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ABSTRACT 

The n1ost well known algorith111 for decoding BCH codes is the Berlekamp

Massey iterative algoriJm. The Berlekamp-Massey iterative algorithm can also be 

used to solve the realization proble111 in systems. There are two other algorithms 

that can be used to decode BCH codes and in solving systems problems. First, the 

Minimal Partial Realization ( MPR) algorithm is designed to solve all types of 

realization problems and decode BCH codes as well. Second, the Fundamental 

Iterative Algorithm (FIA) is a. n1ort' general a.lgorithm than the Berlekamp-Massey 

iterative algorithrn and MPR algurith111s and thus the l~'IA has so111e additional 

capabilities. 'l'he different versions of tl1P Minin1al Pa.rtial Realization algorithm are 

discussed. Tht' relationship bet\veen ('1011a.n 's Mini111al Partial Realization algorithm 

a11d the Funda1nental Iterative ,t\lgorith111 is shown. 

; 

I 
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Chapter I - Introduction 

The development of today's communications systems is attributed, among 

others things, to the use of codes. Codes are being used mainly in order to avoid 

erroneous transmission, or to achieve secure transmission. Different techniques have 

been developed for encoding and decoding codes. 

One class of codes used extensively in communication systems. is the BCH 

codes. After their discovery in 1960, algorithms were proposed for decoding these 

codes. The n1ost effective algorithrn for tl1is purpose is the Berlekamp-Massey 
I

, . ~ \ ' 

( 

; 
/ 

\ ·, 

iterative algorith111 [1,2] which w~s introduced in 1968. Because of its effectiveness, 

the same algorithm was used .to solve the realization ~lem in the control systems 

area. 

An alternative algorith111 designed for solving the realization problem in 

control systeu1s was presented in 1966 by Ho and Kal1nan [3]. This algorithm is 

k11own as tl1e Mi11i1nal Partial Realization ( MP R) algorith1n. In 1971, Rissanen [4] 

presented an i1nproved version of the MP R algorithn1. Generalized versions of the 

MPR algorithn1 were presented in 1974 by Dicki11so11, Morf and Kailath [5] and in 

1980 by Conan [6]. Finally, in 1984 Conan (7] presented an effective and easily 

implemented MPR algorithn1, that ca.n be as effective as the Berlekamp-Massey 

algorithm in control systen1s applica.tions. rfhis algorithm can be used as an 

al tern a ti ve to Berleka.rn p- Masse.Y a.lgori th 111 even for BC H codes decoding. 

A basic algorithn1 was i11troduced in 1984 by F'eng and rfzeng [8], named as 

the Funda.n1e11 tal Iterative i\.lgorith111 (FIA). This algorith1n is n1ore general .than 

the Berlekamp-Massey algorithm ~ince it can make use of multiple syndrome· 

sequences for decoding cyclic codes. 

_•)_ -

' . ' 
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This thesis includes in ('.hapter II a review of the background 111aterial 

needed for describing the algorith1ns used i11 BCH decoding as well as in systems 

problem solving. Section 011e is devoted to error-control coding, i11cluding reviews of 

linear and cyclic codes. It also describes the BCH codes and their decoding problem. 

Section two introduces the reader to algebraic theory for linear systems. It also 

includes the necessary definitio11s and states the problem that needs to be solved. 

Chapter III describes the algorithms that can be used effectively for BCH 

decoding as well as system problen1 solving. It includes, among others, the 

Berlekamp-Massey algorith111. the Ho a11d Kalman algorith1n, the Rissanen 
\ 

algorithn1. the C~onan a.lgorit.h111. a.nd finally the Funda.n1ental (or_ Feng-Tzeng) 

Iterative Algorith111. 

(~'.hapt.er IV presents the rela.tionship betweeu the Mi11in1al-Partial

Realizatio11 a.lgorithrr1 developed by ('.onan a11d the Funda1nental Iterative 

i\lgorithm. In particular, (_,ona.n ·s algorith111 is derived fro111 the more general 

F'unda111ental Iterative i\lgorithni. 

f"'inally, Chapter V contains the concluding ren1arks and proposes problems 

for further research. 

-3-



Chapter 11 - Preliminaries 

In this chapter we present so1ne preliminary concepts that are needed to 

discuss the decoding algorithms or the system solving algorithms. We start with 

the discussion of error-detecting and error-correcting codes, with some emphasis on 

BCH codes. tl'he encoding of codes will be presented. In addition, the decoding 

problem will be stated. The decoding algorithms will be presented in another 

cl1apter. 

.., 

The fecoud half of tl1is chapter is a discussion of the algebraic theory of 

linear systerns. We present the problen1 in the broad area of linear system theory as 

well as in the n1ore specific realiza.tion theory. 

11.1 Funda1nen tals of coding 

In digital communication syste1ns there is a need to be able to detect 

and/or correct any errors introduced due to noise in the channel. For this reason 

error-detection and error-correction codes were developed. 

message 
digital source -+ u _ encoder ~ cod<t,word -+ channel ..- error J'ector 

digital sink 
estimated n1essage 

u' 

f'ig. l. 

.,...... decoder , 

-1 
~ 

l 

-4-
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11.1.1. Block Codes 

/ 

Block codes are wide{y used in today's communications. Of these codes we 

restrict our a.t ten tion to a subclass of block codes, the linear block codes. An ( n,k) 

linear block code is defined as a k-di1nensional subspace of the vector space of all ,,. 

the n-tuples over the field G F( q) if and only if it is formed by qk codewords and 

has a length ri. 

Since a11 (n,k) linear code is a k-dimensional subspace of the vector space, it 

is possible to find k linearly independent codewords such that they form a kx ri 

matrix that operates all codewords and call it the genera.tor matrix G. If G is of 

the form ( P lk) then it is said to be in systen1atic for1n. F'rom G we can obtain 

the parity check: matrix H = ( I l·. p T). 
ll - ~ 

(J a.nd H are related with the property 

G · HT= 0. 

ln order to deter1nine the randon1-error-detecting a.nd rando111-error-

correcting capabilities of a code \Ve introduce the 1ninin1 u111 distance. First, we 

define the Ha.111ming weight of v or w( v) as the nun1ber of nonzero components of 

v. The Ha111rning distance between the codewords v a11d w, denoted d( v,w), is 

defined as the 11 un1ber of places they differ. 

Also from tl1e definition of the Ham1ning distance and the definition of 

modulo-2 addition we conclude that the Hamming distance bet.ween v al}J w is 

equal to the l-lan1n1ing weight of the sun1 v and ·w, that is d(v~w) = w(v+w). The 

minim um distance of a code C, de11oted d 
1
ni

11 
is defined as 

', 

d . = n1in { d(11.H,·): v.tc EC. v-1- ·w }. 
1nz11, , -r 

Consequently. the n1ini1n urn dista.ncP of a, linear code is equaJ to the minimum 
/ 

weight of the nolzero codewords (d , = w . ) 
( 1n z 11 ni z n · 
'7 

.,/?',.~_r' 
~~.f,/ ' 
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The random-error-detecting a11d random-error-correcting capabilities of a 

linear block code can be stated as f ollo\\'S. 

A linear block code with 111inimu1n distance dmin guarantees detecting all 

error patterns of d . -1 or fe,ver errors. It is possible that the code can detect , min 

more errors for certain patterns. The same code guarantees correcting all error 

patterns of t = [(d . -1)/2] min ( t is always integer) or fewer errors. Certain error 

patterns of t+ l or more errors can be corrected under special conditions. 

11.1.2. Cyclic (,'.odes 

Cyclic codes are an in1portant subclass of li11ear codes. 1'hese codes are 

attractive for two reasons: first, encoding and syndrome computation can be 

implemented by employing shift registers; and second, they have such an algebraic 

structure tha.t allo\vs us to find 111a11y pra.ctica.l n1ethods for decoding theory. 

A linear code C is cyclic if every cyclic shift of a. code vector in C~ is also 

:: a vector in ('.. The n1ost ir11portaut proJ)erty of the cyclic codes is that, if g(x) is 

a polynomial of degree n-k and is a factor of x11 -l, the11 g(x) ge11erates a11 (11,k) 

cyclic code. The parity check polyno111ial h(x) is obtained by h(x) = (xn-1)/g(x). 

The genera.tor and parity check rna.trices are of the following forn1: 

gn-k 0 0 0 

0 0 

G= • 

0 0 0 

0 0 

-6-
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H= 

0 

0 

0 

11.1.3. BCH Codes 

. 
• 
• 

0 

0 

. . . ho . 

. . . 0 

O' 0 

0 

' - - -.,. -,·. ·,· _,, :: r 

) 

••• 

• • • 

0 

0 

hk-1 hk-2 . . . 0 

An ir11p0rtant subclass of cyclic codes are the BCH codes. In order to 

define these codes, let /3 be an ele111ent of GF( qm ), and L0 any nonnegative· 

integer, then a polynomial g(X) of minimum degree which has as roots the 

following consecutive powers of /3: 

can generate a code of distance > d0 • 

Then g(x) is given by: 

g(X) = LCM { \Jl 0(X), '11 1(X), ···, \Jld
0

_2 (X)} 

where \JI i(x) is the minimum polynomial for any i such that O ~. i < d 0-1. 

Also the length of the code is 

... 

l +i 
where ni is the order of 8 ° for any i: 0 :5 i ~ d 0-1. The number of parity 

checks of such a code is: n-k < 111( d 0-l ). The 111inim um distance dmin of this code 

is at least d0 . The code is th~s capable of correcting up to t errors { t = [( d0-

1 )/2] }. If.we let Lo=l, d0 =2t+l and /3 be a primitive element then the BCH 

code is ·called primitive. 

. 

The decoding procedure of a BCH code like the one mentioned above is 

-7-
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described as follows. When the encoder transmits a BCH codeword 

v(X) = Vo +·vl X + ... + vn-1 xn-l 

and the received codeword is 

r(X) = r 0 + r 1 X + r 2 X 2 + · · · + rn-l xn-l 

If the error pattern is e(X) then 

r(X) = v(X) + e(X) 

The first step of decoding is to· find the syndrome S from the vector r(X). 

The syndrome is given as 
'. . 

S = ( S 1 ,S 2 , · · · ~ S2 t) = r . HT 

The next step is to find the error-locator polynomial u(x) from the components of 

the syndron1e S. In order to fi11d the error location we define the error-locator 

polynomial a.s 

u(X) = ( l + /3 1 X ) ( 1 + /3 2 X 2 
) · · · ( 1 + /3 1 Xl ) 

when 

S 1 -. /3 1 + /3 '2 + . . . + /3 I 

S2t= /3it+ J3~t.+ ··· +J3ft 
' 

The problem is reduced to solving the Newton's identities. 

-

S3 iu,S2 + u 2S1 + 311 3 = 0 

St+1 + u1S1 + ··· + o-,_1S2 + u,S1 = 0 

-8-
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or for k = l+ l , l+ 2 . . . (non binary case) 

" 
Ways to fi11d the error locator polyno1nial are extensively discussed in the next 

chapter. The last step to BCH decoding is to determine the numbers /3 1, /3 2 , · · ·, /3 1 

by finding the roots of u(X) and correct the error in r(X). This method is called 

the Chien search, and it is apllicable for the· binary case only. For the non binary 

case we find the Forney error 1nagnitudes. We let 

') 

Z(X) = u0 + (S 1 + u 1) X + (S 2 + u 1S1 + u 2 ) Xu + · · · 

+ ( S l + <11 S t-1 + u 2S t-2 + · · · + u,) X 1 

Then the error magnitude at location /311 is: 

Z( /3:1 ) 
ev = -------

l . -1 n ( 1 + J i !) JI ) 

i=l 
if. II 

This concludes the decoding process. 

11.2.1. Algebraic theory in linear s.ysterns\ 

In the earlier days of science~ systems work was concerned with problem 

formulation. In 1945-55 Guillen1in gave a new dimension to the systems theory. 

According to G uillen1in the sys tern we are looki11g for: 

(A) is a good approximation of the given input/output behavior 

(B) can be built from passive network elements 

( C) has simple in_ternal structure 

(D) can be easily computed 

-
Today, part ( . .\) can be replaced by ( . .\1) which is: 

V 

(A1) js the simplest exact realization of a given input/output behavior 

-9-
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A system E · · is defined a.s a physical entity that ,accepts inputs, emits 

outputs and has a certain definite internal structure (states). A syste1n E is linear 

if its input/output behavior as well as internal structure is described by linear 

functions. The systems we are going to consider are only discrete-time systems 

( systems whose behavior is described at t = · .. , -l, 0, 1, · · · E Z ( set of integers)). 

An explicit way \of defining a system is by using the concept of the state 

x( t) of.'[; and the rule of the sta.t.e transition. This allows us to view E as a circuit 

diagram or a co.n1puter progra.111 .. .\lso, it is the most explicit description of E. A 

system E is the triple ( F ,G ,H) as it is defined by tl1e equations 

x(t+l) = F x(t) + G u(t) 

y( t) == H x( t) 

where tEZ, xE X (vector space over If), 1.r(tJ···E Km (set of m-tuples in J{), 

y(t) E KP (set of p-tuples iu l\"). 

(1) 

(2) 

The next important concept is the input/output map of a system. The 

input/output 111ap f L' of E is a rule that assigns a uniquely determined output to 

every finite sequence of inputs. 'I'he output occurs one unit of time after the last 

input. Thus, it is guaranteed that ~ is a. causal sJsten1: 

fL': (u(-r), ... ~ u(O)) ~ y(l) (3) 

'I'he ter111s ·u(-r), ···. u(O) represent. the input function at ti111e t = -r, ... , 0 

respectively. We have assun1ed in (3) that the la.st input occurred at . t=O. Given 

that I; is linear, this implies tl1at f E is li11ear. Thus, we can write 

r 
f E ( u ( -r), .. · , u (_O)) = L A k+ 1 ( f L') u (-k) 

k=O 

where Ak+ 1(fE) are pxm. 1natrices with elen1ents in K. 

In addition, f E is equivalent to the doubly infinite block matrix 

-10-

.. 

(4) 

(5) 



. '· 

r-

' . 

.. 
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B1 B2 B3 . . . 

B2 Ba 84 . . . 

%(fE) 
B3 B4 85 

(6) 

. 

which is called the Hankel matrix of f E· 

0 

The last concept to be defined is the one of realization. The purpose is to 

find a system E if we are given the i11put/output map f 17 • Hence, we say that f1 

is a realization of E iff 

k 1 ·)·3· - . . . - ,_., ' (7) 

The left-hand side of (7) is given by f1 and the right-hand side by E. The 

. ' 
t. 

realizations are not alwa.ys unique. 'I'herefore, we are interested in minimal 

realizations ( di1n X - 111inin1 u ru). 

The pruble111 of n1iui111al realization is stated as follows: Given an infinite 

sequence { 1\ 1 , A 2 , } ~ f of p x 111 1natrices over . K, fi11d a. triple of matrices 

Er== (F,G,H) over K such that 

(i) Ak(f) = H pk-l G is satisfied where k = 1,2, · · · 

and (ii) n == dim E f == size r"' = n1inim um. 

This is also called the generalized Fibonacci problem which tries to describe an 

infinite scalar by means of a. sin1ple recursion equation. A subclass of this type of 

problem is the 1ninimal pa.rtial realization of ord·er M of a con1 plete sequence 

. . ~ 

To avoid any possible confus1on we note that there is another problem that 
' 

is sin1ilar to the 1ninimal realization proble1n~ it is called minimal realization of a .. 

-11-
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Ne.xt, let us state the n1i11in1al partial realization problem. Given a finite 

sequence {A1,A2 , ···, AM} of pxm matrices over /(,·find a triple EM= (F,G,H) 

such that 

(i) Ak = ~ Fk- 1 G, k = 1, ·. ·, M 

and (ii) size F = minimum. ) 

This is called the restricted generalized Fibonacci problem which is known more 

commonly as the generalized mini111al Pade representation. 

If we extend the second proble111 to K > M then under certain con.ditions we may 

be able to solve the realizatiou problen1 ( first proble111) given only partial knowledge 

of the input/output map (second problem). 

Most of the important algorithn1s needed to solve these problems will be 

discussed in the next /chapter. 

-12-
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Chapter 111 - Algorithms 

In this chapter we describe algorithms to solve the realization problem af:td 

to decode BCH codes~ Some of these algorithms were derived in algebraic theory for 

linear systems and some in algebraic coding theory. Since both problems have 

algebraic fou11dations we can explore the possibility to find a relationship between 
'I. 

them. 

The first algorithms derived in algebraic coding theory were proposed first 

by Peterson in 1960, who found a. way to decode the newly discovered BCH codes. 

Peterson's algorith1n was generalized , a.-nd in1proved ·by Goren stein and Zierler, 

Chien, Forney, Berl kamp (1], a11d Massey (2]. From these algorithms, the most 
~ ' 

efficient are the erleka1np 's . iterative algorithm and Chien 's search. The 

Fundan1ental it rative algorith111 [8] presented by Feng and Tze11g in 1983, is able 

. code up to Hart111ann-Tzeng bound using multiple syndrome 

\{ 

sequences. v\lp wiJI describe thP Berlekan1p 's algorith1n as well as the Fundamental 

iterative algorithm. la.ter. 

The realization problen1 can be solved by partial-fraction expansions as 

. discussed by (lilbert in 1963. A n1ore general and practical solution was discovered 

in 1965 by Ho and Kalman [3]. Rissanen i11 1971 (4) refi11ed the. Ho-Kalman 

algorithm. It was followed by Dickinson, Morf and Kailath in 1974 (5] who 

presented an algorith111 that could be i111ple111ented by hardware. 

./ 

In 1980, Conan [6) prese·nted ,,. a sin1plified version that could solve the 

realization problem for a seq-uence of vectors instead of 1natrices. This algorithm is 
../ 

the most efficient up to this date. In 1984, Conan (7], presented an algorithm for 

scalar rational sequences. 'I'his algorithm is as simple, effective and easily 

~ -13-
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. implemented as the Berlekamp-Massey iterative algorithm. 

Ho-Kalman, Rissanen 's a11d Conan's scaJar algorithm will be discussed later 

since they can be easily explained usi11g scalar sequences. This will help us later to 

compare the MPR algorithms to BCH decoding algorithms. 

111.1. Ho and l{alman algorithm. 

To solve the minimal partial realization problem using the Ho-Kalman 

algorithm, we first have to prese11 t the following lemmas: 

'I 

Lemma 1. Suppose f has a finite-di1ne11sional realization. Then the induced 

sequence (A 1, .~2 , · · · · ) of f satisfies the relation 

r 
A + · + 1 = - E ;3 i .~ •. +· J. j = 0, 1, 2, · · · 

r J i=J 

for some /3 1, · ~-, f3 r E /{, where r 111ay be taken to be > deg '11 l 

( ) n n-1 · h /3 ¢ 1 z = z + o 1 z + · · · + On w ere · i = a n-i+l 

¢ 1(z) is known as a. 111inin1al polynon1iaJ of !{. 

Lemma 2. If f has a finite-dimensional realization then it is realized by 

F -c··,_ - ·' -

I 
Op o,., 0 T) 

. . . 

-14-
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... , . 

.i,i. 

where r and /3 1, · · · , Pr are as given by (Lemma 1) and Ip and Op are the 

pxp identity and zero matrix. 

Lemma 3. Suppose f has a finite-dimensional realization E. Then 

rank H 1 (f) < dim f < dim E 
N N - -

I 

t 

for all positive integers N and N 1• 

The Ho-Kalman algorith1T1 is described next. The followi11g steps lead to a 

canonical realization of an arbitrary finite-dimensional input/output map f : 

1. Choose an r such that ( le111.n1a 1) holds. 

2. Use the invariant factor algorith111 prxpr matrix. P and a 

nonsingular 111rx 1I1r ruatrix 1\1 over K such that: 0 

I n 
n 

P [Hrr(f)] M = Ohr-n 

On 
rnr-n 

pr-n 
Dn1r-n 

3. Now write down a canonical realization of f as follows: 

F = E ~ r p [ ( lT H) r r ( f)] M E ~ r 

(1) 

(2) 

(3) 

(4) 

The question that arises is, if you pick a.n r (or the pair {N, N1}) arbitrarily and 

compute a dynamical syste111 E , what. a.re the properties of such a E ? Does E 

realize a part of the sequence { A 1 , A2 , · · · } ? 

As an answer~ let us state the .realizability criterion. Let {A1, A 2 , . · · · } be an 

arbitrary infinite sequence of px m n1atrices over K and let H be the· corresponding 

Hankel matrix. Then E given by (2)., (3) and (4) realizes the sequence up to and 

including tl1e term AN
0 

, that is (2) holds for i = l., · · ·, N 0 , 

-15-

' :-.,,. '. .\•, ··.-1;,.,.'.~ 

' i 



\ 

' ' , .. , . .._ .. 

( i ) if and ( ii ) only if there exist positive integers· N and N1 such that 

(a) 

(b) 

N + N1 = No and 

rank H = rank H = rank H 
N1,N N1 +1,N N1,N+l 

For the partial reaiization problen1 for the scalar case ( which is m=p= 1 )' we have 

the following theorem. 

Theorem: Let {A1 , A 2 , · · ·} be an arbitrary infinite sequence with fixed N0 then 

one of the following three cases will arise: 

( a) The minimal partial realizations are unique 

(b) The problen1 is overspecified: the 111ini111al partial realizat1on of order N 0 
'7( 

is unique and is at the sa.1uc tirne the unique minin1al partial realization 

of o r(f er M O < NO .• 

( c) The pro ble111 is underspecified: there is an integer PO > N O such that 

every minimal partial realization of order NO is at the same time the 
', .:.: 

unique minimal pa.rtial rea.lization _of order PO for some arbitrary 

extension /3N
0
+1 ., · · · ., 8p

0 
of the given sequence. In short., in this case 

there is a (P O - N 0 )-parameter family of minin1al realizatio11s. 

Case ( a) arises if and only if N 0 =2n and 

rank Hnn = ra.nk H +i , = n n ,n 

Case ( b) arises if and only if 

rank Hnn.' = n-q, 

where q > 0 and n1 =n (n' = n + l] \Vheu N 0 =2n [N 0=2n + 1]. 

Then M0 = 2(n-q). 

Case (c) arises if and ouly if 

k H ' ' . ran nn = n -q 

rank H · +i , = n1-q+l, n ,n ·• ' 

where q>O and n1=n (n'=n+l] when N0=2n [N 0=2n+l]. Then P 0=2(n+q). 

-.16-. 
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· _Irt all cases formulas (2), (3) and (4), with r=n, M 0 , P 0 , respectively, provide 

·~ . . 

minimal partial realizations of order' N 0 , with the understanding that in case· ( c) P 0-

N O arbitrary parameters BN +l' · · ·, Bp must be added to the sequence A 1, • • ·, 
0 0 

AN
0

• The di1nension of the minimal partial realization is n, n-q and n +q 

respectively. (end of theoren1). 

In order to express E in terms of the more conventional transfer function, 

let us define the Pade approximation problem, which· is stated as follows. 

Find two polynomials (J ,. x E K[ z], degu < degx, such that the coefficients of 

the formal po\ver series 

(J(z) 1 9 - = B z- +B.)z--+ 
x(z) 1 -

agree with a given sequence {~t\1 ~ 4t\ 2 ~ · · · } up to and including the N 0 th term and 

such that deg,\ == 111inimu111. 
\ .. 

' / 

To solve this problen1. w,r\ite N0 = 2n or 2n+l. The solution is given by 

(J(z) = H(zl-F)- 1(~ 

\(z) 

where F,G a,nd H a.re computed fron1 (2)~ (3) and (4) with degx=n+q, where q is 

the '' deficiency index" 

N 0-n-rank Hn, 1V0 -n if rank H n+ 1. N0 -n > rank H ;i, N0 -n 

q= 

rank Hn,N0 -n if rank H n+ 1, N0 -n == rank H n, N 0 -n 

To illustrate the use of the Ho-Kalman algorithm we present the following 

numerical exan1ple. 

Example l. Consider the input./ output. function generating the scalar partial 

./ . . 
sequence 

.. 
I 

{ 1 1. 1 2 ·1 3 ? ?? · · · } ' ' ' ; ' , ... ' .. , 

We notice that for N=N'=l or H11 the realizability criterion is met. Thus 

-17-
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· H 11 has full rank and it can realize exactly the first two terms of the given 

,. sequence. The system E is (l,1,1) · a11d its infinite sequence is {1,1,1, ···}. Since 

this realization does not realize our sequence we are looking for another one. The 

remainder sequence is {0,0,0,1,0,2,?,??, ···}. The smallest full rank matrix is H44 

which is a 4x4 Hankel matrix: 

0 0 0 1 

0 ,0 1 0 
H4,4 

0 I 0 •) .. .., 

' 

l 0 •) ?' - • 

and as we notice its rank is independent. of ?. Thus the original sequence has a 4-

dimensional realization. However, the 4-din1ensional realization requires an A 7=? 

and an A -?? a- .. ' which 111eans 
') 

oci'"' 11onisomorphic minimal realizations. The 

maximum nun1ber of dimensions in order for tl1is sequence to be realized is 5. The 

minimal realization though requires only 3 dimensions, as we conclude from the 

realization criterion. Thus, the initial sequence can be written as 

1 

1 

1 

1 

1 

l 

1 

A suitable pair (P ,M) satisfying ( 1) is given by 

' 1 0 0 

P= -1 1 0 and 

-1 0 1 

-18-
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M - 0 0 1 -
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Then (2), {3) and ( 4) give 

F= 

1 

0 

1 

1 

-1 

0 

0 

1 

1 

G 

1 

0 

0 

H=[l O o] 

For this realization ?=2, ??=3, ???-5, 7???=2, ?5=9. To get the transfer 

function we use the results above into the following equation 

u ( z) == H ( zl- F ) - 1 G · 
x(z) ' 

after the calculation 

u(z) _ z2+2z+l 
x(z) - z3 +z 2-z-2 

III. 2. Rissa.nen 's Algorithn1 

This a.lgorithm is a.n i1nproved version of the Ho-Kalman algorithm 

described above. For a given partial sequence {A1 , ···, A,I\T} for each N=l,2,3, ··· 

we can find a sequence· of · n1i11in1a1 partial realizations 

such that 

·.. E I C EN C · · · N - -
if N1 <. N. 

The inclusion symbol means that the n1atrices in EN' appear as submatrices of the 

corresponding ones in EN. rJ'h us~ \Ve a.re looking for an algorith111ic solution to the 

partial realization problen1 for sorne N, but we also want a recursion of N. 

Moreover, we look for a solution where each extension of the Ai's can be met by 

calculating just a few new elements. The advantage of this algorithm compared 

with the B.I.1. Ho's is that we avoid to calculate each partial realization anew. 

-19-
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Before we describe Rissanen 's algorithm, let us arrange the entries of th~ 

sequence {A1, A 2 , · · · } in the Hankel matrix. 

. . . 

• • • 

A= 

Let A(m.,n) denote the desired subn1a.trix of A. The algorith111 is based on 

factorization of A( m ,n) of the follo\vi11g type: 

A(n,n1) = P( n,n) Q(n,m) 111 > n, rank A (n, m) ~ n-1, (1) 

where P( n .,n) is the lower tria.ngula.r with 1 's 011 the diagonal 

:~ f1 . . . f. fi+l 
. . . fn, 

I 

f,} . . . fi+l fi+2 f,n+l -

-

(2) 

. 
fi+n-1 

fn fi+n-1 fi+n fn+n1-l 

1 

P21 1 

- P31 P32 1 

Pn1 Pn2 
. . . 1 

qll . . . 
,, 

q21 . . . 

qn 1 · · · 

-20-
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q2i 
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. 

Q1,i+1 
. . . Q1m 

Q2,i+1 
. . . Q2m 

. . . . 
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The factorization algorithn1 r1:1n.s as follows. 

Step 1. Set q1i = fi for all. i. If n=l, we are done: P(l,1);=1. 

Step 2. If n :;t: 1, then proceed recursively, to determine t'he ith step or row, all the 

Pjk 's and qjk 's, j =0, l, · · ·., i:.. l. Let s(j) be the least integer such that 

Qj,sU) :f. 0, j<n. Set qk,sU) = 0 for k>j. Equation (2) then lead to a set 

of i-1 equations, one for each column s(j), j= 1, · · ·, i-1. Because of the 

previous conditions, the unknowns Pil' · · ·, Pi,i-l can be solved recursively 

one by one fro1n these equations. 'fl1e submatrix P(i,i) with equation (2) 

determine the remaining elements of the ith row of Q(n,1n) which 

completes the cycle. 

Also, let us define 

Pn1 · .. . ·• . . . . . 

H(n-1) = 1 0 0 0 · · · 0 

In addition, let · 

F(n-1) = p-1(n-1,n-1) P.(n--1,n-1) 

1 

\ 
\ 

1 
I: 

{ n-1 elem en ts} 

(3) 

(4) 

Let us now describe the Rissanen 's realization algorithm, which works for a 

sequen~e f1, ···, fN for any N=l,2, ···. 

---21-
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Step 1. _Let k be the least integer for which fk,i:O. Take N:;::2k+1··and form 

A(k+ 1,k+l). It has rank ~- k. 

Step 2. Apply the factoring algorithm and find P(k+l,k+l) and Q(k+l,k+l) 
0 

[equation (2)]. If the last row of Q is nonzero, the rank of A(k+l,k+l) is 

k+l. Increase N by 2, fur111 A(k+2,k+2) and continue the factorizatio11. 

If the last row of Q(k+2,k+2) is still nonzero, increase N. by 2 and repeat 

until., say, for N=2n-1 the last row of Q(n,n) is zero . 

. '. 

'Step 3. Fron1 formulas (3) and ( 4) calculate the partial realization En-l · 
( 

Step 4. Increase N by 1. Continue the factorization for A(n,n+l). If the last row of 

Q(n,n+l) remains zero for all m, we have found the realization. (Since. 

the algorithm never sto1)s we place an upper limit for m.) 
:, 

Step 5. If for some m( > n) the last elen1en t in the last row of Q( n ,m) becomes 
... 

nonzero, the last picked element fn,+n-l is not realized by partial 

realization En-l · In this case, pick one point, fm+n' and for1n 

A(n+l,m). Continue the factorization, pick one new point and repeat 

until either Q(n 1,m) for son1e least n1 <m has last ro\v zero or n1= m 

and the la.st row is nonzero. ln tl1e previous case go to Step3. In the latter 

case go to Step2. 

To illustrate the algorith111 let us use the same sequence as in the B.L. Ho 

algorithm: {1,1,1,2,1,3,2,3, · · · } 

Example 2. First, let us demonstrate how the factorization algorithm · works. 

Consider the above sequence in 111atrix form 

-22-
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1 1 1 2 1 

1 1 2 1 3 

A(4,5) = 
1 2 1 3 2 

2 1 3 2 3 

Having s(l) = 1, we set qil = 0, i> 1~ Then 

1 · 1 [Q12J + 1 

1 · 1 [ Q13] + l 

1 · 2 [Q14] + l 

1 . 1 [ Q15] + 1 . 1 [q25] == 3 -+ Q25 = 2 

Then s(2) = 3, qi3 = 0, i>2 and 

Continuing we get the result 

A(4,5) -

1 

1 

1 

1 

0 1 

1 -1 1 

, 

1 

0 

0 

0 

1 

0 

1 

0 

1 

1 

0 

0 

In the main algorithm the process develops as follows. 

Step 1. k=l~ f1=1#0, N=2· 1+1=3 ,, 

. -23-
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A(2,2), = 

Step 2. 

A(2,2) = 
1 

1 

1 1 

1 . 1 

1 " 

1 

0 

1 

0 

The last row of Q(2,2) is zero, thus we have a minimal realization. 

Step 3. From (3) and (4) .we find E = (1,1,1). 

Step 4. Add f4 =2 and factorize A(2,3). Now q23=1#0. So the last row of Q is 

not all zeros. 

Step 5. We pick two points f6 and later f7 until the factorization of A( 4,4) gives 

a Q( 4,4) with last line all zeros. 

Step 3. The n1atrix P( 4,4) has been found. Then, 

P(3,3) = 

1 

G 3 = 0 

0 

1 

1 

1 

1 

0 

1 

1 

1 

1 0 

au d p- 1 ( 3, 3) = -1 1 

1 -1 0 

1 

0 

l 

1 

0 

1 

-1 

0 -1 

0 

1 H3 --- [ 1 0 0 ] 

1 0 -1 

-24-
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III. 3.· Conan's Minimal Partial Realization Algorithm for scalar sequences 

Conan's MPR algorithm is the most effective algorithm of this type. In the 

scalar case, it can be as effective as the ~erlekamp-Massey algorithm. 

Before we present the algorithm let us first· introduce some background 

information. Let S = (s0 , s1., · · ·• s,n, · · ·) be a semi-infinite sequence over the base 

field F, and Sm = (s0 , s 1, · · ·• s 111 _ 1) the finite subsequence of S formed by the 

first m samples. 

An mth partial realization of 5 is a pair of polynomials { d(z), n(z)} with 

<! 

d(z) monic, deg{n(z)} :$ deg{d(z)} a11d d(z), 

n(z) 
the system with transfer function g(z) = d(z) 

m output sy1nbols match Srn· 

. . 

n( z) relatively prin1e provided thaJt 
( 

has an i111pulse respo11se whose first 

If S(z) and Sm(z) are the Z-transforms of Sand Sm we can write 

-(o- d) 
d(z)S(z) = n(z) + qz - + O(a-d.J 

where d is the degree of the polynomial d(z) and u is the order of d(z) (u>d); 

q is the residual of d(z) with respect to 5 ( q=;t=O). 

The n1onic pol}' non1ial d( z) yields a 1riini111al partial realization of S, provided it 

has order O'>m with respect t<.) 5 a.ud its degree is n1inimu111. Next, d(z) is an 

(m+l)th partial realization prnvided the coefficient [d(z)Sm+lz)lm-d of z-(m-d) in 

th·e product of d(z) by S1n+ 1(z) is zero. Also ., if { d1 l(z)} is a sequence of /th 

minimal partial realization of S(z) then the following conditions are satisfied. 

deg{d1n+ 1(z)} = max[deg{dm(z)}, m-deg{dm(z)}] 

if [dm(z)Sni+1(z)]1n-deg{d
111

(z)} # O 

deg{ d1n+ 1(z)} ::;: deg{ dn1.(z)} ·otherwise. 

---25-



The MPR synthesis algorithm of ord_er N has as ·follows: 

Step O : (Initialization) 

d(z) .+- l, n(z) +- 0, b(z) +- 0, c(z) ~ -1, dp _+- 0. 

Step 1 : if m= N, stop. 

-( m-deg{ d( z )) 
Else co1npute d:[d(z)Sm+I(z)]~-deg{d(z)}' the coefficient of z 

in the product of d(z) a11d Sm+ 1(z). 

Step 2 : ( no change) 

If d = 0, go to Step 5. 

Else, W ~ dp - deg{d(z)}. 

If W > 0, go to Step 4. 

Else continue. 

Step 3 : ( minor change) 

d(z) -- d(z) - dzb(z). 

n(z) +- n(z) - dzc(z). 

Go to Step 5. 

Step 4 : ( n1ajor cl1ange) 

t1(z) +- d(z), t2(z) +- n(z) (t1(z), t2(z) are auxiliary memory cells). 

dp ~ deg{ d(z)}. 

d(z) +- zw d(z) - db(z). 

n ( z) ~ z \tV n ( z) - d c( z). 

b( Z) -- d- 1 t 1 ( Z). 

c(z) +- d- 1 t2 (z). 

Step 5 : (initialization for the next step) 

dp +- d 11 + 1, m = m + l, go to Step 1. 
\ 

I" 

-26-
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For better illustration let us present an example using the MPR algorithm. 

Example 3. For comparison pur,poses we use the same sequence as in Ho-Kalman 

and Rissanen '.s algorithm. The results of the algorithm are shown below. 

Table I. Conan's MPR algorithm solutions 

m sm 

0 1 

1 1 

2 1 

3 2 

4 1 

5 3 

6 2 

7 3 

8 

. 

d(z) 

1 

1 

z 

z-1 

') 

z""-z-1 

z 2 +z-3 

z3 +z 2-z-2 

" 

,, 

n(z) 

0 

1 

z+l 

z 

z 2 +2z-1 

z3 +2z 2+z 

" 

" 

3 · 2 
The solution is: Sm(z) = z. +2z +z 

z3 +z 2-z-2 

d 

1 

1 

1 

1 

-2 

-2 

0 

0 

b(z) 

0 

0 

1 

1 

z-1 

z-1 

2 3 
-z -~+-
2 2 2 

" 

" 

c(z) 

-1 

-1 

1 

1 

z 

z 

-z 2 l --z+-
2 2 

" 

" 

0 

1 

1 

2 

2 

3 

3 

4 

5 

The advantage of this algorithm is that it requires less memory and fewer 

computations in ord.er to be implemented. The implementation is very simple since 

it can be achieved using a shift register (similar to the Berlekainp-Massey 

algorithm). 
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III .. 4. Berlekamp-Massey algorithm 

As we mentioned in the prevtous chapter the Berlekamp-Massey algorithm 

is the most effective algorithm up to date for decoding BCH codes. An introduction 

lo the operation of the algorithm follows. 

1 . 
For a given sequence S = (s1 , s 2 , s3 , · · ·) there is a polynomial u(z) = 1 + E O' izi 

i=l 

such that it relates the syndrome S with the error locator polynomial u(z) in the 

following way 

which are the Newton's equa.tions. 

In a similar way with the MPR algorithm the sequence S can be expressed 
""' 

as a ratio of two polynomials, a( z) and w( z) such that 

[l + S(z)] u(z) = w(z) 

Since our sequence S is lin1ited up to 2t tern1s (S 

the key equation ( equation ( 1)) becon1es 

. ·. 2t+1 [l + S(z)] u(z) == ~·(z) 1110d z 

(1) 

.. 

(2) 

Berlekamp's a.lgorithm solves equa.tion (2) for polynomials u(z) and w(z) by 

breaking the problem i11to sn1aller pieces. Then, we have a sequence of equations 

(k) {k) k+2 
( 1 + s) (J . - w 1110d z 

where for each k = 0, 1, 2, · · ·, 2t we I1ave 

u<kJ - E u i (kJ zi and 
. 

i i 

The solution of the problen1 is a.cc(>ni'plished by the Berlekamp 's algorithm which is 

stated below. 
( .... ,,_ .. 
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I . . 11 d fi ( 0) 1 ( 0 ) l ' ( 0) . n1t1a . y e 1ne u = , r = ., w l, ,(o) = 0, D(O) = 0, B(O) = 0 . 

Proceed recursively ~ follows. If Sk+l is unknown, stop; otherwise define ~ 1 (k) 

. ,I( 
as the coefficient of zI<+l in the product (1 + S) u( 9 and ~et 

{k+ 1) (k) A {k_)- (k) 
U = U - u1 Z T . 

w(k+l} = w(k) - d1 (k) z r(k) 

_J 

If ~/kJ = 0, or if D(k) > (k + 1)/2, or if ~/k) -:/=- 0 and ~(k) = (k + 1)/2 

and B( k) = 0, set 

D(k + 1) = D(k) 

B(k + 1) = B(k) 

(k+l). (k) 
T = Z T 

(k+l) (k) , = z, 
(k) . ~ 

But if Ll 1 · # 0 and e1 the r D ( k ) < ( k + l ) / 2 or 10 ( k) = ( k + 1 ) / 2 and B ( k) 

= 1, set D(k + 1) = k + 1 - D(k) 

B(k + 1) = 1 - B(k) 

(k+l) (k) 
T - _(J_ 

- ~1 (k) 

Example 4. rfo illustrate the operation of this algorith1n let us use the same 

sequence as in previous algorithn1s. The sequence is {1, l, 1, 2, l, 3, 2, 3, ···}. 

Then 

(k) , 2 1 
U = l + O' 1 Z + U 2Z + · · • ., 

(k) · .. ,, 1 2 
W - Wo + W1Z + W2Z + · · · , 

(1 + S) = 1 + S1Z + s2z 2 + ... ; 

the results of the algorithm appear in the following table. 
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Table. II. Berlekamp algp~ithm solutions 

s (k) . (k) 
k a 1 u 

0 1 

1 1 0 

1 2 0 

1 3 1 

2 4 -2 

1 5 -1 

3 6 0 

2 7 0 

3 8 

1 

1-z 

1-z 

1-z 

·1 3 -z-z 

" 

" 

' 

T(k) 

1 

1 

z 

1-z 

') z-z .. 

w 
(k) 

1 

1 

1 

1 

1-z3 

1+2z-z3 

" 

" 

,(k) D( k) 

0 

1 

.z 

.2 
z . 

1 

z 

2 z 

·O 

1 

1 

1 

3 

3 

3 

3 

B(k) 

0 

1 

1 

1 

0 

0 

0 

0 

The solution is: l+z-z2-2z3 • (The polynomial w(z) is discarded in binary case.) 

Ill. 5. Fundamental iterative (Feng - Tzeng) algorithm 

Unlike the previous algorith1ns the Fundamental Iterative Algorithm can be 

used to decode cyclic codes up to the Hartmann-Tzeng bound. It can also find a 

solution for a multiple set of sequences. 

The algebraic problem for wl1ich the. Fu11da1nental iterative algorithm has been 

designed is as follows. Let { a 1 , a 2 , · · ·, a1, a 1+1 , · · ·} be a sequence over an arbitrary 

field F. When l > 0, the ( l+ 1 )th symbol al+l is said to be linearly dependent on 

the first l symbols a 1, a 2 , · · ·, a 1 if there exist c1 , c2 , · · ·, c1 in F, which are not 

all zero, such that 

l 

al+l = ~ cjal+l-l 
;=1 

(1) 
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. .· ~ . (l+l) 
Next, let us define the polynomial .. f (x) with degree . at most l and length 

,•.:J' 

l+ l such that 

(L+l) 2 · l 
f ( X) = 1 + Cl X + C2X + · · · + C1X (2) 

(1+1) 
a.nd f ( ak+l) = a.k+l + c1 ak + · · · + c1ak+l-l for k > l 

f(l+l) 
Then equation ( 1) can be written as (a1+1) = 0 indicating the linear 

dependence of a1+1 to the previous syn1 bols. 

Let us now introduce multiple sequences ail' ai2 , ai3 , · · · for i = 1, 2, 3, · · ·, 

M over a field F. Just as in the single sequence case we need to determine the 

smallest l and c1, c2 , · · ·, c, such that 

l 
a. 1 i., I+ 1 = -.L c j a. i, l + 1 ~ j 

1=1 
for i= 1. 2, 3, ···~ M. .(3) 

An alternative way to state the problern is the following. We need to find the 

s1nallest / such that, for all sequences, the (l+l)th sy111bol in each sequence is 

dependent on the first / syn1bols. In addition, we need to -find the cj 's for j = 1, 

2' ... ' /. 

Also, the problem can be sta.ted in polyno1nial form. In this case we are trying 

to find the polynomial f(l+l)(x) of shortest le11gth l+ l such that 

r(t+ l)( ) 0 r . ·) ·3· M a. i, l+ 1 = 1 or i = 1 ~ ... . . , · · · ~ , . (4) 

In matrix form the problen1 is sta.ted as follows. 

-....,_ --~ 

Let A 

a11 a12 . . . 
al .L+ 1 

. . . 

a21 a22 . . . 
a2,l+1 

c, 

c,_1 

1 

0 

. . 
• 

0 

0 

0 

0 

(5) 

[ai1] denote the 1natrix with M semi-infinite sequences as., rows. Then 
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by ( 5) the problem in matrix for111 is to find the smallest 1 su·ch that the first l+ 1 

colu.mns of A are linearly depe11dent and, also, find the ·cj 's pertaining to this 

linear dependence. 

The funda1nental algorithm is presented as follows. 

Step (1). 0 .~ l, l---+ f(l+l)(x), l-+ i 

(l+l) 
Step (2). Compute di,l+l = f (ai,l+l) 

Step (3). If di,l+l = 0, then 

(a) if i + (l+l) = M, stop. 

(b) otherwise i + l ~ i and back to (2) 

Step ( 4). If di.l+l =fa 0, then 

( a.) if there exists d 1 € D for 1 < l1 < l then 
i,l +1 

f{l+l)(x) - :;,1+1 x1-t' rf''+l) --+ r<l+l)(x) 

i./+1 

and return to (3a) 

(b) otherwise, di,l+l is stored in D 

f ( L+ 1) ( ) . d . C x 1s store 111 . 

l + l --+ l, l ~ i and return to (2) 

Example 5. 1.,o illustrate the operation of the Fundamental algorith1n let us present 

the following exa1nple. In order to be able to co1npare the Funda111ental algorithm 

with the previous algorith1T1s, let us use the same sequence with all previous 

examples; 

In matrix for111 the sequence becorr1es the following matrix. 

-32-

. . . ' 

.1..,;.~~•.T,. ··-.:.L ,", J .•.• ~;.r, .. !.·' :.::_,;p_ ,;; ,- ..... :. ·_.. :..~'._,.'.:,·; 0;~~~.J~~-:J,; _;' ,"-.. ~.-! i '.1!•,J..,_,0,fl~~~~~::/.~:!(,'.'.;~r~'..
0

,). '.' ·• ,_ .'fi:Jh{;t;i-.;~/~{a/ . .f_,~:C,';-./·. 



:i:,-. ,, 

A= 

\ 

1 1 1 2 1 3 2 3 X X 

1 1 2 1 3 •) 3 ... ' X X X 

121323xxxx 

2 1 3· 2 3 X X X X X 

1 3 2 3 X X X X X X 

3 2 3 X X X X X X X 

2 3 X X X X X X X X 

3 X X X X X X X X X 

X X X X X X X X X X 

The results of the Fundamental iterative algorithm are listed in the table below. 

• 
I 

1 

1 

2 

3 

1 

2 

1~ 

2 

3 

4 

I 

0 

1 

1 

1 

2 

2 

3 

3 

3 

3 

Table.Ill. FIA solutions 

.!> 

1 c c 1 

1-x 

•) 

l-x c c-

1 ( ~3 -x € -' 

l-x-x3 

l E D 

1 

0 

l E D 

'O 

l E D 

1 

-•) -

-1 

0 

The algorithn1 stops giving the final result as the polynomial f(L+l)(x). 
j 

Thus, the final solution~: /l+l)(x).,,:= I+x-x2-2x3 • 
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Chapter IV - From FIA to Conan's MPR algorithm 

In this chapter we describe· the relationship between Conan's MPR 

algorithm and the Fundamental Iterative Algorithm (FIA). Since the FIA is a m~re 

general algorithm, the MPR can be derived from the FIA by eliminating the 

unnecessary steps. The process is parallel to the derivation of the Berlekamp

Massey iterative algorithm from the FIA. 

We start from the generalized Newton's identities 

L , 
or sk = - .E dL-jsk-j 

1=1 
fork = L+l, L+2, · · · (1) 

which relate the syndrome terms s i, j = l, 2, · · · to the coefficients di, i = 0, l, 2, 

· · ·, L-1 of the error-locator polyno1nial d(z) = zL + dL_ 1zL-t + dL_ 2zL- 2 + · · · +do 

where L stands for the n u111 ber of errors. 

The primary objective in the BCH decoding procedure is to determine the 

smaller L and the dL-i coefficients (i= 1, 2, ... , L), such that (1) is satisfied. 

This is also the objective of the n1ini111al partial realization. The order of the 

minimal partial realization · corresponds to the number of known syndrome terms 

which is also related to the BCH bound. If the known syndrome numbers are from 

s1 to sJ
0

.., 1 where 60 is the BC.~H bound~ then equation ( 1) in matrix form for 
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St S2 . . -· 8L+I 
. . . 

~I 

• . . 

• • • 

'd. 
0. 

.. 
• 
• 

1 

0 

0 

0 

. . . 

0 

~· 

(2) 

Let S denote the n1atrix of the syndron1e terms. Then., we have to find the 

smallest ·L such that L+ 1 colu1nns of S are linearly dependent a11d also to find 

the dL-j coefficients, j - 1, 2, 3, · · ·, L. 

Matrix S can be seen as a. special form of ma.trix A with a .. = S·+· 1,J 'I, J-1 

and M = b0 - 1 .. Compari11g {111.5.(3)} and {111.5.(5)} with (1) and (2) we have 

the following correspondence. 

C· ~ dl · }. -J (3) 

f ( t+1)( . ) 
ai,L+1 =0 

I•. - ·1 ? .. · M - " .... " ' I• - 1 •) ... 
- " ... 41; 

Thus, the FIA will provide an iterative procedure for BCH decoding or for 

finding the n1inimal partial realization. Since s·j is not known for j > 6 0-1, the 

algorithm should stop after s~
0

_1 is considered. Therefore, the first adjustment of 

the FIA is that the test ·"j < M ?"' should be replaced by "i+L < 60-1 ?". 
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As we noticed from the example in section (III. 5 ), d 13 is the s.ame as d 22 

• 1.e. the discrepancy d 13 is shifted to d 22 • 
• 
1S also observed that when It 

s 1 =s2= · · · =sv-l =0 but sv f. 0~ then not only we have d 11 =d 21 = · · · = dv-l,l =0 

but dv 1 _:_ dv-l 2 L · · · = d 1v == Sv =/=, 0 as shown in Fig.1. 
' 

0 0 X 

0 X 

Q X 

X 

J 

Fig. I. Discrepancy Ma.trix 

Recall that from (3) \Ve ha.ve a.ij = Si+J-l' and thus aij - auv if and only 

if i + j= u +v. In general, a.i.i 

Fig.l., we have av1 = av- 1 2 
I 

d V-1, 2 = . . . - d 1 V = s V # Q • 

a·i-i.j+l = ··· = a 1,j+i-l = Si+.i-I' For the case in 

. . . = a. 1 V = s V • Because f( 1) ( X) = 1, th en d vl 

As a result of the property of discrepancy shifting, we can skip many steps 

of the FIA. In addition, only one ite1n needs to be stored in Tables D and C 

respectively at any given ti111e. v\i hen these n1odifications are incorporated in this 

application, the FIA becon1es the (_'.ona.n ~s MP R algorithn1. 

The n1odifications are discussed i-n the following. For cross reference, the 

notations in (3) will help to observe the links between FIA and MPR algorithm. 

Let us consider the situation after tl1e mtl1 step of iteration when 

8 1, 8 2 , · · ·, Sni have been considered and ( l) is satisfied for L+ 1 ~ k :$ m. Let us call 
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the smallest L and the corresponding colum{l polynomial f(L+i)(x), after this step 

of iteration, Lm and d(m) (z) respectively. Then (1) is satisfied for Lm + 1 $ k 

< m and we have 

• . • 8 Lm+.l 0 

82 S3 . . . 
SLm+2 0 . 

(4) 
d(m) • . 

0 • • . . Lm-1 

Sm 1 0 

or equivalently 

a11 a12 . . . 
al, Lm +1 

(Lm+l} 
Cm 0 

a21 a2, Lrn +1 0 

(Lm+l) 
(5) 

Cl 

1 0 

Therefore, we have d (1n)( ) _Lm d(rn) Lm-1 z =z + z + ... Lm-1 

and + (Lm+l) Lm 
CLm X 

(6) 

and f (Lm+l}( )-·o 
ai,Lm+l - (7) 

Ob h h l · 1 d(ni)(·x)· · · d d b h b · f h d serve t at t e po ynom1a 1s 111 exe y t e su script o t e syn rome . . 
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terms Sm subtracted from Lm (.d ) h"l h l . l f(Lm+l)(x) · · · w 1 e t e po ynom1a 1s Lm -j .,, 

indexed by the column nun1ber Lm+l. We notice as we apply the FIA that 

f(Lm+l)(x) n1ay be modified as tl1e elements in column Lm+l are processed. If we 

desire an exact correspondence between the two polynomials, we can add a row 

index to the column polynomial f(Lm+l}(x). so that after the mth step of 

iteration (whe11 the element Srr1 at colu1nn Lm+l. and row n1-Lm is processed), 

f(Lm+l)(x) is designated as f( 1n-lm,Lrn+l)(x). Then f(m-Lm,Lrn+l)(x) = d(m)(z). 

In general we have 

(8) 

i\.lso notice that in ( 4) and ( 5) there are 1n-L01 equations satisfied by the 

syndrome ter111s s1 to s111 . Hence. the sequence {s 1, s2 , ·· ·, sn1 } is divided into 

m-L1n recurrent subsequences of length L 111 +1. If only one equation is satisfied as 

i11 case { 111.5.( 5)} for nonrecurreu t sequences, we hav·e n1-Lm = 1 a11d Lm + 1 =m. 

Then f(Lm+l)(x) = f(l,Lm+l}(x) = d(Lui+l}(z) = d(m)(z). The indices we adopted 

are th us agreeable. 

At the (m+l)th step, the algorithm is to find the smallest Lm+l and 

d.(m+l}(x) ·1 h 8UC1t at 

S1 s? . . . s d(m+l} 
0 l .. L11i+1+ 1 Lm+l ' . 

s') S3 . . . 0 -
d(m+l) 

(9) 

1 

1 0 

(m+l-Lm+ 1,Lm+ 1 +1) 
or equivalently, the f ( x) of sl1ortest length Lm + 1 + 1 such 

that 
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Let 

Then 

. . . 

d .. = d·+· 2 'I.J i J-

d. L -- d. L i, rn+l i+ m-1 

. . . 

• 
• . 

1 

From (4) and (5), we have for i = 1~ 2_ ···~ n1-Lm, respectively 

When i = rn-Lm+l, we have 

d --. f( L m + 1) ( a ) 
m-Lm +1,Lm +1 -- m-L1n +1,Lm +1 

= dm 

(m) = d (Sni+ 1) 

(ni) (m) 
= sm+l + d L.,.,:.-1 S111. + ... + do . S1n-Lm 

which is referred to as the mth discrepancy. 

0 

0 

0 

(10) 

(11) 

(12) 

(Lm+l) 
If d,n-Lm+l,Lm+l = dm - 0, then there is no change of f (x) and 

d(m+l)(z) - d(m\z) with Lm+l = Lm, 

When suppose there exists 
. ) 

d(m. (z) for l<l<m 

such that (1) is satisfied for L1+1:5k:5L but_,11ot for k· = l+l. Then there exist· i1 

and L1=Lm such that d 
/, L1 + 1 

d . 
.I L 
t I ffi +1 
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when i1 = l-.L1+1, d ./ = dl-L +l L = dm # 0. 
i . l . · l+ 1 · . 

/" 

Next we examine the followi11g two cases. 

Case 1: i - in - Lm + 1 > i1 = l - L l + 1 

• 

In this case, the D matrix appears as in Fig.2. 

. ..... 

~ - - - - - - - - - - - Ill - l -------- --+ 

·I 
1 = l- L l + l +- - - - - - - - - -x X 

X 

i==m-Lm+l "-- ------------ X 

Fig.2. D matrix for Case 1 

Hence, d - d L m - m-Lm+l, m+l 

-d - ni-Lm,Lm +2 

-d 
- l-L1+1,1n-l+Lt+1 

Thus, dm can be lined up with d1 at row l-L1+l and colu11111 m-L+L1+1 and 

be eliminated by letting L.,n+ 1 == Lni+i-i 1 and . ./ 

/ 
/Lm+1+ 1)(x) = iLm+l}(x) _ :i,Lm+l x(lm-L

1
)+(i-/J /L1

+1}(x) 

/,L 1+1 . 

or equivalently by letting 

(m+l} {m-l)-(deg{dm(z)}-deg{d1(z)}) (rn) . _1 (l)( 
d (z) = z d (z) - qm. q1 d z) 

when deg·{ dni+ 1(z)} = 1n-(L-deg{ d1(z)}) 
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This implies that we can skip all steps between the position at row n-ln+l an.cl 

" 
column ln+l and the position at row m-lm+l an·d column n-m+lm+l.' 

Case 2 : i = m-Lm+l < i1 = l-Lr+l 

In this case the situation in the D matrix appears as in Fig.3. 

+- -- Lm -L l -~-------- -----+ 

. . ' l ~ - - - - - - 1- l - - - - - - - - . 111 -

X X --:- -- --+ i=m-Lm + 1 

X 

i 1 = l- L l + l - _ _ _ _ _ .. __ -x 

Fig.3. D n1atrix for Case 2 

Then we have d1 = d1_£
1
+1.L1

+1 

= d l- L l ' L l + 2 

-d - l-Lm+l,l-11i+L 1n+ 1 

Therefore, there exists a. di at ro\V 111-L111 +1 and dm = dm-Lm+l,Lm+l can be_ 

1• . d 1. f(1n-L1n,Lni+l)( ) . l db e 1m1nate w 1en · x 1s rep ace . y 

or equivalently by letting 

d
(m+l)( ) _. (m-lJ-(deg{dm(z)}-deg{dl(z)}J d(m)( ) -ld(l)( ·)· 

Z - Z Z - qm ql Z 

-41-
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when deg{dm+ 1(z)} = deg{dm(z)} 

To complete the derivation, we need to find an initial solution d(
1
\z) with 

. .,, . 

.. LI ) ( + 1 • (or f · (x) with d ., 1 -=f. 0). Suppose s1 = s2 = · · · = sv-l = 0 and 
z , L + 1 

Sv :f:. 0 as exemplified in Fig.l., then we have dv,l = dv-l,2 = ··· = d1,v = Sv :f:. 0. 

Hence the next step is to consider the element at row L and column v+l. Thus 

we have as initial conditions 
I 

L 1 - O· • I - f( L + 1) ( . · ) - f( 1) ( ) - 1· - , l - V, X - . X -

d I = dv 1 = Sv =/:- O; L = V, i = 1 
i, L + 1 ' 

Then di,L+l = d1,v+1 = sv+I 

which is equivalent to 

· 1) 
l == v-1, d( · (z) = 1, L1 == 0~ d1 = s1+1 == Sv =/:- O; 

(m) 
m = v, d (z) == 1, Lni == v, d1n == sm+l == sv+l 

111 addition, we 1nay add an s0 == l to the syndro1ne sequence resulting i11 a 

s' == 
s 1 

. . . 

which can be considered either as 

So 

S1 s 
(1) 

S2 
• 
• 
• 

So S1 s., . . . 
..., 

or (2) 

.s 

_4•)_ 
"-' . 

(13) 

(14) 



In tl1e first configuration, s0 is considered as a 10 while in the second 

configuration as a 01 . In either case, the next element to be considered should be 

s1 = a 11 in n1atrix S. · Followi11{the basic .algorithm the initial condition~ for the 

first case are 

L' = -1 

d ., 1 = d1 o - so = l 
(i ,L +1) ' 

L = 0 i = 1 f( L + 1) ( X) = f( 1) ( X) = 1 

while for the second case, we have 

L1 = 0, i1 = 0 

d ., , = d0 1 = s0 = 1 
t ,L +1 · ' 

L = 0 i = 1 f(L + l .) ( X ) ~ f( 1) ( X ) == 1 

which is equivalent to 

l = -l, d(l) = d{-l)(z) = 1, L1 = L_ 1 = 0 

dl = d_l = so = 1 

m = 0 ~ d (m) ( x) = d ( O) ( z) = 1 

(0) 
dm == do = d (s1) = 81 

which also corresponds in teru1s of the notation of [ 7 ] to 

l = -l deg{dl(z)} = deg{d_ 1(z)} .= 0 

m - 0 dm(z) = d 0 (z) = 1 deg{dm(z)} = deg{d0(z)} = 0 

(15) 

(16) 

( 17) 

(18) 

Notice that these initial conditions do not agree with Conan's MPR algorithm 

initial conditions. If we apply these conditions in Conan's MPR algorithm d 1(z) 

becomes zero and stays zero for tl1e following steps. That is why we adopt a set of 

I 
I 

-43-



.•, -·r,. ·,.,, .. - .. ·"' 

initial conditio11s that lead to a feasible solution. This is achieved when Step 4 of 

Conan's MP R algorithm produces a no11zero value. 

. . 
d ( z) - z id ( z) - s i b (z) = z i 

This means b(z) = d_ 1(z) = 0, not 1. In addition, n(z) = 0 in order for the 0th 

realization to be minimal. The realization is minimal in the MPR algorithm only 

when the z O coefficient of n ( z) is zero. Then to a void n ( z) to stay zero the 

following equa.tion should be able to produce nonzero values. 

This implies c( z)=-1. . Hence, we establish a. set of initial co11di tio11s for the MP R 
.. 

algorithm. 

t 

The solutions of Funda.111e11ta.l and Cona11 "s MPR algorith1ns are not always 

the same as we can see fro111 the exa111ples ( 111.3 and 111.5 ). The 3rd partial 

realization of the MPR algorithn1 agrees with the FIA because the realization is 

minin1al and therefore unique. However~ the 4th partial realization is not minimal. 

Whe11 this happens the degree of tl1e solution polynon1ial of the FIA is greater by 

{1} compared with the solution polynomial of the MPR algorithm. 'Fhe solutions of 

the FIA and MPR algorithms are equivalent since the problems they arJsolving 

are equivale11t. The FIA proble111 satisfies the equation 

A{x) u(x) - w(x) mod xN. 

The MPR algorithm satisfies 

-N+d S(z) d(z) - n(z) mod z 

( A(x), u(x), w(x) are polynomials). 

S(z), d(z), n(z) are polynomials and d=deg{ d(z)} .. The same problem in FIA 

notation is 

x-N A(x) o-(x) = w(x) x-N mod 1. 

For a fu.rther co1nparison .. we show the flowcharts of the MPR as derived· 
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from the FIA and the MPR algorithm in Fig.·4.· and Fig.5., and thus, we have 
' 

~--·----------------------- -----------~--"~·----------- ---co-n·ctutled- ourderivation of Cona.i1's ~PR algorithm from the FIA. 
/ 

J 

•. 

! 
! 
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I 
O~i1 O~L' 1~/L +l}(x) 

O~L 1 ~/L+l}(x) 

l~i 

N 

i > 

L+i-i1 -+L 

·I . 
i -+i 

N 

Halt 

N 
f L+1) ( x)-ddi,L+J x( L-L

1 
)-(i./ Jf L' +1) (x)-+f L+I} (x) 

i1, L1 + 1 

L*~L' 

/L+l) (x)-ddi,L+I x(L-L' )-(i-/ )f L' +I) (x)-+f L+I) (x 

/,L1+1 . 
·* ·I i ~i 

Fig. 4. Conan's MPR Algorithm as derived fro1n FIA 

" 
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• 

1--+d(z) 

O--.b(z) 

N 

d=O 
? 
• 

N 

W>O 
? 
• 

y 

t(z)=d(z) 

y 
Halt 

y 

\ 

N 
d(z)=d(z)-db(z) 

t--~ dp=degd{z) ________ __... 

d(z)=zw d{z)-db.(z) /',, 
\ 

Fig 5. Conan's MPR Algorithm 

-47-

-
' . • · · .•, .. ;l . '.•. '.i: I" ..,, {t~i .::·~~' • 



i. 

Chapter V - Conclusion 

We discussed so far three algorithms that solve the minimal partial 

realization problem, and two algorithn1s which are used to decode BCH codes. 

Since the problems are equivalent, any of these five algorithms can be used to solve 

the realization problen1 or to decode BCH codes. 

Some of these algorithms have more capabilities than the rest. The MPR 

algorithms can realize a sequence of _pxm matrices. Conan's MPR algorithm and 

Berlekamp-Nla.ssey algorithn1 ca.n be i111ple1nented by a. shift register. The FIA can 

decode cyclic codes beyond the BCH bound up to the Hartmann-Tzeng bound. The 

FIA can also decode a set of 1nultiple scalar. sequences. 

A problem for furtl1er research is to develop a generalized version of 

Conan's MPR algorithm to decode codes beyond the B(;H bound. Also it can be 
\ 

expanded to solve a set of sen1i-i11fi1tite sequences. An eve11 further expansion is to 

develop ai1 algorithn1 that can solve a set of se111i-infinite sequences of matrices. 

Another problem is to ge11eralize the FIA to solve a set of semi-infinite 

sequences of 111atrices. 
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