
Lehigh University
Lehigh Preserve

Theses and Dissertations

1990

Memory window studies of nonvolatile silicon-
oxide-nitride-oxide-silicon (SONOS) memory
devices
Margaret Larson French
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
French, Margaret Larson, "Memory window studies of nonvolatile silicon-oxide-nitride-oxide-silicon (SONOS) memory devices"
(1990). Theses and Dissertations. 5301.
https://preserve.lehigh.edu/etd/5301

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5301?utm_source=preserve.lehigh.edu%2Fetd%2F5301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


MEMORY WINDOW STUDIES OF NONVOLAT• 1,E 

SILICON-Ox 11 >E-NI1'RIDE-Ox 111E-Sil,ICON 

(SONOS) MEMORY DEVICES 

by 

Margaret Larson French 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

• 
In 

Electrical Engineering 

December 15; 1989 



Certificate of Approval 

This thesis is accepted and approved in partial fulfi11ment of the 

requirements for the degree of Master of Science. 

r in Charge 

Chairman of Depar ment 

•• 
11 



Acknowledgments 

The author wishes to acknowledge the immense support of her advisor, 

Dr. Marvin H. White. His encouragement helped to keep me going especially 

after a long and difficult time spent in the process lab only to be followed by 

some strange measurement results. Also, I wish to thank Dr. Anirban Roy and 

Dr. Frank Libsch who worked closely with me and helped solve many problems 

encountered along the way . Also, Anirban provided me with the pulsed 

capacitor measurement set-up needed for retention and erase/write 

measurements. 

Actually, I must acknowledge the support of all my colleagues in Fairchild 

Lab who assisted me on occasion. With special thanks to Richard Siergiej for 

helping me with SCRIBE, the text processor used to write this thesis, Malcolm 

Chen for bonding the SONOS transistors, and Floyd Miller for assistance in the 

fabrication laboratory. The fmancial support of the Sherman Fairchild 

"' Foundation and the·National Science Foundation must also be acknowledged for 

the summer fellowships they supplied. One sparked my interest in 

~miconductor research over the summer as an undergraduate and the other 

allowed me to start my master's research during the s11mmer before I officially 

entered graduate school. 

Most importantly, I must acknowledge ·my husband who kept on pushing 

me forward toward reaching my educational goals and cheering me up after a 

long day of research with no results. Finally, I cannot forgot my parents who 

were the first to encourage me to continue my education . 

• • • 
lll 



TABLE OF CONTENTS 

Table of Contents 

.Abstract 1 

1. Introduction 2 

1.1 What is the Memory Window? 2 
1.2 Historical Review of the Memory Window 5 
1.3 Research Goals 7 

2. Theory of the SONOS Device 9 

2.1 Background 9 
2.2 Measurement Dependence on the Memory Window 14 
2.3 Methods to Change the Memory Window 15 

3. Fabrication 18 

3.1 Transistors vs. Capacitors 18 
3.2 Capacitor Fabrication 19 

3.2.1 Background 19 
3.2.2 MONOS Capacitor Fabrication Sequence 21 

3.3 Transistor Fabrication 22 
3.3.1 Background 22 
3.3.2 Transistor Fabrication Sequence for n+ polysilicon gate 22 
3.3.3 Transistor Fabrication Sequence for p+ polysilicon gate 25 

3.4 Film Thickness Measurements 26 
3.4.1 Ellipsometry 26 
3.4.2 Etch Back Experiments 28 
3.4.3 Capacitance Measurements 30 

3.5 Polysilicon Doping Measurements 30 

4. Results and Analysis 32 

4.1 Quasistatic C-V Measurements of Implant Devices 32 
4.1.1 Linear Voltage Ramp Measurement Set-Up 32 
4.1.2 Linear Voltage Ramp Results 32 

4.2 High Frequency C-V Measurements of Implant Devices 36 
4.2.1 Background 36 
4.2.2 Doping Density 37 
4.2.3 Flatband Voltage Shift 38 
4.2.4 Voltage Sbjft at C = 0.7 Ceff 39 

4.3 Dynamic C-V Measurements of Implant Devices 43 
4.3.1 Pulsed Capacitor Measurement Set-Up 43 
4.3.2 Retention Measurements 45 
4.3.3 Erase/Write Measurements 49 

• 
IV 



4.4 Results from the n+/p+ l>olysilicon Gate Devices 

5. Conclusions 

References 

Appendix A. SUPREM Simulations 

Appendix B. Doping profile deter1,1ined from C-V 

Vita 

V 

TABLE OF CONTENTS 

54 

56 

59 

61 

63 

71 



LIST OF FIGURES 

List of Figures 

Figure 1-1: Sample retiention plot for a p-channel SONOS device 3 
Figure 1-2: Sample retention plot for an-channel SONOS device 3 
Figure 1-3: Sample erase/write plot for a p-channel SONOS device 4 
Figure 2-1: Comparison of floating gate device and floating trap 10 

device 
Figure 2-2: Contrast of SONOS/MONOS devices and SNOS/MNOS 10 

Figure 2-3: 
Figure 2-4: 
Figure 2-5: 
Figure 2-6: 

Figure 3-1: 
Figure 3-2: 
Figure 3-3: 
Figure 3-4: 
Figure 3-5: 
Figure 4-1: 
Figure 4-2: 

Figure 4-3: 

Figure 4-4: 

Figure 4-5: 

Figure 4-6: 

Figure 4-7: 
Figure 4-8: 

Figure 4-9: 

devices 
Comparison of SONOS transistor and MOS transistor 
p-channel SONOS transistor in an n-well 
Actual transistor and capacitor used for research 
Retention Measurement of MONOS capacitor taken with 
a programming voltage of 5 volts and a pulse width of 
lOms measuring VFB(*) and calculating VTH(+) and 
VT(@) 
Photomicrograph off abricated capacitor structures 
Cross Section of Capacitors 
Photomicrograph of fabricated transistors 
Cross Section of Transistors 
Control wafer used in etch back experiment 
Block diagram of the linear voltage ramp set-up 
Linear voltage ramp measurement on a MONOS 
capacitor with a ramp rate of 50mV/s for an implant dose 
of 6xl012 cm2 

High Frequency C-V graph of a nonimplanted MONOS 
capacitor 
High Frequency C-V graphs of implant capacitors with 
no implant (M7) and an implant dose of 3xl012 cm2 

(MS), 9xl012 cm2 (MlO), and 15xl012 cm2 (M12) 
Plot comparing the change in V FB for various implant 
doses with a reference of no implant as determined from 
high frequency C-V measurements and analytical 
calculations 
Plot of the change in V 0.7 for various implant doses with 
a reference dose of 3xl012 cm2 as determined from high 
frequency C-V measurements and analytical calculations 
Diagram of pulsed capacitor measurement set-up 
Retention measurement of MONOS capacitors taken 
with a programming voltage of 5 volts, a pulse width of 
lOms and CreF0.7Ceff for no implant (M7) and an 
implant dose of 3xl012 cm2 (MS), 9xl012 cm2 (MlO), and 
15x1012 cm2 (M12) 
Retention measurement of a MONOS capacitor with no 
implant adjust taken at CreF0.7Ceff (*) and CreFCFB (+) 
for a programming voltage of 5 volts and a pulse width of 
lOms 

• 
V1 

12 
12 
13 
16 

20 
20 
23 
23 
28 
33 
33 

36 

37 

40 

42 

44 
46 

47 



Figure 4-10: 

Figure 4-11: 
Figure 4-12: 

Figure 4-13: 

Figure 4-14: 

Figure 4-15: 

Figure 5-1: 

FigureA-1: 

Figure B-1: 
Figure B-2: 

Figure B-3: 

Figure B-4: 

Figure B-5: 

LIST OF FIGURES 

Retention measurement of a MONOS capacitor with an 
implant dose of 15xl012 cm2 taken at Cref = 0.7Cetr (*) 
and Cref = CFB ( +) for a programming voltage of 5 volts 
and a pulse width of !Oms 
Plot ofVFB, V0_7, and VTH for various implant do~es 
Erase/Write measurement of MONOS capacitors taken 
with a programming voltage of 5 volts, a pulse width of 
!Oms and Crer=0.7Ceff for no implant (M7) and an 
implant dose of 3xl012 cm2 (MS), 9xl012 cm2 (MIO), 
and 15xl012 cm2 (M12) 
Erase/Write measurement of a MONOS capacitor with 
no implant adjust taken at Cref = 0.7Ceff (*) and 
Cref = CFB ( +) for a programming voltage of 5 volts and 
a pulse width of lOms 
Erase/Write measurement of a MONOS capacitor with 
an implant dose of 15xI012 cm2 taken at Cref = 0. 7Ceff 
(*) and Cref = CFB ( +) for a programming voltage of 5 
volts and a pulse width of lOms 
Quasi-static C-V Measurement of p+ and n+ polysilicon 
gate devices 

Retention measurement of a MONOS capacitor 
indicating a 3 volt initial window and a 0.3 volt window 
after 108 seconds 
Doping profiles determined by SUPREM for no implant 
(M7) and an implant dose of 3xI012 cm2 (M8), 9x1012 
cm2 (MIO), and 15xl012 cm2 (M12) 
SONOS structure in the depletion region 
Doping profile for the non implanted wafer found by the 
differential capacitance method 
Doping profiles for the implanted wafers found by the 
differential capacitance method where the implanted 
doses are 3xl012 cm2 (MS), 9xl012 cm2 (MIO), and 
15xl012 cm2 (M12) 
Doping profile for the nonjmplanted wafer found by the 
differential capacitance method with Ziegler's correction 
Doping profiles for the implanted wafers found by the 
differential capacitance method with Ziegler's correction 
where the implanted doses are 3xl012 cm2 (MS), 9x1Q12 
cm2 (MIO), and 15xl012 cm2 (M12) 

•• 
Vll 

,' 

( 

48 

50 
51 

52 

53 

55 

58 

62 

63 
65 

65 

68 

68 

(: 



~ Abstract • 

The placement of the memory window with regards to voltage of 

nonvolatile SONOS memory devices was studied. The scaled SONOS 

transistors and capacitors were fabricated at Lehigh University. These devices, 

which program at low programming voltages (5-10 volts), have a tunnel oxide 

thickness of 20A , a nitride thickness of 94A , and a blocking oxide thickness of 

25-34:A. The memory window, retention and erase/write characteristics of 

these scaled devices were exarnjned. 

Ground was used as the read voltage of these devices to eliminate the 

necessity to generate a separate read voltage. This stipulation, when combined 

with the charge decay rates for the erase and write states of the device, sets the 

design of the memory window. The alteration of the memory window was 

studied by (1) using n+ and p+ polysilicon gate devices and (2) implanting the 

bulk of the device. From the study of the n+ and p+ polysilicon gate devices, a 

0.6 volt shjft in the memory window was observed. 

Adding an implant into the bulk of the device results in a positive shift in 

the memory window. The retention characteristics of the implanted devices 

were better than those of the nonimplanted devices. However, the programming 

speed of the implanted devices increased by as much as 200 ms (for the 

maxiro11m implant dosage used). 

Also, the effect of the read measurement set-up on the memory window 

was studied. It has been shown that the memory window position will change 

depending on whether the flatband voltage, threshold voltage, or turn-on 

voltage is read. This study showed a different memory window position on 

capacitors depending on whether the voltage is read in accumulation, depletion 

or :flatband. 
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Chapter 1 

Introduction 

1.1 What is the Meniory Window? 

INTRODUCTION 

My research deals with the placement of the memory window of a SON OS 

device with regards to read voltage which will be assumed to be selected as 

ground. The memory window is determined by the measured voltage in the 

written state and the measured voltage in the erased state. One method to 

determine the memory window is to examine the retention plot of a SONOS 

device. This plot is obtained when a device is programmed with a fixed voltage 

and pulse width and then measured after a desired retention time. The charge 

stored in the device upon programming will gradually decay with time. Thus, 

the memory window will begin by being centered around one voltage level with 

a given width and as time progress, it will have a smaller width and may be be 

centered around a different voltage. Figure 1-1 shows a retention plot for a p

channel SONOS device with the erase and write states indicated. Figure 1-2 

shows the same plot for an-channel SONOS device. 

One can also look at the memory window in an erase/write plot. The 

device is read with various different pulse widths of a fixed programming 

voltage. This measurement allows one to examine the speed of the device. 

Figure 1-3 shows an erase/write plot for a p-channel SONOS device. 

2 
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IDSTORICAL REVIEW OF THE MEMORY WINDOW 

' erase 

write 

Log Retention Time 
Figure 1-1: Sample retention plot for a p-channel 

SONOS device 

write 
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Figure 1-2: Sample retention plot for a n-channel 

SONOS device 
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lllSTORICAL REVIEW OF THE MEMORY WINDOW 
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IDSTORICAL REVIEW OF THE MEMORY WINDOW 

.. 
1.2 Historical Review of the Mem.ory WindQw 

Historically, the memory window has been measured at various different 

voltage levels with several different decay rates for the erase and write state. 

1. Lundkvist et al, 1973.1 

• Device Structure: p-channel MNOS transistor with tunnel 
oxide thickness (x0t) of 22.5A. and nitride thickness (~) of 

900A. 

• Measurement Conditions: Retention measurement taken 
from 1 second to lx107 seconds with a varied programming 
voltage (V p) and a pulse width (tp) of 1 msec. 

• Memory Window: The written state begins at -5 volts with a 
decay rate of 0.18 volts/decade and the erased state begins at 
-10 volts with a decay rate of -0.12 volts/decade. 

' 

• Other Comments: A plot of the discharge rate versus the 
initial V TH has a slope which is proportional to the initial 
stored charge. .. ~ 

2. White & Cricchi, 1972. 2 

• Device Structure: MNOS transistor with x0 t = 25A. and 
0 

~ = 335A. 

• Measurement Conditions: Pulsed retention measurements 
were taken with Vp = ±25 volts. 

• Memory Window: The n-channel transistor exhibited a 
written state starting at 8 volts with a decay rate of 0.27 
volts/decade and an erased state starting at -7 volts with a 
decay rate of -0.48 volts/decade. The p-channel transistor 
showed a window beginning at 4 volts and -10 volts with 
respective decay rates of 0.27 volts/decade and -0.46 
volts/decade. 

• Other Comments: The measurements show a similar decay 
rate for both n-channel and p-channel transistors. 

3. Topich, 1984.3 

• Device Structure: n-channel double poly SNOS transistor 
with x0 t = 20A. and ~ = 390A. . 

• Measurement Conditions: Retention measurements are 
taken at a temperature of 100°C with a programming 
voltage of ±25 volts for a time period from 1 second to 1 year. 

• Memory Window: The window begins at 5 volts and -9 volts. 

5 
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:EllSTORICAL REVIEW OF 'tHE MEMORY WINDOW 

• Other Comments: The decay rate is logarithmic and 
increases for longer retention times. 

4. Jacobs & Ulrich, 1981.4 

• Device Structure: n-channel SNOS transistor with 
X0 t = 27 ± 3A and ~ = 305A . 

• Measurement Conditions: The programming voltage is ±25 
volts with a pulse width of 10 ms for the write state and 100 
ms for the erase state for this measurement taken from 10 
minutes to lxI05 minutes. 

• Memory Window: The decay rate for the written state is 0.6 
volts per decade in the short term and 1.0 volts per decade in 
the long term. 

• Other Comments: The logarithmic decay rate increases with 
time. 

5. Suzuki et al, 1983.5 

• Device Structure: MONOS transistor with x0t = 21.9A , 

~ = 30A , and a blocking oxide (x0b) of 33A . 

• Measurement Conditions: The devices are measured for a 
decay time from 100 seconds to 10,000 seconds with Vp = ±7 
volts and tp = 10 ms. 

• Memory Window: The initial memory window is 2.5 volts 
wide with a decay rate of 0.11 volts/decade for the written 

· state and -0.094 volts/decade for the erased state. 

6. Libsch & Roy, 1989.6 

• Device Structure: p-type MONOS capacitor with x0t = 20A , 

~ = 50A , and x0b = 35A . 

• Measurements Conditions: The measurement is taken after 
106 cycles for 0.1 seconds to 105 seconds with Vp = ±5 volts 
and tp = 10 seconds. 

• Memory Window: A window from 0.1 volts to -3.4 volts is 
obtained with a decay rate of 0.075 volts/decade for the 
written state and -0.15 volts/decade for the erased state. 

7. Chen, 1977.7 

• Device Structure: p-type SONOS capacitor with x0 t = 30A , 

~ = 400A , and x0 b = 150A . 

• Measurement Conditions: The retention measurement is 
taken by observing the change in the high frequency C-V plot 
over a time range of 10 seconds to 107 seconds for a 
programming voltage of ±25 volts. 

6 .. 
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lllSTORICAL REVIEW OF THE MEMORY WINDOW 

' • Memory Window: The write state begins at 3.8 volts with a 
decay rate of 0.40 volts per decade, and the erase state starts 
at -2.5 volts with a decay rate of -0.15 volts per decade. 

8. Sharma, 1989.8 

• Device Structure: p-channel SONOS transistor with 
x0t = 20A , ~ = 72A , and x0b = 4'2°A. . 

• Measurement Conditions: The measurement is taken from 
.03 seconds to 3x103 seconds with Vp = ±5volts and tp = 10 
seconds. 

• Memory Window: The memory window begins at 1.9 volts 
and -1.4 volts and decays at a rate of 0.08 volts/decade and 
-0.12 volts/decade respectively. 

1.3 Research Goals 

My research was motivated by the need to be able to reposition the 

memory window such that after a long decay time, the window is centered 

around the read voltage in this case chosen to be O volts. By centering the 

window, one can improve the retention time since one state will not enter the 

undetectable voltage range much earlier than the other state. The window 

should not be centered at the initial point because the decay rates are unequal . 

and the window will then not be centered as time progresses when the device 

will be read. Historically many different researchers have measured the 

window at different positions. In section 2.2, I will also show that the memory 

window position changes depending on the measurement technique used. Yet, 

for a given process sequence, one can reproduce the same memory window for 

different fabrication nins. My research was toward finding methods to 

predictable change the memory window by slightly altering the fabrication 

process. They are (1) employing different gate materials which corresponds to 

changing the gate to semiconductor workfunction and (2) implanting the bulk 

which corresponds to changing the bulk doping or the bulk potential. 

When the memory window is changed using either of these methods, the 

7 



RESEARCH GOALS 

' internal electric fields in the insulator will also be altered. Thus, one will see a 

difference in (1) the decay rates of the erase and write states during retention 

measurement, (2) the initial voltage to which the device is programmed for a 

given programmjng voltage, and (3) the prograrnmjng speed for a given 

programming voltage. Thus, in exploring the methods used to change the 

memory window, I want to see how the other characteristics of the device as 

discussed above are effected. Does the retention and erase/write characteristics 

of the device improve or get worse? If so, how much of a change is there? 

In this thesis, these questions will be answered. First, the theory of the 

memory window will be discussed along with the fabrication sequence used to 

make these device. Then, the measurements and analysis of these devices will 

show the change in the memory window position and any corresponding change 

in the retention and erase/write characteristics. 

8 
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THEORY OF THE SONOS DEVICE 

·chapter 2 
Theory of the SO NOS Device 

2.1 Background 

Nonvolatile semiconductor memory devices retain information when 

power is removed. Two basic types of devices exist, namely, the floating gate 

device (fig. 2-la) and the floating trap device (fig. 2-lb). The floating gate device 

stores charge in the polysilicon as free charge in the conduction band, while the 

floating trap device, i.e., the Silicon Oxide Nitride Oxide Silicon (SONOS) 

device, stores charge in deep level traps located in the silicon nitride dielectric. 

Thus, the SONOS device stores charge as isolated trapped charges within the 

dielectric. 

The Metal Nitride Oxide Silicon (iv.INOS) device, Silicon Nitride Oxide 

Silicon (SNOS) device, and the Metal Oxide Nitride Oxide Silicon (MONOS) 

device are also floating trap devices. The :MNOS and MONOS devices have 

metal gates, while the SNOS and SONOS devices have n+ 9r p+ polysilicon 

gates. The MONOS and SONOS devices (fig. 2-2a) are different from the 

iv.1N0S and SNOS devices (fig. 2-2b) in that they have an additional oxide, the 

blocking oxide, between the gate and the nitride. This blocking oxide, usually 

with a thickness greater than 30A , is added to prevent hole injection from the 

gate. In the future I will refer to all of these devices as just the SONOS device, 

except when referring to one of them specifically. 

The SONOS device operates similarly to a MOSFET except for one major 

difference which is a MOSFET has only one dielectric, an oxide, between the 

gate and the substrate (fig. 2-3a), while the SONOS device has three dielectrics, 

a blocking oxide, a nitride, and a tunnel oxide (fig. 2-3b). The extra dielectric 

layers in the SONOS device allow for the trapping of charge in the nitride 

9 • 
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BACKGROUND 

forcing a shift in the threshold voltage which serves as a memory element. The 

MOS device has only a constant threshold voltage. 

For a p-channel SONOS memory transistor, the four operational modes 

are erase, write, read, and inhibit. Given a p-channel SONOS transistor in an 

n-well (fig. 2-4) with a single programming supply and a read voltage of O volts, 

one can obtain these modes by applying the voltages given in the following table 

to the gate, source, drain, and bulk. 

Operational Modes of a p-channel SONOS Transistor 

mode gate source drain bulk 

erase Vp 0 0 0 
write 0 Vp Vp Vp 

inhibit 0 float 0 Vp 
read 0 Vp 0 Vp 

In the erase mode, a positive voltage is applied relative to the gate allowing 

electrons to ti1nnel through the t11nnel oxide and be trapped in the nitride. This 

trapped charge shifts the threshold voltage positive. The write mode is just the 

opposite of the erase mode. A negative voltage is applied from gate to bulk and 

the threshold voltage shifts negative. In the read mode the threshold voltage is 

not shifted. The gate is grounded, and a current is driven in at the source of th.e 

SONOS device to read the threshold voltage. Finally for the inhibit mode the 

voltages at the gate, drain, source, and bulk are chosen such that the device will 

not be written or erased. 

For my research, I have used p-type MONOS capacitors (fig. 2-5a) and 

n-channel SONOS transistor (fig. 2-5b) which are made <Urectly on p-type Si 

substrates. When integrating the CMOS and SONOS technology, the p-channel 

SONOS transistor in an n-well is preferred such that the SONOS device has a 

separate bulk contact than the CMOS devices. This bulk contact is employed to 

apply a positive programming voltage to the bulk to write the SONOS device 

11 
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research 

while maintaining the substrate at ground. Thus, a single power supply (V p) 

can be used to accomplish both the erase and write operations. I chose to study 

the p-type MONOS capacitors and n-channel SONOS transistors since p-type Si 

wafers were readily available in our fabrication lab and I wanted to shorten the 

process sequence by avoiding the n-well process step. 

These n-channel devices have the same operational modes as the p

channel devices but they are not obtained in the same manner. For my devices, 

I use two programming voltages, a write voltage which is positive and an erase 

voltage which is negative. For the p-type MONOS capacitor, the write mode is 

obtained by applying a positive voltage to the gate, and the erase mode can be 

achieved by applying a negative voltage to the gate. The gate is kept at ground 

during the inhibit mode to keep the device from being erased or written. 

Depending on the measurement equipment being used, different voltages and 

currents may be applied to read the device. The substrate is at ground at all 

times. The n-channel SONOS transistor operates in the same manner as the 

p-type MONOS capacitor with the source grounded through a 30K resistor and 

the drain tied directly to ground for the erase, write, and inhibit modes. 

13 



MEASUREMENT DEPENDENCE ON THE MEMORY WINDOW 

2.2 Measurem.ent Depe:iidence on the Mem.ory Window 

The memory window placement will depend on the measurement 

equipment and whether a transistor or capacitor is being used. For a capacitor, 

one has only a gate and substrate contact. When the voltage is measured, one 

usually obtains the flatband voltage from a C-V plot where the flatband voltage 

is expressed as 

V d\ ~ (xob + ~ - x) QN 
FB = 't'GS- -

Ceff Eox EN 
(1) 

where ~GS is the gate to semiconductor work.function, Qf is the fixed charge in 

the insulator, x0 b and~ are the blocking oxide and nitride thicknesses, E0x and 

EN are the dielectric permittivities of an oxide and a nitride, x is the charge 
X 

centroid where x=T, QN is the trapped charge in the nitride, and Ceff is the 

effective capacitance given as 

(2) 

with x0t as the tunnel oxide thickness, ~ as the nitride thickness, and x0 b as the 

blocking oxide thickness. We assume the tunnel oxide and the blocking oxide 

have the same relative dielectric constant, although this may not be the case 

since the tunnel oxide is known to be silicon rich and the blocking oxide is really 

an oxynitride. Depending on the measurement equipment used the measured 

voltage may not be the flatband voltage as discussed later in the thesis. 

With a transistor, one has a source and drain contact in addition to the 

gate and substrate. Now, one can read the threshold voltage which is given as 

~4£siqNB<PB 
Vm = VFB + 24>B + C 

eff 
(3) 

(4) 
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MEASUREMENT DEPENDENCE ON THE MEMORY WINDOW 

' 
where <l>B is the bulk potential, ~ is the thermal voltage, NB is the bulk doping, 

q 

Esi is the dielectric permittivity of silicon, and~ is the intrinsic carrier density. 

A transistor located in a memory cell may be characterized more accurately by 

measuring the voltage at a specified current which corresponds to the turn-on 

voltage, where 

with Ins is the drain to source current and 

~ = iieff (;) ceff 

(5) 

(6) 

where W is the width of the transistor, L is the length of the transistor, and ~ff 

is the effective mobility. The effective mobility is the bulk mobility reduced by 
1 

Coulombic and surface scattering of carriers in the inversion layer. This 

mobility is influenced by the gate and substrate voltages. 9 

Thus, depending on which voltage is read, the memory window can change 

in both its center position and width. Figure 2-6 shows a retention plot in which 

the :flatband voltage is measured. The threshold voltage and the turn-on voltage 

have also been calculated and plotted to show how the memory window will 

change depending on the voltage measured. For the turn-on voltage calculation, 

a transistor with a W/L of 5/1 is ass11med with the measurement taken at a 

drain to source current of lOµa. 

2.3 Methods to Change the Memory Window 

I have studied different methods for changing the memory window which 

corresponds to changing the threshold voltage. As discussed previously, the 

equation for the threshold voltage of a SONOS device is: 

~ xob ~ - x °'14EsiqNB<PB 
VTH = <l>as- C -( + )QN+2<l>B+ C 

eff £ox £N eff 
(7) 
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METHODS TO CHANGE THE MEMORY WINDOW 

Looking at this equation, we 'Can change the threshold voltage by altering the 

gate to semiconductor workfunction (<t>as), the fixed charge in the insulator (Qr), 

the bulk potential (q>B), the bulk doping (NB), the effective insulator capacitance 

(Ceff), or the charge stored in the nitride (QN). In my research, I have explored 

two possible methods to change the memory window. They are (1) employing 

different gate materials which corresponds to changing <PGs and (2) implanting 

the bulk which corresponds to changing <t>B or NB. 

Several different gate materials exist which will provide different gate to 

semiconductor workfunctions. Presently, the standard process at Lehigh and 

industry uses a heavily doped n+ polysilicon gate. If we employ, however, a 

heavily doped p+ polysilicon gate then the gate to semiconductor workfunction 

will be raised by almost the Si bandgap voltage (i.e. 1 volt) which will result in a 

one volt positive shift in the threshold voltage. Frank Libsch has also shown a 

higher gate to semiconductor workfunction more effectively blocks electron 

injection from the gate electrode. 6 

With MOS transistors, an ion implant is frequently used to adjust the 

threshold voltage. This same procedure can be used with the SONOS device. If 

the implant is very shallow, then we may approximate the impurity profile with 

a delta function and the threshold voltage becomes 

Qr xob ~ - x °'14£siqNB<PB qDi 
VTH = 4>as- C -( + )QN+24>B+ + (8) 

eff £ox £N Ceff Ceff 

where Di is the implant dose. This equation differs from the original threshold 

voltage equation (7) by the addition of the term ~Di. In the other limiting case in 
eff 

which a heavy implant is used such that the maxim11m depletion layer width 

under heavy inversion is smaller than the implant depth, the threshold voltage 

can then be expressed by equation (7) in which the bulk doping density NB and 

the bulk potential <l>B are replaced by the implant doping density. 10 
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·Chapter 3 
Fabrication 

FABRICATION 

The test structures used in my research consist of one set of wafers in 

which I have both n+ and p+ polysilicon gate SONOS transistors with all the 

other processing steps unchanged, and another set of wafers with MONOS 

capacitors containing different doses of Boron implanted into the bulk. In this 

chapter, I will give a detailed description of the fabrication procedures used in 

making my test structures since the memory window placement varies with 

different processing conditions. 

3.1 Transistors vs. Capacitors 

A major decision in studying SONOS devices is whether to use capacitors 

or transistors. The advantage of using capacitors is the relatively short 

fabrication time. Only two mask steps are required for capacitors, while n

channel only transistors require 4 mask steps and both n-channel and p-channel 

(CMOS) transistors require 9 mask steps. Capacitors can be fabricated in less 

than a week while transistors can take weeks or months to fabricate. 

Yet,_ there are many problems to studying only capacitors. First, only 

large capacitors of the order of 4xI03µ.m2 can be used due to noise; while, device 

sizes more realistic to VLSI applications can be studied with transistors. 

Because of the large capacitor size, an adequate hydrogen anneal cannot be 

performed due to the lateral diffusion rate of hydrogen. Most importantly, more 

realistic device operation can be studied with transistors. Using a transistor, we 

can measure the threshold voltage instead of just the flatband voltage. Also, 

subthreshold characteristics can be studied.11 In taking measurements with 

capacitors, we have a lack of minority carriers. Strong light is used to attempt 

18 
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TRANSISTORS VS. CAPACITORS 

to generate electrons when taking measurements on p-substrate MONOS .. 

capacitors, but there is still insufficient electrons to realistically study the write 

characteristics of the memory device and obtain linear voltage ramp 

measurements at ramp rates much more than 50 m V/sec. This problem is 

avoided in transistors since then+ source/drain in then-channel device provides 

a source of electrons. 

For my study, I have chosen capacitors to do the implant studies since 

they can be fabricated quickly. If the chosen implants shift the memory window 

appropriately in the capacitor structure, then further studies can be done with 

transistors. For the gate to semiconductor workfu.nction study, I have used 

transistor since I was able to do a joint run with another student. 

3.2 Capacitor Fabrication 

3.2.1 Background 

The MONOS capacitors were fabricated using a 2 mask process with 3 

inch p-type wafers. The capacitor mask sequence provides three different 

rectangular capacitors of varying width and length as shown in the 

photomicrograph of the fabricated devices (fig. 3-1). Figure 3-2 shows the fmal 

cross section of these devices, and the detailed process steps to fabricate them 

are described in section 2.2.2. 

This process uses a Boron implant to adjust the memory window with an 

energy of 15 keV and a dose varying from 3xl012cm2 to 15xl012cm2. This energy 

and dose level provide a deep implant. Due to the thin gate dielectric used in 

.this device, a large doping is needed· to noticeably shift the threshold voltage, 

and it is nearly impossible to keep such a large implant near the surface. 
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MONOS CAPACITOR FABRICATION SEQUENCE 
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Figure 3-1: Photomicrograph 
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Figure 3-2: Cross Section of Capacitors 
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MONOS CAPACITOR FABRICATION SEQUENCE 

3.2.2 MONOS Capacitor Fabrication Sequence 

1. Starting material:p-substrate 100, 6.5xl015cm-3, 3 inch diameter 

2. Active Area 

a. Furnace Clean 

b. 2800A oxide (Wet oxide, 1100°C , 60 min.) 

c. Photo 1 (field oxide) 

d. Etch (2800A oxide, BHF, 12 min.)· 

e. Strip (PR, PRS-2000) 

3. Memory Window Adjust Implant 

a. Furnace Clean 

b. 190A oxide (Dry oxide, 950°C , 25 min.) 

c. Implant (Boron, 15 keV, none to 15x1Q12cnz2) 

d. Anneal (Dry N2, 950 °C , 15 min.) 

e. Etch (190.A oxide, BHF, 35 sec.) 

4. Triple Dielectric 

a. Furnace Clean 

b. Etch (dilute HF) 

c. 20A oxide (Dry oxide, 720°C , 11 min.) 

d. 115A nitride (LPCVD: 0.3 torr, 100 seem NH3, 10 seem 

SiCI2H2, 725°C , 6 min. 30 sec.) 

e. 25A. oxide (Wet oxide, 900°C , 120 min.) 

5. Metal 

a. 7KA Metal (Al, sputtered) 

b. Photo 2 (Metal) 

c. Etch (7KA. metal, PAN etch, 45 °C , 2 min.) 

d. Strip (PR, PRS-2000) 

e. Etch backside (BHF, 12 min.) 

f. 7KA Metal backside (Al, sputtered) 

g. Anneal (Hz'N2, 400°C , 60 min.) 

21 



TRANSISTOR FABRICATION 

3.3 Transistor Fabrication 

3.3.1 Background 

The SONOS transistors are fabricated using the TP-300 mask sequence 

developed at Lehigh University. The complete process sequence for the n+ 

polysilicon transistors is contained in section 2.3.2, and a photomicrograph of 

the fabricated transistors are shown in fig. 3-3 along with a cross section of the 

device in fig. 3-4. 

The fabrication of the p+ polysilicon transistor follows the process 

sequence used by R.Pfiester and L.Parillo12. After the gate dielectric is grown, 

the polysilicon layer is deposited and implanted. Then, a nitride layer is used to 

. prevent subsequent doping of the polysilicon when the source and drain are 

diffused. Thus, the p+ polysilicon gate structure follows the same fabrication 

procedure as then+ polysilicon gate except for steps 3 and 4 described in section 

2.3.2 which are replaced by steps 1 and 2 discussed in section 2.3.3. 

3.3.2 Transistor Fabrication Sequence for n+ polysilicon gate 

1. Starting material: p substrate 100, 6.5xl015cm-3, 3 inch diameter 

2. Active Area 

a. Furnace Clean 

b. 160A oxide (Dry oxide, 950°C , 20 min.) 

c. Implant back side (Boron, 32 keV, 2xl015cm2) 

d. Implant front side (Boron, 32 keV, 1.2x1013cnz2) 

e. Furnace Clean 

f. Anneal (Dry N2, 950°0 , 30 min.) 

g. Etch (160A oxide, dilute HF, 30 sec.) 

h. 7000A. oxide (Wet Oxide, 1100°C , 60 min.) 

i. Photo 1 (n+ SID, p+ SID) 

j. Etch (7000A. oxide, BHF, 8 min.) 

k. Strip (PR, PRS-2000) 
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TRANSISTOR FABRICATION SEQUENCE FOR N+ POLYSILICON GATE 
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Figure 3-3: Photomicrograph of fabricated transistors 
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TRANSISTOR FABRICATION SEQUENCE FOR N+ POLYSILICON GATE 

3. Triple Dielectric ... 

a. Furnace Clean 

b. Etch (dilute HF) 

e. Anneal (LPCVD: 0.5 torr, 200 seem NH3, 725°C , 30 min.) 

d. 20A oxide (Dry oxide, 720°C , 9 min.) 

e. 117A nitride (LPCVD: 0.3 torr, 100 seem NH3, 11.5 seem 

SiC12H2, 725°C , 8 min.) 

f. 25A oxide (Wet oxide, 900°C , 120 min.) 

4. Polysilicon 

a. 12KA polysilicon (LPCVD: 0.8 torr, 100 seem N 2, 200 seem 

Nz'SiH4, 625°C , 2 min.) 

b. Etch (4.8KA. polysilicon, 1HF:26HN03:33CH3COOH, 2rnin. 
40 sec.) 

5. ~ SID (self aligned)/Polysilicon doping 

a. Photo 2 (polysilicon) 

b. Etch (7.2KA polysilicon, plasma: 0.3 torr, 200W, SF 6, 6 
min.) 

c. Strip (PR, PRS-2000) 

d. Furnace Clean 

e. Diffusion (POCL3, 900°C , 20 min.) 

f. Drive-in (Dry N2, 900 °C , 30 min.) 

g. Etch (p glass, BHF, 15 sec.) 

h. 1200A. oxide (Wet oxide, 900°C , 30 min.) 

6. Contact Window 

a. Photo 3 ( CW) 

b. Etch (1200A oxide, BHF, 4 min. 30 sec.) 

c. Strip (PR, PRS-2000) 

d. Furnace Clean 
0 

e. Anneal (Hz'N2, 900 C , 1 hour) 

7. Metal 

a. 7KA Metal (Al, sputtered) 

b. Photo 4 (Metal) 

24 



TRANSISTOR FABRICATION SEQUENCE FORN+ POLYSil.ICON GATE 

c. Etch (7KA metal, PAN etch, 45°C , 2 min.) 

d. Strip (PR, PRS-2000) 

e. Etch backside (Plasma: 0.3 torr, 200 W, SF
6

, 5 min.) 

f. 7KA Metal backside (Al, sputtered) 

g. Organic Clean 

h. Anneal (HfN2) 

3.3.3 Transistor Fabrication Sequence for p+ polysilicon gate 
1. Polysilicon/Polysilicon doping 

a. 12KA polysilicon (LPCVD: 0.8 torr, 100 seem N
2

, 200 seem 
N2/SiH4, 625°C , 120 min.) 

b. Etch (4.8KA polysilicon, 1HF:26HN03:33CH
3
COOH, 2 min. 

40 sec.) 

c. Furnace Clean 

d. 180.A oxide (Dry oxide, 900°C , 20 min.) 

e. Implant (BF2, 50 KeV, 2xl015cm2) 

f. Furnace Clean 

g. Anneal (Dry N2, 900°C , 15 min.) 

h. 320.A Nitride (LPCVD: 0.3 torr, 50 seem NH
3

, 50 seem 
SiCI2H2, 725 °C , 10 min.) 

2. ~ SID (self aligned) 

a. Photo 2 (polysilicon) 

b. Etch (7.2KA. polysilicon and 320.A nitride, plasma: 0.3 torr, 
200W, SF 6, 6 min.) 

c. Strip(PR, PRS-2000) 

d. Furnace Clean 

e. Diffusion (POCI3, 900°C , 20 min.) 

f. Drive-in (Dry N2, 900°C , 20 min.) 

g. Etch (p glass, BHF, 15 sec.) 

h. Etch (320.A Nitride, H3P04, 150 °C , 8 min) 

i. 1200.A oxide (Wet oxide, 900°C , 30 min.) 
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TRANSISTOR FABRICATION SEQUENCE FOR p+ POLYSILICON GATE 

3.4 Film Thickness ·Measurenients 

3.4.1 EJJipsometry 

To measure the thickness of the separate triple dielectric films, a Rudolph 

EL-II Ellipsometer is used to determine ~ and 'P. The values of~ and 'P are 

then input into a computer program to determjne the film thickness. For 

accurate measurements of thin films, the refractive index must also be specified 

as an input to the program. In measuring the t11nnel oxide, the refractive index 

is given as 1.465 and the thickness across the control wafer is 20.A ± 1A which 

is fairly 11njform. 

Three different methods can be used to determine the nitride thickness. 

In the first, the control wafer is subjected to a NH3 anneal. A bare wafer which 

corresponds to a silicon wafer which has been etched in hydroflouric acid, rinsed 

in DI water, and blown dry in nitrogen, measured after a half hour NH3 anneal 

has 11-12A of oxide and subsequent further anneal does not increase the oxide 

thickness. After the anneal, the nitride is deposited on top of the 12.A oxide. 

The thickness of the nitride film can then be found by using a double film 

thickness program given the known bottom oxide thickness of about 12A and 

the refractive indexes of the top and bottom films. This measurement is made 

on the p+/n+ polysilicon gate transistors, and an initial nitride film thickness of 

11 7.A is found . 

. In the second method, control wafers with a thick oxide are grown, and 

the oxide thickne.ss is measured. The wafers are then cleaned using the 

standard RCA clean in which 3-4A of oxide is lost. Then, the nitride is 

deposited. Agajn the thickness of the nitride can be determined using a double 

film program specifying the bottom oxide thickness as the original oxide 

thickness minus 4A. and the refractive index of the top and bottom films. This 
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method will be more accurate than the first method if the bottom oxide 

thickness is in the middle of the film thickness order. Measuring the MONOS 

implant adjust capacitors, the initial nitride thickness is found to be 115A . 

Finally, the nitride thickness can also be found by first growing a very 

thick nitride layer on a bare wafer and measuring this with the ellipsometer. 

Then, the control wafer is cleaned with a slight loss in nitride thickness. This 

control is placed in the LPCVD furnace along with the device wafers and the 

memory nitride is deposited. The thickness of the memory nitride is found by 

measuring the control again with the ellipsometer and subtracting the known 

previous thick nitride thickness from this measurement. This method is the 

most accurate since only a single dielectric is measured with the ellipsometer 

requiring only the single film program. Yet, thick nitride controls are needed to 

use this method and they require more effort to make than oxide controls. 

To determine the blocking oxide thickness, one starts by placing two 

control wafers through the first procedure used to fmd the nitride thickness. 

One of the controls is then used to determine the nitride thickness. The other is 

taken jmmediately from the LPCVD system to the furnace to steam the blocking 

oxide along with the device wafers. The oxide thickness is then detern1ined by 

using an iterative procedure. One uses the double film thickness program 

inputting a guess for the fmal nitride thickness since some of the nitride is 

cons11med in the steam process and improves this guess until the ratio of the 

oxide formed to nitride consumed is 1.64. This ratio has been detern1ined by 

Enomoto et al and is calculated using the densities of nitride and oxide and the 

fact that 3 moles of Si02 are formed per mole of Si3N4 consumed13. The 

thickness of the bottom oxide is converted into a nitride thickness and this value 

is subtracted from the final nitride thickness found by iteration to give the 

actual nitride thickness. Using this method to measure the blocking oxide 

, 
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thickness of the p+/n+ polysilicon transistors, the fmal nitride thickness is 

94A with a blocking oxide thickness of 25A . 

3.4.2 Etch Back Experiments 

Another method to determine the blocking oxide thickness is also used. 

Two control wafers are made in which a thick oxide is grown with a nitride layer 

deposited on top. Both the bottom oxide and top nitride layers are measured on 

one of the wafers using the methods discussed previously. The other wafer is 

steamed to form a blocking oxide. The fmal diagram of this wafer is shown in 

figure 3-5. The blocking oxide thickness is determined by etching the wafer in a 

solution of 100:1 water to buffered hydroflouric acid in five second intervals. 

After each interval, the wafer is measured with the ellipsometer and the 

thickness of the entire film as an oxide (t0 x) is determined. Also, the thickness 

of the top film as a nitride (tN) is determined with the known thick bottom 

control oxide thickness as an input into the program. 

Figure 3-5: Control wafer 
experiment 
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ETCH BACK EXPERIMENTS 

Table of Etch Rate and Thicknesses 

time (sec) tax (A) Litox (A. ) ~ 

0 292 11 121 
5 281 11 113 
10 270 6 105 
15 264 4 100 
20 260 4 97 
25 258 2 95 
30 257 1 94 
35 256 1 94 

Looking at the data in the above table from the MONOS capacitor run with 

implant adjust, the top oxide is etched at a rate of llA per 5 second interval 

fallowed by a decrease in the etch rate as the nitride layer is reached. Thus, the 

final nitride thickness is 94A. , the point at which the etch rate has fmished 

decreasing, corresponding to an oxide thickness of 34A . These values give a 

ratio of 1.89 for the ratio of the oxide formed to the nitride consumed. This ratio 

is different from the theoretical value of 1.64 discussed earlier due to 

experimental error. First, a double film thickness program must be used with 

the ellipsometer to measure the ftlm thickness, and this program is not very 

accurate. Also, two different control wafers are used in this measurement. One 

is used to obtain the initial nitride thickness and the other is used in the actual 

etch back experiment. There is a variation between the nitride thickness of 

adjacent wafers in the LPCVD furnace and the initial nitride thickness obtained 

from the first control may not be exactly the initial nitride thickness on the etch 

back control. 

I 
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CAPACITANCE MEASUREMENTS 

3.4.3 Capacitance Measurements 

We can confirm the thickness measurements taken with the ellipsometer 

by capacitance measurements. In the linear voltage ramp measurements, the 
I 

effective capacitance Ce:ff = :V where I1NV is the inversion current and a is the 

ramp rate. Note that the effective capacitance determines an effective thickness 

Eox 
xeff = xot + ~ + xob 

EN 

where x0t is the t11nnel oxide thickness, ~ is the nitride thickness, x0 b is the 

blocking oxide thickness, E0x is the dielectric permittivity of the oxide, assuming 

the same permittivity for the blocking oxide and the t11nnel oxide, and EN is the 

dielectric permittivity of the nitride. 

We can also confirm the thickness measurements using high frequency C

V measurements. In my experiments, this is done with a HP4280A 1MHz C-V 

meter. The capacitance in accumulation will be equal to the effective 

capacitance of the device under test. 

3.5 Polysilicon Doping Measurentents 

To verify the polysilicon doping, control wafers with an 11niform 

polysilicon layer deposited on them are used. For then+ polysilicon wafers, the 

controls are subjected to the same doping as the transistors which consists of a 

POC13 diffusion of 900°C with a 20 minute predeposition and a 30 minute drive 

in. Sheet resistance measurements with a 4 point probe set up indicate a 

resistance of 90.3 ohms per square. Thus, the n+ polysilicon transistors are 

heavily doped. 

For the p+ polysilicon control, a thin pad oxide is grown and then the 

wafer is implanted with BF 2 at an energy of 50 keV and a dose of 2xl015cm2. 

The oxide is then etched and a protective nitride layer of 320.A is deposited. The 
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POLYSILICON DOPING MEASUREMENTS 

wafer is diffused using the s .. ame conditions as for the n+ polysilicon gate to 

simulate the source/drain formation and the nitride layer is etched. Sheet 

resistance measurements indicate a value of 3449 ohms per square for this 

process. This wafer is not heavily doped because the nitride did not protect the 

p+ doped polysilicon during the POC13 diffusion. This conclusion can be 

supported by literature. Chu et al found that phosphorous pentoxide is reactive 

to~ard silicon nitride and can break down the protective nitride layer. l4 

Further experiments into protecting the p+ polysilicon doping from subsequent 

n+ diffusion need to be done to optimize this process. 
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RESULTS AND ANALYSIS 

.. 

Chapter 4 
Results and Analysis 

4.1 Quasistatic C-V Measurenients of Im.plant Devices 

4.1.1 Linear Voltage Ramp Measurement Set-Up 

To observe the memory behavior of the devices quasistatic C-V 

measurements are used. Figure 4-1 illustrates the block diagram of the linear 

voltage ramp measurement set-up. The measurements are driven by an HP 

9836 computer which allows the user to change the ramp rate and voltage 

range. Also, the voltage ramp can be stopped by the user at any time. A linear 

voltage ramp supplied by the function generator is applied to the gate creating a 

current from the device under test. This current is measured at the bulk using 

an electrometer and can be expressed as 

dVGB dQG dVGB 
Ia = d t Ia = d V GB d t 

IG = aCeff (1) 

where a is the ramp rate. Thus, the current is proportional to the capacitance 

giving the user a quasistatic C-V measurement. 

Initially static measurements are taken from the MONOS capacitors to 

see if they work. In these measurements, the voltage ramp is applied to the 

substrate and the current is read from the gate which is opposite to the set-up 

discussed previously. 

Looking at the results in figure 4-2, one can first verify the dielectric 

thicknesses measured by the ellips~meter. The current.level in inversion and 

accumulation is 4xl0-11 amps. Using equation (1), this current corresponds to a 

capacitance of Sx10-1°F or 3.2xI0-7F/cm2 where the area is 2.5x10-3cm2. -From 
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LINEAR VOLTAGE RAMP RESULTS 
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LINEAR VOLTAGE RAMP RESULTS 

this capacitance, one fmds an effective dielectric thickness of 107A . The 

dielectric thicknesses measured by the ellipsometer were x0 t = 20.A , ~ = 94.A , 

and x0b = 34.A for an effective thickness of 110.A . Thus, these two different 

measurement techniques agree on the dielectric thickness within 3.A . 

Looking at the I-V plot, the device begins in acc11mulation at -VG = 5 

volts with a capacitance value equal to that of the triple dielectric. As the 

voltage is decreased from 5 volts to -5 volts corresponding to the negative 

current portion of the I-V curve since the ramp rate is negative, the device 

departs from accumulation into depletion, and the capacitance level will 

decrease as the depletion layer increases. Eventually, the capacitance will 

increase again back to the effective triple dielectric capacitance as the device 

enters inversion. The same action will occur in the forward sweep of the voltage 

as the MONOS capacitor begins in inversion at -5 volts and moves into 

accumulation at 5 volts. 

The decreasing capacitance portions of the plot do not occur at the same 

point since the device is being programmed as the voltage is swept from -5 to 5 

volts and back. This device shows a memory window of about 2.5 volts the 

difference between the flatband point on the device during the forward and 
' . 

reverse voltage sweeps. The flatband point is found on the decreasing portion of 

the capacitance plot. 

These measurements show the device works except for one strange effect. 

Instead of a single hump in the capacitance as the device moves from inversion 

to accumulation, there is a double hump. This second h11mp cannot be fully 

explained. The measurements are taken at a low ramp rate of 50 mV/s and a 

slower ramp rate does not eliminate the second hump. Thus, there does not 

appear to be any problem due to a nonequilibri11m effect. 15 The device is. also 
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.. 
illuminated by a strong light source during the measurements to generate 
minority carriers and keep the device in equilibri11m. 

The other possible explanation would be the presence of interface traps. A 

forming gas anneal at 400°C for 30 minutes was performed at the end of the 
fabrication sequence on the devices to reduce the interface traps. After 
measuring the devices, a second forming gas anneal was done for another 30 

mjnutes. This subsequent anneal reduced the second hump on some of the 

devices, especially those with no Boron implant or a very low implant. Thus, I 
conclude that there must be some interface traps in the wafer which I have not 

eliminated. 

35 



LINEAR VOLTAGE RAMP RESULTS 

4.2 High Frequency C-V Measurements of Im.plant Devices 
' 

4.2.1 Backgro11nd 

High frequency capacitance versus voltage measurements are taken with 

a HP 4280A 1MHz CV meter interfaced to a HP 9836 computer. From these 

measurements, we can determine the initial flatband voltage shift between the 

nonimplanted wafer and each of the implanted wafers before any programming 

occurs. 

From the high frequency C-V plot for a nonimplanted device (fig. 4-3), we 

find that the capacitance in accumulation is 8.54x10-1°F or 3.42x10-1° F/cm2 

where the area of the capacitor is 2.5xio-3 cm2. This capacitance corresponds to 

an effective thickness of 101.A which is in agreement with the triple dielectric 

thickness measured with the ellipsometer of 110A where x0t = 20A, ~ = 94A, 

and x0b = 34A . 
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Figure 4-3: High Frequency C-V graph of a 
·· nonimplanted MONOS capacitor 
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DOPING DENSITY 

4.2.2 Doping Density 
' 

Before analytically determining the flatband voltage shift of the wafers, 

we must fmd the doping density. One method of fmding the doping density is to 

use the depletion capacitance of the device evaluated at strong inversion 

_ 12£si q>8(inv) 
xd =" qNB 

<p8(inv) = 2 <t>B 

4>B = ~n(NB) 
q ~ 

(2) 

(3) 

(4) 

(5) 

Using an iterative procedure, one can solve for the doping density NB ass11rning 

a uniform doping. The inversion capacitance for each of the different implant 

dose conditions is obtained from figure 4-4. In these plots, the inversion 

capacitance increases as the implant dose is increased. 
1..------------------

,..-.. 
~ 
'-" 

~ 
Ml2 
Mll 

C.) .MlO 

" M9 
C.) 

.M8 

M7 ~~~~------------

SUBS_ VOLT(V) 

~ Figure 4-4: High Frequency C-V graphs_ of implant 
.. ,- capacitors with no imflant (M7) and an 
1 implant dose of 3x101 cm2 (MS), 9xl012 

cm] (MIO), and 15xl012 cm2 (M12) 
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... 

The doping profile can also be found from the differential capacitance in 

depletion as discussed in appendix A and from the SUPREM simulation package 

as discussed in appendix B. 

Doping Densities as Detertuined from 

Corrected 
Implant Differential Differential 
Dosage Crnv Capacitance Capacitance SUPREM 

3xl012 1.09xl017 1.60xI017 1.47xI017 2.15xl017 
&1012 1.90xl017 3.10xl017 3.33xI017 4.27xl017 

..__ 

9xl012 2.3 lxl017 5.00xI017 s.0Sx1017 6.36xto17 
12xI012 2.94xI017 6.10xl017 5.4&1017 8.44xl017 
15xI012 3.l 7xI017 8.40xI017 7.48xI017 l.05xl018 

Using both the differential capacitance and SUPREM to fmd the doping profile, 

the results give a fairly uniform profile up to the depletion width such that a 

uniform doping can be assumed. The table above shows the results of each of 

these methods. Using the inversion capacitance is an inaccurate method to find 

the doping density especially for higher implant doses. In future calculations, I 

will choose to use the doping density found by the differential capacitance using 

Ziegler's correction. 

To determjne the flatband voltage shift we must fll"St find the flatband 

capacitance CFB where 

- £ox 
CFB =----

Eox 
xeff+ An 

Esi 

where An is the Debye length given by 

_ 1kT£si 
An = "" 

q2NB 

(6) 

,, (7) 

The calculated values of the flatband capacitance together with the 

corresponding flatband voltage found from the C-V plots (Fig. 4-4) are shown in 

the following table. 
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Implant 
Dosage 

none 
3xl012 

6x1012 

9xI012 

12xl012 

15xl012 

The flatband voltage is given by 

~ 
VFB = 4>Gs-

Ceff 

where ~ is the fixed oxide charge and 

1 
$as = $a - Xsi - 2q Ea - cj,B 

FLATBAND VOLTAGE SHIFT 

CFB 
VFB 

C ,:\w 

0.24 -0.76 
0.74 -0.81 
0.81 -0.88 
0.84 -0.86 
0.85 -0.86 
0.87 -0.90 

(8) 

(9) 

given <l>G is the gate potential, Xsi is the electron affinity of silicon ,EG is the 

energy band gap, and 4>B is the bulk potential where 

cj,B = ~ 1n (NB) 
q Dj 

Assuming Qris a fixed value then 

~ V FB = -~<t>B 

(10) 

(11) 

The measured value of ~VFB agrees fairly well with the calculated value of ~VFB 

where the nonjmplanted wafer is used as the reference (Fig. 4-5). 

4.2.4 Voltage Shift at C = 0. 7 C eff 

It is also interesting to analytically verify the shift in the voltage (V 0.7) 

where C = 0.7Ceff· Now 

. Qg 
Vo.7 = V FB + cps - C 

eff 
(12) 

where cp8 is the surface potential and Q8 is the charge in the silicon. To 
··-. .. 

deternaine cp8, we can first write that 

1 1 
-=---c ceff 

I+ C 
d 
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VOLTAGE SIDFT ATC= 0.7 CEFF 
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Figure 4-5: Plot comparing the cha:bge in V FB for 
various implant doses with a reference of 
no implant as determined from high 
frequency C-V measurements and 
analytical calculations 
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VOLTAGE SHIF'T ATC= 0.7 CEFF 

(13) 

where Cd is the depletion capacitance and can be expressed using the depletion 

approximation as 

Combining equation (13) and (14) we find 

qNBEsi C -1 [
Ceff ] 

<Ps = -------
2Ceff2 

Letting C = 0.7 Ceff 

qNBesi 
<Ps = 

2 [2.33 ceff] 

Also using the depletion approximation 

Qs = ~2EsiqNB<Ps 

Now the change in reference voltage can be expressed as 

llVo.1 = Vo.1(2)- Vo.1(1) 

Substituting equation (12) 

Qs2-Qs1 
l).Vo.7 = VFB2 - VFB1 + ll>s2 - 4>a1 - C 

eff 

Substituting equations (5),(11),(16), and (17) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

kT NBl qesi (NB2 - NBl) q£si 
llV07 = ~n( )+ + [NB2-NB1] (20) 

· q NB2 2[2.33Ceff]2 2.33Ceff 

We cannot use this equation for the noniroplanted wafer since the depletion 

approximation is not valid. Yet, comparing the analytical and measured results 

for the remaining wafers ~here the wafer with an implant dose of 3xl012 is the 

reference gives very good agreement (Fig. 4-6). 

41 

' 



0.5 

0.4 

0.3 
r----

• 

~ 
<1 0. 2 

0. 1 

DYNAMIC C-V MEASUREMENTS OF IMPLANT DEVICES 

• calculated 

*measured 
0(SJ_ .............................. _ ......... (SJ .............................. _____ (SJ~ 

_. N 

Implant Dose (cm2) 

Figure 4-6: Plot of the change in V 0_7 for various 
implant doses with a reference dose of 
3xI012 cm2 as determined from high 
frequency C-V measurements and 
analytical calculations 

I_ 

... ... ·;,, 

42 



DYNAMIC C-V MEASUREMENTS OF IMPLANT DEVICES 

4.3 Dynamic C-V Measdren1ents of Im.plant Devices 

4.3.1 Pulsed Capacitor Measurement Set-Up 

Erase/write and retention measurements are made with a V FB tracking 

scheme. A block diagram of the measurement set-up is shown in figure 4-7. 

Relays Sl through S3 and the control signals (PROG, READ, and VREF) are 

biased by the HP 6205B power supplies which are programmed by the HP9836 

computer through HP 59501A DIA convertors. 

When programming the device, relay S3 is in the closed position such that 

the VFB tracking mechanism is disconnected and relay 82 is in the "1" position 

such that the LO-TEST input of the Boonton capacitance meter is floating. The 

programming pulse is provided by the HP 8116 function generator. Relay Sl 

determines the pulse amplitude polarity, and the pulse width and amplitude 

can be adjusted from the computer. The high state of the PROG control signal 

will trigger the function generator after a 7ms delay. 

To read the device, relay 83 is in the open position and relay S2 is in the 

"O" position. The device under test is connected between the TEST inputs of the 

avoUT 
Boonton capacitance meter such that a V ~O. Thus, an n substrate is 

BIAS 

connected to the HI-TEST input and a p substrate is connected to the LO-TEST 

input. The differentiator (OPl) between VREF and VoUT and the integrator 

(OP2) establish a feedback loop which converges to a capacitance value 

proportional to V REF· V OUT is proportional to the test capacitance for a given 

bias and VREF is proportional to a reference capacitance which is usually the 

flatband capacitance. For further information about this measurement set-up, 

see Dr. Anirban Roy's Ph.D. Dissertation.16 
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4.3.2 Retention Measurements 

Initially, retention measurements are taken with Cref = 0.7Ceff· The 

results are plotted in figure 4-8. One can see a positive shift in the memory 

window with implant as predicted by the measurement of VREF before 

programming discussed in section 3.1.4. In the erased state, the voltage shift is 

two times more than the initial shift in V REF· Yet, in the written state, the 
' 

voltage shift is one-half the initial shift in V REF· This latter effect is due to a 

lack of minority carriers. When the wafer is implanted, the decay rate is less 

than that of a nonimplanted device. 

These measurements are taken with the capacitor in accumulation or 

depletion and should really be taken at flatband. Thus, the measurements -are 

ret~en with Cref = CFB where the flatband capacitance is found using the 

method discussed in section 3.1.3. For the noniroplanted wafer, the memory 

window should shift positive in reference to the previous measurement by 0.26 

volts as predicted from looking at the initial HF C-V measurements. Actual 

measurements indicate this shift in memory window as shown in figure 4-9. For 

an implant dose of 15xl012, the memory window should shift negative by 0.6 

volts with respect to the measurement at Cref = 0.7Ceff and actual 

measurements also show this shift (Figure 4-10). When the measurements are 

taken in flatband, the decay of the window over time is increased as compared to 

measurements taken in accumulation as shown for the nonimplanted wafer and 

the decay is decreased as compared to measurements taken in depletion as 

shown for the implanted wafer. The decay rate for the implanted device is still 

less than that for a noniroplanted device. Thus, a Boron implant li.sed to shift 

the memory window towards a more positive voltage level improves the 

retention characteristics of the device ... 
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RETENTION MEASUREMENTS 

We can now predict the memory window at V FB for those wafers not measured 

and then calculate the memory window at V TH using the equation 

'14esiqN B'PB 
VTB = VFB + 2cl>i3 + C 

eff 

A plot of the initial window for V0_7,VFB, and VTH is shown in figure 4-11. 

4.3.3 Erase/Write Measurements 

(21) 

Figure 4-12 shows the erase/write data taken with Cref = 0.7Ceff· This 

data also shows a positive shift in the memory window with the erased state 

shifting more than the written state. The crossover time of the erase and write 

curves which is an indication of program.ming speed increases with implant dose 

from 68 ms for no implant to 316 ms for the maximum implant dose. 

When the data is retaken with Cref = CFB, the memory window shifts 

positive for the nonimplanted device and the crossover time is increased (Fig. 

4-13). The device with an implant dose of 15xl012 has a memory window which 

shifts negative and a crossover time which decreases (Fig. 4-14). Yet, the 

crossover time is still increasing between the nonimplanted and implanted 

devices. The crossover time is an indication of the speed of the device. thus, an 

implanted device will require longer programming times than the nonimplanted 

device. Still, the crossover time only increases by 200ms for the highest implant 

dose which may not be a significant problem in some applications. 

- .. 
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.. 
4.4 Results froni the n+/p+ Polysilicon Gate Devices 

To obtain the initial threshold voltage shift on the n+ and p+ polysilicon 

devices, linear voltage ramp measurements are taken with a ramp rate of a = 

20 m V/second. To prevent any programming during the measurement, the 

voltage ramp is kept within ±3 volts. Looking at the results (fig. 4-15), one sees 

that no programming occurs since there is no change in the threshold voltage 

between the forward and reverse voltage sweeps of the same device. Yet, 

between then+ and p+ polysilicon gate devices, a threshold voltage shift of 0.56 

volts occurs as expected fro the shift between a heavily doped n+ and a very 

lightly doped p+ polysilicon gate. 

The thicknesses of the triple dielectric layer can also be verified from the 

current measured in accumulation and inversion which is 2.2x10-12 amps. Using 

equation (1), the current corresponds to a capacitance of l.lxl0-1° F or 

2.98x10-7 F/cm2 given an area of 3.69x10-4cm2. The effective triple dielectric 

thickness is 116A which agrees closely with the thickness of 102A measured 

using the ellipsometer where x0t = 20A , ~ = 95A. , and x0 b = 25A . Dynamic 

measurements to observe the speed and retention of these devices were not 
• 

taken since the p+ polysilicon devices have a very high sheet resistance. 
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·chapter5 
Conclusions 

CONCLUSIONS 

I have shown that the memory window can be shifted by (1) changing the 

gate material from n+ top+ polysilicon and (2) implanting the bulk. Using the 

first method the window is shifted by 0.6 volts. The full expected one volt shift 

in the window is not achieved since the p+ polysilicon gate was not heavily 

doped. Also, a complete analysis of the dynamic memory characteristics of the 

device could not be accomplished since the p+ polysilicon devices had a high 

sheet resistance. 

Further work needs to be done to achieve heavily doped p+ polysilicon gate 

SONOS transistors for evaluation. The fabrication process to obtain these 

devices needs to be investigated. Particularly, a method to protect the p+ doped 

polysilicon gate from the POC13 doping during the formation of the source and 

drain must be found. 

For the implanted MONOS capacitors, it has been shown that a positive 

shift of the memory window can be achieved. The retention characteristics of 

the implanted devices improve significantly when compared to the 

nonirnplanted devices, but the speed of the implanted devices is much slower. 

Also, the memory window position varies depending on the measurement 

conditions used. When the device was read from the high frequency C-V plot at 

a value of C = 0.7Ceff a different window was obtained than that when the 

device was read at C = CFB. Thus, the read conditions of the device are very 

important to the memory window position. 

Further studies are also needed of the bulk implants. The devices which I 

studied were capacitors and the threshold voltage performance of the memory 

window was analytically determined from the flat band measurements. The 
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CONCLUSIONS 

actual performance of the memory window measured as the threshold voltage 

may be different than the analytical calculations. Thus, SONOS transistors 

with Boron implants should be studied such that the threshold voltage 

measurements can be made. Further work on the implant studies should also 

be done for implant doses less than 3xl012. Also, arsenic implants should be 

studied to see if one can shift the threshold voltage negative which may be 

desired when a p+ polysilicon gate device is used. 

Finally, for a p-type MONOS capacitor with no implant adjust and 

x
0
t = 20A , ~ = 94A , and x0 b = 34A , the device begins with a 3 volt window 

and retains a 0.3 volt window after 108 seconds (figure 5-1). This measurement 

was taken with a programming voltage of 5 volts and a pulse width of lOms. 

Frank Libsch and Anirban Roy obtained a 3.5 volt initial window and a 0.5 volt 

final window after 10 years for a MONOS capacitor with x0 t = 20A , ~ = 50A , 

and x
0
b = 35A using a 5 volt programming voltage and a 10 ms pulse width. 6 

Thus, the devices in this study can still be improved with regards to retention 

and erase/write characteristics by optimizing the choice of the triple dielectric 

thicknesses. 
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Figure 5-1: Retention measurement of a MONOS 
capacitor indicating a 3 volt initial window 
and a 0.3 volt window after 108 seconds 
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Appendix A 
SUPREM Simulations 

SUPREM SIMULATIONS 

Before actually fabricating the implant adjust capacitors, the process 

sequence is simulated on the computer with SUPREM II. This simulation 

allows me to choose an appropriate energy and· dose for the Boron implants and 

gives an expected doping profile for the devices. The steps given to SUPREM II 

are shown below: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

TITLE MOS CAPACITOR 
GRID DYSI=0.01,DPTH=0.01,YMAX=4 
SUBSTRATE ORNT=100,ELEM=B,CONC=5.8E15 
PRINT HEAD= YES 
COMMENT---------- GROW FIELD OXIDE 

' 

STEP TYPE=OXID,TEMP=1100,TIME=60,MODL=WETO 
COMMENT---------- ETCH FIELD OXIDE 
STEP TYPE=ETCH 
COMMENT---------- GROW PAD OXIDE 
STEP TYPE=OXID,TEMP=950,TIME=25,MODL=DRYO 
COMMENT ---------- VTH IMPLANT ADJUST 
STEP TYPE=IMPL,ELEM=B,AKEV = 15,DOSE= 15E 12 
COMMENT ---------- ANNEAL IMPLANT 
STEP TYPE=OXID,TEMP=950,TIME=15,MODL=NITO 
COMMENT ---------- ETCH PAD OXIDE 
STEP TYPE=ETCH 
COMMENT---------- DEPOSIT TRIPLE DIELECTRIC 
STEP TYPE=DEPO, TIME=O .0105, GRTE=l 
COMMENT ---------- STEAM SIMULATION OF BLOCKING OXIDE 
STEP PLOT TOTL=YES,WIND=0.5 
STEP TYPE=OXID,TEMP=900,TIME=120,MODL=NITO 
SAVE LUNM=20,TYPE=A 

Since the simulation package cannot do nitride depositions, an effective 

oxide of 105A is deposited for the triple dielectric, line 11. Yet, this low 

temperature deposition will not provide a correct doping profile since the 

impurities will redistribute during the high temperaure steam oxidation. Thus, 

line 13 is added to simulate the steaming process. 

The doping profiles given by SUPREM for various implant doses are 

shown in figure A-1. In each of these doping profiles, the doping level is uniform 
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at the surface and does not begin to decay until 0.03µ into the wafer which is 
.. 

I 

past the maximum depletion width of the device. Thus, a uniform doping profile 

can be assumed. 

. .. 
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Figure A-1: Doping profiles determined by SUPREM 
for no implant (M7) and an implant dose 
of 3xl012 cm2 (MS), 9xl012 cm2 (MlO), 
and 15xl012 cm2 (M12) 

62 

. , 
I' 

• 



DOPING PROFILE DETERMINED FROM C-V 

AppendixB 
' 

Doping profile determined from C-V 

The doping profile of the implant adjust capacitors can be extracted from 

the high frequency C-V plot by using the differential capacitance in the 

depletion region. A SONOS structure in the depletion region is illustrated in 

figure B-1. 

Triple Space Semiconductor 

Metal D1electric Charge Bulk 

x=xef f x=O x=W x 

Figure B-1: SONOS structure in the depletion region 

Ass11ming no net charge is stored in the dielectric which is achieved by 

taking measurements before any programming on the SONOS device occurs, the 

change in the gate charge dQG must equal the change in the space charge dQsc 

· by Gauss' law. Thus, 

dQa. = -dQSC (1) 

Using the depletion approximation the space charge change is due entirely to 

the complete uncovering of additional ionized dopants such that 

dQa_ = -qN(W)cffi! (2) 

where q is the charge of an electron and N(W) is the dopant density (atoms per 

cm3) at a distance W from the t,,1nnel oxide-semiconductor interface. By 

definition 
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DOPING PROFILE DETERMINED FROM C-V 

Equating (2) and (3) 

dW 
dVaB = -qN(W)-c 

(3) 

(4) 

Where C represents the series combination of the effective triple dielectric 
£ £. 

capacitance Ceff = ~ and the depletion capacitance C8c = lf 
xetr 

I 1 

Now 

Combining equations (4) and (6) 

dVGB = -qN(W)Esi~d(~) 

EsiqN(W) ( 1 ) 
dVGB = d -

2 cz 
Rewriting the above 

d ~ 

Esiq V GB 

ceff 2 

N(W) = --
£siq dVGB 

To find the distance W, we go back and use equation (5) 
1 1 1 W 
-=---=-
csc C ceff Esi 

W = -1 Esi (Ceff ) 
Ceff C 

W = -1 Esi Xeff(Ceff ) 

Eox C 

The impurity profile can then be found using equations (8) and (9). 

(5) 

(6) 

(7) 

(8) 

(9) 

The profile for the nonimplanted wafer is shown in figure B-2 and the 
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DOPING PROFILE DETERMINED FROM C-V 

.. 

10+ I 
9
~---------------
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Figure B-2: Doping profile for the nonimplanted wafer 

found by the differential capacitance 
method 
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Figure B-3: Doping profiles for the implanted wafers 
found by the differential capacitance 
method where the implanted doses are 
3xl012 cm2 (MS), 9x1012 cm2 (MIO), and 
15xl012 cm2 (M12) 
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DOPING PROFILE DETERMINED FROM C-V 

profiles for the implanted wafers are shown in figure B-3. Remember that these 

dopant profiles are only valid for the differential capacitance in the depletion 

region. Thus, the subsequent increase in doping away from the surface is 

invalid since these points are found from data when the capacitor is in 

inversion, and most of the steep doping profile at the surf ace is invalid since the 

capacitor is in accumulation for this data and the space charge region is not due 

entirely to ionized dopants. The depletion approximation is only valid for the 

depletion region defined by W ~ 2An where W is the distance from the 

semiconductor surface and "-D is the extrinsic Debye length given by 

_12kT£81 
A - "'v 

D - q2N(W) 

where k is Boltzmann's constant and T is the absolute temperature. 

Ziegler et al 17 have developed a method to determine the doping profile 

right up to the surface. The corrected doping profile is 

ceff 2 

2C 2 d C 

Esiq dVGB An 

W = Esixeff(Ceff_t)(t-g(W)) 
Eox C An 

where 

The procedure for calculating both the corrected doping profile is then: 

• Find g1(~) from C-V data 
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DOPING PROFil,E DETERMINED FROM C-V 

(14) 

(15) 

• Calculate (:) and g by solving equation (15) and (13) 

• Compute g2 where 

w gl 
g2(~) = 2g + gl 

• Finally N(W) and Ware determined from equations (10) and (11) 

The corrected doping profile for the noniroplanted wafer is shown in figure 

B-4 and the corrected doping profiles for the implanted wafers are shown in 

figure B-5. To find both the uncorrected and corrected doping profiles a short 

subroutine is added to the high frequency CV program as follows: 

1400 ! 
1401 ! 
1402 ! 
1403 ! 
1404 ! 
1405 ! 
1406 ! 
1407 ! 
1408 ! 
1409 ! 
1410 ! 
1411 ! 
1412 ! 
1413 ! 

Subroutine: 
Purpose: 

Inputs: 

Outputs: 

:rmpur 
Extracts the corrected and uncorrected 
doping profile from the differential 
capacitance 
Generator (2, 1) ni:unber of data points 

in C-V data 
Datarray(I,4) 

Datarray (:r, S) 
Datarray (:r, 7) 
Datarray (I, 8) 
Datarray (I, 9) 

measured substrate 
voltage 
measured BF capacitance 
doping profile 
distance 
corrected doping 
profile 

1414 ! 
1415 ! 

Uses Routines: 
Datarray(I,10) corrected distance 
Datasmooth finds first derivative 

1416 ! 
1417 ! 
1515 Impur: 
1516 
1517 
1518 
1519 

Genval2 finds mini nn,m and maximum 

BEEP 5000, .01 !PROFILE EXTRACTION StJBROtrl':INE 
Npts=Generator(2,1) 
!Cs=ll.7 
Eo=8.85E-14 
Q=l.6E-19 
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Figure B-4: Doping profile for the nonirnplanted wafer 
found by the differential capacitance 
method with Ziegler's correction 
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Figure B-5: Doping profiles for the implanted wafers 
found by the differential capacitance 
method with Ziegler's correction where 
the implanted doses are 3x·1012 cm2 (MS), 
9x1012 cm2 (MlO), and 15xl012 cm2 (M12) 
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1520 
1521 
1522 
1523 
1524 
1525 
1526 
1527 
1528 
1529 
1530 
1531 
1532 
1533 

1534 
1535 
1536 
1537 
1538 
1539 
1540 
1541 
1542 
1543 
1544 
1545 

.1546 
1547 
1548 
1549 En1oop: 
1550 Enfind: 
1551 
1552 Eng2: 
1553 
1554 Corrl: 
1555 
1556 
1557 G33: 
1558 
1559 
1560 Nocorr: 
1561 
1562 Done: 
1563 
1564 
1565 
1566 

DOPING PROFILE DETERMINED FROM C-V 

Vt=O. 026 ' 

:INPUT "WHAT IS THE EFFECTIVE CIPAC:ITANCE ",Co 
FOR I=l TO NPTS 

Datarray(I,4)=1/Datarray(Npts-I+l,3) 
Datarray(I,5)=1/Datarray(I,4)A2 

NEXT I 
CALLGenva12(4,Npts) 
CALL Genva12(5,Npts) 
CALL Datasmooth ("DERIV1", 5, 1, 6) 
INPO'l' "MAXIMUM I" ,Max 

FOR I=2 TO Max 
Datarray(I-1,7)=2*CoA2/(Ks*Eo*Q*Datarray(I,6)) 
Datarray (I-1, 8)=Ks*Eo* (Datarray (I, 4) -1)./ 

(Co*l.E-4) 
Ld2=2*SQR(2*Vt*Ks*Eo/(Q*Datarray(I-1,7)))*1.E4 
IF Datarray(I-1,S)>=Ld.2 TBEN GOTO Nocorr 
Gl=Vt*Datarray(I,6)/((Datarray(i,4)-l)A2) 
Dg=0.001 
G=0.001 
D' Gl>. 7 TBEN 

Sum-Sum+l 
GOTO Done 

END IF 
FOR J=l TO 1000 

F=(l-G)/(G-LOG(G)-1+.001)-2*G/(1-G)-Gl 
Fp=(-1+1/G+LOG(G))/((G-LOG(G)-1+.001)A2) 

-2*(l+G)/((l-G)A2) 
Newg=G-F/Fp 
:IF ABS(G-Newg)<l.E-3 THEN GOTO Enfind 
G=G+Dg 

NEXT J 
G=Newg 
G2=ABS(G1/(2*G+(l-G)*G1)) 
I 
• 

:tF G2<=0.33 THEN GOTO G33 
Datarray(I-Sum-1,9)=Datarray(I-1,7)*G2 
Datarray(I-Sum-1,lO)=Datarray(I-1,8)*(1-G) 
GOTO Done 
Datarray(I-Sum-1,9)=Datarray(I-1,7)*0.33 
Datarray(I-Sum-1,lO)=Datarray(I-1,8)*(1-G) 
GOTO Done 
Datarray(I-Sum-1,9)=Datarray(I-1,7) 
Datarray(I-Sum-1,lO)=Datarray(I-1,8) 

NEXT I 
Max=Max-1 
CALL Genva12(7,Max) 
CALL Genva12(8,Max) 
Max=Max-Sum 
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1570 

DOPING PROFILE DETERMINED FROM C-V 

.. 
CALL Genva12(9,Max) 
CALL Genve12(10,Max) 
PRINT "FINISHED!!!!!!!!" 
RETURN 
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