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alistract 

Recently it has been shown by Professor Frey that by applying 

a new generalized modeling technique any nonlinear network 

composed of two-terminal devices can be replaced by an associated 

linear network L. The structure of the network L together with the 

models allow the determination o~ network equations in the standard 
·,: -- ~? 

form X = Au + BF(X). Based on the associated network L and its 

standard form equation, a method to implement a digital equivalent 

from nonlinear analog networks was developed. The digital 

equivalent network contains a solve-for-F(X) subnetwork N which 

solves for F(X) according to equation X(n) = w(n)-BF[X(n)]. In this 

work a standard subnetwork N has been designed to operate in the 

equivalent DSP network. The designed subnetwork N provides 

means to adjust w(n) and B depending on the particular application 

and nonlinear devices. Networks with exponential and polynomial 

nonlinearities are studied in detail. The concept of a Programmable 

Polynomial Module is introduced and employed in the standard 

subnetwork N to implement an arbitrary nonlinear characteristic. 

Experimental results are shown in comparison to simulation. 
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Chapter 1 r 

INTRODUCTION 

Sophisticated signal processing algorithms and hardware are 

prevalent in a wide range of systems, from highly specialized 

military systems through industrial applications to low cost, high­

vol11me consumer electronics. 

The field of signal processing has always bebefited from a close 

coupling between the theory, applications, and technologies for 

implementing signal processing systems. Prior to the 1960's, the 

technology for signal processing was almost exclusively continuous 

time analog technology. By this time, computers were few,very 

expensive,not very powerful and reliable and hard to program and 

use. The rapid evolution of digital computers and microprocessors 

together with some important theoretical developments caused a 

major shift to digital technologies, giving rise to the field of digital 

signal processing. 

Digital networks have several advantages over their analog 

counterparts : 

• Higher stablity. They are considerably less subject to 
noise than analog networks. 

• More reliable. They are far less sensitive to variation of 
component parameter values. Simple error detection and 
correction mechanisms can be used in digital networks. 

• Higher maintainability. They need no adjustments and 
no requirements for trimming and calibration process. 

• Lower cost. The adcances of microelectronics technology 
in recent years have made complex systems at very low 
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cost but its impact has been larger in digital systems. 
Moreover, a general purpose digital system can be 
programmed for a particular processing task, 
eliminating the need to have different systems for each 
task. 

• and In most cases, more accurate than analog systems 
due to the fact that the infinite small resolution that is 
theoretically possible in analog area can never be 
realized because of noise. 

Because of above reasons, analog electronics are normally only 

tollerated in the absence of digital integrated circuits either fast 

enough to do a task or priced low enough. This critical problems in 

terms of speed and low operating frequency, however, have been the 

subject of several current promising researches and the convergence 

to a beter solution is becoming more and more realistic. 

Nevertheless, there are cire11mstances beyond the scope of 

digital signal processing. How to convert a nonlinear analog network 

into a digital equivalent is still an unsolved problem. 

To digitalize an analog system, depending on particular 

application one may use one of several available mapping techniques 

; e.g Euler, impulse invariant, bilinear etc .. ; to map a transfer 

function from S- domain into Z- domain. Inherently, these mapping 

techniques require a Laplace transfer function of the network must 

be existed, which is just a matter of algebra for linear analog 

networks. For nonlinear networks, however, it's imposible to obtain a 

Laplace transfer function. Thus, so far there is no avalaible method 

to implement a digital equivalent from nonlinear analog networks. 

Extensive works have been devoted to the area of nonlinear 
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network by Dr. Douglas Frey, a professor of Computer Science and 

Electrical Engineering Department at Lehigh University. Currently, 

he is searching a general method to jmplement digital equivalents 

from nonlinear analog networks, The basic principles of his method, 

reported in· [1], may open a new direction to complete the picture of 

digital signal processing area. 

It's the interest in his idea has lead me to this study to explore 

a small part of his idea and hopefully have certain contribution to 

later researches involve in nonlinear digital signal processing. 

In this study the whole scheme is presented in chapter 2. 

Chapter 3 discusses several circuit topologies to realize the standard 

equation incorporated with DSP network from nonlinear analog 

structures. The concept of a Programmable Polynomial Module is 

introduced and designed in chapter 4 to implement an arbitrary 

nonlinear characteristic . Chapter 5 derives necessary and sufficient 

conditions imposed on network topology and properties of nonlinear 

devices to guarantee the existence of a digital equivalent network. 

Consecutive chapters report experiment and circuit simulation 

results to verify theoretical study. 

> 
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Chapter2 
Digital processing from nonlinear 

analog networks 
-The whole scheme-

Although the understanding of nonlinear networks has become 

more advanced in the past few decades , their applications are only 

beginning to be explored . An increasing interest in nonlinear 

networks can be perceived in the signal community by this time. 

There are considerable works have dedicated to nonlinear networks 

both in theory and practical applications [2],[3]. 

Having been classically regarded in the calculation of DC 

operating points for transistor circuits, or in control and system 

identification topics, nonlinear structures are now being collected 

and adapted for signal processing purposes. A good deal of 

applications on nonlinear structures is being directed to develop 

synthetic generation mechanisms to evaluate or design processing 

systems. That is the case of image processing and pattern recognition 

area where linear filtering methods have proved to be of limited help 

and nonlinear methods seem to be more adequate and more powerful 

to solve the problems [ 4]. Several nonlinear prediction shemes were 

proposed in [5] and [6]. 

As a result of increasing applications,nonlinear network has 

found itself particularly interested in the field of digital signal 

processing. It's well known that the ultimate performance in speech 
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processing and digital comm11nication can't be realized with linear 

time-invariant filters and equalizers. This is just a typical 

circumstance where nonlinear schemes are so desired. 

Unfortunately, there is no available general method to implement a 

digital equivalent from a nonlinear analog network as in the linear 

case. 

The traditional techniques in digital signal processing based 

strongly on a well-established linear analog network theory. In most 

of situations, a linear analog network with well -known advantages 

is replaced by an digital equivalent one without significant 

impairment. The task of replacement involves mapping the network 

transfer function from S-domain into Z-domain by one of several 

available techniques. These traditional techniques can't be applied to 

nonlinear analog networks where due to their nonlinear nature the 

Laplace transformation gives no help. Theoretically, one may obtain 

a transfer function for a given nonlinear network as it was derived in 

[7] via Fourier-Borel transforms, but it's impractical. 

Recently, it was shown by Frey in [1] that by a new approach 

the problem can be solved and a general method to digitalize 

nonlinear analog structures is possible. The solution in [1] has a 

particular importance in that it might be the key idea to the future 

nonlinear digital signal processing. 

6 



2.1 MODELING NONLINEAR COMPONENTS AND 

STANDARD FORM EQUATION FOR 

NONLINEAR NETWORKS. 

Modeling is of fundamental importance in the study of 

nonlinear network. By a simple generalized modeling technique, a 

standard form equation was derived in [8] by Frey. 

By Frey, any two terminal nonlinear element, either resistive 

or reactive, can be modeled by using linear components in 

combination with dependent sources. Two terminal elements are 

devices which may be characterized simply by a relationship between 

its two fundamental electrical variables: the voltage v across its 

terminals and the current i that flows through the element from one 

terminal to the other. For a resistor,the relationship is algebraic, 

while derivatives are required for the characterization of an incuctor 

or a capacitor. The simplest two-terminal resistors are those in 

which the relationship between their voltage and current is 

expressed by specifying the value of one of these variables as a 

single-valued function of the other variable. This is ,by far, the most 

common situation. A tunnel diode, for example, is a nonlinear 

resistor that is usually characterized in this manner. 

In [8], there are two general models were suggested . In figure 

2.la a current-controlled voltage source and a voltage-controlled 

current source are used with the linear component Z and in the 

figure 2. lb the model has a voltage controlled voltage source and a 

current-controlled current source. 
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Generalized model for two-terminal nonlinearity 
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The voltage and current sources are designated through the 

functions fl and f2 as shown, where for a given nonlinear component, 

one of these functions will be constant. In certain cases fl and f2 may 

be differentiated with respect to time. Due to the simple relationship 

between voltage and current in a linear resistor both models in 

figure 2.1 are completely equivalent for the case of nonlinear 

resistance. Voltage-controlled capacitors and current-controlled 

inductors can be modeled by using the network of figure 2. la where 

fl and f2 are differentiated with respect to time, the model in figure 

2.lb is suitable for charge- controlled capacitors and flux-controlled 

inductors. 

Let a nonlinear network N be given. Ass11me that N contains 

only resitive nonlinearities. We establish the associated linear 

network L by replacing all nonlinear components with applicable 

models. The associated network then is composed of linear 

components, independent sources and dependent sources. 

By treating all nonlinear dependent sources as though they 

were independent sources we may use the results of linear network 

analysis to obtain equation: 

Y.VN = a1.u + a2.F(v) (2.1) 

Where: 

Y: Nodal admittance n x n matrix 

VN: n-vector node voltage. n is the n11mber of nodes in network 

excluded datum ( ground node ). For simplicity of notation, all 

9 



vectors in this section are col11mn vector. 

a1: Real n x m matrix, where m the is number of independent 

sources. It has only l's, -l's, and O's as entries. 

u: m-vector, stands for independent branch voltage sources and 

]ink current sources. 

a2: Real n x k matrix, where k is the number of n~nlinearities 
' \ ... 

in network. 

F(v): Dependent sources modeling nonlinearities, a mapping of 

Rk into Rk. 

v: k-vector composed of branch voltages and link currents. The 

branch voltages are those associated with linear components 

introduced to the network by using nonlinear models of figure 2.1 , 

and the link currents are those associated with linear components in 

the links introduced through the models. n-vector VN and k-vector v 

can be w1·itten as: 

V = Mv.VN 

From (2.1): 

VN = y-1.a1.u + y-1.a2.F(v) 

And from (2.2): 

v = Mv.Y-1.a1.u + Mv.Y-1.a2.F(v) 

Denote 

A= ~.Y-1.a1 

B = ~.Y-1.a2 

Equation (2.4) becomes: 

v =Au+ BF(v) 

10 
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In equation (2.5) , the matrice A and B are ether constant or linear 
/; 

I 

operator and are determined by the network topology. These 

matrices are not affected by changes in the values of the independent 

sources. F( v) has the simple form given by : 

F(v) = [f1(v1),f2(v2), .... fk(vk)]T 

The standard form of equation (2.5) was derived for the case of 

purely resistive nonlinear network, which is similar to that derived 

by Sanberg and Wilson in [9]: 

AF(x) +Bx= c (2.6) 

also for the purely resistive networks. It turned out that 

equation (2.5) is also true for general nonlinear networks composed 

not only resistive nonlinearities but also reactive nonlinearities , as 

it was derived by Frey in [8]: 

x=Au+BF(x) 

\ 

(2.7) 

Therefore we can consider equation (2.5) or (2.6) as a particular case 

of generalized equation (2. 7). Equation (2. 7) is of fundamental 

importance in the study of nonlinear network. In fact, by using (2. 7) 

a new approach to the periodic steady state problem in nonlinear 

circuits were developed in [10] which can help to solve the problem in 

nonlinear circuit simulation, namely finding steady state response 

without having to integrate through the transient regime. 

With the aid of immediate variable v, we can solve for f(v) from 

equation (2.5). Once F(v) is solved we can calculate all node voltages 

according to equation (2.3). Output vector y is easily obtained from 

node voltage vector by: 

11 
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2.2 DIGITAL PROCESSING FROM NONLINEAR 

NETWORKS. 

(2.8) 

As it has been shown above, the asociated network of a given 

nonlinear network is completely described by equations (2.3) through 

(2.5) and equation (2.8). 

The associated network is depicted in figure 2.2. 

To implement the associated network in figure 2.2 into digital 

equivalent we need some special modification for subcircuit N . 

Rew1·ite equation (2.5): 

v =Au+ BF(v) 

Where A= Mv.Y-1.a1 

B = ~.Y-1.a2 

In continuous time domain, we have the Volterra equation: 

v(t)= ft a(t-'t)u('t)dt+ ft b(t---c).f[v('t)]d't 
0 0 

Where v(t), a(t), u(t), b(t), and ftv(t)] are inverse Laplace of v(s), A(s), 

u(s), B(s) and F[v(s)] respectively. In discrete time domain, all 

convolution integrals are replaced by convolution s11ms: 
n n 

v(n)= ~ a(n-k)u(k)+ ~ b(n-k)j[v(k)] 

Or 

(2.9) 
n n-1 

v(n)= L a(n-k)u(k)+} b(n-k).f[v(k)]+b(O)j[v(n)] 
k=O t;;{) 

In (2.9) the first term a(n)*u(n) can be calculated easily since it 

12 
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F(v) 

- 1 
V 

Linear network 
L 

Solve for F(v) 

N 

Figure 2.2 

Mv 
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The :associated network for a given nonlinear network 
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is the solution of linear problem. The second term represents the 

past history of the process up to index time (n-1). If at index n, we 

know all the past values of fiv(n)] then equation (2.9) enable us to 

compute the present value of fI v(n)] at index n . 

Denote 

n n-1 
w(n)=) a(n-k)u(k)+) b(n-k)j[v(k)] 

ti) ti) 
w(n) can be written as: 

Where: 

n n 
w(n)= L a(n-k)u(k)+ L. b(n-k)F"[v(k]) 

k=O k=O 

F"[v(k)J={j[v(~)] if k<n 
0 1fk=n 

(2.10) 

Equation (2.10) indecates that w(n) is the result of two discrete­

time convolutions. These two convolutions are the outputs of two 

linear time-invariant systems a(n) and b(n) . Where a(n) and b(n) are 

determined entirely by the given network topology. 

Then 

v(n)=w(n)+b( 0 ).F[ v(n)] (2.11) 

To see how equation (2.11) works, let begin at starting point, n 

= 0, we have: 

w(O) = a(O).u(O) 

and 

v(O) = w(O) + b(O).F[v(O)J 

From this equation we can solve for F[v(O)] 

At n = 1: 

14 



w(l) = a(l).u(O) + a(O).u(l) + b(l).F[v(O)] 

and: 

v(l) = w(l) + b(O).F[v(l)] 

This equation in turn used to solve for F[v(l)]. 

The process repeats in this manner. 

In general, the subcircuit N receives internal input w(n) and 

generates output F[v(n)] according to equation (2.11) Internal input 

w(n) is determined by linear networks a(n), b(n) and also by the past 

values of F[v(n)] as indicated in equation (2.10) 

The question now is how to get a correct value of w(n) at index 

n. This can be solved by note that from equation (2.10): 

w(n)=a(n)*u(n)+b(n)*FA[ v(n)] (2.12) 

Where * denotes the convolujtion s11m in discrete time 

doroain.F"[v(n)] is equal to F[v(n)] at all index k~n-1 

Equation (2.12) jmplies that we can solve the problem by 

forcing output of subcircuit N to zero at index n as shown in figure 

2.3 

To make the network in figure 2.3 work properly, we need to 

initialize switch S at position 1 at every index n. The switch S has to 

switch back to its normal position, position 2, before the next index 

(n+l) begins. At index (n+l) switch S switches to position 1 again 

and the cycle is repeatted. At index n the past values of F[ v(n)],i.e 

F"[v(n)], enter linear filter b(n) , the output of linear filter b(n) is 

added to the output of linear filter a(n) to form internal signal w(n). 

The internal signal w(n) is then received by sub-network N to 

15 



u(n) 
a(n) 

I\ 

t F[v(n)] 
b(n) , "' 
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I\ 

F[v(n)] 
Solve for F[v(n)] 

w(n)=a(n)*u( l) 

~ 

+b(n)*F[v(n)] 

Figure 2.3 

Digitalized Solve-for-F[v(n)] Circuit 
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1 

a2 

J\ 

F[v(n)] 

2 

F[v(n)] 

- 1 
y 

Linear network L 

Solve for F[v(n)] 

Figure 2.4 

Mv 

w(n) 

Digital equivalent network 
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generate F[v(n)]. This new value of flv(n)] will update the linear 

filter b(n) and an up-to-date signal will appear at output of b(n). This 

updated signal in turn will update consecutive stages of the non­

linear DSP network. 

In summary, by using a generalized modeling technique,any 

given nonlinear analog network N can be replaced by an associated 

linear network L. All of the topological properties of N are preserved 

in L. A digital equivalent network for the associated network L then 

can be obtained as it was shown in the above procedure. The digital 

equivalent network for the associated network of figure 2.2 is shown 

in figure 2.4. 

Next section demonstrates how the process works by a simple 

circuit with one nonlinear component. 

2.3 CIRCUIT DEMONSTRATION : 

Let consider a simple circuit with a diode used as a nonlinear 

element in figure 2.5a. By modeling diodeD with a linear resistor r 

and a voltage-controlled current source f(v), we have the associated 

network in figure 2.5b. 

' 
I 

i 
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u 

f(v) 

D 
1 2 + V 

r 

u 
C R C 

Figure 2.Sa Figure 2.Sb 

Figure 2.5 

A simple nonlinear circuit and its associated circuit 

Note voltage equation : 

1 0 V1 u 
--

-1/r 1 /r+ 1 /R+SC 
V2 f (v) 

R 

We can 
write 1 0 Vl 1 0 

- u - + 

-1/r 1/r+l/R+SC V2 0 1 

T h is i s a f o rm o f e q u a t i on C 2. 1 ) Y . V n = a 1 . U + a 2 . f (v ) 

And 
Vl 1 

0 - - 1 . u + - 1 -
y y f (v) ( 2. 1 2) 

V2 
1 

V = Mv.Vn =11 -11 Vl 

V2 
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1 . 1 
v=[l- ]U - F(v) 

r( 1/r+ I/R +SC) ( 1/r+ 1/R +SC) 

This is of the form v = Au+BF(v) 

Note that 

l -H(S) 
r( I/r+ l/R+SC) 

Where H(S) is the transfer function of the circuit if we depress the 

nonlinear function ft v) 

We can w1ite: 

v(s) = [1-H(S)]U(S) - rH(S)F[v(S)] 

Denote 1 - H(S) = G(s) 

v(S) = G(S)U(S) - rH(S)F[v(S)] 

And v(n) = g(n)*u(n)-rh(n)*f[v(n)] 

n n-1 
v(n)=} g(n-k)u(k}-r L, h(n-k)j[v(k)]-rh(O)j[v(n)] 

ti> k=O 

Denote 

n n-1 k g(n-k)u(k)-r ~ h(n-k)j[v(k)]=w(n) 

We have: 

v(n) = w(n) · r.h(O).f[v(n)] 
, 

This is the form of equation (2.11) that we have derived above. 

Or 

From (2.12) output v 0 : 

1 1 
V o=V2- r(l/r+ 1/R+SC) U+ (1/r+ 1/R+SC)F(v) 

VO = H(S)U(S) + rH(S)F[v(S)] 

And 

20 
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input ------
u(n) 

---• 
s 

1 2 

F(v(n)] 

g(n) 

- r .. h ( n) 

Solve for 

F[v(n)] 

+ 
-' ~ "Ill 

..._----~ ... + .. ..' 
+ --

h(n) 

+ 

-
_t output 
~ ~ 

---~ ... +~---: --
-

Vo(n) 

~~w_(n_)_~ 

Figure 2.6a 

Digital implementation of circuit in fig. 2.5a 
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v 0 (n) = h(n)*u(n) + rh(n)*f[v(n)] (2.14) 

From (2.13) and (2.14) , the digital implementation of the original 

nonlinear analog circuit is depicted in figure 2.6a. 

At index n switch S is at position 1 ,we have w(n)= 

u(n)*g(n)-rh(n)*F"[v(n)]. The solve-for -F[v(n)] circuitd receives this 

signal w(n) and generate F[v(n)], F[v(n)] is fed to the input of rh(n) 

circuit through the contact at position 2 of switch S. This new 

F[v(nm)] updates the memory of digital filter rh(n) which in turn 

updates the output signal V 0(n). 

We have 

H(S)- l 
r(l/R+l/r+SC) 

Denote 

1 1 1 
-+-=­
R r R' 

H(S) l 
- r( l/R' +SC) 

Using bilinear maping 

2 1-z-l 
S=---

T I+z-1 

to map H(S) into H(Z), we obtain: 

H(Z)- 1 
r(l/R' +2C(I-z-l )/T(l +z-l )) 

We can write H(Z) under the form: 

H(Z)-a( 1 +z--1) 

1-bz-1 

Where: 

.,- -- ~-- ------'-" ' - h·, • 
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Solve-for­

F[v(n)] 

Circuit 

Figure 2.6b 

w(n) 

Digital equivalent network of circuit in fig. 2.5a 
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R a-
R +r+(2CRr )/T 

2CR'-T 
; b-2CR'+T 

T is the sampling period. 

G(S)=l-H(S); G(Z)=l-H(Z) 

G(Z)_(l-a)+cZ-1 

1-bz-1 

Where c=-(a+b).The digital equivalent circuit of this simple example 

is shown in figure 2.6b. 

In this chapter a new method to realize digital equivalents from 

nonlinear analog networks as well as a particular process on a 

simple circuit have been presented. The digital equivalent network 

contains a sub-network N which solves for F[v(n)] according to 

equation (2.11). 

In practical network, the matrix b(O) in equation (2.11) is 

usually a negative matrix as we saw in equation (2.13) of the 

example circuit. Thus, in general, equation (2.11) can be written as: 

v(n)=w(n)-BF[v(n)] (2.15) 

Providing that Bis a non-negative matrix. 

In the following chapter, the subcircuit to solve for F(v) 

associadted with equation (2.15) are explored. Several circuit 

topologies and designs will be proposed for different nonlinear 
' 

characteristics. 
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Chapter3 
Circuit topologies to realize 

equation 
_ x = w - BF(x) incorporated with DSP 

network 

Chapter 2 has shown that for a given nonlinear network 

comprises of linear devices and two - terminal nonlinear devices 

together with independent sources, we can replace all nonlinearities 

by suitable models and obtain a standard equation has the form : 

x = Au + BF(x) (3.1) 

Where A and B are linear operators depend only on network 

topology, vector u stands for network inputs, vector x represents 

branch voltages and link currents associated with nonlinear models, 

and F(X) consists of dependent sources generated from the models. 

The task of finding a digital equivalent from the given 

nonlinear network involves in finding the solution of equation: 

x(n) = w(n) · BF[x(n)] (3.2) 

Where w(n) is an internal signal vector determined by network 

topology as well as the past values of F[x(n)] up to index (n-1) 

(3.3) 
n n-1 

w(n)= ~ a(n-k)u(k)+ ~ b(n-k)F[x(k)] 
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Figure 3.1 

Simplified equivalent DSP network 
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3.1 A HARDWARE APPROACH 

Figure (3.1) shows how equation (3.2) works in the associated 

DSP network. 

The subcircuit N receives input w(n) and generates output 

F[x(n)] according to equation (3.2) . Finding such a solution can be 

achieved by a software approach which utilizes some numerical 

method, such as Newton - Raphson, or Lin - Bairston method and 

their variations... The software solution , however , is not always 

convergent and more importantly, it's usually not fast enough to be 

implemented in real time. 

The solution therefore is prefered to a hardware approach with 

the cost of some extra circuitries added to theDSP network as shown 

in figure 3.2 

We have now: 

x(t) = w(t) · BF[x(t)] (3.4) 

In figure 3.2 DAC and ADC are digital-to-analog and analog-to­

digital converters. w(n) is converted to analog form by the DAC . The 

solve-for-fix] circuit now operates in continuous time domain. The 

analog output fix(t)] of the solve-for -F[x] circuit is then converted 

back to digital form by the ADC. We will see later that the DAC is a 

part of Solve-For-F[x(t)] circuit if they are well designed; and 

therefore the fact that a DAC is added to the network is not a serious 

problem, and the practical network of figure 3.2 can be more 

simplified. 
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DAC 
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Figure 3.2 

A hardware approach to solve for F[x(n)] 
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3.2 FIRST ORDER EQUATION 

3.2.1 Circuit topology 

We consider first the case when the given network contains 

only one non-linearity. 

In this circumstance, equation (3.4) contains only constants, 

variable and nonlinear function in R 1. 

If we agree that F[x] is a voltage-controlled current source with 

nonlinear characteristics and that F[x] can be either a one-port or 

two-port network, then the circuit topologies in figure 3.4 will be a 

good candidate for realization of equation (3.4) 

In figure (3.4) D{w(n)} : Binary code of w(n) 

And 

IA= fA(Vref,D{w(n)}) 

With fA is a function defined by DAC. From the circuit of figure 

3.4, either a or b, we can derive easily: 

x = BIA - BF[x] 

x =BfA(Vref,D{w(n)}) - BF[x] (3.5) 

In which we can design the DIA converter such that: 

BfA(Vref,D{w(n)}) = w(t) (3.6) 

Equation (3.6) indicates that we can adjust w(t) depending on 

particular given nonlinear network. 

The settling time of a DAC can be on the order of a fraction of a 

micro-second. Op-amp gain -bandwith product will have a large 

impact on the settling time of the entire circuit. With a high speed 

Op-amp the over all settling time can be achieved in a range of few 
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Figure 3.3 

A model for equation (3.4) 
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b. Two-port F(x) 

Figure 3.4 Circuit realization of equation (3.4) 
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hundreds of nano seconds. 

3.2.2 PrograD1D1ing gain B 

In equation (3.4), depends on particular nonlinear element, we 

may desire to change the gain B. A convenient way is to replace the 

fixed impedence B in figure 3.4 by a multiplying DAC with an R-2R 

ladder in figure 3.5: 

Due to the virtual gro11nd at inverting node of Op-amp, the 

voltages at node A, B, C, D are constant regardless of switch 

positions. 

Vo= 2-1vc = 2-2YB = 2-avA = 2-av 

And: 

14 = 2-113 = 2-212 = 2-311 = 2-3\T/2R 

Io= h1I1 + h2I2 + b3I3 + b4I4 

Where bi's are digital bits applied to switches. 

I0 = V!R,(b12·1 + b22·2 + b32-3 + b42-4) 

Denote: 
4 

D=Lb;z-i 
i=l 

We have: 

I0 = DV/R 

In general , for a multiplying DAC configuration of figure 3.5 

th~ current 10 is a f11nction of input voltage V, ladder resistor Rand 

,, digital code D. 

I0 = f(V,R,D) = DV/R (3.7) 

Now let consider the circuit of figure 3.6. In figure 3.6 both DAC 1 
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Figure 3.5 

Current-mode R-2R ladder 4 bit Multiplier 
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Figure 3.6 

Programming gain B for one-port f(x) 
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and ADC 2 are multiplying DAC type of figure 3.5, with the resistor 

ladders R1-2R1 and ~-2~ respectively. Dl is the binary code of 

input w(n), D2 is the programming binary code, used to program the 

gainB 

We can analyze circuit of figure 3.6 easily by superposition 

principle: 

!.Circuit without current source F(x) 

From DAC 1 IA= -f1(Vref,R1,D1) = -D1Vre/R1 

From DAC 2 IA= f2(x1,~,D2) = D2x1J&i 

R2Dl 

Xi=-VrefR D2 
1 

2.Circuit without current source fl 

We have: 

F[x] = - f2(x2,~,D2) = -D2xz'R2 

x2 = - F[x]~/D2 

From (3.8) and (3.9) 

~Dl ~ 
x=-Vref -F[x]-

R1D2 D2 

(3.8) 

(3.9) 

(3.10) 

Equation (3.10) explicitly shows a way to program the gain B by 

programming the binary code D2. 

Note that DAC 1 and DAC 2 can use the available op-amp OA 

in figure 3.6 as a part of their circuits. Therefore actually DAC 1 and 

DAC2 contain only resistor ladder and transistor switches , this fact 

makes the circuit in figure 3.6 becomes more simpler than it appears. 
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One drawback of circuit in figure 3.6 is the gain Bis reversely 

proportief~ to D2. When nonlinear funcion F[x] is generated by a 

two-poJ ne~~OI"k, We can modify the circuit in figure 3.6 to avoid 

this problem . A modification is shown in figure 3. 7 for two-port 

nonlinear F[x] 

In the circuit of figure 3.5, V = RI, replace this in equation (3. 7) 

we get 

I0 = ID (3.11) 

Equation (3.11) indicates that the multiplying DAC type of figure 3.5 

can be used as a programmable current amplifier (PCA). In figure 

3.7 DAC 2 controls output current F[x] by means of programmjng 

binary code D2. 

We have from figure 3. 7: 

x = • V ret° 1~/R1 · RBD2F[x] (3.12) 

In this case the gain B is directly proportional to binary code D2 

3.3 SECOND AND HIGHER ORDER EQUATIONS 

3.3.1 Second order equation 

When The given network has two nonlinearities characterized 

by F 1 [x1] and F 2[x2] , the standard form equation (3.4) gives a second 

order equation: 

X1 = W1 - B11F1Cx1)- B12F2(~) 

X2 = W2 - B21F1(x1)- B22F2(x2) 

A model for this second order equation is shown in figure 3.8 

When all nonlinearities are simulated by two-port networks, 
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Programming gain B for two-port F(x) 
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figure 3.8 

A model for second order equation 
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it's straight forward to get a circuit configuration to realize this 

second order equation. Such a circuit configuration is shown in figure 

3.9 

When function Fl(xl) and F2(x2) are generated by one-port 

network, we need some modification from the circuit of figure 3.9. 

Let consider the circuit of figure 3.10 

In figure 3.10, the output current IA of digital-to-analog 

converter: 

IA= f(Vref,D) 

At output of op-amp 

Vol= B1fCVref,D) - B1F1[x1J 

We also have 

vol= X1 + B2F 1[x1] 

Therefore: 

X1 + B2F 1[x1J = B1ftvref,D) - B1F 1[x1J 

xl = B1ftVref,D) - (Bl+ B2)F 1[x1] 

If now we make B1 + B2 = B11 then 

X1 = B1f<Vret,D) · B1iF 1[:x:1] 

Vo2 = B2F 1[:x:1] 

(3.13) 

(3.14) 

Equation (3.13) give the desired coefficient Bll. Voltage V02 is fed to 

another circuit with similar configuration to provide the coefficient 

B21. The entire modified configuration for one-port nonlinear 

functions F[x]'s is shown in figure 3.11. 

In figure 3.11, it's straight forward to show that: 
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Circuit for 2nd order equation with two-port F(x) 
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figure 3.10 

Circuit configuration for one-port F(x) 
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And 

•~.... . 

B1t=B1+B' 21 
B1 

B1rB'12w: 
1 

B2 
B21=B'21B' 

2 
B22=B2+B' 12 

X1 =w 1-B11 F 1 (x1)-B12F 2<x2) 

X2=W2-B21 F 1 (x1)-B22F 2<x2) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

t;, 

Note that the voltages x1 and x2 are not at Op-amp outputs, 

but this causes no problem because in the associated DSP network 

what we need are F 1[x1] and F 2[~] rather than x1 and~· 

To program the coefficients Bij's, we can use the circuits of 

multiplying DAC type to replace fixed resistors Bij as in the case of 

first order equation. 

3.3.2 Higher order equations 

Thanks to the simplicity in circuit topology , the network of 

either figure 3.9 or figure 3.11 can be generalized for higher order 

equations. Figure 3.12 shows a network for 3rd order equation. 

·X1 = wl - B11F1(x1) - B12F2(x2) - B13F3(x3) 

x2 = w2 - B21 F 1 (x1) - B22F 2(x2) - B23F 3(x3) 
. \ 

In figure 3.12, Bij's are designed according to following conditions: 
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Circuit for 2nd order equation with one-port F(x) 
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In general,to create an nth order subcircuit N to solve for F(x) = 

[fl(xl),f2(x2), .. ,fn(xn)]T we need 2n op-amp's and n multiplying -type 

DAC which consists of only resistor ladders and transistor switches. 

Due to the low resistor ratio in R-2R ladders, an nth order subcircuit 

N can be well fabricated by monolithic integrated circuit technology. 

' \. 
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Chapter4 
Programmable Polynomial Module 
incorporated with nonlinear DSP 

network 
In this chapter we design a polynomial· module which will be 

used in associate with nonlinear DSP network. The polynomial 

module generates function : 
n 

f(x)=}:a/ 
i=O 

Where coefficients ai's can be programmed by the user to make 

the module becomes versatile. Such a module can simulate arbitrary 

nonlinear characteristics because in some interest range of variable x 

any differentiable function can be represented by a polynomial form. 

We restricted ourselves to design a module with voltage­

controlled current source output rather than other forms. A current 

source output turned out to be the most convenient way when it was 

1
" used with associated nonlinear DSP network as we already shown in -~-1 

chapter 3. With high speed and performance required for associated 

nonlinear DSP network in mind we prefered to bipolar technology. 

Bipolars provide fast current switching and true output cWTent 

source or sink capability. When used in nonsaturating current­

steering mode, bipolar transistors switch very rapidly, typically 

within nano-seconds. Moreover, with true current source or sink 

capability, the module output can be converted to a voltage merely by 
\ a resistor termination, thus avoiding the additional delays of an 1-V 
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converter. 

4.1 THE PRINCIPLE 

\ The heart of our module is the transconductance multiplier of 

figure 4.1, c9nsisting of differential pair Q3 and Q4 to provide 

variable transconductance.Since its conception was introduced [11] 

the linearized transconductance multiplier rapidly gained acceptance 

as the prefered approach to the realization of monolithic analog 

multipliers, and its simplicity has commended it for use in low-cost 

modular design. Accuracy of these units and drift and noise 

performance have been developped, future improvements in 

precision bipolar technology will almost certainly result in accuracies 

of 0.1 percent becoming commonplace. 

In figure 4.1, diode Dl and D2 are used do provide the proper 

base driver for the differential pair Q3 and Q4. 

By Kirchoff s voltage law, V Dl + V BEQ4 = V D2 + V BEQ3 

Vn1 - Vo2 = VBEQ3 - VBEQ4 (4.1) 

Assume negligible base currents : 

I1 = Is1[e Vn1NT - 1] = Is1e Vn1NT 

And 

Vo1 = VTln[I1fis1] 

From (4.1) 

Vrr!n[I1/I81] - Vrr!n[Ii[82] = Vrr!n[I31I83] - Vrr1n[I4/184] 

If th·e transistors are well matched, then 

ln[l1/12] = ln[l3!14] 

And: 
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Transconductance multiplier 
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[/1-/2][/3+/J 
J-I------
3 4 [/1 +/2] 

(4.2) 

Equation ( 4.2) indidcates the circuit's ability to multiply different 

current ( I1 - I2 ) by total emitter current ( I3 + I4 ). 

The differential current I 1 - I 2 can be obtained from the 

emitter-degenerated amplifier in figure 4.2 

In figure 4.2 

I1 =I+ i 

I 2 = I - i 

i = 1/2(I1 - I2) 

By Kirchoffs voltage law: 

x = VBEQl + Ri - VBEQ2 

From (4.3) and (4.4) : 

x = R/2(11 - I2) + VTln[I1II2J 

(4.3) 

(4.4) 

(4.5) 

In a well- designed circuit the 2nd term of the right hand side 
' 

in equation (4.5) is neglible compared to other terms, therefore to a 

frrst approximation 

2 
I1-I,,- x 

- R 

(4.6) 

Equation (4.6) already gives 1st order power of x; all we need is 

converting differential output into single ended output. This is a 

straight forward task. For higher order power of x, equation ( 4.2) and 

(4.6) associate with circuits of figure (4.1) and (4.2) respectively can 

be arranged in some way as we will see in the following section. 
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Square law configuration 

50 



' ' .. 
.,..,.-. --·· 

.. 

4.2 SQUARE LAW CIRCUIT CONFIGURATION 

Let now add another differential pair Q5 Q6 to the circuit of 

figure 4.1. 

From figure 4.3 , besides equation (4.2) we have: 

(/ 1-/ 2)(/ 6+/ 5) 
I -I .;._..-----
6 5 (l1+I2) 

From ( 4.2) and ( 4. 7) 

(/1-/2) 
(I3-I4)-(I6-J5)- (/1 /8) 

I1+I2 

(4.7) 

(4.8) 

The difference 17 -I8 can be obtained from input x in the same way of 

figure 4.2, thus equation (4.8) already indicates a square law 

chareristics. 

A complete square law circuit is shown in figure 4.4 

In figure 4.4, 

(/ 1-/ 2)(/ 7-/ g) 
I.------
out (/l +/2) 

2 
I =2 x 

out R1Rilx 

(4.9) 

In figure 4.4, M1, M2, and M3 are current mirrors, either Widlar type 

or for more accurate, Wilson type. 

Note that we have something in common between Q7 Q8 and 

Q9 Q10 circuits, this permits us to simplify the circuit of figure 4.4 

further as shown in figure 4.5. 

The circuit basically remain the same, except for now the 

differential pairs Q7 Q8 and Q9 Q10 are driven by the same current 

,, 
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Simplified square law circuit 
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source I. In practice, transistors Q7 and Q9 can be merged to 

form a single transistor with double collectors. The same is applied 

for transistors Qs and Q10 

Again, ignore the base currents, we have 

11 + 17 =I+ i 

I2 +Is= I - i 

(I1 +17) - (I2 + Is) = 2i 
t' 

Note also I1 = 17 and 12 = Is 

Therefore 

I 1 - 12 = I7 - Is = i= x!Ro 

And I1 + I2 = 17 +Is= I 

The output current 10 of circuit in figure 4.5 now becomes 

(I 1-I 2)(/ 7-I g) 
1------

o (I1+I2) 

x.2 
1=--

0 R 21 
G 

(4.10) 

In general if we have n differential pairs connected as in figure 4. 7, 

then it's easy to prove that : 

And 

I1-l2=I3-l4= ... =l2n-I-I2n 

2i 2x 
12 1·I2 =-=--n- n nR n G 

21 
l2n-l +l2n=­n 

,, .-, ., ,, 

(4.11) 

(4.12) 

-~ 
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Equation (4.11) and (4.12) will be used later when we want to 

generate an nth order polynomjal . 

4.3 POLYNOMIAi, MODULE 

An expansion of circuit in figure 4.5 will generate a cubic law 

function as well as any other higher order power function. 

Let consider the circuit of figure 4.8 

Apply the above results: 

[/1-/2][/3-/4] 
1~18------

, . [/1+/2] 

(/7-lg)(/5-/6) 
l-1 ------
9 10 (/7+/g) 

(/1-/2)(/3-/4)(/s--/6) 
I9-I10-------­

(I1+I2)(I7+I8) 

(/1-/ 2)(/3-/4)(/ 5-/6) 
I9-I10,-------­

(l1+l2)(l3+I4) 

From equation (4.11) and (4.12): 

[/1-/2]3 
l-1 .----
9 10 [/1t-I2]2 

2x3 
1-1 -,---

9 10-3(RG)3J2 

(4.13) 

The differential output I9-I10 is easily converted into a single 

output by some additional current mirrors. Note that diode­

connected Q3 Q4 and Q7 Q8 are ready to form current mirrors if we 

want to get 1st order and 2nd order power terms. 

As it was mentioned above, an arbitrary order power term can 

be generated in the same manner. It's straight forward to find a 
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I8 

A cubic law circuit 
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" 
1. 1• 

closed form for a kth order power term. 

[I1-I2]k 
I k-----
out. [I 1 +/ 2lk-l 

I =( 2x l!(21l-1 
outk nRa n 

I - 2xfc 
outk n(RGlJk-1 

Denote 

2 a-, ___ _ 
k-n(RG)kyk-1 

Then 

, " J r ' ~ : . , . , 

(4.14) 

\ 

Ioutk = a~k (4.15) 

In equation (4.14), n is the highest order available in the 

polynomial module. It will be set up depending on practical 

application of the module. 

The polynomial will have following form 

n 

I out= LI outk 
k=l ff!. 

n 

1our=La~ 
k=l . 

.. 
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4.4 DESIGN CONSIDERATION 

4.4.1 Voltage-current converter stage 

The main cause of error is the logarithmic term that we 

omitted in equation ( 4.11) x = V BEQ + RGi - V BEQ 
2n-1 2n 

l2n-l l2n 
x=Vr,n V7ln · +Rai 

Is Is 

I2n-l 
x=Vrln +Rai 

I2n 

. X VT l2n-l 
1- In--

Ra Ra I2n 

And 

2x 2VT l2n-l 
f 2n-1-I2n - ln·--

nRa nRa 12n 

The output current of a kth order power has the form: 

U2n-1-l2n]k 
Ioutk- K 

Where K is a scale factor, depends upon resistor RG and 

current source I. 

2x 2V I I 
I =[ - Tin 2n-l]k-
outk nRa nRa I 2n K 

I -[ 2x ]kl 
idear nR K 

G 

Denote error E: 

I idearl outk 
£-

I 
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V. I 
E=l•[l- T In[ 2n-1 ]jl: 

x I2n 

We also have: 

2x 
12 1-/2 =-n- n nR. 

And: 

G 

Therefore: 

I X 
/2 1 =-+­

n- n nRa 

I X 
I2n=rz- nR 

G 

Replace (4.18) and (4.19) into (4.17): 

VT l/n+x/nR.0 k 
E= 1-[l ln[ ]] 

x 1/n-x/nR.0 

VT InRa+nx 
E= 1-[l - ln[ ]]k 

X fnRc;-nx 

VT IRG+x 
E=!·[l- ln~R If 

X a·X 

(4.17) 

(4.18) 

·"' 

(4.19) 

(4.20) 

Figure 4.9a shows error £ as a function of input voltage x at 

different values of k and figure 4.9b shows E as a function of k at a 

typical values of x. 
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£ is negligible when input voltage < 5 Volts and n < 4. £ 
. 

increases for larger input voltage x and power order n . This error 

can be compensated either by trimming the gain resistor RG or by 

using another transistor pair to cancel the affect of logarithmic term 

as in figure 4.10 

In figure 4.10: 

V1=VBEQ1+VBEQ4-Rai-VBEQ3-VBEQ2+V2 

V1-V2=VBEQ1-VBEQ3+VBEQ4-VBEQ2-Rai 

I1 12 . 
V1-V2=Vr/n-+ViJn R0z 

I3 /4 

If Q3 and Q4 have fairly high ~'s then 11 = 13 and 12 = I4 , 

therefore: 

V1 - V2 = -RGi 

Thus the logarithmic term is canceled by Q3 and Q4. In practice 

, to maintain transistors Q3 and Q4 in conduction region even with 

large change of differential input we can insert a diode Zener in the 

paths between the bases and collectors of Q3 and Q4. 

4.4.2 Transistor ntismatch 

The second source of error is due to transistor mismatch in the 

multiplying cores.Let consider again the output of square term in the 

polynomial module in figure 4.11. Taking a closer look at the 

multiplying core Ql Q2 Q3 Q4 we have: 

V BEQl + V BEQ4 = V BEQ2+ V BEQ3 

V ir!n(I1/181)+ V ir!n(I4/I84)= V ir!n(IiJ82)+ V ir!n(I31184) 

ln(I1 I8iJ2I81)=ln(I3I84!I4I83) 
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I 1 12 

Q1 Q2 

V1 V2 

13 14 

Q3 Q4 

Figure 4.10 

Compensated logarithmic error 
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Therefore 

I1Is2 I3ls4 
--=--
lfs1 l4ls3 

11 13 Is1ls4 
-=---
12 14 Is2ls3 

Ideally if all transistors in the multiplying core are well 

matched, then the ratio of reverse bias saturation current I8 's in the 

right-hand side of this equation would equal to 1. In a practical 

situation , we always have some degree of mjsmatch between 

transistors. 

The reverse bias saturation current of a long-base p-n j11nction 

is defined by: 

• 

Ig=qA[DpPno/Lp + Dn~o/Ln] 

Where 

q:electron charge 

A:j11nction cross section area. 

DP:diffusion coefficient of hole 

Dn:diffusion coefficient of electron 

Pn0 :mjnority carrier ( hole) concentration at equilibri11m in n 

region. 

npo:roinority carrier (electron) concentratin at equilibri11ro in p 
• region. 

, 

LP:hole diffusion length. 

Ln:electron diffusiion length. 

In these factors defining saturation current I8, all of them 

except for junction cross section area can be well controlled 
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13 
14 15 16 
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I 1 I 12 I 2n 

~n-1 
Q9 Q10 ------- - -

I I 

VEE ~ 

Figure 4.11 

Square term output of the polynomial module 
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by fabrication process and their variation ,if any, will equally 

a:ff ect on every transistor. Thus the main source that cause I8 

mismatch is the area mismatch of emitter-base j11nctions. 

We can write 

Is1Is4 A1A4 
--= it,,. 

Is2Is3 A2A3 

Where A1 to A4 are junction areas of Q1 to Q4 

Denote the area mismatch factor 

A1A4 
<I1=l---

AiA3 

usually this is a very small number, within the range 2 percent. Now 

we have 

------

------
/1 /2 

I1-I2 
l3(l-a1)-/4- [/3(l-a1)+/4] 

/1+/2 
(4.21) 

The same arguement for the multiplying core Ql Q2 Q5 Q6 we have: 

(4.22) 

Where 

A1A5 
ai=l-­

AiA6 

denotes the area mismatch of Ql Q2 Q5 Q6 core 

From (4.21) and (4.22) we have 
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Or 

Note that we have an offset term 

/1-/2 
(~lf011l3)( 1) 

/1+/2 

(4.23) 

compared with the ideal case. Obviously , in an ideal situation , 

a1=°'2=0 then equation (4.23) reduces to the usual form: 

/1-/2 
(I3+I5H.I4+I6)=( )(/1 /g) 

I1+I2 

Let E denotes this offset term, we can express E in terms of 

input voltage x and area mismatch factors al and cx2 

We have 

13 14 13+!4 /7 - - -- ---- _,..,., ___ _ 
/1 /2 /1+/2 f 1+12 

From equation (4.11) and (4.12) 

J -/+ X 
7 n nRa 

2/ 
I1+I2---

n 

And hence 
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/3 1 X 
- +--

/1 2 2Ral 

1 X 
l3=(t 2Rd)ll 

' " i 

13=(!+ X )(/ + X ) 
2 2R0I n nR0 

Similarly: 

1 x I x 
/6=(-- )(-+ ) 

2 2Ral n nR0 

Also from (4.11) and (4.12): 

l1-I2 x -
I 1+I2 Raf 

Replace this value and above values of I3 and I6 into the 

equation of£, we have after simplifying: 

(4.24) 
1 -I (a1+~) (Clc.l·Cl1) 2 (°'2+a1) 3 

£= [-(~·Cl1)+ X+ X X ] 
n 2 2RG 2(RG)2I 2(RG)312 

Equation (4.24) shows that due to area mismatch we have a DC 

output offset of I(~-a1)/2 and other distortions corresponding to 

higher order of input x. Equation (4.24) also shows that Eis reversely 

proportional to the highest order n of the polynomial module. 

In practice, by careful layout , we can arrange the transistors in 
'1: 

the multiplying cores such a way that a1 and ~ are very small and 

the error due to area mismatch can be limitted within a negligible 

n11mber. 

Other errors caused by ohmic resistances at base-emitter 

junctions and by finite ~ are of second order effect, they are usually 
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very small . Transistors with large ohmic resistances and ~ in the 

neighborhood of 100 can be used without serious problem. 

4.4.3 Maxim.11D1 input voltage swing 

Our polynomial circuit works properly so long as all npn 

transistors sink current. 

I1 =l3= .... =I2n-l > 0 

I2=l4= .... =I2n > 0 

From equation (4.11) and (4.12) 

I X 
/ 1 =/ 3=. ·· .=/ 2n-1 =-+,-

n nR0 

I X 
l2=l2=····=I2n =--·-

n nRa 

The constraint for input voltage: 

-IRa<x<+IRG 

It is seen from equation (4.20) that when input x approaches 

the product IRa, the logarithmic error caused by voltage-current 

converter stage increases significantly. As a rule of th11rob, the 

maximum voltage swing xMaxis usually chosen such that 

XMax=g.IRa 

Where g is dimensionless factor ranges from 0.5 to 0.8 

4.4.4 Maxim.11m output current 

The kth term in the module: 
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I - zxk . 
outk n(RGlJk-1 

I - zxkI 
outk n(RGil 

'lxk[ 
Ioutk=f ( l 

nxMax 

Thus 

(4.26) 

IoutMax depends on "tail" current I, the highest order n and the 

chosen factor g. 

The choice for RG and I, therefore,is decided by the range of the 

operating input voltage and the maxi.mum current at the output 

according to equation (4.25) and equation (4.26). 

NG ·COEFFICIENTS ai's 

The module generates polynomial: 
n 

ftx)=~a/ 

As we have mentioned earlier, "the module is used with the 

associated DSP network where any nonlinear device can be replaced 

by this module with certain allowable tolerance. The coefficients ai's 

may vary for each nonlinearity, therefore we need to provide some 

way to program coefficients ai's to make the module becomes more 

versaltile. 
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Several schemes can be used to change a current gain, e.g, 

some variations of Widlar or Wilson current mirror; where the 

output current can be varied by mean of a potentionmeter. We prefer 

here to program the current gain, and hence the coefficients ai's, 

digitally by a binary code that will be entered by the user. 

Let consider the R-2R network of figure 4.12a. To achieve 

. current ratioes at collectors, all transistors are kept at equal 

base-emitter voltages while emitter areas are binary ratioed. 

Or: 

Ignore base currents: VBEQ4 + 2RI4 = VBEQS + 2Rl5 + R(l5+l6) 

I5 = I6 

15 = 2-114 

Similarly I4 = 2-113, ... 

We have: 

12 = 2-11 

13 = 2-21 

I4 = 2-31 

I5 = 2-41 

This relationship holds to a high degree of accuracy thanks to 

the excellent matching and tracking characteristics of monolithic 

BJT's. 
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16x Bx 
01 

R 2R 
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" 
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t 
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12 13 14 15 

4x 2x 1 X 1 X 

2R 2R 2R 2R 

R R R 

Figure 4.12a 

R-2R current ladder 
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' 
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Now if we use a binary code to control switch S1 to S4 as in 

figure 4.12b, we can program the output current I0 • 

Io= b1I2+h2I3+b3I4+b4I5 

In general: 

n 
I=~ b.2-i 

0 LJ l 
i=l 

I 
(4.27) 

The circuit of figure 4.12b can only sink current I 0 , to program 

I0 in both directions, we may use the circuit of figure 4.13 in which 

another bit,bsign' was introduced to control the sign ( or direction ) of 

output current I0 • 

I · ={Jin ifbsign=I 
szgn O th . o erwise 

(4.28) 

I t='· (~~ 1 b-2-i.b . ) OU ,n ~1= 1 Sign 

Equation ( 4.28) shows that by an additional sign bit , we can 

program the output current in both directions. This Programmable 

Current Amplifier (PCA) can be used to program coefficients B;_'s of 

the polynomial module. 

One drawback of this circuit is the input current can only flow 

into the programming circuit; this may cause problem. As an 

alternative , we can use the current mode multiplying DAC type of 
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figure 3.5 in chapter3, where the input current can flow in both 

directions. 

Figure 4.14 shows a polynomial module with programmable 

coefficients. M's are current mirrors, to avoid an output offset 

current Wilson current mirrors should be used. 

PCAl , PCA2, PCA3 are Programmable Current Amplifiers. 

Each PCA can be programmed independently by different 

programming codes. Each programming code includes a sign bit b8 

and other multiplying bit bi's. 
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Figure 4.13 

Programmable current amplier ( PCA) 
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Chapter5 
Existence and uniqueness of 

solution for the equation x=w-BF(x) 
of nonlinear networks 

In chapter 3 we have explored several circuit topologies to 

realize equation x=w-BF(x) wherein we inherently have assumed 

that this standard equation converges to a solution. This is not 

always the case. Depending on nonlinear mapping F(x) and the 

network topology B, the standard equation may give no solution or it 

may give more than one solution. 

In general , the study for existence and 11niqueness of solution 

for the equation of nonlinear networks involves many issues and in 

fact, so far there is no generally applicable theory for the 

determination of nonlinear network solution. Dealing with these 

issues in detail, therefore, is beyond the scope of this work. What we 

hope he~e is that by employing several recent contributions to the 

problem of nonlinear network solution we may derive some results 

applied for our network equation. 

5.1 BACKGROUND 

Several attemps have been devoted to provide a reasonably 

comprehensive study of solution for nonlinear networks. As early as 

in the years of fourties, nonlinear resistive networks were studied by 

Duffin [12]. His basic theorem stated that a network of nonlinear 

resistors, each of which is characterized by a continuous strictly 
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monotone increasing function that map the real line onto itself, and 

independent voltage and current sources has a unique solution. 

Duffin's treatment of existence was limited to certain case of 

strictly monotone nonlinear resistive networks and the result of his 

work is far from being a necessary condition, because it's clear that 

many resistive networks containing voltage or current- controlled 

elements whose characteristics saturate also have a unique solution. 

This occurs when the network's topology is such that the 

noninvertibility of the i-v characteristic functions of certain elements 

is of no consequence. 

Since saturating i-v characteristics are often used in models of 

common two-terminal semiconductor devices, it's important to be 

able to identify these networks. Some early attempts at dealing with 

such networks are contained in papers by Desoer and Katzenelson 

[13], and later by Desoer and Wu [14]. Their studies concerned in 

physical structure of the nonlinear networks, and included some 

topological conditions for the existence and uniqueness of network 

solution. 

Recently, several results have been contributed to this issue by 

Wilson and Sandberg in their papers [9], [15]. Concerning nonlinear 

network analysis they have shown that for an n-port resistive 

network, the problem of determing a solution for the network is 

equivalent to the problem of solving equation AF(x)+Bx=c where 

k=l,2 .... n the component xk of the vector x=(xl,x2, .... xn)T 

corresponds to the port variable at the k th port. xk is the controlling 
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variable of the kth nonlinear resist or. The nonlinear mapping F 

characterizes the nonlinear resistors and is defined , for all n-vector 

x, by F(x)=(fl(xl),f2(x2) ... fn(xn))T. A and B are mm matrices of real 

n11mber and c denotes a real n-vector. A and B provide the 

characterization of the linear portion of the network. Wilson and 

Sandberg have made significant advance to the analysis of nonlinear 

resistive networks. Two following theorems of their work are 

reproduced here because it is somewhat related to the study of our 

network equation 

Sandberg and Wilson's 1st theorem 

Let Fe µ n be the set of all strictly increasing functions mapping 

Rn into itsfelf, and let (A,B) be a passive pair of real mm matrices, 

then there exists a unique solution of AF(x) +Bx=C (1) for each C in. 

Rn if and only if ~(F) n N(B) = {0}, if 

~(F)nN(B)-:t {0} 

then there exists some Ce Rn such that (1) has no solution. 

In there theorem, ~(F) is the set of all points x in Rn for which 

F[x] is bounded as x ~ oo 

N(B) is the null space of B, the set of all real n-vector x such Bx 

= 0, where 0 denotes the origin of n-space Rn 

A pair (A,B) is calaled a passive pair if it possesse,s the 

following property: for each pair of n-vector (x,y) satisfying Ax=By it 

follows that 
~;-.. ,.~-

T >O X ·Y- . 

According to Sandberg and Wilson when all linear resistors in then-

• 
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port network have non-negative resistance or conductance values 

then the matrices A and B associated with the n-port network 

contains a passive pair (A,B). 

, . 

The notation 

~(F)nN(B)= { 0} 

simply means that there exists no real n-vector x~9 for which BX=9 

and /imlF[px]I < oo when p ~oo. 

The nature of the matrix B sets specific limitations on the 

manner in which the nonlinear resistor i-v characteristic functions fk 

are permitted to saturate. The relation 

~(F)nN(B) 

relates the nature of nonlinear resistor i-v characteristic functions f k 

to the pertinent aspects of the topological structu~e of the network 

represented by matrix B. From the result of Desoer and Wu, the 

relation ~(F) n N(B) = {0} will be satisfied once conditions for 

topological structure in Desoer and Wu's theorem are satisfied. 

For networks containing resistors whose characteristics are not 

necessarily monotone-increasing , Sandberg and Wilson have shown 

that: 

Sandberg and Wilson's 2nd theorem 

Let F be a nonlinear mapping with all the components f k are 

eventually strictly increasing , let (A,B) be a passive pair of real mm. 

madtrices. Then there exists at least one solution of (1) for each real 

n-vector C if ~(F) n N(B)={0} 

In this theorem , eventually strictly increasing function is a 
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function that is strictly increasing at large values of controlling 

variable. 

5.2 EXISTENCE AND UNIQUENESS OF SOLUTION 

FOR EQUATION x=w-BF(x) 

We now use the above results to develop some criteria for the 

existence and 11niqueness of solution of our equation 

x=w-BF(x) (5.1) 

Recall that x and w are real n-vectors, F(x) is a nonlinear mapping 

which maps Rn into R0 such that F(x)=[fl(xl),f2(x2), ... fn(xn)]T, and B 

is real mm matrix determined by the network topology. 

Ass11me that matrix B is non-singular,i.e. det(B)-:1=0, then 

equation (5.1) is equivalent to: 
Ax+F(x)=C (5.2) 

Where 

5.2.1 Nonlinearities with strictly monotone-increasing 

characteristics. 

5.2.1.1 Sufficient condition for the uniqueness of solution for 

x=w-BF(x:) 

When all the nonlinearities are characterized by strictly 

increasing functions,we can apply the following theorem proven by 

Wilson in [16] 

Wilson's theorem 
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Equation Ax+F(x)=C possesses a unique solution whenever two 

following conditions are satisfied: 

(i)All components of F(x) are strictly monotone-increasing 

function, mapping from R onto R 

(ii)Matrix A is a weakly row-sum dominant matrix, i.e: 
n 

aii~ L laiJ~ 
j=Ij*i 

for i= 1,2, .... n 

By relating the theorem of Wilson for equation (5.2) we can 

immediately derive the following result for equation (5.1): 

Result 1 

Equation x=w-BF(x) possesses a unique solution for every w in 

Rn whenever two following conditions are satisfied: 

(i). All the components lj(x), J=l,2 ... n of F(x) are strictly 

increasing functions, mapping the real line onto itself. 

(ii).Determinant of matrix B, det(B):i=O and B-1 is a weakly 

row-sum dominant matrix. 

In result 1, condition det(B)'*O is necessary to guarantee the 

existence of B-1.The above result is stated as a sufficient condition. A 

condition which is both sufficient and necessary will be stated in 

term of a class of Po matrices. 
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5.2.1.2 Necessary and sufficient condition for the uniqueness 

of solution for equation x=w-BF(x) 

Class Po matrix definition 

The class of matrix A satisfying one of the following equivalent 

conditions is denoted by Po : 

(i).All principal minors of A are non-negative 

(ii).For each vector x=t:0, there exists a index k such that 

xk=t=O 

and XkYk > 0 where y=Ax 

(iii).For each vector x;t:0 there exists a diagonal matrix Dx~e 

such that <x,Dx.x> and <A.x,Dx.x> are greater than or equal 0. 

Where <x,y> denotes the inner product ofv~ctor x and y, 
n 

<x,y>=! XJi 
f;;1_ 

(iv).Every real Eigenvalue of A as well as of each principal 

submatrix of A is non-negative. 

(v).For every diagonal matrix D > 0 

det(D+A);t:0 

In the above properties , a principal submatrix of square matrix A is 

any square submatrix of A whose main diagonal is contained in the 

main diagonal of A. 

The determinant of a principal submatrix is called principal 
• m1nor. 

Class of function definition 

1-For all a,~ with 

00 s; a<~ s; +oo 
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let l(a,~) denotes the intermal: 

l(cx.,~)={x:a.<x< ~} 

2-For each positive integer n and each pair of n-vectors a,f3 let 

denotes the of • mappmgs from set 

l(cx.1,~1)xl(CLi,~2)x ... xI(an,~n) onto R0 defined by F is in fD(a,~;Rn) if 

and only if there exists , for i=l,2 .. n, strictly increasing functions fi 

mapping (<Xj,~i) onto R1 such that for x=(xl,x2, ... xn)T, 

F(x)=[fl(xl),f2(x2), .. fn(xn)]T. 

3-Let the set of strictly increasing mappings from Rn onto 

l(cx.1,~1)xI(°2,~2)x..xl(a0 ,~0 ) be similarly defined and denoted 

fil(RD;cx.,~). 

In the above definition, I(a1,~1)xI(°'2,~2)x .. xl(CXii,~n) denotes the 

Cartesian product of closed interval in R 1. Also note that F is in 

fil(a,~;R0 ) if and only if F-1 is in fil(Rn;a,~) 

Sandberg and Wilson proved in [1 7] that: 

Sandberg and Wilson 's theorem 

There exists a 11nique solution of F(x)+Ax=C for each F in 

fil(cx.,~;R0 ) and each C in R0 if and only if A is in Po. 

Apply for our equation, we have a similar result: 

Result 2 

'.{'here exists a unique solution for equation x=w-BF(x) for every 
' 

F in f'1'( a, ~;Rn) and every w in Rn if and only if B is in Po and 

det(B)-:tO. 

Again, the additional condition det(B)-:tO to guarantee B-1 

exists.Also notice that,according to Sandberg and Wilson, if B e Po 
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and det(B)*O then B-1 e Po 

When the mapping fl:.) is in f'l(Rn;a,~) then we can easily prove 

the following statement: 

Result 3 

There exists a unique solution for equation x=w-BF(x) for every 

F in F(Rn;a'~) and every w in Rn if and only if B is in Po. 

Proof of result 3: 

As it was mentioned earlier if Fef'(Rn;a,~) then F"l exists and 

P-1 ef'(a,~;Rn) 

From equation x+BF(x) =w (1) 

We have the equivalent equation: F"1(y)+By=w (2) 

According to the above theorem of Sandberg and Wilson , 

equation (2) has a unique solution if and only if Be Po, so does 

equation (1) 

5.2.2 Nonlinearities with non-monotone characteristics 

In the previous section we have studied the standard equation 

x+BF(x) =w in which the functions ;'s are strictly monotone 

increasing. For such a situation the conditions for the solution's 

uniqueness had aready been established. We now consider equations 

in which the nonlinear functions ~'s are continuous but not 

necessarily monotone. In contrast to the monotone case , we have 

known at the beginning of this chapter that in such situations the 

equation may possess more than one solution. We will restrict 

ourselves to study hetre only nonlinearities with eventually strictly 
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increasing characteristics. An eventually strictly increasing function 

is a function that is strictly increasing for all large values of variable, 

i-v characteristics of a tunnel-diode is a typical example of this type 

of function. 

In [ 4] Sandberg and Wilson have shown that the equation 

AF(x) +Bx=C , in which F(x) composed of eventually strictly 

increasing functions has at least one solution if : 

(i). For each diagonal matrix D =diag(dl,d2, .. dn) with each k, 

dk =+1 or -1, there exists a real n-vector p such that 

DATp~0 

DBTp~0 

D(A+B)Tp~0 

Where 0 is the origin ofR0 

(ii). And 

~(F)rW(B)={0} 

We can apply the above result of Sandberg and Wilson to derive 

a condition for our equation x+BF(x) =w 

Rew1·ite BF(x) +Ix =w 

Where I is the identity matrix. 

Obviously the null space of I, N(l)={0}, therefore condition (ii) of 

Sandberg and Wilson's theorem is immediately satisfied. Now we 

consider condition (i). 

Let D be a diagonal matrix with entries are either +l's or -l's. 

Let p be a real n-vector. 

Denote M=DBTp 
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' ,· 

I'" 

. . 

\ ' 

d1 0 •••• 0 b11 b21 bn1 p1 

M • 

• 

o d2 ... o 

o o .... dn 

b21 b22 b2n 

bn1 bn2 ••• .bnn 

d1.p1.b11 + d1.p2.b21 + ..•.. d1.pn.bn1 

d2.p 1.b 12 + d2.p2.b22 + ••••• dn.pn.bn2 

dn.p1 .b1 n + d2.p2.b2n + ••••. dn.pn.bm 

If we choose p1 • d1 

Then 

p2 • d2 

pn ~ dn 

d'tb11 + d1d2.b21 + ....... d1dn.bn1 

M = d2d1 .b12 + dib22 + ....... d2dn.bn2 

2 dnd1 .b1 n + dnd2.b2n+ .•.... dn bnn 

p2 

pn 

Because dk is equal either + 1 or -1, therefore: 

b11 - ( lb211 + .. lb311 + ...... lbn11} 

M >• b22 - ( lb121 + lb321 + ...•... ,bn21 } 

bnn - ( lb1 nl + lb2nl .+ ••••. f bn-1,nl} 

• 

( I ) 

Thus if the matrix B has the property that : 
n 

bjj~ L lbi1~ 
i=l,i* j 

.. ···-~~_. ... , .. 

• .J 
1 
• 

That is B is a weakly column-sum dominant matrix , then M~ 0 

2- denote N=DiTp = Dp 

I 
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dl 0 ..... 0 pl dlpl 

N = 0 d2 .... 0 p2 = d2p2 

0 O .... dn pn dnpn 

_The vector that we have chosen, Pi=~, therefore N~8 

3-Denote Q=D(B+I)Tp 

dl 0 ..... 0 bll+l b21 ...... bnl pl 

Q= 0 d2..... b12 b22+1 .. bn2 p2 

0. o .... dn bln b2n ..... bnn+ pn 

dl 2(b 11 + l)+dld2b21+ ......... dldnbnl 

Q= d2dlb12+ d22(b22+1)+ ........ d2dnbn2 

dndlbln+ dnd2b2n+ ............. dn2(bnn+l) 

Compare (I) and (II) we have: Q > M 

(II) 

Therefore: Q > 0 if bis weakly col11mn-sum dominant. 

We arrive to fallowing result which can be considered as a 

corollary of Sandberg and Wilson's theorem: 

Result 4 

Equation x=w-BF(x) in which F(x) consists of eventually strictly 

monotone increasing functions mapping from Rn into Rn possesses at 

least one solution for every we Rn if B is a weakly column-sum 

dominant matrix. 

From the above results , we have the following remarks: 

1-For nonlinear network with exponential characteristics, then 

the necessary and sufficient condition above for strictly increasing 

' 
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nonlinearities can be applied ( result 2). Due to this condition we 

have : the equation x=w-BF(x) possesses a unique solution if and 

only ifB is in Po and det(B)-:t=O 

In a first order circuit, if B>O then B is in Po( by using the first 

property (i) of Po matrix) and therefore there exists a unique 

solution. As we have mentioned in chapter 2, in practical network, 

matrix B in our standard equation is a non-negative matrix, this 

implies that the first order network with exponential charactristics 

always converges to a stable state ( unique solution) 

In a second order circuit,the condition B E Po is equivalent to: 

B11 ~O (a) (usually satisfied) 

B22~0 (b) (usually satisfied) 

And 

Det(B)>O (c) 

The above remark can be verified in the next chapter when we 

make an experiment with a second order circuit consisting of two p-n 

junctions; a unique steady state is reached whenever conditions 

(a),(b), and (c) are satisfied. 

2-For nonlinear network with polynomial characteristics, in 

general there is no conclusion about the network solution.Depending 

on whether or not the polynomial is strictly increasing or eventually 

strictly increasing , the available theory on nonlinear network 

analysis may or may not apply. 

Although recently many contributions to the issue of existence 

and 11niqueness of nonlinear network solution have brought to a 
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-/',,\rather complete theory to take form, there still exists many gaps in 
\ 

theory and points of departure for further extensions. All the studies 

by far were restricted to a somewhat narrow domain, namely the 

nonlinear functions which characterize nonlinearities in the network 

were restricted to either monotone increasing or eventually 

monotone-increasing functions. Generally applicable criteria for the 

determination of nonlinear network solution needs further future 

developments. 
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Chapter6 
Experiment and Circuit simulation 

results 

Previous chapters have presented theoretical study of digital 

implementation from nonlinear analog networks. Based on a new 

method proposed in [1] by Dr. Frey, any nonlinear analog networks 

composed of two-terminal nonlinear devices can be implemented by a 

digital equivalent which preserves all topological properties of the 

original network. The new digital equivalent network contains a 

linear subnetwork L which is determined entirely by the original 

circuit topology and a nonlinear subnetwork N to solve for F(x) 

according to equation: 

x(n) = w(n) -BF[x(n)] (6.1) 

Where x,w are k-vectors with k is the n11mber of nonlinearities 

in the network. F(x) is a diagonal mapping from Rk into Rk. w(n) is 

an internal signal and is the input of subnetwork N. w(n) depends on 

both circuit topology and nonlinear device characteristics. 

Thanks to the simplicity of standard form (6.1), we have shown 

that a generalized implementation of subnetwork N can be obtained 

for different nonlinear analog networks. This implementation also 

provides programmable parameters which permits the user to 

program subnetwork N to satisfy a specific application. 

Experimental results and circuit simulation of subnetwork N with its 

associated equation (6.1) are reported in this chapter. 
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6.1 EXPERIMENTAL RESULTS Wlffl 

EXPONENTIAL NONLINEARITIES 

Making use of the exponential characteristics of a p-n j11nction 

diode, any exponential nonlinearity can be replaced by a standard 

diode, provided that the gain Bin equation (6.1) is programmable. 

The current-voltage characteristics of a p-n junction diode is 

defined by: 

l=ftx)=IRS(exNt -1) (6.2) 

Equation (6.2) can be approximated by the perfectly exponential law: 

l=IRSexNt 

Where: 

!=Diode conduction current 

IRS= Reverse bias saturation current 

x = Voltage across the junction 

Vt is the thermal voltage, Vt = kT/q 

In the standard equation 

x(t) = w(t) -BF[x(t)] (6.3) 

IRS can be lumped into the programmable gain B , thus with a 

fixed diode we can program B to satisfy any exponential nonlinearity 

characterized by f(x)=aehx 

Figure 6.1 shows an experiment circuit to solve a first order 

equation with exponential characteristics. In figure 6.1, DAC 0800 is 

a monolithic 8-bit high -speed current-output digital-to-analog 

converter with typical settling time of 100 nano seconds. It's used 

here to convert the digital input w(n) into analog input w(t). b1 b2 ... b8 
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b1 b2 .............. b8 D 

R 438 

Rref 4. 7K 

Vref 
14 

1 Q V - lo 
DAC0800 

X 
15 2 

3 16 13 
Rgnd 4.7K 

.1 µ .01 µ .1 µ 

V+ V-

Figure 6.1 

First order experiment circuit 
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represents the binary code of digital signal w(n) that comes 

from the linear subnetwork L in the associated DSP network. The 

circuit of figure 6.1 solves the first order equation: 

x(t) = Rl0 - Rftx(t)] (6.4) 

In equation (6.4), 10 is a funcion of binary code bi and reference 

voltage Vref. We can determine I0 from the diagram of DAC 0800 in 

figure 6.2. 

From figure 6.2: 

8 

Io=linI',bi2-i 
i=l 

From figure 6.1: 

_vref 
Iin--

Rref 

Therefore: 

V 8 
x(t)- re[RLb;2-i -Rf[x(t)] 

Rref i=l 

(6.5) 

(6.6) 

Diode 1N4148 was used as an exponential nonlinearity with 

the characteristics: 

f(x)=IRSexNt 

At room temperature (25°C): 

f(x)=2. 8* 1 o-14e39 .4x (6.7) 

Table 6.1 lists output x measured from experiment circuit and 

calculated from equation ( 6.6) and ( 6. 7) at different binary codes bi's. 

These values of output x are plotted in figure 6.3. Figure 6.3 also 

shows a transient response of output x when a pulse is applied at b1, 
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Vee 

Vref+ 

14 

Vref -

1 5 

1 

Compensat 

..... . ... ~·-··--·-·--

1 3 

3 

Vee 

b1 b2 b3 .......................... b 7 b8 

5 6 12 

BIAS NETWORK 4 lo 

2 lo 

R 2R 2R 2R 2R 2R 2R 

R R R R 

Figure 6.2 

Block diagram of DAC 0800 
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• 
• 

. · . 

. . . 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 

b1 b2 .... b8 

00011111 
00101111 
00111111 
01011111 
01101111 
01111111 
11011111 
11101111 
11110011 
11111111 

lo (mA) Measured x 

0.256 0. 111 
0.390 0.169 
0.522 0.225 
0. 786 0.337 
0.920 0.392 
1.050 0.440 
1.846 0.577 
1.980 0.588 
2.012 0.589 
2.120 0.597 

Table 6.1 
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table6.1 

Calculated x 

0.112 
0.171 
0.229 
0.344 
0.403 
0.459 
0.598 
0.604 
0.605 
0.609 

•.. •. , •.. ,•.• ,-~,..;., •. -. ·• 1 •: . .:t.J_·~-<-._ ... -,_·_-'.,:.:.:~,-·..t. .. ,•,-• ,,,' ·, .•. ___ ·,. __ .,..A, .. ,.;.,, ...• ··'.,,,• .• ,~· .• ,.: •. ,_,,., ,·,, .. \.~· .... _.,, .. .,·., ... 

- . 

• 

' 

. - . ', ,- ,, ' ' ' ~ . - -~ - .. , -~ -~·"'-··-· -. 



1] '"I 

-fl) ... -0 
> ........ 
>< ... 
:J 
a_ ... 
:, 
0 

• 

Fig.6.3a First order experiment circuit result 

0.7----------------------------------........ ----------........ ---------------------------------, 

0.6 

0.5 

0.4 

0.3 

0.2 -a- Measured x 
... Calculated x 

0.1 -'-------~----y-----,.-----,-----,------1 

0 1 2 3 

lo (mA) 

: I I I • I I I ' • I ' • I I I I I I I f 

I I I I ! I I I ' ! I I I I I -

- -L-ll-l..! _j_-!-l:.-+-µl+~H-++-r-1--+-t--t-t-t-~,1-r+-H~I ! I I _ 

-I= [X:(_)_o_ ~-'~:)!--1Ll---l-+--+--+--~~~++-+-r'-+-1f-+-+-t--+-t-~I -t-t--t---1t-t-t-rl . -

- . ....L.l..-~-i--+-~~-4-4-+-+-+-t--+-t-t-t-1-1--L..-l--1.-l-!.~-J--+-i~--;..-4-,1,,-t-+--+-~r-<t-
! 

I I 
-LU-l-~-+--l--µ+-t-J--4-·H-+-+--i-t-+-l-+-t-H-t-+-t-t-t-t-t--t-f-t--ti1 -! 

- ,_ -
- - -

p~6 I ~~---:~, I 1 
I ' I ; .. 

I 
I I I ! I 

J"""'t,...;...~.;... .... -+-+-+--t-t--+--t-1r-t--1-
L 

~~_.... .... I_ L..._..._. -~----~+--1.....-+-~-+--t-
i I 

' i I 
I - T - - . 
I I I 

' 

I . i I I 
~_...,_~-... -+-+--t--,--1-

' -
T 

I I 
I L 

- - -·-I 

----~ . I .. 

I I I I I I I I I I ' 6 I I ' • • I I I I ! I I I I t I ' I 

98 

..... ,_ 

. ...; .. _, .. _ .:,·,,. .-~ •. '"-- ' ~11-.: ,• 

. 



i. 

h2 and b4 while other bits remain at logic 1. The measured 

settling time~ for the first order circuit is 0.5 µS. 

A second order circuit was set up in figure 6.4. Again we used two 

DAC OBOO's and four LF356 op-amp 's. Diode Dl is diode D above, 

IRS1=2.8*10-14 Amps. D2 is a diode-connected transistor 2N3904. 

The measured reverse saturation current IRS2 of diode-connected 

2N3904 is 1.35*10-14 Amps. 

Figure 6.4 corresponds to the second order equation: 

X1=R1Io1 -(R1+~1)f1(x1) -R12f2(x2) 

X2=~I02 -~1f1(x1) -(~+R12)f2(x2) 

With the component values shown and with: 

f1(x1) = 2.8*1Q-14exl/vt 

f2(x2) = 1.35*I0-14ex2Nt, 1Nt=39.4 at 25° C. 

We have: 

X1=lOI01 -0.34*1o-9e39.4x1 -5.26*10-9e39.4~ 

X2=lOI02 -0.062*1o-9e39.4X1 -5.4*1o-9e39.4~ 

Where 101 and I02 are in mA , and : 

V 8 
I - ref1103~b.2-i 
ol R z 

rej1 i= 

V 8 
I - refl103~ b' .2-i 
o2 R £..J 1 

ref2 i=l 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

Varying the input codes bi and b'i ofDAC 1 and DAC 2 and 
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measure the voltages x1 and x2 across diode Dl and D2 we 

have the result listed in table 6.2. Input codes bi and b'i are used to 

compute I01 and I02 according to equations (6.10) and (6.11). 

Equation (6.8) and (6.9) then are used to compute x1 and x2. The 

calculated values of x1 and x2 are also listed in table 6.2 to compare 

with the measured values. Figure 6.5a and 6.5b show plots of x1 and 

x2, including both values measured from experiment and calculated 

from above equations. The plots indicate a good agreement between 

theoretical study and practical circuit. The degree of good match 

between the two varies slightly from one point to another; this is due 

to the bulk resistance of diodes that we ignored in calculation . The 

transient response of x1 and x2 -are plotted in figure 6.6 when a pulse 

is applied at bit b1 of DAC 1 while other bits remain at logic 1. 

A first order equation and a second order equation with 

exponential nonlinearities in figure 6. 7 a and 6. 7b were also 

simulated by using Spice program. These circuit employed Op-Amp 

LF356 with gain-bandwidth product GBP = 5MHz. In both circuits, 

w(t) stands for output of a digital-to-analog converter which converts 

digital signal w(n). Diode D infigure 6. 7 a was chosen to have a 

typical reverse bias saturation current IRS= 5.10-13 Amps. Diode D 

was used again in figure 6. 7b and was named Dl. IRSl = IRS = 

5.10-13 Amps. Diode D2 has IR82 = 10-12 Amps. To get a transient 

response of the circuit, w(t) 's are pulses which flip between. two 

levels corresponding to two different states of binary code w(n). 

101 



.... 

1 
2 
3 
4 
5 

·6 
7 
8 
9 

• 

-"' ... -0 
> ..._.. 

r 
)( 
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00000011 
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00111111 
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f:=igure 6.5a Second order experiment circuit results 

0.7 ...,.....------------------------------------------------------------------------------

0.6 

0.5 

0.4 

0.3 

• 
Measured xl 

Calculated x1 

0.2-+----------,-----------.-----------,-----------,----------....------------------------------' 

0 1 2 3 4 

lo1 +lo2 {mA) 

table6.2a Thu, Apr 261 . 

DAC 2 code lo1 (mA) lo2 (mA) Measured x1 Calculated x1 

00000011 0.025 0.012 0.233 0.250 

00011111 0.125 0.058 0.573 0.592 

00111111 0.520 0.246 0.550 0.584 

00111111 1.050 0.246 0.600 0.602 

01111111 1.050 0.490 0.582 0.602 

10001111 1.190 0.558 0.590 0.605 

10001111 1. 720 0.558 0.620 0.621 

01111111 2.120 0.490 0.636 0.629 

11111111 2.120 0.990 0.618 0.620 

Figure 6.Sa Second order experiment circuit result 
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Figure 6.Sb Second order experiment circuit results 

0.6 -r-------------------------------------------------------------------------. 

0.5 

0.4 

0.3 

0.2 

0.1 • 

( 

Measured x2 

Calculated x2 

0.0 -,-------.,..-----~--------.,--------,---------,----------,------------------' 

0 1 2 3 4 

lo1 +lo2 (mA) 

table6.2b Thu, Apr 26, 

DAC 1 code DAC 2 code lo1 (mA) lo2 (mA) Measured x2 Calculated x2 

00000011 00000011 0.025 0.012 0.114 0.120 

00111111 00011111 0.125 0.058 0.341 0.363 

00111111 00111111 0.520 0.246 0.484 0.491 

01111111 00111111 1.050 0.246 0.431 0.448 

01111111 01111111 1.050 0.490 0.512 0.512 

10001111 10001111 1.190 0.558 . 0.516 0.516 

11001111 10001111 1. 720 0.558 . 0.504 0.506 

1 1 1 1 1 1 1 1 01111111 2.120 0.490 0.470 0.4 78. 

11111111 11111111 2.120 0.990 0.539 0.532 

Figure 6.Sb Second order experiment circuit result 
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With the component values shown and at the high voltage level 

w(t) = 1.5 volts, the steady state solution of the circuit in fingure 6.7a 
• 1s: 

X = 1.5 -103.5.10-13.exNt 

X = 1.5 -5.lQ-lO.exNt 

At 300 K degree Wt = 38. 7 voit-1 The solution of this equation 

is x=0.55 volts, this result agrees with Spice result plotted in figure 

6.8. The settling time is in the order of lµsec. 

Figure 6. 7b corresponds to the second order equation: 

xl(t) = wl(t)-Bll.fl[xl(t)]-B12.f2[x2(t)] 

x2(t) = w2(t)-B21.fl[xl(t)]-B22.f2[x2(t)] 

Where: 

B 11 = lK + 2K = 3K 

B22 = 398K + 2K = 400K 

B12 = (B22-R2).Rl/Rl' = 99.5K 

B21 = (Bll-Rl).R2/R2' = 2K 

fl(xl) = IRSl.eq.xl/k.T = 5.10-13.exlNt 

f2(x2) = IRS2.eq.x2/k.T = 10-12.ex21Vt 

When wl(t) = 2 volts and w2(t) = 3 volts, the steaty state 

solution: 

x1=2-1.5*1Q-9*ex1Nt - 99.5*I0-9*ex2/Vt 

x2=3-I0-9*ex1Nt - 4*I0-7*ex2/Vt 

These two equations give xl=0.525 volts and x2=0.398 volts. 

The same results were obtained by Spice in figure 6.9. Figure 

6.9a plots the input voltages wl(t) , w2(t) and figure 6.9b plots 
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Exponential second order circuit-Spice result 
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the output voltages xl and x2 across diodes Dl and D2 respectively. 

6.2 CIRCUIT SIMULATION RESULTS WITH 

SQUARE LAW NONLINEAR CHARACTERISTICS 

6.2.1 First order circuit 

A first order circuit with square law characteristics is depicted 

in figure 6.10. 

In figure 6.10, the square law function f(x) was designed to 

operate in an input voltage range from -10 volts to +10 volts and a 

maximum output current lmA. The square law circuit and its 

output were plotted in figure 6.11. 

Applying the results of chapter 4 to the circuit of figure 6.lla, 

we have: 

Where n is the highest order power in the circuit, n=2 

2/ 
1outmax- -I 

I 

Therefore the tail current l=I0 utmax = lmA 

Maxim11m output voltage: 

~ax= RGI 

Gain resistor 

xmax 
Ra- I 

R _ 1 Ovolts - I OKohm 
G lmA 

With these values of tail current I and gain resistor R0 , from 
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equation (4.15) in chapter 4, we have: 

I =!(x)- 2.x2 
out 2(Ra)2J 

Iout=f<x)=I0-5x2 (Amps) 

The first order equation associates with circuit in figure 6.10: 

x=w(t) - Rftx) 

When input w(t) is at high logic level state, w(t) = 5 volts, 

output x is the solution of equation: 

X = 5-10*1Q3*1Q-5*x2 

x=5-0.lx2 

A positive root of this equation solved by hand is 3.66 volts, this 

result agrees with Spice result shown in figure 6.12. Settling time 't 

=lµsec. 

6.2.2 Second order circuit 

In this case: 

xl=w 1-R11 al xl 2_R12a2x22 

x2=w2-~1a1xl2-~2a2x22 

Using the results of chapter 4 for two-port f(x), we designed a 

second order circuit in figure 6.13. Two square law functions fl(xl) 

and f2(x2) were designed in the same manner with the above 

function ftx). 

fl(xl) = a1x12 = 2*10-5x12 

f2(x2) = a2x22 = 10-5x22 

With the component values shown, we have the second order 

equation associate with circuit of figure 6.13: 
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\ 

x1=3-0. lx12-6.6*10-2x22 

x2=4-13.6*10-2x12-5*10-2x22 

Solved by hand, these two equations give positive roots at x1=2 

volts and x2=3 volts. The same results were obtained by Spice in 

figure 6.14 

6.3 POLYNOMIAL MODULE AND SIMULATION 

RESULTS 

Based on circuit topology suggested in chapter 4, a third order 

polynomial module was designed and simulated. 

The following design equations are rewritten from chapter 4: 

Maxim11m input voltage ~ax = IRG 

Maxim11m output current Ioutmax = 2I/n 

The module was designed with ~ax = 10 volts and Ioutmax = 

2. 7 mA. In a third order polynomial, n=3. From above equations we 

have I= 4 mA and RG=2.5 Ko 

The third order polynomial module with designed components 

is shown in figure 6.15. 

The "tail" current I 

VErVv 
I-

Resistor Re of current source 
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Three Wilson current mirrors consist of Ml,M2 and M3 were 

designed to avoid the off-set output current when input voltage x=O 

Applying equation (4.14) and (4.15) of chapter 4, 

fk(x) = akxk 

2 a-k-n-(R_a_)_k1-k--I 

With n=3 RG = 2.5 Ko, 1=4 mA we have: 

2 a 1- -2.7x10-4 
3x2.5x103 

a - 2 -2.66x10-5 
2 3(2.5x103)24xlo-3 

2 a - -0.3x10-s 3 3(2.5x1203)3(4xlo-3)2 

Thus three outputs of the module are: 

f1(x)=a1x=27*1o-5x (Amps) (i) 

f2(x)=a2x2=2.66*10-5x2 (Amps) (ii) 

f3(x)=a3x3=0.3*10-5x3 (Amps) (iii) 

The polynomial output is the summation: 
3 

f(x)= Lafi(x) 
i=l 

Figure 6.16,6.17, and 6.18 show three outputs f1(x),f2(x), and 

f 3(x) of the module. The curves with solid dot are ideal curve 

corresponding to three functions (i), (ii), and (iii). With high.~ 
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transistors, we can achieve very accurate polynomial function 

at the output of our module. 

6.4 POLYNOMIAL WITH PROG----­

COEFFI CIENTS 

LE 

Virtually, every differentiable function can be replaced by an 

equivalent polynomial. A polynomial module can be used to simulate 

all nonlinear devices if its coefficients are programmable. In chapter 

4 we have shown how we can use a current programming circuit to 

program the coefficients of the module. This section reports circuit 

simulation results of programmable polynomial module (PPM) 

A typical circuit of a PPM is shown in figure 6.19. In figure 

6.19, the current programming circuit is bassically a current 

amplifier with the current gain k is controlled by a programming 

code bi. The square law circuit is the same circuit in p1·evious 

section. At the output of current programming circuit we have a 

square law function f(x) = kax2, where k is a function of binary code 

bi.and varies between -1 and +1. By varying binary code bi we can 

change the coefficient of second order term ; other terms in the 

polynomial can be changed by the same manner. 

The current programming circuit was designed in figure 6.20. 

It contains a multiplying R-2R ladder providing binary multiplier; 

the remaining circuit provide switch implementation. Transistors 

Ql- Q7 are current sources supplying steering-current to BJT 
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switches. Being biased in non-saturating steering-current 

mode, these BJT switches work very rapidly. 

The current output f(x) of figure 6.19 was programmed by two 

different codes: • programm1ng -- 00111 and 

Bsignb1h2b3h4=10111. Two correspondent outputs ftx) are plotted in 

figure 6.21 and 6.22 together with the initial output of the square 

law circuit. This simulation results show that by using current 

programming circuits we can program all coefficients of the 

polynomial module. 
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Chapter7 
Summary and conclusion 

In the past few decades the 11nderstanding of nonlinear 

networks has become more advanced and their application are 

beginning to be appreciated. As a result of increasing applications, 

nonlinear network has found itself particularly interested in digital 

signal processing area. Nonlinear discrete-time signal processing 

tecpD.iques are being promoted by some fields of application. A 

notable example is in the area of telecommunication where nonlinear 

discrete-time signal processing techniques, microelectronic 

technology and fiber optic transmission combine to change the 

nature of communication system in truly revolutionary ways. A 
•:;'.! 

similar impact can be expected in many other areas of technology. 

Unfort11nately, so far there is no available technique to implement a 

digital equivalent network from its nonlinear analog counterpart. 

Such a technique is obviously desired and could change the whole 

picture of nonlinear discrete-time signal processing area. 

Recently it has been shown by professor Frey in several papers 

of his work [1] [8] that by using a new modeling technique we can 

define an associated linear network from any nonlinear analog 

structure containing two terminal nonlinear devices. This associated 

network allows the determination of equations in the standard form: 

x=Au+BF(x) (7.1) 

Where x is an n-vector composed of tree branch voltages and link 

currents , and is controlling variable of nonlinear devices; n equals 
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the n11mber of nonlinearities in the network. A and B are linear 

operators determined by network topology , and F(x) is a diagonal 

mapping from R0 into R0 • 

The standard form of equation (7.1) is of fundamental 

importance , it gives a good deal of insight to the nature of network 

structure and stability, it is the key to solve for any variable in the 

original network; and more importantly, it is the key to implement a 

digital equivalent one. 

The digital equivalent network which is studied in this thesis 

comprises of linear systems characterized by impulse responses a(n) 

and b(n) and a solve-for-F(x) subnetwork N. a(n) and b(n) can be 

immediately defined once we obtain the associated network by 

replacing all nonlinear devices by their models. The probem of 

deriving the digital equivalent network now reduces to the problem 

of implementation for the subnetwork N. We have shown that this 

subnetwork N receives an internal signal w(n) 

n n-1 
w(n)= ~ a(n-k)u(k)+ ~ b(n-k)F[x(k)] 

where u(n) is the input vector of the original network; 

And solves for F[x(n)] according to 

x(n)=w(n)+b(O)F[x(n)] Which can be put in a general form: 

x(n)=w(n)-BF[x(n)] 

(7.2) 

equation: 

1 (7.3) 

Thanks to the generality of equation (7.3) we have constructed 

a standard subnetwork N to operate in the equivalent DSP network. 

The designed subnetwork N provides means to adjust w(n) and B 

.. 
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depending on the particular application and nonlinear devices. We 

have shown alternative configurations for one-port F[x] and two-port . 

F[x] in first order circuit, second order circuit, and in general, nth 

order circuit. Nonlinear elements with exponential and polynomial 

characteristics have been specially studied . Its these two nonlinear 

characteristics which we believe encountered very often in practical 

applications and hence deserved a detail study. Experiments were 

· built to verify theoretical results for exponential nonlinear elements. 

The experimental results well agreed with that predicted by theory. 

With polynomial nonlinear characteristics where the circuit is fairly 

complex , we used Spice simulation to verify theoretical results. 

We have also designed a Programmable Polynomial Module 

(PPM) which is used as an 11nit in the standard subnetwork N to 

implement an arbitrary nonlinear characteristics. Due to the 

simplicity of its circuit topology, a PPM can be well fabricated using 

bipolar microelectronic technology. 

A part of this work was devoted to the study of existence and 

11niqueness of solutiion for equation (7.3). We have studied in which 

conditions of original network topology and of nonlinear mapping F[.] 

that equation (7.3) possesses solutions and moreover possesses a 

unique solution. Once a unique solution of equation (7.3) is 

established then we might construct a digital equivalent network 

associated with the original analog counterpart with the method 

proposed in this study. It's in light of work reported by professor 

Frey in [1] that a general technique for digital implenentation from 
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nonlinear analog networks may ever be established. Such a great 
I 

technique will certainly/ make significant contribution to the 

development of digital signal processing area, and of course involves 

in more other issues besides that have been addressed in this study. 

Bacically, on the concept of the standard subnetwork N and its 

related unit to simulate any practical nonlinear characteristics, we 

believe that a generalized DSP chip can be fabricated for use in 

nonlinear network application. 

v' 
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