f2(x2) were designed in the same manner with the above
function f{x).

fl(x1) = a;x12 = 2*¥105x12

f2(x2) = a5x22 = 10°x22

With the component values shown, we have the second order

equation associate with circuit of figure 6.13:
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Second order circuit with square law characteristics
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x1=3-0.1x12-6.6*102x22
x2=4-13.6*1072x12-5*102x22
Solved by hand, these two equations give positive roots at x1=2

volts and x2=3 volts. The same results were obtained by Spice in

figure 6.14

6.3 POLYNOMIAL MODULE AND SIMULATION
RESULTS

Based on circuit topology suggested in chapter 4, a third order
polynomial module was designed and simulated.

The following design equations are rewritten from chapter 4:

Maximum input voltage x .. = IRa

Maximum output current I = 2I/n

outmax

The module was designed with x_ ., = 10 volts and I

outmax ~
2.7 mA. In a third order polynomial, n=3. From above equations we
have I= 4 mA and R;=2.5 Ko

The third order polynomial module with designed components
i1s shown in figure 6.15.

The "tail" current I

Vee=Vp
Rc

I_

Resistor RC of current source
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VeeVp

R =
I
RC:IZ;&-]—B.WKohm

Three Wilson current mirrors consist of M1,M2 and M3 were
designed to avoid the off-set output current when input voltage x=0

- Applying equation (4.14) and (4.15) of chapter 4,

fk(X) = aka

7. 2

k n(RG)ka—l

With n=3 R = 2.5 Ko, I=4 mA we have:

2

as= =2.7x10™4
3x2.5x103

ay= - =2.66x107 c
3(2.5x103)24x1073

a 2 =0.3x107>

3 3(2.5x1203)3(4x10-3)2
Thus three outputs of the module are:
fi(x)=a,x=27*10"x (Amps) (i)
fo(x)=a,%%=2.66*10°x2 (Amps) (ii)
f3(x)=a3x3=0.3*10x3 (Amps) (iii)

The polynomial output is the summation:

A=

3
f(x‘i-—-Zaifi(x)

i=1 |
Figure 6.16,6.17, and 6.18 show three outputs f;(x),f5(x), and

fa(x) of the module. The curves with solid dot are ideal curve

corresponding to three functions (i), (ii), and (ii1). With high B
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Polynomial circuit simulation result
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transistors, we can achieve very accurate polynomial function

at the output of our module.

6.4 POLYNOMIAL WITH PROGRAMMABLE
COEFFICIENTS

Virtually, every differentiable function can be replaced by an
equivalent polynomial . A polynomial module can be used to simulate
all nonlinear devices if its coefficients are programmable. In chapter
4 we have shown how we can use a current programming circuit to
program the coefficients of the module. This section reports circuit
simulation results of programmable polynomial module (PPM)

A typical circuit of a PPM is shown in figure 6.19. In figure
6.19, the current programming circuit is bassically a current
amplifier with the current gain k is controlled by a programming
code b;, The square law circuit is the same circuit in previous
section. At the output of current programming circuit we have a
square law function f(x) = kax?, Whére k is a function of binary code
b; and varies between -1 and +1. By varying binary code b, we can
change the coefficient of second order term ; other terms in the
polynomial can be changed by the same manner.

The current programming circuit was designed in figure 6.20.
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