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Abstract 

An ·atmospheric laser communication system has been constructed which uses a laser 

. . 

beam to provide short-haul, line-of-sight communication between two points. The 
.,.,~ 

/ 

/ 
f 

developed system has a range of 3 kilometers, and can operate at data rates of up to 

201\1 b / s. lJ sing data obtained from monitoring a 3 kilometer test link, the effects of 

\veather on pa.th losses \Vere 111odeled. These effects include extinctio11 of the bean1 

(due to rain, sno\v, fog, and other particles in the atmosphere)~ as well as bea1n 

intensit)' fluctuations due to atmospheric turbulence-* 

I 

/ 

1 

. ' 

' ' 



. 1 

\ t_ 

1. INTRODUCTION 

1.1 Purpose . 

Atmospheric laser communication systems provide line-of-sight communications 

between t\vo points b)' transn1itting a modulated laser beam througl1 the atn1osphere 

between an optical transmitter and receiver. The goal of this investigation was to 

develop and test such a system using the best methods and de\'ices commercially 

available. The systen1 was designed for co111mu11ications over a 3 km dista.nce at a 

n1axim un1 data. rate of 20 megabits per second. The S)1Ste1n ,vas to be as.yncl1ronous 

and bit rate independent: that is, it had to look like a ""\vire'' to the user. The 

developed S)'stem n1eets these req uiren1en ts. 

Obviousl~y, weather plays a significant role in the performa.nce of an)' atmospheric 

laser communication syste1n. TI1e effects of ,atmospheric propagation ,vere studied in 

detail, \Vith specific atte11tion to ,veatl1er's effects on the SJ1 sten1 's performance. 

Experi1nental data. ,vas gathered fron1 1 kin. and 3 k111. test links for co111parison 

with the theoretica.l n1odels. ·The results sho,v tha.t a.n I I ' at111osp 1er1c la.ser 

con1munication syste111 ca.n ea.sil~y provide an effective sl1ort-haul co1nmu11ica.tion link. 

1.2 Applica.tions 

Atmos'pheric laser co111m unication syste111s are beco111ing sensible alter11ati\,es to 

traditiona.l short-haul n1icrowave links for many reasons. Microwave links, on one 

ha11d, require large outdoor anten11as, are pro11e to multi-path fading, and 11a,,e 
'· ; ' 

1 

2 I. 
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bandwidths regulated by the\·,·rcc. 
\l 

Obtaining an FCC license is difficult~ especiall),· 

in cities, due to tl1e increased cro\vding of the microwave frequenc.Y spectru111. 

Atmospheric laser communication systems, on the other hand, suffer from none of 

these difficulties. Like optical fiber ,,communication systemt,, their entire band,vidth 

is available for use. They require no licensing and are physicallj· smaller than their 

• 1n1crowave counterparts. This 1nakes them ideal for portable or temporar)• 

communication links. ,L\lso, the commercial availabilit~y of inexpensive semiconductor 

lasers and photodetectors has made such systems . . 
1nexpens1,·e. 

Furthern1ore, the s1nall bean1,vidths· of atn1ospheric laser communication s~·sten1s 

allo,,· for an added n1easure of securit}' tha.t is not possible \\'hile using a n1icro,\·a\·e 

radio link. L:nder conditions that cause 1i-1ulti-path fading in 111icro,\·ave links. la.ser 

co1111nunication S}'Ste111s provide stable con1n1unications. This 111akes the111 attract.i\·e 

for applications t rad it ion all v 
~ 

reserved for micro\\'a\•e links · short haul 

corr1m unications, satellite links, and a.ir/ ground comn1 unica.tions. 

\ 

1.3 Systen1 Design Considerations 

When choosing a111ong various design sche111es for a laser co1111n unications S)'Ste1n ~ 

one needs a metric in order to detern1ine ,vhich Sj'Sten1 is superior to another in 

terms of perforn1a.nce and/ or cost. Perfor111ance can be measured by bit error rate .. 

(BER), for exan1ple, or b)' the signa.l to noise ratio (SNR) at the recei\;er. Costs, on 

the other l1a11d, can be mea.sured b,y the syste111 price,, size. co111plexit)'. a.nd po,ver 

require111ents. Since ea.ch elen1ent of a S)1ste111 interacts ,vith both the S)'Sten1 's 

perforn1ance a.s \\·elJ a.s it's costs. certa.in tra.deoffs 111ay have to be n1a.de ,,;he11 

3 . i' 
' 
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designing to meet the desired perfor1na.nce specifications. 

\ 

For an atmospheric laser comm unicatio11s system, the overall design goal is to 

maximize system performance and minimize the costs; that is, to m.aximize system 

link range for a fixed BER or SN R, while minimizing system price, size, complexity 

and power consumption of the S)''sten1. Other desirable characteristics for digital 
)" 

communication links a.re bit ra.te tra.nsparenC:)', bit pattern independenc.Y, and fast 

signal acquisition time. Since the receiver design influences S)'stem performance to a 

great degree, a recei,,er \vith high sensiti,rity and a \Vide dynamic range is also 

desirable ( \ 1 an ~1 uoi). 

,(' 
.U 

In designing to achieve these goa.ls. the n1ajor factors in · detern1ining overall 

perforn1a.nce a.nd S)'sten1 costs can be divided into t,vo categories: optical 

considerations, and circuit considera:tions. In ea.ch categor.Y~ choices a1nong various 

design options must be n1a.de in Iigh t of the specifications for the S}'Sten1 to be 

designed. 

1.3.1 Optical Considerations 

Laser - The simplest 111ethod to increa.se the optical signal le,.,el at the recei,,er is to 

use a. high po\ver laser in the tra11sn1itter. Tl1is approach, ho\vever, i11creases tl1e 

threat of eye da111age- a11d i11creases tra11s1nitter power consumption. Se1niconductor 

lasers \vith radia.nt output po\vers in the 111illi,vatt(s) range are small, rugged, a.11d 

can be direct!)' 111odula.ted. (~as la.sers. on the other hand'\ are la.rger~ n1ore fragile, 

and require n1ore sophisticated techniques to 111odula.te the optical bea111. but a.re 

4 
.. 



capable of deli\lering a larger radiant output powers. 

Optics - Narrow transmitter beam divergence and large receiving lenses minimize 

amount of uncollected power at the receiver. Complex optical systems that can 

provide narrow beam divergence and are costly to fabricate and may be difficult to 

adjust. Large receiving lenses gather more of the transmitted light, but large lenses 

that are "adequately corrected are expensive. 

Pointing Errors - Since laser communication systems use narrow optical beams to 

transmit information, alignment of the transmitting and receiving optics is critical. If 

the transmitted beam is not aligned properly with the receiver, or vice versa, some 

of the signal may be lost. A large beam divergence at the transmitter may prevent 

misalignment due to vibration, but at the expense of received signal strength. A 

large acceptance angle at the receiver may ease alignment problems, but then more 

background light is received, possibly saturating the detector. These problems can 

be avoided by means of an automatic pointing system that keeps the transmitter 

and receiver perfectly aligned. This, however, increas_es cost and complexity of the 

total system, particularly with high accuracy / narrow bea.mwidth systems. 

Path Loss - Due to physical size limitations, the receiving lenses only collect a small 

portion of the transmitted beam. This creates large losses ranging on the order of 

many lO's of dB's. Furthermore, weather conditions influence the optical 

transmissivity of the atmosphere, and may introduce additional losses under bad 

weather conditions such as rain, snow or fog. Even in ideal weather, atmospheric 

turbulence causes the received beam to "twinkle", that is, to. vary in intensity over 

5 
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time. Background radiation fron1 the sky is also added to the signal. All four of 
'\, 

these effects are unavoid ho,vever ~ they must be understood ·if ,ve are to 

understand system performance in the field. 

1.3.2 Circuit Considerations 

Photodetector - The photodetector sensiti,,it~y is ob\'iously a ver:y important factor in 

determining ho,v a system perforn1s~ since only a small portion of the transmitted 

bea1n is collected. Avalanche phot.odiodes can be used to detect the transr11itted 
\ ( ~ 

bea.1n, since the)1 .\}1~ve a high sensitivity due to their internal n1ultiplication ga.in 

processes. These detectors require a high volta.ge po,ver suppl)' to set the detector 

ga.in. Ho\v this gain is set effects not onl~y the photodiode~s sensitivitj' to light~ but 

also it,s noise characteristics. Large detector a.reas can decrease the focusing 

requirements of the lens, but at. the expense of detector ba.nd,vidth. 

Receiver Prean1plifier - The first a111plifier stage in the receiver is a 1nain source of 

noise in the S)1sten1. Proper selection of the first sta.ge amplification scl1e111e a.s ,vell 

as proper 111atching of the an1plifier to the photodetector can decrease S)'Ste111 11oise. 

'increa.se the signal to noise ra.tio. and th us increase S)'Ste111 perforn1ance. 

Modulation Schen1e - The proper choice of a. 111odulat1on sche111e ( or e,,en not to 
• 

n1odulate) can influence s,ysten1 SN-Rb)' a.s 111uch a.s 6 dB. ,vhicl1 can influence link 

range b:y a factor of t,vo. Of course .. the si111plest 111ethods perform 111ore poor}), tl1a.n 

more sophisticated 111ethods. ,vhich are aJso more expensive a.11d require 111ore 

complex circuitry. 

6 
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System Bandv1idth - High S)'Sten1 qa11d,vidths allo,v for the transn1ission of data at 

high speed. Large band,vidths a.re difficult to obtain and increase circuit complexit~y, 

system price, and system po\\1er requirements. Furthermore, system performance is 

optimized for an anticipated maxi1num bit rate; thus a high bandwidth system used 

for lo,v speed communications ,vill not ha,,e optimum performance. 

Error Correction Codes - - In a digital communications system, error coding 

. \) 

techniques can be used to encode the tra.nsn1itted da.ta. These codes can be used at 

the receiver to reconstruct the transn1itted data e,,en thougl1 the recei\.1ed data 

contains bit errors. Of course, con1plex digital circuitry n1ust be prese11t at the 

transmitter and recei,,er sides of the link in order to encode a-nd decode the data 

strea.111. Further111ore~ the systen1 ,viJl not be asynchronous: that is it n1ust be 

designed ?for fixed data. rates. I-l o,vever. the eq ui val en t reduction in the signal to 

noise ratio can be as large as 10 dB. 

-
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2.-,MODULATION 

, 

2.1 Introduction to Modulation 

Several difficulties in atmosph'eric laser communication systems can be overcome b)r 

modulating the data to be sent. Instead of senping data directly, digital modulation 

techniques use an analog time-varying signal to represent the each of the digital 
v-· 

states to be sent. There are several advantages to using a modulation scheme over 

direct · (baseband) modulation. First, the receiver signal-to-noise ratio can be 

improved by up to 3 dB. Second, modulation allows AC coupling between amplifier 

stages, th us simplifying circuit design and removing the effects of background light 

( DC) components in the received optical signal. This allows the construction of 

receivers having a larger dynamic range, which is important because of the wide 

range of signal levels received by an optical receiver under various weather 

conditions. 

In order to chose among the various modulation schemes, their basic characteristics 

must be explored. The three basic digital modulation schemes we will study here are 

Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), and Phase Shift . 

Keying (PSK). The basis for understanding these digital modulation schemes, 

however, can be found by studying amplitude modulation in general. 

2.2 Amplitude Modulation 

In an amplitude modulation (AM) transmitter, the amplitude ·of a sinusoidal carrier 

8 
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is varied according to the amplitude of a modulating· signal. At the receiver, the 

carrier signal is removed, and the original amplitude information recovered. This is 

considered in detail below. 

2.2.1 Transmitter Modulation 

If, at the input of a transmitter, we have an analog message signal m(t) with AC 

and DC components 

m(t) =Ade+ Am cos(wmt) ( where m(t) > 0 ) 

and a carrier x( t) generated inside the transmitter such that 

x(t) = Ac cos( wet) ( where we >wm) 

we can form an amplitude modulated (AM) signal y(t) by multiplying x(t) and 

m(t): 

y(t) = m(t) · x(t) 

This is depicted in figure 2-1. Substituting for m( t) and x( t) yields 

Recalling that cos(A) cos(B) = ! ( cos(A+B) + cos(A-B) ), we obtain 

9 
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m(t)-___... y(t) 

j 

Figure 2-1 

Amplitude Modulation - ReceiVer 

y(t) ~· z'(t) = 

0.5 Ac 2 m(t) 

Figure 2-2 
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The output signal y(t) has spectral components at the original carrier fre9uency as 

well as at -the sum and difference of the carrier frequency and the modulating 

frequency. The first term in the above expression is the carrier component, and the 

other two spectral components are the sidebands, specifically, the upper and lower 

sidebands at wc+wm and we-Wm respectively. If m( t) has a whole spectrum of 

frequency components in the range w= 0 to wmax, using superposition for each 

component, one can see that the baseband spectrum· is mirrored around the carrier 

frequency we, the lower sideband from wc-Wmaxto we, and upper sideband from we 

to wc+wmax· This is shown in figure 2-1. 

~-. 

Note that while the sidebands contain information about the modulating signal's AC 

level and frequency, the carrier component contains only information about the 

modulating signal's DC level. Since the total signal power is shared by the 

sidebands as well as the carrier, the more power put in carrier, the less power is 

available to transmit information in the sidebands. 

We can define the efficiency, E, as the ratio of energy spent to send . useful 
I 

information to the total energy. Thus, 

E = <Am2 cos2(wmt)> . (100%) 
Adc 2+<Am 2 cos2(wmt)> 

For a sinusoidal-type signal amplitude modulating a carrier, it can be shown that the 
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maximum efficiency is E=33.33%. For square-wave type signals, the maximum 

efficiency is E=50%. 

2.2.2 Coherent Receiver Demodulation 
. -· 

At the receiver, the signal y( t) is multiplied ( or mixed) with the carrier signal x( t) to 

form the demodulated signal z( t): 

z(t) = y(t) · x(t) 

This is shown in figure 2-2. The signal x( t) may be generated internally by the 

receiver, or it may be obtained from the signal y( t) itself by ( careful filtering around 

the carrier frequency we. 

• 

Now, substituting for y(t) and x(t) yields 

Which, after trigonometric substitutions, is 

. 
A A 2 

z(t) = d2 c [1+cos(2wct)] + 

A A 2 4 c [cos(2wct+wmt) + cos(2wct-wmt) + cos(wmt) + cos(-wmt)] 

If we pass this signal through a low-pass filter with cut-off frequency between wm 

and we , all terms are eliminated except the DC and wm terms. Thus, if z1(t) is the 
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output of the low pass filter, we obtain 
.. 

Ad Ac2 A A 2( ) z1(t) = 2 + m4 c cos(wmt) + cos(-wmt) 

Factoring out Ac 2 /2, and since cos( wm t )=cos(-wm t ), the demodulated output z1 (t) 

• 
IS . l, 

Thus, the demodulated signal z1(t) is the~e as the original message signal m(t), 

only multiplied by Ac 2 /2 . 
'' 

2.2.3 Incoherent Receiver Demodulation 

Instead of using a multiplier (mixer), a peak detector can be used to easily decode an 

AM signal. Since the modulating signal changes the carrier amplitude relatively 

slowly if we> Wm, the peak of each carrier cycle represents tl1e modulating signals 

amplitude. This method, which does not rely on reconstruction of the carrier 

frequency, is one type of incoherent detection, as opposed to coherent methods that 

rely on reconstruction of the carrier signal. Although incoherent AM reception can . 

be shown to provide approximately 1 dB poorer performance than coherent 

detection, it has the advantage of simplicity in circuit design. 

2.3 Digital Modulation Schemes 

Digital modulation schemes represent each binary symbol with one of two time-

13 
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varying sinusoidal signals. -- These two sinusoidal signals can differ in three ways: in 

amplitude, in frequency, or in phase. Each of these gives rise to a form of digital 

modulation. 

2.3.1 Amplitude Shift Keying (ASK) 

Amplitude Shift Keying uses a digital source to shift a carrier between two different 

amplitudes. For example, if we have digital signal d(t) which takes on the values 0 

and 1, we can use it to turn on and off a carrier, thus shifting it's amplitude, i.e. 

y ASK(t) = d(t) · cos(wt) 

This is depicted in figure 2-3. If d( t) has a DC component, then there will be a 

carrier component. If l's and O's are equally probable, the DC level of d(t) is 1/2. 

It can be shown that in this case, half of the signal power is wasted in the carrier 
\ 

component, which does not convey any time-varying information. 

2.3.2 Frequency Shift Keying (FSK) 

/ '~ ., 
) 

Frequency shift keying uses a digital source to shift the output signal y( t) between 

two different frequencies. For example, if we have a digital source d(t) which takes 

on the values of O and 1, the modulated signal will be 

A cos(w1t) for d(t) = 0 
YFsK(t)= A cos(w2t) for d(t) = 1 

14 
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ASK 
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Figure 2-3 
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Figure 2-4 

PSK 

A Cos(-·t) 

Figure 2-5 
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A simplified representation of an FSK modulator is shown in figure· 2-4. The signal 

YFsK(t) can be thought of as the sum of two ASK signals, one with carrier 

frequency w1 and one with carrier frequency w 2 • In, order to see this, we can rewrite 

YFsK(t) = d(t) · A cos(w1t) + ( 1-d(t)) · A cos(w2t) 

"" There are further considerations when we deal with FSK. In order to prevent 

distortion, the two carriers must be spaced far enough apart in frequency so that the 
t:, 

sidebands around each carrier do not overlap significantly. Also note that th.e signal 

information is sent in duplicate; i.e. d(t) modulates both carriers. Since FSK can be 

thought of as two ASK signals, again we find that for square-wave type signals such 

as d( t ), half the signal power is in the carriers and is not conveying any 

information. Also, FSK takes up at least twice the bandwidth as ASK, since it in 

effect sends d(t) in duplicate. 

2.3.3 Phase Shift Keying (PSK) 

Phase shift keying uses a digital source, d( t) to shift the phase of a carrier wave 

between two different phases. The general form of PSK is . 

r d(t) -1 J YpsK(t) = A cos Lwt + (-1) · cos (m) 

The modulation parameter, denoted by m, determines how much the phase shifts. 

" 

Recalling that cos(u±v) cos(u)cos(v) =f sin(u)sin(v), and using the identities 
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cos(cos- 1(m))=m and sin(cos-1(m))=~l-m 2 , we obtain 

d(t) . 
YpsK(t)= A·m·cos(wt) - (-1) A~1-m2 s1n(wt) 

' 

The first term on the right hand side is the carrier component. The second term is 

an ASK modulated carrier, modulated by (-1/(t)_ Note that this term has an 

average value of zero and thus no DC component, and therefore no ASK carrier 

component at w due to the Sin( wt) term. Therefore, the only carrier component is 

due to the A ·m ·cos( wt) term. 

By adjusting m, the modulation parameter, we change the amount of phase shift 

and the amount of carrier. If we choose a phase shift of ±1r by using m=O, the 

resulting PSK signal is 

d( t) ' . 
YpsK(t)= - (-1) A S1n(wt) 

A simplified diagram of a PSK modulator is shown in figure 2-5. The signal simply 

switches between Sin( wt) and -Sin( wt). For this simpl~ case, it is easy to see that all 

the signal power is in the sidebands conveying information, since there is no carrier 

component. 

2.4 Effects of Noise on Bit Error Probability 

If Gaussian noise is present in a communication channel, the noise will cause errors 

in the demodulated data. For any coherent modulation scheme sending binary data, 

it can be shown (Ziemer) that the probability of bit error is given by 

17 
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1 E{l-p) ··p e = -2 erf c 
2N 0 

·1 

\ 
' where E is the total signal energy, p is the signal correlation, NO is the noise energy, 

and the error function, erfc( ·) is defined as 

\ 

J
u 2 

erfc(u)= 1 - i 
O 

e-v dv 

If we define the two distinct modulator signals in a binary modulation scheme as 

s0 ( t) and s1 ( t ), then the total signal energy, E, is found by 

c\ 
The correlation coefficient, p, between the two signals sy>( t) and s1 ( t) is defined as 

,/ 

~/~~ 

T ( 

I s0(t) s1(t) ,_d. 

p= 0 E t " 

and is bounded by ± 1. If the two signals are very much alike, p approaches 1, but 

as they become more and more distinct ( and th us more uncorrelated), p decreases to 

zero. If the signals have equal magnitudes but opposite signs, p=-1. _ _,, -~ i 

For ASK, s0 ( t) = cos( wt) and s1 ( t) = 0. After performing the integrations to find 

p, we find that p=O, and thus the probability of bit error for ASK is 

p e,ASK = ~ erfc ~2~0 

18 



Recognize that E / N.0 is the signal to noise ratio (SNR), thus 

p e,ASK = ~ erfc ~S~R 

Using similar methods for FSK and PSK, we can find the probability of bit err.or for 

FSK and PSK are, respectively, 

1 · ~SN
2

R p e,FSK = 2 erfc 

P e,PSK = ~ erfc ~SNR 

For non-coherent modulation schemes, the derivation of bit-error probability is more 

complicated, since less is assumed known about the signal. The error probabilities 

for FSK and ASK have been shown to be (Ziemer) : 

P _ 1 -SNR/2 
e,ASK - 2 e 

P _ 1 -SNR/2 
e,FSK - 2 e 

Non-coherent PSK is a contradiction in terms; it is simply impossible to convey any 

_,....J information in a carrier of totally random phase. 

The graphs of each of these probability of error functions considered are shown in 

19 
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figure 2-6. 

2.5 Summary and Selection of Modulation Scheme 

Table 2-1 summarizes the characteristics of the ASK, FSK and PSK schemes 

analyzed ~hus far. To summarize, given a fixed peak power, ASK ·is 6 dB worse 

than PSK; FSK is 3dB worse than PSK and requires twice the bandwidth; PSK is 

the most efficient modulation scheme of the three. Note that if we constrain peak 

power to a fixed value (instead of average power), ASK will be 3dB worse, sin it's 

average power is not it's peak power, as is the case with FSK and PSK. 

With PSK, however, are some inherent difficulties. First, a carrier signal must be 

regenerated at the receiver in order to demodulate the PSK signal. This carrier 

must have the exact frequency and phase of the original carrier at the trans-mitter. 
·1 .• 

This is possible to achieve, but it complicates receiver design. These difficulties, 

however, do not change the selection of PSK as the most efficient modulation 

scheme of the three, and therefore the most desirable f9r our purposes. 

'! 
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TABLE 2-1 IVIodula.tion Performance Summary 

Modulation Maximum Mini1nu1n 
' 

Scheme Efficiency Band,vidth 

Coherent ASK 50% 

Non-Coh. ASI{ 50% '). ' .... wl\'lax 

Co.heren t FS I~ 50~{ 4 -'-I 1\1 ax 

Non-C'oh. FSI< 50Yc '1 ' - ""'!\lax 

Coherent PSI{ lOOo/c) 

Note: 

SNR=Signal to noisP ratio: 

Avg Pwr + 
Peak Pwr 

0.5 

0.5 

1.0 

1.0 

1.0 

Probability of 

Bit Error 

~ erfc ~S~R 

1 -SNR/2 
- e ') -

1 ·) erfc -

1 -SNR/2 
., e 

~ erfc ~SNR -

wM == highest frequenc.Y con1po11en t in tl1e 1110d ulating signal ax 

•)•) --
.,.;,,_.. 
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3. MODULATOR/DEMODlJLATOR SYSTEM DESIGN AND ANALYSIS 

3.1 Introduction 

The modu]ator/demodulator pair tha.t wa.s constru~ted can operate at data rates of 

up to 20 Mb/s, using PSK modulation. The goal here is to outline the design of the 

modulator and demodulator fro1n a comn1unications theory viewpoint. Each of the 

elements of the modulator and de1nodulator are analyzed in some detail so that the 

performance of the entire systen1 can be understood in some deptl1. 

3.2 Modu]a.tor /Demodulator Systen1 Design 

A block diagran1 of the 20 .ivlb/s PSI{ s_ysten1 that ,vas constructed is sl10,v11 in figure 

3-1. Since the most efficient 1nodula.tion schen1e is PSI{, it is the modulatio11 

scheme en1ployed. The ca.rrier frequenc~y of the systen1 was chosen to be 100 1\1Hz, 

\vhich gi,res 5 carrier C)·cles per 20 1\'1 b bit JJeriod. In order to generate the 100 l\1Hz 

carrier, a 50 l\1Hz cr~ysta.1 oscilla.tor generates a. sig~1a.l ,vl1ich is then sent to a 

frequency doubler. Tl1is approach is used due to the fact tl1at crystals with resona.nt 

or 3rd har111onic frequencies above 50 1\1 Hz are difficult to make. As sl1ow11 in the . -

diagra111, a small an1ount of the 50 l\1Hz carrier is i11jected i11to tl1e output to aid the 

receiver in demod ulatio11. 

3.2.1 Carrier Injection 

PSK modulation requires a ca.rrier oscillator a.t the receiver to be in synchronization 
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with the ca.rrier oscillator at the tra.nsn1itter. The easiest method to have the··-carrier 

present a.t the receiver is to add it to the transmitted PSI{ modulated signal, and 

then isolate it at the receiver. Ho,vever, since there may be PSK sidebands near the 

carrier frequency, isolating the carrier signal would be difficult. The alternative, 

which is employed here, is to send the 50 MHz carrier with the PSK signal. At the 

receiving end, the 50 MHz signa.l is isolated by very narrowband filters and a phase­

lockect· loop. To recreate the 100 1\1 Hz carrier at the receiver, the 50 MHz signal is 

sent to a frequency doubler. 

The 50 l\'IHz carrier level is adjustable. In order not to ,vaste to much po,ver in the 

carrier ( s u c h a s i n F S I< () r :'\ S I~ ) . t h e ca r r i er i s i n j e ct e d at a Io~\' I e v el ~ a.t 1 / 1 0 t he 
1 

am p] it u d e of t h e P S I~ s i g 11 a l. 'f I I i s is p r a c t i ca.I be ca use t h e sign al i s re ce i v e d th rough 

·~-~; 

a ver.r na.rro,v band,vidth filter centered at .50 l\'IHz~ thus the carrier ,vill not ea.sil:y 

be masked by noise. 

3.2.2 PSI( l\11odula.tion and Den1odula.tion 

At the transn1itter. the n1ultiplier/111ixer 1nodula.tes the 100 1\1Hz carrier ,vith the 

bipolar input data at the t.rans1111tter. Then. the lo,v level 50 1\1Hz ca.rrier is 

injected, a.nd the signal is then sent to an an1plifier to n1odulate the laser output. At 

the 
. 

receiver, the photodetector detects the modulated signal, and tl1e signal is 

amplified. After a.mplification. the signa.l is input to the li111ite1\ \vhich removes 

amplitude fluctuations. 1..,hen~ the signal is passed to the 50 l\1Hz carrier detector 

circuit ( consisting of a filter a.nd a PLL), a.nd the 100 ~1IHz filter tl1at isolates tl1e 

PSI{ sidebands. The 50 ~1Hz co1nJJonent is sent to a frequency doubler in order to 
~) 

/ 
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reconstruct the 100 Mf\z carrier. The mixer then multiplies the reconstructed 100 

MHz carrier with the PSK signal at 100 MHz, thus mixing the PSK modulated 

signal back down to baseband. Any remaining high frequency components are 

removed with a low pass filter. The result is passed to a Schmitt-trigger type device, 

with a hysteresis characteristic, that decides whether which of the two binary levels 

were sent. 

3.2.3 Spectrum of PSK Signal 

l. 
The spectrum of the transmitted waveform must be known in order to properly 

' design filters to reject out of band noise. The system should be designed for the 

fastest bit rate expected, here 20 Mb/s. The power spectrum of a random binary 

data stream can be shown to be (Ziemer): 

where the time between data bits is T, i.e. T=l/(Bits/Sec). If a random bit stream 

is used to modulate a PSK carrier of frequency fc, then the power spectrum is 

centered around fc: 

Using this, and recalling that the system has a low level carrier at 50 MHz, the 

spectrum of the 20 Mb/s transmitted signal is shown in figure 3-2. The PSK 

sidebands about 100 MHz are apparent, as is the injected 50 MHz reference signal. 
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From the graph, it is easy to see that tl1e 100 MHz filter must have a full band,vidth 

of 40 MHz in order to capture the n1ain lobe of the PSI( signal spectrum. 

3.3 Modulation/Demodulation System Elements 

The performance of the modulation/demodulation system is dependant on the 

performance of each of the elernents of the system. From a communication theory 

point of vie\v, the li111iter, 1nixers. J)ha.se detector, frequency doublers, and phase 

. 

locked loop, sho,vn in figure ;3-1~ are of interest. In order to full)' understand the 

system's beha\'ior, one 1nust full)' understand the operation of each of these sub­

systen1s. 

3 . 3 .1 Li 111 i t er A n a.I\' sis an d Si 111 u lat ion 
~ 

Limiters are used n1a.inl.Y in re111oving a,111plitude fluctuations fron1 a signal, \vhile 

preserving the signal's funda.n1enta.l spectral components. In certain applications~ 

limiters ca.n replace the use of a.n a.uton1atic gain control, and increase dynamic 

range. Lin1iters. ho,vever, do change both the spectru111 and sig11al-to-noise ratio of 

the sign a.ls pa.ssing through t hen1. Onl)' b)' stud)'ing the effects of li111iting ca.n the 

advanta.ges of lin1iting be fully eXJ)loited. 

3.3.1.1 Effects on Spectru111 

A "hard" lin1iter is a circuit ,vith the chara.cteristic 

·)~ -~ 
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f(x) = +A 
-A 

l.f x~O 
x<O · 

To see how a limiter can be used to remove AM fluctuations of a signal, consider a 

sinusoidal signal with a modulating function M(t ), 

x(t) = M(t) cos(wt) ( with oo > M(t) > 0) 

If we apply x( t) to the input of the limiter, the output, y( t), will be approximately a 

square wave with a frequency w. This approximation is valid only if m(t) changes 

much more slowly than cos( wt). The frequency spectrum of this square wave 

contains spectral lines at the fundamental frequency w, as well as harmonics 

frequencies nw, where n is an odd, positive, nonzero integer. The Fourier series of 

the output square wave takes the form 

y(t) = 4f [cos(wt) -1 cos(3wt) + icos(5wt) .. ] 

After using a low pass filter' to remove all but the fundamental frequency 

component, we obtain 

y 1(t)= ~ cos(wt) 

where y 1 ( t Y' ·is the output of the low-pass filter. Note that the effect of the 

modulation component, M(t), has been removed by the limiter. This method can be 

used to eliminate the need for an automatic gain control in amplifiers requiring a 

constant output level. 

! 
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In the case of more than one input spectral component, a new analysis is required. 

Note that the superposition principle is not applicable here, since we are dealing with 

the non-linear limiting operation. Superposition is only valid for linear circuits. To 

demonstrate this, consider for a moment that the output y( t) from any memoryless 

nonlinearity with input signal x( t) can be represented in 'terms of a Taylor series 

• expansion, 

00 . 

y(t) = f(x(t)) = L Fix1(t) 
i=O 

Now, if x(t) = cos(w1t) + cos(w 2t), then we have 

y(t) = f(x(t))=_f Fi( cos(w1t) + cos(w2t) )i 
1=0 

If we expand this polynomial, recognizing that cos(A) cos(B) = ~ ( cos(A-B) + 

cos(A+B)) and cos2(A) = ~( 1 + cos(2A) ), we can obtain an equation of the form 

00 00 00 00 

y(t)= L Ancos(nw1t) + L Bmcos( mw2t) + L L Cm,n cos( nw1t+ mw2t) 
n=l m=l n=-oo m=-oo 

where the coefficients An, B01 , Cm,n can be determined once the Fi 's are known. 

The first two summations consist of the harmonic components, which are multiples . 

of w1 and w 2 • The remaining summation c_onsists of intermodulation components, 

which are the sums and differences of the harmonics of w1 and w 2 • Intermodulation 

components are unique to nonlinear systems. 

Using the above approach, the ideal "hard" limiter has been modeled by finding the 

expansion of f(u)=ul/n (n odd), and taking the limit as n-+oo in order to solve the 
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system (Davenport). From this analysis it can also qe shown that the "hard" 

limiter has the highest amplitude of harmonic and intermodulation components of 

1. . f h r f( ) 1 / n . . . "d 1m1ters o t e 1orm u =u , given two input s1nuso1 s. 

3.3.1.2 Simulation of Limiter Performance with PSK Signal 

If th~ limiter function or the limiter input signal becomes complicated, so does the 

formal analysis. Since the PSK signal of interest here is complicated, numerical 

methods were used to simulate the output spectrum of the limiter given the signal 

characteristics at the input. 

The hard limiter input signal that was simulated was a 100 MHz PSK signal 

modulated at 20 Mb/s, with 50 MHz carrier 1/5 the size of the 100 MHz carrier. 

The 20 Mb/s modulating signal was a band-limited square wave, with exponential 

rising and falling edges having a 10%-90% rise time t . of 10 ns. If a bit change 
rise 

occurs at a switching time t 8 , the signal is modeled as 

x( t) = ~ cos ( w 1 t) · 
-(t-t8 ) / (t . /2) 1 e rise _ _ 

2 

.ft 

where. w1 =21r·lOO MHz, w2=21r·50 MHz, trise=lO ns, t>ts A=lOOJ}O, and the , 

limiter output levels were ± 1000. 

For simulation, the above model was used to compute 2048 points of the signal x(t). 

The simulation duration was for 1 .. 57 µs, which is 1~7 cycles of the 100 MHz carrier. 
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The first 200 ns of the modeled signa.l input to the limiter can be·· seen in figure 3-3. 

The non-instantaneous phase cha.nges of the PSI( modulation can be seen 

approximately every 50 ns. 

The spectrum of the input signa.l ,va.s found by taking a FFT of the 2048 sample 
r 

poihts of x(t). The spectrun1 is sho\vn in figure 3-4. The 2 PSK sidebands are 

apparent~ centered around 100 ivlHz. The injected carrier is visible at approximately 

50 MHz. The other harmonics present are due to the 20 I\,1b/s modulation. 

The output of the hard lin1iter is sho,,·n in figure :3-.S. and the spectrun1 of the 

output is sho,vn in figure 3-6. 1---1ie spect.ru111 ren1a.ins essentially the san1e. ho,vever 

extra harn1onic con1ponents a.nd intern1odulation products are present at frequencies 

a.bove 200 i\1 Hz; these are not visi b]e in the graph. These can be re1noved b}· using a 

bandpass filter a.ft.er the lin1iter. 

3.3.1.3 Effect on Signal-to-Noise Ratio 

\i\lhen Ga.ussian noise is a.dded to the signa.l x(t). a.11d is the11 passed througl1 the 

limiter a.nd output ba.nd-pa.ss filter~ the signa.1-to-noise ratio at the output is slightl)r 

different frorn the input. It ha.s been sho,vn (Da.,,enport) tl1a.t the SNR can be 

! improved by 1 to 3 dB for sign a.I-to-noise ratios over O dB. Th us~ the output SN R 

can be considered essentia1ly tl1e san1e as the input SNR. Da.venport·s a.11al)·sis. 

however., is only va.lid for a single SJ)ectraJ co111ponent. \;\Then 111ore tha.n 011e sinusoid 

plus noise is input tQ,, tl1e li111ite1\ forn1a.l derivations of tl1e output signal spectru111 

and SNR beco111e 111ore co1111)lica.ted~ clue to the presence of intern1odula.tion 

•)•) 
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components at the output. Ho,vever, the case of t,vo sinusoids of different 

frequencies and amplitudes passing through a limiter has been analyzed (Jones). 

The results show that if tl1e signals differ in amplitude by at least a factor of 5, the 

SNR's of t,vo signals' SNR's a,re not affected by more than 3 dB (Jones). 

3.3.1.4 Conclusions from Lin1iter .i\nalvsis ,, 

From this anal)'Sis~ \Ve can conclude tha.t lin1iters do not apprecia.bl~y distort the 

signal spectrun1 \vhen they are follo,ved b,y proper filtering a.round the frequenc,y 

components of interest. ~q_Jso. lin1iters (for the 111ost pa.rt) do not appreciabl~y affect 

the signal to noise ra.tio of the signa.l b}' rnore tha11 3 dB. Therefore, limiters are 
' ., useful in elin1inating AC~C's \,·hile not a.pprecia.bl~y distorting the signa.l. 

3.3.2 I\1ixers 

The n1ultiplication operatiou is a fundan1enta.l operation for 111odulation a.nd 

frequenc)' tra.nslation in any radjo frequency circuit. This n1ultiJ)lication operation 

is implen1ented by a de\'ice called a n1,i.rcr, because it 111ixes t\vo of the input 

frequencies. 

A mixer can be in1ple1nented in severa.l wa:ys. 011e such method, ter1ned the double-

balanced n1ixer, is sho,v11 in fig·ure 3-7. It consists of a ring of diodes and input and 

output transformers. i\1ixers of this t)'pe can be designed to \vork into the microwave 

frequenC)' ra.nge, since the device design is passive and si111ple. Indeed, the mixers 
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used in this project are AS]..: 1 I\Jixers 111ade by MJni-Circuits, and are designed to 

work fron1 DC to 600 1\1Hz. The)' are designed with 50 011111 input and output ports. 

The operation of this circuit can be de111onstrated in figure 3- 7. TI1e mixer has 3 

ports, the LO port, the IF port. and the RF port. The LO port is the input for tl1e 

local oscilla.tor, which is genera.II)' a. carrier frequency to be 111odulated. TI1e IF port 

is the 'intern1ediate frequenc:y' port. a.nd is used to modula.te the carrier. The RF 

port is the radio frequencj' output port. ,vhich outputs tl1e 1nodulated signal. 

In order to de111onstra.te ho,v the 111ixer operates, consider tl1e case sl1own in figure 3-

7, \\rhere a. ,,o]tage source a.n"d a. resistor a.re connected to the IF port. If tl1is \'olta.ge 

source is higher than approxin1ately 0.7 volts, diodes Dl a.nd D3 ,vill turn 'on\ and 

the circuit is equivalent t.o t.l1at in figur~ :1-8. Sin1ilarl,y. if the voltage is less tha.n 

approxi1natelJ1 -0.,\:. then 0:2 and l)-"1 a.re turned ·on\ and the n1ixer circuit is 

equivalent to figure 3-9. rfhe output volta.ge fro111 the 111ixer in these t,vo differe11t 

cases are the opposites of each other. Th us, if V IF>O then V RF= V 
10

, else if 

N O\V, if \/ IF is a function of tin1e, i.e. \l IF( t), then the output ,va.veform is 

~-
\l RF ( t ) = \.r LO ( t ) . s g n ( \!IF ( t) ) 

where sgn(x) = 1 if x>O. -1 if x<O. Note tha.t this fact is useful for binary pl1ase 

shift ke~ying ,vhere 180° pl1a.se reversals a.re needed. 
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If V1p(t)=cos(w1Ft), and VLO(t) _ cos(wLot), then the output·voltage is 
'--

Note that sgn(cos(wL0 t)) is a. square wave of frequency wLo/21r Hertz. Since a 

square wa,1e can be represented h.Y its Fourier series, i.e. 

Thus, the output is 

Note tl1a.t the first tern-1 of the second series is the desired product; the other ter1ns 

in the series can be filtered out by using a bandpass filter centered around wLO after 

the mixer. The result is 

The above anal)1sis used the assu111J)tion that the diodes are eitl1er '011' or 'off'. In 

practice, diodes have a nonlinear expone11tial IV characteristic; tl1us the diodes must 

be driven ,vith signals large e11ough to sufficiently turn 'on' the diodes. 

Also note tl1at tl1e diodes of the a.bo,1e circuit are assu1ned to be exactly the sa1ne. If 
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the diodes are perfectly matched in a. doubly bal_anced mixer, each port is totally 

isolated from the other ports (Zie1ner ). However, if the diodes are mismatched, some 

isolation between the RF, IF, and LO port~·-·is lost . For typical mixers, such as the 
~ ~ 

Mini-Circuits ASl(l mixer, the diodes are matched so as to achieve more than 30 

dB isolation between the ports. 

3.3.3 Mixers as Phase Detectors 

"'e can use a mixer to detect the relative phase . between two signals. Phase 

detectors a.re useful in phase locked loops, wl1ere an oscillator is adjusted in 

frequenc~y /phase until the relative pha.se between two signals is zero. 

To see ho,v pha.se detection is do11e~ co11sider the following. If we have two 

sinusoida.l signals of identica.l frequency that differ only in phase by ¢ radians, the11 
/~ .. 

we can for1n a '·pha.se error signal" e( t) by 111 ultiplying the two signals together ,vith 

• a. mixer: 

e( t) == cos( wt + ¢) · cos( wt) == ~ cos( 2"4-,t + ¢) + ~ cos(¢) 

The 2wt frequenc~y component can be filtered out with a low pass filter, leaving only 

the last ter1n, cos(¢ )/2. Using this fact, we can construct a phase detector circuit 

sho,vn in figure 3-10. The t,vo sinusoidal sig11als are input to a mixer/multiplier, the' 

output
1 

of the n1ixer is pa.ssed through a. lo,v pa.ss filter to ren1ove tl1e 2w term, and 

the resulta.nt output is proportional to cos(¢). The output vs. phase error graph is 

shown in figure 3-11. Note that the output of the phase detector is O when tl1e two 
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signals are 90c out of pha.se. 

3.3.4 Frequency Doublers 

A full wave brid&e rectifier can serve as a frequency doubler, as shown in figure 3-12. 

The doubler has a similar structure to a mixer, with the IF port removed and the 

diodes D2 a.nd D4 reversed. If the input signal is above 0. 7 V, diodes Dl and ·D3 

conduct the positive half-cycle so that current flows through Dl, through the output 

transfor1ner, and back through D3. On the negative half-cycle, D2 and D4 conduct, 

and the current flo,vs in the sa.n1e direction tl1rough the output transforn1er. A 

rectified sinusoid is the result. and it is AC coupled to the output through the 

out p u t t r a n sf or 111 er . 

The Fourier series for a rectified sine ,va.ve r( t) is 

r(t) = 1 t cos(2,,.:t) - 31 cos(4wt) + 5 ~ cos(6wt) ... . n . ~ . ~ 

where w is the frequency of the original sine wave. To isolate the doubled frequenc:y 

component, ,ve use a bandpa.ss or lo\vpa.ss filter after the doubler to eli111inate all but 
' 

the 2w tern1, as sho\vn in figure 3-13. The output of the filter is a sinusoid at twice 

the input frequency to the doubler. 

3.3.5 Pha.se Locked Loop Funda.n1enta.ls 

Phase locked loops force a local oscillator to track an input waveform in phase a11d 
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frequency. A phase-locked loop (PLL) following the 50 MHz filter in this system is 

used to lock on to the 50 MHz reference signal. The PLL acts as a very narrow 

bandwidth (200 Hz) filter, thus improving the 50 MHz reference signal SNR by 

rejecting out-of-band noise. 

A block diagram of a typical PLL is shown i11 figure 3-14. Phase locked loops 

operate by forcing a local oscillator's frequency to match the input signal frequency. 

In the locked condition, any frequency or phase change in the input signal first 

appears as a change in phase between the input signal and the local oscillator. This 

phase shift then acts as an error signal and is used to change the frequency of the 

local oscillator in order to match the input signal. The locking onto a phase 

relationship between the input signal and the local oscillator accounts for the name 

\ 

phase-locked loop. 

The phase comparator is perhaps the most important part of the PLL system since 

it is here that the input and local oscillator frequencies are compared. Here, a 

multiplier is used to mix the input and local os~illator signals. If there is a 

phase/frequency error between the two signals with phase and frequency w. , ¢. , 
Ill Ill 

~VCO' ¢vco res~ectively, the resulting error waveform is 

VEr/t) = 2 cos( 't'in t + ¢>in) . cos( w VCO t + ef>vco) 

cos( ( win -w vco) t + ¢>in - ef>vco) + 

cos((win+w vco) t +¢>in+ ef>vco) 

In a PLL, the low pass filter is used to eliminate the frequency component at 
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w1 +w2. The resulting waveform is 

When the loop is in lock, the local oscillator duplicates the input frequency so that 

the difference frequency component is zero. Hence, the output of the low pass filter 

contains only a DC component reflecting the phase error between the input and local 

oscillator signals. This error signal then controls the the local oscillator's frequency. 

The local oscillator is usually a voltage controlled oscillator, with frequency 

determined by the relation : 

wvco= K . Vvco(t) + WFR 

where wFR is the free running frequency of the oscillator, and K is a constant (in 

radians/sec per volt) determined by the PLL circuit construction. 

The lock range of a PLL is the range of frequencies over which the loop will remain 
... 

in lock while the input frequency is changed. Although the loop will remain in lock 

in this range, it many not be able to initially acquire lock over the en tire lock range. 

The capture range is the range of frequencies in which the PLL can acquire lock. 

Capture range is always smaller than the lock range, and is determined by the 

bandwidth of the low pass filter. Furthermore, the low pass filter bandwidth is 

·proportional to the maximum rate at which the input frequency can change while 

remaining in lock. The transient time required for a free running loop to lock is 

called the lock up time, and is inversely proportion~! to the low pass filter 

bandwidth. The locking transient is highly complex and does not lend itself to 
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simple mathematical analysis. /\ con1plete modeling of phase locked loops from a 

control system sta.ndpoint can be found in (Best). 
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4. CIRCUIT CONSTRUCTION AND ANALYSIS 

4.1 Introduction 

Using the modulator/ demod ula.tor S)'Stem design detailed in Chapter 3, the complete 

circuitry for an atmospheric laser communications system was constructed. 

Circuitry for the n1od ulator and laser driver was developed for the transmitter, and 

circuits for the photodetector, prean1plifier. and demodulator \Vere developed for the 

receiver. Furthern1ore, the signal to noise ratio of the receiver \Va.s anal)'zed in order ' 

to opt i 111 i z e t h e rec e i v er 's per f o r n 1 a. n c e . 

As with any radio frequenc:y circuit. careful electrical construction techniques n1ust 

be follovled to ensure proper operation a.nd to prevent un,vanted radiation. The 

circuitr}' here ,va.s constructed using printed circuit boa.rds, ,vith ea.ch subcircuit in a 

shielded box. and \\'ith shielded ca.bles ca.rrying signa.ls bet\veen the subcircuits. 

Furthern1ore, the liberaJ use of b}'J)a.ss capa.citors on the po,ver s-uppl}' rails in each 

su bcircuit prevents stra}' RF fron1 entering a.n)' su bcircuit undesirabl.Y. 

4.2 Tra.nsn1 itter 

The deta.iled schen1atic dia.gran1s of the PSI{ tra.nsn1itter circuitr~y a.re sho,vn in 

figures 4-1 a.nd 4-2. Por~tions of these dia.gra111s correspond to the 50 MHz oscillator, 

frequency doubler, filter, 1nixer, co111biner, and laser driver blocks in the systen1 

diagram of figure 3-1. 
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4.2.1 50 MHz Oscillator Circuit 

The 50 MHz sinusoidal oscillator is used to provide a 50 MHz HF carrier source for 

the system. The oscillator is sho\\'11 in the left section of figure 4-1. It is a modified 

Colpitts oscillator, with the Irv1 potentiometer and 56K resistor setting the DC bias 

\,_ 
-,, .. _,,_ ~ -

current fl.o\ving through the 2N918 high frequency transistor. The collector output 

of the oscillator-·is fed back to the base through the crystal as well as through a 

capacitive voltage divider (formed b~y the lOpF and 33pF capacitors). The crystal, 

operating in it's third O\'ertone. and tuned output tra11sforn1er both force the 

oscillator to oscillate at 49.80 ;\) J-Iz. 'fhe oscil]a.tor output signal leve] at the output 

transforn1er is a.bout 1.5\. peak tc) peak. ,vhich is approxin1atel)' +8dBn1. 

4.2.2 Freq ue11C)' Doubler 

The frequenc)' doubler is used create the 100 iv1Hz PSI( carrier fron1 tl1e 50 i\1Hz 

oscillator output. The 50 1\1Hz osci11ator output is fed to the 1\1ini-Circuits S1(2 

frequency doubler, \vhich operates fr<.)lll l to 500 J\,1Hz \Vith a. conversion loss of 

13dB111. 1'he output level of tlie doubler is -5<lB111~ and the signal n1ust be a111plified 

· by the ivI.L\.Rl integrated 50r2 n1icro,,·ave at11plifier for use b)· the 11ext stage. 
/ 

4.2.3 50 1\1 Hz Carrier Signal 

The 50 l\tl Hz carrier is injected a.t lo,v level to provide the receiver ,vith a. ca.rrier 

reference signal. Co11nected at the oscilla.tor tra.nsfor111er output is a voltage di,,ider 

consisting of a. 220 oh111 resistor a.nd 100 0I1n1 potentio111eter. BJ1 adJusti11g the pot, 
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the level of the 50 l\1Hz carrier uJtima.tel.Y added to the 100 MHz signal level can be 

adjusted from 1/10 to 1/5 of the 100 l\1Hz signal's level. 

4.2.4 Filter 

In order to provide a clean sinusoid for the modulator, harmonics generated b~y the 

frequenC)' dou bier and harmonics generated by amplifier clipping must be removed. 

The pi-configuration passive filter to do this consists of a 39pF capacitor and .095 µH 

inductor tuned to resonate at apJ)roxin1ately 100 MHz. The output of tl1e filter is a 

clean 100 l\1I-Iz sinusoid \vl1ich drives the frequency n1ixer in the next stagy, 

4.2.5 Mixer 

I 11 order t c> generate a binary p h as e sh if t k e :Ying sign a.I , the 10 0 ivI Hz sign a.I 111 us t be 

multiplie<l/n1ixed \Vith bipolar digital data, i.e. ±2.5 volts, not 0\1 /5\1. This is 

beca.use if \Ve ha,,e a rando111 string of bits \Vith 1 's and O's represented as ±2.5\1, 

their 111ean DC va.lue is 0, th us there ,vill be no carrier compone11t in the output 

signal. Ho,ve,rer. in order to con\'ert the normal O to 5\7 TTL levels to ±2.5\1 , the 

ground lead of the 1nixer 111 ust be 'floated' a.t 2.5\l. Th us, a 0\1 TTL level is -2.5 \/ 

relative to mixer ground, and 5\,. is +2.5\l relative to mixer grou11d. The 2.5V 

n1ixer ground potential is obta.ined fron1 the ta.p of tl1e 500 ohm potentiometer, a.11d 

is adjusted for best ,vaveforn1 syn1n1etr)' at the output of the PSI{ modulator. 

For test purposes, t,vo bit sources ,,·ere used. First, a. 10 i\1Hz sq_uare wave TTL 
'- . 

clock ,va.s used as a. 20 l\tl b test signa.J. a.s sho\\rn in the sche111atic. The second test 
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signal used consisted of a digital circuit to generate the 20 Mb sequence 

1010101011111111. These bit sources dri,,e the 7414 TTL inverter, which acts as a 

buffer amplifier between the digita.l source and the analog mixer. The 1.6K resistor 

limits the current through the mixer diodes to prevent damage to the mixer. The. 

resonator consisting of the 27pF capa.citor and .095µH inductor at the IF input short 

to ground a.ny 100 t\1Hz co111pouents in the modulating square ,va,,e. If present, the 

beat frequency bet,veen these 100 1\1 Hz components and the local oscillator would 

modulate the output signal u ndesira.l)l~y. 

The output of the n1ixer n1 ust be an1plified and filtered in order to be used b)' the 

next stage. The ba.nd pass filter consisting of the .llµH inductor and 39pF 

capa.citor eli1ninates signal harn1onics created b)' the 111ixer. The ~1AR1 amplifier 

a.mplifies the RF output of the filter. ,,·Jiich is a BPSI{ signa] centered at 100 l\1Hz. 

4.2.6 La.ser 

The output of the n1odulator is used to n1odulate a laser ,vhich is collin1a.ted and 

directed a.t the optical receiver. rfhe particular laser used here is a sen1iconductor 

laser, the Son.Y SLD202 \l-3~ a 50111 \\' High Po,ver Infra-Red Laser Diode ,vith a 

radiant output ,va.,,elength of ap1)roxi111a.tel~y 820 nn1. 

4.2.6.1 Laser Electrical Characteristics 

A sen1icond uctor la.ser is essen tialJ), a.11 OJ)tica.l resonator crea.ted witl1 sen1icond uctor 

materia.ls. Due t<J sen1ico11d uctor cha.racteristics, ho,vever, the a111plitudes of tl1e 
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different 1nodes of this resonator are dependant on the currents passed through the 

laser junction. Below a certain threshold current, several modes exist; at higher 

current levels, a single mode do1ninates. (Jones) In terms of device terminal electrical 

characteristics, the laser acts just like a typical LED when currents through the laser 

are below a certain threshold current, here 90 mA. Above this threshold current, a 
( 

single mode dominates, the device begins its' lasing action, and the radiant power 

' output level rises quickly. 

In practice~ the la.ser output level \vill \1 a.ry with temperature cha.nges caused by 

environn1ental cha.nges or device self-heating. In order to a.void this. a PIN , 

photodiode is included in the laser packa.ge for ·monitoring the laser ra.diant po,ver 

output. The output le\rel sensed by the PIN diode ca.n be used in a. closed loop 

control system to a.uto111a.ticall}' adjust t.he la.ser driving currents so as to give a. 

constant light output fron1 the laser and thus pre,,enting "thermal runa,va:y.~~ 

4.2.6.2 Laser Dri\'er Circuit 

The laser driver circuit provides bias and leve] control circuitr)' so as to proper}}' 

modulate a se111iconductor laser. 1'he circuit ha.s t,vo 1na.in sections~ the RF 

combiner/ .. l\.C driver suocircuit.. a.nd the DC bia.s subcircuit. 

4.2.6.3 DC Bias Su bcircuit 

The DC bia.s circuit consists of the turn-on circuit, the bias current circuit, a11d tl1e 

bias transistor a.nd transistor dri\'er. These a.re sho,vn in the lo,ver half of figure 4-2. 
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The circuit centers around the Sharp IR3C01 chip, which is an integrated circuit 

specificaJ1.Y designed for closed-1001) Ja.ser control. This chip monitors the internal 

laser PIN diode to detect the output light level, and adjusts the output current from 

pin 1 to keep the laser power output consta.nt. 

Pin 5 is a la.ser enable TTL input connected to a turn-on circuit k~hich provides· a 

delay of several \Vhen the po,ver is first applied. This delay in turning on the laser 

prevents initial po\ver surges fron1 affecting the laser output~ as \veil as allo,ving tl1e 

user of the s.ysten1 to n1ove a.,,·a.')' fro111 the bea.m. Sucl1 a ti111e dela.J' is required b)' 

la\v, a.s is a. ke)' s,vitch for turning on the laser S)'Stem. Once the laser turn-on s,vitch 

is thro\vn, the lOµF capacitor charges through the llVIn resistor. The follo,ving op 

1, 

amp sta.ge is configured as a con1para.tor_ and the 5\/ zener diode i11 the feedback 

loop lin1its the out.put high \'C)ltage tc) .1 \/. In several seconds~ the rising capa.citor 
. -, 

volta.ge changes the cornparator out.put +.5\,·. 

The varia.b]e resistor bet,veen pin 3 a.nd 4 sets the desired le,,el of laser curre11t. The 

laser output at pin 1 connects to an inverting op amp, \Vith unit~y ga.in. This 

amplifier is used to in\rert. the positive voltage signa.1 fron1 the IR3C01 chip. so that 

it can properlJ· drive the PN P TIP32 .. .\ tra.nsistor. This transistor controls the 

la.ser's DC~ bias current. ,vhich is set at approxi1na.telJ' 12.5111.i\.. 

In order to pre\•ent the injected 100 1\·1Hz or 50 1\·1Hz .1\.C co1nponents fro111 changing 

the DC bia.s of the circuit, the 2 µ.ll inductor in series ,vith the laser acts a.s a RF 

choke, preventing the HF con1ponent.s fron1 pa.ssing through the tra.11sistor. Since. a.t 

100 l\1Hz, the inductor's reactance is over 1I(n. tI1us n1ost of the RF currents ,vill 
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flow through the 50 ohn1 load. 

4.2.6.4 RF Combiner/ AC Driver Subcircuit 

Both the 50 MHz and 100 MHz signals are combined at the input of a MDF581 HF 

transistor, which can be seen in the top of figure 4-2. Once the DC bias current is 

set at 1251n.i\, the transistor ca.n f ulJjr modulate the laser bet,veen the laser threshold 

current of approxin1ately 100111 .. .\ and the laser· maxim um current of 150m .. :\. The 

50Q variable resistor in the transistor ba.se is used to set the .. i\.C output current le\1el 

of the an1 p]ifier. 

The output impeda.nce of the transistor an1plifier is 50 oh.n1s. To n1i11in1ize reflected 

power~ the a.n1plifier source inipedance and la:ser load in1pedance n1ust be n1atched. 

In order to provide a properl.v 111atched Ioa.d for the a.n1plifier. the la.ser circuit n1ust 

be constructed so that it~s ?quivaJent in1pedance is 500. Since the laser has a 

d.ynan1ic resista.nce only several ohn1s. a 500 resistor is pla.ced in series ,vith the laser 

i~l order to increase it's in1pedance to a.pproxi111~.tel~y 500. 
' •,:, ...\ 50Q coaxial 

transn1ission line connects the 50D output of the an1plifier to the 500 resistor and 

laser. 

4.3 Receiver 

The function of the recei\rer circuitr)r is to detect, an1plif)," a11d demodulate tl1e 

received optica.J signal. The circuitr)· to do tl1is ca.n be di,,ided into the front-e11d 

subcircuits and the den1odula.t.or subrircuits. 
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4.3.1 Receiver Front End 

Of most importance to the optical receiver are the photodetector and the following 

low noise preamplifier. Together, these two elements dictate the receiver sensitivity, 

noise characteristics, and o,,erall perfor1nance. Sensitivity is a function of both the 

photodetector and the follo,ving prea,n1plifier. The photodetector and the amplifier 

can compensate each other in perforn1a.nce. that is, a good photodetector \vill 
r alleviate the lo\\' noise requiren1ents 01Y the a111plifier, and vice versa .. Ho,veYer, in 

order to achieve the ultin1ate perforn1ance in receiver sensiti,,it,·. both ... , the 

photodiode a.nd the a.mpijfier have to be equall)r good (\ian 1\-fuoi). 

4.3.1.1 J\vala,nche Photodetector (:\PD) 

Since only a sn1all portion of the laser out.put is focused on the photodetector b~, a 

lens, a sensiti\'e photodetector n1ust be used. ...\va.la.nche photodetectors 111ade fron1 

different n1ateriaJJ provide high sensitivit~y. but ha.ve different noise and te111perature 

cl1aracteristics that 111 ust be considered. 

4.3.1.1.1 APO Fundan1entals 

APD photodetectors are diodes that convert incident light i11to curre11t. \ 1\ll1e11 tl1ese 

diodes a.re reverse biased nea.r their brea.kdo,vn poi11t., they a111plify tl1e small 

photocurrents bJ' usi11g the a.va.la.nche multiplication phenon1enon within the 

photodiode. These devices a,re useful when the i11cide11t light, ¥d tl1us tl1e 
t, ." 
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photocurrent, is very small. From the circuit viewpoint,, the APD looks like a 

current source (Personick). 

APD's are similar in construction to PIN photodiodes, except that the doping of the 

junction material is altered,-which changes the IV chatacteristic near the reverse-bias 
' 

avalanche breakdown (Katzman). While reverse biased near the breakdown voltage, 

incident photons generate electron-hole pairs which in turn generate multiple 

secondary electrons-hole pairs in the PN junction. 

If an electron has a probability P of creating a secondary electron hole pair, then the 

average total number of carriers, M, resulting from the initial electron is the sum 

total of 

M = 1 + p + p2 + p3 + ... pOO = 1 ! p 

where the first term is the initial carrier, the second is the probability that the 

injected ca.rrier generates a secondary carrier, the third term is the probabilit)' of the 

secondary carrier generating a third, and so forth (Jones). 

P is a very sensitive function of the voltage. In the dark limit. it is given by . ~ 

> 

P= n 

where V hr is the .breakdown voltage, and n is an experimentally determined constant 

(Jones). 
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Thus, 

M(V) = 
1 -

APD multiplication is similar to the action of a photomultiplier tube. The inherent 

gain of the APD is determined by the bias voltages; typical average avalanche gains 

range from 10 to 100. These gains are averages, si,nce not every photon generates 

exactly M electrons. This variation causes what is known as excess noise. The 

excess noise factor, F( M), is defined as 

and is the ratio of the actual noise to that which would exist if the multiplication 

process was noiseless (i.e., all photons generate exactlJ· M electrons). The avalanche 

excess noise factor F( M) is given b~y 

F(M)=kM +( 1-k)(2-1/M) 

where k is the ionization constant for the device. 

4.3.1.1.2 Dark Current and Multiplication Noise in APD's 

With no optical signal present, the main source of shot noise in APD's is due to dark 

\ 

current. Dark current .. """is the sum of the leakage current that flow through the 

' . 
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photodiode when no light is i11cident on tl1e photodiode. Dark current, Id, is the sum 

of the surface leakage currents, Idu ,vhicl1 do not undergo APD multiplication, and 

the bulk leakage current, Id 111 , ,vhich is subject to APD multiplication. Thus, the 

total dark current is given h.Y 

Id = Id + M ·I, u am 

where i\1 is the avalanche 111 ulti plica.tion • gain. Because of the avalanche 

multiplica.tion proces·s~ the noise contributions of these t\vo da.rk current components 

are significantly different. The po,ver spectra.I densit)' of the noise current due to 

dark current is gi,,en by 

~ ' a- = 2eld +2eld i\1-F(M) 
U 111 

l 

where e is the electron charge. F( I\1) is the a,,a.la.nche excess noise fa.ctor. as abo,,e. 

If the AP D is used ,vi th a. rn oder ate 111 u 1 ti p]ica.tion ga.in. the 2eld i\1 2 F( i\11) ter111 
111 

dominates, and the 2eldu co111ponent can be neglected (\/an lv1uoi). 

The a.,,a.lanche excess noise factor F( i\·1) is gi,.ren b.Y 

F ( I\ 1 ) = k iv1 + ( 1-k ) ( 2- 1 / i\·1 ) 

where k is ionizatio11 ratio consta.n t of the device. For silicon detectors, a t)'pical 

value of k is 0.02. For tl1e ra11ge 1000>!\1~1, and witl1 k=0.02, F(i\1) ca11 be well 

approxima.ted by M0·25 . Thus~he power spectral density of the noise due to dark 
..... ~ 
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current, adm 2
' is well approxin1ated by 

C 

') 

(J -
din 

Dark current is highly te111perature dependant; a good a.pproximation for the 

temperature coefficient of da.rk current is tl1at dark curre11t doubles for every 10° C 

increase in operating temperature. Lo,v te1nperature operation is desirable, since shot 

noise due to dark current is the main factor limiting the sensitivit)' of optical 
r 

receivers ( \ 7 an 1\1 uoi). 

Multiplication of signal JJhotucu1·rr:11ts are also subject to excess noise in the 

n1ultiJ)lication process. ]11 fact. if t.lie photocurrents are n1a.n~' tin1es larger than the 

dark currents, the noise due to dark currents ca.n Q.~ neglected, since the n1a.in source 
' 'I -~ 

of noise in the APD ,vill be due to excess noise in the multiplication of 

photocurrents. The spectral noise densit.Y. O"p 2 , caused b)' tl1e 111ultiplica.tion of the 

photocurrent Ip is 

•) •) ·,5 - - ·> I 1\11- · -ap - _ e p 

where Ip = R Nd, R being the responsi,1 it.)' of tl1e APD (in A/,~'), a.nd Nd is the 

incident optical po,ver ( in \\; atts). 

4.3.1.1.3 .-\PD I\1ateria.ls a.nd Oe\'ice Perforrna.nce 

Curr_entl~y, the APD 's with the best performa11ce are made from silicon. Silicon 
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devices respond best in the spectral region from approximately 0.5µm to 1.0µm. 

Significant progress had been made in improving long-wavelength (l.Oµm to 1.6µm) 

detectors made from other materials, however dark currents still remain many times 

dark currents of silicon APD's. For example, a typical silicon APD may have a total 

dark current of lnA, but an InGaAs APD may have a dark current of lOnA. 

Furthermore, Ge APD's may have dark currents of 100 to lOOOnA. Since silicon 

APD's offer the lowest dark current and thus the_ least noise, they offer the best 

performance (by a minimum of lOdB) in the 0.5µm to l.Oµm region. The 

improvement of long wavelength (1.0-1.6µ) APD's using 111-V materials is still under 

research and development. (Van Muoi) 

4.3.1.1.4 APD Temperature Compensation 

In practical use, an APD must be temperature compensated. This is because the 

gain of the APD is dependant on the breakdown voltage, and the breakdown voltage 

is dependant on temperature. Thus, with temperature compensation, any change in 

temperature will not change the APD gain if the APO bias voltage is adjusted 

accordingly. A compensation circuit to do this is shown in figure 4-4. 

The 100k potentiometer is used to set the APD bias voltage for a certain 

temperature. If the temperature changes, the output of the LM3911 temperature 

sensor changes, and the difference between the actual temperature and the set 

temperature (the temperature 'error' signal) is inverted by the 1458 op amp and fed 

to the following stage. The second op amp of the 1458 adjusts the APO bias voltage 

by driving the high voltage transistor in a 'shunt-type reg·ulator configuration. As the 
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temperature increases, the op-an1p slo,vly turns off the .regulator transistor. This 

results in less current being dra.,vn through and less voltage dropped across the 58k 

series resistor, and increases the APD bias voltage as temperature increases. The 

voltage divider formed by the 200k and 10k resistors is used by the second op-amp 

to sense the voltage at the cathode of the APD, thus forming a negative feedback 

loop. 

4.3.1.1.5 Selection of APD 

The pa.rticular APD used for this a.pplica.tion is the Mitsubishi Silicon Avalancl1e 

Photodiode PD1005. It ha.s a brea.kdo,vn ,,o}ta.ge of approximatel)' 150\1, a. dark 

current of approxin1a.tel:y 0.3n.-:\. a responsivity of 0.4 A/\\1, and a cutoff frequenc)' 

of 4 0 0 i\1 Hz . 

4.3.1.2 Preamplifier Design Techniques 

Since the 
. 

noise perforn1a.nce ()f a S}'sten1 is n1ostlv detern1ined ., bv the v 

. 
noise 

perforn1an ce of the detector a II d ii rst stag,~ of a.111 plifica.tion, careful design of the 

prea111plifier is crucial. 'I~he goal of designing a. lo\v noise front end is 111inin1izing the 

contributions of various sources of noise, fro1n botl1 tl1e APD and the preamplifier. 

Three designs of the first an1plifica.tion stage can be used; resistive termination, high 

in1pedance (integrating) prea111plifiers, and tra11sin1pedance preamplifiers . 

• 
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4.3.1.2 .1 Resisti,,e Tern1ination 

The most straightforward method is to terminate the photodetector in a load 
II 

resistor R. APD photocurrents will then create a voltage across the resistor R, with 

R acting a.s a current-to-voltage converter. While this approach has the advantage 

of being si1nple, it l1a.s been sho,vn to be excessively noisy in comparison to otl1er 

techniques (Smith & Personick ). For exa.1nple, a 750 resistor has 10() times more 

thermal noise and 100 times less gain than a typical 71(0 transimpedance amplifier. 

4.3.1.2.2 I-Iigh Impedance Prea.n1plifiers 

An a.lternative approach is oft.en referred t.o a.s the high i1111Jedance or integrating 

front end. Considera.ble i1n proven1en t in noise perfor1na.11ce can be achie,1ed o,rer 

the sin1ple resistive tern1ina.tion (Personick). Ho\vever, the result of opti1nizing tl1e 

preamplifier for best noise perforn1a.nce is an undesirably narrow bandwidtl1. This 

situatio11 is remedied by subsequent equalization which can be performed with little 
\\ 

or no noise penalty (S111ith). 1'he degree of equalizatio11 will depend on the parasitics 

of the circuit, thus "·tuning" n1a_)' be required of ea.ch unit to n1atch the cutoff and 

pick-Uf) frequencies of the a1nplifier a.nd equa.lizer~ respectivel.Y (Hullet and Muoi). 

Typically~ these prea1nplifiers 111 ust be equa.lized over many decades of frequency. 

The most serious dra\vba.ck of this a.pproacl1, however, is tl1e loss of dynamic range 

resulti11g fro1n equa.lization a.nd the high input impedance (Smith). In addition, 
i 

baseline \Vander effect is 111ore severe due to the integratidn effect of long strings of 

"ones" a.nd ''zeros" i11 the input <la.ta strea1n, th us necessitating tl1e use of a line 

coding sche1ne that is DC ha.la.need. The higl1 i1npeda11ce preamplifier approach is 
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used extensively in nuclea.r engineering and other applications where individual 

photons n1ust be counted. 

4.3.1.2.3 Transimpedance Prea.n1plifiers 

The third approach, and the one employed here, is to use a transi1npedance 

.. ,, ~ arr1plifier, ,vhich is essentia.ll:y a. current-to-,,oltage converter. When con1pared to an 

optimized. equalized high-in1pedance a.mplifier, a transi1npedance amplifier/ APD 

combination requires only approxin1a.tel.Y 1 dB 1nore optical power to obtain the 

given error rate. Circuit si111plicit)r. elin1inating the need to emplO)' equalizatio11, and 

;increa.sed d}rnan1ic range are the a.d,,a.nta.ges gained b:y accepti11g this 1 dB difference 

in perforn1ance (Sn1ith). 

A simplified dia.gra.1T1 of the tra.nsin1peda.ncc a111plifier is sho,vn in figure 4-3. In the 

limit of la.rge gain. the output volta.ge \/0 is related to the input current, i, by the 

relation 

where Zf is the feed back in11)eda.nce. Transin1pedance amplifiers are less noisy for a 

given band,vidth, or a.lternati,,ely, ha.ve 1nore band,vidth for a given noise level. ,, 

In pri11ciple, the prean1plifier gai11 can be increased by increasing the feed back 

resistance Rf. Howe,,er, the feed back resistance ther1nal noise of a transimpedance 

amplifier is norm all)' a significa.n t J)ortion of the total noise, th us there is a 
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compromise between noise perforn1ance and gain. Since the APD looks like a current 

source ,vith infinite impedance (Personick), it is best· matched to a high-impedance 

load. If \vide-band 500 amplifiers are used, the sensitivity of sucl1 systems are limited 

due to the low amplifier input i111pedance (l(asper"et al). 

4.3.1.3 Use of Transimpedance An1plifier 

In the S)'Stem design~ a. Signetics N E5212N tra.nsimpeda.nce amplifier is used. This 

a.mplifier has been optin1ized at the fa.ctory for high perfor1nance. The resulting 

amplifier ha.s an equivalent transin1pedance of 7I(f?, a. ba.nd,vidth of 150 l\1Hz, a11d 

. . f ~ ,, ') /H 1/2 an input noise current o in-=:.. .. Sp~L\. z . 

. 
The use of the transin1peda.nce an11)lifier is sho,vn in figure 4-4. The input is AC 

coupled to the i\PD, and the output is connected to the demodulator circuit. In the 

completed con1munication link opera.ting over a 3 kin. distance, the i11put to tl1e 

transi111 pedance a.111 J)lifier P-P and ' 
. 
IS the output a.pp ro xi 111 a tel ~y 

. 
lS lOµA 

approxin1atel:y 100 n1\/ P-P. 

4.3.1.4 Optimization of Noise Perfor111a.n ce 

The signal-to-noise ratio of the i-\PD/prea.n1plifier co1nbination can be maximized 

with the proper choice of the AP D 111 ultiplication rate. For the system u11der 

consideration, tl1e opti111 u1n n1-ulti plication rate is i11 the 50-100 range. 

At first, it 111ay see1n tha.t the signa.l to noise ratio can be increased to arbitrarily 
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high levels by increasing the APD ga.in without bound. However, increasi11g the 

APD ga.in adds more noise to the system due to the increased multiplication of dark 

currents a.nd increased n1ultiplica.tion excess noise. There exists an opti1nu1n APD 

gain wl1ere the signal-to-noise ratio is 111axirnized for a given incident optical power. 

In general, the optimum avalanche gain is such that the detector shot noise is 

comparable to the receiver an1plifier noise. Thus, the better the photodetector 

(lower dark current and excess noise), the higher the optimu111 avalanche gain. 

Simila.rl)r, the better the a.n1plifier (lc)\Ver noise current i11
2 )~ the lo,ver the opti1nu111 

avalanche ga.in. ( \ 1 a.n lVI uoi) 

To a,naJyze this quantitativeljr, ,ve 111ust consider both the signal and the noise 

photocu rren ts in turn. \ 1
\ 1i th an optical sig11a.l incident on the APD, the sigrial 

photocurre11t. ls. is 

where R is the responsivit~y of the .. .\.PD (in An1peres/\i\7att ), 1\1 is the multiplica.tio11 

rate, and Nd is the ~ptical po,ver incident on the photodetector. 

The noise photocurrents are the sun1 of 111ultiplication 11oise in the APD due to dark 

currents and photocurrents, a.nd noise ge11erated b~y the transi111pedance a1nplifier. 
'll ,r,;:;;, 

In this e,xample, we assu1ne that the excess noise due to multiplication of dark 

currents is negligible, and thus tl1e n1a.in 11oise component from the APD is due to 

multiplication noise of the photocurrents. 
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The spectral power density ( power per unit Hertz) of the APD multiplication noise 

due to photocurren ts is approximately ( as above), 

2e I M2·25 p 

If the transimpedance amplifier has an equivalent noise power spectral density in 2 at 

it's input, then the RMS total of the noist: photocurrents, ~I\ot' is the RMS sum 

of the a.111plifier noise, in 2 , a.nd the excess noise due to APD multiplication of the 

photocurren t: 

,v l1ere e, the electron charge, is 1.6 x 10-19 , a.nd B is the bandwidth of the system in 

Hertz. 

The signal to noise ratio (SNR) is the ratio of tl1e signal and noise pl1otocurrents, 

thus 

SNR 
~ 

\J .i tot 

A plot of SNR., vs. the n1ultiplication rate M is shown in figure 4-5 for optical power 

levels and noise levP-ls 111odeled for the constructed at1nospl1eric laser comn1unication 
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link. From these plots, once ca.n see that · the optimum multiplication rate is 
j, 

approximately 50-500, depending on the i11cident optical power. The transimpedance 

amplifier in this example is a Signetics SE5212, with~ in 2 = 2.5pA/ ~Hz. In clear 

weather the optical power is approximately Nd=l0-6 Watts; this decreases under 

adverse weather conditions. Tl1e responsivity of the APO modeled is 0.45 

Amps/v\'att, and the bandwidth of the system is 50 l\1Hz. 

,r--, 
\ 

\ 

As the figure clearly shows, the syste1n ha.s a rapidly rising SNR which then peaks 

and then slo,vl.Y decrea.ses ,vith further increases in 1\1. Even though the maximum 

SNR is obtained a.t one value 1\rl ~ APD ga.ins above 1\1 produce SN R's that are only a. 

fe,v dB's from the opti1nu111. For APD gains below M, the system SNR's decreases 

dramatica.ll.y. Thus, it is desira.ble to ha.ve the APD multiplication gain at or above 

tl1e opti111un1 gain, 1\1~ once it is found. 

To derive an expression for the optirn um gain M, the partial derivative &~~1R can be 

taken a.nd set equal to zero to find the maximum: 

DSNR fJ 
81\1 == O == o!vI 

Tl1e result is 

rv1 

• 

which is the expression for the opti111u1n multiplication rate for maximized SNR. 

Note that the optin1u1n gain is independent of the bandwidtl1 of the system. 
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·we ca.n use this forn1ula to find the opti1num gain for the designed systen1 under 

adverse ,veather conditions. If \Ve assume Nd= 10-8 watts ( typical 20dB loss under 

adverse weather conditions), and using the values above for in 2 and R, we obtain an 

optimum gain ~1 of 110, which is the peak of the 10-8w curve in figure 4-5. 

In order to ensure good perforn1ance over a wide range of received optical po,ver, 

Nd, the S)'stem SN R sl1ou]d be optimized for the lowest optical po\\'er levels 

expected. At these Je\'els, ,vbere the SNR. is the lo,vest~ optin1ization of the SNR is 

criticaJ. On the other hand, at high OJ)tical po,ver levels, even suboptimal choices of 

~1 will result in SN R's higher than those obta.inable with Io,v optical power levels. 

4 . 3 . 2 De 111 o d u J a tor c: i r c u i t r \, 
., 

A functional dia.gran1 of tl1e BPSI~ de111odulator circuitry was shown in figure 3-1. 

Once the optic?'} signaJ is detected a.nd an1plified by the APD a11d transimpedance 

amplifier~ the signaJ is pa.ssed to a. lin1iter. This limiter removes any amplitude 

variations in the signaJ. The nonlinear li1niting creates harmonics which are remo,1ed 

by the following 50 l'v1Hz and 100 MHz filters. The 50 MHz reference signal is 

detected b,y a. PLL, and doubled in frequenC)' to obtain a 100 MHz carrier used for 

demodulation. The inforn1ation conta.ined i11 the sidebands centered at 100 MHz are 

mixed do,vn to baseband, a.11d the ca.rrier ren1oved witl1 a low pass filter. From the 

output of the lo\\1 pa.ss filter, a threshold detector determines which of two levels 

l1ave been sent. 
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The limiter follo,ving the transi1npedance amplifier allows a wide dynamic range of 

signals to be used by the following demodulator without using an automatic gain 

control. Furthermore, a limiter removes any AM fluctuations on the BPSK signal, 

and can in1prove the SNR by 3dB. The limiter circuit design, shown in figure 4-6, 

is based a.round two differential pair amplifiers made up of a pair of high frequency 

transistors. These differential pa.irs ha,,e one 'input' shorted to AC ground, thus 

making a. single ended a.n1plifier. This differential pa.ir of transistors can be sl1own to 

begin lin1iting ,vhen the input (at the base) is cha.nged ±70m\1 from it's bias point 

(Smith). Thus, the differentia.l pa.iris easily driven into saturation. TI1is allo,vs 

limiting at a. lower dri,1 e level tha.n if a. pa.ir of back-to-ba.ck diodes ,vere used, which 

clip at approxin1a.te]y ± 700111 \'. 

This constructed li1niter begins Jin1itjng a.t approxin1atel~y ±75m\i (-12dB1n)~ in good 

agree111ent ,vith theoretical value of ± 70111 \.7. Since the transimpedance amplifier and 

the 1\1 .. q_R n1on0Iithic a111plifiers a.re li111ited in their drive capability, the d)'namic 

range of ea.ch lin1iting stage is restricted to a. ra.nge of 17 dB, fro1n -12dBm to 5 

dB1n. T,vo limiting stages are used to give a total lin1iter dynan1ic range of O\'er 30 

dB. These sta.ges are coupled together \Vitl1 rv1AR1 a.nd l\1AR4 amplifiers, wl1icl1 

give a total of 25 dB of a.n1plifica.tion. If the signal passes u11limited through the first 

limiter stage, it is amplified sufficiently so that it will be limited by the second 

limiter stage (if, of course, it is in tl1e 30dB clipping range of the entire limiter). 
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4.3.2.2 Filters 

The filters following the limiter remove the harmonic and intermodulation 

components generated by the limiting process. There are two filters: a narrowband 

filter at 50 MHz to isolate the reference signal, and a 40 MHz wide bandpass filter 

centered at 100 MHz to isolate the BPSK sidebands. 

The 100 MHz bandpass filter ha.s a. S)'mmetrical Butterworth respo11se with a 

band\vidth of 40 NIHz. Four parallel resonators forn1 this filter. The t,vo end 

resonators have a resonant frequenc.Y of 100 1\-1Hz~ a.nd serve to short to ground a.n)' 

signal not near the filter center {requenc)· a.nd aJso pass those tl1at are. The center 

resonators, on the other hand. resonate 65 1\1Hz and 145 MHz and prevent sig11als 

fron1 passing through tl1e filter near the pa.ssband edges, but pass signals that are 

not nea.r the pass ba.nd edges. The result of these resonators combined action is a. 

bandpa.ss response. The individ ua.l ca.pa.citor a.nd inductor values are chosen to give 

the desired resonant frequencies and. to n1a.tch the 50f2 i111pedance le\1el in the 

passband. 

The 50 1\JHz filter is constructed fro111 t\vo tuned transformer reso11ators. TI1ese t,vo 

stages are separated b,y a 1\1.L\Rl buffer a.111plifier, so that tl1e first resonator does not 

load the second. This 1n a.kes for a. high Q filter about 50 1\1 Hz. 

4.3.2.3 50 1\11 Hz PLL Co11struction 

A phase-locked loop ( PLL) follo,vi11g the 50 lVIHz filter is used to lock on to the 50 

--
' i 

•. .. ' 



MHz reference signal. The PLL acts as a very narrow bandwidth (200 Hz) filter, 

thus improving the 50 MHz reference signal SNR by rejecting out-of-band noise. The 

50 M.lJz PLL constructed, sho,vn in figure 4-7, consists of a VCO, a low pass filter, 

',. phase detector, and autozero circuit. The voltage controlled oscillator is almost 

identical to the oscillator used in the BPSI{ modulator, except a varactor diode has 

been added so that the oscillator frequency can be c;hanged with a control voltage. 

The output of the 50 1\1Hz oscil1a.tor is an1plified by two buffer amplifiers to avoid 

loading the oscillator. The each an1plifier consists of a 2N918 high frequenC)' 
e 

transistor in an. emitter follo,,·er configuration that provide a high i1npedance input 

and lo,v i1r1pedance output. The output of one a1nplifier is the \!CO frequency, 

\vhich is then used b,y the den1odula.tor }Joa.rd as a 50 1\1Hz reference signal; tl1e 

other an1plifier output drives tl1e ivtini-Circuits LPD1 phase detector. The LPD1 is 

simply a n1ixer optin1ized for use a.s a. pha.se detector. It's output 
. 
IS the lo\v 

frequenc}' product of the 50 !\1Hz \ 1CO and the input signal. 

Tl1e lo\v frequenC)' output of the pha.se detector passes to the active loop filter, 

which is a.n op a111p in an inverting lo,v pass filter configuration witl1 a -3dB 

bandwidth of 20 Hz and ,rariable gain fro111 40 to 80. The offset trim pot is used to 

null an)' op amp offset volta.ge. The output of the a.ctive filter drives the VCO's 

va.ractor diode connected in series ,vith a. 3.21( curre11t limiting resistor. The varactor 

diode is AC coupled to the oscilla.tor, a.nd by var)'ing the reverse bias voltage across 

the diode the diode's capa.cita.nce ca-n be cha.nged by several picofarads. This cha.nge 

in capa.citance can i11 turn change tl1e oscillator frequency by up to 2. 75 kilohertz, 

the lock ra.nge of the PLL. The 51( pot co11nected to the cathode of the varactor 
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diode is used to set the free running frequency of the oscillator. Furthermore, the 

auto-zero circuit, also connected to tl1e cathode of the varactor diode, forces the PLL 

steady state phase error to zero by integrating the DC output of the loop filter. The 

DC output of the filter is a result of op a.mp offset voltages as well as a constant 

phase difference between the 50 !\1Hz input and output waveforms. This level, 

which ca.n be read on the 25µ~1\. meter connected to the integrator/ Auto-Zero circuit, 

also influences the reverse bia.s voltage across the varactor diode. 

4.3.2.4 PS I~ Demod u]ator 

The den1odu)ator circuit. sho\vn in figure 4-8, recovers the digita.1 data strea1n fron1 

the BPSI\ rnodulated signal centered at 100 ~tJHz. Since the 50 1'V1Hz and BPSI{ 

signals pass through different su bcircuits on their ,va,}' to the de1nodulator, a11~y 

resulting phase difference is corrected b~.1 using a coaxial cable dela~y line. Since the 

BPSI( signal centered at 100 ~11Hz consists 011l~y of t,vo sidebands and no carrier, a 

100 :t\1Hz carrier n1ust be reconstructed at the receiver for der11odulation. To do this. 

the 50 ~111Iz reference signal is an1plified in order to drive the :rv1ini-Circuits S1(2 

freq uenc.r doubler. The output of the doubler is a 100 ~11 Hz signal ,v hich is i11 exact 

synchronization ,vith the tra.ns111itter~s ca.rrier oscillator. Then, the 100 i\-1Hz BPSI( 

sidebands a.nd the reconstructecl ca.rrier are mixed b~y the ASl(l Mixer. This mixes 

the BPSI( signal do\vn to baseba.nd. The output of tl1e mixer is a11 a11alog bipolar 

signal, representing the level of each bit. The NE527 volta.ge co111parator con,,erts 

the a.nalog bipolar le\-'el representing ea.ch bit into t,vo con1ple1nentar)' TTL Je,,els for 

data output. An exa.n1ple test signal received O\'er this a 3kn1 test li11k is sl1own in 

figure 4-9. 
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Test Signal Received with 3km System 

Digital test sequence received O\'er the 

3 kn1 atmospheric laser communication link. 

( 2V /div. \rertital~ 0.2µs_/d·iv. horizontal) 

Figure 4-9 
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5. OPTICS 

5.1 Introduction 

The functions and optical design considerations for the transmitter and recei,,er 

optics are distinctlj' different. In designing the transmitter optics. ,v hich forn1s a 

collimated beam fro in the laser output. there are design coin pro111ises bet,veen 

bean1\vidth and pointing accuracy.· bean1 sha.pe, and laser astign1atisn1. In designing 

the recei,,er optics, ,vhich focuses a. s111a.ll portion of the beam on the photodetector~ 

there are con1pron1ises bet\veen signal level. acceptance angle. lens diameter. focal 

lengths. lens correction. and 1111n1n1un1 spot size. \\,~eighing these fa.ctors. the 

transn1itt.er and recei\·er optics \Yere assen1bJed a.nd tested. T·he transn1itter has an 

optical JJO\,·er output of 40111\\~ (peak). \\·ith a. ln1R b:y 2111R bean1,vidth. The 
/ ----

receiver has a 3n1R acceptance angle .. ,,·ith a focused spot size 1nuch s111aller than tl1e 

detector. 

5.2 Tra.nsn1itter Optics 

The goal of the trans1111tter optics is t.o collin1a.te the n1odulated laser output and 

direct this s111a.ll divergence bean1 at the receiver. The trans111itter lens 111ust be 

optica.ll)' 111atched to the cha.ra.cteristics of the la.ser source~ and an appropriate 

bea.n1 \Vid th collin1ator 111 ust be selected and constructed. 
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5. OPTICS 

5.1 Introduction 

The functions and optical design considerations for the transmitter and receiver 

optics are distinctly different. 111 designing the transmitter optics, which forms a 

collimated beam fro1n tl1e laser output, tl1ere are design compron1ises between 

beam width and pointing accuracj', beam sl1ape, and laser astigmatism. In designing 

the receiver optics, wl1ich focuses a s111all portion of the beam on the photodetector, 

there are con1pro1nises bet\veen signal level,. acceptance angle, le11s diameter, focal 

lengths~ lens correction, and n1inin1un1 spot size. \ 1'leigl1ing these factors, the 

transn1itter a.nd receiver optics ,,·ere a.sse111bled and tested. Tl1e trans1nitter l1as an 

optical po,ver output of 40111\\7 (pea.k)~ ,vith a ln1R by 21n.R beamw-idtl1. The 

receiver ha.s a 3mR accepta11ce a11gle, ,vitl1 a focused spot size much smaller than the 

detector. 

5.2 Transn1itter Optics 

The goa.l of the tra.11s111itter optics is to collimate the 1nodulated laser output a11d 

direct this sma.ll divergence bea.111 a.t the receiver. The transmitter lens must be 

optically matched to the cha.racteristics of the laser source, and an appropriate 

beamwidth collimator must be selected and constructed. 
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5.2.I Se1niconductor Laser 

Since semiconductor lasers are rugged, small, inexpensive, and can be easily 

modulated, they are the laser of cl1oice. The output beam of a semiconductor laser is 

a Gaussia11 beam with elliptical cross section. Along the major and minor axes of the 

beam cross section, the Gaussian inte11sity distribt1tion is given by 

2 P 0 2r2 /a2 
,, P( r) = 2 e 

n a. 

where P O is the total output po,ver~ P( r) is tl1e i11te11sity at distance r from tl1e beam 

center, a.nd a. is the radius \vhere the intensity falls to l/e2 along the major/1ni11or 

axis. Typically, specifications for such lasers give the beam.width between the 1/e2 

points a.long the 1najor and n1inor a.xes of the outJ)ut~1.be_<&.~n 's elliptical cross sectio11. 
I 

The focal point along the major or minor beam axis is the point where the 1/e2 

beamwidt.I1 li11es intersect ,vithin the laser. The major axis and tl1e 1ninor axis focal 

points are different, typical})' b}' se,,era.J micro11s. TI1is is referred to as the laser 

astigma.tisn1~ and it can be corrected ,vith a cyli11drica.l le11s which moves the focal 

point in one plane, but leaves the focal point in the perpendicular plane unaffected. 

The particular laser selected ,vas a SLD202 V-3 50 mW Higl1 Power Semiconductor 

Laser Diode made by S011)'. It ha.s a. ,vavelengtl1 of 820 11m,· i11 the near-infrared 
v' 

region. The beamwidths 1nea.surecl pa.ra.llel and perpendicular to the beam minor 

axis are <P 1-= 28° and <PII = 13". The lase1· has an astigmatism of ZU-Z 1-= 40µm. 
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5.2.2 Limits on Collimation and Bean1 Diameter 

Under the laws of geometrical optics, a. Gaussian beam diverging at ·an angle of () 

from a point should be able to be perfectly collimated. In reality, a Gaussian beam 

either diverges from a region where the beam is smallest, called the beam waist, or 

converges to one. The amount of divergence or convergence is measured by the full 

angle bea111 divergence 0, which is the angle subtended b1y tl1e 1/e2 dia1neter points 

for dista.nces far from the bea.111 ,va.ist. 

The far field beam divergence of a Gaussian beam is given by 

(} - 2..\ 
- ?ra 

where B is tl1e full angle bea.n1 divergence 111easured a.t tl1e 1/e2 i11tensity points. .,\ is 

the wavelength of the ra.dia.tion. a.nd a. is the bea111 radius a.t tl1e bea1n waist. Fro1n 

this equation, one can see that zero diverge11ce is impossible, and that in order to 

obtain a divergence of 1 mR, tl1e beam diameter. must be at least 1 mm. Smaller 

diverge11ces require larger out.put bea.111 dia.n1eters. 

5.2.3 C0Ili111ation Require1nents 

Although it is physically possible to obtain beamwidths of a few . tens' of 

microradians for use i11 an atmospl1eric laser communication system, it is usually not 
. ., 

practical to do so for several reasons. First, a small divergence requires a large 

beam waist, and thus larger, 111ore expensive lenses. For example, a beamwidtl1 of 
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V lOµR requires at least a lOOn11n lens. Next, the transmitter may shift due to 

vibration or thermal expa11sion. Also, the initial alignm·e11t of systems with very 

narrow beamwidtl1s can be ti111e co11suming. Furthermore, atmospheric turbulence 

over paths of many kilometers can deflect the transmitted beam by up to 100 

microradians. 

In order to keep the transmitted bea1n on the receiver, systems with beam widths on 

the order of one milliradia.n are the 111ost pra.ctical. compromise between receiver 

signal strength a.nd pointing accura.C)'. Narro\ver bea.111,vidtl1s \\1ould only become 

practica.l if a.n a.uto111atic pointing circuit ,vere used to con tin uousl~y con1pensate for 

pointing errors. 

5.2.4 Su1nn1ary of 'Transmitter Optical Considerations 

First, the laser astig111atis111 111 ust be corrected ,vith a cyli11drical le11s. Second, the 

entire la.ser output should be directed a.t tl1e colli1nation lens. Next, the output 

beamwidth sl1ould be approxi111atel)' lmR. Furtl1ermore, the output beam should be 

larger tl1an 1 n1n1 i11 dia111eter, \V hich is the bea.111 waist size for a Gaussian beam with 

lmR diverge11ce. 

5.2.5 Transmitter Optics Co11struction 

A diagram of the assembled trans1nitter optics is shown in figure 5-1. It consists of 

a custom cylindrical lens whicl1. corrects for the Jaser astigmatism, and a collimator 

lens, ,vhich collimate the laser output to a 1 mR by 2mR beam. 
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The custom cylindrical lens was manufactured by Optics for Research. This lens 

obeys the tl1in len·s equation 

l _ l 1 1- a - b 

From figure 5-1, oue ca11 see tl1at tl1e astig1natism of the laser,- D, is 

D=h-a 

Substituting b=D+a i11to the thin lens equation, one ca11 obtai11 

l_ D 
f - a(D+a) 

Using tl1is equation, 011e can \'erif)' tl1at f=7000m1n and a=lOmm will correct the 

laser's 1011.111 astign1atis111. 

The spherica.lly corrected collin1ator lens is also 1nanufa.ctured by Optics for 

Research. Tl1e collimator lens ha.s a. dia1neter of 20mm, and a focal length of 40mm. 

With a. laser beam,vidtl1 of 28c, a.nd le11s focal lengtl1 of 40mm, the le11s is not 

overfilled. The· output of the colli1nator is a l1nR h)' 2mR beam, reflecti11g the 

elliptica.1 output of tl1e la.ser source. 

5.3 Recei,1er Optics 

There are four major desig11 factors to co11sider while designing the receiver optics. 

First, due to the large patl1 losses i11 a typical atmospheric laser con1munication 
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system, the receiver c>ptics should collect as much of the transmitted beam as is 

practically possible. Second, any stray lig)1t must be eliminated with filters. Third, 

spherical aberration and tl1e diffra.ctio11 limit determine the focused spot size, which 

in turn influences the amou11t of ligl1t falling on the photodetector. Lastly, the 

receiver acceptance angle is influenced by tl1e receiver lens focal length, as well as by 

any additional lenses. The constructed receiver optical assembly is shown in figure 

5-2. 

5.3.1 Pa.th Losses 

Typica.J path losses 111a.)' be n1a.n)' lO's of dB's. For exa111ple, if the tra11smitter 

beamwidth is set at approxi1na.tel)' 1 mR, tl1en after 3 km the beam will ha,,e a 

diameter of approximately 1 111R x 3 kin = 3 meters. If tl1e receiver lens diameter 

is 50mm, only a small portion of tl1e trans1nitted beam is collected. The loss can be 

roughl)' approximated b~y finding the ratio of tl1e • receiver le11s · area to the 

approxin1a.te area. of tl1e totaJ bea111 a.t the receiver. If this loss, LdB is converted 

into decibels., we l1ave 

where d 1 and d_2 a.re the receiver lens and received bea1n dian1eters, respectively. 

Adverse weather conditions, sucl1 a.s snow a.nd fog, can increase losses by up to 

another 40dB per kilometer, in ,so1ne i11stances . 
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5.3.2 Filters 

' In order to eliminate stray background light effects, an optical filter was placed 

directly i11 front of the photodetector. Tl1is optical "bandpass" filter is centered 

around tl1e 820nm wavele11gth, a.nd attenuates stray background light of 

wavelengths other than tl1e la.ser \Va.veJength. This "bandpass" filter is actually the 

combination of two optical filters, 011e "lowpass", and one "highpass". The filters 

used are a11 RG9, and a RG780, respectively. 

5.3.3 Diffra.ction Li1nited Optics 

Wl1en a lens is irradia.ted a.t its a.perture ,vith a u11ifor1n i11te11sity distributio11, a. 

diffraction pattern is for111ecl at the focus. This patter11 consists of a bright central 

spot, k110\v11 as tI1e i\iry disk, surrounded by ri11gs of rapidly dimi11ishing intensity. 

\\'ith perfect lenses, 84% of the optical po\\rer is ,vithin the central spot, with the 

rest co11ta.ined in tl1e rings. The dia.111eter .. S~ of tl1e central spot is approximated by 

where S is the diameter of the ce11tra.l spot, A is the wavelengtl1 of the source, and 

F# is the ratio of the focal length to the lens aperture. If the lens used is not 

perfect, tl1en there is a differe11ce bet,vee11 the longest and· shortest optical paths 

leading. to the focus. For a patl1 difference of one quarter wavelength (A/4), the size 

of the ce11tral spot is essentially u11cl1a11ged, but the energy i11 tl1e central spot 

decreases to 68%. ·Traditio11ally, ,vl1en tl1is >./4 limit on optical paths is not 
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exceeded, the lens system is co11sidered to be diffraction ·limited. This -term means 

that tl1e diffraction, and not the lens defects, determines the smallest spot size 

possible. 

5.3.4 Spherical Aberration 

Using a geometrical optics approa~~ be shown that when using a spherical 

lens with parallel incident rays, not all incident rays are focused to the same focal 

point. This effect is known as spherical aberration, a11d is a result of tl1e spherical 

shape of the lens. The result is that incident ligl1t can 11ot be focused to a poi11t, but 

only to a. minimum spot size, cdlled the blur circle. The diameter of the blur circle, 

S, is given by 

where d i\ the diameter of the lens, f is the focal length of tl1e lens, and I( is a 

constant reflecting the inde~ of refra.ctic,n of the le11s 1naterial ( I1ere, 1{=0.067 for 

n = 1. 5, 0.018 for n = 2. 4 , 0. 0 0 8 7 for 11 = 4. 0 ) . 

Spherica.l aberration ca.n _be corrected ,vith tl1e proper lens design so that the Jens can 

perform to the diffraction li111it. Tl1is correction is expensive, so for inexpensive 

lenses tl1e most in1porta.nt factor that detern1ines spot size is spherical aberration. 
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5.3.5 Spot Size and Det~ctor Size 

The spot size is the larger of tI1e diffraction limit and the blur circle diameters. To 

minimize lost energy, it is desirable to have the focused spot completely on the 

detector. Since the detector, tl1e PD 1005 detailed in Chapter 4, has a photosensitive 
-surface 0.5mm {500µm) in dian1eter, the focused spot must be smaller than this. 

Actually, the spot size should be co11siderably smaller than the detector size, in order 
\ ( /./ 

v'r 
! 

to give good acceptance angle characteristics (see below). With diffraction limited 

lenses, this is possible; ,vitl1 light a.t 0.820µ1n, tl1e diffraction lin1ited spot size is 7µm, 

which is much s1naller tha11 the detector 5001.tm diameter. 

5.3.6 Acceptance Angle 

The a.cceptance a11gle is the angle subte11ded by tl1e photodetector i11 the in1age plane 

of the objective lens. Alter11a.ti,,elj', \Vitl1 the receiver pointed exactly at the 

transmitter, the receiver accepta.nce angle is the full angle through wl1ich tl1e receiver 

unit can 111ove and still have tl1e tr~nsmitter's image focused on tl1e receive1~ 

photodetector. The a11gle of acceptance a.rises f ro111 the fa.ct that tl1e photodetector 

is of a fi11ite size. The larger the detector., tl1e larger tl1e angle of acceptance, give11 a 

focused spot image. If the focused spot is of comparable size to the detector, then 

the acceptance angle decreases. TI1e accepta11ce angle (} for a single lens is given by 

dp - <ls 
(J = f . 

where dp is the photodetector dia.111eter, d8 is the spot size (ds<dp), and f is the lens 
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focal length. Obviously, it is desirable to have a small focal length, large 

photodetector diameter and· s111all spot size to increase the angle of acceptance. 

The angle of acceptance ca.n be in1pro,,ed by using an additional lens near the 

detector, as shown in figure 5-3. The lateral magnification of the second lens is 

given b)' 

Y1 d -- 1 V - -d ., 2 2 

If the origi11al ima.ge 1no,,ed a.n a.111ou11t dy9 , tl1en the ne,v image qnly mo,,es an ... 
amou11t ~y 1 given by 

Since d 2 < d 1 , the 11e,\1 focus 111oves less than the old focus, and thus tl1e angle of 

acceptance is increased by a fa.ctor d 2 / d 1 . 

5.3. 7 Su111n1ary of Receiver Optica.l Consideratio11s 

The two goals of the receiving optics are to first collect as mucl1 optical power as 

possible, and seconq to tra11sfer it to the photodetector over a large angle of :!i 

acceptance. The first goal, to collect as much of tl1e transmitted beam as possible, 

ca.n be met by using a11 objective lens witl1 a diameter as large as is economically and 

physically possible. The second goaJ ca.n be met by using a 4'fast" speed lens. 

,, 
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The; speed of a lens, F#, is defined as the ratio of the focal length to the lens 

aper __ ture, 

F# _ -1. 
-d 

"Fast" lenses have small F#, and "slow" lenses have large F#. Fast lenses have 

several advantages. First, diffra.ction limited fast lens has a smaller spot size than a 

diffraction limited slow lens. Second~ fast Jenses yield larger acceptance angles than 

slower lenses, given a fixed detector size. 1Iowever, fast diffraction limited lenses are 

costly si11ce they 1n ust be corrected for spherical aberratio11. Slow lenses, on the otl1er 

hand, need little correction for SJ)herical a.berra.tion·~ but have larger spot size due to 

diffractio11. 

Since correction of spl1erical a.berration is t)'pically tl1e main factor determi11ing spot 

size, it is the most i111portant fa.ct.or. Tl1us, tl1e best le11s to obtain would have a 

large dia1neter and sl1ort foca.l lengtl1, and be corrected so tl1at the spot size is at 

most ha.If the diameter of the of the photodetector. 

5.3.8 Receiver Optics Construction a.nd Testi11g 

The receiver optics are sJ10,vn in figure 5-2. The objective lens used i11 tl1e receiver is 

manufactured by Optics for Researcl1. Tl1e lens is optimized at the factory for high 

performa11ce. It is corrected to the diffractio11 limit, and has a 50 mm diameter and 

175 mm focal length. The speed of the lens is F# = 175/50 = 3.5, which is 

moderately "fast". 
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Since the lens is diffraction lin1ited ~ the spot size is give11 b)' 

S= 2.44 A F# = 2.44 · 0.82 x 10-6 · 3.5 = 7 µm 

The spot size is 7µm, which is1 much less than the 500µm photodetector diameter. 

The angle of acceptance with tl1e PD1005 detector is thus 

dJ) - <ls _ 500µm - 7µm 
() = f 175m1n = 2·8•nR 

An experi1nenta] plot of recei,,ed signa.l amplitude vs. receiver angle is shown in 

figure 5-4. The detector is at the focal point of the objective lens. The steep edges 

of the plot indicate the points \vhere the 711111 focused spot moves completely off of 

the detector surfa.ce. i\s ca.n be seen fro111 this plot, the angle of acceptance is 

approxi111a.tely 2.8mR, a.s predicted. 

If tl1e photodetector is moved a.,va .. y fro1n the focal point, the spot size increases, and 

this alters the angle of acceptance plot. Experimental plots of the receiver signal 

amplitude ,,s. receiver angle ,vith the photodetector 1mm and 2mm back from the 

focal point are sho,vn in figures 5-5 a.rid 5-6 respective})'. Fro111 the triangles in 

figure 5-2, the spot size for the 1111111 J)lot is obviously 501111n/1751nn1 x lm1n 

0.28mm, half of the detector • size. Similarly, the spot size for the 2mm plot is 

50mm/175mm-2mm = 0.57mm, which is the detector size. As shown in figure 5-7, 

the light reaching tl1e detector is in tl1e i11 tersection of the focused spot area and the 

photodetec,tor area. If the spot i11creases · in size to 0.28mm or 0.57mm, then as the 

spot scans across tl1e detector there can be a large. region where there is only partial 
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overlap of detector and spot areas. This yields less steep edges on the amplitude vs. 

angle plots in figure 5-5 and 5-6. Tl1is is in contrast to the case sho~n in figure 5-4, 

where the spot was essentially either on or off of the detector. 

As was shown· in section 5.3.6, the angle of acceptance can be increased by using a 

small collecting lens in front of the detector. A small plastic elliptical lens with focal 

length 4.5mm was placed 0.91n1n from the photodetector. The photodetector and 

collector lens were then adjusted so as to focus the spot on the detector. '"'ith this 

lens in place, the sig11al a1nplitude vs. a11gle was measured. From the results shown 

in figure 5-8, one can see tl1at tl1e acceptance angle has been tripled. \\'hile either a 
6 

collecting lens or shortening the objecti,,e focal length will increase the angle of 

accepta.11ce, the collecting lens is tl1e least expensive optio11 of tl1e t,vo. 
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6. MODELS OF ATMOSPHERIC PROPAGATION 
" . 

6.1 Introduction 

An atmospheric laser communication system's performance is highly dependant on 

the state of the atmosphere between the transmitting and receiving stations. The 
-

two most significant atmospheric effects are extinction and atmospheric turbulence. 

Extinction causes energy to be removed from the beam as it propagates between the 

transmitter and receiver. Extinction is mainly due to scattering by particles in the 

atmosphere, such as rain, snow, or fog. Atmospheric turbulence causes slight 

changes in the optical properties of air, which in turn effects optical propagation 

over long paths. Turbulence causes the received beam to fluctuate in intensity, and 

causes beam steering over long paths. 

6.2 Extinction 

As a parallel beam of light passes through the atmosphere, the beam is attenuated 

due to scattering and absorption by particles in the atmosphere. This attenuation is 

termed extinction. Extinction is due to two factors; absorption, and scattering. 

Absorption is due to molecular constituents such as water vapor, carbon dioxide, 

and oxygen. For water particles at optical wavelengths, absorption is typically 

negligible, and scattering effects dominate. 

Extinction creates an exponential decline in the optical intensity at any point along 

the beam center, i.e. 
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I= Io e-ox 

where o is the extinction coefficient, x is the distance from the transmitter, and 1
0 

is 

the initial intensity ( optical -power) at x=O. To convert o to decibels, one· can use 

the formula 

odB = 4.34 a 

6.2.1 Extinction Measures 

Visual range a11d n1eteorologica.l ra.nge n1easurements are used b)' the National 

Weather Service to categorize at111ospI1eric visibility conditions and extinction. The 

. 
concept of visual range is derived fron1 ideas of contrast attenuation and the visual 

threshold at the wavelength at \vhicl1 tl1e eye has tl1e greatest sensiti,,ity·, that is 

0.55µm. \lisual range is tI1e distance, under daylight conditions, where the contrast 
j 

between a specified object and it's sk)' background is just above the threshold 

contrast of an observer (l\1cCartne)1 ). The· visual range is a· function of the 

atmospheric extinctio11, as well a.s tl1e target and the _observer's threshold contrast. 

Values of ,,isual range can be fou11d fron1 

where C is the i11I1erent contrast of the target agai11st the background, o is the 

extinctio11 coefficie11t, a.11d £ is tl1e threshold contrast of the observer. 

By specif)'ing a fixed target co11trast and threshold, the subjective factors in visual 
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range me~sures . can be eliminated. l\{eteorological range, .Rm, assumes a visual 

ihreshold with e=0.02, and specifies a black target against the sky, thus giving unity· 

contrast. Usi11g the above forr11ula for visual range, the meteorological range, Rm, is 

defined as 

R _ l 1n 1 _ 3.912 
m - o 0.02- 0 

where Rm is in kilometers. This is a very useful relationship which can be used to 

quickly find, for example, loss per kilometer under various weather conditions. Table 

6-1 belo,v shows tl1e 1neteoro'logical ra11ge._ extinction coefficients, a11d loss in dB/ km 

o,1er a range of com111011 ,veather co11ditions. As can be seen, the losses ha\'e a ,,er)' 

wide range. 

TABLE 6-1 Extinction and ivleteorological Ranges in Various V\l eather Conditions 

\!isi bilitv Code ., IVleteoroJogica.l ra.nge o (Extinction., km- 1) Loss 

De11se Fog 

Tl1ick Fog 

l\1loderate Fog 

Light Fog 

TI1in Fog 

40- 70111 

70-250111 

250-500111 

500m-1000m 

1-2 k111 

Haze 2-4 k111 

Light Ha.ze 4-10 k111 

Clear 10-20 kn1 

Very Clear 20-50 k111 

Extremely Clear 50-150 k111 

Scattering Limit 310 kn1 
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48 

23 

11.5 

6 

3 

1.38 

0.57 

0 ., ... ·-' 
0.10 

0.01 

t- ·-,, 

-210 dB/km 

-100 dB/km 

-50 dB/km 

-26 dB/km 

-13 dB/km 

-6 dB/km 

-2.5 dB/km 

-1.2 dB/km 

.:0.45 dB/km 

-0.04 dB/km 
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6.2.2 Scattering Theory 

When a beam of light intercepts a. particle, some energy is. absorbed and some is 

redirected by diffraction. This results in extinction of the beam. Scattering theory 

provides methods to calculate the extinction coefficient given some knowledge about 

the size and number of particles per unit volume. There are two types of scattering: 

\. Rayleigh scattering,-- and Mie scattering. The type of scattering depends on the 

relative size of the particle to the ,vavelength. A complete analysis of scattering 

theory is beyond tl1e scope of this section. Here, onl)' the main results and 

applications are discussed. A co111plete analysis can be found in (van de Hulst). 

6.2.2.1 Ra.yleigl1 · Scattering 

Rayleigh has derived results for scattering by particles mucl1 smaller than tl1e 

wavelength. Tl1 us, scattering b)' n1olecular sized particles ( r<: >.) is often termed 

Rayleigl1 scattering. The a.ttenuation due to Ra.yleigl1 scattering, oSR, is 

0.827 N Ap 3 
0 sR= 4 A 

where N is the number of particles per unit volume i11 the path, and Ap is the cross 

sectio11al area of tl1e scattering particle (Pratt). In the formula, tl1e particle area and . . . 

wavelengths are in centin1eters. Note tha.t the scattering coefficient is inversely 

proportio11al to .,\4 , thus short wavele11gth light is scattered much more than longer 

wavelength ligl1t. This accou11ts for tl1e blue color of the daylight sky, since shorter 
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wavelength components passing through the atm~sphere will ·be scattered by air 

molecules to. the eye more than longer wavelengths. 

6.2.2.2 Mie Scattering 

A rigorous theory of scattering from spheres of arbitrary • size, derived from 

Maxwell's equations, has been deri,,ed by Mie in 1908. Scattering by particles large 

compared to the wavelength is termed Mie scattering, even though the theory is 

valid for small particles as well. 

6.2.2.3 ~1ie Scattering Anal)1sis Assumptions 

In Mie's analysis, there are tI1ree main assl1mptions. First, that the incident light is 

monochro1natic. Seco11d, that tI1ere is single scattering by independent, spherical 

particles. Single scattering mea11s that the particles are far from one another,· so 

that eacl1 is illuminated b)' the incident light, and that no particle is illuminated by 

the light scattered fron1 a11other pa.rticle. Lastl)', tl1e. observer is assumed to be an 

infinite distance fron1 the particles; tl1 us, a.n)' scattered ligl1t is considered lost, even 

if it is scattered at small angles . . 

. 6.2.2.4 Mie Scattering Forn1 ula. 

In a medium with N particles per unit volume, the intensity scattered per unit 

volume is simply N times the· inte11sity i11tercepted by the cross section of a single 

spherical particle of radius r. The extinction coefficient o is given by (van de Hulst) 
1. 
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' 

2 . 
o = N ,r ·r Qext(r) 

The term Qext(r) is the scattering efficiency, described below, which accounts for 

diffraction effects. If the particles have different radii, with ·N ( r) dr particles with 

radii between r and r+dr per u11it volume, then 

o = J; N(r) 1r r 2 Qext(r) dr 

6.2.2.5 Scattering Efficienc~y 

The sca.ttering efficienc)' fa.ctor for exti11ctio11, Qext' is defined as the ratio of the 

effective scattering cross sectiona.J a.rea. of a particle to the actuai geometrical cross 

% 

sectional area. Here, tl1e effecti\1e scattering cross sectional area is equal to the area 

needed to i11 tercept as n1 uch i11cide11 t en erg)' as is scattered by the particle. Using a 

combination of geo1netrical optics and Huygen's principle, one can obtain the 

following formula for the scatteri11g efficie11cy (\'an de Hulst): 

where p = 4fr(n-l), x=2rr as above, and /J = tan-1 n~; , where n' and n are the 

imaginary and rea) parts of the refra.ctive index, respectively .... l\.t 0.63µm, water and 

ice have a11 index of refractio11 of 1.33 + i · 10-6 . 
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A plot of Q·ext(r) versus particle size r for l=0.830µm, n=l.33+i·l0-6 is shown in 

figure 6-1. As can be seen from the plot, a particle scatters the highest amount of 

energy when the wavelength is approximately the same as the particle radius. 

Furthermore, from this plot, one can easily see that if the particle size is equal to or 

greater than the wavelength, then the scattering efficiency is fairly constant, but if 

the particle size is less than the \Vavelength, scattering efficiency falls off rapidly. If 

the wavelength is increased so that A:>r, then scattering efficiency and scattering 

losses decrease dramatically. 

6.2.2.6 The Scattering Pa.radox 

Note tha.t tl1e scattering efficiencJ' of a. l,'rge sphere is Q=2, that is, it scatters t,vice 

the energy falling on it's geo111etrica.l cross section. Tl1is is a notewottl1y paradox, 

that a particle can re1nove fro111 tl1e incide11 t beam twice the optical power that it 

can intercept. Com1non sense dicta.tes tl1at a flo,ver pot in a ,vindo,,1 prevents onl)' 

sunlight falling on it fro1n enteri11g tl1e room, 11ot twice tl1is an1ou11t. Recall, 

ho\vever, that the a11al)1sis a.ssun1es t.ha.t tl1e obser,1er is i11finitel~y dista11t, so tl1at all 

the sca.ttered light., includi11g that diffra.cted (scattered) at small angles'\ is counted as 

removed from the beam. Tl1 us'\ a.t a. large to i11finite distance, an observer will see 

that the pot will screen out twice the ligl1t, half due to diffraction effects; half 

intercepted by the pot itself ·(Va11 de Hulst). 
' 

6.2.3 Scattering by Atn1ospl1eric Particles 

Now, using simple scatteri11g tl1eor)' and models of rai11, sno,,.,, and fog particle sizes, 
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optical losses per kilometer througl1 the atn1osphere are easily derived. 

6.2.3.1 Atmospheric Particles 

The size ranges of particles encountered in the atmosphere are shown in table 6-2 

(Houghton). Atmospheric particles can be divided into two categories: aerosols and 
' 

hydrometeors. Aerosols are particulate matter suspended in the atmosphere, 

including smog, smoke, haze clouds, fog, and fine soil particles. These particles are 

generally less tha.n one micron. H:ydrometeors are water particles in solid or liquid 

form, such as rain, mist, sno,,•. ice pellets, hail, ocean spray, clouds, and fog. 

Generall:y·. tl1e particles that ca.use the n1ost scattering are h)1drometeors, since the)1 

are occur in the largest nu n1 hers in the a.t111osphere. 
• 

TABLE 6-2 .. ;\ t.111ospheric Particle Sizes 

Hydron1eteors 

Particle Approxi111at.e Sizes Particle 

H a.il 1 n1111 - 1 c111 Dust 

Ra.in O.lmn1 - lc111 Haze 

~list O. l1nn1 S111oke 

Ocea11 Spra.)' 1µ111 - 1111111 S111og 

Fog & Clouds 0.1µ111 - 100µ111 

6.2.3.2. Extinctio11 due to \Vater Pa.rticles 

1- .,. 

Aerosols 

Approximate Sizes 

O.lµm - ln1m 

lnn1 - lOµn1 

ln1n - 1µ111 

ln111 - 1µ111 

Since tl1e particles that ca.use tl1e 111ost atmospheric scatteri11g are hydrometeol's, it 
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is desirable to calculate the scattering losses. due to these particles. Water is · 

practical)), lossless at visible wavelengths, so most of the losses due to water ¥'particles 

are due to scattering effects, not absorption. 

Although there are never consistently particles of a single radius in the atmosphere, 

it is useful to calculate the atten-uation coefficient for this ideal case. Given w 

mg/m3 of spherical water particles, the number of particles for a given radius r is 

N(r) = \V o(r) 
. :!;rr3 

3 

where 6(r) is tl1e Dirac delta functio11. Substituting N(r) in 

,x 

o = J N ( r) 'II" r 2 Qext ( r) d r 
0 

and normalizing by dividing tl1rougl1 h.Y ,v, we obtain: 

r\J _ 3 Qext(r) 
'""- 4r 

11epers/k111 . Qext< r) 
3 = 3.25 r 

n1g/111 

dB/km 

mg/n13 

where the radius of the water sphere r is in microns (Chu & Hogg). 

Rain, typically with 1000mg/m3, has particle radii from approximately 0.1mm to 

10mm. Fog, on the other· ha.nd, with lOOmg/n13, has particle radii typically 

l/lO,OOOtl1 tl1at of a rai11drop. lJsing these figures i11 the above equ_a.tion, it is easy 
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to show that fog has a higher attenuation. This is because even though rain has a 

higher water content than fog~ fog has a greater surface area availabl~ for scattering, 

and thus yields higher losses. (Chu & Hogg) 

6.2.3.3 Extinction due to Rain 

Recall fron1 above that for ,vater spheres of radius r, the extinction coefficient is 

,. 

I 

dB/km 

mg/m3 

Define d as the nun1ber of mi1Iigra.n1s of ,vater particles of radius r per cubic meter. 

Then, the loss due to these pa.rticles is 

Here, d ca.n be found by for111i11g the ratio of the volume of water collected in area . .£~ 

to the dista.nce s,vept out b)· a.n a.rea ... .\ fa.l]ing a.t the speed of the raindrops: 

R is the rainfall rate (mm/hr), l\ is a suitable cross sectional area (1 m2), and the 

v•t product is the distance a raindrop falls in a unit time period (m/hr). 
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Rain droplets come in a spectrum of sizes, and the distribution of sizes depends on 
the rainfall rate. Laws and Parso11s have modeled .the distribution of drop sizes from 

experimental data. The precipitation model is expressed as 

( R) _ 2 0.4 -[r-r0(R)]2 /u 2(R) 
n r, - :r::· ( ) e ,.;r <T r 

where n(r,R) is the normalized percentage distribution, R is the rain rate in mm/hr, 

r0 is the mean particle radius in cm .. er is the variance of the distribution in cm, and 

0.4 is the normalizing constant. .:\Jso .. 

ro(R) = 0.045 log1o(R) + 0.05 Cl11 

and 

u(R) = 0.05 log10(R) + 0.05 cm 

Plots of the drop size distribution for ra.in rates of 1, 10, and 100 n1m/hr are sho,vn 

in figure 6-2. 

In order to simplif)' analysis, a. si11gle droplet size is assumed. From empirical studies 

by La,vs & Parsons (Houghto11, p. 1046), the mean diameter of raindrops is gi,1en by 

r = 0.619 RO.lS2 

where r, tl1e drop radius, is given i11 111111, and R, the rainfall rate, is given in min/hr. 

Empirical studies ha.ve also sho,v11 (\.Vang) that the tern1inal velocity of a raindrop 

can be approximated h)' 

\ 1 =200{r 
• 
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where vis in meters/second, and-r is in meters. 

By assuming Qext(r)=2.0 (si11ce r:>.,\ for raindrops at optical. wavelengths), and 

using the above tl1ree expressions, ,ve can solve for odB as a function of R. The 

result is 

odB = 0_.5862 R 0·727 (dB/km Loss) 
__ ,,,.· 

where odB is in dB/km, and R is in min/hr. A graph of loss versus rainfall rate is 

shov.1n in figure 6-3. ...c\Jthough the gra.ph is not linear, a linear approxin1atio11 over 

the ra11ge 10 to l001n111/hr gives a loss of 0.15 dB/kn1 per m111/hr. 

Using more realistic rai11drop size distributions, sucl1 as the La,vs & Parsons 

distributio11 (La,vs & Parsons), it ha.s been shown (CI1u & Hogg) that the loss at 

,. '"' 
0.63µ1n is approximate})' 0.22 dB/k111 per mm/hr. Ho,vever, a more sopl1isticated 

model tha.t a.lso includes for,va.rd sca.tt.ering effects ( Chu & Hogg) yields losses of 

0.155 dB/kn1 per n1n1/hr. 

Typical va.lues of R, tl1e rainfa.II · rate._ a.re 0.25mm/hr (drizzle), Imm/hr (light rain), 

41nm/l1r (111oderate rai11), 16111111/hr (l1ea.vy rain), and 100 1nm/hr (extreinel)' heavy . 

rain). 

6.2.3.4 Extinction due to Fog 
) 

The size of a fog particle is typica.lly in the range of lµm to lOOµm. Assuming a · 

mean of r=lOµm as a mean fog particle radius, and recalling that 
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dB/km. 

mg/m3 

.. 
one can find that odB=0.65 dB/km per mg/m3 using this simple single-radius 

model. Using a more sophisticated model using a range of droplet sizes it has been 

shown (Rensch & Lo11g) tha.t o,!er tl1e wavelengths bet\veen 0.3µm and 2.0µm, 

extinction is approximatel)1 consta.nt a.t 0.4±0.15 dB/km per mg/m 3 • Since water 

densities in fogs are typically bet,veen lOn1g/m 3 to 1000mg/m3 , fogs can easily 

create 100 dB./km losses. 

Experin1ental difficulty and natural ,,a.rietj' of fog types has caused inuch variatio11 

in published data on fog particl~ sizes. The follo,vi11g proposed model ( Cl1u & Hogg) 

has /3 a.nd I pa.ra.111eters vvhich a.re selected to best n1atch observed fog droplet 

distributions: 

/3 - B·(r/rc)' 
N(r/rc) = A·(r/rc) · e 

Here, r is t.J1e dru1)1et ra.djus. re i:s the ra.dius of drops with the 111axi111u111 11u111ber 

de11sity, B=/3/-y, and A is given b)' 

A= (fJ/1)(/3+1)/1 'Y 

r ,a+1 
'Y 

N ·-re 

where N is the number of drops per unit volume. Typical values of re range from 

118 

.. 



lµm to 30µm. A graph of a typical fog drop size distribution with /3=1, 1=1, and 

rc=lOµm is shown in figure 6-4. 

As can be seen from the graph, there is a wide range of particle sizes much larger 
' 

than optical wavelengths of 0.5µm-lµm. This means that wavelengths in this range 

are easily scattered by the fog droplets. Only if the wavelength was larger than the 

; 
majority of the fog droplets would scattering losses decrease. For droplet radii less 

'.., -' ~ 

than 5.0µin, infrared wavelengtl1s do not necessarily guarantee smaller values of 

extinction compa.red to shorter \Va.vele11gths (Rensch & Long). Observations have 

shown ( Arn ulf) that s1nall drop fogs are ca.11 be frequency selective, but these fogs 

are rare. Attenuat'ion by fogs is for the 1nost part not frequency selective in the 0.35 

to 2µ.in region, because 111ost droplets a.re la.rger tl1an the wavelengtI1. 

The question arises of how to qua.11titatively describe a fog in the field. By finding a 

fog's water density, or h)' usi11g tl1e 1neteorological range, one can quantitatively 

measure a. fog. Of course, meteorologica.l range is more subjective, but it is more 

easily measured tl1an fog water density. 

6.2.3.5 Extinctio11 due to Sno,v 

Snowfall rates are measured b~y liquid ,vater content, not by unmelted accumulation. 

In general, the size and density of snowflakes depends on many factors, including the 

type of snow storm, ,vhich varies h)' region. Snowflake size and density can even 

vary over time during the sa111e s11owstorn1 (Gray & Male). ' S11ow densities can. 

range fro111 50kg/ m 3 to 200kg/ n1 3 • i\. generally accepted average' of snow density is 
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100kg/m3 . Since the density of pure water is lOOOkg/m-3 , snow has density is 0.1 

relative to water. Thus, for exa1nple, 10mm of "dry" snowfall will yield 1mm of 

water when melted. 

Snowflake size distribution is sucl1 that relatively few flakes have dimensions greater 

than 10 mm; for the most part, the particle distribution is in the range betwe~ 

1mm and 6mm (Lillesaeter). Crystals of falling snow are large in comparison to 

optical \Va.velengths, so the scattering efficiency Q, and tl1 us the extinctio11, should 

be wa.ve]engtl1 i11dependent. 

A number of investigators I1a,,e deri,1ed e111pirical relationships between measured 

attenuation and s11olvfall rate (Seagraves) For example, attenuation measurements 

made at 0.45µm by (Lillesa.eter) indica.te t]1e relationship 

adB=l.693 R (dB/k111) 

where adB is in dB/km, and R is tl1e dry s110,v rate in millimeters per hour. 

Similarl)'', \t\1arner's n1ea.sure111e11ts a.t 0.45µ.m obtai11ed 

a·dB=l.098 R (dB/km) 

and O'Brien's results are equivalent to 

adB=2.552 R 0·693 (dB/km). 
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·These models are plotted in figure 6-5 for unmelted snowfall rates up to 50mm/h:r~ 

From the graph, one can see tl1at tl1ere is some. disagreement between the models;· 

however, it is apparent that sno\\1 can easily create wavelength independent losses of 

many !O's of dB's. 

6.3 Atmospheric Turbulence Effects 

In an at111ospheric laser con1111 unication link over a lo11g ( ~ lk1n) patl1, atmospheric 

turbulence causes slight cl1a.nges in the optical index of refractio11 of air bet\veen tl1e 

transmitter and recei,,er. Tl1ese cha.11ges, in turn, cause amplitude fluctuations in the 

received beam. In order to understand the effects of turbulence on tl1e system, one 

must first investigate tl1e cause, structure, and effects of atmospheric turbulence. 

Then; tl1e probabilit~y distribution, frequenC)' spectrum, and variance of these 
• 

fluctuations can be described. 

Here we do not atte111pt 'to present tl1e derivations of the theoretical results in any 

complete are discussed. applications results • 1na.111 manner. 

Furthermore, the theory uses se,,eral apJlroxi1nations, so it is mea11ingless to worry 

about higl1 accuracy i11 calculations. The theory gives a rough qua11titative estimate 

of the phenomena involved·. 

6.3.1 The Cause and Develop111e11t of Atmospheric Turbulence 

· The atmosphere is in a constant sta.te of turbulent motion. This turbuJence is 
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introduced by wind or convection from solar heating of the ground, ·which· fornis 

large eddies of heated air. Spatial and temporal measurements of these eddies using ,._ · 

microwaves indicate that tl1e eddies n1ove a distance of 0.4 times their size before 

breaking up. Larger turbule11t eddies break up and transfer their energy to smaller 

eddies. TI1ese eddies then for111 and tra11sfer energy to still smaller eddies, and so on. 

Eventually, for very small eddies, viscous effects become important, and energy is 

dissipated. 

The lengths 10 and L0 are the size of the smallest and largest eddies or "blobs" of 

' 

turbule11ce. U sua.ll:y, 10 and L0 a.re referred to as the inner and outer scale sizes of 

the turbulence. The;y can be esti111a.ted bj' 

-9 1/3 10 = ( 10 h ) , l0 >2mm 

and 

,,,here a.11 units are in meters ( Brool(ner). Typica~l 111111lll1 UlTI values for 10 are 

approximately 1 or 211101 near ground. Typica.l maximu.m values for L 0 are 

approximately 100 meters, a11d are found in tl1e upper atmosphere. 

6.3.2 Optical Effects of Turbulence J 
-(; 

Turbulence induced temperature variatio11s cause changes in the index of refraction 

of air, which in turn effects bean1 propagation through the atmosphere. The optical . 

index of refraction of a.ir is given by 
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n=index of refraction T=Ahsolute Temperature, 

P=Pressure in 1\1:illibars, Q=Relative Humidity 

A rule of thumb is that the index of refraction changes by 10-6 for every °C. 

Refractive index fluctuations a.re caused almost exclusively by fluctuations in 

temperature, since pressure variations are relatively small a11d are rapidly dispersed 

(Lawrence). These te111pera.ture ,,a.ria.tions cha.11ge in spa.ce a.nd time. 

6.3.3 Structure and Ivleasures of 1"'urbulence 

It is convenient, from a theoretica.l vie,vpoint, to express statistical spatial variations 

· of the i11dex of refraction · of tl1e at111osphere in terms of a structure function, defined 

as: 

where n(ri) denotes the index of refraction a.t a. position represented by the vector ri, 
and r=r2-r1. Structure fu11ctio11s ,vere i11troduced to deal with an isotropic rando1n 

variable that varies in space a.nd ti111e., such as tl1e atn1ospheric index of refractio11. 

Theoretically, the structure function follows the relation ( Tatarski) 

. - . 2 - 2/3 Dn( I r I ) = C11 I r I . for l0 <:r0 <:L0 

12~5 
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where Cn is the structure constan~ of tl1e turbulence. 

6.3.4 The Structure Constant 

The parameter Cn is called tl1e structure constant of the turbulence. It provides a 

measure of the strength and structure of the atmospheric turbulence. The value of 

the structure constant varies ,vith a.ltitude and time of day. Typical daytime values 

at ground level are given in table 6-3. There is no simple rule for estimati11g Cn; it 

was originally derived fron1 experi111ental data. The divisio11 into categories of 

turbulence is son1e,vhat subjective~ but it provides a. basis for estimating 

quantitatively the degree turbulence. 

( 
'~ 

T~.\BLE 6-3 

Structure Consta.nts for Various Turbulence Levels 

Weak Turbulence 

Intermediate Turbulence 

Strong Turbulence . 

6.3.5 Turbulence and Received Bea1n Fluctuatio11s 

C - 8 . 10-9 -1/3 11. - X m 

-8 -1/3 C11 = 4 x 10 1n · 

Cn = 5 x 10-7 m-l/3 

Turbulence causes an1plitude fluctuations (oftell called sci11tillations) in a beam tl1at 
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has passed ·through the atmosphere .. A formal treatment of w~ve propagation in a 

turbulent medium, such as that found in (Tatarski), is beyond the scope of this 

section. Instead, simplified models and results are given. These allo":' Jls to readily 

describe the cause of the fluctuations, as well as the variance, spectrum, probability 
:,,. 

···""'-
" .... .... . 

distribution, and other characteristics of the fluctuations. 

6.3.5.1 Cause of Fluctuations 

It is conve11ient to consider the turbulent atmosphere to be composed of eddies of 

index of refraction n+~11 in a medium of index n. Here, n is the index of refraction 
\ 

of the surrounding air, and ~n is the change in index of refraction due to the 

temperature variation of tl1e edd)'. If the eddy has a dime11sio11 1, wl1ere 10 <l<L0 , 

then the effect of the edd)1 depends on the relative sizes of the beam diameter dB, to 

the eddy dimension I. If dB ¢:l, tl1e11 the effect of the eddy is to deflect the beam as 

a whole. These angular deflectio11s are typically on the order of 1 to 10 microradians 
I, 

per kilometer. At the receiver, tl1e bea.111 appears to follow a two dimensional random 

walk in the receiver plane. For d8 ~1. the turbulent eddies act as lenses whicl1 focus 

or .defocus all or parts of the bea.111, causi11g a gra.nular structure to the cross section 
.. 

of the bea1n. If d 8 >1, then s111a.ll portions of the beam are independently diffracted, 
• 

and the pl1ase fronts are badl)' distorted. The effects of dB>} and d8 <:I ·are shown 

in figure 6-6 (Pratt). 

In the receiver plane, the received beam intensity varies in time and space. The 

resulting spacial amplitude variations occur on a variety of scales, however the 

predomina11t scale size is the Fresnel-zone size ~AL, where A is the wavel~ngth 
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and L is the path length. Predomina.nt scale sizes are approximately 2 cm for a 1 

km path at optical wavele11gths. 

6.3.5.2 Probability Distribution of Fluctuations 

'' 

For plane· wave propagation it has been shown (Tatarski), by use of a perturbation 

approximation to the wave equation, that the amplitude fluctuations introduced 

over an optical path ha~e a lognor111al distribution with a variance <1 2• A simplified 

explanation of this lognorn1al distribution can be obtained if one considers the model 

depicted in figure 6-7. The transmitted bea.m crosses an optical path between the 

transmitter and receiver. The path is divided into N "slabs" of width d, where d is 

larger than outer scale size of the turbulence. The turbule11ce i11 eacl1 slab prevents a 

portion c>f the bea.111 fron1 rea.ching the receiver; thus, each sla.b has an optica.l 

transmission coefficient T. < 1. The tra.nsmission coefficient for the entire patl1, l 

N 

T Patl1 = II Ti 
i=l 

Taki11g the log of eacl1 side of tl1is equatio11, 
• 

N 
Log (T Patl1) = L Log(Ti) 

i=l 

Now, since d is larger th~an the outer scale size of the turbulence, the transmission 

coefficients of each slab are independe11t randon1 variables. Thus, Log{TPath) is the 
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sum of N uncorrelated terms, where N is large. Using the mean value theorem, the 

result is a normal distribution of Log(T Path). 

6.3.5.3 Variance of Atmospheric Induced Fluctuations 

For propagation along a horizontal path, the variance of the amplitude fluctuations 

is given by (Tatarski): 

') 

u· = In 2 

Here, A is the signal amplitude,· A0 is the mean amplitude, Cn is the structure\ ' 

constant of the turbulence, ..\ is the wa.velength, and L is the path length. A plot of 

standard deviation ( ~ u2) vs. dista11ce for typical intermediate turbulence is shown in 

figure 6-8. 

6.3.5.4 Saturation of Fluctuatio11s with Distance 

As the path length L becomes very large, as in observing a star through the 

atmosphere, the above formula. predicts large fluctuations. Clearly, this result seems • 

inadequate, since experience shows that stars do not 'twinkle' with extremely large 

amplitudes. 

Experimental results show that the variance of the l~gnormal amplitude fluctuations 

increases with distance and· turbulence strength· up a certain threshold. Beyond the 
', 

' 
I threshold, one ?bserves wha.t hai bee11 termed a .saturation effect, where u remains 

I. . 
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essentially constant as either the turbulence st,ren_gth or path le'ngth increases. 

Typically, for paths above ground, saturation may occur within a few kilometers 

(Lawrence). 

The saturation effect has not been sufficiently explained as yet by theoretical models. 

The only worker that appears to derive a saturation like curve for the variance of 

the log intensity fluctuations is ( de\i\'olf), who forwards the following model: 

00 
(J' 2_~ 1 

d - L- (n+in-) 2 
11=0' 

111= 1 2 

1 -(J' 
- e 

~ . where u- is the variance ca.lculated in (Tat.arski). Using tl1is model, the standard 

deviatio11, ~ u2, is plotted in figure 6-9 witl1 a value of Cn =5 x 10-8 . As can be seen 

from the figure, the fluctuations begi11 to saturate after a few kilometers, at a 

standard deviation of approxi1na.t.ely 5 to 6dB. 

6.3.5.5 Fluctuations and Aperture Dian1eter 

The results thus far have bee11 derived for a point receiver. If the aperture size, d, 
"' is increased, the fluctuat-ions re1na.in unchanged: while d<~L.,\ (-Hohn). For a L=lkm 

, 
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link at A=0.83µm, this means d<29mm. This is the case in many practical systems. 

When, ho,vever, the receiver aperture is much larger than the characteristic length of 
~-

the turbulence elements, i.e. d > 4 L~, then increasin'g the size of the collecting 

aperture decreases the • variance of the atmospheric induced fluctuations. This 

decrease is due to what is termed "aperture averaging". This averaging occurs 

because the light focused on the photodetector is the sum of all the spatially varying 

light intensities across the lens' surface. If the above condition is are met, then the 

standard deviation of the lognorn1al flu.ctuations, ~ u2 can be sho,v11 (Fried) to follow 

where I{ is a constant detern1ined b~yr tl1e signal variance and aperture diameter. 

Since cha11ging tqe aperture dian1eter does not effect tl1e time scales on which 

turbulence develops, the spectru111 of the fluctuatio11s is expected to be independent 

of the receiving aperture dia111eter. TJ1is has been shown to be the case 

(Subrama11ian ). 

1 

6.3.5.6 Spectrum of Fluctuatio11s 

t 

Time variations in tl1e received signa.J strength are caused by turbule11t eddies 

movi11g through tl1e bea.111 ,,,it.h the wi11d. A complete a11alysis (Tatarski) of the 

spectral characteristics of the log amplitude fluctuations due to turbulence predicts 

an increasing spectrum · up to a ''breakpoint" frequency f0 , after which the power 

< 
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spectrum decreases as { 8/ 3. The breakpoint frequencY f0 is found by dividing the 

wind velocity perpendicular to tl1e beam by the size of the turbulence eddies that 

have the greatest contribution to amplitude fluctuations. Since the predominant 
(', ··-.. 

turbulence scale size is ~ ,\L (Davis), one can calculate f0 by 

Here, v0 is the wind velocity normal to the beam path, .,\ is the wavelength, and L is 

the path length. This formula. is ,,a]id if the fluctuations are not in the saturation 

regime. For ,\=0.830µm, L ·1 k111. and v 0 =2 m/s, the breakpoint frequency 

fo=70Hz. 

• 
IS 

For frequencies below and above the breakpoint frequenC)', the relative amplitude of 

the spectrum W(f) is approxiinated by (La,vrence): 

V\l(f) = / [ I+ 0.48(f/f0 )
413 + ... ] for f<t::f0 

0 

\ \l\7(f) = 7fo (f/f0 f S/3 for f~f0 

Typically, f0 ~ lOOHz, and most of tl1e signal energy is below 500Hz. 

6.3.6 Bea111 Deviation on Long Pa.tl1s 

Atmospl1eric turbule11ce also· causes wl1at is called beam steering, where the entire 
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beam is deflected. This steering has been estimated at 1 to 10 microradians per · 

kilometer along the horizontal and vertical axes. However, over long distances of · 

many tens of kilometers, the beam has been noted to move primarily in the vertical 

/ 

direction. For example, over a 45 km path passing over Boulder Colorado, (Ochs:et 

al) observed beam wandering in the vertical · direction by several hundred 

microradians. Experimental studies on a 36 km path (King et al) show that the 
,.. 

beam can move vertically by l1nR at a. rate of O.lµR/s. These changes are most 

notable at sunrise, presumably due to ground warming and rising heated air. This 

explains the fact that no horizonta.l movement was noted on either·link. 
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. 7. MEASUREM·ENTS o·F ATMOSPH:ERIC PROPAGATION 

7.1 Introduction 

In order to determine the reliability of atmospheric · 1aser communication links, 

weather effects were studied on two links in the field. Using the models in chapter 6 

along with the collected data,. there are two main results. First, that rain, snow, and 

fog can increase link optical losses by many lO's of dB's per kilometer. Second, 

atmospheric turbulence can cause the received signal to fluctuate by many dB's. 

These losses decrease the SNR at the receiver. 

7 .2 Experimental Link Description 

In order to measure the effects of weather, two experimental laser communication 

links were established. To account for all weather types, the links were monitored 

for one full calendar year. The received signal levels on these links are continuously 

monitored by a computer monitoring system. The sy~tem consists of a logarithmic 

preamplifier interface between the receivers and the computer, the computer system 

itself, and the software for monitoring and analysis. Collected data can be 
. 

correlated with weather information from the National Weather Service in order to 

quantitatively determine performance under various weather conditions. 

7.2.1 Link Location 

There- were two atmospheric laser communication links. that were tested. The 
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transmission path for' both links passes over the city of Bethlehem, PA, through the 

Lehigh Valley, and over the Bethlehem Steel works and the Lehigh River. 

The first link used the electronics and optics described in the previous chapters. The 

transmitter, with it's lmR beamwidth, was located on the roof of Bethlehem Steel's 

Martin Tower. For stability, the transmitter was mounted on a 55 gallon barrel full 

of water. The receiver was located 3km a,,,ay, at Packard Lab, Lehigh University. 

The receiving station was mounted indoors, j11st inside of a third floor window. 

The second link used an industrial unit designed by Laser Communications, Inc. 

The u11it is designed for use o,rer a 1km distance. The transmitter uses a 

semiconductor laser of the sa111e ,va.velength a.nd po,ver a.s the laser i11 the 3km link, 

but the transmitter has a 3n1R bean1,vidth. The transmitter ,vas located in the attic 

of the Moravian College 1\1 usic Building. -The receiving station, 1km distant, was 

located in Packard lab next to the 3kn1 link receiver. 

7.2.2 Receiver Signal Output 

In order to monitor the average light level on tl1e detector, a tap was made in each 

receiver to monitor the DC pl1otocurre11t. The locations of the taps are shown in 
' 

,, 

figure 7-1. In each circuit, tl1e D:C component of the photocurrent (the average 

level) passes through a resistor to ground, thus creating a small voltage (1-lOm V). 

This voltage is passed to the logarithmic preamplifiers. 
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7.2.3 LQgarithmic Preamplifier 

·Two preamplifiers were built to interface the receivers to the computer. The 
• 

logarithmic property of the preamplifier allows a 3 decade range of input levels to 

remain within the input range of the computer A/D. The preamplifiers perform 

three functions. The first function is to amplify the small voltage from the receivers 

up to the OV to 5V ra·ng_e needed by the computer's A/D converter. Second, the 

logarithm of the amplified signal is taken. A11 Intersil ICL8048 log amplifier is used 

that has a. 3 decade range. Offset pote11tiometers are used to set the zero point and 

null anJ' offsets. TI1ird, the logarith 1nic sig11al is filtered to remo,,e high frequency 

components that ,vould result in a.liasing ,vhen used ,vith the computer's A/D 

converter. The filter is a three pole a.cti,1e Salen-l{e)' lo,v pass filter, ,vith a -3dB 

frequency of 800 Hz. The filter response is 30 dB do,v11 by -tl1e Nyquist freque11cy of 

2400 Hz. The output of the filter is passed to tl1e computer .,.~/D input. 

7.2.4 Computer and A/D Converter 

The con1puter used to 1nonitor the link is a.11 I11tel PC-compatible computer. It is 

equipped \Vitl1 a 12 bit. A/D converter ca.rd ,vith 16 cl1annels. T\vo of tl1e cha.nnels . 

are used for monitoring the t,vo li11ks. Soft\vare lin1itations set tl1e A/D sa1npling 

rate to 4800 samples per seco11d. 

7 .2.5 Monitoring Software 

Custom software wa.s developed··-- to automate tl1e monitoring of the links. The 

,, .. _,tf" ., 
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developed program consists of 2000 lines of code developed in Turbo Pascal. The: 

program has been :rramed WXf\10N, short for "Weather Monitor." All data recorded 

by the program can be saved_ to disk for further analysis or plotting .. The monitor 

software has the following functions: 

• Short,, Term Signal Sampling: One link's received signal level can be sampled at 

4800Hz for up to 2 seconds. The samples can be written to disk in order to study 

,. 

short term fluctuations in the received signal due to atmosphe·ric· turbulence. 

• Long Term Link Logging: The n1ean signal level and standard deviation of the 

signal from the mean can be recorded over time scales of minutes, hours, or days. 

The time spacing bet,veen the log entries is adjustable from seconds to hours. 

Multiple links can be recorded si1nulta.neousl)'., if needed. Logs of the recorded data 

are aut.01T1at.ically written to cJisk. a.nd a.re used to study 1011g t.ern1 losses (sno,v, rai11, 

fog) in tl1e atmospl1ere. 

• Spectru1n Calculation: A11 FFT is used on sampled data to find the spectral 

compone11ts of the atmospheric i11duced sig11al fluctuations. The number of samples, 

and thus tl1e spectral resolution, is user specified .. The maximum number of points is 
• 

2048, whicl1 yields a spectra.I resolution of 2.4Hz. Multiple FFT's can be a,,eraged to 

obtain a n1ean spectrum. 

• Signal Histogram: · In order to ca.Iculate the distribution of the signal about the 

me~~' a histogram of sampled values can be taken over·many minutes. The number 

of points to use in the I1istogra111 is user specified. 
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• Dip Statistics: Dip times, that is, times spent below a certain threshold, can be 

recorded. A histogram of these dip times can be created, both for times below a 

certain threshold, as well as times bet\\1een. dips below a threshold. 

1, . 
. I 

• Self-Calibration: Due to the real-time nature of link monitoring, software timing 

considerations are crucial. The software is capable of tinii~ the \xecution speed of 

it's time-critical segments. Timing measurements are used to\ _optimize the 

software's performance, as ,veil as give an a.bsolute time reference for the program 

internals. 

7.3 Experimental Link Measurements 

Using the test links and the \vea.ther 111onitoring software, several measurements of 
-atmospheric optics effects ,vere ta.ken. FJuctua.tion distribution, spectra. and time 

variations were recorded, as ,vell as mea11 signal levels in order to measure 

extinction. Data from tl1e links is correlated ,vith weatl1er information obtained 

from the N a.tiona.l \'\' eat.her Ser,.'ice office at 4.t\.B.E. 4.t\irport, Allento,vn, which is 6 

kilometers distant. Using tl1is infor1nation, the measurements are used to confirm 

the models developed in chapter 6. These models can be used calculate the loss in 

SNR at the receiver due to extinction of the received beam. 

Note that measurements made i11 decibels represent optical power at the receiver. 

For example, a 1 decade drop in pbotocurrent due to a one decade (lOdB) drop in 
. 

' optical po,ver is recorded as a lOdB drop in optical po,ver, and not as a 20dB drop in 
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photocurrent. 

7.3.1 Amplitude Fluctuations 

" Even under constant weather conditions, the· received signal level fluctuates about a 

mean value due to th~ motion of turbulent eddies, snowflakes, and raindrops through 
. ' 

the atmosphere. The fluctuations in the received beam's intensity occurs on the 

scale of milliseconds as well as seconds, as collected data shows. 

7.3.1.1 Short Term i\.mpJitude FJuct.uations 

Typical short-term amplitude fluctuations on the two test links under sunn)', cloudy, 

rain, and snow conditions are sho,vn i11 figures 7-2 and 7-3. These plots show the 

amplitude fluctuations, sampled e,,ery 0.2Ims, over a 50ms period. Under sunny 

conditio11s, wind and rising eddies of l1ot air increase atmospheric turbulence, which 

in turn, cause signal fluctuatio11s a.t the receiver (see Chapter 6). Therefore, it is not 

surprising to see that under cloudJ' co11ditions .. when there is less wind an less ground 

warming, that there is not as 111uch va.riation in the signal. As can be seen from the 

plot~, these variations can be as 111uch as ±3dB under sunny conditions, and ±1.5dB 
• 

under clouds, snow and ra.in. 

With rain or snow in tl1e at.111osphere, sig11al fluctuatio11s are caused not only by 

turbulence, but also by sno,-., or ra.i11 falling through the atmosphere. Raindrops 

move faster than wind or turbulent eddies of rising warm air. Therefore, raindrops 

passing through the beam create fluctuations that vary faster than those due to ,,, .. , 
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. -turbulence alone. Since rain is typically accompanied by_ clouds, there is· less ground 

warming, and thus less atmospheric turbµlence to cause fluctuations in the received 

signal. This makes fluctuations due to raindrops more pronounced. On long paths, 

the contribution to the variance of the signal due to raindrops is typically 10-20% 

(Borovoy et al). Snowflakes do not fall as fast as raindrops (see chapter 6); so one 

would expect fluctuations due to snowfall to vary slower than rain· induced 

fluctuations; referring to figure 7-3, on can see that this is the case. 

7.3.1.2 Long Term Amplitude Fluctua.t.ions 

/ 

In the pre,,ious sectio11, fluctuations ,vere co11sidered o,,er a 50n1s tin1e fran1e. Over 

a. longer time frame, the signa.J n1ea.n \ 7·aries as well. Figure 7-4 sho,vs a 5 minute 

record of the mean signal amplitude under clear conditions, recorded every second 

for both tl1e 1km and 3km links. Fro111 the plot, one can see that even the long term 

average of the signal can va.r)' h)' a.s mucl1 as ± ldB over a time scale of seconds. 

These changes are again due to slo,v cha.nges in atmospheric turbulence, as well as 

changes in ,vind speed a11d direct.ion. Furtl1er111ore,. as predicted ( see chapter 6), 

signal \'aria11ce is proportio11al to pa.tl1 length. Tl1is is apparent i11 figure 7-4, since 

the 3km link has fluctuations a.pproxin1ately three times the amplitude of those on . 

the 1km link. Note that tl1e fluctua.tio11s are not exactly correlated, since the two 

received bea1ns pa.ss through t,vo different paths through the atmosphere. 

7 .3.2 Probability Distribution of An1plitude Fluctuations 

The 'distribution of the amplitude fluctuations about the mean theoretically varies as 
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a function of turbulence strength, path Je·ngth, and weather conditions. 

Measurements on the test links have shown a log-normal distribution, with standard 
. ·~-

deviations from 0.5dB to 3dB. Experimental data also shows the effects of weather 

on the fluctuation's amplitude. 

7 .3.2.1 Theoretical Distributio11 

To quantify the amplitude fluctuations, statistical tools, such as the probability 
-e-

density fu11ction, ca.n be used. Reca.ll from chapter 6 that the probability density 

function should be log-normal, and that the standard deviation 4u2 of the 

distributio11 is given h)' 

~u2 = [1nta]~ = 0.31 Cn2 (21r/A)i/6 L 11/6 

From this equation, one ca.n see tha.t log-amplitude fluctuations due to turbulence 

increase almost linearly with dista.11ce a.11d the turbulence level, if the fluctuations 

l1ave not saturated. 

7 .3.2.2 Ca.lculation of Proba.bilit,· De11sitv Function ... " 
• 

In order to confirm these predictions, the probability density function of the signal 
I 

is approximated by forming a histogra.m of values sampled form the signal. Here, the 

received signals were sampled at 4800 sa.1nples/sec, and 4xl06 sam.,ples are used for a 

histogram con1putation. The histogra1n i11terval is 0.04dB, or 25 intervals/dB. The 

results are the histograms sho,v11 i11 figures 7-5 and 7-6, for the 3 and 1 kilometer 
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links, respectively. The histogram shows that the distribution· is indeed log-normal 

under all weather conditions. Using this fact, the standard deviation of the 

amplitude fluctuations can be used as a measure of atmospheric turbulence under all . 

weather conditions. 

7.3.2.3 Standard Deviation vs. Weather 

The standard deviation of the probability distribution varies according to the 

weather conditions, as can be see11 in figures 7-5 and 7-6. Under sunny conditions, 

ground war1ning results in increased atmospheric turbulence ( reflected in tl1e Cn 

consta11t ). This increases the a1nplitude of the signal fluctuations and the standard 

deviation of the histogran1. U 11der cloudy conditions, turbulence levels are decreased, 

and the l1istogram is correspondinglj' narrower. Furthermore, since rain is often 

accompanied by clouds, and since raindrops do not cause more than 10-20% of the 

signal varia.nce, the distributions \\1ith clouds and witl1 rain are almost identical. 

7 .3.2.4 Sta11dard Deviatio11 vs. 1"'i1ne of Day 

Even on clear days, the sta11dard deviation is dependa.nt on the turbulence level, 

which, in turn, is highly dependant on the presence of sunlight. At night, when no 

., ... 

solar ground warn1i11g effects a.re prese11t, there are decreased levels of turbulence. 

During da.ylight hours, the presence of sun and wind increases atmospheric 

turbulence, and tl1us increases tl1e standard deviation of the signal fluctuations. This 

~-.. ~·-) .• 

can be seen in figure. 7-7' w hicl1 is a plot of the standard deviation of the signal 

.fluctuations over a 24 hour period with clea.r conditions. During nighttime hours, 3the 

152 

p' 



- - .,. __ ,,-. 

Standard DeviatJio11 of FI1_1ctuations 

,,s. Ho11r of Day 

1km Link 
1.0 ······----············································ ···················································· 

-n ~ -0 -· .Y tC ....., 0.5 
C a. 

..- 9111 0 ~· to .. 
•• m '-..,.,I ...... u 

I ...._,,,, 
0.0 ····································································································-········ 

...... 
.6 ....., 3km Link 
.Q 
> 
(JJ 

0 1 5 ............................................. . 
• •••••••••••••••••••••••••••••••••••••••••••• 

~ 
a 
-a 

/l C ... ~ \ 
B 

1 0 ......................................... ·······-···················· ...................................... . 
• 

Vl 
0.5 

0.0 .-----------r------------:r------~-------------..------------,------------t r' 1 J .. ,, ,, 

0 4 8 12 16 20 24 

Hour (EST) 

' 



turbulence level on both links is 0.5dB. At noon, t'he standard deviations are 1.7dB 

on the 3km link, and 0.9dB o·n the 1km link. 

7 .3.2.5 Standard Deviation vs. Distance 

The standard deviation of the probability distribution also varies according to 

distance. As can be seen from figures 7-5 and 7-6, the 3km path histograms have 
.. ';\ 

larger standard deviations than those on the 1km path under identical weather 

conditions. Theoretically ( see chapter 6), fluctuations due to atmospheric turbulence 

should increase a.lmost linearl~y ,vith distance (if the fluctuations are not in the 

saturation region). Thus, the standard deviation on the 3kn1 li11k should be triple 

tl1at on the 1km link. This ca.n be seen in the su11n)' conditions l1istogra.1ns, where 

the 3kn1 link histogra.m has a st.a.ndard deviation of 3.0dB, aln1ost exactly three 

times tl1e l.ldB standard deviation at three times the 1km distance. Of tl1e standard 

deviations recorded on the t,vo li11ks under all weather conditions, tl1e standard 

deviations on the 3km link under sunn)' conditions are typically the largest, witl1 

values of approximately 3.0dB ±0.3. This correspon~s to the case of intermediate 

atmospheric turbulence. 

Under cloudy and rainy conditions, the standard deviations have not tripled with 
) 

distance, but have only doubled. Tl}is possibly indicates that the fluctuations have 

already saturated with distance at this lower turbulence level. While saturation 

phenomenon has yet to be adequately described theoretically, other experimental 

workers (Bor.ovoy et al) (Ochs & Lawrence) have seen similar results in rain and 

clear conditions. 
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7.3.3 Spectrum of Amplitude Fluctuations 

Spectral methods can also be used to describe the amplitude fluctuations. 

Measurements made on the test links confirm the spectrum models under various 

weather conditions. 

7.3.3.1 Theoretical Model of Spectrum 

Recall from cl1apter 6 that the spectrum of the log amplitude fluctuations due to 

turbulence theoretically increases up to a "breakpoint" frequency r
0

, after which the 

power spectrum decreases as {
8

/
3

. The breakpoint frequency was predicted to be 

approximately lOOHz. 

7 .3.3.2 Spectra Calculations 

To confir111 this model, an FFT ,va.s used to find the spectrum of the sa1npled 

amplitude fluctuations. The FFT used 204-8 points tl1a.t were sa111pled at 4800 

sa1nples/seco11d. The resultiug 11,F1"' has a spectral resolutio11 of 2.4Hz. Due to the 

statistical nature of the turbulence, ten spectra were averaged in order to find the 

mean spectrum over time. A 'typical spectrum of the amplitude fluctuat•ons on the 
;1-. 

3km link is shown in figure 7-8. As one can see from the graph, the signal has a 

broadband spectrum that decreases with increasing frequency. Most of the signal 

energy is below 800Hz. The appearance of the spectrum is not unlike that of a 1/f 

nois~ source or velocity ·in a turbulent flow, both of which are random p-rocesses with 
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broadband, decreasing spectra. 

7 .3.3.3 Spectra due to Turbulence 

In order to further investigate the spectra due to turbulence, the results of the FFT 

were plotted on a log-log (Bode) plot for various weather conditions. These plots 

are shown in figure 7-9 and 7-10. The corner freq-uency, f0 , where the amplitude 

begins to decrease, is easily found from these log-log graphs. For sunny conditions 

on both links, fo :::::200Hz. Also, since the spectrum should decrease as 1;/3 / 3 , the 

slope of the decreasing portion of the plot should be -8 /3. A reference line with slope 

-8/3 has been placed next to tl1e decreasing portion of the spectrum shown in figures 
J 

7-9 and 7-10. As one can see, the slopes ·of the spectra due to ~ur.b-ulence 
\) 

approximately match the theoretical slope. For f <f0 , the spectrum model predicts 

an increasing spe~tral amplitude with increasing frequency (see chapter 6). This, 

however, is not apparent in tl1e plots. Other experimental work that measured the 

spectrun1 down to 2Hz ( Su bra1nania.n & Collison, 1965) l1as shown a si1nilar 

spectrum, without a decreasi11g a111plitude at low frequencies. This may be_ due to the 

fact that the lowest observable frequency ,vas only ""2Hz in both cases, which may 

not have been small enough to satisfy the condition f ~f0 • 

7.3.3.4 Spectra due to Rain & Snow 
: :· 

Since raindrops typically mov_e faster than wind or turbulent eddies of rising warm 

air, rain causes a change in the spectrum. The bandwidth of fluctuations induced by 

. turbulence is 500 to lOOOHz. With rainfall, the bandwidth can increase to lOKHz. 
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The added high frequency components ate. due to raiµdrops falling through the · 

beam. The magnitude spectra due to rai11 has been modeled (Wang et al) as 

W(f) = l 
(1 + 6.02xlo-8 f2 R0·21 l/4 

where R is the rainfall rate -in mm/hr, and f is the frequency. A ·plot of this function 

j-g-,S11own in figure 7-11 for R=l, 10, and 100 mm/hr. ' The modeled spectrum is 

relatively insensitive to the rainfall rate, R. 

Actual spectra obtain du1~ing rai11fall are shown in figure 7-9 and 7-10. On both tl1e 

3km and 1km links, the breakpoint of the rain spectrum is much higher than the 

breakpoint of the spectruin under su11n)' conditions. Tl1e increase in band,vidth is 

especia.11)' a.pparent. on· the 3kn1 link .. where the breakpoint frequenc)' shifts fro1n 

. 200Hz under sunn)' conditions, to lOOOHz during rai11fall. 111 actuality, tl1e 
/ 

breakpoint frequenc:y is most probably higher, but because of the A/D anti-alia.sing 

filter breakpoint frequency a.t about ll{Hz, the spectrum can only be considered 

accurate up to ll{Hz. Despite this restriction, it is easy to see that the rain.fall 

spectrum is much wider than the spectrum due to turbulence alo11e . • 

Since s11owflakes do not fall a.s fa.st as rai11drops ( see chapter 6), one would expect 

the spectru111 due to sno,vfall to be na.rrower than the spectrun1 due to rain. Fron1 

figure 7-10, one can see that tl1is is so, and that the snowfall spectrum closely 

matches tl1e sunny conditions spectru1n. 
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7 .3.4 F.ade Statistics 

Due to the turbulence induced fluctuations in the received beam, the received signal 

level is often below an acceptable level. This undesired fade or dip in the mean 

signal level causes dropouts in. an analog laser communication link, or bursts of bit 

errors in a digital link. In order to characterize the fades or dips, the duration and 

distribution of these dips was investigated, both by experiment and simulation. 

7.3.4.1 Tin1e Fraction of Fades 

Since the signa.l fluctua.tions a.re assumed to be a random process, where time 

averages a.re equal to ensemble a,,erages, the fraction of time a signal X( t) spends 

below a certain level L can be found from the cumulative probability function of the 

signal (Yura & McKinley). Here, tl1e cumulative probability function can be found 

by integrating over the log-normal distribution. Assume a threshold L decibels 

below tl1e- signal mean. The fraction of time that the signal spends below this 

threshold is 

Frac( X(t) < L.) = J L 1 -x2 /2u2 
-;:::::== e dx 

-oo ~ 27ru2 

;-;~-.. ,. 

where u is the standard deviation of the log-normal distribution, in decibels. This 

integral cannot be calculated in closed form. Using numerical methods, this function 

. . 

was evaluated and is plotted· in figure 7-12, with u=l.OdB and L ranging from OdB 
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7 .3.4.2 Experimental Fade Duration Histograms 

To calculate the probability distribution of the fade duration, the signal level on the 

1km · link was first sampled. Tl1e duratio11 of dips below tl1resholds of 0, 1, and 2 

-standard deviations below the mean were the obtained from the samples. Histograms 

of the durations below the thresholds were calculated. The results are presented in 

figure 7-13. From the histograms, it is apparent that the most probable dip time is 

... · 

approximately lms, and that tl1e probability distribution is relatively insensitive· to 

the tl1reshold. 

7 .3.4.3 Simulated Fade Duration Histogram 

To further investigate tl1e dip duratio11 statistics, the signal fluctuations were 

simulated. First, the ma.gnitude spectrum of the atmospheric turbulence 

fluctuations was 1nodeled a.s 

V\'(f) = 1 . 
l+(f/fcl/3 

' . 

Using fc=50Hz, the magnitude spe-ctrum is plotted in figure 7-14. The phases of the 

ph_ase spectrum were set at random in order to model the random motion of the 

turbulent eddies in the atmosphere. Using these models, 1024 points on the 

spectrum ,vere calculated·. An inverse FFT was taken in order to obtain a sim11lated 
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time waveform consisting of 2048 points. An example··Waveform is shown in figure 
.fl 

. ·. . 7-15, over a span of lOOms. 111 order to verify the accuracy of ,he probability 

distribution of the simulated signal, a histogram, shown in figure 7-16, was 

calculated. The probability distribution of the simulated signal has a standard 
<, 

deviation of 1.2dB, and closely matches the distribution of a real signal. 

The dip duration histograms shown in figure 7-17 were calculated using multiple 

time wa,,eforms. Although the histograms obtained via simulation are similar to th·e 

histograms calculated from actual da.ta, there are some differences between the two. 

First, tl1e most probable dip ti111e varies between 2ms and 5ms in the simulation 

results. In the histograms created from experimental data, the most probable dip 

time was approximately lms. This discrepancy arises due to the cl1oice of fc for the 

simulation. The va.lue of fc \Va.s kept s111all to decrea.se tl1e time a11d space 

requirements for the simulatio11; a n1ore realistic value is fc=200Hz. Second, the 

simulated histograms show a sligl1t tl1resl1old dependance, but the experimental 

histograms do not. Tl1is discrepancy may be caused by tl1e fact that the \VXMON 

monitoring software does not d.yna111ically readjust the thresl1old · 1evel with sl1ifts in 

the sig11a.J 111ean or standard deviatio11. Si11ce the dip duration histogra1ns were 

collected over severa.l hours, changi11g weather conditions may have caused the 

standard deviation or 1nean level of tl1e signal to sl1ift, and distort the resulting 

histograms. 

7 .3.5 Extinction. Measurements 

Extinctio11 caused by r~in, sno,v, and fog can render laser commuriicat~on impossible. 
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Data was collected and analyzed in· orde~ to confirm the Joss models for rairt, snow, 

and fog that ~ere presented in chapter 6. Measurements show that fog creates the 

highest losses, followed by sno,v, then rain. 

7 .3.5.1 Extinction due to Rain 

I 

lfitl' 

In order to confirm the rain loss model presented in chapter 6, link loss data 

collected during rainstorms ,vas correlated with rainfall data obtained from the 

Nationa.l \\ieather Service. lJsing Nationa.l Weather Service data i11troduces son1e 

uncertai11ty i11 tl1e measure1nents since the rainfall rates are measured 6 km·. distant. 

Furthermore, the rainfall data. has a ti111e resolution of only 1 hour. Also, rainfalls 

are ofte11 accompanied with some an1ount of fog; this makes measurements of loss 

due to ra.in alone difficult. In order to overcome these difficulties, short term rainfalls 

( < 1 11r.) and rainfalls with sig11ifica.11t a1nounts of fog were not used in the following 

analysis. 

Fourteen hours of rainfall data ,vas collected and analyzed. The result is shown in 
.. -· . 

figure 7-18, which is a graph of measured patl1 loss versus rainfall rate. Typical 

values for the rainfall rate are 0.25111m/hr (drizzle), lmm/hr (light rain), 4mm/hr 
• 

( moderate rain), a11 d l 601111 /hr (heavy rain). As one ca11 see fron1 tl1e grapl1, most 

measured losses are u11der 2dB/k111. l11cluded in tl1e g·raph are tl1e losses predicted by 

the model presented in chapter 6, 

\ 
I 

odB = 0.5862 R 8•727 (dB/km Loss) 
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The model overestimates the losses somewhat, and a· better model to fit this data set 

would be 

· · 0.727 
odB =J):39 R 

However, in light of the uncertainties noted above, the model seems to 

approximately match the data. 

The above measurements do not include rainfall rates of above Smm/hr, since most 

rainfalls can not sustain sucl1 a ra.i11fall rate for an entire hour. During a typical 

. summer ra.inburst, however, the rai11fall rate can be much higher for several minutes. 
,, 

The effect of a heavy su111111er rainfa.ll is sl10,vn in figure 7-19, wl1icl1 is a graph of 

link losses 1neasured ever)' fi,,e n1i11 utes. As can be seen, the losses on the two links 

can reach as high as 4dB/km in l1ea.vy rain. The peak rainfall rate was estimated at 

20mm/hr, which yields a. predicted loss of 5dB/km. 

· 7.3.5.2 Extinction due to Sno,,· 

Snowfall can introduce large losses in a communication link ·· and render laser 

coµimunica.tion practically impossible. Snowfa.11 has been observed to cause losses of 
• 

' 

over 20dB on both the 1km and tl1e 3km link, essentially eliminating t·he beam. 

Losses 011 the 1km link duri11g a light snowstorm are plotted in figure 7-20, along 

with dry snowfall rates recorded by .the National Weather Service. This data has a 

time resolution 'of 1 hour, and. an accuracy of ±0.75mm. Using data similar to this 

gathered during ten ·snowfalls, figure· 7-21 · was constructed. This plot shows 
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measur~d loss on the links versus dry snowfa,11 rate. Using a nonlinear least squares 

fit, the best fit to this data is give11 by the· model 

odB = 1.453 R0.3844 

where odB is in dB/km, and R is the dry s11owfall rate in mm/hr. 
't, 

A similar 1nodel has been fou11d b)' ( f\1ellor ), which is equivalent to 

, - 1 81 R0.421 0 dB - · 

Empirical n1odels presented i11 the literature, as sho,vn in chapter 6, are quite varied. 

This is because the t)1 pe and densit)' of sno,v varies by regio11, and can eve11 vary 

within the same sno,vstor1n. The de11sity of snow, which is the largest unknown 

factor in these measuren1ents, can var)' from 50kg/m3 to 200kg/n1 3 • Here, a value. 

of lOOkg/1113 was assumed. 

7.3.5.3 Extinction Due to Fog 

The high losses due to fog can also render laser communication practically 

impossible. Measured losses due to fog have a range of lOdB/km and higher. The 

difficulty i11 modeling fog losses arises i11 finding a physical quantity of the fog to 

measure. Theoretical results show11 in chapter 6 derived loss versus density of water 

in the air.· No conclusive experi111ents were performed to confirm this model, since 

.~-

water density in· ·air is difficult to estin1ate in the field. 
·.r 
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Usually the easiest measurement to make is that of meteorological range, that is, the 

distance at whic a black object is just noticeable against the sky. Recall from 
;' 

chapter 6 that the meteorological range, Rm (in kilometers) is given by 

R. _ 3.912 
m- o 

Therefore, converting o to decibels, ,ve can obtain 

While hourly visual range i11for111ation was not taken, it was noted that light fogs 

can increa.se path losses by approxi111ately 20dB whe11 the 1km or 3kn1 transmitting 

station ,vas just· visible. Using tl1e abo,1e formula for visual ranges of 1km and 3km, 

the losses were predicted to be 16.97dB, close to the measured value of 20dB. Since 

the attenuation of a fog is wavele11gth independent at optical wavelengths (see 

chapter 6), this attenuation model is ,1alid for the near-_IR laser wavelength·· also. 

/ 
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8. CONcLJ/SloN • 

8.1 Summary of Work 

An atmospheric laser communication system for digital communication has been 

constructed and tested. The system is capable of asynchronous data rates of up to 

20Mb/s over a path of 3km. Tl1e system uses a BPSI( modulation scheme, since an 

analysis of modulation schemes has shown that binary phase shift keying provides 

optimum performance. The trans111itter and rece~ver circuitry to implement BPSK 

was constructed and analyzed. The front-end of the receiver circuit ,vas found to be 

a major factor influencing s~yste1n performance. Optimization of the noise 

performa11ce of the receiver fron t.-e11d resulted in tl1e selection of a transimpedance 

amplifier and APD ga.in of 100. 
/ 

Transmitter and receiver optics ,vere kept relatively simple in order to reduce 

complexity and costs. At tl1e transmitter, beamwidth considerations compromise 

received power levels to pointi11g accuracy. The transmitted beamwidth of lmR is 

large e11ougl1 so that vibration and atn1ospheric turbulence effects do not move the 

beam off of tl1e receiver. At the recei,,er, a. la.rge objective lens was selected ,vith a 
• 

focused spot size is smaller tha.11 the photodetector. This maximizes the angle of 

acceptance as well as the power delivered to the photodetector. 

Studies of link performance under various weather conditions have shown that both 
. . -extinction a11d atmospheric turbulence affect the received signal level. Atmospheric 

turbulence results in ra.ndon1 a.111plitude fluctuatio11s of the recei,,ed bean1. These 

• 
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amplitude fluctuations are best modeled using a log-normal~ability distribution, 

and a spectrum that decreases as { 8/ 3. Extinction results from particles in the 
.' 

atmospl1ere, such as rain, sno,v and fog. Theoretical analysis of .. scattering by 
f\ 

atmospheric particles has. predicted that these losses may be up to many lO's of 

dB/km. Experimental data has confirmed that typical fog and snow conditions, 

which cause the most extinction, can make optical communication practically 

impossible at times. 

8.2. Suggestions for Future \,Vork 
\ 

" 

The perfor1nance of an atmosp]1eric laser communication system can be improved 

considerably at the price of S)'Stem complexity and cost. Promising methods to 

investigate include Manchester e11coding, error correction codes, and automated 

beam tra.cking systems. Further111ore. since ,veather effects the atn1ospheric laser 

communication system, these S)'Sten1s ca.n conceivabl)' be used to make several 

atmospheric measurements. 

8.2.1 Ma.nchester Encoding 

The system described here \\1as desig11ed to behave like a 'wire,' that is, it was bit 

rate independent and asyncl1ronous. To obta.in these qualities, the system uses 

BPSI{, and which is essentially a.11 analog modulation technique. If, in designing 

another laser communication system, the bit rate can be fixed, then Manchester 

encoding a.t the transmitter ca11 be used. Manchester encoding exclusive-or's the 

incoming bit stream with a. squa.re ,vave rt1nning at twice the i11coming bit rate. 
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·"-·· This guarantees a tra~sition ever# bit period. A Manchester encoded bit stream has· 
' \ 

no DC components, and little spectral ·energy at low frequenfies. Thus, AC coupling 

can be ·used at the receiver, simplifying circuit design, and eliminating·th~effects of 

background light. At the receiver, a clock recovery circuit "is u~d to· recover the 

transmitter clock and decode the data. 

Manchester encoding is very similar to BPSK modulation, since the incoming bit 

stream is being multiplied by a square-wave 'carrier' at t";1ice the bit rate. In BPSK, 

the carrier is sinusoidal and· 11ot S)'nchronized to the bit source; in Manchester 

encoding, the ca.rrier is a squa.re ,va,'e that is synchronized to the bit source. The 

advantage of Manchester encodi11g is the savings in bandwidth; for a 20M,B/s source, 

the transmitted signal requires 40I\1Hz. Tl1e BPSK system developed here requires 

120MHz. Thus, using a l\1ancl1ester encoding scheme, the same 120h1Bz band,vidth 

system can used to send. data at a fixed bit.. rate of 60I\1b/s. 

8.2.2 Error Correction Codes 

In a digital system witl1 a fixed bit ra.te., bursts of bit errors due to deep and rapid 

fades in tl1e received sig11al ca11 be corrected by using error correction codes. Coding . 

and decoding can be done- h)' dedicated digita.l hard,v~re, or microprocessors. Using 

simple codes and inte~leaving, ( Da.,1idso11) has show11 coding gai11s can range from 

7dB to lldB. Since tl1ese bursts occur in a time scale on the order of milliseconds, 

at high data rates (>1 Mb/s) dips in the signal cause errors spanning many 
.. _. 

thousands of data bits. Ratl1er than resorting to the use of very long and 

complicated error correcting- codes to correct for these long duration error bursts, 
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interleaving ·of simp~e codes is a more attractive alternative (Davidson}. This 
.. .. 

requires that several.Jnilliseconds of the incoming bit stream be stored in memory in 

the transmitter. 

C 
8.2.3 Beam Tracking System 

.., . 

For communication over long distances, narrower· beamwidths must be used in order 

to minimize optical power losses. Narrow beam widths make aligning the transmitter 

and recei,,er difficult, increases the se11siti,,ity of the systef!l to ~,ibration, and makes 

beam waJ1dering due to atmospheric turbulence more pronounced. Clearly, a system 
~ 

em ploying feed back of recei,,er sig11a.l stre11gth to the transn1itter could be used to 

help automatically aim the trans111itting beam for best reception at the receiver. 

Successful experiments by ( l(ing et al), ,vhich used an automatic ain1ing system for a 

0.lmR bea.m o,,er a. 23 1nile pa.th. den1onstrated the results possible ,vhen using such 

a system. 

8.2.4 Weather Measurements 

,. 

Since tl1e performance of a11 a.tmospheric laser communication system is highly 

dependant on weather conditions, a slight modification of a communication system 

fould be ~~ed to measure ,vea.ther sta.tistics. For exan1ple, using the an1plitude 

fluctuation spectrum, (Wang et a.I) has demonstrated the use of a laser system to 

measure rainfall rates. As rai11fall i11creases, the spectrum of the fluctuations 

broade11s, a11d the wi~th- of the spectrum can give an absolute measurement of the 
.\ 

rainfall rate. 
-------------- ---.:.._ - --··-; ..._____ 

" Another pot.en9aJ application is in ·measurements of visibility. 
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Visibility could · be quantified · by · measuring backscattered intensity.· or received 

inte-nsity over a measured path. Also, wind speeds can ·be measured by correlating 

. . .. .. ' 

the amplitude fluctuation signals from two receivers several meters apart·. Lastly, 
J 

•,Y 

,he strength of the amplitude fluctuations due to turbulence can he used to estimate 

th~ atmospheric turbulen.1 level, which is an important consideration at airports. 
.. i" J 
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