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Abstract 

Group Theory has played a very significant role in designing fast algorithms for 

digital signal processing. This thesis develops a new algorithm to compute tp.e Hartley 
Transform based on group theoretic concepts. The proposed algorithm identifies 
multidimensional cyclic structures within the Hartley transform kernel by using the 

properties of groups formed by the row and column indices. It. then uses the readily 

available convolution algorithms to evaluate the products of such submatrices and vectors 
' 

properly prepared from the input sequences. A combination of such product vectors gives 

the desired transform. · Thus the algorithm is inherantly divided into three stages, the 

preprocessing stage to massage the input sequence, the convolution stage to carry out the 

actual product of sQ.bmatrices and the postprocessing stage to combine the product 

vectors. The proposes algorithm has a better computational complexity than other 

algoTithms available in the literature, is more universal (i.e., applicable to all lengths), 

and ·has a modular structure, implying its suitability for parallel implementation. 

1 
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1.1. The Central Goal. 

Chapter 1 
INTRODUCTION 

Because of the increasing availability of digital computational engines, much of 

the signal processing today, is done in discrete digital form. Linear transformations such 

as the Fourier, Hartley and Hadamard transforms have often been used successfully in 

various digital signal processing applications. However, in order that the transform 

technique satisfy todays demands for real time performance, one needs to decrease the 

computational complexity of t~e transform algorithm. This requirement, for example, 

forced researchers to improve the algorithm for discrete Fourier transform through 

Goertzel algorithm [1], fast Fourier transform algorithm [2], the chirp-z transform [3] and 

Winograd Fourier transform algorithm [4]. 

The Hartley transform defined in 1942 by R. V. L. Hartley [5] has many 

properties superior to Fourier transform. It is symmetric with respect to the 

transformation and kernel, the transformation matrix is real and it performs better than 

Fourier transform in many applications such as the spectral analysis. However, its 

discrete version, the discrete Hartley transform was derived only in 1983 [6]. 

Consequently, the fast algorithms for discrete Hartley transforms have begun appearing 

in literature only recently [7-11]. This thesis derives a new algorithm for Hartley 

transform based on fast cyclic convolutions. The performance of our algorithm is superior 

in terms of number of operations to other algorithms available in literature. In addition, 

our algorithm can be easily partitioned for parallel execution and is therefore well suited 

either to general purpose parallel architectures or to specially designed digital systems . 

. 

1.2. Algorithms for Hartley Transform. 

\ 2 
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The Discrete Hartley Transform (DHT) of an N-point sequence is defined as 
( N-1 

X(s) = L M(s, r) x(r), s = 0, 1, 2, ... , N-1, 
r=O 

where M(s, r) = cas(2'r{8 ) = cos(2Ns) + sin(2Nr8
). 

From the definition, one can calculate this N-point Hartley transform in N2 real 

multiplications and N(N-1) additions. When N is a power of two, one can use 

techniques similar to the fast Fourier transform to calculate the Hartley transform. 1 The 

decimation in time algorithm given by Bracewell [7] is based on recursively expressing a N 

point DHT in two (N /2) point DHTs. In particular, he uses the relation 

X(i) = ~ [Xe(i mod (N/2)) + X0 (i mod (N/2)) cos (21ri/N) 

+ X0 (i mod (N /2))sin(21ri/N)], i = 0, 1, ... , N -1, 

where, Xe and X0 are the DHTs of the (N /2) point sequences formed by the even and 

odd compon~nts of x(i) respectively. Applying this same relation to these smaller length 

DHTs, and continuing down to DHT's of 2 point sequences, one can obtain a fast DHT 

algorithm. The algorithm can thus be expressed in vector notation as 
.... 

where, each Lt matrix represents a butterfly stage, P is a permutation matrix and x is 

the given vector. The computational complexity of the resultant algorithm is Nlog2 N -

2N + 2 multiplications and 2Nlog2N - 2N + 2 additions. If instead one uses the 

decimation in frequency [9], one can base the computation on recursive equations: 

X(2i) = X1(i), X(2i+l) = X2 (i) cos(21ri/N) + X2 (N/2 - i) sin(21ri/N), 

where, X 1 and X2 are the DHTs of sequences whose j-th components are x(j) + x(N/2 + 

j) and x(j) - x(N /2 -j) respectively. Thus a N point DHT is again calculated through 

two (N /2) point DHTs. Recursive application of these relations gives the total 

computational complexity to be Nlog2 N - 3N + 4 multiplications and 1.5Nlog2 N - 1.5N 

1These algorithms are referred to as the fast Hartley transform algorithms. 

3 
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+ 2 additions. Thus in both the versions of the fast Hartley transform, one finds that the 

computational complexity is O(Nlog2N). 

Hsu and Wu [8] have observed that the product of the Hartley transform inatrix·,. 

and the Walsh-Hadamard transform matrix has a simple block diagonal structure. They 

call this resultant matrix by the H-transform and use that in the computing of Hartley 

transform. In particular, a sequence could be first transformed by the (inverse) Walsh­

Hadamard transform and then through the H-transorm to yield the desired Hartley 

transform. The block diagonal structure of the H-transform makes this method attractive 

for parallel and VLSI implementations. 

Several other methods of calculating the discrete Hartley transform have also :been 

proposed [10] by Sorensen et. al. These methods are adapted from v·arious Fourier 

transform algorithms to suit Hartley transform. They include such wide variety as the 

split radix, prime factor, radix 4 and Winograd algorithms and are generally 

computationally superior to the fast Hartley transforms [7, 9). 

1.3. Principle and Structure of a New algorithm. 

This thesis proposes a new algorithm for computing the Discrete Hartley 

transform by exploiting the structure of its kernel matrix. In particular, it has been 

shown that the matrix can be partitioned such that each partition su bmatrix looks like a 

multidimensional cyclic convolution matrix2• The efficient algorithms for cyclic 

convolutions [12) can then be used to calculate these smaller submatrices. Thus the new 

algorithm is a three stage procedure. The most important of these is the second stage in 

2This statement is not exactly true. In case of certain effective convolution 

lengths, the submatrix is a Kronecker product of a Toeplitz matrix and a 

multidimentional cyclic matrix. 

4 



which the convolutions are performed. The entire algorithm structure depends upon the 
kinds of convolutions that are to be carried out in this stage. The first stage sets up the 
inputs to the various convolutions. This first stage, referred to as the preprocessing stage 
in this work, combines the input data points using additions and subtractions only. The 

J' 
last stage of the algorithm combines the appropriate convolution outputs to create the 
final transform vector. This stage, called the post-processing stage, is also purely 
additive. Thus the only multiplications involved in the entire algorithm are performed in. 
the convolution stage. 

The algorithm for discrete Hartley transform presented in this fhesis is unique in 
many respects. It is the first time cyclic structures have been identified within the 
Hartley transform kernel. As has been amply demonstrated in this thesis, this has been 
possible only through extensive use of the ideas borrowed from group theory. All the 
three stages of the algorithm have regular and modular structures and thus lend 
themselves well to parallelisation. The complexity of the algorithm presented here is 
lower than other algorithms available in the literature (7-11]. 

1.4. Organization of the Thesis. 

Chapter 2 of the thesis states and proves the underlying principles of the new 
algorithm. This chapter also presents the mathematical ideas, including the principles of 
group theory and the relation between groups and convolutions, which are crutial to 
understanding this work. As stated in Sec. 1.3, the algorithm has three stages. These are 
treated in Chapters 3, 4 and 5. Wherever necessary, these chapters include examples to 
illustrate the concepts and figures to explain the structure in the algorithm. Finally, 
Chapter 6 contains the conclusion and general discussion of the work presented. 

5 
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t Chapter 2 
CYCLIC COMPONENTS OF HARTLEY TRANSFORM 

2.1. Group table and convolution. 

This chapter provides the mathematical background necessary to comprehend the 

following chapters as well as the description of the basic structure of the Hartley 

transformation. The mathematical foundation of understanding a linear transformation 

through group algebra are taken from an earlier work by Wagh and Ganesh [5], and 

interested readers may refer to it for further details. The description of the Hartley 

transform algorithm in terms of group algebra is described in this chapter has not 

appeared in earlier litrature. 

This entire thesis is concerned with exploiting the structure in the linear 

transformation, the Hartley transform. In particular, we are interested in linear 

transformation matrices that mimic a group table. 

Consider an N x N matrix defined by 

M(i, j) = f( (i.j) mod N), 1 :5 i, j :5 N -1. (2.1) 

for arbitrary ( complex) function f : ZN --+ ·c. An example of such a matrix is the Fourier 

matrix defined by 

M(i, j) = 
{:i21rij 

e N (2.2) (21rij) + ,::;-1 . (21rij) cos N ~ - .l SID N . 

Note that in (2.2) M(i, j) is a function of i.j. Futher since both the sine and cosine 

functions have periods of 21r, M(i, j) is a function of ij mod N. If the indices i and j form 

a cyclic group with the group operation of multiplication modulo N, one can represent the 

. matrix as a group table. The operation of the matrix multiplying with a vector turns out 

in this case to be a convolution of the first row of the matrix and the vector. Following 

6 
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example demonstrates the structure of such a matrix which is clearly cyclic. 

Example 2.1 : Let i, j E A(5) = { 1, 2, 3, 4 }. A(5) forms a cyclic group under the 

operation of multiplication modulo 5. If f(ij mod 5) describes the matrix entries, the 

matrix looks like 

M = 

f( 1) f ( 2) f ( 3) f ( 4) 

f(2) f( 4) f(l) f(3) 

f(3) f(l) f( 4) f(2) 

f( 4) f(3) f(2) f(l) 

• 

Notice that if the row and column numbers are placed in an ascending order, M does not 

resemble a cyclic matrix. However, if one orders the rows and columns using a genrator 

of the group, the matrix does become cyclic. In the above example 2 E A(5) has order 4. 

One can use the generator 2 to order the rows and columns. The new index order is 2°, 

21, 2
2

, 2
3 

(1, 2, 4, 3, since the operation is still modulo 5). M can now be seen to be 

transformed into 

M' 

f(l) f(2) f( 4) f(3) 

f{2) f( 4) f(3) f(l) 

f ( 4) f ( 3) f ( 1) f ( 2) ' 

f(3) f(l) f(2) f( 4) 

which is a 4x4 cyclic matrix and its product with a vector can be computed using cyclic 

convolution algorithms. 

Two comments are in order at this point. First, the cyclic convolution is now 

computing the product y' = M'.x' rather than the required product y = Mx. However, 

the row and column shufflings transforming M into M' can be compensated by equivalent 

7 . 
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shufflings of the components of x and y to create x' and y 1 respectively. To .illustrate this 
in case of the previous example, let the required computation be 

f( 1) f( 2) f ( 3) f( 4) 

f( 2) f ( 4) f ( 1) f( 3) 

f(3) f(l) f( 4) f(2) 

f( 4) f ( 3) f ( 2) f ( 1) 

• 

By shuffling the columns of M ( to the required order) and appropriately shuffling 
components of x, one gets 

f ( 1) f ( 2) f ( 4) f ( 3) 

f(2) f( 4) f(3) f(l) 

f ( 3) f ( 1) f ( 2) f ( 4) 

f ( 4) f ( 3) f ( 1) f ( 2) 

• 

Finally, by shuffling the rows of the matrix and the components of y, one gets f. • 

f ( 1) f ( 2) f ( 4) f ( 3) 

f ( 2) f ( 4) f ( 3) f ( 1) 

f ( 4) f ( 3) f ( 1) f ( 2) 

f ( 3) f( 1) f ( 2) f ( 4) 

' 

the required cyclic convolution. Note that the shufflings of x and y vectors do not add to 
the computational complexity. Thus the ordering of row and column indices as per some 
group characteristics plays an important part in transforming the matrix to a cyclic 
matrix. 

Secondly, the group formed by the row and column indices may not form a cyclic 

8 
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group. However, note that it is still an Abelian group (integer elements and the group 

operation of multiplication modulo N guarantes that). The fundamental theorem of 

groups says that it is isomorphic to the direct product of cyclic groups. By appropriate 

shuffling of rows and columns, the matrix could therefore be made to look like Kronecker 

product of cyclic matrices. Such matrix vector product can be evaluated through 

multidimensional cyclic convolutions. This concept is illustrated by example 2.2. 

Example 2.2 : Let i, j E A(15). A(15) = { 1, 2, 4, 7, 8, 11, 13, 14 } = C4 x C 2 • The 

matrix M(i, j) = f(ij mod 15) = cas(21rij/15) is shown in Fig. 2.1. 

1 

2 

4 

7 

8 

11 

13 

14 

1 

1.32 

-1.41 

0.89 

-0.77 

-1.19 

-1.10 

-0.07 

0.51 

2 4 7 

1.41 0.89 -0.77 

0.89 -1.19 0.51 

-1.19 1.32 -0.07 

0.51 -0.07 0.89 

1.32 1.41 -1.10 

-0.77 0.51 1.41 

-1.10 -0.77 1.32 

-0.07 -1.10 -1.19 

8 11 

-1.19 -1.10 

1.32 -0. 77 

1.41 0.51 

-1.10 1.41 

0.89 -0.07 

-0.07 1.32 

0.51 -1.19 

-0. 77 0.89 

13 

-0.07 

-1.10 

-0.77 

1.32 

0.51 

-1.19 

0.89 

1.41 

Fig 2.1. Matrix (M) for i, j E A(15). 

14 

0.51 

-0.07 

-1.10 

-1.19 

-0.77 

0.89 

1.41 

1.32 

Using generators 2 and 11 of C4 and C2 respectively, one gets C4 = { 1, 2, 4, 8 } and C2 

= { 1, 11 }. Their direct product thus gives A(15) with the desired order of rows and 

columns of M as {1, 11, 2, 7, 4, 14, 8, 13 }. Note that this order transforms the matrix 

M to desired M 1• 

9 
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1 

11 

2 

7 

4 

14 

8 

13 

1 

1.32 

-1.10 

1.41 

-0.77 

0.89 

0.51 

-1.19 

-0.07 

11 

-1.10 

1.32 

-0.77 

1.41 

0.51 

0.89 

-0.07 

-1.19 

2 

1.41 

-0.77 

0.89 

0.51 

-1.19 

-0.07 

1.32 

-1.10 

7 

-0.77 

1.41 

0.51 

0.89 

-0.07 

-1.19 

-1.10 

1.32 

4 

0.89 

0.51 

-1.19 

-0.07 

1.32 

-1.10 

1.41 

-0.77 

14 

0.51 

0.89 

-0.07 

-1.19 

-1.10 

1.32 

-0.77 

1.41 

8 

-1.19 

-0.07 

1.32 

-1.10 

1.41 

-0.77 

0.89 

0.51 

13 

-0.07 

-1.19 

-1.10 

1.32 

-0.77 

1.41 

0.51 

0.89 
? 

• 

Fig 2.2. Matrix M 1 obtained from M by row and column shuffling. 

Finally, the cyclic structure in a matrix may have to be brought out by changing 

signs of appropriate rows and c9lumns and correspondingly negating components of x and 

y vectors. This is illustrated in example 2.3. 

Example 2.3 : Consider the following computation 

Y1 a -b C d Xl 

Y2 -d a -b -c X2 
• 

Y3 C -d a b X3 ,.-., 

Y4 b -c d a X4 

This product cannot be computed as stated using the techniques of cyclic convolution, 

since M is not a cyclic matrix. However, if one inputs -x2 instead of x2 and computes -y2 

instead of y2 , the computation can be made to look like 

10 

• 

• 



I 

Y1 a b C d Xl 

-Y2 d a b C -X2 
• 

Y3 C d a b x· 3 

Y4 b C d a X4 

The matrix in this computation now has a cyclic structure and the product can be 

computed using numerous algorithms used for cyclic convolution. 

2.2. Paritioning Hartley Transform in convolutions. 

In most practical situtations, the indices defining the entire transformation matrix 

may not form a group. Instead, these indices may be partitioned into subsets such that 

each subset forms a group. thus the origanal matrix structure could be viewed as a 

containing many smaller convolutions. The procedure for computing the matrix~vector 

product would then consist of evaluating many smaller convolutions and the combining 

the their results. This procedure of partitioning the index sets into appropriate groups is 

at the heart of converting Hartley transform and is described in this section. 

The Discrete Hartley Transform (DHT) of an N-point sequence is defined as 

N-1 
X(s) = L M(s, r) x(r), s = 0, 1, 2, ... , N-1. 

r=O 

We calculate X(O) seperately because X(O) is mearly a sum of all x components. 

To co.mpute other X(.s) components the nonzero indices may be partitioned as follows. 

, Define the primary partition index, d E Z, such that d I N and 1 < d < N. Then 

one can form sets Sd such that 

11 
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sd = { i E Z I gcd (i, N) = d }, 1 ~ i ~ N }. 

We now concentrate on computing X(s), s E Sd. For i E Sd, gcd(N, i) = d and 1 < i < 

N gives 

gcd(N/d, i/d) = 1 and 1 ~ i/d < N/d. 

Clearly, set of such integers (i/d), form the group A(N/d), the group of automorphisms of 
cyclic group of order N /d. Let the elements in A(N /d) be denoted by gj, 0 < j < 
IA(N/d)l-1 using the ordering of group elements as described in section 2.1. One then 

gets 

sd = { d. gj I gj e A{N/d) }. 

Also M( d.gj, r) can be written after proper shuffling corresponding to a group ordering as 

21rrgj . 21rrgj 
M(d.gj, r) = cos( N/d) + sin( N/d ). 

Such M(d.gj, r) is periodic in r with period (N/d) because 

_ 21r(r+ l. N/d)gj . 21r(r+ l. N/d)gj M( d.gj, r + l.N /d) - cos( N /d ) + sin( N /d ). 

_ 21rrgj . 21rrgj 
- cos( N/d) + sin( N/d ). 

= M(dgj, r) . 

Now from the definition of the Hartley Transform one gets 

N/d-1 d-1 

(2.3) 

X(dgj) = L L M(dgj, r + l. N/d). x(r + l. N/d), gj E A(N/d). r=O l=O 

12 
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Using eqn (2.3) one get 

N/d-1 d-1 

X(dgj) = L L M(dgj, r). x(r + l. N/d), gj E A(N/d). 
r=O l=O 

Since M(dgj, r) is independent of l we can simplify the above as 

N/d-1 d-1 

X(dgj) == L M(dgj, r) L x(r + I. N/d), · gj E A(N/d). 
r=O l=O 

d-1 

Let yd(r) == L x(r + l. N/d), 
l=O 

N/d-1 

then, X(dgj) == L M(dgj, r) yd(r), 
r=O 

N 0 < r < - - 1. - - d 

gj E A(N/d). 

(2.4) 

Now define c such that c I (N/d) as the secondary partition index. Define a set Tc as 

Tc == { r I gcd ( r, N / d) == c } , 1 5 r < N / d. 

Notice however that gcd(r/c, N/cd) = 1 and 1 < (r/c) < (N/cd). The r/c values form 

A(N/cd) under the group elemrnt ordering of Sec 2.1. Thus Tc can be expressed as 

Tc == { c. hi I hi E A ( N / cd) } . 

Therefore one can rewrite (2.4) as 

X( dgj) == L xd,c (j), (2.5) 
C I N/d 

where, Xa,cO) = L M(dgj, chi) yihi), gj E A(N/d), 0 ~ j ~ I A(N/d)I - l. 
hi£ A(N/cd) 

We now show that only a few of Xd,c(j) in (2.5) are distinct. 

. g .. h-.27r 
Since M( dgj, chi) = cas ( ~ N }cd ), 

21r(x+ m. N/cd)hi . 21r(x+ m. N/cd)hi 
M(d(x + rn. N/cd), c.hi) = cos( N/cd ) + sm( N/cd ). 

13 



21rxhi . 21rxhi) 
- cos(21rmhi + N / cd) + sm(21rmhi + N / cd · 

= M(x.d, c.hi). 

Thus one needs to calculate Xd,c(j) only at those j's for whom gj < N/cd. Further, 

gcd(gj, N/cd) = 1 implies that the gj's we are interested in belong to A(N/cd) and the 

computation in (2.5) can be rewritten as 

It is now easy to show that the function 

where 

and f(u) = cas(~lcd)· Note that EB denotes the multiplication modulo N/cd, the group 

operation of A(N / cd ). 

xd,c(j) = E f (gj EB hi) . y d(hj. C ), 

hi c A(N/cd} 
(2.6) 

As has been shown in sec 2.1, Xd,c vector thus can be computed through a convolution 

over group A(N/cd). 

If 2 I (N / d ), the structure in M can be further exploited because one can write 

;. 

14 
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The function M( dgj, r) is now periodic with a smaller period N /2d because 
I 

1r( r+ l. N /2d )gj . 1r( r+ l. N /2d )gj M(dgj, r + l. N/2d) = cos( N/2d ) + sm( N/2d ). 

1rrg- 1rrg. M( dgj, r + l. N /2d) = cos( ,rlgj + N 12~) + sin( 1rlgj + N 12~). 

lg. 1rrg. ,rrg. M(dgj, r + l. N/2d) = (-1) J [cos(N/2~) + sin(N/2~)]. 

lg-
M ( dgj, r + l. N / 2d) = (-1) J M ( dgj, r) . 

This last step is due to equation cos(k1r + 0) = (-l)kcos(O) and sin(k1r + (}) = (-lJk 

sin(O). Since gj E A(N/d) and N/d is even, gj must be odd. Therfore 

M(dgj, r + l N/2d) = (-1)1 M(dgj, r). 

The expression for X( dgj) can now be written as 

N/2d-12d-l -
X(dgj) = L L M(dgj, r + l. ~). x(r + l. ~), 

r=O l=O 

Using ( 2. 7) this can be simplified as 

N/2d-l 2d-l 
X(dgj) = L L (-1)1 M(dgj, r). x(r + l. ~), 

r=O l=O 

N/2d-1 2d-1 
X(dgj) = 'E M(dgj, r) L (-1)1 x(r + l. ~), 

r=O l=O 

Or alternately 

2d-l 
Yir) = E (-1)1 x(r + l. ~) 

l=O 

N/2d-1 
and X(dgj) = E M(dgj, r). yd(r), gj E A(N/d). 

r=O 

(2.7) 

gj E A(N/d), N/d even. 

gj E A(N/d). 

gj E A(N/d). 

(2.8) 

As before, one can define the secondary partition index c such that c I (N/2d) and form 
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sets Tc as 

l!Y· 

Tc= { i I _gcd (i, N/2d) = c }, 1 $ i <(N/2d) } . 

..,_. 

Clearly, in this case for iE Tc, (i/c) E A(N/2cd) because gcd(i/c, N/2cd) == 1 an-d 1 ~ 

(i/ c) < N /2cd. Therefore set Tc can also be described as 

where hi is the i-th element of group A(N/2cd) ordered as in Sec 2.1. The output vecto.r 

can thus be written as 

• 
this function has differnt periodicities. These are treated as the following two cases 

Case I : 2 I (N /2cd). In this case one has 

M(d( N ) ) _ (1r(x+ m. (N/2cd))hi) . (1r(x+ m. (N/2cd))hi) 
x + m. 2cd ' hi.c - cos N /2cd + sm N /2cd · 

N mh- 1rxh- 1rxh-
M( d(x + m. 2cd)' hi.c) = (-1) 1 [cos(N/2c~) + sin(N/2c~)]. 

mh-= (-1) 1 M(x.d, hi.c). 

Now hi E A(2~d) and 2~d is even, hi must be odd. Therfore one can write the above 

equation as 
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Thus one needs to calculate Xd,c(j) for those j's for whom gj < N /2cd. Further gc.d (gj, 

2~d) = 1 implies that gj E A{2~d). Therefore in this case, 

hi. gj mod (N/cd), the operation of the group A(N/cd). 

However, this is a differnt group than the one containing hi and gj. 

Using this interpretation, one can conclude that 

. . N 
xd,c(J) == ~ f (gjEB hi) . Yd(hi.c), gj E A(2cd) 2 I (N/2cd). (2.10) 

hi c A(N/2cd) 

Since hi, gj E A(N/2cd) and EB is the operation of group A(N/cd), this computation 

cannot be carried out as a convolution over a group. It will be shown in Chapter 4 that 

this is a Toeplitz computation. 

Case II : 2 does not divide N /2cd , but 2 I (N /cd). In this case, as before, one can sh·ow 

that 

" 

Thus one needs to calculate Xd,c(j) only at those j's for whom gj < N / ed. Also gcd(gj, 

~) = 1. This implies that gj E A(N/cd). Therefore 

. "" gj. hi. 21r N 
Xd,c(J) = L....J cas ( N/cd ). yihi.c), gj E A(cd). (2.11) 

hi c A(N/2cd) 
. 

Note that now hi E A(N/2cd) while gj E A(N/cd). Since 2 does not divige N/2cd, let Q 
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represent the odd integer N/2cd. Then, hi E A(Q) and gj E A(2Q). However A(2Q) _ 

A(2) x A(Q), or A(2Q) = A(Q). Thus A(2Q) and A(Q) are isomorphic and gj has an 

image in A(Q) under this isomorphism. However, even though h;, gj E A(Q), the cas 

function can be expressed as f(gj EB hi) where G) is the operation of multiplication modulo 

2Q (=N/cd). Note that in this case, the submatrix calculating Xd c(j) cannot be viewed 
I 

as a convolution matrix. It will be shown later in chapter 4 that it is part of a larger 

group table and in fact, is a Toeplitz matrix. 

2.3. Convolutions involved in DHT. 

In order to illustrate the ideas presented in section 2.2, consider the calculation of 

DHT of order 12 shown in Fig 2.3. 

__ , -·I 11.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ! Xo I 

I 

: ,. I 
I 

I 

1 1.00 1.37 1.37 1.00 0.37 -0.37 -1.00 -1.37 -1.37 -1.00 -0.37 0.37 Xl 

: 1.00 1.37 0.37 -1.00 -1.37 -0.37 1.00 1.37 0.37 -1.00 -1.37 -0.37 X2 

. 1.QQ 1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00 i X3 
• . ~ -- -- . -

l 

- ' I 
I 

: Y4: ' . 
: 1.QQ 0.37 -1.37 1.00 0.37 -1.37 1.QQ 0.37 -1.37 1.QQ 0.37 -1.37 ! X4 ; ; 

I 

I 

' ' 

I 
i 

Ys' 1.00 -0.37 -0.37 1.00 -1.37 1.37 -1.00 0.37 0.37 -1.00 1.37 -1.37 ; . X5 I 

-. y . 
6, 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 x6 ' 

. Y7 . 1.00 -1.37 1.37 -1.00 0.37 0.37 -1.00 1.37 -1.37 1.00 -0.37 -0.37: X7 ' ! 

y 8 . l.00 -1.37 0.37 1.00 -1.37 0.37 1.00. :1.~_37 0.37 1.00 -1.37 0.37. : x8 

' · Yg ; .1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00: Xg : 

I 
Y10: 1.00 -0.37 -1.37 -1.00 0.37 1.37 1.00 ·-0.37 -1.37 -1.00 0.37 1.37: X10 

- -
.1.00 0.37 -0.37 -1.00 -1.37 -1.37 -1.00 -0.37 0.37 1.00 1.37 1.37. i Xll 

I ' 
-

~ - ~ 

Fig 2.3. Kernel matrix of the DHT of order 12. 
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If., appr~·priate grouping and shuffling is applied. to the DHT of Fig. 2.3, the convolution 

structu·re in the matrix becomes clear. Fig 2.4 shows the structure which helps one 

evaluate the y vector through convolutions. Note that the computation consists of a 

single convolution for each possible ( d, c) pair. The convolution is over the grbup 

A(N/2cd) or over A(N/cd) depending upon whether N/cd is even or odd, as discussed in 

Sec 2.2. 

r ...... r I 

1.00 I 
I - - -

: Yo J ! 1.00 1.00 1.00 1.00 1.00 1.00 I 1.00 1.00 1.00 I 1.00 1.00 · ;XO I I 
I 

I I ' I I I I 

: Y6 1.00 1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 !-1.00 -1.00 1.00 1.00 1x6 ; 

---- - -- -- , - - - I ---· - . - . - i I . -· 
I 
I 

. Y1 1.00 -1.00 1.37 -0.37 -1.37 0.37 1.37 -0.37 1.00 -1.00 0.37 -1.37 1 :x1 
"'-

I ; 
I 

I 1.00 -1.001-0.37 1.37 0.37 -1.37 -0.37 1.37 1.00 -1.00 -1.37 0.37. : Ys X5 

1.00 
~ 

0.37 1.37 -0.37 1.37 -0.37 -1.00 1.00 0.37 -1.37 : Y1 -1.00 1-1.37 X7 

1.00 -1.37 -0.37 1.37 I -0.37 1.37 -1.00 1.00 -1.37 0.37 Y11 -1.00: 0.37 Xll 
! i . --------·- - - - - ·- . ·----'· --·~· ... ··~ -- l 

Y2 1.00 1.00 1.37 -0.37 1.37 -0.3.7 : 0.37 -1.37 -1.00 -1.00 -1.37 0.37 .x2 
I 
l 

1.00 1.00 -0.37 1.37 -0.37 I 
0.37 f-1.00 -1.00 0.37 -1.37 Y10 1.37 1 -1.37 XlO I l 

• 

1.00 i Y3 1.00 -1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 i:-1.00 1.00 1.00 X3 
ll 

-1.00 I 1.00 -1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 t 1.00 1.00 Yg -1.00 1 ·xg • I 
I 

-- ... -- ... -- . -- . -

' 

Y4 1.00 1.00 0.37 -1.37 0.37 -1.37 -1.37 0.37 1.00 1.00 j 0.37 -1.37: ,X4 
I 

1.00 1.00 -1.37 0.37 -1.37 . 0.37 0.37 -1.37, 1.00 I 0.37 · Ya 1.00 J-1.37 ;x 
l 8 

l - - -

Fig 2.4. Shuffled Kernel of the DHT of order 12 

In order to find the total number of different convolutions involved in the 

computation, one can define a parameter q = c.d. Since cf N/d, q is always an integer, 

and q I N. In fact, foe every q, q I N, there are x( q) ways of choosing distinct ( d, c) pairs 

satisfying our requirments. Here x( q) denotes the number of ways q can be factored in 
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two numbers. If N /q is even, then all these x( q) convolutions are over the group 

A(N/2q) and if N/q is odd, then the x(q) convolutions are over the group A(N/q). (The 

dimensionality of the convolution depends upon the structure, and in particular the direct 

factors of the group A(N/2q) or A(N/q), as might be the case). Table 2.1 lists the 

convolutions as they occur in the calculation of the DHT of length 12. The convolutions 

specified in this table can be identified with the structure of the DHT matrix of Fig 2.4. 

Table 2.1. Convolutions involved in the DHT of N=12. 

q C N/d or N/2d convolution group convolution size 

1 1 1 6 A(6) 2x2 
2 1 2 6 A(3) 2x2 

2 1 3 A(3) 2x2. 
3 1 3 6 A(2) lxl 

3 1 2 A(2) lxl 
4 4 1 3 A(3) 2x2 
6 6 1 1 
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Chapter 3 
PREPROCESSING OF INPUT DAT A 

3.1. Introduction. 

It was established in Chapter 2 that the discrete Hartley transform matrix can be 

partitioned into submatrices by proper grouping and ordering the row and column indices. 

' 

Each of these submatrices may be computed using cyclic convolution techniques. 

By examining (2.6), (2.10) and (2.11 ), one can see that variable sequences, yd• taking 

part in in the convolution are obtained by systematic addition ( or subtraction) of selected 

input data components. This addition stage is called the preprocessing of input data and 

is dealt with in this chapter. 

The Hartley transform length N can be factored as N = 2"Q, for n > 0 and Q is 

an odd integer. The primary partition index, d, which has to divide N is therefore either 

a power of 2 or a product of two integers one of which is an odd integer. These two cases 

cover all the values of d since if d is not a power of 2 then it has to have an odd divisor. 

Section 3.2 and 3.3 deal with these two cases respectively. 

3.2. Primary partition index, a power of 2. 

Equations (2.4) and (2. 7) show the yd computations that need to be computed 

before one can do any convolution processing. These two equations represent the 

preprocessing stage of the algorithm and need to be evaluated efficiently. 

Let N = 2nQ, where Q is an odd integer and n ~ 0, and d, the primary partition 

index, 2s, 0 < s < n. We calculate y 5 for all s = 0, 1, 2, · ·, n as follows : 
2 

1. (Initialization). Set N0 = N and t 0 (i) = x(i), 0 < i < N
0

. 

2. (Reccursion ). For s = 0, 1, · · · , n-1, set Ns+l (3.1) 

· and perform step 3. 
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3. (Repeatition). For i = 0, 1, ... , (N5 /2) evaluate 

(3.2) 
'; 

t 5(i) - t 5(i + ~5), if N5 is even (3.3) 

ts (i), if N5 is odd. (3.4) 

The above procedure may be proved as folJows. t 5 (i) evaluated according to (3.1) has the 

• expression 

t 5 (i) 
N 

0 ~ i < 2-1. (3.5) 
• 

Equation (3.1) can be solved recursively to give N5_1 as 

Using this (3.5) can be rewritten as 

1 

t 5 (i) = L t 5_1 (i + l. ~). 
· l=O 2 

(3.6) 

Use of (3.6) repeatedly gives 

1 1 1 1 . . •. . 5 N 
t5(i) = L L L ... L t0 ( 1 +( l + 2m + 4n + ... + 2 w).25 ). 

l=O m=O n=O w=O 

In the above summation one can replace t 0 with x (using eqn (3.2)). Now notice that as 

the summation variables go through all their values, the quantity ( l + 2m + 4n + ... + 
25 w) takes all possi hie values from O to 25+ 1 - 1.1 

1In fact the expression ( l + 2m + 4n + ... + 25 w) can be considered to be 

an expression of a number between O and 25+1 -1 in binary number system; the 

number being (w, ... , n, m, 1)2 • 
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Thus 
2s+1 -1 

t5 (i) = E x(i + I. ~). 
l=O 2 

Finally, using the value in (3.3) gives 

2s+1 -1 

= E x(i + 21. 51t1) 
l=O 2 

2s+1 -1 

E x(i + (21+1). s1t1) 
l=O 2 

2s+1 -1 

= E c-1 )' x(i + ,. s1t1), 
l=O 2 

which- is identical to (2.4 ). 

The structure of the preprocessing addition stage is very regular. It can be 

represented as a butterfly diagram. Following example illustrates the fact. 

Example 3.1 : Let N = 12 = 22 .3. Using (3.1)-(3.5) y1 , y2 and y4 may be 
written as 

Y1(i) x(i) - x(i + 6), 0 ~ i < 6. 

x( i) ~ X ( i + 3) + X ( i + 6) - X ( i + 9), 0 ~ i < 3, 

Also since N 2 is odd we get y 4 as 

x( i) + x( i + 3) + x( i + 6) + x( i + 9), 
; 

0 $ i < 3, 

t 0 (i) + t 0 (i + 3) + t 0 (i + 6) + t 0 (i + 9), 

Note that (3.2) gives the following expression for t 0 , t 1 and t 2 sequences for N = 12. 
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. ' 

t 0 (i) = x(i), 0 ~ i < 12, 

/1 

t 1 (i) = t 0 (i.) + t 0 (i + 6), 0 :S i < 6, 

The algorithm for evaluating y1 , y2 and y4 for N = 12 is shown in Fig 3.1 and 

mimics a truncated butterfly diagram used in fast transforms. Note that this same 

computation can also be arranged as shown in Fig 3.2. This new arrangement is very 

suitable for a parallel archirecture implementation. 

xO 

x:·1 

* 
x2 

x3 

x4 

XS 

x6 

x7 

xa 

x9 

x10 

x11 

I 
I , , , , 
, , , , , , 

, 
,,' 

,,' , 
, ,, ,, ,, , 

I 
I , , , 

I 

, , , , , , , , , , , , , , 
I ,, 

I I , 
, , , 

,,,' , , , ,, 
I , 

Fig. 3.1. Evaluation of y1, y2 and y4 for N - 12. 
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y 1 CO) 

Yi(l) 

Y1{2) 

y1 {3) 

yl{4) 

Y1 (5) 

y 2 ( 0) 

Y2{l) 

y 2 { 2) 

Y4(0) 

y { 1)' 
4 

Y4(2) 
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• 

.., . 

x(O) y1(0) 

x(6) 
y1 (1) 

x(1) y1(2) 

x(7) 
y1 (:3) 

y1(4) x(2) 
1• 

X(S) y1(5) 

x(3) y2(0) 

X(9) 
y2(1) 

x(4) y2(2) 

x(10) 
y4(0) 

x{S) y4(1) 

x(11) y4(2) 

Fig. 3.2. Parallel architecture implementation of Fig. 3.1. 

One can compute the additive complexity of this preproces~ing stage from (3.2) 

and (3.3). We see that to calculate y 25 and t 5+1 from t 8 we need N5 ( = N/25 ) additions. 

Therefore the total number of additions to calculate all y s, 0 < s < n-1 can be ,vritten 
2 

as 

n-1 
# of additions to calculate y 25 = L ; 

. s=O 

n-1 

NE is· 
s=O 

2N(l - fn), 

2(N - Q,). (3.7) 

3.3. Factorizable primary partition index. 

Suppose now that the primary partition index, d, is not a power of 2. Then d can 

be represented as r.s, with some odd s. Evaluation of Yrs from Yr requires consideration 

of whether N / d is even or odd. Accordingly, we deal with it in the following t,vo cases . 
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Case 1 : This case concerns expressing yrs in terms of yr, given the fact that 2 I 
(N/rs) and sis odd. Since r.s is a divisor of N and also 2 divides N/rs, one can use (2.4) 

and express yrs as follows 

2rs-1 N 
Yrs(i) = L (-l)' x(i + l. 2rs), 

l=O 

0 < 12 < s , 0 ~ 11 < 2r 

2 r-1 s-1 sl l N N Then, Yrs(i) = L L (-1) 1(-1) 2 x(i + l1. 2r + l2. 2rs). 
11 =Ol2 =0 

We can express (-1)511 as (-1) 11 since sis odd. Thus 

2r-1 s-1 l l 
Yrs(i) = L L (-1) 1 (-1) 2 x(i + 11. ~ + l2. ts), 

11 =Ol2 =0 

s-1 l 2 r-1 1 N N = L ( -1) 2 L ( -1) 1 x( i + 11. 2r + l2. 2rs)' 
l2=0 l1=0 

• 

Now Yr(i) can be expressed from (2.7) since 2 I ~ as 

or 

2r-1 
Yr(i) = L(-1)1 x(i +I.~), 

l=O 

N 2r-1 l N N) Yr{i + 12·2rs) = L (-l) 1 
x(i + 12·2rs + 11 · 2r ' 

l1=0 

Substituting this value of Yr in the expression for Yrs one gets 

~1 l . 
Yrs(i) = L (-1) 2 Yr(i + l2. i!s), 

l2=0 

O< i < N 2rs· 

O<i<2N· ~ r 

0 . N < I < 2r" 

(3.8) 

Equation (3.8) expresses Yrs in terms of Yr when s is odd and 2 l(N /rs). 

In order to express the computational complexity of evaluating Yrs from Yr, following 
notation may be used : 

A( d 1, d2) = den.ates the number of additions required to compute yd from yd . 
2 1 

A( d 1, d2, · · ·, dt) = denotes the number of additions required to compute 

yd begining from yd and going through yd , · · · , yd . t 1 2 t-1 
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Computation (3. 7) clearly yields following expression for A( r, rs) : 

A{r, rs)= 2N (s-1), when 2 I fs ands is odd. rs 

Fig. 3.3 illustrates equation (3.8) as y3 is calculated from y 1 for N = 12. 

Y1 ( O) __ o--------o--
, , 

,, , , , 

y 1 ( 1 >---0-----,,..~'-''~--o---

Fig 3.3. · Calculation of y 3 from y 1 for N = 12. 

(3.9) 

Case 2 : When s is odd but 2 does not divide N /rs, one can Yrs in terms of Yr from (2.2) 

as follows : 

rs-1 
Yrs(i) = L x(i + l. f!), 

l=O 

s-1 r-1 
Then, Yrs(i) = L L x(i + 11. f + 12. ~), · 

l2=o 11 =O 
0 . N 

:5 1 < rs· 

Now, since 2 does not divide ~' and sis odd, 2 also does not divide ~. 

Using (2.2), Yr(i) can be expressed as 

r-1 
Yr{i) = L x(i + l. ~), 

l=O 
0 $ i < ~. 
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• 

r-1 

Thus, Yr(i + 12 .~) = L x(i + 12 .~ + 11• ~), 
11=0 

. ' 

Finally using this value of Yr in the expression for Yrs one gets 

s-1 

Yrs(i) = ,L Yr(i + 12. ~), 
'2=0 

0 . N 
5 1 < fs• (3.10) 

Relation (3.10) allows one to evaluate Yrs from Yr when s is odd and 2 does not divide 

N/rs. The complexity of this computation can be easily seen to be 

A(r, rs) = ~(s -1) when sis odd and 2 does not divide~ . 
(3.11) 

(3.10) is clearly illustrated in Fig, 3.4, in which y 6 is calculated from y
2 

for N = 30. Both 

(3.9) and (3.11) suggest that one should choose the smallest possible value of s for a given 

rs for minimum complexity of the preprocessing stage. For example, given y
3 

and y
5

, the 

evaluation of y15 should be done from y5 rather that y3 because it would involve 2N/15 

additions instead of 4N /15. 

y 2 ( 0) 

y 2 (1) 

y 2 {2) 

y 2 (3) 

y 2 (4) 

y 2 (S) 

y 2 (6) 

y 2 (7) 

Y2 (8) 

y 2 (9) 

y 2 {10) ---0 

y 2 (11) ---0 

y 2 (12) ---0 

y 2 (13) _._.. 

y 2 ( 14) -----. 

y 6-(0) 

y 6 (1) 

y6(2) 

y 6 ( 3) 

y 6 {4) 

Fig 3.4. Calculation of y6 from y2 for N ;::; 30 . 

........ 
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3.4. Special Cases. 
i 

This section deals with the total complexity of the preprocessing stage of four 

commonly occuring cases of N which has only one or two prime devisors. 

Case 1 : N = 2". In this case, the only possible d's are of type 25 • From Sec. 3.1 it is 

obvious that Q :--:- 1 and 

A(2") = 2(N -1 ). (3.12) 

Case 2: N = p", p prime. 

Here d can have values p5
, where O < s ~ n. It is clear that one must compute Yp from 

y1 , y 2 from Yp, and so on till y n· Therefore the total number of additions to complete 
p p 

t.he preprocessing is 

n 
= L A(pi-1, pi). 

i=l 

= t N(p;l), 
i=l p 

from (3.11). 

n 
= L (p-1) p"-i. 

i=l 

= p" - 1. 

= N - 1. 

Fig 3.5 illustrates the computation when N = 33 • 
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x(O)=Y1 (0) 

x(1 )=y1 (0) 

x{2)=y1 (2) 

x{3)=y1 (3) 

x{4)=y1 {4) 

x(5)=y1 (5) 

x{6)=y1 (6) 

. x(7)=y1 (7) 

x(8)=y1 (8) 

x(9)=y1 {9) 

x(1 O)=y1 (1 O) 

x(11 )=y1 {11) 

x(12}=Y1 (12) 

x(13)=y1 (13) 

x(14)=Y1 (14) 

x(15)=Y1 (15) 

x(16)=y1 {16) 

x(17)=Y1 (17) 

x(18)=y1 (18) 

x(19)=y1 (19) 

x(20)=y1 {20) 

x(21 )=Y1 (21) 

x(22)=y1 {22) 

x(23)=Y1 (23) 

x(24)=y1 (24) 

x(25)=y1 {25) 

x(26}=y1 {26) 

--

y9(2) 

Fig 3.5. Computation of y1 , y3 , y 9 and y27 for N = 33. 

"1 "2 · Case 3 : N = 2 p , p prime. 

This complexity for this case is computed in three seperate parts. The firse part consists 

of the d's which are powers of 2. Since these are independent they have to be calculated 

· · · Specifically. Therefore the total number of additions to compute these d's is = 2(N -

30 , 
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"2 11 12 p )(from eqn. 3.7). The second part are the d's which can have the form 2 p (11 ,t:n1). 

t t If this yd is calculated from Yr where r = 2 1p 2 , then the complexity in evaluating yd is 

To minimize the expression above one must chose values of t 1 l2 -l. If 

this is done, one gets 

·n The third part is where d's have the form 2 1p1• The complexity for this case is 

minimized if it is calculated from the Yr where r has the form 2"1p1- 1 . Now one gets 

Thus complexity of the preprocessing stage, A(2"1p "2 ), is 

N(p- 1) 
n • 

2 1 pl 

"2 "1 == 3N - (p - 3)p - 2 . 

Case 4 : N == "1 "2 · P1 P2 ' P1 and P2 prime, P1 > P2· 

In this case, d l l would have the form p1 
1p2 

2 . If this yd is evaluated from Yr where r 

t t 
p1 

1p2 
2 , then the complexity involved in the evaluation of this yd is 

N(p/1-t1p/rt1 - 1) 
' . 

11 12 
P1 P2 

To minimize the expression above when p 1 > p2 , one must chose values of t 1 = 11 and 
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t 2 = 12 -1. If this is done, one gets 

( 
t1 t2 11 12) N(p2- 1) A_ P 1 P2 , P 1 P2 = 11 12 

P1 P2 

Clearly, one will also have to compute y ti' 0 ~ t 1 $ n1 . Thus complexity of the 
p 

preprocessing stage, A(p1 "
1p2 "

2 ), is 

"·· ) 
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Chapter 4 
CONVOLUTION PROCESSING 

4.1. Introduction. 

It was established in Chapter 2 that the discrete Hartley transform matrix can be 

partitioned into smaller cyclic submatrices which may be computed • using 

multidimentional cyclic convolution techniques. In particular as (2.6) shows, when N / d is 

odd, the submatrix corresponds to a group table of A(N/cd). However, when N/d is 

even, (2.10) and (2.11) show that while hi and gj belong to the group A(N/2cd}, the 

operation EB is multiplication modulo N /ed. This implies that the corresponding 

submatrices do not form group tables. This chapter will establis the structure of the 

matrices as Toeplitz. In order to simplify the notation let the effective convolution 

length, N1 denote N / ed. 

The case of N 1 = 2", n > 2 is dealt with in Section 4.2, N1 = 2°Q, n = 2 or 3, od·d 

Q in Section 4.3 and N' = 2"Q, n > 3, odd Q in Section 4.4. 

4.2. Effective convolution length, a power of 2. 

If N' = 2" and n = 1 or 2, then the group to which hi and gj belong, A(N1 /2), has 

only one element. Thus the submatrices under consideration is of size 1 x 1 and has no 

structure. Thus the only case of interest is n > 2. In this case consider the group 

G = A(2") = C2 x C n-2 • 
2 

' 

The group operation is still multiplication modulo N1• Form C2 by using the order two 

element (2"-1-1) of G, i.e.; 
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Let o be any element of .G of order 2°-2 (when n=3, then o is an elemnt of order 2 not 

equal to {2"-1 -1)) and organize the elements of A(2"-1) as 

If the row index hi and the column index gj are arranged according to this order, one can 

see that the matrix transforms into a Kronecker product of an order 2 cyclic matrix and a 

Toeplitz matrix. The statement is fairly easy to prove. The order 2 cyclic submatrices 

are aresult of the subgroup C2. Further because of the chosen order, the (i, j)th 

submatrix corresponds to oiC2 .ojC2 = oi+jc2 elements of the group. Since this entry 

depends upon i+j rather than individual i or j values, the resultant structure is Toeplitz . 
.._/ .Q - - ~, . • 

\. ' 
\ 

Example 4.1 illustrates this restructuring of the matrix. 

Example 4.1 : Let N be equal to 16 and both c and d have the value 1. Thus N' = 16 == 

24 • Also, hi and gj E A(8) = { 1, 3, 5, 7 } and A(16) = { 1, 3, 5, 7, 9, 11, 13, 15 }. The 

d) 

matrix M looks like 

1 

3 

5 

7 

1 3 5 7 

1.31 1.31 0.54 -0.54 

1.31 -1.31 0.54 0.54 

0.54 0.54 . -1.31 1.31 

-0.54 0.54 1.31 1.31 

Let C2 be { 1, 7 }. Choose o as 5 (order of 5 is 22 = 4). 
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Using this, if one orders the rows and columns as 1, 7, 5, 3 one gets M transformed to 

1 

7 

5 

3 

1 7 5 3 

1.31 -0.54 0.54 1.31 

-0.54 1.31 1.31 0.54 

0.54 1.31 -1.31 0.54 

1.31 0.54 0.54 -1.31 

If the cyclic 2x2 matrices are represented by 

1.31 -0.54 
' C2 = -0.54 1.31 

M can be represented as 

0.54 1.31 

1.31 0.54 

-1.31 0.54 

' 0.54 -1.31 

C1 C2 
, which has a Toeplitz matrix structure. 

C2 -Ci 

' 

It should be mentioned here that the shuffling of rows and columns of M does not 

contribute any additional computational complexity as demonstrated in Chapter 2. 

When N' = 2", above structure enables one to compute the matrix for the specific 

values of c and d. Theorem 4.1 ensures that all the aiC2 mod 2n-l values generated are 

distinct. 

Theorem 4.1 : aiC2 mod 2°-1 , 0 < i ~ 2n-3 _ 1 are all distinct. 

Proof: Denote by Hi, set { ai mod 2"-1 , ai(2"-1 -1) mod 2n-l }. Let Hi= (a, b) 

and Hj = ( c, d ). If we can prove that a, b, c, d are all distint for O ~ i, j < 2n-3 -1 and i 
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# j, then we have essentially proved the stipulation. We consider the following four cases 

and use the method of contradiction to disprove each . 

Case I : Suppose a = b mod 2n-l. 
. 

Here a = a 1 and b 
. 

a 1 mod 2n-l. 

The assumption a = b mod 2n-l implies that 

This is a contradiction since a E A(2") and therefore odd, which implies that no power of 

a can be divisible by an even integer(namely 2n-2 ) for n > 2. 

Case II : Suppose a = c mod 2"-1 . a = ai and c ~ aj. The assumption a __ c mod 2n-l 

implies that 

. 
a'= 

. 
aJ mod 2n-l. Since a E A(2"), a has an inverse modulo 2"-1. 

Thus, ai-j = 1 mod 2n-l which gives ai-j mod 2n = 1 or 2"-1+1. 

In either case a contradiction arises since a is of order 2n-2 

. . 
i.e, a•-J mod 2" # 1 since i-j < 2"-2 (since iJ < 2"-3 ) 

. . 
and if a•-J mod 2" = (1 + 2n-l) 

then squaring both sides of the equation and taking mod 2n, one gets 

a 2(i-j) mod 2" = (1 + 2"+1 ) mod 2" = 1 mod 2" which implies that (i-j) > 2n-3 

which is again impossible. 

Case III : Suppose a = d mod 2n-l. · 
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a= oi and d = ~(2n-l_ 1) =-~mod 2n-l. 

The assumption a = d mod 2n-l implies that 

. . 
• 1.e, o•-J = -1 mod 2n-l . 

Thus ai-j mod 2" = (2"-1) or (2"-1 -1). However (2"-1) and (2"-1 -1) are order two 

elements in group A{2") and since a is not an order two element we again find a 

contradiction. 

Case IV : Finally, Suppose b = d mod 2n-l. Since b = ai(2"-1-1) and d _ -0J(2n-l_ 1) 

= -aj mod 2n-l the assumption b = d mod 2n-l implies that ai(2"-1-1) = 0J(2n-1 -1) 

mod 2n-l, or ai = aj mod 2n-l. This has been proved impossible in case II earlier. T.hus in 

all four cases a,b,c,d are all distint for O $ iJ $ 2"-3 -1, f:. j. D 

Theorem 4.2 proves that 3 has order 2n-2 in the group A(2") and can therefore be 

the element o. 

Theorem 4.2 : Order of 3 in Group A(2") is 2n-2 (n > 2). 

Proof : One can use the method of mathematical Induction to prove this 

assertion. When n=3, one can verify by direct calculation that the order of 3 in A(23 ) is 

21
• Now assume that order of 3 in A(2") is 2n-2 • To find order of 3 in A(2"+1), note that 

n-2 n-2 
32 == 1 mod 2" implies 32 == k.2" + 1. 

+ n-1 By squaring both sides of this equation and reducing by mod 2" 1 , one gets 32 mod. 

2"+1 = 1. Thus if L is the order of 3 in A(2"+1), then L I 2"-1 . 

Now if L i= 2n-l, then L I 2n-2 and consequently, 
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+1 n-2 n-3 n-3 
thus 2" · 1(32 .- 1) = ( 32 - 1)( 32 + 1). 

n-3 n-3 
Note that even though 32 +1 is even, 22 cannot divide it as (32 + 1) mod 4 == ((-

n-3 n-3 
1)2 +1) = 2. Hence 2"1(32 -1) implying that the order of 3 in A(2") divides 2n-3 , 

which is contrary to the assumption. Therefore L == 2°-1 . The proof is thus complete by 

Mathematical Induction. D 

4.3. Effective convolution length, 4Q or BQ (for odd Q). 

Let N' == 2"Q, n = 2, 3. and Q odd. One can write the following isomorp.hic 

relationships for A( 4Q) and A(8Q). 1 

A( 4Q) = C2 x A(2Q). 

A(8Q) - C2 x A( 4Q). 

The subgroup C2 in the two cases can be generated by the elements 2Q + 1 and 4Q + 1 

respectively. Let a represent the generator of C2 . 

As in the previous case, here again hi, gj E A(N' /2) while the matrix elements are 

described by the group operation of the group A(N'). Example 4.2 illustrates this case. 

Example 4.2: Let N = 36, c = d = 1. Therefore N' = 36(= 22 .9). 

Also A(36) = { 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35} and A(18) =. { 1, 5, 7, 11, 13, 

17 }. Let a(= 2x9 + 1 = 19) the generator of the group C2 . Let G 1 be the group 

generated by the element 5 with the operation multiplication mod 36. 

1 Note that A(16Q) is not isomorphic to C2 x A{SQ). In general A(2"Q) _ C2 x 

A(2"-1Q) iff n is 2 or 3. 
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The groups C2 = { 1, 19} and G1 = { 1, 5, 25, 17, 13, 29 } give 

A(36)={1,19} x{l,5,25,17,13,29} · 

I One can also see that G 1 is isomorphic to A(18). The submatrix formed by rows and 

columns from A(18) looks like : 

1 

5 

7 

17 

13 

11 

1 5 7 17 13 11 

1.158 1.409 1.282 -0.811 0.123 0.598 

1.409 -1.282 0.811 0.123 -0.598 -1.158 

1.282 0.811 0.123 0.599 -1.158 1.409 

-0.811 0.123 0.599 1.158 1.409 1.282 

0.123 -0.599 -1.158 1.409 -1.282 0.811 

0.599 -1.158 1.409 1.282 0.811 0.123 

One can see that this matrix does not conform to a cyclic structure. If, on the other 
hand, one arranges the rows and columns according to the isomorphic group G 1, one gets 

the following cyclic matrix. 

1 5 25 17 13 29 

1 1.158 1.409 -1.282 0.811 0.123 -0.598 

5 1.409 -1.282 0.811 0.123 -0.598 1.158 

25 -1.282 0.811 0.123 -0.599 1.158 1.409 

17 0.811 0.123 -0.599 1.158 1.409 -1.282 

13 0.123 -0.599 1.158 1.409 -1.282 0.811 

29 -0.599 1.158 1.409 -1.282 0.811 0.123 
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As indicated in example 4.2, use of group G 1 instead of A(N' /2) gives a cyclic convolution 

structure. One must now prove that G 1 is indeed isomorphic to A(N' /2). 

Lemma 4.1 : Let A(4Q) = {1, a} x G 1 = C 2 x A(2Q) where a = 2Q + 1. If x E 

A( 4Q) then exactly one of x or (x + 2Q) mod 4Q is in G 1. 

Proof: Suppose both x and (x + 2Q) mod 4Q are in G 1 . Let y E G 1 denote the 

inverse of x in G 1 , i.e, xy mod 4Q = 1. Since y E A(4Q), y is odd. Therefore, 

(x + 2Q)·y mod 4Q = 1 + 2Q. 

However, x + 2Q, y E G 1, hence their product (1 + 2Q) E G 1. However, 1 + 2Q == a rJ_· 

G 1 . This contradiction leads us to the result that both x and (x + 2Q) mod 4Q cal)not 

simultaneously belong to G 1. D 

Lemma 4.2 : If x E A(4Q) then atleast one of x or (x + 2Q) mod 4Q E G 1 . 

Proof: Suppose x ¢ G 1 . However since x E G 1 = { 1, 1+2Q } x G 1 , there must 

exist some y E G 1 such that x = (1 + 2Q)y mod 4Q = (y + 2Q) mod 4Q. Th.is last step 

uses the fact that y is odd. Thus (x + 2Q) mod 4Q = y and therefore E G 1 . D 

Following two lemmas are equivalent to Lemma 4.1 and 4.2 when N1 == 8Q. 

Lemma 4.3 : Let A(8Q) = {1, a} x G 1 = C2 x A(4Q) where a= 4Q + 1. If x 

E A(8Q) then both x and (x + 4Q) mod 8Q is not in G 1 . 

Proof: Suppose both x, (x + 4Q) mod 8Q E G 1. Let y denote the inverse of x. 

in G1 . Clearly, y is odd. 

(x + 4Q)y mod SQ == 1 + 4Q. 

Since both •x + 4Q and y are elements of G 1 , their product 1 + 4Q is also in G 1 . 

However, 1 + 4Q = a ¢ G 1 . This contradiction leads us to the result that both x and (x 
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+ 4Q) mod SQ cannot simultaneously belong to t 1 . D 

· Lemma 4.4: If x E A(8Q) then atleast one of x or (x + 4Q) mod SQ E G 1. 

Proof: Suppose x ¢ G 1 . Since x E G = { 1, 1+4Q } x G 1, there must exist a· y 

E G 1(y is odd) such that x = {1+4Q)y mod SQ = (y + 4Q) mod SQ. Thus (x + 4Q) 

mod SQ= y E G1 . D 

It is now shown that when N1 = 4Q or SQ, (Q odd), G 1 and A(N1 /2) are 

isomorphic and this isomorphism brings out the cyclic structure of the transform kernel 

after changing signs of certain row and column elements. 

Theorem 4.3. The matrix M(gj, hi) can be expressed as 

where A(N1) = C2 x G 1, 0 denotes the group operation of the group G1 , 8 : G1 --+ { 1 , 

-1 } an d ¢ : G 1 --+- G2 ¢ is a one-one on to mapping. 

Proof: Since n=2 or 3, A(N1) has the desired structure. A(N') = A(2nQ) = C2 x 

G1 and A(N' /2) = A(2n- 1Q) = G2 . An isomorphism between G1 and G2 can be 

established using the function ¢ : G 1 --+ G 2 defined as 

¢(x) = x mod 2n-1Q, x E G1 . 

To see that </>(x) is an isomorphism note that cp(x) E G 2 because gcd(x, 2nQ) = 1, 

implying gcd(x mod 2n-lQ, 2nQ) = 1. Also (x mod 2n-lQ) < 2n-lQ. Thus </J(x) E 

A(2n-1Q) = G 2 . For any y E G 2 , both y and (y + 2n-1Q) belong to A(2nQ) and as per 

L~4.l and 4.2 (4.3 and 4.4 for n=3) exactly one of them is in G2 . Thus any given y 

E G2 is image of some element of G1. Finally, to complete the proof for isomorphism, one 

should show that ¢(x) is one-one. Assume ¢>(x1 ) = ef,(x2 ) for x1 , x2 E G1 and x1 > x2 . 

41 



Then 

This is in contradiction to the Lemmas 4.1 & 4.2 ( 4.3 and 4.4 for n=3) which showed 

that both x2 and x2 + 2"-1Q cannot belong to G 1 . Hence </>(x) = x mod 2n-lQ defines 

an isomorphism </> : G1 --+ G2 . 

Now define function 6 : G1 --+ { 1 , -1 } as 

6(x) 1 if x < N' /2, 

= -1 if x > N'/2. 

Let hi, gj E ·a1. Clearly both of these are odd since G1 C A(2nQ). Consider the case of hi 

< N' /2. One has in this case, ¢(hi) = hi, 6(hi) = 1. Therefore 

On the other hand, if hi > N' /2, then ¢(hi) = (hi - N' /2), 6(hi) = -1. Thus again, 

Therefore for all values of hi E G 1 we have 

Similarly for index gj we get the relationship ( using the fact that ¢(hi) is odd) 

(4.1) 

• 
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( 4.2) 

'• where 0 denotes the operation of group G 1 and f: G1 ~ ~ is defined as 

Combining ( 4.1) and ( 4.2) gives the desired result 

Theorem 4.3 shows that in the case under consideration the kernel matrix is indeed 

similar to a group table of group G 1 . This has the following computational implications. 

When N' = 4Q or 8Q for odd Q the matrix M( chi, dgj), hi, gj E A(N' /2) can be 

evaluated through a multidimentional convolution. The structure of convolution is given 

by the structure of group G 1 = A(N' /2). Since ¢ is a one-one mapping from G1 -t G2 , 

M( ¢(hi), ¢(gj)) is only reordering of the rows and columns of M. Similarly, 6(hi) and 

6(gj) functions mearly correspond to changing signs of specific rows or columns and colud 

be implemented by negating corresponding signal and transform components. 

4.4. Effective convolution length, 2"Q, n > 3, Q odd. 

This section considers those N1 that have an odd factor and are divisible by 16. It 

will be shown that the kernal matrix for N1 = 2"Q (n>3) has a 2"-3 x 2n-3 Toeplitz 

matrix structure and each elememt in this structure is a multidimentional cyclic matrix 

with structure dictated by group A{ 4Q). Following example illustrates this case 
43 
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Example 4.2 : Let N = 48 ( 24 .3) and c = d = 1 giving N' = 48. 

Clearly, A(48) = { 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47} and 

A(24) = { 1, 5, 7, 11, 13, 17, 19, 23 }. 

... 

The Matrix M, one is interested in this case, is defined as M(i, j) = cas(ij21r /48); iJ E 

A(24). One can write A(48) as A{48) = G1 x C4 = { 1, 7, 41, 47} x { 1, 11, 25, 35 }. 

Note that G 1 is isomorphic to C2 x C2 and 11 is the generator for C4 . If one arranges 

the convolution using the following row and column order : 

. 
S = { a 1 .j I O < i < 1 , j E G 1 } . 

It can be shown that there is a one-to-one correspondence between the elements of S and 

the elements of A(24) (In fact for every i E S, i mod 24 E A(24) and is distict). The 

matrix with the stated order becomes : 

1 7 41 47 11 29 19 37 

1 1.122 1.402 -0.185 0.861 1.122 -1.402 -0.185 -0.861 

7 1.402 1.122 0.861 -0.185 -1.402 1.122 -0.861 -0.185 

41 -0.185 0.861 1.122 1.402 -0.185 -0.861 1.122 -1.402 

4 7 0.861 -0.185 1.402 1.122 -0.861 -0.185 -1.4.02 1.122 

11 1.122 -1.402 -0.185 -0.861 -1.122 -1.402 0.185 -0.861 

29 -1.402 1.122 -0.861 -0.185 -1.402 -1.122 -0.861 0.185 

19 -0.185 -0.861 1.122 -1.402 0.185 -0.861 -1.122 -1.402 

37 -0.861 -0.185 -1.402 1.122 -0.861 0.185 -1.402 -1.122 

We see that the above matrix can be represented as 
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with 

Ca= 
1.122 1.402 

1.402 1.122 

1.122 -1.402 

-1.402 1.122 

Ca 

Cb 

Cc 

Cd 

,. 

Cb Cc Cd 
Ca Cd Cc 

Cd -Ca -Cb 

Cd -Cb -Ca 

-1.185 0.861 

0.861 -1.185 ' 

-1.185 -0.861 
and Cd= 

-0.861 -1.185 
• 

We see that the matrices Ca, Cb, Cc and Cd are cyclic matrices and the overall matrix 

has a Toeplitz structure. We now prove that the above is true for all cases when n > 3. 

h-g-2,r N' 
Theorem 4.4 : The matrix M(hi, g} = cas( 1 J, ), hi, gj E A( 2 ) and N' = 2"Q , 

n > 3, Q odd can be expressed as 

where 0 denotes the operation of multiplication modulo N', 6 : S --+ { 1 , -1 } and ¢, : 

S -+ A(N' /2) ¢ is a one-one onto mapping. 

Proof: Note that the structure of A(N1) is 

A(N' /2) = A(2"Q) := C2 x C n-2 x A( Q ) := A( 4Q) x C n-2· 
2 2 

.. 
Define mapping ¢, : S --+ A(N' /2) as ¢,(x) = x mod N1 /2. Now gcd(x, N') = 1 implies 

that gcd(x, N'/2) = 1, i.e, gcd(¢,(x), N'/2) = 1. Also ¢,(x) < N'/2, therefore ¢,(x) E 

. 
A(N' /2). To prove that ¢, is one-to-one by the method of contradiction, let x = a 10i

1
, y = 
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jo. S > d ,,1,.( ) A..( ) Th d N'/2 . I . th t + 
a Ji E , x_y an "" x = o/ y . en x = y mo , imp y1ng a x = y or y 

N'/2. 

. . . . 'o. Jo. d N' . l . "'10-Jo -- (J"11·1-1) mod N' 
a 11 = a Ji mo , imp y1ng \A 

(4.3) 

Clearly ( 4.3) is false since j 1i1- 1 is an element of the group A( 4Q) and therefore cannot be 
an element of C n-2 . To prove that { 4.4) is impossible, let g = j 1i1- 1 E G1 . But (N' /2 + 2 

1) E G1 implies g(N' /2 + 1) E G1 , i.e, 

N' (g 2 + g) mod N' E G1 . 

Using the fact that g is odd ( E A( 4Q)), one gets 

N' (2 + g) mod N' E G1 . 

But ( 4.4) shows that this element also belongs to C 
0 _3 , which is a contradiction. 2 

Therefore one can conclude from ¢,(x) = ¢(y) that x = y proving that the function </; is 
one to one. 

To complete the proof one may define function 6 : S --+ { 1 , -1 } as 

6(x) = 1 if x < N'/2, 

= -1 ifx > N'/2. 

Let hi, gj E S. Clearly both of these are odd since S C A(2"Q). Consider the case of hi < 
N' /2. One has in this case, </>{hi) = hi and b(hi) = 1. Therefore 
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On the other hand, if hi > N' /2, then ¢(hi) = hi - N' /2 and 6(hi) - -1 and again, 

Therefore for all values of hi E S one concludes that 

Similarly for index gj one can get the relationship ( using the fact that ¢(hi) is odd) 

(4.5) 

However when h;, gj E S, 

( 4.6) 

where 0 denotes the operation of set S and f : S ....... lR is defined as f(x) - cas(1~'), x E 

S. Combining ( 4.5) and ( 4.6) gives the desired result 

Theorem 4.4 has the following computational implications. This theorem 

indicates that in the present case (N 1 = 2"Q, Q odd, n>3), the kernel matrix, on 

shuffling of rows and columns according to the ¢ function and negating them according to 

the 6 function, is transformed into a highly structured martix. The resultant matrix can 

be described as made up of elements which are multidimentional cyclic martices mimicing 

the structure of the group A(4Q). Further, these submatrices form a toeplitz structure as 

is evidence·d by the fact that the (i, j)th submatrix is dependent only upon i+j, and not on 
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individual values of i and j. 

,, 

Multiplication of such a structured kernel with a vector implies a multidimentional 
convolution (based upon A( 4Q)) with an additional dimension reserved for Toeplitz 
product of length 2n-4 (thus if n < 4, there is no Toeplitz product to be considered, as in 

;• the section 4.3). Finally, it must be mentioned that the use of ¢ function only implies a 

shuffling of signal and transform components. Thus neither ¢ nor 6 add to the 
computational complexity of the transform. 

The section concludes by proving that o,ne can use ( 4Q - 1) as the generator a pf C 
2

n_2 . 

Theorem 4.5: Order of (4Q - 1) in Group A{2"Q) is 2n-2 (n > 2). 

Proof: For n = 3, it is easy to verify that the order of ( 4Q - 1) in A(8Q) is two 
as expected in the theorem. To prove the theorem by mathematical induction, assume 
that order of (4Q - 1) in A(2"Q) is 2°-2 . To find order of (4Q - 1) in A(2"+1Q), note 

that 

n-2 n-2 (4Q - 1)2 = 1 mod 2"Q or (4Q - 1)2 k. 2"Q + 1. 

Thus if k is even then 

n-2 +l (4Q-1)2 mod2" Q= 1,or 

+1 n-2 2n Q I ((4Q - 1)2 - 1), 
• 

• 1.e, 

. n-3 n-3 n-3 Since 4Q does not divide ((4Q - 1)2 + 1) { ((4Q-1)2 + 1) mod 4Q = ((-1)2 + 1) 

= 2 }, it implies that 

n-3 
2"Q I ((4QI - 1)2 - 1 ). 
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This implies that order of ( 4Q - 1) in A(2"Q) divides 2n-3 , which is contrary to the 

assumption. Therefore 

n-2 +l 
{4Q - 1)2 mod 2n Q "# 1. 

The other choice is when k is odd then 

n-2 +l 
( 4Q - 1 )2 mod 2" Q = 1 + 2"Q. 

If L is the order of ( 4Q - 1) in A(2"+1Q), it implies that L # 2n-2• Also L is not less 

than 2n-2 , otherwise 2nQ I ( ( 4Q - 1 )L - 1 ) i.e, order of ( 4Q - 1) in A(2nQ) is less than 

2n-2 • Also 
{) 

This implies that L must divide 2n-l. Since it has been shown to be greater than 2n-2 , it 

must be 2n-l. D 
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Chapter 5 

POST-PROCESSING OF CONVOLUTION 
I 

5.1. Introduction. 

I 

As has been explained in ·chapter 1, the third and last stage of the algorithm 

proposed in this thesis is combining the results of the appropriate convolutions to produce 

the Hartley Transform output components. From (2.5) and (2.9), one can see that the 

output components with indices having the same gcd d with N are evaluated together. 

In particular, X( dgj) is obtained by summing all the Xd, cO) where c 's divide N / d 

(or N/2d if N/d is even) for every gj E A(N/d). 
Further, all Xd c (j) 's are not 

I 

independent. One has the following results that may be used to find dependent Xd c(j)'s. 
. I 

if 4 does not divide N/cd and m(N/cd) = gj - g_, for some m 
J 

if 4 I (N/cd) and m(N/2cd) = gj- g_,, for some m. 
J 

(5.1) 

(5.2) 

\ In order to improve the readability of this chapter, we use the following notation. 

\ 

gj = u and"r(u) =j. 

' 

Thus / is the inverse function of gj from the group A(N/d) into the set of integers { 0, 1, 

... , IA(N/d)I - 1 }. With this new notation (5.1) and (5.2) take the following simple . 

form: 
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• 

Xd c(-y(u)) = Xd c(-y(u mod (N/cd)), if 4 does not divide N/cd, (5.3) 
' ' . 

and 
L(N/~cd)J 

Xd, c(-y(u)) = (-1) Xd, c(,(u mod (N/2cd))), if 41 N/cd (5.4) 

It will be shown in this chapter that combining the Xd, c 's to produce the 

transform componets is a systematic operation and can be carried out through regular 

computational graphs . 

5.2. Transform length, a power of 2. 

Let the transform length, N =·2n and d = 2x, x<n. Clearly, A(N/d) == { 1, 3, 5, 

... , 2n-x _ 1 }. The output can be written in terms of Xd c 's as follows : 
' 

X(2xu) = L X
2
x c(1(u)) where 1 < u < 2n-x, u odd. 

I n-x-1 ' C 2 · 
n-x-2 

== L Xx 1(,(u)) +Xx n-x-1(1(u)). 
l=O 2,2 2,2 

Now using (5.4) within the first summation and ( 5.3) in the last term gives 

n-x-2 L -n+x+l+lJ 
X(2xu) = L (-1) u.2 X x 1(1(u mod 2n-x-l-l)) 

l = 0 2 ' 2 

+ X x n-x-l( -y(u mod 2)). 
2 t 2 

(5.5) 

Even through at first sight (5.5) looks complex, it can be shown to be recursive i11 

nature. Define blocks B 5 , s = 0, 1, ... , n-x with 2s-l outputs, recursively as 
2 

and 

B1 (0) == X x n-x-1 ( ,(1) ), 
2 , 2 

B s+1(i) = B25(i) + X x n-x-s-2 ( 1 (2i+l)), 
2 2 t 2 . 

B s+l (i + 2s-l) = B 5 (i) - X n n-x-s-2 ( ,(2i+ 1) ), 
2 2 . 2 I 2 
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i = 0, 1, ... , 25
-
1-l and s = 0, 1, ... , n-x-1, 

then one can easily see that (5.5) can be expressed as 

X(2x(2i+l)) = B n-x(i), i = 0, 1, ... , 2n-x-l_l. 
2 

(5.6) 

Fig. 5.1. illustrates the calculation of the output points cerresponding to N = 16 

and d = 1. The equation (5.5) can be seen to produce a regular graph. Notice the 

addition of X1,16(0) to X 1 ,8 (0). This adds the signal component with index zero which 

was not considered as parts of sets of nonzero indices. Fig. ( 5.2) shows the sa1ne 

calculation illustrating the use of (5.6). The modularity of this implementation is an 

attractive feature for use of parrallel architectures. 

xl 1 ( o) 
. I \ 

X(1) 
\ 

\ 
\ 

x1,1 (~) 
\ 

X(3) 
\ 
\ 
\ 
\ 

xl 1 (2) 
\ X(5) 

I 

x1,1 (1) X(7) 

xl' 2 ( o) X(9) 
' \ ' ' ' ' ' X(11) xl' 2 ( 1) ' 

\ 
\ 
\ 
\ 

xl' 4 ( o) 
\ 

\ X(13) ,, ' \ ' ', ' \ 
' ' \ 

' \ 

xl' a < O) ' \ ' X(15) 

+xl,16.(0) 

Fig 5.1. Calculation of Hartley transform output points for N=16 and d=l 
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x1,1 (Ol 

xl,l (3) 

xl, 1 (2) 

x1,1 (1) 

x1,2(0) 

x1,2(l) 

xl,4 (O) 

xl' a ( o) 
+xl,16(0) 

.. 

\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 

\ 
\ ,. 

\ 
\ 
\ 
\ 

X(1) 

X(3) 

X(5) 

X(7) . 

X(9) 

X(11) 

X(13) 

X(15) 

Fig 5.2. Construction of box B8 from B4 and its use in calculation of output points N=16, d=l 

One can see that the complexity of the box B s is 25 additions. Thus the total 
2 

complexity of the post processing stage when N = 2" is given by 

n-1 n-x 

LL 25 = 2(2" - n - 1) 
x=ls=l 

(5.7) 

I 

The inner summation in (5.7) provides the number of additions required to compute all 

output poJnts with d = x and the outer summation mearly sums this number over all 

groups with different d's. 

5.3. Length, power of an odd prime. 

When N = p", p being an odd prime, for every possible c and d, 4 does not divide 

(N/cd). Thus (5.3) applies uniformly in all these cases. Suppose d = px, 0 5 x < n. 

Then one has, for u E A(pn-x) = { 1 5 u < pn-x I p does not divide u }, 
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X(pxu) = L X x ( ,{u)). 

I n-x P 'c 
C p 

(5.8) 

Clearly, in (5.8), c = p 1, 0 =:::.; I =:::.; n-x. AU sing this fact along with ( 5.3) gives 

n-x 
X(pxu) = L X x 1( 1 (.u mod pn-x-l)). 

l = 0 p ' p 
(5.9) 

Equation (5.9) can be implemented in a regular or in a block fashion as for done for the 

case of N = 2". However, it might be more instructional to look first at case when N = 

p, i.e., n = 1. In this case, d has an unique value of p0 = 1 and therefore (5.9) gives 

1 
X(u) = L X 1(,(u mod p1- 1)), 

l = 0 l, p 

(5.10) 

T-he absence of the modulo function in the first term is explained by the fact that in the 

present case, u < p. The relation (5.10) may be implemented as in Fig. 5.3 with a 

complexity of (p-1) additions. This implementation is called the block Bp. 

• 

" 

x1,1<~(p-l)) 

xl <i(o}) ,p 

Fig 5.3(a) The general box Bp 
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,, 

x1,1(0) 

l xl,3(0) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . . . . ....... '' .... . . ·.·.·.·.· ·.·.·_· .. '. ·_· ·.·.·. ·.·. ·.·. 

83 

Fig. 5.3(b) Calculation of X(l ), X(2) for N =3 illustrating .Llox B3 

X(l) \ 

X 1 1 ( 1) o--......,...~ ............. ---~-...<>.....+---o 

' 
X ( 2) 

X ( 3) 

X(4) 

xl,S(O)o-~~ --------
85 

Fig. 5.3( c) Calculation of output for group A(5) illustrating Box B5 

When one is dealing with a length p", n > 1, the block structure of (5.9) can be 

brought out as follows : 

Define blocks B 5 , s = 0, 1, ... , n-x to have (p-l)ps-l outputs as : p 

B1(0) = X x n-x( ;(O)), 
p ' p 

and B 5+1(i + (p-l)p5
- 1j) = B 5 (i) +Xx n-x-s-i(,(i + (p-l)p5

-
1j)), (5.11) p p p ' p . 
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i == 0, 1, ... , (p-l)p5- 1 -I and j = 0, 1, ... , (p-1). - . 

One can easily show that in this new notation, the relation (5.9) transforms to 
• 

(5.12) 

Th us the post processing stage is indeed regular and recursive as ( 5.11) sh.o,vs. Fig. ( 5.4) 

illustrates a typical box heirarchy. 

x3,l(O) 

x3,1(1) 

x3,1(2) 

.x3,l (5) 

x3,l (4) 

x3,1(3) 

x3,3(0) 

x3,9(0) \_) 

Fig. 5.4. Calculation of the transform points for N = 27 and d = 3 

illustrating Box B9 recursively obtained from B3 

X ( 1) 

X{2) 

X ( 4) 

X ( 5) 

X ( 8) 

·One can also see that in a block B s, there are (p-l)ps-l additions. Thus the tota.l 
p 

number of post processing additions in the computation of all the transform points ,vhcn 
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N = p" is given by 

n-1 n-x ( n 1) ~ °" ( s s-l) _ P -Li~ p - p - - n. x=l s=l (p-l) 

5.4. Length, product of relatively prime factors. 

Section 5.2 and 5.3 have considered the post processing when the length is power 

of a prime. The case of N = q1 q2 where gcd( q1 , q2 ) = 1 is considdered in this section. 

Together these results enable one to develop the post processing stage of the algorithm 

for any arbitrary length. Here one may use a multidimentional approach to do 

summations (2.5) and (2.9). If N is factored as q1 q2 and one uses Bq1 blocks first and 

multiplexes their output through the Bq2 blocks, the number of additions is given by 

q2 ( # of adds in Bq 1 block) + IA( q1)1( # of adds in Bq2 block). 

If instead one uses the Bq2 blocks first, the number of additions are 

q1 ( # of adds in Bq2 block) + IA( q2 )1( # of adds in Bq1 block). 

One can easily see from this that if 

Q1 - IA( Q1)I 
#of adds in Bq1 

> 
q2 - IA( q2)I 

#of adds in Bq2 ' 

• 

then use of Bq1 blocks first and Bq2 blocks later leads to a smaller complexity. 

The relation above has important consequences. When q1 and q2 are primes, as 

shown in section 5.3, number of additions in Bq1 and Bq2 are ( q1 -1) and ( q2 -1) 
e respectively. Also IA( q1)1 = q1 - 1 and IA( q2 )1 = q2 - 1. Thus one should use Bq1 

before Bq2 iff 
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ql - (q1 - 1) Q2 - (q2 - 1) · · 
(q1 - 1) > (q2 - 1) ' i.e, iff ql < Q2· 

The (minimal) complexity in this case is q2(q1-1) + (q1-l)(q2-1) = (q1-1)(2q2-· 1). 
t ' 

Thus, for example, when N = 15 and d = 1, the 8 transform points in the set Sd can be 

calculated using 18 post processing additions if one uses B3 blocks first. If instead, B5 

was used first, one would have needed 20 additions. 

,' 

( 

• 
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Chapter 6 
CONCLUSION 

6.1. Summary of results. 

Signal processing algorithms need efficient computational architectures and 

algorithms to process increasingly large volume of data encountered in modern day signal 

processing techniques. The work presented in this thesis deals with efficient computation 

of discrete Hartley transform which is becoming a new popular signal processing tool. 

The algorithms presented in this thesis are radically different from other algorithms 

available in literature in that it, for the first time, it meshes the group theoretic 
.. 

techniques with the properties of the Hartley transform itself. It allows one to identify 

the multidimensional cyclic structures hidden within the Hartley transform ~ernel .and 

thus compose the transform result from many cyclic convolutions. Since efficient 

techniques are now available for cyclic convolution, the resultant procedure turns out to 

be computationally superior to the other known techniques. Table 6.1 presents the 

computational complexities of the algorithm proposed in this thesis for certain values of 

transform lengths. 

N 

8 

12 

15 

16 

30 

32 

Table 6.1. Complexity of the proposed algorithm 

• preprocessing 

adds 

14 

22 

22 

30 

78 

62 

convolution 

mults 

2 

8 

22 

10 

48 

36 

adds 

0 

16 

78 

14 

152 

74 

59 

post processing 

adds 

8 

18 

·26 

22 

53 

52 

mults 

2 

8 

22 

10 

48 

36 

Total 

adds 

22 

56 

126 

66 

283 

188 



The complexities of the proposed algorithms are compared with those of Bracewell 

[7] (algorithm BJ, Mackelberg and Lipka [9] (algorithm ML) and Sorenson et. al. (10] 

( algorithm SJBH) in Table 6.2. One can see from this table that the multiplicative 

complexity of the proposed algorithm is less than that of previous algorithms and the 

additive complexity is comparable. It must be mentioned here that there is further scope 

for optimizing the proposed algorithms. In particular, an examination of the specific 

values of elements within the cyclic matrices will enable one to reduce the operation 

counts (and specifically the number of additions).· ,·No such attempt to do this was made, 

however, because the main thrust of this thesis was to derive techniques to find 

m ultidimentional cyclic matrices within the transform kernel using group techniq·ues. 

N 

8 

16 

32 

Table 6.2. Comparison of the complexity of the 

proposed algorithm with other algorithms 

algorithm B 

mults adds 

34 

98 

98 

258 

algorithm ML algorithm SJBHnew algorithm 

mults adds mults adds mults adds 

20 

68 

74 

194 

2 

12 

42 

22 

64 

166 

2 

10 

36 

22 

66 

188 

Another major advantage of the proposed algorithm seems to be its applicability 

to almost any length. The algorithms reported in litrarure are limited to transforms of 2n 

point sequences. Finally, the new algorithms are highly regular and show a high degree of 

parallelism. This implies that it may be implemented as an application specific integrated 

circuit (ASIC) as well as used on parallel architecture. 
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6.2. Future extensions. 

The work presented here opens new av'enues for further research in two directions. 

Firstly, it was often observed that the sequences made up of elements from Hartley kernel 

and taking part in cyclic convolutions exhibit certain interesting relationships. These 

relationships, if systematically predicted and exploited, can result in an algorithm with 

lower computational complexity. For example, while calculating the d=l outp.ut points 

of the discrete Hartley transform of 9 points, one encounters the two dimensional cyclic 

structure C3 X C2 (for c=l). This results in a cyclic convolution of two dimensional 

patterns of 3 X 2 points. Interestingly, both the length 3 rows in one of the patterns add 

to zero. If this fact is used in the evaluation of that two dimensional convolution, one will 

be able to cut down on a large number of multiplications and additions. 
' 

The second research direction is to study parallel architectures to evaluate Hartley 

transform. The algorithm presented has regular recursive structure as has been proved in 

this work. This observation about the algorithm is true for all three of its stages. The 

algorithm may also possess greater regularity at a global level. The execution time of any 

algorithm does finally depend upon its implementation just as much as the operations 

count, and a study of the parallel implementation of this algorithm will therefore be a 

very worth while project. 
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