Lehigh University
Lehigh Preserve

Theses and Dissertations

1989

Development of an LALR(1) parser generator

Marie Schneck
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Schneck, Marie, "Development of an LALR(1) parser generator” (1989). Theses and Dissertations. 5247.
https://preservelehigh.edu/etd/5247

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5247?utm_source=preserve.lehigh.edu%2Fetd%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Development of an LALR(1)

Parser Generator

Marie Schneck

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
in
Computer Science
Lehigh University

1989

This thesis is accepted and approved in partial fulfillment of the requirements

for the Degree of Master of Science.

777?;/, ~ 5, /787

)é,wo/ ol }%/40/\

Professor in Charge

SOWJ 7 (N (G

CS D1v131on Chairman

(7

CSEE Department Chairman

1l

ACKNOWLEDGEMENTS
I would like to thank Dr. William Seaman, formerly of Muhlenberg College, for
introducing me to Compiler Design and to LR grammars and LR parsing. He initiated
my interest in the subject, which was further increased by Prof. Samuel Gulden in his
Compiler Design Courses at Lehigh. I also greatly appreciate the knowledge gained
from both Dr. Edwin Kay and Dr. Robert Barnes in the area of Formal Grammars and

Finite Automata, which was invaluable in the the development of this thesis.

1il

TABLE OF CONTENTS

List of Figures vi
Abstract 1
Chapter 1 Terminology and Definitions 3
1.1 Terminology 3
1.2 Shift-Reduce Parsing 4
1.3 Definition of an LR(K) Grammar 6
Chapter 2 LR Parsing 8
2.1 General Parser Construction 8
2.2 Construction of the Collection 11

of Sets of Items

2.3 Definition of LALR(1) 14
Chapter 3 Computation of LALR(1) Lookahead Sets 20
3.1 Background 20
3.2 Computation of LA 22
3.3 Interrelation of Follow Sets 24
3.4 Determining Read(p,A) 25
3.5 Applying Algorithm Digraph 27
3.6 Steps to Compute LA 30
Chapter 4 Single Reduce State Elimination 32
4.1 LR(0) Row Elimination 32
4.2 Shift-Reduce or L-Action 33
Chapter 5 Application to Grammars G2 and G3 34
5.1 G2 Applic'ation 34
5.2 G3 Application 39

1v

Chapter 6 Optimizing Parse Tables
6.1 Sparse Matrix Representation_
6.2 Default Parse Table Entries
6.3 Single-Production Elimination
6.4 Size of PLO Parse Table
Chapter 7 Generalizations
Chapter 8 Program Implementation
8.1 Important Data Structures
8.1.1 Constant Definitions
8.1.2 Nonterminal and Terminal Symbols
8.1.3 Production Representation
8.1.4 Collection of Sets
8.1.5 Combined Parse Table
8.1.6 Calculating Lookahead Symbols
8.2 Forming the LR(0) Machine
8.3 Calculating the Lookaheads
8.4 Final Parse Table Modifications
8.5 The Shift-Reduce Parser
Bibliography
Appendixes
Appendix A Input and Output for
Gen_LALRl_Parse_Table_Program
Appendix B Input and Output for
Shift_ Reduce Parser Program

Biography

LIST OF FIGURES

Iigure 2.1 Finite State Machine for G1
IFigure 2.2 Finite State Machine for (G2

Figure 2.3 Finite State Machine for G3

Figure 3.1 Lookahead Sets In Terms Of IFFollow Sets

IFigure 3.2 Interrelation Among I'ollow Sets
Figure 3.3 The Reads Relation
FFigure 5.1 GoToTable for (G2
IFigure 5.2 Final Parse Table for (G2
Figure 5.3 GoToTable for G3
Figure 6.1 Parse Table for G1
Figure 8.1 Procedure Closure

Figure 8.2 Procedure Go'lT'oSet
Figure 8.3 Function ClieckGoTo
Figure 8.4 Procedure FFormGo'l'o
Figure 8.5 Procedure BuildCI'SM
I'igure 8.6 Procedure Dircct Read
Figure 8.7 Procedure TraverseBack
Figure 8.8 Procedure LookBack
Figure 8.9 Procedure CkIncludes
IFigure 8.10 Procedure Includes
Figure 8.11 Procedure Traverse
Figure 8.12 Procedure Digraph
Figure 8.13 Procedure Union

Figure 8.14 Procedure Find LookAheads
Figure 8 .15 Procedure CondenscPA'T

Vi

17

18

19

23

21

27

34

38

40)

48

63

64

65

66

67

70)

71

72

72

73

74

76

76

78

78

Figure 8.16 Procedure Elim _Unit Prads

Figure 8.17 Procedure Shift
Figure 8.18 Procedure Reduction

Figure 8.19 Procedure Parse

Vil

79

82

82

83

Devclopment of an LALR(1) Parser Generator

Marie Schneck

ABSTRACT

LALR(1) grammars are a subset of LR(1) grammars. The techniques used to
create LR(1) parsing tables can be directly applied to LALR(1) table construction and
the LALR(1) table can be formed by merging states while constructing the LR(1)
parsing table. This method is inefficient if one is only looking for LALR(1) grammars
as 1t requires essentially forming the LR(1) machine by computing all the required
lookaheads and then merging compatible states.

The method outlined in this thesis and incorporated into the accompaning
computer program to gcnerate the LALR(1) parsing action table is due to Frank
DeReemer and Thomas Penncllo. The method is extremely efficient in that it works
from the LR(0) machinc and generates only the lookaheads needed for production
reduction in inconsistent states. No other lookaheads are computed. Thus the number
of states to be computed is kept to a minimum by only generating the LR(0) machine
and computation of lookaheads is kept to a minimum by only determining the
lookaheads needed in inconsistent states.

The one disadvantage to deReemer’s and Pennello’s method is that if the
grammar is not LALR(1) it is not possible to discover if the grammar is LR(1) since all
the LR(1) states were never constructed. However, since most grammars which are
LR(1) are also LALR(1), the efficiency of the method outweighs this disadvantage.

Also, the program gives several diagnostics which show exactly where the grammar is

not LALR(1). These diagnostics can be used to change the grammar to LALR(1), if at
all possible.
The parsing action table is input to a shift-reduce parser which is then used to

parse strings in the language.

CHAPTER 1
TERMINOLOGY AND DEFINITIONS
1.1 TERMINOLOGY
The following terminology will be used through out the paper.
A context-free grammar, or CFG, G is specified by a quadruple (N, T, P, S),
where
N is the finite set of nonterminal symbols
T 1s the finite set of terminal symbols and N and T are disjoint
PCNX(NUT)"is a finite set of productions
S in N is the start symbol
The vocabulary of G refers to N U T and is denoted by V. A production in G
is denoted by A =+ a where A ¢ N and o ¢ V*. The empty string is denoted by A. The
length of any string « is denoted by | a | .

The following usual conventions will be observed.

S, A, B,C, ... ¢ N
a, b, c, ... e T
X, Y, Z e T*
a, B,9,... e V*

There exists an augmented production S’ — S# where S is the start symbol of
the grammar G, # ¢ T and is considered the end of string of the grammar, and S’ and
appear in no other productions. In the program which generates the LALR(1)
parsing action table, this production will be added by the program and is considered an
augmented production, i.e. not part of the original grammar. Thus the end of string

symbol # must not be part of the original grammar.

The notation =, refers to a rightmost derivation. Thus forall A ¢ N, a, 3 ¢
V5 ye T and A= aceP,if S =,*FAy =, Bay is a rightmost derivative in G then
both SAy and fBay are rightmost sentential forms (i.e. sentential forms produced by a
rightmost derivative). A nullable nonterminal A is one which produces A (i.e. A ="1) .
The language L(G) of the grammar G is the set of all sentences y ¢ T* such that § =>*

y, where S is the start symbol of grammar G.

1.2 SHIFT-REDUCE PARSING

A shift-reduce parser is a bottom-up parser which operates by shifting input
symbols onto a stack until the right hand side of some production is recognized which
can be replaced by the left hand side of that production at that point. Since the shift-
reduce parser operates by essentially doing an inverse rightmost derivative, the point at
which the reduction A - a would be done is exactly the point at which A would be
replaced by a in the rightmost derivation.

As the parser shifts symbols onto the stack, the current sentential form will
always be on the stack combined with the remaining input. The parser must determine
when to do a reduction by determining what portion of the current sentential form, if
any, is the handle . The handle of a right sentential form v 18 a production A - 4 and a
position of 4 where the string # may be found and replaced by A to produce the
previous right sentential form in a rightmost derivative of 7. Thus if the following
derivation exists , S =" aAy =, afy = ¥ then A - 3 in the position following a is a
handle of afy. The handle for ¥ may be denoted by the pair (7 ,i) where 7 ¢ P, i >

0 is the position where the replacement occurs. In the previous example, the handle for

v 18 (A—oﬂ,laﬁl)- The handle is always on the top of the stack.

The stack will always contain the viable prefixes of the right sentential forms of

the grammar. A string af is called a viab/e prefix if there is some right sentential form
containing a 8. In the above example afl is a viable prefix (and so is oA).
If the shift-reduce parser is to be totally deterministic (no back tracking), the

parser must be able to determine at each step what the hand]e i1s, if any, and what

production reduction to apply.

added
E' 4 E #
E - 7
E - E AT
T = I n
T o T M F
F 4 (E)
F o i
F 5 intliteral
A - 4
A o .
M o *
M 4 /

Consider the rightmost derivatjve of the string a +gxd-f/ 10 # in G1.

Note that the string is terminated by the end of string symbol #.

E’ :>rE#:>rEAT#:>rEATMF#:>rEATM10#
:wEAT/lO#:nEAF/lO#:m-EAf/lO#
=>,~E-f/10#:>,.EAT-f/10#
:>rEATMF-f/10#:>rEATMd-f/10#
=>rEAg*d—f/10#=>rE+g*d-f/10#
:>rT+g*d-f/10#=>rF+g*d-f/10#
Zratgxd-f/10 4

#FFHFEHF

o O
H#* H

EAT-f/ 10
E-f/10 #

EAf/ 10 #
EAF /10 #
EAT/ 10 #
EATM 10 #
EATMF #
EAT #

E #
EI
1.3 DEFINITION OF AN LR(K) GRAMMAR
A grammar G is said to be LR(K) if and only if the following conditions apply:
For any w, w/, x ¢ T* v, a,al, B, 8 ¢ V* X, X' ¢ N then if
(1) S =" aXw =, afw = yw
and hence yw has (X = 3, laﬁl) as a handle
(2) S = a'X'x =, o/f'x = yw'
and hence yw' has (X' - 4!, |a'ﬁ'| as a handle
(3) Firsty(w) = First,(w')
then
(4) (X"~ 8"]a'8') = (X = 8, |af])
Some relationships can be seen from the above definition. Since the two handles
are equal in number (4), we have X = X', #=4’, and laﬁl:la'ﬁ’l = some integer i.
Also, yw=afw, 7w'=a'ﬁ'x where ~y=af. Hence aﬂw':yw’:a'ﬂ'x. Thus
af=First,(afw') = First,(a'B'x) = a'p' since lap| = |a'p'| = i. Hence since af=a'g’

and #=/' we have a=a'. Also, since aﬂw':a'ﬁ’x and af=a’3’ we have w'=x.

The above definition does not provide an easy way to tell if a grammar is
LR(K). It does, however, provide the basis for determining whether or not a grammar
is LR(K) since it clearly states that for a grammar to be LR(K) we must be able to
determine at each stage of the parse, with K lookaheads, exactly what production
reduction, if any, to apply. There will be one and only one possibility at each stage of
the parse.

Looking at the previous string a + g x d - f / 10 # in grammar G1 , which is
LR(1), the following demonstrates how an LR(K) parser would correctly parse the

string. The productions in G1 have been numbered from 1 to 12.

STACK ACTION REMAINING INPUT
A a—+gxd-f/104
a shift +gxd-f/104#
F reduce,7 +gxd-f/10#
T reduce,4 +gxd-f/10#
E reduce,2 +gxd-f/10#
E+ shift gxd-f/10#
EA reduce,9 gxd-f/104#
EAg shift *xd-f/10#
EAF reduce,7 *xd-f/ 104
EAT reduce,4 xd-f/ 104
EATx shift d-f/104#
EATM reduce,11 d-f/10#
EATMd shift -f/10#
EATMF reduce,7 -f/104
EAT reduce,5 -f/104

1) reduce,3 -f/104#

E- shift f/10#

EA reduce,10 f/104#

EAf shift /10#

EAF reduce,7 /104

EAT reduce,4 /104

EAT/ shift 104

EATM reduce,12 104
EATMI10 shift #

EATMF reduce,8 #

EAT reduce,5 ¥#

E reduce,3 #

E# shift A

E’ reduce,l A

CHAPTER 2
LR PARSING
2.1 GENERAL PARSER CONSTRUCTION
Since the accompaning computer program is only concerned with LR(0) and
LALR(1) grammars the discussion from now on will refer to 0 or 1 lookaheads. All
ideas can be extended to k lookaheads by considering strings of k lookahead symbols.
For the moment, the discussion is concerned with LR(0) and LR(1). LALR(1), a
subset of LR(1) , will be explained later on.
All LR(1) parsing methods depend upopn an item of the form

7]

where L = {l;1, ... In},l; eTU {)},Ae P, X, e NU T or, equivalently ,

A - (3,08, , L where 3,, 8, € V*.

If a grammar is LR(0), the set of lookaheads L is eliminated from the definition
of an item since the parse will precede without having to examine any lookaheads for
production reductions.

The e symbol indicates how much of the production has been parsed. The
symbols on the left hand side of the e have been parsed and are on the stack, and the
symbols on the right hand side of the e are still contained in the input string. The set
of lookaheads L are the terminal symbols (plus A) which can follow the production A at
this point in the parse. Thus, if there exists a rightmost derivative S =,* aAx
=raf;B,x then L = First,(x), xeT*.

In order to construct any LR(1) parser it is necessary to construct a collection
of sets of the above items. Each set of items represents a state in the action of the

parser. Transitions between these states are determined by constructing a GoTo

Function for the grammar and actions (shift or reduce) are determined by constructing

a Parsing Action Table for the grammar. These two tables will drive the shift-reduce
parser.

The GoTo Function for a grammar G is the transition function of a
deterministic finite state automaton that recognizes the viable prefixes of G. Since the
GoTo Function is used to construct the collection of item sets of grammar G, the
collection of item sets also recognizes the viable prefixes of G. The GoTo Function
Table is indexed by the states in the parse and the vocabulary symbols of the
grammar. Thus GoTo(i,X) = j, where 1,) are states and X ¢ N U T. Thus, in state i
with next symbol X GoTo state J.

The Parsing Action Table indicates if a shift or reduce action should be taken
depending on the current state of the parse and the lookahead string. This table is
indexed by the states and the terminal symbols. The possible actions indi<‘:ated by the
Parsing Action Table can be determined as follows.

Let P = Parsing Action Function, {S,, S;, ..., Sn} = collection of sets of items
(the set of states B ABeN,a 3¢ V* and a,b ¢ T. Then P(S,, a) = action in state
S; with lookahead symbol a.

1) if the item B+ o e b3 , L ¢ S; then P(S;,b) = shift = (s).

2) if theitem Boa e, L ¢ S; then for all b ¢ L ,P(S,, b) = reduce by B — «,
= (r,j) where j refers to production B - a.

3) accept is the special case where if the augmented production S’ = S e # ,{)}
e S; then P(S;, #) = shift and P(Sy, S') = accept.

4) all other entries are error.

A configuration of an LR(1) parser is acturately described as follows, where S; is
a state, X, ¢ N U T, and a; ¢ T.

Soxlslx282 XmSm ’ aiai+1 “oe an#

In the above, S;X, ... S;uX,» are the contents of the parse stack, and a; ...an#
are the rest of the input string. It is ,of course , possible for a, ... an to be). The above
represents the rightmost derivative S =r X1X3X3...Xma,...an#. The dot position e is
between X,, and a;. At each step of the parse, the parser examines the next input
symbol and decides if it should shijft the next symbol or if it should reduce by a
particular production(i.e. a handle has been recognized).

The relation + is defined as g move from one configuration to another
configuration. The relation F can consist of either a shift a ¢ T (a read) or a reduce by
A=a.

If the parser shifts a symbol, it then examines the GoTo Function to determine
what state to go to next. This next state i1s then shifted onto the stack. If the parser
action is to reduce by production A = o the parser pops 2 x ,a, symbols off the stack
if a state and a vocabularly symbol were originally pushed onto the stack. It then

examines the GoTo Function for the state at the top of the stack and the nonterminal

A. The nonterminal A is now shifted’ onto the stack, followed by the next state
indicated by the GoTo Function.

It is important to note here that the LR(1) parser does not need the
vocabularly symbol X; on the stack. The state symbol and the next lookahead is all
that is needed to describe all parsing actions. So the LALR(1) parser program which 1
have written only pushes states on the stack.

It is also important to note that the GoTo Function and the Parsing Action
Table can be more efficiently compacted into one table indexed by the states and the
vocabularly symbols. Thus if a ¢ T indicates a shift, the parser shifts a and goes to
state) indicated by the GoTo Function. The appropriate entry in the table becomes

(s,j). After a reduction A—-a the parser shifts on the nonterminal A created by the

10

reduction and goes to the state indicated by the GoTo Function. The reduction is
recorded in the table by (r,k) where k indicates the production A -a . The appropriate
shift action for A is recorded as (s,j), as above. Thus a reduction requires two actions.
First in state | with o on the top of the stack, reduce by k, popping Ial symbols off the
stack. Second, having popped back to state i, shift A and GoTo j (i.e. (s,j)).

The combined table will be called the Parse Table, or PAT.

If a grammar is LR(0), LR(1), or LALR(1) there will be only one possible
action in each state of the parse. An inconsistent state will have a conflict. The possible
conflicts are a shift-reduce conflict or a reduce-reduce conflict. The former arises when
a lookahead symbol indicates a possible shift action and a reduce action. The latter
arises when a lookahead symbol indicates two or more possible reduce actions. A
grammar is LR(0) if there are no inconsistent states when no lookaheads are examined.
A grammar is LR(1) or LALR(1) when there are no inconsistent states when one

lookahead is examined.

2.2 CONSTRUCTION OF THE COLLECTION OF SETS OF ITEMS

In order to construct the collection of item sets , it is necessary to start with
the augmented production S’ — e S#, {A} . Intuitively this means that at the beginning
of the parse we are looking for all symbols that are derived from the start symbol S
followed by the end of string #. The augmented symbol S’ can on'ly be followed by .
Also, by including the augmented production S' — e S# , we have made S# a viable
prefix of the grammar.

Using the grammar G1 listed earlier, we start with E/ = o E# , {A}. In this
item, since E is a nonterminal it can be expanded to predict more productions and more

configurations. This is done by the closure operation. Every nonterminal that follows a

11

dot is expanded by predicting its production plus any terminal symbols that can follow

the production at this stage of the parse. Thus from E' = e E#,{)\} we would predict

E—-e T, {#}
E-eEAT, {#)

Now since T follows a dot, we further predict

T = e F, {#}
T—oeTMF, {#}

Further predict F by

FF—oe (E) ’ {#}
F—>oe id, {#}
F — e intliteral, {#}

The second E from E - ¢ E A T, {#} must be further expanded by

E_"Ta{"l" _'}
E-eEAT, {+ -}

This T and the second T from T =+ ¢ T M F, {#} must be further expanded to
predict

T+eTMF, {+ — x /)
ToeF, {+ — %/}

This new F must also be expanded to

Fse(E) {+— /)
Foeid, {+ — x /}
F — e intliteral, {+ — x /}

There are no more predictions that will create any new follow symbols, so the

above can be condensed to

STATE 0

E,—OOE#,{A}

E —eT, {+ — #}
E-2eEAT, {+ — #) \
T-+0F,{+—*/#}
T —»QTMF,{+—*/#}

F 2e(E), {+ — %/ #)

F —»eid, {+ — x / #)

F — e intliteral , {4+ — * [#}

12

Basically the two steps performed here were

1. In Sy = State 0 add the augmenting production S’ + e S#. {A}.

2.If A+ e Ba,L ¢S, and B » B is a production in G then add B—ef,{x} to
Sy for all x ¢ First;(aL). Note that a can equal A here. Repeat step 2 until no
new items are added to So. As above, take the union of all the follow sets to

form the final prediction. This is the closure of S’ - o S#, {A}.

parse. Intuitively this means the parse has consumed this symbol and the symbol is on

the parse stack. Form the closure in each state. Six states will be formed by doing this.

They are

STATE 1 = GOTO(0,E) STATE 4 = GOTO(0,()

E' 5 E o #, {)) Fo(eE) {+ — %/ #)

E SEeAT, {+ — #) E-eT, {+ —-))

A = e +, {id intliteral} E-eEAT, {+ -)}

A -e — {id intliteral} ToeF, {+ —x/))
ToeTMF, {+ — * /)}

STATE 2 = GOTO(0,T) Fae(E), {+ —%/)}

E 2Te, {+ — #) Foeid, {+ —x/))

T-;T.MF,{-,--—*/#} Faointliteral,{—}-—*/)}

M - e x, {id intliteral}

M —e/, {id intliteral} STATE 5 = GOTO(0,id)

F 5 ido,{+—*/#}
STATE 3 = GOTO(O,F)

T 2 Fe,{+ — « / #} “STATE 6 = GOTO(O,intliteral)
F' — intliteral o , {4+ — / #}

All states are formed by continuing in this way until no new item sets are
created. The basic rules used to form the GoTo Sets are

ILLIFA 95 ae X3, L ¢ S; then add A - aX e B, L to GoTo(i,X) = S; where X

eNUT
2. Take the closure of state S;; If A5 aeBj, L ¢ S;and B = yisa

production in P, add B = e 7, {x} to S, for all x ¢ First;(BL). As before B can

13

be A. Repeat until no new items are created.

The above operations are continued until no new states are formed.

A kernel item is defined to be the initial item E' — e E#, {)} and all other
items whose dots are not at the left end of the right hand side of the production (these
are actually all items formed by moving the dot over and moving to the next state by
GoTo(S;, X)). Thus, all nonkernel items have dots at the left end of the right hand
side of the production and are actually formed by performing the closure operation.

It is instructive to note that every state is determined by its kernel items.
States with identical kernel items will always remain the same after the closure
operation is performed. Thus, space could be saved by only storing the kernel items
and by performing the closure operation whenever necessary. I did not do this in the
computer program since the LALR(1) collection of sets is considerably smaller then the
LR(1) collection of sets. It would be extremely time consuming to continually create
the closure items.

An efficient way of representing an item is by the trio (i,j,L) where i = a
production number, j = the position of the dot and 0 < j < length of production i, and

L = set of follow symbols. The LR(0) collection of sets would have no follow sets with

the items. It is called the LR(0) finite state machine.

2.3 DEFINITION OF LALR(1)

As the LR(1) sets are formed, it becomes very apparent that several states will
be the same in the productions and the dot positions, but differ in the follow symbols.
For example, in the above expression grammar, the construction of the GoTo Sets

would create, among others, the following two states.

STATE 3 = GOTO(0,F)
ToFe {+ — x/ #}

14

GOTO(4,F)
T_’F.a{'{" —*/)}

It is very evident that these two states differ only in their follow sets.

Similarly, the LR(1) machine will contain the following two states.

Continuing from State 4 from the kernel item F — (e E), {+ — x/ #)
we will create a state with the following item

F-»(E)o,{-{-—*/#}

Continuing from State 4 from the closure item F — o (E), {+ —%/))
we will create a state with the following item

Fo(E)e,{+ —x/)))

If all states such as the above are combined by taking the union of the follow
sets In items in which the dot position and the production numbers are identical the

four states above are reduced to two. They are

State I
T-»Fo,{+—*/)#}

State J
Fo(E)e,{+ —x/)#)

The grammar created in this way is called an LALR(1) grammar if there are no
Inconsistent states when one lookahead is examined. This means there can be no shift-
reduce or reduce-reduce conflicts after all the appropriate states have been merged.
Either the entire LR(1) machine can be formed and the appropriate states merged or
the states can be merged as the LR(1) machine is constructed.

The LALR(1) machiﬁe formed in this way is identical to the LR(0) finite state
machine with the appropriate follow sets attached to each item. That 1s, there are
exactly the same number of states and exactly the same items in each state. The
parsing actions are determined exactly the same as for the LR(1) machine.

This suggests that it would be much more efficient to construct the LR(0)
machine and compute the lookaheads needed in inconsistent states since the LR(0)

machine will generally have considerably fewer states then the LR(1) machine. Thus,

15

considerable time and space is saved by approaching the problem in this way. This is
exactly the approach taken by DeReemer and Pennello.

The expression grammar G1 is not only LALR(1), it is also SLR(1). A
grammar is SLR(1) if there are no conflicts when the follow sets of the nonterminal
symbols in the grammar can be used for the lookahead sets. The LR(0) machine is
constructed and all indicated reductions A—+ae must be legal for a ¢ Follow(A), where
a 18 the next lookahead symbol. If a grammar is SLR(1), no lookaheads need to be
computed as the follow sets of each nonterminal become the second part of the item,
l.e. reduce by A—ae, {a; ... a,} where a; ¢ Follow(A). A shift action is exactly the
same as for LR(1) or LALR(1).

The following two grammars will be used to illustrate DeReemer’s and
Pennello’s method for computing lookaheads. The first,G2, is LALR(1) but not

SLR(1). The second,G3, is not LALR(1). Their respective LR(0) finite state machines
are included below, plus the finite state machine for G1. 1In all three cases the

augmented production has been added.

G2 = (N, T, P, S) where
N={G,E, T} T={=,a, +,* },S =G,
G'= augmented production symbol, # = end of string symbol
P =
G' -+ G#
G - E=E
G —a
- T
- E4+ T
-+ 3
=+ T x a

—~ ==

G3 = (N, T, P, S) where
N={Y,Z}, T={c,b},S=Y,
Y = augmented production symbol, # = end of string symbol
P =
Y 5 Y#
Y »ccZb
Z - A
Z =cZ
Z -cZb

16

STATE 0 STATE 7 STATE 15

E' 5 ¢ E# E-EAeT E-EAToe
E e T ToeF ToTeMF
E e EAT T-eTMF M e x
T e F Foe(E) Moo/
T 2eTMF F - eid
F »e(E) F — e intliteral
F - e1d
F - e intliteral STATE 8 STATE 16
STATE 1 A+ o T--TMFoe
E' 5 E o # STATE 9 STATE 17
E 2 Ee AT
A e + A — o Fo(E)e
A e —
STATE 2 STATE 10
E =T e E' 5 E# o
T »TeMF
M 5 e % STATE 11
M—»o/
T-TMeF
STATE 3 I'se(E)
' —» e 1d
T 2 F o F' - e intliteral
STATE 4 STATE 12
F - (eE) Mo xe
E e T
E e EAT STATE 13
T »e F
T e TMF Mo /o
F 2e¢(E)
F 5 eid STATE 14
F' - e intliteral
F-(Ee)
STATE 5 E-EeAT
A—-e +
F =21id e A—e —

STATE 6

F - intliteral e

Figure 2.1 Finite State Machine for G1

17

[STATE 0] STATE 7

G’-—OOG# E-FE 4+ eT

G e E=FE T + 0 3

G 2ea ToeT x a

E 2T

E e E 4+ T STATE 8

T =508

T - e T % a T-oT x e a

STATE 1 STATE 9

G,—*GO# G—OE:E.
E-FEe+ T

STATE 2 STATE 10

G - Ee=E T =23 e

E 2 Ee + T

STATE 3 STATE 11

E 2 Toe E-FE + Toe

E 2T e xa T 9T e x a

STATE 4 STATE 12

G =ae » T-oT xae

T = ae

STATE 5

G' = G# o

STATE 6

G —OE::QE

E 2T

E 29eE 4+ T

T — e 3

T - eT % g

Figure 2.2 Finite State Machine for G2

18

[STATE 0

Y 2 e Y#
Y 2eccZb

STATE 1

Y'—oYo#

STATE 2

Y -cecZb

STATE 3

Y,—OY#Q

STATE 4

Y 2cceZb
Z — e

7 -ec?

Z -ecZb

STATE 5

Y wccZeb

[STATE 6

Z —cel
7 +ceZb
7 — e

Z - ecZ
Z +ecZb

STATE 7

Y—-2ccZbe

STATE 8

Z +cZ e
Z +cZeb

STATE 9

Z +cZbe

Figure 2.3 Finite State Machine for G3

19

CHAPTER 3
COMPUTATION OF LALR(1) LOOKAHEAD SETS
3.1 BACKGROUND

The method outlined in this section to compute the lookahead sets necessary to
determine if a grammar is LALR(1) and incorporated into the accompaning computer
program is due to DeReemer and Pennello.!

Recall that each inconsistent state in the LR(0) Finite State Machine requires
lookahead information to resolve the shift-reduce or reduce-reduce conflict. The
definition of the lookahead set in an inconsistent state q for the reduction involving the
application of the production A-w is

LA(q, A 5 w) ={aeT|S =,* yAaw and Yw accesses q }

Thus, the parse has preceded to state q, Yw is on the stack, and LA are all
possible terminal symbols which can follow YA in a rightmost sentential form. The item
A—w e will belong to state q. yw will be the viable prefix that state q recognizes.

Note in the above that A is a nonterminal in the grammar G. Thus there must
be a transition GoTo(p,A) = ¢/ in the Finite State Machine (FSM) and also the GoTo
Table for G. This is the nonterminal transition (P,A) in the FSM. It occurs after a
reduction such as A-w. The next step in the parse must be to shift an A. The question
becomes : What terminal symbols can follow the nonterminal transition (p,A)?

DeReemer and Pennello have decomposed the computation of the above LA
into phe following four components.

1) Compute Direct Read sets for nonterminal transitions by inspecting the

LR(0) machine.

1Frank DeReemer, Thomas Pennello,“Efficient Computation of LALR(1) Look-
Ahead Sets,” ACM Transactions on Program Languages and Systems,Vol 4,No.4 (October
1982),pp.615-649. :

20

2) Compute Read sets from the Direct Read sets and the READS relation. The
READS relation is computed by inspecting the LR(0) machine for possible nullable

nonterminal transitions.

3) Compute the Follow sets of nonterminal transitions from the Read sets.

4) Compute the LA from the Follow sets of nonterminal transitions.

It is important to notice at this point that a single reduce state such as State o,
State 10, and State 12 in the FSM for G2 does not qualify as an inconsistent state.
There is no shift-reduce or reduce-reduce conflict. Thus no lookaheads should have to
be computed for these reductions. In fact, it is unnecessary to calculate the lookaheads
and the states themselves will actually be eliminated from the Parse Table. This is
explained in Chapter 4.

The concept of lookahead can be further expanded to mean the following.

Let the symbol [yw] represent the path (sequence of states) taken to consume
Yw, l.e. starting in state S, the path S,S, ... Sp is the series of state transitions to

consume yw. Hence there is a path starting at S; and ending ar S,, = q with yw on the

states 5, ... q being on the stack. Thus a definition for LA where [] = start state S,, x
= input string, z ¢ T*, yw ¢ V*,A ¢ N is
LA(q,A»w) = {aeT | []x ¥ [yw]az Freduce [YAlaz FT[S#]A }
The definition for lookahead given above is identical to the definition given

earlier. The earlier definition relates LA to the rightmost derivative while the latter

definition relates LA to the inverse of the rightmost derivative, i.e. a transformation

step is to reduce by S'—»S#, dropping back to state S, with S’ the next symbol. This is

21

acceptance.

Thus the LALR(1) parser is identical to the LR(0) parser with the concept of
reduce in an inconsistent state q. The concept of reduce in state q by production A-w
¢ P with lookahead aeT can be formulated as

Reduce(q,a) = {A=w | a ¢ LA(q,A-w)}

Relating this reduce(q,a) to the combined Parse Table (PAT) entry yields

PAT(q,a) = (r,A-w) where a ¢ LA(q,A—w)

Thus, inorder to determine when to reduce(q,a), it is necessary to determine

how to compute LA(q,A-w).

3.2 COMPUTATION OF LA

The calculation of LA is directly related to the concept of follow sets of
nonterminal transitions. These are defined to be the Follow(p,A) where (p,A) is a
nonterminal transition in the FSM. The definition of Follow(p,A) is

Follow(p,A) = { acT | [yA]az F*[S#] and v accesses p }

Thus ’a’ are all the terminal symbols which can follow A in a righmost
sentential form with prefix 4. Thus in state p there exists an item of the form BoyeAx
and a = First;(x). Stated in terms of the derivative

Follow(p,A) = { acT | S =% yAaz }

The LA set will be constructed from the union of these follow sets, or

LA(q,A-w) = U {Follow(p,A) l (p,A) is a transition and p —---* .o ¢}

AN q means there exists a series of single state transitions

The symbol p —...
from p— ry—= r;= --- =+ q which consumes w. In state q there exists an item of the form

A—w e . The reason for the union is that state q can possibly be reached from various

states to consume w. Referring to Figure 3.1,2 in state q after the reduction A-w the

22

parse pops back lwl to the appropriate p, and after reading A must be followed by the

corresponding a;,.

A Follow(p,, A)
°e ". *e is contained in
W

* \@ LA(g, A —)

which contains

PRPIPS XX Follow(p,, A)

Figure 3.1 Lookahead Set In Terms OT Follow Sets

Thus, LA(q,A~w) = {a,, a,--- an}

The nonterminal transitions (r:»A) needed for each LA(q,A-w) can be
determined by defining the lookback relation. Thus

(9,A~w) lookback (p,A)iff p —..%.— q.

In the above example the lookback for (9,A-w) contains the following ordered
pairs (p;,A), (p,,A), - (Pn,A). Thus, each (4,A=w) must keep a record of all the
nonterminal transitions in its lookback relation. In the computer program this is kept

as a linked list.

Thus, if in inconsistent state q in Grammar G1, for example, there exists the
item E 4+ E A T e, we must create (,E» E A T). The (pi,E) are found by traversing
the GoTo Table from state q back thru the states spelling out (backwards) T A E.
This involves a recursive tree traversal since from state q, the string T A E may go

back to many P;’s. There must exist a (p;»E) when p; is reached resulting from the

°Frank DeReemer,Thomas Pennello,“Efficient Computation of LALR(1) Look-
Ahead Sets,” ACM Transactions on Program Languages and Systems, Vol 4,No.4(October
1982),p.621.

23

item E' — o E#, F - (¢ E Jor Es e EA T (which must exist in state p;).

Essentially, there must exist an item with an E after the ..

The list of ordered pairs is
created in this manner.

Applying the above definition for lookback to LA(q,A-w) produces

LA(q,A~w) = | J {Follow(p,A) | (q,A=w) lookback (p,A)) |

The follow sets must now be determined.

3.3 INTERRELATION OF FOLLOW SETS

The follow sets of nonterminal transitions can Be related via a pew relation

Follow(p’,B) ¢ Follow(p,A).

Thus those symbols which can follow B in state p’ can also follow A in state p.

The diagram in Figure 3.23 illustrates this relationship.

00. B XX) FOUOW(p',B)

Is contained in

..8
FoHov.v(p,A)
co o o.oYo-b-OB-y BAY
'€

Figure 3.2 Interrelationships Among Follow Sets

In state p there must exist an item B-+feA~y where Yy=>"), or

...... - Dp.

3Frank DeReemer,Thomas Pennello,“Efficient Computation of LALR(1) Look-
Ahead Sets,” ACM transactions on Program Languages and Systems, Vol 4,No.4(October
1982),p.621.

24

This means that
Follow(p’,B) C Follow(p,A) if (p,A) includes (p/,B).
The includes relation is determined in the following manner.
For each set of nonterminal transitions (i,A) in the FSM, where i=state, AeN

a) Examine state i in the collection of item sets.

b) In state i there must exist an item of the form B-(feAy (or (i,A) would not
exist). If v is the empty string or y=>*) , add (i,A) includes (j,B) where j is determined
exactly as in lookback by backtracking recursively in the GoTo Table lﬂl states to get j

and thus (j,B). Note that 3 can be the empty string.
c) To (i,A) add (j,B) by a linked list of include pairs.
Note that in state i there could be more than one item of the form B-[eA~.

Thus, there could be other items C—aeAw. All must be examined for the includes

relation.

It is very evident that after a nonterminal transition (p,A), all the terminal

symbols which can be read in the next state must belong to the Follow(p,A). This

leads to another definition the Read(p,A) where Read(p,A) C Follow(p,A).

3.4 DETERMINING READ(p,A)

The Read(p,A) is defined as the set of nonterminals which can be read before

any phrases containing A are reduced. If there are no empty productions following the

nonterminal transition (p,A), the Read(p,A) becomes the DR(p,A) where DR are the

direct read symbols and are simply
DR(p,A)={a€T|P'—A—*Q‘i"}

The DR can be obtained very simply by inspecting the GoTo Table of the FSM

and recording what terminal symbols can follow in state ¢ where GoTo(p,A) = q. In

20

state q the possible terminal symbols are obtained directly from the GoTo Table.
These come from the items in state q of the form B—+yAeaz. Thus in state q the entry
for PAT(q,a) = (8,i) = shift and GoTo state i.

Read(p,A) becomes much more complicated if there exists in state q some
nullable nonterminal transitions such as (q,C) where C="*\, or, perhaps, a series of

possible transitions through several states consuming y-» C,C,C; and =27

Diagrammatically this means

P _A, qi AN q,, —— and y=>"*)\

This means that the Read(p,A) must be further defined to include a relation
called the reads relation where

(p,A) reads (t,C) iff p ALt S, and C =7

The reads relation computes those symbols which can be indirectly read after
(p,A). Now Read(p,A) must be computed by

Read(p,A) = DR(p,A) U U{ Read(t,C) | (p,A) reads (t,C) }

Consider Figure 3.3 below.? Since

(p’A) reads (QO,Bl), 1.e. Bl =%\

(q,B;) reads (q,,B,), i.e. B, ="

OOOOOO

(qm_Q,Bm_l) reads (qm-l’Bm)’ i.e. Bm =>*A

Thus a ¢ Read(p,A) since DR(q By) € Read(p,A).

m-1’
DeReemer and Pennello have written a very efficient algorithm called Digraph

which traverses a graph inorder to calculate the Read(p,A) from the DR and the reads

relation. This is included below.

4Jean-Paul Trembley, Paul G. Sorenson,The Theory and Practice of Compiler
Writing,(1985), p.380.

26

READS READS READS

A, T - =
° A -~ e 81 . .\./

Figure 3.3 The READS relation

\{

Thus the final formula to compute the Follow(p,A) is
Follow(p,A) = Read(p,A) U U { Follow(p’,B) | (p,A) includes (p',B) }

The algorithm Digraph is also applied to calculate the Follow(p,A).

3.9 APPLYING ALGORITHM DIGRAPH

The following algorithm has as input a set X, a relation R(reads or includes),
and a set-valued function F/(a function from X to sets). The output (Read or Follow)
1s the set valued function F such that

F(x) = F'(x) U U { F(y) | xRy } where x,yeX.

F(x) is computed by traversing the directed graph G = (X,R) induced by the
relation R where X denotes the set of vertices in G and R denotes the edges.

The algorithm is applied twice in the program, as follows.
I) To compute the Read sets

NOTE: This is only necessary if there is a possibility of a reads relation, i.e. if
there exists some nullable nonterminals, Otherwise, Read = DR and the algorithm is
not applied.

X = set of nonterminal transitions = vertices

F' = DR = initial values for Read

R = reads relation = list of nullable nontérminals which can follow a
nonterminal transition (p,A). This is obtained by examining the next state q for

possible nullable nonterminals. Since so few reads relations actually exist in a grammar

27

this was made a local linked list in the program and was calculated as needed.
F = output = Read = initial values for Follow(p,A)
IT) To compute Follow scts

X = set of nonterminal transitions

F/ = Read = initial values for Follow(p,A)

R = includes relation. This was obtained as described previously.

F = output = Follow

What follows is the algorithm as implemented in the program.

Stack is a stack containing elements of X, initially empty. N is a vector of
integers (one to each nonterminal transition) with each initially set to 0. F(x) uses the
same variable name each time, called ReadFollow , in which to accumulate results.
ReadFollow contains Read or Follow depending on which traversal is called. Recall
that if the reads relation is R, F/(x) = initial I'(x) = initial ReadFollow = DR and if
the includes relation is R, F'(x) = initial F(x) = initial ReadFollow which has been
initialized by calculating Read.

Obviously, from the equations, Read is called first.

Algorithm Digraph (R);

1. Initialize

N«O

| stack « nil

2. compute F(x)

for each xeX

if N[x] = 0 then

| Traverse (x,R)
3. Return

The following computes F(x) given a vertex x of the graph. TOPV returns the
top element of the stack. MIN returns the smallest of its two arguments. DepthOfStack
keeps a constant record of the depth of the stack. y, element, and d are local variables.

y and element are nonterminal transitions (¢X) and d is an integer.

28

Algorithm Traverse (x, R)

1. Initialize
Push(x)
d « DepthOfStack
N([x] « d
2. Complete the Closure
If relation = reads then
Compute reads relation locally
Repeat for each yeX such that xRy
If N[y] = 0 then
Traverse(y,R)
N[x] « MIN(N[x], N[y])
F(x) « F(x) U F(y)
If N[x] = d then
N[TOPV(stack)] « oo
If x <> TOPV(stack) then
F(TOPV(stack)) « F(x)
element « POP(stack)
Repeat while element <> x
N[TOPV(stack)] « oo
if x <> TOPV(stack) then
F(TOPV(stack)) « F(x)
element « POP(stack)
3. Return

The vector N[x] serves three purposes. If N[x] = 0, it indicates that x has not
been pushed on the stack yet. If 0 < N[x] < o0, x is under consideration and is still on
the stack. If N[x] = oo, the strongly connected component (SCC) of the vertex x has

already been computed. Marking each vertex x avoids recomputation of F(x) if two
vertices share the same child. The first time the vertex is encountered it is marked and
marked vertices are never traversed again.

When Traverse pushes x on the stack, it records N[x] as the depth of the stack.
It then traverses its subtrees (xRy). If an edge is ever encountered from a descendent
'd’ to an ancestor ’a’ already on the stack, the a and d and the intervening nodes on
the stack are part of an SCC (there exists a path from a to d to a). The N[d] is

minimized to N[a] to prevent d from being popped as the recursion unwinds.

29

3.6 STEPS TO COMPUTE LA

The following steps were applied to compute the LALR(1) lookahead sets from

the LR(0) FSM.
1) Determine all nullable nonterminals in the grammar.
2) Determine all nonterminal transitions (p,A) from the LR(0) FSM.
3) Determine the inconsistent states and the production reductions for which we need
to calculate lookaheads, i.e. LA(q,A-w).
4) Determine the DR from the LR(0) FSM to initialize each ReadFollow for each
nonterminal transition.
5) Determine the lookback relation for each LA(q,A-w).
6) Determine the includes relation for all nonterminal transitions.
7) Apply Algorithm Digraph to reads to compute Read, if necessary.
8) Apply Algorithm Digraph to includes to compute Follow(p,A) for each ReadFollow
sets for each nonterminal transition.
9) For each production LA union the follow sets in that productions lookback links.
10) Check for conflicts. If none exist, the grammar is LALR(1).
It 1s instructive to describe two basic structures used in the computation of LA.
First, there is an array of production lookaheads. This array of records, called

ProdLAS, consists of the following items.

ProdLAS = state number i
number j indicating the actual production applied
Pointer to lookback pairs

ProdLAS = (1i,], Ptr)

Second, there is an array of records, called NTTRANS, consisting of the

following items.

NTTRANS = state number i
nonterm symbol XeN

StackDepth - N in Algorithm Digraph
ReadFollow = set of terminal symbols

30

Pointer to includes pairs
NTTRANS= (i, X, N, { follow symbols }, Ptr)

Since it would be a waste of storage to allocate a set of follow symbols for each
item in the collection of item sets(the FSM), or even in the ProdLAS array, the follow
sets are kept as a local variable and as the union of the follow sets is accomplished
(step 9 above) the necessary items indicating reductions are added to the PAT.
Consistency is checked at the same time. If an inconsistency is found (step 10 above)

an appropriate message is written to a file. All inconsistencies are recorded.

31

CHAPTER 4
SINGLE REDUCE STATE ELIMINATION
4.1 LR(0) ROW ELIMINATION
A single reduce state has only one action associated with it - reduce by a
particular production. In Figure 2.2 for G2 State 5, State 10, and State 12 are single
reduce states. Most LR(0) machines have several single reduce states. Suppose the
reduction is made in a single reduce state for any lookahead. If the lookahead is

incorrect, the error will be detected as soon as an attempt is made to shift the incorrect

lookahead. Consider the following:

The lookahead for a production is defined as

LA(q,A-w) = U { Follow(p,A) l (p,A) is a transition and p —--*.= q } and

Follow(p,A) = { aeT | S =,* yAaz }

Suppose 7 accesses state p, and yw accesses state q as in Figure 3.1. Suppose q
i1s a single reduce state. Allow the parser to perform the reduction A-w in state g
without checking any lookaheads. After dropping to state p; and reading A, the GoTo
transition is made for GoTo(p;,A) = r. In state r there must exist either a shift on
symbol a or a reduce on symbol a. If r happens to be a single reduce state, reduction is
made as above until a shift is called for. The point is that if a reduction is made with
an invalid lookahead, the parser will halt as soon as it attempts to shift the lookahead.

Actually the LALR(1) parsing techniques really use only approximate
lookaheads at all times. Consider Figure 3.1 again. Suppose LA(q,A-w) =

{a;,a5,a3---an}. Suppose the next lookahead is a; and the parser performs the

J

reduction. Recall that the lookaheads in state q come from the union of the Follow(A)
In state p;---pn. Suppose the transition in this case was p;, —--*.= q and a; does not

belong to Follow(A) in p;. After the parser drops back to p;, reads A, and then tries to

32

shift a;, the error will be detected. So there is often a chance of doing an invalid
reduction in a LALR(1) parse. The important point is that the parser will never do an

invalid shift.

If you can reduce by any lookahead in a single reduce state, why go to the state

at all?

4.2 SHIFT-REDUCE OR L-ACTION

So far we have shift(S) and reduce(R) actions in the parser. We will now
replace any parse table entry that indicates a shift(S) followed by a GoTo state i where
1 is a single reduce state with an L-action and the production number that is in the
single reduce state. Thus the parser will pop one less symbol off the stack and drop
back to the same state as if it had shifted the terminal symbol onto the stack, gone to
the single reduce state, and then done the reduction.

The removal of single reduce states is a simple operation. For this reason, no

LA in single reduce states will be calculated, since the state is eliminated from the final

Parse Table.

33

CHAPTER 5

APPLICATION TO GRAMMARS G2 AND G3

5.1 G2 APPLICATION

combined Parse Table).

ST LOOKAHEADS

S1

S2

S3

S4

SH

S6

S7

S8

S9

S3

S10

S11

S10

S12

S7

10

11

S8

12

34

FIGURE 5.1 GOTO TABLE FOR G2

The list of nonterminal transitions for G2 is:

(0,G), (0,E), (0,T), (6,E), (6,T), (7,T)

There are only four inconsistent states. They are State 3, State 4, State 9, and
State 11. Thus the LA to be computed are:

LA(3, E-T)

LA(4, G-a)

LA(4, T-a)

LA(9, GoE=E)

LA(11, ESE+T)

The DR symbols are obtainable directly from the LR(0) FSM. Since there are

no nullable nonterminals in G2 they are the same as Read.

NTTRANS DR Read
(0,G) {#} {#}
(0,E) t=+1} {=+}
(0,T) {*} 1*}
(6,E) {+) {+)
(6,T) {*]} {*}
(7,T) {*]} {*}

The lookback relation for each LA(q,A-w) is determined as follows:

(3, E-T), |v| = |T| = 1. Examining the GoTo Table yields two paths back.

They are

‘3-l+6and3—T->O

(4, G=a), and (4,T—a), |w| = ,a' = 1. There is only one path back here. It is

4] —2 [0] for each

(9, G9E=E), wl = |E=E| = 3. There is only one path back here, also. It is

E E

9 —> 6] — 2] — [0

(11, ESE+T), le = |E+T| = 3. There are two paths back. They are
+ E

I N B N) IS OB

35

E

11—I—+7-—*9——»6

Thus, the lookback pairs are:

LA lookback pairs
(3,E-T) (0,E), (6,E)
(4,G—a) (0,G)

(4,T—a) (0,T)
(9,GSE=E) (0,G)

(11,E5E+T) (0,E), (6,E)

Interpreting the lookback for LA(11,LESE+T) as an example ylelds the
following: the terminal symbols which can follow E in state 0 and E in state 6 can also

follow E+T in state 11.

The includes relation involves studying each nonterminal transition. Recall that
(p,A) includes (p',B) iff B 28Ay, y=*X and p’ _...ﬁ.., p.
1) nonterminal transition (0,G): Examining state 0 for the items in which the G
appears after the e yields the item G'— oG#. Since a # symbol is after the G, G can
never be follow by A here so the includes relation is empty.
2) nonterminal transition (0,E): Examining state 0 in a similar manner ylelds the items
G-oeE=E and E-eE+T. Again, since the string “=E” or “+T” follow E here and

neither can ever be X the includes relation is empty.

3) nonterminal transition (0,T): This nonterminal transition comes from the two items

in the same state which yields (0,T) includes (0,E). The second item yields nothing
since “xa” is never).

4) nonterminal transition (6,E): This nonterminal transition comes from the two items
G—=E=eE and E-eE+T. Since the empty string follows E above and Iﬁl — l E= I = 2,

traverse back in the GoTo Table as follows

36

6 =20
Thus, (6,E) includes (0,G). The second item yields nothing since “4T” is never empty.
5) nonterminal transition (6,T): The two items important here are E—+eT and T—eTxa.
The first item yields (6,E), or (6,T) includes (6,E). The second item yields nothing.
6) nonterminal transition (7,T): This transition comes from E—-E+eT and T-eTxa.

Only the first is important. Here I,BI = | E+ | = 2. Going back two states yields

71—+, @ -EL 0

+ E

| —— 9] — |0

Thus, (7,T) includes (0,E) and (6,E)
Interpreting includes using 6) above yields: The terminal symbols which can
follow (0,E) and (6,E) can also follow (7,T).

Next compute

Follow(p,A) = Read(p,A) UU {Follow(p',B) | (p,A) includes (p’,B)}

NTTRANS DR-READ INCLUDES FOLLOW
(0,G) {#} nil 1#}
(0,E) {= +} nil {= +}
(0,T) {*} (0,E) {*=+}
(6,E) {+} (0,G) {+ #}
(6,T) {*} (6,E) {* + #}
(7,T) {*} (0,E), (6,E) {x =+ #}

Now apply

LA(q,A-w) = U {Follow(p,A) | (q,A-»w) lookback (p,A)} to yield
LA(3,E-T) = Follow(0,E) U Follow(6,E) = {= +} U {+ #} = {= + #)
LA(4,G—=a) = Follow(0,G) = {#}

LA(4,T-a) = Follow(0,T) = {* = +)
LA(9,G#E=E) = Follow(0,G) = {#}
LA(11,E-E+T) = Follow(o,E) U Follow(6,E) = {= +} U {+ #} = {= + #}

The follow symbols for the reductions in single reduce states are never

37

calculated since they will be eliminated by a shift'-reduce(L) action.

The following conflicts have been resolved. In state 3 reduce by E-T with
lookahead {= + #}. With a “x” shift. In state 4 with lookahead {#} reduce by G-ia,
with lookahead {* = +} reduce by T—a. In state 9 with lookahead {#} reduce by
G-E+E, with lookahead “+”, shift. In state 11 with lookahead {= + #]} reduce by
E-E+T, with lookahead “x”, shift.

Adding the appropriate L and R actions gives the final Parse Table for G2

shown in Figure 5.2.

ST LOOKAHEADS

G E T = a + * #
0 S1 S2 S3 S4
1 L1
2 SO S6
3 R4 R4 ST R4
4 R6 R6 R6 R3
5) S8 S3 L6
6 S9 L6
7 L7
8 S6 R2
9 RS RS ST RS

Accept in this combined Parsing Action Table and GoTo Table comes after

Figure 5.2 Final Parse Table For G2

38

the L1 in State 1. The parse shifts the # symbol, reduces by G'2G#, and drops back

to State 0. The entry for PAT(O,G') is accept. This is accept in every Parse Table the
program creates. It is added in the shift-reduce parser program to every parse table.

It is interesting to note that G2 is not SLR(1) so the follow symbols of each
nonterminal can not be used for the lookahead set. The follow sets of G = {#}and T
= {= + # x}. Thus in state 4 if a “#” were the next input symbol the parser would
not know what reduction to do. Using the LALR(1) techniques resolves this conflict,
since in state 4 T—a cannot be followed by a “#”. This can be seen by observing that
State 4 can only be reached from State 0. In state 0 the item T-—ea comes from
expanding G-+eE=E via E—eT, E4+e¢E+T, Twea, T—eTx*a. Thus the follow of T here
can only be { * = + }. This, of course, is exactly what DeReemer’s and Pennello’s

method calculated for the follow set.

9.2 G3 APPLICATION

The finite state machine for G3 is given in Figure 2.3. The GoTo Table in
Figure 5.3 represents the FSM for 3.

The list of the nonterminal transitions for G3 is:

(0,Y), (4,2), (6,2).

There are three inconsistent states. They are State 4, State 6, and State 8. The
LA to be calculated are

LA(4,Z-X), LA(6, Z—)), LA(8, Z— cZ).

The DR symbols and the Read syrﬁbols are computed as follows. Note that
after nonterminal transition (0,Y), the parser goes to State 1. State 1 has no transition
on 7 (the only) nonterminal), so the reads relation for (0,Y) is nil. After (4,Z) the
parser goes to State 5 which also has no transition on 7. The same is true for (6,2).

Thus all the reads relations are nil and Read = DR.

39

ST LOOKAHEADS
Y Z c b #
0 S1 52
1 S3
2 S4
3
4 S5 | S6
5 S7
6 S8 | S6
7
8 S9
9

Figure 5.3 GoToTable for G3

The following chart is directly obtainable from the above GoTo Table

NTTRANS DR reads Read
(0,Y) {#) nil {#}
(4,2) {b} nil {b}
(6,Z) {b} nil {b}

The lookback relation for each LA(q,A—w) is determined as follows.
(4,Z-)), |w| = || = 0, so (4, Z=)) lookback (4,7)

(6,Z-)), |w] = |A =0, so (6, Z=)) lookback (6,Z)

(8, ZcZ), |w| =|cZ | = 2. Examining the GoTo Table yields two paths back.

They are

40

Thus the lookback pairs are

LA lookback
(4,2-)) (4,Z)
(6,Z-)) (6,2)

(8, Z—-cZ) (4,2), (6,2)

The includes relation is calculated as before to yield the following
1) nonterminal transition (0,Y): Examining State 0 vyields the item Y'— oY #.
Obviously Y can never be followed by) so the includes relation is empty.
2) nonterminal transition (4,Z): The only item relevant is State 4 is Y—scceZb. Again,
since Z is never followed by A here the includes relation is empty.
3) nonterminal transition (6,Z): Two items are of importance here, Z—ceZ and Z—ceZb.

In the former item Z is followed by the empty string and the includes relation yields

the two paths 6] —— [4] and [§] —<— [6

Thus, (6,Z) includes (4,Z) and (6,Z).

Computing the Follow as before results in the following chart

NTTRANS READ INCLUDES FOLLOW
(0,Y) {#} nil {#}
(4,2) {b} nil {b}
(6,2) {b} (4,2), (6,2) {b}

Taking the union of the Follow in the lookback yields

LA(4, Z-)) = Follow(4,Z) = { b }

LA(6, Z»)) = Follow(6,Z2) = {b }

LA(8, Z-cZ) = Follow(4,Z) U Follow(6,Z) = {b}

In State 4 and State 6 we reduce by Z—\ if “b” is the next input symbol.
There is no conflict in either of these two states. However, in State 8 there is definitely

a conflict. When the next input symbol is a “b”, the parser calls for a reduction by

Z—cZ and a shift because of Z-cZ e b. State 8 is still inconsistent so the grammar is

not LALR(1).

41

Using LR techniques would not have resolved any conflicts in the grammar.
The grammar is not LR(k) for any k and can not be parsed by any LR technique. In
fact, DeReemer and Pennello have included the following conjector in their article
which exactly applies here:

Let (p,A) be a nonterminal transition that is in a nontrivial SCC of the digraph
induced by the includes relation. Then the corresponding grammar is not LR(k) for any
k if Read(p,A) # 0.

Note that (6,Z) includes (4,Z) and (6,Z). Thus there is a nontrivial SCC of the
digraph. Also note that Read(6,Z) = { b } which # 0. Not only is the grammar not
LALR(1) but it is not LR(k) for any k.

The Parse Table for G1 can be generated by these exact techniques or by
simply using the follow symbols of its nonterminals for the lookahead sets. Both
methods generate the same follow sets since G1 is not only LALR(1) but is also
SLR(1). The final Parse Table for G1 is given in Chapter 6. The diagnostic output for

G1, as calculated by the program, is included in Appendix A.

42

CHAPTER 6
OPTIMIZING PARSE TABLES
6.1 SPARSE MATRIX REPRESENTATION

All parsing action tables and goto tables have many error entries in them. The
two-dimensional matrix representation which I have been using to demonstrate the
tables is very efficient for table lookup but very space consuming. G1, G2, and G3 are
very small grammars but typical programming languages contain hundreds of states.
The simple grammar PLO which has 51 tokens (terminal and nonterminal symbols) and
46 productions (with the augmented production added) generates 88 states for the
LR(0) machine. This would require a 51 x 88 matrix, and PLO is much smaller then
most programming languages.

One way to reduce the size of the parse table is to encode the table using a
sparse matrix. The sparse matrix will be slower in table lookup but will require much
less space since all error entries will be eliminated from the table. A sparse matrix with
pointers is used to represent the parse table in the computer program which generates
the LALR(1) parse table. The second program (the shift-reduce parser) uses a one-
dimensional array to represent the table created by the first program. There are several
reasons for using different representations.

As was shown in G2, the final parse table is smaller then the original parse
table since single reduce states are eliminated. The final parse table is also static, i.e. it
does not change. The original parse table is constantly being changed as R and L
actions are inserted into it and single reduce states are eliminated from it. Insertions
and deletions are easier to do with pointers. Also, the first program must traverse the
table in both directiions - i.e. across the rows (states) and down the columns (vocab

symbols). This would be extremely inefficient in the one-dimensional array

43

representation. Also, the constant table lookup which the shift-reduce parser must do is
much more efficient with the one-dimensional array then with a pointer matrix. Since
the table created by the first program is input to the second program, there is no need
to use the same representation.

The program which generates the LALR(1) parse table uses the following
representation:

GoTo Function = array[state] of ParsePtr

Down Function = array[vocab] of ParsePtr

Parse Ptr is a pointer to the following parse record:

ParseRec = record
StNum : state
VocabNum : vocab

Action : PACRec
NextRec : ParsePtr
DownRec : ParsePtr
end

where Action consists of one of the following
(Si) = shift and go to state i

(Rj) = reduce by j production
(Lj) = L-reduce by j production

The reason for the two sets of pointers (both across and down the matrix) is
that sometimes it is necessary to traverse the matrix down a vocabulary symbol
through the states rather then across a state through the vocabularly symbols. This is
the case when computing the lookback and the includes relations. The most efficient
way to do this traversal is by including a second set of pointers.

Any entry not included in the sparse matrix is, of course, an error condition.

In the shift-reduce parser two one-dimensional arrays are actually used to
represent the parse table. The first array references the location of the start of each
state in the parse table array. The parse table array consists of records containing the

following two items: a vocab symbol, and an Action record which is identical to the one

44

above except that an Accept action is now added. As mentioned earlier, Accept is
always the first entry in the final Parse Table. In state 0 with the next input symbol
the augmented symbol, the action is to accept. The shift-reduce parser program
automatically inserts this entry as the first item in each Parse Table. When searching
the parse table for a particular entry the program does a binary search from the start
to the finish of the entries pertinent to the state being searched. Any entry not

included is, as before, an error.

The final parse tables for G1 and G2 are shown in section 6.2 and 6.3.

6.2 DEFAULT PARSE TABLE ENTRIES

s

Observe that in Figure 5.2 of the final parse table for G2, state 3, state 4, and
state 9 are almost single reduce states. Each contain a reduction by one production on
several (three here) lookahead symbols. Since reductions can be made in single reduce
states without examining any lookaheads, thereby delaying error detection but not
eliminating it, why not do something similar in a state in which there are several
reduction entries for the same production number? This is called a default parse table
entry.

The default parse table entry must always be a reduction or an error entry. It
can never involve a shift action. Therefore, it can never involve an L-action. The reason
for the introduction of the error entry is that if we are going to add a default entry, it
1s easier to have one all the time, which means sometimes the only possible entry will
be an error.

Referring back to Figure 5.2, state 0 would contain four shift entries plus a
default error entry. State 1 contains one L-entry plus a default error entry. State 2

contains two shift entries plus a default error entry. State 3 contains one shift entry

45

plus a default reduction entry. The rest of the table is calculated similarly.

The parse table which the shift-reduce parser works with is shown below.
State 0, default = error, (G', accept), (G, S1), (E, S2), (T, S3), (a, S4)

State 1, default

error, (#, L1)

State 2, default = error, (=, S5), (+, S6)

State 3, default = R4, (*, ST)

State 4, default = R6, (#, R3)

State 5, default = error, (E, S8), (T, S3), (a, L6)

State 6, default = error, (T, S9), (a, L6)

State 7, default = error, (a, L7)

State 8, default

error, (+, S6), (#, R2)

State 9, default

R5, (%, S7)

In larger grammars, such as PLO, several states have 10 - 15 entries for one
reduction. The space savings is more apparent then in a small grammar such as G2.

As with single reduce states, if a default reduction is performed with an invalid

lookahead, the error will be detected as soon as an attempt is made to shift the

lookahead.

6.3 SINGLE-PRODUCTION ELIMINATION

The above techniques help to reduce the size of the parse table in LALR or LR
parsing. Single-production elimination helps to increase the speed of the parse.

Many programming-language grammars contain productions of the form A-B,
where A,B ¢ N. A good example of this is the expression grammar G1. This grammar
contains E-T and T-F where E,T,FF ¢ N. Two other unit productions in the grammar

are F—id and F-intliteral, where id, intliteral ¢T. Suppose as the grammar parses, it

46

produces a chain of unit reductions. An example of this would be a parse of the simple
cxpression 10#. The parser would reduce as follows: F-intliteral, T-F, E~T. It would
obviously speed up the parse to simply reduce by E—intliteral.

The LR(O.) machine for grammar G1 is shown in Figure 2.1. Adding the follow

symbols produces:

STATE 0

E .
E—»oEAT,{-i-—#} .
T e F, {+ — x/ #] \‘\
T «eTMF, {+ —+/ #) \
F 2e(E), {+ — x/ #} |
F weid, {+ — %/ #} |
F — e intliteral , {+ — x [/ #}

After shifting an id or an intliteral the possible lookaheads are {+ — x / #}. If
the lookahead is * or /, id or intliteral would be reduced to I, then F to T. If +, —, or
18 the lookahead, the chain is F- id | intliteral, T2F, E-T. The chain could be
shortened by including in the next state the pseudo production T-id l intliteral for a x,
/ lookahead and E=id I intliteral for a 4+, —, # lookahead.

The obvious problem with the above is two-fold. First, DeReemer and
Pennello’s method does not calculate all the lookaheads for ecach item in the LR(0)
machine. Second, the next state in the LR(0) machine is a single-reduce state and
single-reduce states are climinated from the final parse table. These are very necessary
space saving techniques and are more important then the slight time-saving achieved
by keeping the state and essentially changing it from a single reduce state. DeReemer’s
and Pennello’s method does not support this technique for single-production
elimination.

In some states a chain of reductions occurs independently of lookaheads. This

47

can very easily be incorporated into the program.

Recall that the LR(0) machine for G1 contains 18 states. The final parse table

contains only 8 states, as shown in Figure 6.1 below. Rewriting and numbering the

productions gives:

1) E E#

2) E - T

3) E - EAT

4) T - F

5) T - TMF

6) F - (E)

7 F - id

8 F - intliteral

9) A - 4+

10) A - —

11) M -«

12) M >/
ST LOOKAHEADS

EJTI|F |A M|) + | — | * / [id |int | #
0 |S1 |S2 (L4 S3 L7 |LS8
1 S4 L9 |L10 L1
2 S5 R2 |R2 |R2 |L11|L12 R2
3 |S6 |S2 (L4 S3 L7 |L8
4 S7T | L4 S3 L7 |LS8
5 L5 S3 L7 |LS8
6 S4 L6 |L9 |[L10
7 S5 R3 |[R3 |R3 |L11|L12 R3

Note that in state 0 there is a chain reduction starting with L7 and L&8. Thus
with an id as the next lookahead perform F-id, T-F. With an intliteral perform

F-intliteral, T-F. This could be optimized by performing the pseudo reduction T-id

Figure 6.1 Parse Table For G1

48

. e '
\‘ v . 1 .

or T-intliteral. A similar situation arises in state 3 and state 4.

To accomplish the pseudo reduction above, it is necessary to create two new

productions. They are

13) T - id

14) T = intliteral

The new parse table utilizing these productions is the same as Figure 6.1 except
that the entry for PAT(0,id) = L13, PAT(0,int) = L14, PAT(3,id) = L13, PAT(3,int)
= L14, PAT(4,id) = L13, and PAT(4,int) = L14.

The parse table used by the shift-reduce parser (with default entries added) is
as follows:

State 0, default = error, (E/, accept), (E, S1), (T, S2), (F, L4), ((, S3),

(id, L13), (int, L14)

State 1, default = error, (A, S1), (+, L9), (—, L10), (#, L1)

State 2, default = R2, (M, 53), (», L11), (/, L12)

State 3, default = error, (E, S6), (T, S2), (F, L4), ((, S3), (id, L13), (int, L14)

State 4, default = error, (T,S7), (F, L4), ((, S3), (id, L13), (int, L14)

State 5, default = error, (F, L5), ((;, $3), (id, L7), (int, L8)

State 6, default = crror, (A, 51), (), L6), (+, L9), (-, L.10)

State 7, default

R3, (M, S5), (%, L11), (/, L12)
The original parse table had the potential of 18 states x 15 vocab symbols, or

270 entries. The above parse table has 43 entries.

6.4 SIZE OF PL0O PARSE TABLE
As stated earlier, the LR(0) machine for PL0 has 88 states. Since there are 51

vocab symbols the parse table if stored as a two-dimensional matrix would contain

49

/

4488 entries. Since the final parse table has only 51 states, this would reduce to 2601
entries.

Using the sparse matrix representation as described above with default
reduction entries the parse table which the shift-reduce parser works with for PLO
contains 235 entries. This 1s a dramatic reduction and indicates that normal
programming language parse tables can be stored in a reasonable amount of space.

It is interesting to note that PLO has 10 nullable nonterminables and 66
nonterminal transitions. Of these 66 nonterminal transitions only 23 have entries in the
reads relations. This reinforces, as DeReemer and Pennello suggest, that since so few
reads relations actually exist in a grammar it saves space to make the reads relation a
local variable in the Digraph procedure and compute the relation as needed.

PLO has 20 inconsistent states in the LR(0) machine and 20 lookahead
productions to compute the follow symbols for. It is LALR(1) as was to be expected,

since it is also LL(1).

20

CHAPTER 7
GENERALIZATIONS

With the introduction of LALR(1l) parsing techniques, the size of the parse
table needed to parse LR grammars is greatly reduced. Since all LL(1) grammars are
'LR(l) and almost all are LALR(1), it has become reasonable to consider LALR(1)
parsing techniques as a viable alternative to LL(1) techniques.

One advantage to LALR grammars is that, unlike LL grammars, they allow
left recursion and productions which share a common prefix. It is generally easier to
put a grammar into LALR form then into LL form. Often LALR grammars are easier
to write, and frequently they are easier to read. In short, LALR techniques can handle
a broader class of grammars then LL techniques.

In constructing an LALR(1) parse table considerable storage is required for the
collection of item sets. However, since DeReemer’s and Pennello’s method only utilizes
the LR(0) machine even the space needed to store the collection of sets is reduced.
With the utilization of sparse matrix techniques for the parse tables, the size of these
tables becomes less significant.

The use of pointers while generating the parse table may slow the construction
of the table, but this initial program should only have to be run once. The actual shift-
reduce parser is an extremely simple concept and very easy to implement. The use of a
one-dimensional array and a binary search routine for the parse table makes the speed
of the parser comparable to LL parsing techniques.

Of all the methods used to generate lookahead symbols (such as compatible
state merger and propagating symbols through the states from item to item),
DeReemer’s and Pennello’s method definitely seems to be the most efficient both in

time and space considerations. Once the concepts are understood, it adapts very well to

o1

implementation on a computer.

02

CHAPTER 8
PROGRAM IMPLEMENTATION
Both programs, the LALR(1) table generator and the shift-reduce parser are
written in Turbo 4 Pascal.
8.1 IMPORTANT DATA STRUCTURES
Inorder to include any of the source code it is necessary to describe in detail the
commonly used data structures and constant definitions. The constant definitions apply

to both programs and may be changed as needed.

8.1.1 CONSTANT DEFINITIONS

MaxVocabSym = 101; (* max # of Vocab Symbols *)

MaxNumProd = 50; (* max # of productions *)

MaxProdLen = 7; (* max length of each production *)

MaxLenVocabTab = 300; (* max # of chars in all ter and nt combined *)

MaxStateNum = 250; (* max # for collection of sets x)

MaxNTTrans = 125; (* max # of non terminal transitions -

approximately 1/2 of MaxStateNum)

MaxProdLA = 65; (* max # of production lookaheads to be
calculated-approximately 1/4 of MaxStateNum *)

MaxKernelNum = 400; (* max # of kernel items in all sets combined %)

8.1.2 NONTERMINAL AND TERMINAL SYMBOLS

As the nonterminal and terminal symbols are entered into the initial program
they are stored in a VocabTab and a 1-1 correspondence is set up between each symbol

and a number. Thus,

type
vocab = 1 .. MaxVocabSym;(xnumber representation of grammar symbols *)
VocabSymbols = packed array [1 .. MaxLenVocabTab | of char;

Vocablnts = packed array [1 .. MaxVocabSym] of 1 .. MaxLenVocabTab:

var
VocabTab : VocabSymbols; (* table of all symbols possible in grammar *)
Vocablnt : VocablInts; (* 1-1 correspondence between grammar
symbols and integers %)
LastNonTerm : vocab; (* last place in VocabInt for NT symbols *)
LastTerm : vocab; (* last place in Vocablnt for ter symbols *)

93

All the symbols are kept in the VocabTab. VocablInt[I] represents the vocab
symbol 1 and references the start of the symbol in VocabTab. Thus the symbol
représented by I starts in the VocabTab at Vocablnt[I] for its character representation
and ends at VocabInt{l + 1] - 1. Other then input and output, both programs work
only with the number representation of each terminal and nonterminal symbol. For the

expression grammar G1 VocabTab is

AUGSYMETFAM()+-+/IDINTLITERAL#

and the Vocablnt table is ’

AUGSYM
VocabInt(2)
VocablInt(3)
VocablInt(4)
VocablInt(5)
VocablInt(6)
VocabInt(7) =
VocabInt(8) = 13

VocabInt(9) = 14

VocablInt(10) = 15
VocablInt(11) = 16
VocablInt(12) = 17

+- Tz eI aE

N~ ¥

VocabInt(13) = 18 ID
VocablInt(14) = 20 INTLITERAL
VocabInt(15) = 30 # (* end of string symbol *)

8.1.3 PRODUCTION REPRESENTATION

As the productions for the grammar are entered, the parse table generator
checks that the left hand side of the production is a nonterminal symbol and also
checks that all symbols have been entered into VocabTab, and correspondingly into
VocablInt. If an unknown symbol is encountered the program terminates with an error
message.

The important structures here are

type
Prod = 1 .. MaxNumProd; (* production # x*)
OneProdRec = record

LHS : vocab; (* left hand nonterminal sumbolx)
NumkElem : 0 .. MaxProdLen; (*# of symbols in RHS x)

o4

RHS: array [1 .. MaxProdLen] of vocab;(*symbols in RHS %)
end;
ProRecords = array [Prod] of OneProdRec;

var
Productions: ProRecords;

An example for grammar G1 is:

augsym — E#
Productions[1].LHS =1
Productions[1].NumElem = 2
Productions{1].RHS[1] = 2
Productions{1].RHS[2] = 15

E-T

Productions[2].LHS = 2
Productions[2].NumElem = 1
Productions[2].RHS[1] = 3

8.1.4 COLLECTION OF SETS
The collection of item sets is represented by

1) a base table indexed by the state number which contains the start of the
kernel items for that particular state in the array of kernel items and a pointer to the
closure items for the state. The closure items are kept in a pointer list because many

states contain only kernel items.
2) An array of all kernel items in all the states.

The important data structures here are:

type
SetRec = record (* an item is a
ProdNum : Prod; production # and a
DotPlace: 0 .. MaxProdLen; dot position x)
end;

KernelSet = array[0 .. MaxKernelNum] Of SetRec;

ptr = “ClosureRec;
KernelNums = 0 .. MaxKernelNum; |
BaseTab = array [0 .. MaxStateNum] of

record
KernelRef : KernelNums; (* start of kernel elements x)
ClosurePtr : ptr; (* pts to closure of each st x)
end;
ClosureRec = record (* closure for each st *)

ThisSet : SetRec;
ClosurePtr : ptr;

d9

end;

var
KernelTab : BaseTab; (x table of references to st of each kernel set for each

state x)
KernelSets: KernelSet; (x array of kernel items x)

As an example of the collection of sets, consider state 1 in the LR(0) machine

for grammar G1. The productions for grammar G1 are shown on page 5. State 1 1is

shown in Figure 2.1. Since state 0 had only one kernel item , the kernel items for state

1 will start in 1. There are two kernel items, E/'= E o # and E - E ¢ A T. The closure

items are A-+e+ and A—e—. Thus,

KernelTab[1].KernelRef = 1

KernelTab[1].ClosurePtr — (9,0) = (10,0) = nil

KernelSets[1].ProdNum =1

KernelSets[1].DotPlace = 1

KernelSets[2].ProdNum = 3

KernelSets[2].DotPlace = 1

where (9,0) and (10,0) above represent the ProdNum and the DotPlace in the

closure records.

All closure item records have 0 as the dot position, so it would be possible not
to include this in a closure record. However, the program works with closure and kernel
items in the same procedures, so it is more convenient to record the dot position.

8.1.5 COMBINED PARSE TABLE

The parse table in the initial program is created as a sparse matrix with
pointers. As explained in chapter 6, inorder to traverse the parse table in both
directions, two pointers are kept in each parse record, one for across the state and one

for down the vocab symbols. The important structures here are

type
optype = (R, S, L, AC)
PACRec = record
case op : optype of
R, L : (numl: prod); (* reduce by num1 x)

S : (num2 : state); (* shift and goto num?2 *)
- AC: (); (* not inc until 2nd program x*)
~end;
ParsePtr = ~ ParseRec;

ParseRec = record

56

StNum : state;
VocabNum : vocab;
Ref : NumNTTrans; (* used in Digraph algorithm *)
(* ref non terminal trans array *)
Action : PACRec;
NextRec : ParsePtr; (x across matrix *)
DownRec : ParsePtr; (* down matrix)
end;
GoToFunction = array[state] of ParsePtr:
DownFunction = array[vocab] of ParsePtr;
var
GoToTab : GoToFunction; (* used to create combined parse table *)
DownTab : DownFunction; (* used in traversal for includes and lookback *)

The parse table in the shift-reduce parser is stored in two separate one-
dimensional arrays. The first GoToTab contains 1) a reference to the start of the

entries for each state in the second table and 2) the default entry for the state. The

second table PAT contains the actual parsing action table entries |, excluding the
default entry. The default entry is actually recorded as a reduction by a number which

18 greater then the number of productions in the grammar. This indicates an error

action. Thus,

const
MaxPATEntry = 750 ; (* max entries in PAT x)
type
OpType = (R, S, L, AC, ER);
PACRec = record
case op : optype of
R, L : (numl : prod);
S : (num?2 : state);

AC :();
ER : ();
end;

ParseRec = record
| VocabNum : vocab;
Action : PACRec;
end;
ParseRecs = array[1 .. MaxPATEntry| of ParseRec;
ParseRef = record

first : integer; (* location of start of st in GoToTab *)
default : prod; (* default reduction # or error indicator *)
end;

GoToFunction = array[state] of ParseRef;

var

GoToTab : GoToFunction;

o7

PAT : ParseRecs:

Thus to reference the entries for state I look at PAT[GoToTab[I].first] for the

first action record up to and including PAT[GoToTab[l + 1].first] -1.

8.1.6 CALCULATING LOOKAHEAD SYMBOLS

The structures for the nonterminal transitions and the structures for the

production lookaheads (LA) are as follows:

type

TraPtr = * IncList;
IncList = record (% used in lookback, includes, and reads relation *)
Ref : NumNTTrans; (x location in nonterm trans array)
Next : TraPtr;
end; "
NTTransition = record
StNum : state;
NonTerm : vocab;
StDepth : integer; (* stack depth in Digraph algorithm *)
ReadI'ollow : set of vocab;
Next : TraPtr; (x for includes x)
end;
ProdLookAhead = record
ProdStNum : state;
ProdRed : Prod;
Next : TraPtr ; (* for Look-Back *)
end;
NTTran = array| NumNTTrans] of NTTransition;
ProdLA = array[NumProdLA] of ProdLookAhead:;
DigraphStack = * StackRec:
StackRec = record (* stack of nonterm trans in digraph algorithm x)
Num : NumNTTrans;
Next : DigraphStack;

end;
var
NTTrans : NTTran; (% nonterm transitions plus includes relation *)
ProdLAS : ProdLA; (* Production reductions in inconsistent states

plus lookback relation x)

LastNtTrans : NumNTTrans;
LastProdLa : NumProdLA;
stack : DigraphStack;

8.2 FORMING THE LR(0) MACHINE

The procedures needed to build the CFSM are as follows:

Procedure Closure Figure 8.1

o8 N

Procedure GoToSet Figure 8.2

Function CheckGoTo Figure 8.3
Procedure FormGoTo Figure 8.4
Procedure BuildCFSM Figure 8.5

Procedure Build CFSM has three paé% functions:
1) To build the CFSM. For thi; 1t Calls GoToSet, FormGoTo, Closure, and
CheckGoTo
2) To create the NonTerminal transition array
3) to determine which states are Inconsistent and to create the
Production Lookahcads (LA) in inconsistent states.
Procedure FormGoTo forms the GoTo Function and PAT for shift actions. It

attaches the item in the sparse matrix.

Function CheckGoTo returns true if the state just formed by BuildCFSM is a
different kernel state. It returns false if this state already exists in an

carlier state.

current state.

Procedure Closure forms the closure of state I.

8.3 CALCULATING THE LOOKAHEADS

The procedures neceded to calculate the lookaheads using DeReemer’s and

Pennello’s method are as follows:

Procedure DirectRead Figure 8.6
Procedure TraverseBack Figure 8.7
Procedure Lookback Figure 8.8
Procedure CkIncludes Figure 8.9
Procedure Includes Figure 8.10
Procedure Traverse Figure 8.11
Procedure Digraph Figure 8.12

Procedure Union Figure 8.13

29

Procedure FindLookAheads Figure 8.14

Procedure DirectRead adds the direct reads to initialize each ReadFollow Set
for each nonterminal transition.

Procedure TraverseBack traverses back in the GoTo Function to make the
includes list for cach nonterminal transition (NTTrans) and to make the
lookback list for each production in the list of productions requiring
lookaheads calculated (ProdLAS).The procedure is called recursively as there
may be many paths back.The traversal is through the vocab symbols
(DownRec) pointers.

Procedure LookBack calculates the lookback relation for each production
reduction in an inconsistent state. LookBack calls TraverseBack.

Procedure CkIncludes checks if the set record under consideration can go to
lambda after the DotPlace 4 1 position - i.e. if it should be added to the
includes list for NT'Trans I. CkIncludes calls TraverseBack.

Procedure Includes calculates the includes relation for all nonterminal
transitions. The procedure accesses all nonterminal transitions in NTTrans
array. It then checks all items in the state of each nonterminal transition to
see if after reading the nonterminal vocab symbol under consideration the
remaining symbols can go to lambda (calls CkIncludes).

Procedure Traverse and Procedure Digraph are the implementation of
DeReemér’s and Pennello’s algorithm detailed in Chapter 3.

Procedure Union takes th‘eginion (for each production in an inconsistent state)
of the follow in that production’s lookback relation. Union calls Procedure

Attach which attaches the red<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>