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ABSTRACT

The most well known algorithm .for deCoding BCH codes is the Berlekamp-
Massey iterative algoritzhgm. The Berlekamp-Massey iterative algorithm can also be
used to solve the realization prclblem in systems. There are two other algorithms
that can be used to decode BCH codes and in solving systems problems. First, the
Minimal Partial Realization (MPR) algorithm is designed to solve all types of
realization problems and decode BCH codes as well. Second, the Fundamental
Iterative Algorithm (FIA) is a more general algorithm than the Berlekamp-Massey
iterative algorithm and MPR algorithms and thus the FIA has some additional
capabilities. The different versions of the Minimal Partial Realization algorithm are
discussed. The relationship between Conan’s Minimal Partial Realization algorithm

and the Fundamental Iterative Algorithm is shown.

Famice = S
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' Chapter | - Introduction |

The development of today’s communications systems is attributed, among
others things, to the use of codes. Codes are being used mainly in order to avoid
erroneous transmission, or to achieve secure transmission. Different techniques have

been developed for encoding and decoding codes.

On¢ class of codes used extensively in communication systemé.is the BCH
codes. After their discovery in 1960, algorithms were proposed for decoding these
codes./T‘\h\ve most effective algorithm for this purpose is the Berlekamp-Massey
ité;‘/ative ¥algorithm [1,2] which was introduced in 1968. Because of its effectiveness,

the same algorithm was used to solve the realization lﬁ\(}plem in the control systems

area.

An alternative 'algorithm designed for solving the realization problem in
control systems was présented in 1966 by Ho and Kalman [3]. Thi.s algorithm 1s
known as the Minimal Partial Realization (MPR) algorithm. In 1971, Rissanen [4]
presented an improved version of the MPR algorithm. Generalized versions of the
MPR algorithm were presented in 1974 by Dickinson, Morf and Kailath [5] and in
1980 by Conan [6]. Finally, in 1984 Conan [7] presented an effective a.nd easily
implemented MPR algorithm, that can be as effective as the Berlekamp-Massey
algorithm in control systems applications. This algorithm can be used as an

alternative to Berlekamp-Massey algorithm even for BCH codes decoding.

A basic algorithm was introduced in 1984 by Feng and Tzeng [8], named as
the Fundamental Iterative Algorithm (FlA). This algorithm is more general than
the Berlekamp-Massey algorithm since it can make use of multiple syndrome

sequences for decoding cyclic codes.




LY

This theslis includes in Chapter Il a review of the background material
needed for describing the algorithms used iﬁ BCH decoding as well as in systems
problem solving. Section one is devoted to error-control coding, including reviews of
linear and cyclic codes. It also desc;‘ibes the BCH codes and their dééoding problem.
Section two introduces the reader to algebraic theory for linear systems. It also

includes the necessary definitions and states the problem that needs to be solved.

Chapter III describes the algorithms that can be used effectively for BCH
decoding as well as system problem solving. It includes, among others, the
Berlekamp-Massey algorithm, the Ho and Kalman algorithm, the Rissanen

algorithm, the Conan algorithm. and finally the Fundamental (or Feng-Tzeng)

Iterative Algorithm.

Chapter IV presents the relationship between the Minimal-Partial-
Realization algorithm developed by Conan and the Fundamental Iterative
Algorithm. In particular, Conan’s algorithm is derived from the more general

Fundamental Iterative Algorithm.

Finally, Chapter V contains the concluding remarks and proposes problems

for further research.




Chapter Il - Preliminaries

In this chapter we present some preliminary concepts that are needed to
discuss the decoding algorithms or the system solving algorithms. We start with
the discussion of error-detecting and error-correcting codes, with some emphasis on
BCH codes. The encoding of codes will be presented. In addition, the decoding

problem will be stated. The decoding algorithms will be presented in another

chapter.

The Second half of this chapter is a discussion of the algebraic theory of
linear systems. We present the problem in the broad area of linear system theory as

well as in the more specific realization theory.

[I.1 Fundamentals of coding

In digital communication systems there is a need to be able to detect

and/or correct any errors introduced due to noise in the channel. For this reason

error-detection and error-correction codes were developed.

. message WOr or vector
digital source —+{ U & }——. encoder __{codev Old}_, channel _{6“0 A\

recelved vector

decoder v—y{ r=v+e }

%

{

digital sink| - /
u

{estimated message}

Fig.1.




A

.

. [1.1.1. Block Codes
| /

Block codes are widely used in today’s communications. Of these codes we
restrict our attention to a subclass of block codes, the linear block codes. An (n,k)
linear b19ck code is defined as a k-dimensional subspace of the vector space of all
the n-tuples over the field GF(q) if and only if it is formed by q* codewords and

has a length n.

Since an (n,k) linear code is a k-dimensional subspace of the vector space, it
is possible to find k linearly independent codewords such that they form a kxn
matrix that operates all codewords and call it the generator matrix G. If G is of
the form (P L) then it is said to be in systematic form. From G we can obtain

the parity check matrix H = (I PT). (G and H are related with the property

n-k*

G-H'=o.

In order to determmine the random-error-detecting and random-error-

correcting capabilities of a code we introduce the minimum distance. First, we

define the Hamming weight of v or w(v) as the number of nonzero components of

v. The Hamming distance between the codewords v and w, denoted d(v,w), is

defined as the number of places they difter.

Also from the definition of the Hamming distance and the definition of
modulo-2 addition we conclude that the Hamming distance between v a;;A w 18 :
equal to the Hamming weight of the sum ¢ and w, that is d(v,w) = w(v+w). The

minimum distance of a code C, denoted d 1s defined as

min

= min { d(v.w) : vow € C, v# w }.

MmN

Consequently. the minimum distance of a linear code is equal to the minimum
/ R

weight of the noLzero codewords (d .= = Wmin)‘

)

/ ey

s




The random-error-detecting and random-error-correcting capabilities of a

linéar block code can be stated as follows.

A linear block code with minimum distance d_ . ~guarantees detecting all
error patterns of d_ . -1 or fewer errors. It is possible that the code can detect

more errors for certain patterns. The same code guarantees correcting all error

patterns of t = [(dmin-l)/?.] (1 1s always integer) or fewer errors. Certain error

patterns of {41 or more errors can be corrected under special conditions.

11.1.2. Cyclic Codes

Cyclic codes are an important subclass of linear codes. These codes are
attractive for two reasons: first, encoding and syndrome computation can be
implemented by employing shift registers; and second, they have such an algebraic

structure that allows us to find many practical methods for decoding theory.

A linear code C 1is cyclic if every cyclic shift of a code vector in C is also
a vector in (!. The most impqrtant property of the cyclic codes is that, if g(x) is
a polynomial of degree n-k and is a factor of x"-1, then g(x) generates an (n,k)
cyclic code. The parity check polynomial h(x) is obtained by h(x) = (x"-1)/g(x).

The generator and parity check matrices are of the following form:

g0 81 g, 0 0 0

0 & Bkl Bnk U 0
G =

0 0 g g2 g3 0

0 0 go g = 8 &k




h, hy, hy 0 0 0
0 b, h, hg O 0
H=
0 0 h, he, h,, 0 6’
0 O 0 h, h.,- hg

I1.1.3. BCH Codes

L

An impertant subclass of cyclic codes are the BCH codes. In order to
define these codes, let 3 be an element of GF(q™), and [, any nonnegative'
integer, then a polynomial g(X) of minimum degree which has as roots the
following consecutive powers of {:

! I.+1
50, 50 N

can generate a code of distance > d,.

Then g(x) is given by:

g(X) = LCM { ¥ (X), ¥y (X), -, ‘I’dO-Q (X) }
where W¥.(x) is the minimum polynomial» for any i such that 0 < 1 < d,-1.
Also the length of the code is

n=LCM { ng, nq, -, ndo-g}

ly+i

where n; is the order of 3 for any i: 0 < iz < dy-1. The number of parity

checks of such a code is: n-k < m(d,-1). The minimum distance d of this code

man
is at least dy. The code is thus capable of correcting up to t errors { t = [(dg-
1)/2] }. If we let lo=1, dy=2t+1 and [ be a primitive element then the BCH

code is called primitive.

The decoding procedure of a BCH code like the one mentioned above is

¢




&

| desci‘ibed as follows. When fhe encoder transmits a BCH codeword
v(X) = vb- + vy X + + v..q xn-1

and the received codeword is
o(X)=r9+r; X+ 1, X% 4 . 4 SO X"l

If the error pattern is e(X) then

r(X) = v(X) + e(X)

The first step of decoding is to find the syndrome S from the vector r(X).
The syndrome is given as

S = ($;.5. . 8211.) —r- BT
The next step is to find the error-locator polynomial ¢(x) from the components of
the syndrome S. In order to find the error location we define the error-locator
polynomial as

o(X)= (148, X)(14+8,X") (148 X")

=g+ 0, X+, X2+ -+ o X
when
51 = 51+52+”’+51

S, = B+ Bi+ - +8]

Sp,= Bi'+ B3+ - 447"
The problem is reduced to solving the Newton’s identities.
Si+o0,=0
S+ 0,5, +20,=0

Sy +/5,S, + 0,5, + 305 =0 ~ (binary case only)

S, +0,S.; + -+ 0,45, +1lo, =0

Sl+1 + O'ISI + + 0'1_182 + UIS.]_ =0
—8 —




or S, =- ajSk_j for k=141, +2. . . ("nonbinary‘cyamvse)

Ways to find the error locator polynomial are extensivelay discussed in the next
chapter. The last step to BCH decoding is to determine the numbers S, ﬁz, oy B
by finding the roots of ¢(X) and correct the error in r(X). This method is called |
the Chieh‘search, and it .is apllicable for the binary case only. For the nonbinary
case we find the Forney error magnitudes. We let
Z(X) =09+ (5, + 1) X + (5, + 015, + 03) X* + o

+ (S, + 015, + oS, + - + o)) X

Then the error magnitude at location 3, is:
Z(8.')

[ L

[T A+ 3,3.7)

=1 |

i#u

This concludes the decoding process.

Cy =

11.2.1. Algebraic theory in linear systems}\’

In the earlier days of science. systems work was concerned with problem
formulation. In 1945-55 Guillemin gave a new dimension to the systems theory.
According to Guillemin the system we are looking for:

(A) i1s a good approﬁcimation of the given)input/output behavior
(B) can be built from passive network elements |

(C) has simple internal structure

(D) can be easily computed

Today, part (A) can be replaced by (A’) which is:

(A’) is the simplest exact realization of a given input/output behavior

~9—




A Systeml Y is defined a,‘sh"a physicalf ehtity that accepts inputs, emits
outputs and heps a certain deﬁh-ite' internal structure (states). A system X ois linear
if its input/output behavior as well as internal-structure is described by linear
functions. The éystems we‘ are going to consider are only discrete-time systems

(systems whose behavior is described at ¢t = -.-,-1,0, 1, --- € Z (set of integers)).

- An explicit way of defining a system is by using the concept of the state
x(t) of 'Z and the rule of the state transition. This allows us to view XY as a circuit
diagram or a computer prograin. Also, it is the most explicit description of £. A
system X is the triple (F,G,H)& as 1t is defined by the equations
x(t+1) = F x(t) + G u(t) | | (1)
y(t) = H x(t) ' ‘ BN ¢)
where t€Z, xe€ X (Yector space over K), u(t) € K™ (set of m-tuples in K),

y(t) € KP (set of p-tuples in ).

The next important concept is the input/output map of a system. The
input/output map fy of ¥ is a rule that assigns a uniquely determined output to
every finite sequence of inputs. The output occurs one unit of time after the last
input. Thus, it is guaranteed that ¥ is a causal system:
fo: (u(r). o u(0) ) — y(1) (3)
'I‘he- terms u(-r), ---. u(0) represent the input function at time ¢ = -r, ---, 0
respectively. We have assumed in (3) that the last input occurred at t=0. Given
that X is linear, this implies that fy 1s linear. Thus, we can write

£o(u(-r), -, u(0)) =1§o Ay (F2)u(-k) (4)
where Ak+1(f2) are pxm matrices with elements in K.
Hence fy ~ { Ay(fx), Ag(fz), - } ‘ (5)

In addition, fy is equivalent to the doubly infinite block matrix

— 10—
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B, B, B '
B, B; B, -
H(fy) = _ ;o (6)
o B; B, Bs

which is called the Hankel matrix of fy.

The last concept to be defined is the one of realization. The purpose is to
find a system X if we are given the input/output map fy,. Hence, we say that f! |

is a realization of X iff

A(f)=HF"! G k= 1,23, - - (7)

The left-hand side of (7) is given by f' and the right-hand side by X. The

realizations are not always unique. Therefore, we are interested in minimal

realizations (dim X = minimum).

The problem of minimal realization is stated as follows: Given an infinite
sequence { Aj, Ay, -~ } & f of pxm matrices over K, find a triple of matrices
e = (F,G,H) over K such that

(i) A (f)=H FF1 G is satisfied where k = 1,2, -
a,nd (ii) n = dim X, = size F = minimum. |
This 1s also called the generalized Fibonacci problem which triés to describe an

infinite scalar by means of a simple recursion equation. A subclass of this type of

problem is the minimal partial realization of order M of a complete sequence
{Al"AZ.’ }
To avoid any possible confusion we note that there is another problem that

is similar to the minimal realization problem; it is called minimal realization of a

partial sequence {Aj,A,, <. Ayt

|

—~11—
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Next; let us state the minimal pa,rtial realization probleﬁl.wéivén a,ﬁnite
éequence {A{,Ay, -, AM} of pxm matrices over K, find a triple XM = (F,G,H)
such that -

(i)A,=HF"'G, k=1,-,M

and (ii) size F = minimum. /
This is called the restricted generalized Fibonacci problem which is known more
commonly as t'he‘ generalized minimal Pade representation. f
If we extend the second problem to K > M then under certain conditions we may

be able to solve the realization problen'i (first problem) given only partial knowledge

of the .input/out'put map (second problem).

Most of the important algorithms needed to solve these problems will be

discussed in the next chapter.




® ‘ ~ Chapter lll - Algorithms
| | \

In this chapter we describe algorithms to solve the realization problem and
to decode BCH codes. Some of these algorithms were derived in algebraic theory for
linear systems and some in algebraic coding theory. Since both problems have
algebraic foundations we c'an explore the possibility to find a relationship betwegn

them.

The first algorithms derived in algebraic coding theory were proposed first
by Peterson in 1960, who found a way to decode the newly discovered BCH codes.
Peterson’s algorithm was generalized .and improved by Gorenstein and Zierler,
Chien,,Forn&ey, Berlekamp [1], and Massey [2]. From these algorithms, the most

&
4
§

efficient are the )Berlekamp’s iterative algorithm and Chien’s search. The

Fundamental itive algorithm [8] presented by Feng and Tzeng in 1983, is able

fowcode up to Hartmann-Tzeng bound using multiple syndrome

-

to decode any;

sequences. We will describe the Berlekamp’s algorithm as well as the Fundamental

iterative alg“;orithm/la.ter.

The realization problem can be solved by partial-fraction expansions as
“discussed by Gilbert in 1963. A more general and practical solution was discovered
in 1965 by Ho and Kalman [3]. Rissanen in 1971 [4] refined the Ho-Kalman
algorithm. It was followed by Dickinson, Morf and Kailath in 1974 [5] who

presented an algorithm that could be implemented by hardware.

In 1980, Conan [6] presented ,a simplified version that could solve the
realization problem for a sequence of vectors instead of matrices. This algorithm is
| | ”j

the most efficient up to this date. In 1984, Conan [7] presented an aléorithm for

scalar rational sequences. This algorithm is as simple, effective and easily

. ' v —13—




- implemented as the Berlekamp-Massey iterative algorithm.

Ho-Kalman, Rissanen’s and Conan’s scalar algorithm will be discussed later
since they can be easily explained using scalar sequences. This will help us later to

compare the MPR algorithms to BCH_‘ decoding algorithms.

[II.1. Ho and Kalman algorithm. 1
To solve the minimal partial realization problem using the Ho-Kalman
algorithm, we first have to present the following lemmas:

Lemma 1. Suppose f has a finite-dimensional realization. Then the induced

sequence (Ay, Ay, -+ ) of { satisfies the relation

r
. = - ) 3. A., . ] — _ 2
A'I‘+J'+1 Y. 3, AH‘J j = 0,1,2,

| 1=1
for some g, -, B, € K, where r may be taken to be > deg v,

?,bf(z). — zn + alzn*l + RN S 7% where ﬂi et a_n-i-l-l
wf(z) is known as a minimal polynomial of K.
Lemma 2. If f has a finite-dimensional realization then it is realized by

E5,

H

G = Hrr(f) Jm:r

I 05 L, 0, o, i
05 0p I, 0,
F=0C=
10,, 0, 0, L,
-B1lp -Balp ;13‘31,) 5 Brl,
—14—




T - P g LA o SR e 1) P M e P T T B O R T T I B O S 7 Y g o O Loy DO S T Ry MY P T ey e v TN Bt e T r—————
R e N I R SR L R P : oS Py SRS : RERE BTG r‘;r‘,‘fn.‘u‘ﬁ_‘ﬁ“ﬁ(ﬁ; {1:(.;@5:@,.;‘,;4 w _.L;_;‘ Y R R R LR O ST S

where r and B, , Br are as given by (Lemma.l) and Ip and Op ére the
pxp identity and zero matrix. .
Lemma 3. Suppose f has a finite-dimensional realization ¥X. Then

- rank HN',N(f) < dim f < dim X

for all positive integers N and N/,

The Ho-Kalman algorithm is described next. The following steps lead to a
canonical realization of an arbitrary finite-dimensional input/output map f:
1. Choose an r such that (lemma 1) holds.
2. Use the invariant factor algorithm prxpr matrix P and a

nonsingular mrxmr matrix M over K such that: -

" n -
P [Hrr(f)] M — -1 -n (1)
0L b0 |

3. Now write down a canonical realization of f as follows:

F =E} P [(cH) ()] M EPT | (2)
GG = Ejr P [Hqr(f)] E} (3)
H = E, [Hor(D)] M ED | (4)

The question that arises is, if you pick an » (or fhe pair {N, N.’}) arbitrarily and
compute a dynamical systemm Y , what are the properties of such a ¥ 7 Does X
realize a part of the sequence { Ay, Ay, - } 7

As an answer, let us state the realizability criterion. Let {A;, A,, --- } be ar
arbitrary infinite sequence of pxm matrices over K and let H be the corresponding
Hankel matrix. Then X given by (2), (3) and (4) realizes the sequence up to and

including the term ANo , that is (2) holds for 1 =1, ---, Ny,

—15—
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(i) ifand (ii) only if there exist positive integers N and N’ such that
(a) N 4+ N/ = Ny and
(b) rank H , =rankH , =rank H ,
N',N | N +1,N N ,N4+1

For the partial realization problem for the scalar case (which is m=p=1) we have
the following theorem.
Theorem: Let {Ay, Ay, ---} be an arbiﬁrary infinite sequence with fixed N, then
one of the following three cases will arise:
(a) The minimal partial realizations are unique
(b)  The problem is overspecified: the minimal partial realization of order N,
iIs unique and is at Fhe same time the unique minimal partial realization
of order My < Ny .
(c) The problem is underspecified: there is an integer Py, > Ng such that
| every minimal partial realization of order N, is at the same time the
unique minimal partial realization of order P, for some arbitrary
extension 6N0+1* . ‘3P0 of the given sequence. In short, in this case
there is a (Py - Ny)-parameter family of minimal realizations.
Case (a) arises if and only if Ny=2n and
rank H,, = rank Hn+1,n’ =n
Case (b) arises if and only if
rank Hnn' = n-q,
where q>0 and n'=n (n'=u+1] when N,=2n [Ny=2n+1].
Then M, = 2(n-q). ‘
Case (c) arises if and only if
rank Hpn' = n’-q'
rank Hﬁ+1,n' = n'—q+1,

where >0 and n'=n [n'=n+1) when Ny=2n [Ny=2n+1]. Then Py=2(n+q).
—16—




In all ca,s.e's formulas (2), (3) and (4), 'with r:ri, M,, Py, respectively., p"l1~'0vidé |

minimal partial realizations of order Ny, with the understanding that in case (c) Py-

N, arbitrary parameters BN0+1’ e BPo must be added to the sequence A, -,
ANo' The dimension of the minimal partial realization is n, n-q and n+q

respectively. (end of theorem).

In order to express Z in terms of the more conventional transfer function,
let us define the Padé approximation problem, which is stated as follows.
Find two polynomials o, x € K[z], dego <degx, such that the coefficients of
the formal power series
i% = BIZ’I—}-B:,'Z"Q—}-

agree with a given sequence {A,, A,, --- } up to and including the Nyth term and

such that degy = minimum.
. \ .
To solve this problem. write Ny = 2n or 2n+1. The solution is given by
o(z) ! |
—— = H(zI-F)~"G
)~ e
where F.G and H are computed from (2), (3) and (4) with degx=n+q, where ¢ is

the ”deficiency index” 3

No-n-rank Hyn Ny-n if rank Hn+1.Ny-n > rank Hg, Ny-n
=

rank Hn,Ny-n if rank Hn+1,Ny-n = rank Hn,Nj-n

To illustrate the use of the Ho-Kalman algorithm we present the following

numerical example.
‘Example 1. Consider the input/output function generating the scalar partial
sequence

{1,1,1, 2,1, 37_'?1, 77, }

We notice that for N=N '=1 or 'H,, the realizability criterion is met. Thus

—17—-
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"H;; has full rank and itf'-can realize exactly the first two terms of the given
sequence. The system £ is (L,1,1) and its infinite sequence is {1,1“,1, } Since |
this realization does not realize our sequence we are looking for another one. The
remainder sequence is {0,0,0,1,0,2,?,??, ---}. The smallest full rank matrix is H44~

which 1s a 4x4 Hankel matrix:

0 0 0 1

0 0 1 0

B Sl T S
& 1 0 2 P
i |

and as we notice its rank is independent of ?. Thus the original sequence has a 4-
dimensional realization. Howev'er, the 4-dimensional realization requires an A,=7
and an Ag=7?, which means > nonisomorphic minimal realizations. The
maximum number of dimensions in order for this sequence to be realized is 5. The
minimal realization though requires only 3 dimensions, as we conclude frdm the

realization criterion. Thus, the initial sequence can be written as

1 1
Hyy = 1 1 2 which has full rank.
1 2 1

1 0 o0 11
P = -1 1 0 and M= 0 0 1
1 0 1 0 1 O
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X
i
i
b,

1 1 0 1 |
F=| 0 -1 1 G=|0 H:[l 0 0]‘
1 0 1 0 ' |
_ _J _ .

For this realization 7=2, 7?77=3, ??7?=5, ?7?7=2, ?°=9. To get the transfer
function we use the results above into the followihg equation

o(z) ol

after the calculation

o(z) _ z°42z+1
x(z)  2342%2-2

III. 2. Rissanen’s Algorithm

This algorithm is an improved version of the Ho-Kalman algorithm
described above. For a given partial sequence {A,, ---, Ay} for each N=1,2,3, ...
we can find a sequence of minimal partial realizations Xy = (GN" Fy, Hy)
such that

ErEEyC if N < N.
The inclusion symbol means that the matrices in L+ appear as submatrices of the
corresponding ones in ¥ . Thus, we are looking for an algorithmic solution to the
partial realizatioh problem for some N, but we also want a recursion of N.
Moreover, we look for a solution where each extension of the A.’s can be met by

calculating just a few new elements. The advantage of this algorithm compared

with the B.L. Ho’s is that we avoid to calculate each partial realization anew.

—~19—




Before we describe Rissanen’s algorithm, let us arrange. the entries of thg/ |

4

sequence {A;, A,, -+ } in the Hankel matrix.

<P

Let A(m,n) denote the desired submatrix of A. The algorithm is based on

factorization of A(m,n) of the following type:

A(n,m) = P(n,n) Q(n,m)

where P(n,n) is the lower triangular with 1’s on the diagonal

[ fl ! f| fi+1 fn‘] ]

£, lci+1 fi+2 ' lcm+1
1ci+n-1

- 1n fi-l—n-—l f|+n fn+m-1

-l T 411 0 1 i
Pa; 1 do1 "~ 92i 92,i+1
Ps; Paa 1

- Pn1 Pn2 1 - - qn1 Ani qn.i-l—l

—920—

m>n, rank A(n,m) > n-1,

dn,m

(1)

(2)




IR

The factorization algorithm runs as follows;
# ‘ | | Step 1. Set q;; = f; for all . lf» n=1, we are done: P(1,1)=1.

Sfep 2. If n#1, then proceed recursively, to determine the ith step or row, all the
Pjk s and qy’s, j=0,1, ---, i-1. Let s(j) be the least integer such that
95 5(j) # 0, j<n. Set Ay s(j) = 0 for k>j. Equation (2) then lead to a set
of -1 equations, one for each column s(j), j=1, .-, i-1. Bécause of fhe
previous conditions, the unknowns p;,, -, Pjj.1 can be solved recursively
one by one from these equations. The submatrix P(i,i) with equation (2)
determine the remaining elements of the ith row of Q(n,m) which

completes the cycle.

Also, let us define | i:\

P3; P3p | o - d21

P.(n-1,n-1) = S L G(n-1) = ; (3)

- pnl pn'n-l__J [ _qn-l,l _
H(n-l)_—:l: 1 0 0 0 - O] - {n-1 elements}

In addition, let

| F(n-1) = P1(n-1,n-1) P.(n-1,n-1) , . ) (4)

Let us now describe the Rissanen’s realization algorithm, which works for a

sequence f,, ..., fy for any N=1,2, ...,

~9] —
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| Ste'p' 1. Let k be the least integer'for which f, #0. Take N::ék-}-l‘ and form ‘
' A(k+1,k+41). It has rank > k. .

Step 2. Apply the factoring algorithm and find P(k+1,k+1) and Q(k+1,k+1)’
[equation (2)]. If the last rwa Q is nonzero, the rank of A(k+1,k+1) is
k+1. Increase N by 2, form A(k+2,k+2) and continue the factorization.
If the last row of Q(k+2.k+2) is still honzero, increase N, by 2 and repeat
until, say, for N=2n-1 the last row of Q(n,n) is zero.

'Step 3. From formulas (3) and (4) calculate the partial realization X _;.

Step 4. Increase N by 1. Continue the factorization for A(n,n+1). If the last row of
Q(n,n+1) remains zero for all m, we have found the realization. (Since - |
the algorithm never stops we place an upper limit for m.)

Step 5. If for some m(>n) the last element in the last row of Q(n,m) becomes
nonzero, the last picked element f .., is not realized by partial
realization X, ;. In this case, pick one point, fm+n’ and form
A(n+1,m). Continue theAfa,ctorization, pick one new poi'nt and repeat
until either Q(n’.m) for some least n’<m has last row zero or n'=m

and the last row is nonzero. In the previous case go to Step3. In the latter

case go to Step?2.

To illustrate the algorithm let us use the same sequence as in the B.L. Ho

algorithm: {1,1,1,2,1,3,2,3, --- }
Ezample 2. First, let us demonstrate how the factorization algorithm works.

doadd ®

Consider the above sequence in matrix form
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® ST
1 1 2 1 3
A(4,9) =
1 2 1 3 2
2 1 3 2 3

Having s(1) = 1, we set qi; = 0, i> 1. Then

Pop - L[an] + 1 [pa2] - 0fay] =1 — pyy =1

1 '1CQ12:+ 1 '1:%2]:2—"- qQay = 0

I - llas]+ 1 L aas] =1 — qo3 =1
1 - 2[q]+ 1 cL{day] =3 — qgq =-1
1 - 1as] + 1 ‘1[(125]:3—”%5:2
Then s(2) =3, q3 =0, i>2 and
‘ Ps; - llanl =1 — p5 =
1 - 1[ays] + p3o - Mlaus] =0 =1 — p3a = 0‘

Lo 1fasl + 0 - 2[qus] + 1+ q35 =2 — q35 = 1

) 17 1+ 1 2 1
: 11 0 0 1 1 2
ARSI = 0 1 o 1 0o 1 1
> 1 -1 1 0o 0 0 0 O ,
_ J L |

In the main algorith;n the process develops as follows.

Step 1. k=1. f;=1s£0, N=2.141=3

‘ | - L =23-




® o Aey=|

Step 2.

) A(2,2) =

The last row of Q(?,Q) is zero, thus we have a minimal realization.
Step 3. From (3) and (4) we find & :(1,.1,1).
Step 4. Add f,=2 and factorize A(2,3). Now q,3=1#0. So the last row of Q is
not all zeros.
Step 5. We pick two points fﬁ and later f. until the factorization of A(4,4) gives
a Q(4,4) with last line all zeros.

Step 3. The matrix P(4,4) has been found. Then,

1 | 1 0 0
P33 =| 1 1 and P1(33)=| -1 1 0
1 0 1 1 0 1
1 1 0
Also P,(33)=| 1 0 1
2 1 -l
Thus,
1] 1 1 0
Gy=|0| Fy=| 0 -1 1 Hy=[1 0 0 |
0 1 0 -l

® }




R
.
3
'.;
5 R
%;-3
@
AL
(2
i
Qi

III. 3. Conan’s Minimal Partial Realization Algorithm for scalar sequences”

Cona‘n’s\ MPR algdrithm is the most effective algorithm of this type. In the

scalar case, it can be as effective as the Berlekamp—Massey algorithm.
Before we present the algorithm let us first introduce some backgroﬁnd
information. Let S = (sg, s;, -*. Sm, ---) be a semi-infinite sequence over the base
field F, and Sm = (sg, sy, -, s,,.;) the finite subsequence of S formed by the

first m samples.

An mth paftial realization of $ is a pair of polynomials {d(z), n(z)} with
d(z) monic, deg{n(z)} < deg{d(z)} and d(z), nﬁ(z) relatively prinie provided that
the system with transfer function g(z) = 2—7%—))- has an impulse response whose(ﬁrs't
m output symbols match S,,. |

If S(z) and Sy(z) are the Z-transforms of Sapd S we can write

d(2)S(z) = n(z) + =" 1+ 0,
where d 1s the degree of the polynomial d(z) and o is the order of d(z) (o>d);
q is the residual of d(z) with respect to S (g=0).
The monic polynomial d(z) yields a minimal partial realization of S, provided it
has order o>m with respect to S aund its degree is minimum. Next, d(z) is an
(m+1)th partial realization provided the coefficient [d(z)S,, (z)],,..4 of L ™
the product of d(z) by S, ,(z) is zero. Also , if {d',(z)} is a sequence of Ith
minimal partial realization of S(z) then the following conditions are satisfied.

deg{d,y 41(2)} = max|de