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Abstract

Group Theory has played a very significant role in designing fast algorithms for
digital signal processing. This thesis develops a new algorithm to compute the Hartley
Transform based on group theoretic concepts. The proposed algorithm identifies
multidimensional cyclic structures within the Hartley transform kernel by using the
properties of groups formed by the row and column indices. It-then uses the readily
available convolution algorithms to evaluate the products of su.ch submatrices and vectors

properly prepared from the input sequences. A combination of such product vectors gives

vectors. The proposes algorithm has a better computational complexity than other
algorithms available in the literature, is more universal (i.e., applicable to all lengths),

and has a modular structure, implying its suitability for parallel implementation.




Chapter 1
INTRODUCTION

1.1. The Central Goal.

Because of the iﬁcreasing availability of digital computational engines, much of
the signal processing today, is done in discrete digital form. Linear transformations such
as the Fourier, Hartley and Hadamard transforms have often been used successfully in
various digital signal processing applications. However, in order that the transform
technique satisfy todays demands for real time performance, one needs to decrease the
computational complexity of the transform algorithm. .This requirement, for example,
forced researchers to improve the algorithm for discrete Fourier transform through
Goertzel algorithm [1], fast Fourier transform algorithm [2], the chirp-z transform [3] and

Winograd Fourier transform algorithm [4].

The Hartley transform defined in 1942 by R. V. L. Hartley [5] has many
properties superior to Fourier transform. It is symmetric with respect to the
transformation and kernel, the transformation matrix is real and it performs better than
Fourier transform in many applications such as the spectral analysis. However, its
discrete version, the discrete Hartley transform was derived only in 1983 [6].
Consequently, the fast algorithms for discrete Hartley transforms have begun appearing
in literature only recently [7-11]. This thesis.derives a new algorithm for Hartley
transform based on fast cyclic convolutions. The performance of our algorithm is superior
in terms of number of operations to other algorithms available in literature. In addition,
our algorithm can be easily partitioned for parallel execution and is therefore well suited

either to general purpose parallel architectures or to specially designed digital systems.

1.2. Algorithms for Hartley Transform.
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The Discrete Hartley Transform (DHT) of an N-point sequence is defined as

( N-1
X(s) = ) M(s, 1) x(r), s=0,1,2, .., N-1,
r=0

where M(s, r) = cas(2—71{111§) = cos(2—7§'§) + sin(z—ﬁ?).

From ”the definition, one can calculate this N-point Hartley transform in N? real
multiplications and N(N-1) additions. When N is a power of two, one can use
techniques similar to the fast Fourier transform to calculate the Hartley transform.! The
decimation in time algorithm given by Bracewell [7] is based on recursively expressing a N
point DHT in two (N/2) point DHTs. In particular, he uses the relation

X() = % [Xe(i mod (N/2)) + Xo(i mod (N/2)) cos (27i/N)

+ Xo(i mod (N/2))sin(2#i/N)], 1=20,1,.., N-1,
where, Xe and X, are the DHTs of the (N/2) point sequences formed by the even and
odd components of x(i) respectively. Applying this same relation to these smaller length
DH'T's, and continuing down to DHT’s of 2 point sequences, one can obtain a fast DHT
algorithm. The algorithm can thus be expressed in vector notation as

X =(1/N) L,092 N - - L3L2L1P\x,
where, each L; matrix represents a butterfly stage, P is a permutation matrix and x is
the given vector. The computational complexity of the resultant algorithm is Nlog,N —
2N + 2 multiplications and 2Nlog,N — 2N 4 2 additions. If instead one uses the
decimation in frequency [9], one can base the computation on recursive equations:

X(21) = X4(i), X(2i41) = X,(i) cos(27i/N) + X,(N/2 — i) sin(27i/N),
where, X; and X, are the DHTs of sequences whose j-th components are x(j) + x(N/2 +
j) and x(j) — x(N/2 —j) respectively. Thus a N poiht DHT 1is again calculated through
two (N/2) point DHTs. Recursive application of these relations gives the total

computational complexity to be Nlog,N — 3N 4+ 4 multiplications and 1.5Nlog,N — 1.5N

1These algorithms are referred to as the fast Hartley transform algorithms.




)

+ 2 addition;. Thus in both the versions of the fast Hartley transform, one finds that the
computational complexity is O(Nlog,N). "

Hsu and Wu [8] have observed that the product of the Hartley transform matrix"
and the Walsh-Hadamard transform matrix has a simple block diagonal structure. They
call this resultant matrix by the H-transform and use that in the computing of Hartley
transform. In particular, a sequence could be first transformed by the (inverse) Walsh-
Hadamard transform and then through the H-t-ransorm to yileld the desired Hartley

transform. The block diagonal structure of the H-transform makes this method attractive

for parallel and VLSI implementations.

Several other methods of calculating the discrete Hartley transform have also been
proposed [10] by Sorensen et. al. These methods are adapted from various Fourier
transform algorithms to suit Hartley transform. They include such wide variety as the
split radix, prime factor, radix 4 and Winogr'ad algorithms and are generally

computationally superior to the fast Hartley transforms [7, 9].

1.3. Principle and Structure of a New algorithm.

This thesis proposes a new algorithm for computing the Discrete Hartley
transform by exploiting the structure of its kernel matrix. In particular, it has been
shown that the matrix can be partitioned such that each partition submatrix looks like a
multidimensional cyclic convolution matrix?. The efficient algorithms for cyclic
convolutions [12] can then be used to calculate these smaller submatrices. Thus the new

algorithm is a three stage procedure. The most important of these is the second stage in

°This statement is not exactly true. In case of certain effective convolution
lengths, the submatrix is a Kronecker product of a Toeplitz matrix and a

multidimentional cyclic matrix.




which the convolutions are performed. The entire algorithm structure depends upon the
kinds of convolutions that are to be carried out in this stage. The first stage sets up the
inputs to the various convolutions. This first stage, referred to as the preprocessing stage
in this work, combines the input data points using additions and subtractions only. The
last stage of the algorithm comb?nes the appropriate convolutjon outputs to create the
final transform vector. This stage, called the post-processing stage, is also purely

additive. Thus the only multiplications involved in the entire algorithm are performed in

the convolution stage.

The algorithm for discrete Hartley transform presented in this thesis is unique in
many respects. It is the first time cyclic structures have been identified within the

Hartley transform kernel. As has been amply demonstrated in this thesis, this has been

themselves well to parallelisation. The complexity of the algorithm presented here is

lower than other algorithms available in the literature [7-11].

1.4. Organization of the Thesis.

Chapter 2 of the thesis states and proves the underlying principles of the new
algorithm. This chapter also presents the mathematical ideas, including the principles of
group theory and the relation between groups and convolutions, which are crutial to
understanding this work. As stated in Sec. 1.3, the algorithm has three stages. These are
treated in Chapters 3, 4 and 5. Wherever necessary, these chapters include examples to
illustrate the concepts and figures to explain the structure in the algorithm. Finally,

Chapter 6 contains the conclusion and general discussion of the work presented.




Chapter 2
CYCLIC COMPONENTS OF HARTLEY TRANSFORM

2.1. Group table and convolution.

This chapter provides the mathematical background necessary to comprehend the
following chapters as well as the description of the basic structure of the Hartley
transformation. The mathematical foundation of understanding a linear transformation
through group algebra are taken from an earlier work by Wagh and Ganesh [5], and
interested readers may refer to it for further details. The description of the Hartley

transform algorithm in terms of group algebra is described in this chapter has not

appeared in earlier litrature.

This entire thesis is concerned with exploiting the structure in the linear
transformation, the Hartley transform. In particular, we are interested in linear

transformation matrices that mimic a group table.
Consider an N x N matrix defined by

M(i, j) = f((i.j) mod N), 1<i,j<N—I. (2.1)

for arbitrary (complex) function f : Zy — C. An example of such a matrix is the Fourier

matrix defined by

MG,5) = e N = cos (3R + {Tsin(2T). (2.2)

Note that in (2.2) M(i, j) is a function of i.j. Futher since both the sine and cosine
functions have periods of 27, M(i, j) is a function of ij mod N. If the indices i and j form
a cyclic group with the group operation of multiplication modulo N, one can represent the
- matrix as a group table. The operation of the matrix multiplying with a vector turns out

in this case to be a convolution of the first row of the matrix and the vector. Following
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example demonstrates the structure of such a matrix which is clearly cyclic.

Example 2.1 : Let i, j € AGBG) = { 1,2, 3,4} A(5) forms a cyclic group under the

operation of multiplication modulo 5. If f(i) mod 5) describes the matrix entries, the

matrix looks like

1) £(2) £(3) f(4)

f(2) f(4) (1) £(3)

£(3) (1) £(4) (2)
f(4) £(3) £(2) (1)

Notice that if the row and column numbers are placed in an ascending order, M does not
resemble a cyclic matrix. However, if one orders the rows and columns using a genrator
of the group, the matrix does become cyclic. In the above example 2 ¢ A(5) has order 4.
One can use the generator 2 to order the rows and columns. The new index order is 2°,
2'1', ?2, 23 (1, 2, 4, 3, since the operation is still modulo 5). M can now be seen to be

transformed into

(1) 1(2) £(4) 1(3)
f(2) (4) £(3) (1)
f(4) 1(3) £(1) (2)

(3) 1) 12) 1(4)

which is a 4x4 cyclic matrix and its product with a vector can be computed using cyclic

convolution algorithms.

Two comments are in order at this point. First, the cyclic convolution is now
computing the product y/ = M'.x/ rather than the required product y = Mx. However,

the row and column shufflings transforming M into M/ can be compensated by equivalent




shufflings of the components of x and y to create x' and y’ respectively. To illustrate this

in case of the previous example, let the required computation be

) 1) 13) 1) [ x5, | [y,
f(2) 1(4) (1) £(3) || x, R
f(3) £(1) f(4) £2) || x5 | | y,

| 1(4) £(3) £(2) W | x| | va J

By shuffling the columns of M (to the required order) and appropriately shuffling

components of x, one gets

1) 12 1) 13) | [ x, ][ yi
f(2) 1(4) 1(3) £(1) || x, | v2
f3) £1) £2) (4) | | x4 | | ys |

_f(4) f(3) f(1) f(2)J X3 Y4

W 1) 1) 1) ][ x5 ] [y
(@) 14) 13) 11) || x, | |,
f(4) £3) (1) £2) || x4 | | ya [

_f(3) f(1) 1(2) f(4)_J _ X3 J _ Y3 ]

the required cyclic convolution. Note that the shufflings of x and y vectors do not add to




group. However, note that it is still an Abelian group (integer elements and the group
operation of multiplication modulo N guarantes that). The fundamental theorem of
groups says that it is isomorphic to the direct product of cyclic groups. By appropriate
shuffling of rows and columns, the matrix could therefore be made to look like Kronecker
product of cyclic matrices. Such matrix vector product can be evaluated through

multidimensional cyclic convolutions. This concept is illustrated by example 2.2.

Example 2.2 : Let 1,j € A(15). A(15) ={1,2,4,7,8,11,13,14 } = C, x C,. The

matrix M(i, j) = f(ij mod 15) = cas(27ij/15) is shown in Fig. 2.1.

1 2 4 7 8 11 13 14
1 1.32 1.41 0.89 -0.77 -1.19  -1.10 -0.07 0.51
2 -1.41 0.89 -1.19 0.51 1.32  -0.77 -1.10 -0.07

4 0.89 -1.19 132 -0.07 141 051 -0.77 -1.10
7 -0.77 051 -007 0.89 -1.10 1.41  1.32 -1.19
8§ | -1.19 132 141 -1.10 0.89 -0.07 051 -0.77
11 | -1.10 -0.77  0.51 1.41 -0.07 1.32 -1.19  0.89

13 -0.07  -1.10 -0.77 1.32 0.1 -1.19 0.89 1.41

14 0.51 -0.07  -1.10 -1.19  -0.77 0.89 1.41 1.32

Fig 2.1. Matrix (M) for i, j € A(15).

Using genei‘ators 2 and 11 of C4 and C, respectively, one gets C, = { 1, 2, 4, 8 } and C,
= { 1, 11 }. Their direct product thus gives A(15) with the desired order of rows and

columns of M as {1, 11, 2, 7, 4, 14, 8, 13 }. Note that this order transforms the matrix

M to desired M’.




1 11 2 T 4 14 8 13

1 1.32  -1.10 1.41 -0.77 0.89 0.51 -1.19  -0.07
11 | -1.10 1.32  -0.77 1.41 0.1 - 089 -0.07 -1.19
2 | 1.41 -0.77 0.89 0.51 -1.19  -0.07 1.32  -1.10

7 -0.77 1.41 0.51 0.89 -0.07 -1.19 -1.10 1.32

4 0.89 0.51 -1.19  -0.07 1.32  -1.10 1.41 -0.77
14 0.51 0.89 -0.07 -1.19 -1.10 1.32 -0.77 1.41

8 -1.19  -0.07 1.32  -1.10 1.41 -0.77 0.89 0.51

13 -0.07  -1.19 -1.10 1.32  -0.77 1.41 0.51 0.89

Fig 2.2. Matrix M’ obtained from M by row and column shuffling.

Finally, the cyclic structure in a matrix may have to be brought out by changing
signs of appropriate rows and columns and correspondingly negating components of x and

y vectors. This is illustrated in example 2.3.

Example 2.3 : Consider the following computation

- 7 - Ir 3
Y1 a -b ¢ d X1
Yo -d a -b -c Xo
Y3 B C '-d a b X3
y b -¢ d a X

R i I

This product cannot be computed as stated using the techniques of cyclic convolution,
since M is not a cyclic matrix. However, if one inputs -X, Instead of x, and computes -¥5

" instead of Yo, the computation can be made to look like

10




P VA1 | i a b C d 1T Xq |
-Yo d a b ¢ -X»
Y3 - c d a b X3
Ya b c d a X4

- - - - - -

The matrix in this computation now has a cyclic structure and the product can be

computed using numerous algorithms used for cyclic convolution.

2.2. Paritioning Hartley Transform in convolutions.

In most practical situtations, the indices defining the entire transformation matrix
may not form a group. Instead, these indices may be partitioned into subsets such that
each subset fofms a group. thus the origanal matrix structure could be viewed as a
containing many smaller convolutions. The procedure for computing the matrix-vector
product would then consist of evaluating many smaller convolutions and the combining
the their results. This procedure of partitiioning the index sets into appropriate groups is

at the heart of converting Hartley transform and is described in this section.

The Discrete Hartley Transform (DHT) of an N-point sequence is defined as

N-1
X(s) = ) M(s, r) x(r), s=0,1,2,.., N-1.
r=0
‘ _ 27rsy _ 27rS . (2WIS
where M(s, r) = cas( N ) = cos( N ) + sin( N )-

We calculate X(0) seperately because X(0) is mearly a sum of all x components.

To compute other X(s) components the nonzero indices may be partitioned as follows.
Define the primary partition index, d € Z, such that d | Nand 1 < d < N. Then

one can form sets Sd such that

11




S¢={i€Z|ged(i,N)=d}, 1<i<N}.

We now concentrate on computing X(s), s € Sy. Fori € Sg> 8cd(N, i) = d and 1 i<

N gives

ged(N/d,i/d) =1and 1 <i/d < N/d.

Clearly, set of such integers (i/d), form the group A(N/d), the group of automorphisms of

cyclic group of order N/d. Let the elements in A(N/d) be denoted by g, 0 <j <
|A(N/d)| -

1 using the ordering of group elements as described in section 2.1. One then

gets

Sq = {d. g | g € A(N/d) }.

Also M(d.gj, r) can be written after proper shuffling corresponding to a group ordering as

27rrgj 27rrgj

M(d.gj, r) = cos( N7d ) + sin( N7d ).

Such M(d.g;, r) is periodic in r with period (N/d) because

27(r+ L N/d)g; 27 (r+ 1. N/d)g;

M(d.g;, r + LN/d) = cos(

N7d ) + sin( N7d ).
l 27rrgj . l 27rrgj
= cos(2nlg; + —NF) + sin(27lg; + N7d )-
27rg; 2mrg;

_ j . <775,

_cos(N/d) +sm(N/d).

= M(dg;, r) . (2.3)

Now from the definition of the Hartley Transform one gets
N/d-1 4-1
X(dg) => Y M(dgj, r + L N/d). x(r + 1. N/d), g € A(N/d).

r=0 I=0

12




Using eqn (2.3) one get
N/d-1 g4-1

X(dg;) = ,___.Z% IZ% M(dg;, r). x(r + L N/d), g € A(N/d).

Since M(dgj, r) is independent of | we can simplify the above as

N/d-1 d-1
X(dg;) = Y M(dgj,r) Y x(r 4 L N/d), - g € A(N/d).

r=0 =0
d-1

Let yq4(r) = Z x(r + L. N/d), 0<r< g — 1. (2.4)
(=0
N/d-1

then, X(dg)) = ) M(dgj, r) yu(r), g € A(N/d).
r=0

Now define c such that ¢ | (N/d) as the secondary partition indez. Define a set T¢ as

Tc={r|gd (r, N/d)=c}, 1< < N/d.
Notice however that gcd(r/c, N/cd) = 1 and 1 < (r/c) < (N/cd). The r/c values form

A(N/cd) under the group elemrnt ordering of Sec 2.1. Thus T¢ can be expressed as
Tc = {ch;| h; € A(N/cd) }.

Therefore one can rewrite (2.4) as

X(dg) = ) X4 () (2.5)

c| N/d

where, X4 () = Y- M(dgj, ch) yq(h), g € AN/d), 0 <j < | ACN/d)| — 1.

We now show that only a few of X4 (i) in (2.5) are distinct.

. | | gj- h;.2m
Since M(dg;, ch;) = cas ( N7cd )
M(d(x 4+ m. N/cd), c.h;) = COS(2W(X+ m. N/cdh 22(xt m. N/Cd)hi).

Njed )t sin( ~ N/ed

13




27xh, 2wxhi

= cos(2rmh, +

N/ d') + sin(27mh; + N/cd)'
2wxh, 2wxh,
=cos(N/ d) Sm(N/cd)

= M(x.d, c.h;).

Thus M(d.g;, c.h) = M(d(g; mod ), c.h).

Thus one needs to calculate X4.c(J) only at those j’s for whom gi < N/cd. Further,

ged(g;, N/cd) = 1 implies that the g;’s we are interested in belong to A(N/cd) and the

computation in (2.5) can be rewritten as

Xeoli) = 3 cas (B2 0 (o) A
a.cd) = cas .yq(h:.c), ;€
- h; € A(N/cd) N/cd cd

| h. 27
It is now easy to show that the function cas (g;\l/cd ) can be expressed as f(g; © h;)

where

and f(u) = cas(ll\}'/QCZ). Note that & denotes the multiplication modulo N/cd, the group

operation of A(N/cd).

Xgel) = > (g h).yqhi.c), g e A (2-6)
h.e A(N/cd)

As has been shown in sec 2.1, X4 c vector thus can be computed through a convolution

over group A(N/cd).

If 2 | (N/d), the structure in M can be further exploited because one can write

M(ng, r) = cas ( ) where g; € A(-l(;l)

N /2d

14




The function M(dgj, r) is now periodic with a smaller period N/2d because

m(r+ L N/2d)g; w(r+ L N/2d)g;
Nj2q ) T sin N/2d

M(dg;, r + L. N/2d) = cos(

nrg; Trg,
M(dg;, r + L. N/2d) = cos(wlgj N/Q:i) + sin(rlg; + N/Qii)

lg. Trg. Tre.
M(dg;, r + L N/2d) = (-1) 3 [cos( /gﬁ) + sin(-N/—ng)].

ig;
M(dgj, r + L N/2d) = (-1) ' M(dg;, r) -
This last step is due to equation cos(kw + 0) = (-l)kcos(ﬁ) and sin(km + 6) = (-1)%

sin( ). Since g; € A(N/d) and N/d is even, g; must be odd. Therfore
— [ (9 ‘ --
M(dg;, r + IN/2d) = (-1) M(dg;, r). (2.7)

The expression for X(dg;) can now be written as

N/2d 1 24-

1 -
M(dgj, r + L Y 59)- X(r + L d-), g € A(N/d), N/d even.
r=0 |[=0 | |

Using (2.7) this can be simplified as

N/2d-124-1 |
X(dg;) = ZO D (1) M(dgj, r). x(r + 1. ), g € A(N/d).
r= [=0
N/2d-1 2d-1
X(dg;) = ; M(dg;, r) Z( D! x(r 4 1 5%), g € A(N/d).

Or alternately

2d-1
yq(r) = IZ(-l)l x(r + L %)
=0
N/2d-1 |
and  X(dg;) = 5_;) M(dgj, r) . y4(r), g € A(N/d). (2.8)

e

As before, one can define the se\condary partition indexr ¢ such that c | (N/2d) and form

15




sets T as

Tc={i|ged (i,N/2d) =c }, 1 <i <(N/2d) }.
Clearly, in this case for i€ T, (i/c) € AEN/ch) because gcd(i/c, N/2cd) = 1 and 1 <

(i/c) < N/2cd. Therefore set T¢ can also be described as

— N
where h; is the i-th element of group A(N/2cd) ordered as in Sec 2.1. The output vector

can thus be written as

c| N/2d
where, Xd,c(j) = M(dgj, ch,) yq4(h;), g; € A(N/d). (2.9)
hi Tc

€
In (2.8), M(dg;, ch;) = cas( Depending upon the even or odd nature of N/2cd,

this function has differnt periodicities. These are treated as the following two cases

Casel : 2| (N/2cd). In this case one has

m(x+ m. (N/2cd))h. | . ,m(x+ m. (N/2cd))h:
M(d(x + m. Q%d)’ h..c) = cos( ( N/(2c</i ) ") + sin( ( N/(ch ) h.
M(d Ny . b wxh; , b wxh;
(d(x 4+ m. m), i-c) = cos(mmh, + N/2cd) + sin(7mh; + N/2cd)°
wxh; wxh,

M(d(x + m. ), hie) = (D™ [eos(rge) + sin( et

= (-1)mhi M(x.d, h;.c).

Now h; € A(Q—Iga) and % is even, h, must be odd. Therfore one can write the above

equation as
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M(d(x + m. %), h.. c) = (-1)™ M(d.x, h;.c)

M((g; + m. 55)d, b ¢) = (-1)™ M(d(g; mod o), hyec)
Thus one needs to calculate X .(j) for those j’s for whom g; < N/2cd. Further gecd (g;,

N ) = 1 implies that g; € A(ﬁl-;%) Therefore in this case,

2cd
Xgci) = 3 cas (glﬁ/l;i;;)  yg(hi. ©), g € AL
hie A(N/2cd) )
Lhe.w
Note that the function cas (I%IJ/Qjcd) can be expressed as f(g; & h;) where f(u) =

u.m — h o : |
CaS(N/QCd) and h; & g; = h;. g mod (N/cd), the operation of the group A(N/cd).

However, this is a differnt group than the one containing h; and g;-

Using this interpretation, one can conclude that

Xgci) = > f(go h).yyhic), g € Alzng) 2| (N/2cd). (2.10)
hie A(N/2cd)

Since h;, g; € A(N/2cd) and @ is the operation of group A(N/cd), this computation
cannot be carried out as a convolution over a group. It will be shown in Chapter 4 that

this is a Toeplitz computation.

Case II : 2 does not divide N/2cd , but 2 | (N/cd). In this case, as before, one can show

that

M(dg;, ch)) = M((g; + m -(?Ia).d, h;.c)
Thus one needs to calculate X4 c(j) only at those j’s for whom g; < N/cd. Also ged(g;,

| %) = 1. This implies that g € A(N/cd). Therefore

. g'o hio 2” N
Xq4c0) = cas (= ). yg(hic), g € A(=). | (2.11)
* h;€ A%‘l:/kd) N/ed | J «d

Note that now h; € A(N/2cd) while g; € A(N/cd). Since 2 does not divide N/2cd, let Q
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represent the odd integer N/2cd. Then, h, € A(Q) and g € A(2Q). However A(2Q) =

A(2) x A(Q), or A(2Q) = A(Q). Thus A(2Q) and A(Q) are isomorphic and g; has an

image in A(Q) under this isomorphism. However, even though h,, g € A(Q), the cas

function can be expressed as f(g; ® h;) where @ is the operation of multiplication modulo

2Q (=N/cd). Note that in this case, the submatrix calculating X .(j) cannot be viewed

as a convolution matrix. It will be shown later in chapter 4 that it is part of a larger

group table and in fact, is a Toeplitz matrix.

2.3. Convolutions involved in DHT.

In order to illustrate the ideas presented in section 2.2, consider the calculation of

DHT of order 12 shown in Fig 2.3.

I
!

1.00

i
z

1.00

1.00

1.00

i 1.00

1.00
1.00
“ 1.00

1.00

1.00

yo! [1.00 1.00

1.37

1.37

1.00

0.37

-0.37

-1.00

-1.37

-1.37

-1.00

-0.37

0.37

1.00 1.00 1.00

1.37 1.00 0.37

0.37 -1.00 -1.37

-1.00 -1.00 1.00

-1.37 1.00 0.37

-0.37 1.00 -1.37

1.00 -1.00 1.00

1.37 -1.00 0.37

0.37 1.00

-1.00 1.00 1.00

1.37 -1.00 0.37

-0.37 -1.00 -1.37

Fig 2.3. Kernel matrix of the DHT of order 12.

-1.37

1.00

1.00

1.00

1.00

1.00

-0.37 -1.00 -1.37 -1.37 -1.00

-0.37

1.00

-1.37

1.37

-1.00

0.37

0.37

-1.00

1.37

-1.37
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1.00
-1.00
1.00
-1.00
1.00
-1.00

1.00

-1.00

1.00

1.37

-1.00

- L aad

0.37
0.37
-1.00
1.37
-1.37
1.00

-0.37

0.37

1.00

-1.37

0.37
1.00
-1.37
0.37
1.00

-1.37

-1.00 -0.37 0.37

-1.00

1.00

1.00
-1.00
-1.00

1.00

1.00
-1.00
-1.00

1.00

1.00

-0.37

-1.37

-1.00

0.37

1.37

1.00

-0.37

-1.37

-1.00

0.37

1.37

1.0075 Xg
0.37 | xlf
-0.37 x2.5
100 x,
-,1.37; X4
-1.375 Xg
-1.00! Xg
-0.37;. X7
0.37 *z Xg
1.0(; fl Xg
1.37:: X10
137 xy,




If“appré'priate grouping and shuffling is applied to the DHT of Fig. 2.3, the convolution
structure in the matrix becomes clear. Fig 2.4 shows the structure which helps one
evaluate the y vector through convolutiqns. Note that the computation consists of a
The convolution is over the group

single convolution for each possible (d, c) pair.

A(N/2cd) or over A(N/cd) depending upon whether.N/cd 1s even or odd, as discussed in

Sec 2.2.

:r'yo—’% ;_1.00 1.00| 1.00 1.00 1.00 1.00 " 1.00 1.00E 1.00 1.00/ 1.00 1.00° ’Sco—
Yo . 100 1.00{-1.00 -1.00 -1.00 -1.00 1.00 1.00'-1.00 -1.00 1.00 1.00 X6
e 1.00 -1.00] 1.37 -0.37 -1.37 0.37| 1.37 -0.37 1\.00'-1.«66‘ 6;37“-1._37; x1 :
§y5 1.00 -1.00{-0.37 137 0.37 -1.37(-0.37 1.37 1.00 -1.00 -1.37 037 x,

y; 100 -1.00}-1.37 037 137 -0.37| 1.7 -0.37 -1.00 1.00 037 -1.37 ix-,

yiz 100 -1.000 0.37 -1.37 -0.37 1.37]-0.37 137 -1.00 1.00 -1.37 0.37 x,,
y»  1.00 100 1.7 037 137 0375 0.37 -1.37]-1.00 -1.00 -1.37 0.37 x,

yio 100 1.00 -0.37 1.37 -0.37 1.375-1.37 037}-1.00 -1.00 0.37 137 xpq
ys  1.00 -1.00 1.00 1.00 -1.00 -1.00 -1.00 1.00{-1.00 1.00 | 1.00 1.00

Yo  1.00 -1.00 -1.00 -1.00 1.00 1.00 -1.00 -1.00{ 1.00 -1.00| 1.00 1.00 %4

'ys 100 1.00 0.37 -137 0.37 -1.37 -1.37 0.37 1.00 1.00% 037 137 Xg
yg  1.00 1.00 -1.37 0.37 -1.37 0.37 0.37 -1.37 1.00 100§-1 37 0.37° xg

— ——

Fig 2.4. Shuffled Kernel of the DHT of order 12

In order to find the total number of different convolutions involved in the
computation, one can define a parameter q = c.d. Since ¢ | N/d, q is always an integer,
and q | N. In fact, foe every q, q | N, there are x(q) ways of choosing distinct (d, c) pairs

satisfying our requirments. Here x(q) denotes the number of ways q can be factored in
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two numbers. If N/q is even, then a;ll these x(q) convolutions are over the group
A(N/2q) and if N/q is odd, then the x(q) convolutions are over the group A(N/q). (The
dimensionality of the convolution depends upon the structure, and in particular the direct
factors of the group A(N/2q) or A(N/q), as might be the case). Table 2.1 lists the
convolutions as they occur in the calculation of the DHT of length 12. The convolutions

specified in this table can be identified with the structure of the DHT matrix of Fig 2.4.

Table 2.1. Convolutions involved in the DHT of N=12.

q . d C N/d or N/2d convolution group conv:oluti_o_h size
oo : 6 A(6) 2x2
y 1 2 6 A(3) 22

2 1 3 A(3) 2x2

3 1 3 6 A(2) 1x1

3 1 2 A(2) 1x1
4 4 1 3 A(3) 2x2
6 1 1 - ]
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Chapter 3
PREPROCESSING OF INPUT DATA

3.1. Introduction.

It was established in Chapter 2 that the discrete Hartley transform matrix can be
partitioned into submatrices by proper grouping and ordering the row and column indjces.
Each of these submatrices may be“ computed using cyclic convolution techniques.

By examining (2.6), (2.10) and (2.11), one can see that variable sequences, y,, taking
part in in the convolution are obtained by systematic addition (or subtraction) of selected
input data components. This addition stage 1s called the preprocessing of input data and

is dealt with in this chapter.

The Hartley transform length N can be factored as N — 2"Q, for n > 0 and Q 1is
an odd integer. The primary partition inder, d, which has to divide N is therefore either
a power of 2 or a product of two integers one of which is an odd integer. These two cases
cover all the values of d since if d is not a power of 2 then it has to have an odd divisor.

Section 3.2 and 3.3 deal with these two cases respectively.

3.2. Primary partition index, a power of 2.

Equations (2.4) and (2.7) show the Yq computations that need to be computed
before one can do any convolution processing. These two equations represent the

preprocessing stage of the algorithm and need to be evaluated efficiently.

Let N = 2Q, where Q is an odd integer and n > 0, and d, the primary partitz’on
index, 25, 0 < 8 < n. We calculate Y,s for all s = 0, 1, 2,---, n as follows :
1. (Initialization). Set No = Nandty(i) =x(31),0 <i < Nj.
2. (Reccufsion). Fors=0,1, .-, n-1, set Ney1 = Ng/2 (3.1)

‘and perform step 3.
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3. (Repeatition). Fori =0, 1, ..., (Ng/2) evaluate

tog1() = (i) + t(i + 32, and o (3.2)
. . . Neu .on . |
yzs(l) = tg(i) — tg(i + —2—), if Ng is even (3.3)
p— ts (i), if Ns iS Odd. (3.4)

The above procedure may be proved as follows. tg(i) evaluated according to (3.1) has the

expression

A

&

. . . N .
ts(i) = toq(i) + te1 (i + —54), 0<i< L (3.5)
Equation (3.1) can be solved recursively to give N¢ 1 as

_ _N
NS’]. — F.

Using this (3.5) can be rewritten as
ts(i) = Y te (i + L.25)- | (3.6)
=0

Use of (3.6) repeatedly gives

1 1 1
ts(@) =) > D D to(i+(I+2m+4n+ .. +2°w). 1.
I=0 m=0 n=0 w=0

In the above summation one can replace to with x (using eqn (3.2)). Now notice that as

the summation variables go through all their values, the quantity (I + 2m + 4n + ... +

2°w) takes all possible values from 0 to ost1_ 11

In fact the expression (I + 2m + 4n + ... + 2sw) can be considered to be
an expression of a number between 0 and 25t1_1 in binary number system; the

number being (w, ..., n, m, 1),.
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2s-}-l -1

Thus ts(i) = ¥~ x(i + L é—“s-).
=0

Finally, using the value in (3.3) gives

2s+1 ) 2s+1 _

1 1
Vs = > x(i+21 Ny - Y x(i + (214+1). )
=0 2 i=0 2
St 4

— I; 1) x@G + & #),
which is identical to (2.4).

The structure of the preprocessing addition stage is very regular. It can be

represented as a butterfly diagram. Following example illustrates the fact.

Example 3.1 : Let N = 12 = 22,3 Using (3.1)-(3.5) Y1> ¥2 and y, may be

written as

y1() = x(i) — x(i + 6), 0<i<eé.

y2() = x(1) = x(i+3) + x(i+6) — x (i+9), 0<ic<3,

y2(i) 62(1) — t3(i +3).

Also since N, is odd we get y, as
Ya() = x(i) + x(i + 3) + x(i + 6) + x(i + 9), 0<i<3,

= to(i) + to(i + 3) + to(i + 6) + to(i +9),

tl(i) + tl(i + 3)’

t,(i).

Note that (3.2) gives the following expression for to, t; and t, sequences for N = 12.
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to(i) = x(i), 0 < i< 12,

t,(i) = to(i) + to(i+ 6), 0 <i < 6,

and ty(i) = t,(i) + t;(i+ 3), 0 <i < 3.

The algorithm for evaluating y,, y, and y, for N = 12 is shown in Fig 3.1 and
mimics a truncated butterfly diagram used in fast transforms. Note that this same

computation can also be arranged as shown in Fig 3.2. This new arrangement is very

suitable for a parallel archirecture implementation.

N =12

Fig. 3.1. Evaluation of y,, y, and y, for N = 12.
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x(0) \{ — y1(0)
() o f y1(1)

x(1) ‘\f y1(2)
x(7) o \ y1(3)
x(2) > y1(4)
x(8) o y1(5)

]
)

x(3) \{ y2(0)
x(9) PRALN / \ — y2(1)
@ — v2(2)
x(10) / \ y4(0)

. ‘ ya(1)

y4(2)

X

)

ﬁ
“P

0\

A

x(5) Q

e
.
v
.
.
?

x(11) ’

Fig. 3.2. Parallel architecture implementation of Fig. 3.1.

One can compute the additive complexity of this preprocessing stage from (3.2)
and (3.3). We see that to calculate Y,s and t;; from tg we need Ng(= N/2°) additions.

Therefore the total number of additions to calculate all Y, s 0 < s < n-1 can be written

as
. n-1 N n-1 1
# of additions to calculate Y,s = Z 55 = N ) o5
s=0 s=0
= 2N(1 — ln)’
= 2(N — Q) (3.7)

3.3. Factorizable primary partition index.

Suppose now that the primary partition indez, d, is not a power of 2. Then d can
- be represented as r.s, with some odd s. Evaluation of yrs from y, requires consideration

of whether N/d is even or odd. Accordingly, we deal with it in the following two cases.
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Case 1 : This case concerns expressing y,s in terms of Yr, given the fact that 2 |

(N/rs) and s is odd. Since r.s is a divisor of N and also 2 divides N/rs, one can use (2.4)

and express y,s as follows

2rs-1

Vrs(i) = Z( 1)! x(i + 1 2rs)’

Let =sl; + L, 0<, <s , 0<; <2r
2r-1 s-1 11 N
Then, yrs(i) = >~ Y (-1) (1) x(i + 1. r+ b 5).
11=01,=0

[
We can express (-1)s 1 as (-1) ! since s is odd. Thus

N

r-1 s-1

. 1 L . .
yrs() = Y Y (1) (-1)2 x(i + hegr + b 5), 0<i< &
s-1 5 2r-1 L N
::—.Z(l) Z (1) Ix@i + 4. r+l2 2rS) 0<i< o
Now y,(i) can be eXpressed from (2.7) since 2 | _I;j as
2r-1 N | N
yeli) = Z( D! x(i + 1 ), o oesgi<X
2r-1 I . N
or yr-(] -+- 12 21‘8) = ZO( 1) X(l + 12 2 + 11 21')’ O S 1 < 2—1".
=
Substituting this value of Yr In the expression for Yrs one gets
. s-1 12 N ‘ N |
Yrs(i) = IZ-:O -1)° y(i+ L. 2—rs)’ 0<i< ra" (3.8)
n=

Equation (3.8) expresses Yrs in terms of y, when s is odd and 2 |(N/rs).

In order to express the computational complexity of evaluating y,;s from y,, following
notation may be used :
A(dy, dy

) = denotes the number of additions required to compute y, from Yd,-

A(d,, d,,

-y d¢) = denotes the number of additions required to compute

ydtbegining from ydland going through Yd,s ' s Yd, ;-
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Computation (3.7) clearly yields following expression for A(r, rs) :
A(r, 1s) = %—S(s—l), when 2 | ;—\IS- and s is odd. (3.9)

Fig. 3.3 illustrates equation (3.8) as y; is calculated from y; for N = 12.

yl(S)

Fig 3.3. Calculation of y; from y; for N = 12.

Case 2 : When s is odd but 2 does not divide N /rs, one can ys in terms of y, from (2.2)

as follows :

rs-1

yis() = Y x(i + L N,
=0

As before, let s = sl;+ 1, 0<L<s, 0K <r.

-1 r-1
Then,yrs() = Y Y x(i+ 4 N+ 15, N, 0<i< .

N

Now, since 2 does not divide rs» and s is odd, 2 also does not divide ¥

Using (2.2), y;(i) can be expressed as
-1

ye() = D x(i+ L), 0<i<
=0

ﬂ
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Finally using this value of Yr in the expression for Yrs one gets

s-1

Yrs(i) = Z Yr(i + 12- r—I\i), ' 0<i1 <

3z

(3.10)

Relation (3.10) allows one to evaluate y,c from Yr when s is odd and 2 does not divide

A(r, rs) = r—Ii(s —1) when s is odd and 2 does not divide fl\,ls : (3.11)

(3.10) is clearly illustrated in Fig, 3.4, in which Ye 1s calculated from Yy, for N = 30. Both
(3.9) and (3.11) suggest that one should choose the smallest possible value of s for a given
rs for minimum complexity of the preprocessing stage. For example, given y3 and yg, the
evaluation of Y15 should be done from Ys rather that Y3 becduse it would involve 2N/15

additions instead of 4N /15.

Y0 ¥ (0)
Yo (1) ___ ] Ye (1)
Y, (2) ﬂ Y (2)

Y, (3) * /ﬁ y6(3)
y2(4) %ﬁ y6(4)

Y5 (5)
y2(6)
Yo (7)
Y, (8)
y2(9)
Y, (10)
Y, (11)
Y, (12)
Y, (13)
Y, (14)

Fig 3.4. Calculation of Y6 from y, for N = 30.
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3.4. Special Cases.

This section deals with the total complexity of the preprocessing stage of four

commonly occuring cases of N which has only one or two prime devisors.

Case 1 : N = 2". In this case, the only possible d’s are of type 2°. From Sec. 3.1 it is

obvious that Q = 1 and

A(2") = 2(N—1). (3.12)

Case 2 : N = p", p prime.
Here d can have values p°, where 0 < s < n. It is clear that one must compute y, from

Y1» ¥ o from yp, and so on till ypn. Therefore the total number of additions to complete
p

the preprocessing is

= ; A, o)

_ 2‘1 N(f;i_l), from (3.11).
= .; (p—1) p™

=p" -1

=N — 1.

Fig 3.5 illustrates the computation when N = 33,

29




x(0)=y1(0) - //Jyzz‘:; . zz:’; ' %mw)
e J /M e 7 yo)
x(2)=y1(2) p
x(3)=y1(3) . / ﬂzzg
o) - 77 M
x(G)—y1(6) : Illil[ LY3(6)
X(7)=y1(7) —— l’ill /), y3(7)
| /LN e
x(8)=y1(8)

7
X(9)=y1(9)
x(10)=y1(10) /

x(12)=y1(12) /
x(13)=y1(13) — /

x(14)=y1(14)
x(15)=y1(15) - ,

x(16)=y1(16)

(
x(17)=y1(17)
x(18)=y1(18)
x(19)=y1(19) -
(
(
(
(

x(20)=y1(20

)
x(21)=y1(21)
x(22)=y1(22)
x(23)=y1(23)
)
)

x(25)=y1(25
x(26)=y1(26)
Fig 3.5. Computation of Y1s Y35 Yo and y,4 for N = 33

n, n
Case 3: N =2 1p 2, P prime.

~

This complexity for this case is computed in three seperate parts. The firse part consists

of the d’s which are powers of 2. Since these are independent they have to be calculated

" specifically. Therefore the total number of additions to compute these d’s is = 2(N —
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l{ I
pnz)(from eqn. 3.7). The second part are the d’s which can have the form 2 1p 2(11¢n1).

t, t .
If this y, is calculated from y, where r = 2 1p 2, then the complexity in evaluating y is

-ty [4-t
N(21 lpl 1 1)

211+1p12

ty t l{ 1
A(2'p2,21p?) =

To minimize the expression above one must chose values of t; = I; and th = L—-1. If

this is done, one gets

tp t2 ) &, N(p-1)
A2 7p ’QP)“211+1 L’
p

The third part is where d’s have the form 2'n1pl.

The complexity for this case is

n .
minimized if it is calculated from the yr where r has the form 2 1pH. Now one gets

n, N(p—1)

2n1 pl

A(2"1p1-1, 9

p!) =

n, n
Thus complexity of the preprocessing stage, A(2 1p 2), 1S

A" "2) _ oy M2 "21'12"2 Np—1) | 3 N(p— 1)
( P ) - ( — P ) + £ L 2l+1 : + A 2n1 I .
j=0i=1 P =1 P

=3N — (p — 3)p 2 — 2",

Ny n :
Case 4 : N = Py 1p2 2, P; and p, prime, P1 > p»,.

l

: l : :
In this case, d would have the form Pq 1p2 2. If this Yq 1s evaluated from y, where r =

t |
Py 1p2 2 then the complexity involved in the evaluation of this Yq 18

-ty -t
t2 b by N(py'pytt—1)
P2 ) =

l l
1 2
P1 P>

To minimize the expression above when P; > Do,

t
A(Pl 1P2 2a P1

one must chose values of t;= Il; and

¥
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to = l,—1. If this is done, one gets

t, t Iy N(p,— 1)
A.(pl 1p2 2’ Pi 1p2 2) = lf L,
P1 Po
Clearly, one will also have to compute y ty? 0 < t; < n;. Thus complexity of the

P

. ny nNo .
preprocessing stage, A(pl P> ), 18

N N, N2
N n PR - .
A(pq 1P2 %) = Z A(P1J ; P1J) + Z Z A(l@)fpz| g P1JP2'),

j=1 J=0 i=1
Ny N Ny
_ N(Pl— 1) N(Pz—l)
- Z J T Z Z i
) j=1 Py j=0 i=1 P1 P>
i n | n{+1 n.
_ N(p;— 1) pq 1_1 N(p, — 1) Py 17 _ P) 2 _ 1
plnl (pl_l) p1n1p2n2 (pl - 1) (p2 — 1) ,
nq{+1 n
— (N—l) + (Npl p1 1 - p2 2 + 1)
(P1— 1)
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Chapter 4
CONVOLUTION PROCESSING

4.1. Introduction.

It was established in Chapter 2 that the discrete Hartley transform matrix can be
partitioned into smaller cyclic submatrices which may be computed using
multidimentional cyclic convolution techniques. In particular as (2.6) shows, when N/d is
odd, the submatrix corresponds to a group table of A(N/cd). However, when N/d is
even, (2.10) aﬁd (2.11) show that while h; and g; belong to the group A(N/2cd), the
operation @ is multiplication modulo N /cd.  This implies that the corresponding
submatrices doA not form group tables. This chapter will establis the structure of the

matrices as Toeplitz. In order to simplify the notation let the effective convolution

length, N/ denote N/cd. ¢

The case of N/ = 2", n > 2 is dealt with in Section 4.2, N/ = 2"Q, n = 2 or 3, odd

Q in Section 4.3 and N’ = 2"Q, n > 3, odd Q in Section 4.4.

4.2. Effective convolution length, a power of 2.

If N =2"and n = 1 or 2, then the group to which h; and g; belong, A(N'/2), has

only one element. Thus the submatrices under consideration is of size 1 x 1 and has no

structure. Thus the only case of interest is n > 2. In this case consider the group

G — A(Qn) — C2 X C2n_2.
The group operation is still multiplication modulo N/. Form C, by using the order two

element (2"1—1) of G, i.e.,
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Co={1,2"1-1}.
Let o be any element of G of order 2"2 (when n=3, then « is an elemnt of order 2 not

equal to (2"1—1)) and organize the elements of A(2"1) as

ai(32 mod 2"'1, 0<i<2"m3—1.

If the row index h;, and the column index gj are arranged according to this order, one can
see that the matrix transforms into a Kronecker product of an order 2 cyclic matrix and a
Toeplitz matrix. The statement is fairly easy to prove. The order 2 cyclic submatrices
are aresult of the subgroup C,. Further because of the chosen order, the (i, j)'"
submatrix corresponds to aiCQ.ajCz = ai+jC2 elements of the group. Since this entry
depends upon i+j rather than individual i or j values, t_\}/leo ;es\ultgnt structure is Toeplitz.

Example 4.1 illustrates this restructuring of the matrix.

Example 4.1 : Let N be equal to 16 and both ¢ and d have the value 1. Thus N’ = 16 =

2%. Also, h; and g € A8)=1{1,3,57}and A(16) = { 1,3,5,7,9,11,13,15 }. The

matrix M looks lif(e

— o—

1 1.31 1.31 0.54 -0.54
3 | 1.31 -1.31 0.54 0.54

9 0.04 0.54 -1.31 1.31

7 -0.54 0.54 1.31 1.31

Let C, be { 1, 7 }. Choose « as 5 (order of 5 is 2% = 4).
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Using this, if one orders the rows and columns as 1, 7, 5, 3 one gets M transformed to

- —
1 1.31 -0.54 0.54 1.31

7 -0.54 1.31 1.31 0.54

i 0.54 1.31 -1.31 0.54

3 1.31 0.54 0.54 -1.31

e -

If the cyclic 2x2 matrices are represented by

B m = ~ m
1.31-0.54 r0.54 1.31 -1.31 0.54
Cy = , Cp = , C3 = ’

-0.541.31 1.31 0.54 0.54 -1.31
. i . . . .

M can be represented as
C; G,

o —

, which has a Toeplitz matrix structure.

It should be mentioned here that the shuffling of rows and columns of M does not

contribute any additional computational complexity as demonstrated in Chapter 2.

When N’ = 2" above structure enables one to compute the matrix for the speciﬁc
values of ¢ and d. Theorem 4.1 ensures that all the aiCz mod 2™ values generated are

distinct.
Theorem 4.1 : aiC2 mod 2“’1, 0 <i<2™3_ 1 are all distinct.

Proof : Denote by H,, set { o' mod 21, ai(2n'1—1)' mod 2" }. Let H; = (a,‘,‘b)

and Hj = (c, d). If we can prove that a, b, ¢, d are all distint for 0 < i, j < 2"™3_1 andi
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+ j, then we have essentially proved the stipulation. We consider the following four cases

and use the method of contradiction to disprove each.

Case I : Suppose a = b mod 2"1 Here a = o' and b = ai(2"'1—1) = - o' mod 2",

The assumption a = b mod 2"1 implies that

o' = - o' mod 21,

Thus 2" | 2¢' or o' = 0 mod 22,

This is a contradiction since a € A(2") and therefore odd, which implies that no power of

a can be divisible by an even integer(namely 2"’2) for n > 2.

[

Case Il : Suppose a = ¢ mod on-1 a5 = o' and ¢ = ¢’. The assumption a = ¢ mod on-1

implies that

o = o mod 2™, Slnce a € A(2"), a has an inverse modulo on-1,
Thus, o' = 1 mod 2" which gives qi-j mod 2" = 1 or 2" 141,
In either case a contradiction arises since a is of order 2"
e, o' mod 2" + 1 since i-j < 2"?(since i,j < 2"’3)
and if a™ mod 2" = (14 2™
then squaring both sides of the equation and taking mod 2", one gets
o 2D pod oM = (1 + 2n+1) mod 2" = 1 mod 2" which implies that (i-j) > on-3

which is again impossible.

Case III : Suppose a = d mod 21,

36




a=oaoandd = a'j(2"'1— 1) = - mod 21,
The assumption a = d mod 2™ implies that
al = -of mod 2"'1,

i.e, a7 =-1mod 2™,

Thus o' mod 2" = (2"—1) or (2™1—1). However (2"—1) and (2"'—1) are order two
elements in group A(2") and since a is not an order two element we again find a

contradiction.

Case IV : Finally, Suppose b = d mod 2™!. Since b = ai(2"'1—1) and d = -aj(Q‘n'l— 1)

= -o’ mod 2™ the assumption b = d mod 2™! implies that ai(2"'1—1) = aj(2n"1—1)

mod 2™ 1 or o' = o) mod 2M1, This has been proved impossible in case II earlier. Thus in

all four cases a,b,c,d are all distint for 0 <ij<2m3-1, # j. O

Theorem 4.2 proves that 3 has order 2™ 2 in the group A(2n) and can therefore be

the element a.
Theorem 4.2 : Order of 3 in Group A(2") is 2"2 (n > 2).

Proof : One can use the method of mathematical Induction to prove this

assertion. When n=3, one can verify by direct calculation that the order of 3 in A(23) is

21. Now assume that order of 3 in A(2") is 2"2, To find order of 3 in A(2n+1), note that

n-2 -2
32" = 1 mod 2" implies 32" = k.2" 4+ 1.

n-1
By squaring both sides of this equation and reducing by mod 2n+1, one gets 3° mod

2"t1 = 1. Thusif L is the order of 3 in A(2n+1), then L |2™1, (4.1)

Now if L # 2™! then L | 2"2 and consequently,
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n-2

32 mod 2"+1 = 1.

-2 -3 -3
thus 2"t1 (32" o 1) = (32" —1)( 32" +1).

3

n- n-3 _ 5 _
Note that even though 32 41 is even, 22 cannot divide it as (32 + 1) mod 4 = ((-

2"-3 2™ . . : Ny Ji<,; HNn-3
1) +41) = 2. Hence 2"|(3° —1) implying that the order of 3 in A(2") divides 2",
which is contrary to the assumption. Therefore L = 21 The proof is thus complete by

Mathematical Induction. O

4.3. Effective convolution length, 4Q or 8Q (for odd Q).

Let N’ = 2"Q, n = 2, 3 and Q odd. One can write the following isomorphic

relationships for A(4Q) and A(8Q).1
A(4Q) = C, x A(2Q).

A(8Q) = C, x A(4Q).

The subgroup C, in the two cases can be generated by the elements 2Q + 1 and 4Q + 1

respectively. Let a represent the generator of C,.
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