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ABSTRACT

Time Domain Finite Difference Method

for 3-D Transmission Line Structures

Time domain computation of electromagnetic fields is becoming a
practical technique because of the avallability of high speed and large
memory computers. The time domain finite difference method and its
supporting theories are presented. A strip-line with plated through hole
( PTH ) structure as an example of a 3-D transmission line has been
Investegated and numerical results of the propagation of a Gaussian pulse

are presented in time sequence.




1. INTRODUCTION

Since the 1970s, an important shift has taken place in the design of
computer hardware with the advent of smaller and denser integrated
circuits and packages. Previously, the hardware components consisted of
both physically and electrically largé discrete componer?s\. Stray eclements
and coupling among the components were small in most cases and the
interconnections between the components were electrically insignificant,.
The corresponding electrical network models were highly decoupled — and
the network analysis matrices sparse. This led to relatively simiple
analysis models and techniques for the clectrical performance of these

systems.

In contrast, today’s high level of integration can lead to very large and
complex systems with extremely small physical dimensions. An elcctrical
analysis which excludes coupling among the closely spaced components is
invalid. Further , the interconnections such ag 3-D transmission line,
which once led to insignificant stray elements are now the main elements in
the equivalent circujt. Thus , the circuit models for integrated cireuit,
systems  are extremely complex, with highly coupled compounents. An
electrical a’nalysis of these models without computer-aided computation

1s impossible, especially for high performance systems.




1.1 Methods Avaliable for Modelling Transmission Line Discontinuitics

1.1.1 Mode Matching Method

The study of Transmision line discontinuities has more than two
decades of history. For nearly a decade , the analyses were mostly quasi-
static in nature. The first accurate full-wave frequency-dependent analysis

appeared around 1975 [1] [2]. This approach began with the use of 4

constant of the filling and the width of the guide are assumed to be
frequency dependent and are determined in such a way that the model and
the actual microstrip line have the same frequency dependent propagation
coefficient and characteristic impedance. Using the waveguide model to
represent the original microstrip | the field in the region of the
discontinuities are expanded into waveguide modes, and the modes of
different  regions are matched at the intersection planes. From the
matching coefficients, the S matrix for different propagation modes can be
calculated. The waveguide model approach is efficient and has reasonable
accuracy for calculating the magnitude of the S parameters in the lower
frequency range, but it is not able to take Into account radiation effects
and  surface wave generation . Beside , the mode-matching step will also
introduce error due to the fact that the actual modes excited in (microstrip
discontinuities are not the same as those used in the model and accordingly

will  not match in exactly the same way. There is also an obvious




’

limitation on the kinds of structures to which this method can be applied.
It cannot , for éxa,mple , be used to analyze the microstrip open-cnd
structure where one side of the discontinuity is not connected to a

microstrip and where radiation and surface waves are present.

1.1.2 Full Wave Approach

A full-wave approach to the microstrip open end problem was first
proposed by James and Henderson [3]. The analysis on the microstrip
open end , where the surface wave and radiation wave are the constitutents
of the fields, is carried ()\-l.Jt using an analytic mode-expansion technique.
On the microstrip side, a TEM wave is taken as the dominant mode
incident field , and the semiempirical -results for the propagation
coefficient and the characteristic impedance are used for this incident
wave .  The fields at both sides are matched at the interface and a
variational step is taken to reduce the error introduced by the assumption
of a TEM field pattern where the clectric field has a constant vertical
value under the strip and is zero elsewhere in the transverse plane.
Mainly due to the roughness of the field pattern assumed, the results of

this method are not very accurate, but the analysis did provide valuable

physical insight.
1.1.3 Spectral Domain Approch
Another important method which has been used by  several

investigators to model microstrip discontinuities is the spectral-domain
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approach[(4]. In using this method to analyze shiclded or covered
structures, the fields and currents involved are Fourier transformed into
the so called spectral-domain. The shape of the current on the microstrip
is assumed to be close to actual current distribution and is easily [‘ourier-
transformable. The spectral-domain components of the fields and currents
are related according to the field continuity and boundary conditions and
thus establish a system of equations for the variables. The inversc-

transformed field solutions are used to calculate the S parameters.

Although it is a relatively accurate method for the type ol
components it is capable of calculating, the spectral-domain approach
depends strongly on the current distributions assumed; which in many cases
are hard to specify with high accuracy; thus it is limited due to the
difficulties which arise near the cutoff frequency of the higher order mode

of the microstrip.

1.1.4 Momeént Method

In recent years, the moment method has also been used [5], [6] on
discontinuity problems. This method can in principle be accurate with
wide applications, but due to the complexity of the Green’s functions for
the. microstrip configration it is not economical to make a very hne
division of the microstrip for accurate results. In fact, in many cases only
a rational function form is used on the microstrip , which may not

correspond to the actual current distribution .




1.1.5 Time Domain Approach

All the above-mentioned investigations are done in the frequency
domain; that is , the data for the whole frequency range are calculated once
frequency at a time. It is an expensive task when the results of a wide
frequency range are sought. This led us to seck an alternative way of
calculating the frequency domain data. Since a pulse response contains all
the information of a system for the whole frequency range, it is a natural
approach to use a pulse in the time domain to excite the microstrip
structures and from the time dom‘ain pulse response to extract the

frequency domain characteristics of the system via the Fourier transform

[7].

One numerical scheme which can be used to calculate the time
domain fields is the Time Domain Finite Difference (TDFD) mecthod
introduced by K.S. Yee in 1966 [8] that has been used by many invesgators
to solve electromagnetic scattering problems.  Other numerical methods
which can also be used to solve this type of initial boundary value problen
include the TLM method and Bergeron’s method. Among these methods
the TDFD method is the most direct from a mathematical point of view.
Some investigators found that the TDFD method is especially suitable for

the accurate calculation of the microstrip field [9] .




1.2 'TDI'D Approach and Its Development

What is TDFD? This idea is as old as Confucius, who said : " I'rom
the knowledge of one corner, he ( @ good student ) finds those of the other
three, By studying the past, he ( a good teacher ) predicts the future.”

( Paraphrased from Analecta of Confucius)

1.2.1 Yee’s Ildea

The Time-Domain Finite Difference Method was first introduced by
K. S. Yee. In general, solutions to the time-dependent Maxwell’s ‘equations
are unknown except for a few special cases. The difficulty is due mainly to
the imposition of the boundary conditions. Yee proposed a method to
obtain the solution numerically when the boundary conditions are those
appropriate for a perfect conductor. This numerical method is employed for
the most general case in theory. However the limited memory capacity of
computers makes it impratical for very large dimension problems .

Maxwell’s equations in an iIsotropic medium are :

0B .

oD T _

S~ VxH = (1.1b)
B=yul | ' (1.1¢)

D: € E ' (l.ld) ‘
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where J , p and ¢ are assumed to be given functions of space and time.

In a rectangular coordinate system, (1.1a) and (1.1b) are the [ollowing

equations:

_0B: _ 9E, _ OE, (1.2a)
ot Oy 0z °’ '
8By _ aEz aEz _ P

S0t T 9z T ox (1.2b)
382 - aEx 0Ey |

8t~ 3y T Bx (1.2¢)
ot —  Jy Oz v '
Ot T gz~ ox Vv e
oD, _ oy oM. _ (1.2f)

To simulate wave propagation in three dimensions, Yee arranged the
spatial points, where different components of I and H are to be calculated
as in fig.1. The repetitive arrangement of the cells of fig.1 fills the
computation domain with a finite difference mesh. Every component of H
can be obtained by the loop integral of E using the four surrounding I
nodal values according to Maxwell’s cquation for E. A similar approach

holds for the calculation of II.

|




Fig. 1. IYee’s grid

In this algorithm, not only thé placement of the E and H nodes are off
in space by half a space step, but the time instants when the E or H fields
are calculated are also off by half a time step. To be more specific, if the
components of E are calculated at nAt, where At is the discretization unit
in time, or the time step, and n is any nonnegative integer, the components

of H are calculated at (n + % ) At. For this reson, this algorithm is also

;

called the leapfrog method.

A set of finite difference equations for (1.2a) - (1.2f) will be found if

we denote a grid point of space as
(i, ), k) =(iAx, Ay, kAz) (1.3)

and for any function of space and time We put




F( iAx, jAy, kAz, nAt ) = F*(i,j, k) (1.4)

then for (1.2a) we have

B-""2(i, 4L, k43) — BT 45, kg ) By i, k1) — By Gy i+, k)

At Az

E:"(i, j+1, k+3) — E."(i, j, k+3)

Ay (1.5a)

D."(i+3, 5, k) — D" 1(i+1, j, k)
At

The boundary conditions appropriate for a perfect conducting
surface are that the tangential component of the electric field vanish and
the normal component of the magnctic field vanish. The conducting surface

will be approximated by a collection of surfaces of cubes, the sides of which
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are paJrallel to coordinate axes. For example, plane surfaces perpendicular
to the x-axis will be chosen so as to obtain points where Ly and I: arc
defined.

To have meaningful results by this method, the lincar dimension of
the grid must be only a fraction of the wavelengh. For computational
stability, it is necessary to satisfy a relation between the space increment
and time increment. When ¢ and pu are variables a rigorous stability

criterion is difficult to obtain. [For constant values of € and g computional

stability requires that

J(Ax)2 + (Ay)® + (Az)? > cAt = \J:i; At (1.6)

where c is the velocity of light.

1.2.2 Yoshida, Fukai and Fukuoka Proposed Method

N. Yoshida, I. Fukai and J. Fukuoka proposed a pumerical
method for transient analysis in three dimensional space [10]. The method
was based on the equations obtained by Bergeron [11] . The equations
show the propagation of electromagnetic waves in an equivalent circuit
based on Maxwell’s equation. This method has two important advantages
for the analysis. One is the formulation of the electromagnetic ficlds in
terms of the variables in the equivalent circuits. This treatment enables us
to see that the nodal equation is uniquely formulated in the equivlant

circuit for both the eclectric ficld and the magnetic field because of the

— 10—




duality of both field components. The other advantage is the formulation
by Bergeron’s method. with its many merits, such as the representation of
the medium by the lumped elements at each node and its reactive
characteristics which are represented by the trapezoidal rule of the
differential equation in the time domain. This treatment is based on an
iterative computation in time using only the values obtained after the

previous step. Consequently, the savings in memory storage space and

computer time 1s remarkable.

1.2.3 Gwarek Approch

‘W. K. Gwarek developed the TDFD method for two dimensional
problems[11][12]. Consider a structure shown in fig. 2. We take this as a
circuit system. The space in which the wave is transmitted is limitted by

.

A and A’ in the planes z=0 and z=d. We consider two sets of modes E,

and H,.

Fig. 2 2-D structure

—11—




An I, mode is a mode described by an electric Hertz potential 1l

e Of
the form
" = a, We"(x, y) cos( HTW Z) ejwt (1.7)
An H, mode is a mode described by a magnetic Hertz potential I, of
the form
0, = a, ¥,"(x, y) sin( HTW Z) e’ (1.8)
where a,

IS a unit vector parallel to z-axis and n is the mode number.

'rom the general properties of the Herts potentials we obtain for a

electromagnetic field expression En(x,y,z) and Hn(x,y,2) , where n is a

mode number. Based on Hertz potential and EM field quantities, Gwarck

gave a definition of surface current J and electrical potential V. The

relation between J an V are
V- V(ix,y) = —JwlsJ(x,y) (1.9)
V'J(X,y): —jWCSV(xa.Y) (110)

Consider (1.9) and (1.10) in time -dependent form

19—




0J(x,y,t)

- (1.11)

VV(X,y,t):—La

o0V(x,y,t)

o (1.12)

V'J(X,y,t)z—‘C.s

the x-y plane is divided into a set of squares of size a. The coordinates of
the middle of a mesh in the kth row and Ilth column are denoted by x, and

Y- We assume that (1.11) and (1.12) describe propagation of a wave of

A\

frequency w and wavelength A . If a € A and At J, we may

replace the differentials in (1.19) and (1.20) by finite differences At and a.

The finite difference equations give a circuit description. T'he circuit

is represented as a set of lumped capacitors C ( = C, a* ) and inductors -
L (=Ls ). The potential V'  has the meaning of the voltage. The
current flowing in the inductances may be calculated as e = Jz a
and [, = Jy a.

1.3 3-D Stripline with Plated Through Hole ( PTH ) Problem

Investigators used time-domain methods as a tool to deal with
simple structure discontinuities . That approach can not meet the design
requirements of today’s high level of integration package.

A complex but interesting example is a 3-D stripline ( not shown
in fig. 3 ) with plated through hole structure. It can be seen very o['tj(:n in

multi-layer printed circuit boards. As shown in Fig 3, there are two layers

13—




separated by three ground planes with spacing h . There is o microstrip

in the middle of each layer with the width W. ‘The strips are connected

by a through hole on the middle-ground plane.

Since this is a model that can be applied to many circuit board

structures, we take it under study.

o
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IFig. 3. Stripline with plated through hole ( P'TH ) structure




2. TDFEFD for Stripline PTI Structure

2.1 General Formulation of the Problem

The generalized 3-D stripline PTH structure under investigation is
shown in Fig. 3, where the strip and ground plane are made of a perfect
conductor ( ¢ = oo ) and the substrate has a relative dielectric constant of
€r. The structure is assumed to be in an open environment, that is |
above and below the structure , free space is assumed to extend to infinity:
in the horizontal direction , apart from the discontinuity region, the layered
strip also extends uniformly to infinity.

Assume that current flows on the surface of the structure and the
voltage has an instantaneous value on the surface. If we manually unfold
the surface into a plane, we get three separated plates, see fig.d . Here we
call the lower strip plate 1, upper strip plate 3, and the via plate 2. Note
that we take the strip as an infinitely thin conductor so that there is no
change between strip and plate. In practice, the via is a straight circular
hole usually. Along the transverse direction the via has a closed surface.
When we do the unfolding, we define a cut-line along the hole on the
surface so that we can make a pléte and keep in mind that this cut-linc is
only for convenieuce.

After unfolding the structure , we can assume three conducting plates
- above a ground plane. This assumption can be made since using moment
method , we can get capacitance between square segment of plate  to

ground and inductance on the plates ( this can be seen in a later section ) -




These circuit parameters give a planar L-C network which looks like

connected strip transmission lines.

Fig. 4. unfold the PTH surface into three plates

For each plate , the two-dimensional wave equation is obeyed

0 V(x,y,t) -
2 2D = 2.1

szz ix,y,t) — B

—16—




with proper boundary conditions. In the TDEFD method, instead of

solving the second-order equation (2.1) a pair of first-order cquations is

solved:

VVi(xay’t):—LsiaJi(axt’y,t) (22)

a V,-(X,_y,t)

V-Ji(x,y,t)=—-C,, 5 (2.3)

where 7 =1, 2, 3. They refer to plate 1 ( lower strip ) , plate 2 ( via)
and plate 3 ( upper strip ) respectively. At the interface of the three
regions, the continuity conditions are enforced. In microwave planar
circuits, the variables and constant in (2.2) and (2.3) have the following
interpretion: V.= voltage, J = surface current density, C, =

capacitance of a unitary square of the circuit, L, = inductance of an

unitary square of the circuit.

For uniquen'ess of the solution to these equations , the following
conditions must be satisfied : a) The initial conditions must be specified
on the whole domain of interest; that is Vi(x,y,t=0) and J, ( x,y,
t=0) rmust be given everywhere inside the computation domain. b)

‘The boundary condition of the domain of interest must be given for all t >

0.

— 17—




2.2 Time Domain Finite Difference Algorithm

The surfaces of the structure are divided into a set of square
meshes of size a. Solving equations (2.2)  and (2.3) by the finite
diffcrence method in consccutive time points simulates the wave
propagation. Replacing the differentials in (2.2) and (2.3) by finite

differences At and a yields

J-'L‘(xl+g’ Yis t°+%) — Jf(,xl+g7 Yks to—'%_t)

—(Vxit ayte) = V(x, v to) AL (2.4)
Jy(xla Yit "a'a to“i‘%t) — Jr(xla yk+%’ to_%;) .
—( V(xlaYk+a,t0)— V(X,I’Yk’ to)) LASEl ,(25)

V(xlekat0+At): V(x,,yk,to) “(Jx(xz‘Fg, Yis to“l‘%‘t )

= e (i =5, Ye e+ ) H U (x, oyt 8 e+ 4

Consccutive calculations of (2.4)

, (25 ) and (2.6)

simulate the process of wave propagation in the circuit.




2.3 Stability and Convergence

Discrete approximations to partial differential equations arc uscful
only if they are convergent and stable. It is well known that the
problem of convergence consists of finding the conditions under which the
difference between the theoretical solutions of the differential and the
discretized equations at a fixed point ( x, t ), tend to zero uniformly, as
the net is refined in such a way that a, At — 0 and m,n — oo , with
m-a (= x) and n- At ( =t) rémaining fixed. On the other
hand , the problem of stability consists of finding a condition under
which the difference between the theoretical and numerical solutions

of the discretized equation, remains bounded as n tends to infinity.

Lax and Richtmyer have shown [13] that if a linear difference
equation 1s consistent with a properly posed linear initial-value problem,
then stability is the necessary and sufficient condition for convergence.
Since the problem we are interested in here is a Cauchy type problem and
TDI'D is a consistent difference approximation to the problem, we only
need to examine the conditions under which stability is ensured. There
are several ways of analyzing the stability of a hyperbolic system on a
regular square grid[15]. Wilson has shown that the leap-frog scheme is

stable if




!
where ¢ is the velocity of propagation. It is interesting to note that

this stability criterion is independent of the number of dimensions if the
computational grid is uniform, that is , the mesh increment a is the same
along any dimension. However for the TDFD scheme  the stability

condition is found as Courant condition:

c- (At ) < (2.8)

a
\n

where n is the number of dimensions.

/1y

Boundary conditions and interconnection also can lead to
instabilities in the numerical calculation . For the case of hyperbolic
systems, the stability question is solved in principle by the theory of
Gustafsson, Kreiss, and Sundstrom [14]. Application of this theory s
difficult because of its complexity and abstractness. A simple physical
interpretation of the main result of this theory was given in terms of
group velocity . It is well known that group velocity is a concept
associated with energy propagation under dispersive ‘conditions. [t
significance  to numerical stability results from the fact that finite
difference  models are necessarilly dispersive even on nondispersive
equations. This implies that for the numerical approximation, energy
associated  with  different wavenumbers or frequencies will travel at

different group velocitics, even if the original equation is nondispersive.

—20—




Based on this , one can state the main result of the theory of
Gustafsson, Kreiss, and Sundstrom as follows. An initial boundary

value problemn model is stable if and only if

/,

1) the stability condition (2.7 or 2.8) is satisfied everythere inside the

mesh boundary;

2) the model ( including boundary conditions) admits no wave solutions
that grow from each time step to the next by a constant factor z with
|z | > 1;

3) the model ( including boundary conditions) admits no wave
solutions with group velocities which support active radiation from the

boundary and Interconnections conditions to the interior of the

computation domain.

2.4 Choice of Excitation

The excitation pulse used in this investigation has been chosen toj_)(-z
Gaussian in shape. A Gaussian pulse has a smooth waveform in time :
and  its Fourier transform is also a Gaussian pulse centered at zero
frequency . These unique properties makes it a perfect choice for this
Investigation. Also doing computation by TDIFD one has to deal ‘with
” noise ” introduced by discretization of numerical processing which

affects the high frequency information. This effect can be minimized if

the exciting pulse had the widest possible bandwidth. Such a pulse

_91] —
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approaches a delta function and "Tnumecrically one does it by using a

Gaussion pulse.

An ideal Gaussian pulse that will propagate in the 4+ z dircction

has the following expression:

Z — Zo \2

g(ta)= exp[ - ST ) (2.7)

where v is the velocity of the pulse in the specific medium, and the pulse

has its maximum at z = 2z, when t = t,.

The Fourier transform of the above Gaussian pulse has the

form

G(f) « exp[—n* T? ?]

T B8
A

v VoL

o0
A

um.0 -39

d% N
-




The choice of the parameters T , t, and 2z, are subject to two
requirements. The first is that after the space discretization interval Ay
has been chosen fine enough to represent the smallest dimenssion of the
structure and the time discretization interval At has been chosen stmall
enough to meet the stability criterion, the Gaussian pulse must be wide
enough to contain enough space divisions for a good solution. And at the
same time, the spectrum of the pulse must be wide enough ( or the pulse
must be narrow enough ) to maintain a substantial value within  the
frequency range of interest. If these two conditions cannot be satisfied

simultaneously , Az has to be rechosen to be even smaller.

The pulse width W chosen in this work is about 60 space step. We
define the pulse width to be the width between the two symmetric points
which have 5 percent of the maximum value of the pulse. Therefore I’

1s determined from

(%)
2 | ~'
exp [ — (T’ ] = exp(—-3) ~ 0.05 (2.9)
or
T = 10 _Az (2.10)

N3 v

By making this choice of T , the maximum frequency which can

be calculated is

—923
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fraz= L = N3 v , (2.11)

with the specific Az chosen , it is high enough to cover the entire

fr{quency range of interest.

The second requirement is that the choice of zo and t, be made

such that initial ” turn on ” of the cxcitation will be small and smooth.
2.5 Matching Boundary Conditions

The TDFD method models the energy flow in the circuit . |If
the input and out put of the circuit are matched , energy flow can be well
represented and we can use it to compute the S matrix and other

frequency domain data directly.

Consider the input and output ends of the PTH structure, Fig. 6.
the width w = 6 ¢ where ¢ is the mesh size. Input and output
matching is obtained by introducing in each of the rows of meshes at

the input and output the following operations:

Lt + §Y) = L(tg— Bty — (v, (ty) - Vi(t)) St (2.12)

Vilto + At ) = Vy(to+ At) — I, (t, + %t ) Ry (2.13)




Insr (to + %I') = L (b — %—t) + (Vasr (to)

1

— Vo () & (214)

Vapa(to + At) = Ly (o + %_t ) Ro (2.15)

Fig. 6 Matching boundary conditions

— 25—




2.6 Interconnection Conditions

Since we artificially decompose the problem into three plates,

interconnection between the plates should be arranged properly based on

the real structure. For each segment we use a central node for voltage

sampling.  Also along the edge we connect to branches for current
sampling in x and y directions. It is clear that at the interconnection
region, the current must be continuous. Base on this fact , we have

interconnection shown in fig. 6.

) SR G e o
%

Fig. 7. Interconnection between the plates
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2.7 Capacitance and Inductance Calculation

Gwarek calculated capacitance and inductance based on equations
1.15—1.18 . This approach gives a uniform distribution of capacitance and
“inductance which is not true in the real world. The fringing ficld must be
considered even for a single strip case. The stripline PTH structure has
two layers separated by three ground planes with a hole in the middle that
connects to the signal lines . The complexity of the structure requires us to
take into account the friging field more carefully.

IKd Li and Professor Decker developed a technique to calculate the
capacitance and inductance matrix by the Method of Moments combined
with structure symmetry considerations. This technique considers all the
edge effect coupling. The results obtained show a reasonable distribution

‘of capacitance and inductance on the strips . We use these data for the

TDI'D calculations.
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3 NUMERICAL RESULTS

The Transient analysis for the stripline PTH structure has

been »performed by the method described in preceding secction. In IMig. 3
the model of the stripline PTII structure is shown. The paramcters of
the structure are shown as follows:

width of the strip W, = 0.2 mm

length of the strip L; = 0.561 mm

width of via W, = 0.24 mm

length of via Ly = 0.6 mm

To accommodate the structural details of the strip, the mesh

parameters have been chosen to be

space interval for strip : a = 0.0333 mm (Ax = Ay = a)
)
space interval for via : ay = 0.03 mm
time step At = k-a/c (sec), where cis the velocity of light in air

and k is a constant restricted by the stability criterion.

A Gaussian pulse excitation 1is used at the input side. It is

uniform across the strip and has the following specified value:

V(t):exp[— (t_t()) ]

|

where t; = 100 At and I' = 10 At . The frequency spectrum of this

pulse is from DC to about 100 Gllz.

— 98—




ALONG THE STRIP

-

ALONB THE STRIP

ALONG THE STRIP

Voltage distribution on stripline 1
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Voltage distribution on stripline 2

Fig. 10 .




I'ig. 8 (a) shows the calculated voltage wave along the strip at
t= 200 At. At this time a gauss pulse rcaches the matched iInput port. The
rest of stripline has not get any excitation so that it remains quiet. Iig. 8
(b) shows the voltage distribution at t= 250 At. We can sce that the
wave propagates along the strip 1 with constant velocity and no loss ( the
strip 1s a perfect conductor) . When the wave reaches the hole fig. 8(c)
t=300At, potential along the transversal direction is built because of the
capacitance distribution in this region.

When the wave passes through the hole |, Strong reflection occurs,
and transversal mode is generated because that the hole is excited non-
uniformly.

I'ig. 9 (a) shows the wave reaches the second strip at t=450At.
At this time, voltage amplitude becomes lower because the loss at
mismatched interconnection condition. After a while |, potential
distribution along the transversal direction becomses uniform and wave
propagates with constant velocity again shown in fig. 9 (b) t=500At. At
t= 000At , the wave reaches output port as shown in fig. 9 (¢). We can
see that the wave changes its shape because the reflection generates noise
at the interconnection region.

The program is in C Language. It take 4 minites to run 600 time
step in a HP computer. Instant voltage ‘adisplay can be seen on the screen

and selected data can be found in a data file for further study.
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3. SUMMARY AND FUTURE RESEARCI]

The TDFD algorithm has several advantages over other schemes
for the calculation of microstrip time-domain fields. It uses Maxwell’s
equations directly . Therefore it has clear physical interpretation. If a4
computional error occurs, its cause can be quite easily spotted. |t
simulates the wave propagation in the circuit numerically.  T'he central
difference nature of the leapfrog method makes it a relatively accurate
method ( second order accuracy in both time and space ), comparcd
to other first order schemes . The lcapfrog algrithin  has  the unique
characteristics that the numerical scheme has no dissipation ( amplitude
increase or decrcase for any frequency component ) and only a small
amount of dispersion. It hag .been shown that the numerical dispersion

- 1s negligible compared to the physical dispersion of the strip.

The paper has presented a version of the finite-difference time-
domain method for transjent calculation of 3-D stripline PT'H
structures. Only theoretical and numerical work is done at this stage.
We need experimental data, ( such as S parameters mesured by network
analyser) to verify our result. In order to do this , F[ourier transform

needed to get frequency domain data and S parameters.
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