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ABSTRACT 

Time Domain Finite Difference 

for 3-D Transmission Line Structures 

Time domain computation of electromagnetic fields is beco111 i11g a 

practical technique because of the availability of high speed a11d large 

rr1emory computers. The tirne <lorr1ain finite difference rnetho<l afld its 

supporting theories are presented. A strip-line with plated th rough hole 

( PTH ) structure as an example of a 3-D transmission line has been 

investegated and numerical results of the propagation of a Gaussian pulse 

are presented in time sequence. 

... 
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1. INTRODUCTION 

Since the 1970s, an important shift has taken place in the design of 

computer hardware with the advent of smaller and denser intcgrakd 

circuits and packages. Previously, the hardware components consisted of' 

both physically and electrically large discrete compone12: 

and coupling among the components were small in most cases and the 

Stray elerr1ent~ 

in tercon n cctions bet ween the corn ponents were electrically insign i fica11 t.. 

The corresponding electrical network models were highly decoupled and 

the network analysis matrices sparse. rI'his led to relatively si111plc 

analysis models and techniques for the electrical performance of these 

systems. 

In contrast, today's high level of integration can lead to very large and 

complex systems with extremely small physical dimensions. An electrical 

analysis which excludes coupling among the closely spaced corn poncn ts is 

invalid. Further , the interconnections such as 3-D transmissiou line, 

which once led to insignificant stray elements are now the main elements in 

the equivalent circuit. Thus , the circuit models for integrated circuit 

systems are extremely corn plex, with highly cou pied corn poucn ts. ;\ 11 

electrical analysis of these models without corn pu ter-aided corn p11 l.atio11 

is impossible, especially for high performance systems. , 
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1.1 Methods Avaliable for Modelling Transmission Line l)iscontinuit.ics 

1.1.1 Mode Matching Method 

The study of Transmision line discontin uitics has rr1ore thau t W<) 

decades of history. For nearly a decade , the analyses were rnostly quasi­

static in nature. The first accurate full-wave frequency-dependent an<.tlysis 

appeared around 1975 [1] [2]. This approach began with the use of a 

waveguide model with electric-wall top and bottom planes and magnetic­

wall side planes to characterize the rr1icrostrip. rl-,he effective dielectric 

constant of the filling and the width of the guide arc ass u rncd tu be 

frequency dependent and a.re deterrnined in such a way that the rnodcl and 

the actual rnicrostrip line have the same frequency dependent propagati<)fl 

coefficient and characteristic impedance. Using the waveguide rnodel t<) 

represent the original microstrip 
' the field 

. 
1n the region of the 

discontinuities are expanded into waveguide modes, and the rnodes of 

different regions are matched at the intersection planes. Fron1 the 

matching coefficients, the S rnatrix for different propagation r11odes can be 

calculated. rfhe waveguide model approach is efficient and has reasonable 

accuracy for calculating the magnitude of the S pararr1eters in the lower 

frequency range, but it is not able to take into accou11t radiation effect8 

and surface wave generation . 11eside , the n1ode-rnatching step will ahH> 

intro<Juce error due to the fact that the actual rnodes excited ju ruicr<)t>trjµ 

discontinuities are not the sarne ,1s those used in the rnodel and accordingly 

will not match in exactly the same way. There is also an obvious 
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limitation on the kinds of structures to which this rr1cthod can be a.pplit'd. 

It cannot , for example , be used to analyze the rnicrostrip opcn-eud 

structure where one side of the discontinuity is not connected to ,t 

microstrip arid where radiation and surface waves are present. 

1.1.2 Full Wave Approach 

A full-wave approach to the microstrip open end problern was first 

proposed by Jarnes and Henderson {3]. The analysis on the rnicr<)strip 

open end , where the surface wave and radiation wave are the constitutents 
'--

of the fields, is carried out using an analytic rno<le-CXJ>ansion tcchraiquc. 

On the rnicrostrip side, a 'I'EM wave is taken as the d<)rninant rr1<HJ<, 

incident field , and the semiernpirical · results for the propagaJ,i<>r1 

coefficient and the characteristic impedance are used for this incident 

wave . The fields at both sides are matched at the interface and a, 

variational step is taken to reduce the error introduced by the assurnptiou 

of a 'fEM field pattern where the electric field has a constaut vertical 

value under the strip and is zero elsewhere in the transverse plane. 

Mainly due to the roughness of the field pattern assurr1ed, the results <.)f 

this method are not very accurate, but the analysis did provide valuable 

physical insight. 

1.1.:1 Spectral Domain Approch 

Another important method which has been used by s<~vcra.l 

investigators to model microstri1> discontinuities is the spectral-d<)111,1ir1 

-3-
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approach[4]. In using this method to analyze shielded or cc.1vcrt~d 

structures, t}1c fields and currents involved are Fourier transforrucd int.<., 

the so called spectral-domain. The shape of the current on tl1e rr1icrostrip 

is assumed to be close to actual current distribution and is easily I•~ouricr­

transformable. The spectral-domain components of the fields and currents 

are related according to the field continuity and boundary conditions a.ud 

th us establish a system of equations for the variables. 1~he . 
1 Il verse-

transformed field solutions are used to calculate the S pararneters. 

Although it is a relatively accurate rriethod for the type <.)f' 

corr1ponents it is capable of calculating, the spectral-<lc>rnain a1>pr<),1.ch 

depends strongly on the current distributions assurr1ed~ which in rnany cases 

are hard to specify with high accuracy; thus it is limited due to the 

difficulties which arise near the cutoff frequency of the higher order rnc)de 

of the microstrip. 

1.1.4 Moment Method 

In recent years, the mornent rnethod has also been used [5], [6] <)II 

discontinuity problems. This rnethod can in prir1ciple be accurate with 

wide applications, but due to the complexity of the Green's functions f<)I' 

the rnicrostrip configration it is riot economical to rr1ake a very fine 

division of the microstrip for accurate results. ln fact, in rnany cases ouly 

c a ratic>nal function forrn is used on the rrticrostrip , which 1n,1y ll<.)t 

correspond tel the actual cu rrcn t distribution . 

\ 
-4-
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1.1.5 Time Domain Approach 

All the above-mentioned investigations are done in the freq ucucy 

domain; that is , the data for the whole frequency range are calculated 011c 

frequency at a time. It is an expensive task when the results of a wid<~ 

frequency range are sought. rfhis led us to seek an alternative wa.y of 

calculating the frequency domain data. Since a pulse response co11ta.i11s all 

the information of a system for the whole frequency rar1gc, it is a natural 

approach to use a pulse in the time domain to excite the rrticrostri p 

structures and from the time domain pulse response to extract thP 
' , .... 

.' ) 

frequency dornain characteristics of the systern via the li'ourier transf(>rrr1 

[7]. 

One numerical. scheme which can be used to calculate the tirr1c 

domain fields is the Time Domain Finite Difference (TD FD) rncth<>d 

introduced by K.S. Yee in 1966 [8] that has been used by rnar1y invesgators 

to solve electromagnetic scattering problerr1s. Other nurnerical rnethc>ds 

which can also be used to solve this type of initial boundary value 1>roblc1n 

include the 'I'LM method and Bergeron 's method. Among these rnethods 

the rl'DFD method is the rnost direct from a mathematical point of view: 

Some investigators found that the TDFD method is especially suitable for 

the accurate calculation of the rnicrostrip field [9] . 

-5-
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1.2 'l'Dl•,l) Approach and Its Develor>rnent 

What is TDFD? This idea is as old as Confucius, who said : '' l•'r<>H1 

the knowledge of one corner, he { a good student ) finds those of the other 

three, By studying the past, he ( a good teacher) predicts the future." 

( Paraphrased from Analecta of Confucius) 

1.2.1 Yee's Idea 

The Time-Domain Finite Difference Method was first introduced by 

K. S. Yee. In general, solutions to the time-dependent Maxwel1's "equations 

are unknown except for a few special cases. The difficulty is due mainly t<> 

the irn position of the boundary conditions. Yee proposed a rncthod to 

obtain the solution numericalJy when the boundary cor1ditions are those 

appropriate for a perfect conductor. This n umericaJ rnethc)d is ern ployed f<)r 

the most general case in theory. However the limited memory capacity of 

computers makes it impratical for very large dimension problerr1s . 

Maxwell's equations in an isotropic medium are : 

oB + Vx E = 0 at 

~~ - V x II= J 

B =µII 

D= t E 

-6-
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where J , µ and f are assumed to be given functions of space and tirnc. 

In a rectangular coordinate system, (1.la) and (I.lb) are the following 

equations: 

8Bx 
at 

8By 
at 

oBz 
at 

oDx 
8t 

8Dy 
at 

oDz 
at 

8Ez 
8y 

8Ex 
oz 

8Ex 
oy 

81Iz 
oy 

8IIx 
oz 

8Hy 
ax 

oEz 
ox' 

' ' 

oEy 
ox ' 

' 

8Hy 
OZ - Jx ' 

81Ix J oy - z 

( 1.2a) 

( 1.2b) 

( 1. 2c) 

( 1. :2d) 

( l .2e) 

( l .2f) 

To sirriulate wave propagation in three di1nensions, Yee arranged the 

spatial points, where different components of E and H are to be calculated 

as in fig.I. 1,he repetitive arrangenient of the cells of fig.I fills the 

computation domain with a finite difference mesh. Every component of H 

can be obtained by the loop integral of E using the four surrounding l•: 

nodal values according to Maxwell's equation for E. A sirriilar aµpr<>a.ch 

holds for the calculation of II. 

-7-
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Fig. 1. Yee's grid 
•• 

In this algorithm, not only the placement of the E and H nodes are off 

in space by half a space step, but the time instants when the E or H fields 

are calculated are also off by half a time step. To be more specific, if the 

components of E are calculated at nt..t, where t..t is the discretization unit 

in time, or the time step, and n is any nonnegative integer, the components 

of H are calculated at ( n + ~ ) t..t. 

called the leapfrog method. 

For this reson , this algorithm is also 

I 

A set of finite difference equations for (1.2a) - (1.2f) will be found if 

we denote a grid point of space as 

( i,j, k) =( i~x,j~y, k~z) (1.3) 

and for any function of space and time We put 

-8-



F( iLlx,jLly, kLlz, nLlt) = F 0
( i,j, k) ( l . ,1 ) 

then for ( 1.2a) we have 

B n+l/2(. ·+1 k+l) B n-1/2(. · 1 k 1 ) E "(" ·+1 k 1) J' "(. ·+ 1 k) ' 
X 1, j 2' 2 - X 1, j + 2' + 2 - y 1, j 2' + - _•J y l , j 2, , 

Llt Ll~ 

Ez"(i, j+l, k+!) - Ez"(i, j, k+!) 
~y . ( 1.5a) 

D "(. 1 . k) D n-1(·+1 . k) z 1+2,J, - z l 2,J, 

~t 

H n-1;2(·+1 ·+1 k)-H n-1;2(·-+l J. _ 
2
1, k) z l 2, J 2, z l 2, 

~y 

n- 1 / 2 ( . 1 . 1 k) H ·n- l / 2 ( . + 1 Hy 1+2, J+2, - Y l 2' j - 1, k) 
Llz 

( 1.5 b) 

The boundary conditions appropriate for a perfect con<l ucti ng 

surface are that the tangential cornponent of the electric field vani~h and 

the normal component of the magnetic field v~nish. The cor1ducting surfa.ce 

will be approximated by a collection of surfc1ccs of cubes, the sides (>f which 

' ,-

-9-



are parallel to coordinate axes. For example, plane surfaces pcrpendicula.r 

,, 

to the x-axis will be chosen so as to obtain points where Ey <tn<l t·:~ ar(' 

defined. 

To have meaningful results by this method, the linear di1r1e1i.siun of 

the grid must be only a fraction of the wavelengh. For corr1putatiun,1l 

stability, it is necessary to satisfy a relation between the space incrernen t 

and time increment. When £ and µ are variables a rigc)rous stability 

criterion is difficult to obtain. For constant values off and µ cc)rnput.ic>na.l 

stability requires that 
• 

+ (~y)2 + (~z)2 > c~t ( 1 . (i) 

where c is the velocity of light. 

1.2.2 Yoshida, Fukai and Fukuoka Proposed Method 

N. Yoshida, I. Fukai and J. Fukuoka proposed a nurncrical 

method for transient analysis in three dimensional space [10]. The rnetho<l 

was based on the equations obtained by Bergeron [11] . 'fhe equations 

show the propagation of electromagnetic waves ir1 an eq ui valen t circuit, 

based on Maxwell's equation. This method has two irr1portant ad vau ta.ges 

for the analysis. One is the forrr1 ulation of the electrorr1agnetic fiel<ls in 

terms of the variables in the equivalent circuits. This treatrnent enables us 

to see that the nodal equation is uniquely formulated in the equivlant 

circuit for bc)th the electric field c1nd the rnagnctic field bec,1usc <Jf tl1<' 

-10-



duality of both field components. The other advantage is the formulation 

by Bergeron's method with its many merits, such as the representation of 

the medium by the lumped elements at each node and its reactive 

characteristics which are represented by the trapezoidal rule of the 

differential equation in the time domain. This treatment is based on an 

iterative computation in time using only the values obtained after the 

previous step. Consequently, the savings in memory storage space and 

computer time is remarkable. 

1.2.3 Gwarek Approch 

·w. K. Gwarek developed the TDFD method for two dimensional 

problems[11][12]. Consider a structure shown in fig. 2. We take this as a 

circuit system. The space in which the wave is transmitted is limitt'ed by 
I, 

A and A' in the planes z=O and z==d. We consider two sets of modes En 

and Hn. 

I 

C 

A C 

I 

Fig. 2 2-D structure 

-11-
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An En mode is a mode described by an electric Hert:t potcu ti,11 ll e ()[ 

the forrn 

II n ,T, n( ) { n 1r ) jwt e = azY.'e x,y cos dz e ( l. 7) 

An H n mode is a mode described by a magnetic llertz potential 11 h. of 

the forrr1 

IT n .rr n ( ) · ( n 7r ) j Wt h == az v_, h x, y sin d z e ( 1.8) 

where az is a unit vector parallel to z-axis and n is the rnode nurnber. 

Frorn the general properties of the I-lertz potentials we obt,1iu f<)r <l 

electromagnetic field expression En(x,y,z) and Hn(x,y,z) , where 11 is a 

mode number. Based on IIertz potential and EM field quantities, c;warck 

gave a definition of surface current J and electrical potential V. 1,hc 

relation between J an V are 

V · V ( x, y ) j W l~ 3 j ( x, Y ) ( 1.9) 

V · J ( x, y ) - j w C s V ( x, y ) (1.10) 

Consider ( 1.9) ancl ( 1.10) in time -dependent form 

-12-
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V V ( x, y, t ) 
L a. 1 ( x, Y, t ) 

II Ot (l.11) 

V · J ( x, y, t ) 
C 8 V ( x, y, t ) 

!l at (1.12) 

the x-y plane is divided into a set of squares of size a. The coordinates <)f 
• 

the middle of a mesh in the kth row and lth column are denoted by x 1 and 

Yk· We assume that (1.11) and (1.12) describe propagation of a. w,1ve <>f' 

frequency w and wavelength ,,\ . lf a << d At A"' LW'lf' an u ~ we rn a.y 

replace the differentials in (1.19) and (1.20) by finite differences ~t and a. 

The finite difference equations give a circuit description. rl'hc circuit 

is represented as a set of lumped capacitors C ( == C.s a 2 ) and inductors . 

The potential V has the meaning of the voltage. 'l'hc 

current flowing in the ind uctauccs u1 ay be calculated as ix == jx ll 

and fy ly a. 

1.3 3-D Stripline with Plated Through 1-Iole ( PTH ) Problem 

I11vestigators used time-do1nain rnethods as a tool to deaJ with 

sirnple structure discontinuities . 'l'hat approach can 11ot u1eet the design 

req uirernen ts of today's high level of integration package. 

A complex but interesting example is a 3-D stripline ( not shown 

in fig. 3 ) with plated through hole structure. It can be seen very ()ftcn in 
. 

multi-layer printed circuit boarcls. As shown in Fig 3, there are tw<> layers 

I 

-1:~-
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• 

I 
\.. 

separated by three ground planes with spacing h . 'I'hcrc is ,l 111icr<,st.rip 

in the rniddle of each layer with the width W. 'l'hc strips arc <:<JIIIH~ctcd 

by a through hole on the middle-ground plane. 

Since this is a model that can be applied to rnany circuit board 

structures, we take it under study. 

-

• 

2Q 200.. 

• 

11 a 

fi"'ig. 3. Stripline with plated through hole ( l>'l'll ) structure 

-· 



2. TDFD for Striplinc PTll Structure 

2.1 General Formulation of the Problem 

The generalized 3-D stripline P~I-1 structure under investigation is 

shown in Fig. 3, where the strip and ground plane are rr1ade of a perfect 

conductor ( u == oo ) and the substrate has a relative dielectric constant of 

Er. The structure is assumed to be in an open environment, that is , 

above and below the structure , free space is assurr1ed to extend tu iufinity; 

in the horizontal direction , apart frorn the discontinuity region, the layered 

strip also extends uniformly to infinity. 

Assurr1e that current flows on the surface of the structure and tbc 

voltage has an instantaneous value on the surface. If we rnanually unf()ld 

tl1e surface into a plane, we get three separated plates, see fig.4 . 11 ere we 

call the lower strip plate 1, upper strip plate 3, and the via r>late 2. Note 

that we take the strip as an infinitely thin conductor so that there is n<> 

change between strip and plate. In practice, the via is a straight circular 

hole usually. Along the transverse direction the via has a closed surface. 

When we do the unfolding, we define a cut-line along the hole on the 

surface so that we can make a plate and keep in rnind that this cu t-li nc is 

only for con venieuce. 

After unfolding the structure , we can assurne three conducting pl;-1tcs 

above a ground plane. This assurnptic>n can be rnade since using 1nurr1cut 

method , we can get capacitance between square segrncnt of pla.t.c t.() 

ground and inductance on the r>latcs ( this can be seen in a later scct.i(>II ) . 

-15-
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These circuit parameters give a planar L-C net·work which looks like 

connected strip transmission lines. 

'r 

Fig. 4. unfold the PTll surface into three plates 

For each plate , the two-dimensional wave equation is obeyed 

0 2 '"( ) _ f.l 2 82 V( x, y, t ) __ 0· Vxy YI X,y,t JJ 2 
8t 

(2.1) 

-16-



with proper boundary conditions. In the TDFI) r11ctho<l, inst.ca.d uf 

solving the second-order equation (2.1) a pair of first-order cqua.t.ic.,us is 

solved: 

y' Vi ( X, y , t ) 
a Ji ( X, y, t ) 

L., i ot (2.2) 

y' · Ji ( X, y, t ) _ c . a vi ( x, y, t ) 
.,I at (2.3) 

where i == 1, 2, 3. rI'hey refer to plate 1 ( lower stri I> ) , plate 2 ( via) 

and plate 3 ( upper strip ) respectively. At the interface of the three 

regions, the continuity conditions are enforced. In rnicrowavc plaua.r 

circuits, the variables and constant in (2.2) and (2.3) have the followi11g 

in terpretion: V == voltage, J == surface current density, C., 

capacitance of a unitary square of the circuit, L" inductance ()f au 

unitary square of the circuit. 

For uniqueness of the solution to these equations , the following 

conditions must be satisfied : a) The initial conditions rnust be specified 

on the whole domain of interest; tl1at is Vi ( X, y, t == 0 ) and Ji ( X , y , 

t==O) rnust be given everywhere inside the corr1putation dornain. b) 

The boundary condition of the <lorna.in of interest rnust be given for all t. > 

0. 

-17-
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2.2 rfi'n1e \f)orr1ain Finite Difference Algorithrn 

. The surfaces of the structure are divided in to a set <)f sq 11,1r<' 

r11eshcs of size a. Solving equations (2.2) and ( 2. :J) by t. h <' fi ri it<' 

difference method • 
lfl consccu ti vc tir11c points sirnulates the wa.v,· 

propagation. Replacing the differentials in (2.2) and (2.3) 

differences ~ t and a yields 

J ( X + a YL, to + ~2t ) 
X I 2 ' "' 

' ' 

J ( X + a y L' t O - ~2t .) 
X I 2 ' "' 

by finite 

( 2.4) 

.. 

V ( t ) ( / ( + a Yk, to + ~2t ) X/, Y k, O - • X X/ 2 , 

- lx ( x, - 2 , Y1;, to + 1t ) + ]y ( X1 , YA:+ 2, to + 1t ) 

~t 
C.,a 

(~onsccutive c,1lculatitJll8 (Jf ( 2.1 ) 
' 

( 2.5 ) 

sirnulc-1tc the process of wave prc>p,-igati<>n in the circuit. 

-18-
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2.3 Stability and Convergence 

Discrete approximations to partia.l differential cq uations c1rc uscfu I 

only if they are convergent and stable. It is well known tha,t. t.h(' 

problem of convergence consists of finding the conditions under which the 

difference between the theoretical solutions of the differential auJ the 

discretized equations at a fixed point ( x, t ) , tend to zero uniforu1ly, as 

the net is refined in such a way that a, ~t ~ 0 and m, n ~ oo , with 

m · a ( == x ) and n · ~t ( == t ) remaining fixed. On the other 

hand , the problem of stability consists of finding a conditic)n under 

which the difference between the theoretical and nurnerical soluti()rlS 

of the discretized equation, rernains bounded as n ter1ds to infinity. 

Lax and Richtmyer have shown [13] that if a linear difference 

equation is consistent with a properly posed linear initial-value problc111, 

then stability is the necessary and sufficient condition for con vcrgcnc<>. 

Since the problem we are interested in here is a Cauchy type problcrn and 

TDFD is a consistent difference approxirnation to the problern, 

need to examine the conditions under which stability is ensured. 

we only 

'I'hcre 

are several ways of analyzing the stability of a hyperbolic systerr1 on a 

regular square grid[15]. Wilson has shown that the leap-frog scherne is 

stable if 

C • ( ~t ) < a ( '),..., ·) - . ' 
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where c is the velocity of propagation. lt is interesting to note t.h,tt. 

this stability criterion is independent of the nurr1ber of dirncnsious if th(' 

computational grid is uniform, that is, the mesh incre1nent a is the sa.rr1<' 

along any dimension. 1-lowevcr for the TDFD scherne the sta.bility 

condition is found as Courant condition: 

C · ( ~t ) < a 
( 2.8) 

where n is the number of dimensions. 

Boundary conditions and interconnection also cau lea.d tu 

instabilities in the n urnerical calculation . f/or the case of hy perboJic 

systerns, the stability question is solved in principle by the theor_y <>f 

Gustafsson, Kreiss, and Sur1dstrorn [14). Application <>f this theory . 
IS 

difficult because of its complexity and abstractness. A s i rn p I e phys i ca I 

interpretation of the main result of this theory was given in terrns <)f' 

group velocity . It is well known that group velocity is a concept 

associated with energy propagation under dispersive ./conditions. Its 

significance to numerical stability results from the fact that finite 

difference models are necessarily dispersive even on nondispersivc 

equations. This implies that for the nurnerical approxirnation, <~ricrgy 

associated with different w,1venurnbers or frequencies wiJJ travel a.t 

different grc)up velocities, even if the (>riginal equation is nondispcrsivc. 
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Based on this , one can state the rnain result of the ttu~<>ry <>f 

G ustafsson, Kreiss, and Sundstrom as follows. An initial bc.)u11dary 

value problern rnodel is stable if and only if 

1) the stability condition (2.7 or 2.8) is satisfied everythere inside th<~ 

mesh boundary; 

2) tl1e model ( including boundary conditions) admits no wave solutions 

that grow from each time step to the next by a constant factor z with 

I z I > 1; 

3) the model ( including boundary conditions) admits U() w,1vc 

solutions with group velocities which support active radiation fr()Jrl the 

boundary and interconnections conditions to the interior of the 

computation domain. 

2.4 Choice 'of Excitation 

The excitation pulse used in this investigation has been chosen to be 

Gaussian in shape. A Gaussian pulse has a smooth waveforrn in tirr1e , 

arid its Fourier transforrn is also a Gaussian pulse centered at zero 

frequency . "fhese unique properties makes it a perfect choice for this 

investigation. Also doing computation by TDFD one has to deal with 

" noise " introduced by discretization of n urnerical processing which 

affects the high frequency information. 1"'his effect can be rr1inintized if 

the exciting pulse had the widest possible bandwidth. Such a. pulse 

-21 - ,. 



• 

-- ' 

~- . 

approaches a delta function and _.numerically one docs it by usi11~ a. 

Gaussian pulse. 

An ideal Gaussian pulse that will propagate in the + z <lirccti<,11 

has the following expression: 

g ( t, z ) 
( t - to 

exp [ -
Z - Zo 

V (2.7) 

where v is the velocity of the pulse in the specific rr1ediu1n, and the µuls<-~ 

has its 
. 

maximum at z = Zo when t == to . 

The Fourier transforrn of the above Gaussian pulse has th<~ 

form 

G { f) ex exp [ - 1r 2 1' 2 f 2 ] 

• 

-,. 
• 
JI 

. 
- -- ~·- -

• .. -
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I !1 
I 
' I • 
I II 
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I d• I > 
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The choice of the pararncters T , to and z0 are su bjcc:t t.<> t. \V<> 

req u ircmen ts. The first is that after the space discretizati<.)11 i11 l.<·rva.l ~z 

has been chosen fine enough to represent the srnallcst dirncnssic)11 of t.hc· 

structure and the time discretization interval ~t has been chosen srr1,1ll 

enough to meet the stability criterion, the Gaussian pulse rr1ust be wide 

• enough to contain enough space divisions for a good solution. And at the 

same time, the spectrum of the pulse must be wide enough ( or the pulse / 

must be narrow enough ) to rnaintain a substantial value within the 

frequency range of interest. If these two conditions cannot be sa.ti:-dicd 

simultaneously , ~z has to be rcchc)scn to be even srnaller. 

The pulse width W chosen in this work is about 60 space step. We 

define the pulse width to be the width between the two syrnrnctric points 

which have 5 percent of the maxirnurn value of the pulse. 'l'herefore rl' 

is determined from 

or 

exp [ -
( ~ )2 
( vT)2 ] 

10 ~z 
{3 V 

exp ( - 3 ) f'V (J°.05 (2.9) 

(2.10) 

By making this choice of 'I~ , the maxirnum frequency which can 

be calculated is 
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l3 V 

20 ~z (~.ll) 

with the specific Llz chosen , it is high enough to cover the entire 

fr~quency range of interest. 
\ 

The second requirement is that the choice of z 0 and t 0 be rnade 

such that initial" turn on " of the excitation will be small and sruootb. 
·, 

2.5 Matching Boundary Conditions 

The 1'DFD method models the energy flow in the circuit . If 

the input and out put of the circuit arc rnatched , energy flow ca.11 be well 

represented and we can use it to compute the S rnatrix and <>t.hcr 

frequency dorr1ain data directly. 

Consider the input and output ends of the PTH structure, I•'ig. 6. 

the width w == 6 a where a is the mesh 
. 

size. Input and output 

matching is obtained by introducing in each of the rows of rr1esbes at 

the input and output the following operations: 

Llt ) 
2 

\. 
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In+l ( t0 + ~ ) = In+l ( to - 1t ) + ( V n+l ( to ) 
• 
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Fig. 6 Matching boundary conditions 
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2.6 Interconnection Conditions 

Since we artificially decompose _ tl1e problem into three plates, 

interconnection between the plates should be arranged properly based on 

the real structure. For each segment we use a central node for voltage 

sampling. Also along the edge we connect to branches for current 

sampling in x and y directions. It is clear that at the interconnection 

region, the current must be continuous. Base on this fact , we have 

interconnection shown in fig. 6. 

• 

, 
. '\ /" 

• 

' r 

I 
I 

' r ...__....-,._) 
I ' - ' 

• .,.;1 - l I 

. ~I O' -

·~ _....~ .... r 
J J 

. 

_/ . -

/ 
-~ 

- .. 
.,l .~ ... 

-..: ... 

Fig. 7. Interconnection between the plates 
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2. 7 Capacitance and Inductance Calculation 

Gwarek calculated capacitance and inductance based on eq u,1tions 

1.15-1.18 . This approach gives a uniform distribution of capacitance and 

inductance which is not true in the real world. Tl1e fringing field rn u8t be 

considered even for a single strip case. The stripline P'1'H structure has 

two layers separated by three ground planes with a hole in the middle that 

connects to the signal lines . The corr1plexity of the structure requires us to 

take in to account the friging field more carefully. 

Ed Li and Professor Decker developed a technique to calculate th<~ 

capacitance and inductance matrix by the Method of Mornents cc>rr1bincd 

with structure symmetry considerations. 'f his technique cor1siders all the 

edge effect coupling. 'fhe results obtained show a reasonable distribution 

· of capacitance and inductance on the strips . We use these data for the 

rf D ll' D calculations. 
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3 NlJMERICAL RESULTS 

The Transient analysis for the stripline PTII structure has 

been perforrned by the method described in preceding section. In l•'ig.;{ 

the model of the stripline PTII structure is shown. 

the structure are shown as follows: 

width of the strip W 8 

length of the strip L., 

0.2 mm 

0.561 rnm 

width of via Wv == 0.24 mm 

length of via Lv t == 0.6 mrn 

The para1r1eters of 

To accommo<1ate the structural <ietails of the strip, the rnc8h 

pararneters have been chosen to be 

space interval for strip : a == 0.0333 mrn ( ~x 

space interval for • 
via . . 

J 

av == 0.03 mm 

a ) 

ti rn e step ~ t == k · a/ c (sec) , where c is the velocity of light 
. . 
111 a1 r 

and k is a constant restricted by the stability criterion. 

A Gaussian pulse excitatior1 is used at the ir1put side. It is 

uniform across the strip and has the following specified val4e: 

V ( t ) exp [ -
2 ( t - t 0 ) 

] 

where t 0 = 100 ~t and 'I' == 10 ~t . 'l'he frequency spectrurn of this 

.. 
r>ulse is frorr1 IJC t~ about 100 c;11z. 
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Fig. 8 (a) shows the calculated voltage wave along the strip a.t. 

t== 200 8t. At this time a gauss pulse reaches the matched input port. 'l'hc 
' 

rest of stripline has not get any excitation so that it remai11s quiet. l•'ig. 8 

(b) shows the voltage distribution at t== 250 dt. We can see that the 

wave propagates along the strip 1 with constant velocity and no loss ( the 

strip is a perfect conductor). When the wave reaches the hole fig. 8(c) 

t==300dt, potential along the transversal direction is built because <>f the 

capacitance distribution in this region. 

When the wave passes through the hole , Strong reflectic>n occurs, 

and transversal mode is generated because that the hole is excited n<>n-

u n i for rr1 I y . 

fi~ig. 9 (a) shows tl1e wave reaches the second strip at t==450~t. 

At this time, voltage amplitude becomes lower because the loss at 

mismatched interconnection condition. After a w bile 
' 

pote11 tia1 

distribution along the transversal direction becomses uniform and wave 

propagates with constant velocity again shown in fig. 9 (b) t==500~t. At 

t== 550~t , the wave reaches output port as shown in fig. 9 (c). We can 

see that the wave changes its sl1ape because the reflection generates noise 

at the interconnection region. 

The program is in C Language. It take 4 rninites to run 600 tirne 

step in a HP computer. Instant vc>ltage display can be seen on the screen 

and selected data can be found in a data file fc>r further study. 
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3. SUMMARY AND F'UTURE llESEAllCll 

The TDFD algorithm has several advantages over other schcrne8 

for the calculation of microstrip time-domain fields. It uses Maxwell's 

equations directly. Therefore it has clear physical intcrpretati<)rt. If a. 

computional error occurs, its cause can be quite easily spotl.<~d. It. 

simulates the wave propa,gation in the circuit nurr1erically. 'l'hc ccutral 

difference nature of the leapfrog method makes it a relatively accu ratP 

method ( second order accuracy in both time and space ), corn p,1rcd 

to other first order schcrrtcs . 1'he leapfrog algrithrn ha8 the uriiqu<· 

characteristics that the numerical scheme has n<) dissipation ( a.en plit.11d,, 

increase or decrease for any frequency corrtponent ) and on J y a s r ri ,111 

amount of dispersion. It has been shown that the nurnerical dispcrsic)r1 

is negligible compared to the physical dispersion of tl1e stri1>. 
' 

The paper has presented a version of the finite-difference tirne-

domain method for transient calculation of 3-D stripline 1-)'l' ll 

structures. Only theoretical and nurnerical work is done at this st.a,gc. 

We need experimental data ( such as S parameters mesured by network 

analyser) to verify our result. In order to do this , [ 1'ourier transforrn 

needed to get frequency domain data and S parameters. 
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