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1. ABSTRACT 

A number of computer simulations have been developed to model the effects of Integrated 

Circuit (IC) processing on the dopant concentration profiles of semiconductor devices. 

BICEPS (Bell Integrated Circuit Engineering Process Simulator) and SUPREM (Stanford 

University PRocess Engineering Models) are two of the more well-known process simulators. 

The purpose of this work is to explore the accuracy of these simulators for epitaxial 

processing across a range of temperatures. 

The subject of this research was a ten micron p-type epitaxial layer on a heavily doped p

type substrate. The layer was grown in an atmospheric pressure reactor using trichlorosilane 

as the silicon source and diborane as the dopant gas. The epitaxy processing temperature was 

varied from 950 to 1200°C in increments of 50°C. Electrically active dopant concentration 

measurements obtained using the C-V and four-point probe techniques, were used as input to 

the simulators, and the results of the two simulators were compared with the physical dopant 

profiles detennined using SIMS (Secondary Ion Mass Spectrometry) analysis . 

This work showed that boron diffusion during epitaxial growth, on a highly doped 

substrate, can be simulated reasonably well by use of the simulator programs in the 

temperature range from 1050 to 1100° C. Outside this range, further work needs to be done. 

1 



2. BACKGROUND 

2.1 EPITAXY OF SILICON 

Epitaxy (epi) of silicon is the growth of single crystal silicon on silicion substrate wafers. 
-0 

Using this deposition process, a multi-layer structure of a lightly doped epitaxial layer and 

heavily doped substrate can be obtained to enhance the electrical performance of fabricated 

devices. 

Epitaxial processing has developed rather gradually, in comparison with some other Si

LSI (Silicon - Large Scale Integration) industry processes. In the Chemical Vapor Deposition 

(CVD) epi technology, the basic concept of the deposition process has not been modified 

since the beginning of the technology. [ll 

Epi processing is done across a range of temperatures (500 to 1250°C) and pressures 

(from atmospheric pressure to <lxlo-8 torr), with varying deposition rates (0.001 to 

5µm/min). CVD is the most common epi process, which uses gas phase chemical reactions 

/ to deposit the desired film on the Si surface. In general, one of the following four (or a 

combination of these) gases is used as the silicon source: silane (SiH4), dichlorosilane 

(SiH2 Cl2), trichlorosilane (SiHC13), or silicon tetrachloride· (SiC14). The electrical 

conductivity of the epitaxial layer is controlled by the amount of dopant gas added. 

Typically, hydrides of the impurity atoms, arsenic, phosphorous, and boron are used as the 

dopant gas, namely arsine (AsH3), phosphine (PH3), and diborane (B2H6), respectively. [ZJ 

The final dopant concentration profile of the epi-substrate structure depends on both the 

initial substrate doping and the impurities introduced during the epi growth, as illustrated in 

Figure 1. £3] Cs is the initial substrate doping concentration, C1 is the doping profile due to 

2 



the solid-state diffusion of dopant impurity from the substrate, and C2 is the profile resulting 

. from the external doping during the epi growth. The interface between the substrate and the 

epi is located at x=O, and x=xr=Vt is the epi film surface, where "1s the film growth rate and 

t is the time. 
() 

The distribution C1 (x, t) can be obtained by solving the diffusion equation, 
,. 

where D is the diffusivity of the dopant atoms. Initially, the substrate concentration is 

uniform, 

C1 (x,O)=Cs. 

Additionally, the concentration deep within the substrate will not be affected by the epi 
~ 

process: 

The final boundary condition assumes that the material diffusing to the surface of the epi film 

either escapes into the gaseous ambient at some rate h, where his the gas-phase mass-transfer 

coefficient in terms of concentration in the solid, or is incorporated into the film at the growth 

rate V. This condition is expressed as: 

ac1 
-D ax = (h + V)C1 at X = Xf = Vt. 

A rigorous derivation of this condition can be found in reference l3l . 

3 
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The solution which satisfies the diffusion equation with these conditions is 

1 1 1 - -
C1 (x,t)/Cs = 2erfc[x/2(Dt) 2 ]-[(h+Y)/2h]xexp[(V /D)(Vt-x)]erfc[(2Vt-x)/2(Dt) 2 ] 

1 

+[(V+2h)/2h]exp[[(V+h)/D1[(V+h)t-x]]xerfc[[2(V+h)t-x]/2(Dt) 2 ]. (5) 

1 

If the growth rate is high enough such that Vt/(Dt) 2 >>1 then the impurities are not 

diffusing to the surface quickly enough to escape. So, regardless of the value of h, the 

solution reduces to a simple complementary error function 

1 
1 -

C1 (x,t)/Cs :::: 2 erfc[x/2(Dt) 2 ]. 

The externally introduced dopant is also described by the diffusion equation, but subject 

to the following initial condition: 

Deep in the substrate, the external doping impurity vanishes: 

and, the concentration at the epi film surface is a constant Ct, which is determined by the 

impurity concentration in the gas: 

C2(xr,t) = Cr. 

The solution to this problem is 

4 
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C2(x, t)/Cr=2 t +erf[x/2(Dt) 2 ]+exp[(V /D)(Vt-x)]erfc[(2Vt-x)/2(Dt) 2 ]. (10) 

1 

If Vt>(Dt) 2 then the second tenn can be neglected and this equation can also be reduced to a 

1 

complementary error function distribution. And, in the epi film, for distances x>2(Dt) 2 from 

the substrate-epi interface the concentration is ==Ct. 

The net impurity distribution C(x, t) is the sum of the substrate and the epi film 

contributions 

C(x, t)=C1 (x, t)+C2 (x, t) 

for impurities of the same type. 

1 

In the range where Vt=(Dt) 2 , or if D:tconstant, or arbitrary initial conditio~s are 

considered, the problem does not lend itself to analytical solutions. The ref ore numerical 

solutions have been developed to solve these problems. Two programs which perf onn such 

numerical solutions are considered below. 

2.2 BICEPS AND SUPREM SIMULATION TOOLS FOR EPI 

BICEPS (Bell Integrated Circuit Engineering Process Simulator) and SUPREM (Stanford 

University PRocess Engineering Models) are computer programs which calculate doping 

profiles of devices in semiconductor processing. These simulators model ion implantation, 

predeposition, drive-in under inert or oxidizing conditions, epitaxial growth, deposition, and 

etch steps. l4l £51 The commands and input requirements for each program are very similar, as 

' 

evidenced by the sample input files for each simulator which are included as Appendix A . 

. 5 
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The simulators use finite difference methods to solve the nonlinear diffusion equations, as 

outlined above in section 2.1, for each impurity present subject to the boundary conditions 

described. 

Of importance for this work is the program modeling of the diffusivity of boron at the 

bake and growth temperatures. The diffusivity in both programs is modeled after work by 

R.B. Fair, which suggests that the effective diffusion coefficient should be the sum of several 

diffusivities, each accounting for impurity interactions with different charge states of lattice 

vacancies. [61 Thus, the general form for the diffusion coefficient is 

f = __!!_ 
Il· 1 

where D1 , Di , Dt , Di are the intrinsic diffusivities of various vacancy states, n is the 

electron concentration, a function of all Ci, and ni is the intrinsic electron concentration at the 

processte01perature. 

As an acceptor, boron is negatively charged in the silicon lattice, and it diffuses primarily 

with positive (D+) and neutral (Dx) vacancies. Thus, the diffusivity of boron is largely 

detennined by the following contributions: 

(12) 

(13) 

n· 
Di= Df + Dt 1 

n 
(14) 

The vacancy state diffusivities can be described by equations of the fonn: 

6 



(15) 

• 
where 0;0 is a prefactor and Q; is the activation energy. The values for these coefficients 

used by BICEPS and SUPREM are presented in Table 1. Also presented in this table are the 

coefficients provided by Fair. [71 The differences in these coefficients and their effects on the 

simulation profiles will be discussed in results. 

The electron concentration, n, can be approximated by use of the mass action law and 

charge neutrality [SJ 

1=11 

Cnet =-L~Ni 
i 1 

where 4 is the charge state of the ith impurity (=l for acceptors, =-1 for donors) and Ni is the 

electrically active concentration of the ith impurity. The intrinsic electron concentration, ni, is 

calculated using the Morin-Maita relation [91 

(16) 

(17) 

Eg 

ni = 3.87xl016Tl.5e 2kT (18) 

(19) 

where Eg is the energy band gap of silicon, k is the Boltzmann's constant, and T is the 

temperature in degrees Kelvin. 

The details of the simulators' application of the diffusivity model presented above will be 

explored for each simulator in the results section. 

'1 
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2.3 DESCRIPTION OF MEASUREMENT TECHNIQUES 

2.3.1 C-V MEASUREMENT 

C-V measurements were used to detennine the doping level in the epitaxial layer. A 

mercury contact is used to fonn a Schottky barrier diode, which, is reverse-biased. The 

doping level is determined from the relationships: 

(20) 

X = esA/C (21) 

where C is capacitance, V is voltage, q is charge, A is the diode area, Es is the dielectric 

permittivity of silicon, N is the doping density, and xis the depth. [lOJ 

2.3.2 FOUR-POINT PROBE MEASUREMENT 0 

The substrate doping level was determined using the four-point probe method on the back 

side of the wafers. In this technique, which is illustrated in Figure 2, [l ll four probes are 

placed on the semiconductor surface, and current is passed through the two outermost probes. 

The voltage across the two inner probes is monitored. This eliminates any problems due to 

the probe-to-semiconductor contact resistances. The spreading of the current, as shown in the 

top view of Figure 2, must be taken into account. This has been done, and for layers with 

large lateral dimensions and small xj compared to the probe spacing, the voltage drop V and 

current I have been shown to be related to the average resistivity p of the diffused layer by the 

equation: 

8 
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P = 7t y__X· = 4 532y_X· 
ln2 I J • I J 

Substituting the wafer thickness for xj allows calculation of the substrate resistivity, and, 

' 

(22) 

hence, the dopant concentration. Correction factors are applied if either xj or the wafer 

thickness are comparable to the probe spacing. The resistivity is then converted to 

concentration. [t 21 

2.3.3 SPREADING RESISTANCE MEASUREMENTS 

·• 
} 

The two-point probe spreading resistance technique was used to obtain the electrically 

active dopant profiles. For this measurement, the sample is mounted on an angle block and 

p 

beveled or polished to a known angle, as shown in Figure 3. The probes are stepped down 

the incline as the spreading resistance is measured. The total spreading resistance is given by 

R = p 
sr 2a 

where Rsr is the spreading resistance, p is the average resistivity near the probe points, and a 

is the probe radius. 

This resistance is then converted to the electrically active ion concentration using a 

calibration curve, which is dependent upon the wearing of the probe points. Because the 

measurements are sensitive to the surface conditions of the sample and the condition of the 

probe points, spreading resistance measurements are generally used for concentration 

profiling, rather than the absolute concentration value determination. 

2.3.4 SIMS 

The SIMS (Secondary Ion Mass Spectrometry) technique was used to obtain the atomic 

9 
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profile of the samples. Figure 4 is a schematic representation of the SIMS instrumentation. 

SIMS utilizes an ion beam to sputter material from the sample. The ionic component of the 

sputtered material is mass analyzed and counted by the detector. [l3l 

The SIMS method provides a means of profiling the concentration of trace constituents 

with depth resolution as low as 50A. High current density sputtering, with its accompanying 

high surface removal rates, is required for obtaining elemental depth profiles and trace 

element analyses. 

The depth profile is obtained by monitoring the secondary ion signal as a function of 

time. Since the samples of interest in this case consist of a homogeneously distributed trace 

element in a single crystal matrix, the absolute ion intensity is directly proportional to the 

concentration at a given depth. 

The detection sensitivity for the element in a given matrix is dependent on the 

\._tharacteristics of the element itself, the chemical composition of the matrix, the primary ion 
I 

' \ 
-

beam species, and instrument dependent and controllable parameters. 

The positive cesium ion beam is generally useful for obtaining high negative ion yields 
,, 

;, 

from a target, while O! primary ion beams are usually used for generating high positive ion 

yields from electropositive species. However, F. Stevie, et al. [l41 have shown a correlation 

between secondary ion yield changes and changes in the surface topography using an 01 

primary beam for analysis of Si at depths greater than about 3µm. Hence, the boron profiles 

in this work were produced using a cs+ primary beam. The boron detection limit under these 

conditions is ~xI015cm-3 on the CAMECA IMS-3f which.was used for the analysis. 

Quantitation is accomplished by the use of standards to determine relative elemental 
C· 

10 



sensitivities. Generally, with robust standards and sample homogeneity, accuracies of 10% 
J . 

can be obtained. A profile was made on a boron implant standard to quantify the results. 

During the SIMS depth analysis, the primary ion beam, of diameter ==80µm, is rastered to 

produce crater of ==220x220µm. The secondary ion analyzed area is a circle with ==60µm 

diameter taken from the center of this crater, as shown in Figure 5. 

e. 

11 
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3. EXPERIMENTAL 

3.1 DESCRIPTION OF EPI EQUIPMENT AND PROCESSING 

An Applied Materials model 7800 RP radiantly heated barrel reactor was used to grow the 

epi layer. Three wafers per run were loaded onto a six(6)-sided graphite susceptor, one wafer 

on every other face in the middle row. The reactor is microprocessor controlled, and the 

program is set up by the on/off settings of various control switches. 

The program used for this work is detailed in Table 2. Table 3 contains an explanation of 

the control switches for the equipment. 

The processing sequence is depicted in Figure 6. This graph shows the thennal treatment 

of the wafers as a function of time. In general, an HCl etch is perfonned prior to epitaxial 

growth to remove particles and surface damage, but an H2 bake was substituted in this work 

so that no anomalous impurity redistribution due to etch effects would be introduced. 
/..i 

Six runs were made with a temperature variation from 950 to 1200°C. The epi growth 

time was adjusted following each run dependent on the previous run in an attempt to grow a 

nominal ten micron layer. 

The silicon source gas is trichlorosilane, and diborane is the dopant gas. Before 

processing, the 125mm diameter, <100> oriented wafers were back-sealed with an oxide

nitride layer, so that auto-doping effects would be negligible. Otherwise, at the high 

temperatures used for epi growth, the boron in the substrate could diffuse out from the 

backside of the wafer and alter the concentration by incorporation into the growing epi layer. 

12 
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3.2 THICKNESS MEASUREMENTS 

The thickness measurements were done on a Qualimatic automated measurement tool. 

This instrument is a Fourier transform interferometer, which determines the interface by the 

difference in the index of refraction for the substrate and the epi. The real part of the 

refractive index is the same for both layers, but the imaginary part includes the doping level 

difference. 

No claims can be made as to the accuracy of this interface depth measurement instrument, 

since the definition of the interface is not standard. Instead, the inter-lab reproducibility for 

the instrument is reported as +2Yi% of the film thickness. This is the 3cr for the measurement 
./· '~\ .J 

reproducibility. 

3.3 SPECIFICS OF SIMULATION RUNS 

The epitaxial growth in this work was modeled as follows. In both cases, the substrate is 

initialized as <100> silicon with a boron concentration equal to that measured using the four-

point probe method. 

This is followed by a ramp up and stabilization at the temperature of interest. The ramp 

up time is based on a temperature ramp rate of 70° C/min., and both the ramp up and the 

stabilization are done in an inert ambient. The actual inert gas used is H2 , however, nitrogen 

is used to simulate the inert, or non-oxidizing, ambient in SUPREM. 

The epi layer is grown at a concentration which was determined experimentally. The 
,. 

samples were C-V tested for the electrically active boron concentration, and this value was 

used in the simulations. The growth rates 'Y,ere detennined from the actual growth time and 

the measured epi thickness. 

13 
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At the end of the deposition cycles, the silicon source and dopant gases are purged for two 

minutes at the growth temperature. And, finally, the temperature is ramp'ed down to 850°C, . 

where the power to the lamps is turned completely off. 

As examples, the input files for the 1150°C BICEPS and SUPREM simulations are 

.,_ . . 1· included in Appendix A. 

14 



4. RESULTS 

Table 4 lists the epi runs with the run temperature and deposition time, along with the 

average epi thickness per run and the <calculated deposition rate. 

4.1 ELECTRICAL CONCENTRATION MEASUREMENTS 

All three samples in each run were measured using the spreading resistance technique. 

The results were compared and the wafer-to-wafer consistency within a run was quite good. 

The shapes of the measured doping profiles are very similar, and the epi and substrate 

concentrations from wafer-to-wafer agree to within <25%. In addition, the wafer-to-wafer 

interface depth agreement, assuming the interface is defined as the point of 50% of the 

substrate concentration, is good to <5% in all but the 1200° C run, where the variation is 

==13%. 

The results of the C-V and four-point probe measurements are summarized in table 5. 

The C-V measurement for the 950° C sample is absent, because the surface was either 

polycrystalline or simply too rough to make a good diode with the mercury contact. If a 

polycrystalline film was grown at 950°C, the effects of the crystal boundaries could 

complicate the problem enonnously, therefore, this run will not be detailed in the following 

discussions. In addition, the values of the epi and substrate concentrations, dete1m ined from 

the spreading resistance measurements and SIMS analyses, are included in this table for 

• com pan son. 

The validity of the epi layer concentrations determined by SIMS is in question, since the 

measured boron concentrations are near the detection limit of the instrument. The low initial 

boron concentration gives rise to yet another problem. The mass analyzer of the SIMS must 

15 
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be tuned for the mass peaks of interest, in this case, B10 and B11 , which are relatively narrow 

peaks. Even a slight variation from the peak could cause ! 1significant loss in the number of 

ions detected. Since the boron is undetectable at the start of the profile, the tuning must be 

done by predetennined values obtained from a boron sample. The magnet in the mass 

analyzer can experience some drift in these mass numbers, so the calibration sample must be 

run immediately prior to the actual sample measurement. Three of the samples needed to be 

rerun for SIMS profiles; the 950, 1050, and 1150° C runs. The substrate concentration values 

detennined from the rerun samples are included in Table 5. Figure 7 shows the SIMS data 

for the 1050° C epi run, both with and without prior calibration runs. 

Even when calibration samples are run immediately prior to the sample of interest, some 

loss of signal can occur due to the drift in the mass analyzer. As a result of these findings, the 

SIMS staff is exploring alternative methods for analyzing samples where the element of 

interest is undetectable at the start of the analysis. 

4.2 CONCENTRATION PROFILES 

In order to detennine the variability of the simulated profiles for differing input 

concentrations, the substrate and epi concentrations for the simulation runs were varied 

between the chemical concentrations obtained from SIMS and the values obtained from the 

electrical measurements, using the SUPREM program. The shape of the interface 

concentration curve did not change, as evidenced by curves 1 and 2 of Figure 8. Note that the 

curve using the electrical values as input and requesting the active profile output (1-

elec.,active) does not differ significantly from the cuive using the chemical, or SIMS, values 

as input and again requesting an active profile (2-chem.,active). 
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In addition, with the SUPREM program, active or chemical profiles can be requested as 

output. Simulations were run asking for both types of profile for comparison. No difference 

was observed, as the comparison of the active profile (2-chem.,active) and the chemical 

profile (3-chem. ,chem.) in Figure 8 demonstrates. 

The concentration profiles for the six temperatures are shown in Figures 9 through 14. 

These simulations were run using the four-point probe and C-V electrical measurements as 

input for the substrate and epi concentrations, respectively. The figures include the 

simulation profiles, and the SIMS and spreading resistance measurement (SRM) profiles. 

The full epi layer and a close-up of the interface area are shown. 

The BICEPS and SUPREM simulations appear to track very closely. However, 

SUPREM accounts for the out-diffusion of impurities at the epi film surface, which appears 

as a small tail near x=O on all of the temperature profiles. The amount of out-diffusion 

increases with increasing temperature, as expected. During the epi growth, the BICEPS 

program includes a O.Olµm oxide which would inhibit any escape of impurities. Even adding 

an etch step to the simulation, prior to the growth, did not keep this oxide from being 

included. 

In addition, there is a slight deviation of the simulators at the substrate-epi interface, 

which increases with increasing temperature., BICEPS does not consider out-diffusion of the 

impurity from the substrate surface during the H2 bake prior to epi growth, which could 

account for the difference. Evidence for this effect is shown in Figure 15, which shows the 

SUPREM 1200° C vs. the BICEPS 1200° C simulation after the bake and before the epi 

growth. The BICEPS profile stays flat (unifonn concentration) while near the surface, the 

SUPREM profile cuives downward (loss of impurity at the surface). The SUPREM 
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simulations in Figure 16 show the substrate surface after the H2 bake for three of the subject 

temperatures. Table 6 summarizes the amount of out-diffusion occuring at each process 

temperature. This table lists the four-point probe substrate concentration, Cs, the substrate 

surface concentration which was reduced due to out-diffusion, C0 d, and the % difference in 

Cs-Coc1 
the surface concentration ( Cs xlOO). The bake times are also included in this table, 

since they were not equal. The times to ramp up to and stabilize at the process temperature 

were 15 min. for all runs, and since the ramp rate was 70° C/min. in all cases, it took less time 

·\· 

to reach the lower temperatures. So, at the lower temperatures, the wafers received a longer 

bake. The out-diffusion effect is more pronounced at higher temperatures, even with the 

shorter bake times . 

The measured interface depth is included on the close-up profiles in Figures 9 through 14. 

The SIMS profiles are skewed from these values, suggesting some error in the Qualimatic 

thickness measurements. This error would also be incorporated in the simulations, since the 

measured epi thickness values were used to calculate the growth rates, which were used as 

input to the simulators. 

Fortunately, the important aspect of these profiles, for studying diffusivity, is their shape, 

rather than the absolute values of either the depth or the concentrat~ons. Thus, the curves can 

still be analyzed once this error is determined and removed. For simplicity, the SUPREM 

simulations are used in the following treatment of results, since they included the out

diffusion effects and wer~; therefore, considered more realistic. 

A useful benchmark, employed by epi processors and SIMS analysts alike, is the 50o/o 

interface. In other words, the point at which the concentration is 50% of the substrate 
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concentration is taken as the interface between the layers,. This 50% interface construct is 

used to shift the simulator profiles to the SIMS profiles, so that meaningful comparisons can 

be made. 

The adjusted SUPREM profiles are shown in Figures 17, 18, and 19. The adjusted 

SUPREM simulation for the 1050 and 1100° C run are fairly good. However, even with the 

adjustment for depth measurement error, the simulator is not adequately profiling the SIMS 

data for the other temperatures considered. Thus the diffusivity model and the coefficients 

employed by the simulators warrant further discussion. 

Table 7 lists the values for the intrinsic (ni) and free (n) carrier concentrations. The 

values for the intrinsic carrier concentration for the two simulators tracked very closely. The 

values of ni used in BICEPS were output by the program in the standard BICEPS output files 

for the simulation run at each temperature. The SUPREM values of ni were calculated from a 

pref actor, ni.O, and activation energy, ni.e, which were requested by a PRINT statement in the 

program. The output of this statement contained the values which were used in the following 

equation: 

ni = ni.O Tl.5 e-ni.e/kT 

Substituting ni into equation 16, and using Ni=Cs (in equation 17), where Cs is the measured 

four-point probe concentration used as input to the simulator, one can calculate the free 

carrier concentration, n. 

As discussed in section 2.2, the diffusivity of boron can be calculated from 
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n· 
D =OX+ o+ 1 

• 

n 
(25) 

n· 
The ratio - 1 affects the overall contribution of the positive vacancy states (D+) to the total 

n 

boron diffusivity (D), according to the model. From the table, the temperature dependence of 

this ratio is obvious. As the temperature increases, the quantity of free carriers increases at a 

higher rate than the intrinsic carriers, and the relative effect of the positive vacancy state 

diffusivity decreases. 

Table 8 lists the diffusivity contributions for the neutral and positive vacancy states for 

the models and the original Fair model. The actual contribution of each of the vacancy states 

is not consistent across the simulators or the Fair model. Excluding the additional weighting 

n· 
effect of the carrier concentration ratio (-1 

), the- Fair model weights the positive vacancy 
n 

factor more heavily than the neutral vacancy factor, as does the BICEPS simulator. The 

SUPREM program, on the other hand, gives more weighting to the neutral factor. The 

positive factor in the Fair model is 19.7 times larger than the neutral. In BICEPS, the 

positive factor is 3 times larger. Finally, in SUPREM, the neutral factor is larger by a factor 

of 1.2. Despite the differences in the application of the diffusivity model, the curves 

produced by BICEPS and SUPREM are similar. The agreement of the Fair model and 

SUPREM is discussed in more detail below. · 

The SUPREM documentation [5l quotes the values of the parameters from the original 

Fair model, however, the actual program used appears to have been altered, perhaps to 

include more recent data. The difference between the SUPREM simulation using the default 

parameters and the SUPREM simulation using the Fair parameters as input is shown in 

[", 
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Figures 20 through 22 for 1200, 1100, and 1000° C. The default simulations display slightly 

larger effective diffusivities than the simulations with Fair's parameters, at all temperatures. 

This is evidenced by the smearing, or increased slope, of the interface. The effect is more 

noticable at 1200 and 1000° C. 

The third curve in each of the figures, which is marked "Fair-X," represents the simulation 

run using an "effective" diffusivity, which is concentration independent ahd was calculated 

~ 

using the Fair coefficients. The neutral vacancy state of the Fair model does not change with 

concentration, as the contribution due to the positive vacancy state does. A concentration

independent diffusivity, in terms of the vacancy state model, is a diffusivity based solely on 

the neutral state. The effective diffusivity, then, is calculated by adding the contributions 

n· 
from each of the states (with the ratio - 1 = 1), and assigning the total to the neutral state 

n 

contribution, and the coefficients for the positive contribution are set to zero. 

Deff = Dx 

This was accomplished with the following input line in SUPREM: 

BORON SILICON DIX.0=4.542E9 DIX.E=3.46 DIP.0=0 DIP.E=O 

It is clear from Figure 18 that ignoring the concentration dependence does not have a 

significant effect on the output of the simulator at 1100° C. The diffusivity appears to have 

little or no concentration-dependence at this temperature. In addition, at 1200 and 1000° C, 

where the Fair and Fair-X profiles do differ noticably, the Fair-X curve actually tracks the 

SIMS data more closely. 
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It has been noted by Fair l71 that few sources of reliable: unambiguously /,extracted 
p.V; 

diffusivity data exist. Antoniadis et al. lt5J attribute the abundance of conflicting values of 

boron diffusion coefficients to the effects of extrinsic conditions. The tenns intrinsic and 

extrinsic in the following discussion refer to the condition of the silicon at the process 

temperature. The silicon is intrinsic when the doping level is sufficiently low that it does not 

affect the impurit
1
y_'s diffusivity. In the extrinsic regime, on the other hand, the diffusivity is 

:, .' 

1- r.. ·' 

concentration dependent. Boron diffusivity is independent of impurity concentration 

" 

provided that the boron concentration is lower than that of intrinsic carriers at the proces~~'f'< 

,--, 
temperature. A comparison of' the intrinsic carrier concentrations (ni) in Table 7 and the 

substrate concentrations listed in Table 5 shows that the silicon could be considered extrinsic 

at the lower temperatures. The tran~ition temperature seems to be at or below :: 1 ()50° C. 

However, the concentration at the epi substrate interface drops off rather quickly. The loss of 

impurity due to the out-diffusion effect discussed earlier, and summarized in Table 6, results 

in the silicon reverting to intrinsic conditions as the concentration drops below the intrinsic 

carrier concentration. Thus, the silicon is effectively intrinsic for the entire epi processing 

time. At the higher temperatures considered in this work the silicon is safely in the intrinsic 

range and the diffusivity of the boron can be considered concentration independent. At the 

lower temperatures, the silicon is intrinsic during the bulk of the processing time. 

With the assumption of intrinsic behavior, it follows that the boron diffusivity, for the 

conditions studied in this work, should reasonably reflect that found in the literature. Three 

sources of empirical data for boron diffusivity were considered. The SUPREM 

documentation referred to earlier [SJ unpublished work of Lin et al., which will be referred to 

as work by Lin. The other two sources were work by Antoniadis et al. [IS], and the Bell 
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Laboratories Quick Reference Manual (QRM). lt61 Table 9 lists the diffusivity data obtained 

. from these sources. These values are approximate, since they were taken from graphs. The 

table shows the value obtained from the literature in cm2 /sec., which was converted to 

µ2 /min .. The empirical values of D are in fairly close agreement at the lowest temperature 

presented, and they diverge somewhat at the higher temperatures. The values from the Lin 

and QRM sources were used to run simulations. The value of ox was calculated so that 

simulations could be run. The simulations were run using this number with the Fair value for 

the activation energy, to obtain an effective diffusivity. In other words, only the neutral 

vacancy contribution was non-zero, as described earlier. Simulation runs were done for the 

1200, 1100, and 1000° C epi runs. 

In addition, values for effective diffusivities at 1200, 1100, and 1000° C were calculated 

from the SIMS data. From section 2.1, the interface profile can be approximated as ( equation 

6): 

1 
1 -

C1 (x,t)/Cs = 2erfc[x/2(Dt) 2 ]. (27) 

Or, solving for C1 

1 
Cs -

C1 (x,t) = 
2 

erfc[x/2(Dt) 2 ]. (28) 

Considering the depths at which the concentration was 50% and 0.5% of the substrate value 

(i.e. - a drop in concentration of two decades, or 10-2), and replacing the complementary error 

function with its definition, we obtain 
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C C s xio-2 = l'S s (l rf[ x ]) 
-2- 2 -e _!_ ' (29) 

2(Dt) 2 

which reduces to 

X 
erf[ 1 ] = 0.99 (30) 

2(Dt) 2 

Then, referring to a table of error functions [t 71 

X 
1 = 1.82. 

Solving for D yields 

2(Dt) 2 

x2 
D=--

13.25xt 
in µ2 /min. 

Substituting the value x=L\x, where ~x is the difference in depth from the 50% to the 0.5% 

concentrations from the SIMS data, the diffusivity can be calculated. These values are 

included in Table 9. 

Figures 23, 24, and 25 show the empirical simulations along with the SIMS profiles, the 
'-"' 

default SUPREM simulations, and the simulation profiles using th~ta_lculated diffusivities, 

for the temperatures considered. At 1200° C the Lin empirical curve tracks the SIMS profile 

much better than the default SUPREM simulation. The QRM and calculated curves, on the 

other hand, overshoot the diffusivity at this temperature. For the 1100° C simulations, there is 

no significant difference between the Lin empirical data, the QRM data, and the calculated 

value for diffusivity. All of these effective diffusivities model the SIMS data fairly well. 
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Again, as above at the higher temperature, the profile using the calculated value overshoots 

the SIMS profile. At l000°C the profiles using the empirical'.data from Lin and the QRM, 

and the default SUPREM simulation produce very similar profiles, which fall short of the 

SIMS data. The values for diffusivity from the three sources of data are in fairly good 

agreement at the lower temperature, but they do not accurately model the SIMS data, as 

noted. This suggests that either the empirical data is off at the lower temperatures or the 

silicon is in the extrinsic regime, and an effective diffusivity cannot accurately model the 

profile. The value calculated from the SIMS profile also overshoots the SIMS curve at this 

temperature. 
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5. SUMMARY AND CONCLUSIONS 

The BICEPS and SUPREM simulator concentration profile output for boron doped epi 

growth on <100> silicon has been compared to SIMS data, across the temperature range from 

950 to 1200°C. Measurements were also made on the electrically active dopant 

concentrations using the spreading resistance technique, C-V measurements, and the four

point probe method. Although the simulators were relatively accurate in the midrange of the 

temperatures considered, the simulators did not emulate the SIMS profiles with any degree of 

accuracy outside the temperature range from 1050 to 1100°C. 

The output from the BICEPS and SUPREM simulators was very similar. However, the 

SUPREM simulator was more accurate in its handling of the impurity out-diffusion effect 

both during the pre-epi growth thennal treatment of the wafers and during the epi growth. 

BICEPS ignored these effects altogether. Thus, the additional simulations discussed were run 

on SUPREM. The effect of the concentration dependent contribution of the diffusivity, 

which is proposed by Fair's model and used by both simulators, was also explored. 

The simulators and Fair's model were compared and contrasted, and the relative 

contributions of the positive and neutral vacancy states were discussed. In addition, an 

effective boron diffusivity, which is concentration independent, was calculated for the Fair 

model, and simulations were run using this effective diffusivity. These were compared with 

the model, and no significant difference was found between 1050 and 1150°C. 

Empirical data from three literature sources were compared and contrasted. An effective 

diffusivity was derived from the data and simulation comparisons done. At high 

temperatures, simulations using the effective diffusivity from the QRM data tracked the 

SIMS data very well. Below the temperature at which the silicon becomes extrinsic, the 
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empirical data did no better than the default SUPREM simulation. Values for the effective 

,, 

diffusivity were also calculated from the SIMS curves. The profiles ntJ'!JlSing these values 

generally overshot the SIMS curves. As with the above data, the best agreement was at 

1100°c. 

Boron diffusion during epitaxial growth, on a highly doped substrate, can be simulated 

reasonably well by use of the simulator programs in_ the temperature range from 1 ()50 to 

1100° C. Outside this range, further work needs to be done. 

This work also shed some light on a SIMS measurement weakness. The low impurity 

concentration of the epitaxial layer of the experimental samples resulted in detection error in 

":-.:..1 

the SIMS technique. This problem was investigated by the SIMS staff, and alternative 

methods for analyzing this type of sample are being explored. 
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BICEPS 

Dfo 
(µ2/min.) 

8.33e8 

SlJPR.E11 1.68e9 

Fair model 2.22e8 
(0.037cm2 /s) 

Qf 
(eV) 

Dto 
(µ2/min.) 

3.43 2.5e9 

Qt 
(eV) 

3.43 

3.40 1.38e9 3.40 

3.46 4.32e9 3.46 
(0.72cm2 /s) 

TABLE 1. Program diffusivity parameters 
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Epi process program* 

Time Function Output 

6.0 High H2 purge 1,3 

5.5 Heat to 850° C (SP 4) 2,3,18 

1.0 Stabilize at 850° C 2,3, 18 

6.0 Heat to bake temperature (SP 2) 2,3, 16 

2.0 Stabilize at bake temp 2,3,16 

3.0 H2 bake 2,3,16 

2.0 H2 purge 2,3 

2.0 Stabilize, purge trichlor, dopant 2,3,8,9, 19 

5.0 Deposit epi 2,3,8,9, 15, 19 

1.0 Deposit epi 2,3,8,9, 15, 19 

1.0 Deposit epi 2,3,8,9, 15, 19 

1.0 Deposit epi 2,3,8,9, 15, 19 

1.0 Deposit epi 2,3,8,9, 15, 19 

1.0 Deposit epi 2,3,8,9, 15, 19 

2.0 H2 purge 2,3 

3.0 Cool to 850° C 2,3, 18 

6.0 Heaters off, H2 purge 3 

4.0 N2 purge End End 

* Shown for 10 minute deposition 

TABLE 2. Program for epitaxial growth 

., ·, 
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Output Function 

1 High purge 
2 Heater 
3 H2 
4 HO source 
5 HO etch 
6 High HO etch 
7 D0 inject 
8 DP inject 
9 SiH4 

10 SiH2Cl2 
11 SiCl4 
12 SiHC13 
13 Aux 1 
14 Aux2 
15 Deposit 
16 Temp SP (set point) 2 
17 Temp SP 3 
18 Temp SP4 
19 Main Flow SP 2 
20 Main Flow SP 3 
21 Main Flow SP 4 
22 Main Flow OFF 
23 Slow V AC pump 
24 High V AC pump 
25 Leak check 
26 
27 Si ramp 
28 Si ramp hold 
29 Dope ramp 
30 Dope ramp hold 
31 Temp ramp 
32 Temp ramp hold 

TABLE 3. Microprocessor output definitions 
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Dep. temp. 
(OC) 

1200 
1150 
1100 
1050 
1000 
950 

Dep. time 
(min.) 

10.0 
10.0 
10.0 
10.0 
15.0 
26.0 

Avg. thick. 
(µm) 

9.82 
10.11 
9.84 
8.60 
9.21 

12.70 

Calculated 
dep. rate 

(µm/min.) 

0.982 
1.011 
0.984 
0.860 
0.614 
0.488 

TABLE 4. Summary of epitaxy runs 
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Temp 
(OC) 

1200 
1150 
1100 
1050 
1000 
950 

Epi 
(C-V) 

2.4e15 
1.6e15 
1.2e 15 
8.0e14 
7. le 14 
------

Electrical 

Substrate 
(4pt probe) 

l.4e19 
1. lel9 
1.3el9 
1.2el9 
l.2el9 
1.2el9 

Epi 
(SRM) 

lel6 
5el5 
4e15 
2el5 
2el5 
2el3 

Substrate 
(SRM) 

2e19 
2e19 
2el9 
2el9 
2el9 
2e19 

Epi 
(SIMS) 

4.0e15 
4.0e15 
3.8e15 
4.lel5 
2.0e15 
4.7el5 

Chemical 

Substrate 
(SIMS) 

1.3e19 
8.0e 18 
1.0e 19 
3.0e18 
l.Oel9 
4.0e 18 

TABLE 5. Electrical and chemical concentration results 
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Temperature 
(OC) 

1200 
1150 
1100 
1050 
1000 
950 

Cs 

1.4e19 3.82e18 
1. le19 3.41e18 
1.3e19 4.90e18 
1.2e19 5.39e18 
1.2e19 6.49eI8 
1.2e19 7.71e18 

% difference Bake time 
(min.) 

72.7 10.0 
69.0 10.7 
62.3 11.4 
55.1 12.1 
45.9 12.9 
35.7 13.6 

TABLE 6. SUPREM simulation out-diffusion effects 
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Temperature 
(OC) 

1200 
1150 
1100 
1050 
1000 
950 

2.732e19 2.698e19 2.09e19 
2.138e19 2.123e19 1.64e19 
1.650e19 1.644e19 1.12e19 
1.254e19 1.252e19 9.88e18 
9.367e18 9.347e18 5.lle18 
6.866el8 6.833el8 3.09el8 

TABLE 7. Carrier concentrations 

·34 

1.291 
1.295 
1.468 
1.589 
1.829 
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BICEPS SUPREM Fair model 
D~ 

1 
D~ 

1 Temperature D~ 
1 

(OC) 

1200 1.55e-3 4.65e-3 3.96e-3 3.25e-3 3.26e-4 6.34e-3 

1150 6.00e-4 1.80e-3 1.54e-3 1.27e-3 1.25e-4 2.43e-3 

1100 2.17e-4 6.50e-4 5.63e-4 4.62e-4 4.48e-5 8.72e-4 

1050 7.25e-5 2.18e-4 1.90e-4 1.56e-4 1.48e-5 2.89e-4 

1000 2.22e-5 6.68e-5 5.90e-5 4.84e-5 4.5 le-6 8.78e-5 

950 6.20e-6 1.86e-5 1.66e-5 1.36e-5 1.24e-6 2.42e-5 

TABLE 8. Neutral and positive vacancy state contributions (µ2 /min.) 

I 
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\ 

35 



1200(°C) 

O (cm2/sec) 
0 (µ2/min) 
OX (µ2/min) 

1100(°C) 

O (cm2/sec) 
0 (µ2/min) 
ox (µ2/min) 

1000(°C) 

O (cm2/sec) 
0 (µ2/min) 
ox (µ2/min) 

QRM 

2.6e-12 
1.56e-2 
1.06e10 

2.4e-13 
1.44e-3 
7.14e9 

1.6e-14 
9.6e-5 
4.73e9 

Lin 

l.8e-12 
1.08e-2 
7.36e9 

2.0e-13 
1.2e-3 
5.95e9 

1.4e-14 
8.4e-5 
4.14e9 

Antoniadis 

1.0e-12 
6.0e-3 
4.09e9 

1.5e-13 
9.0e-4 
4.46e9 

1.2e-14 
7.2e-5 
3.54e9 

Cale. 

1.5e-2 
1.02e 10 

1.6e-3 
7.93e9 

6.4e-4 
3.15e 10 

TABLE 9. Empirical and calculated diffusivities 

I 
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Figure 2. Four-point probe measurement 
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file=birunl title Run 1 1150 C Simulation 
subs elem=boron conc=l.le19 ornt=lOO xdelta=0.01 xthick=3.0 
* 
comm Ramp up from 850 to 1150 C 
drive temp=850 ambi=inert time=4.3 trte=70 
* 
comm Stabilize and H2 bake 
drive ternp=llSO time=l0.7 ambi=inert 
* 
print kind=l 
* 

Epitaxy 1.0 um/m 1150 C comm 
epit temp=1150 grte=l.O time=lO.O elem=boron conc=l.6e15 
* 
comm Post epi purge 
drive temp=llSO time=2 ambi=inert 
* 
comm Ramp down to 850 
drive temp=llSO time=3 trte=-90 arnbi=inert 
* 
print kind=l 
* 
end 

BICEPS input for 1150° C run 
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TITLE 
$ 
$ 

RUN 1 1150 C SIMULATION 
FILE SUPl 

INITIALIZE SILICON <100> BORON CONC=l.1E19 THICK=3.0 DX=0.02 
$ 

COMMENT RAMP UP FROM 850 TO 1150 C 
DIFFUSION TEMPERAT=850 TIME=4.3 NITROGEN T.RATE=70 
$ 

COMMENT 
DIFFUSION 
$ 
PRINT 
PRINT 
$ 
COMMENT 
EPITAXY 
$ 

STABILIZE AND H2 BAKE 
TEMPERAT=llSO TIME=l0.7 
' NITROGEN 

MATERIAL SILICON IMPURITY BORON FILE=n.supls 
BORON CHEMICAL CONCENTR FILE=a.supls COL=25 XMAX=l2 

EPITAXY 1.0 UM/M 1150 C 
BORON TEMP=llSO TIME=l0.0 GROWTH.R=l.0 CONC=l.6El5 

COMMENT POST EPI PURGE 
DIFFUSION TEMPERAT=llSO TIME=2 NITROGEN 
$ 
COMMENT RAMP DOWN TO 850 
DIFFUSION TEMPERAT=llSO TIME=3 T.RATE=-90 NITROGEN 
$ 

PRINT 
PRINT 
$ 
STOP 

MATERIAL SILICON IMPURITY BORON. FILE=n.supl 
MATERIAL BORON CHEMICAL CONCENTR FILE=a.supl COL=25 XMAX=l2 

SUPREM input for 1150° C run 
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