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Development of an LALR(l) Parser Generator 

Marie Schneck 

ABSTRACT 

LALR(l) grammars are a subset of LR(l) gran11nars. The techniques used to 

create LR( 1) parsing ta.hies can be directly applied to LALR( 1) table construction and 

the LALR(l) table can be for1ned by merging states while constructing the LR(l) 

parsing table. This metl1od is inefficie11 t if one is only looking for LALR( 1) grammars 

as it requires essentially forming the LR( 1) n1acl1ine lJy computing all the required 

lookaheads and then merging co111patible states. 

The method outlined in this tl1esis and incorporated into tl1e accompaning 

computer program to generate tl1e LALR(l) parsing action table is due to Frank 

DeReemer and Thomas Pennello. The method is extremely efficient in tl1at it works 

from the LR(O) machi11c a11d ge11erates only the lookaheads needed for production 

reduction in inconsistent states. No otl1er lookal1eads are computed. Thus the number 

of states to be computed is kept to a minimum by only generating the LR(O) machine 

and computation of lookaheads is kept to a 111ini1nun1 by only deter1nini11g tl1e 

lookaheads needed in inconsistc11 t states. 

The one disadvantage to deReeiner's and Pe1111ello's method is that if the 

grammar is not LALR( 1) it is not possi lJle to discover if the grammar is LR( 1) since all 

the LR(l) states were never co11structed. llowever, si11ce most gramn1ars whicl1 are 

LR{l) are also LALR(l), the efficiency of the method outweighs this disadvantage. 

Also, the program gives several diagnostics whicl1 sl1ow exactly wl1ere tl1e grammar is 

1 



not LALR(l). These diagnostics can be used to change the grammar to LALR(l), if at 

all possible. 

The parsing action table is i11put to a sl1ift-reduce parser which is tl1en used to 

parse strings in the language. 
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CIIAPTER 1 

TERMINOLOGY AND DEFINITIONS 

1.1 TERMINOLOGY 

where 

The following terminology will be used through out the paper. 

A context-free grammar, or CFG, G is specified by a quadruple (N, T, P, S), 

N is the finite set of non terminal symbols 

T is the finite set of terminal symbols and N and T are disjoint 

P C N x ( N U T ) • is a finite set of productions 

S in N is the start symbol 

The vocabulary of G refers to N U T and is denoted by V. A production in G 

is denoted by A -+ a where A E N and a E V*. The empty string is denoted by .,\. The 

length of any string a is denoted by I a I . 

The following usual conventions will be observed. 

S, A, B, C, . . . c N 

a, b, c, . . . c T 

C' T* . ... x,y,z c. 

r\J f3 C' v· \.,(.' ' ')' ,. . . ~ 

There exists an augmented production S1 -+ S# where S is the start symbol of 

the grammar G, # c T and is considered the end of string of the grammar, and S1 and 

# appear in no other productions. In the program which generates the LALR(l) 

parsing action table, this production will be added by the program and is considered an 

augmented production, i.e. not part of the original grammar. Thus the end of string 

symbol # must not be part of the original grammar. 
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The notation => r refers to a rightmost derivation. Thus for all A £ N, a, /3 e 

v•, y c T* and A -+ a € P, if S ~ r • f3Ay => r (Jo:y is a rightmost derivative in G then 

both f3Ay and (Jo:y are rightmost sentential forms ( i.e. sentential forms produced by a 

rightmost derivative ). A nullable nonterminal A is one which produces A (i.e. A => * ;\) . 

The language L(G) of the grammar G is the set of all sentences y c T* such that S =>* 

y, where S is the start symbol of grammar G. 

1.2 SHIFT-REDUCE PARSING 

A shift-reduce parser is a bottom-up parser which operates by shifting input 

symbols on to a stack until the right hand side of some production is recognized which 

can be replaced by the left hand side of that production at that point. Since the shift­

reduce parser operates by essentially doing an inverse rightmost derivative, the point at 

which the reduction A -+ a would be done is exactly the point at which A would be 

replaced by a in the rigl1tmost derivation. 

As the parser sl1ifts symbols onto the stack, the current sentential form will 

always be on the stack combined with the remaining input. The parser must determine 

when to do a reduction by determining what portion of the current sentential form, if 

any, is the handle . The handle of a right sentential form , is a production A -+ /3 and a 

position of ; where the string /3 may be found and replaced by A to produce the 

previous right sentential form in a rightmost derivative of ,. Thus if the following 

derivation exists , S => r • aAy :::} r a f3y = 1 then A -+ /3 in the position following a is a 

handle of a {3y. The handle for , may be denoted by the pair ( 1r , i ) where 1r € P, i > 

0 is the position where the replacement occurs. In the previous example, the handle for 

r is (A-+/3,la,BI ). The handle is always on the top of the stack. 

The stack will always contain the viable prefixes of the right sentential forms of 
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the grammar. A string 0:/3 is called a viable prefix if there is some right sentential form 

containing 0:/3. In the above example 0:/3 is a viable prefix ( and so is o:A ). 

parser must be able to determine at each step what the handle is, if any, and what 

If the shift-reduce parser is to be totally deterministic ( no back tracking ), the 

production reduction to apply. 

to parse and will finish with the start symbol of the grammar on the stack and an 

Thus, a shift-reduce parser will start with an empty stack and an input string 

empty input string. 

added: 

Consider the following expression grammar G 1 with the augmented production 

E' .... E # 
E .... 1~ 
E .... E A 1~ 
T .... F 
T .... T M F 0 
F .... ( E ) 
F .... id 
F .... in tlitcral 
A .... + 
A .... 
M .... * 
M .... I 

Consider the rightmost derivative of the string a + g * d - f / 10 # in GI. 

Note that the string is terminated by the end of string symbol #, 

E
1 

=>r E # =>r EAT# =>r EA TM F# =>r EA TM 10 # 
=>r EAT/ 10 # =>r EA F / 10 # =>r EA f / 10 # 
=>r E - f / 10 # =>r E A T - f / 10 # 
=>r EA T M F - f / 10 # =>r EAT Md - f / 10 # 

=>r EAT* d - f / 10 # =>r EA F * d - f / 10 # 
=>r EA g * d - f / 10 # =>r E + g * d - f / 10 # 
=>r T + g * d - f / 10 # =>r F + g * d - f / 10 # 
==> r a + g * d - f / 10 # 

The following is the inverse of this rightmost derivative, so it demonstrates the way a 

shift-reduce parser would correctly parse the string ( by doing the proper shifts and 

reductions ). 
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a + g * d - f / 10 # 
F + g * d - f / 10 # 
T + g * d - f / 10 # 
E + g * d - f / 10 # 
E A g * d - f / 10 # 
E A F * d - f / 10 # 
E A T * d - f / 10 # 
E A T M d - f / 10 # 
E A T M F - f / 10 # 
EAT - f I IO# 
E - f I IO # 
EA f / 10 # 
EA F / 10 # 
EAT I IO# 
EAT M 10 # 
EATMF# 
EAT# 
E# 
E' 

1.3 DEFINITION OF AN LR(K) GRAMMAR 

A grammar G is said to be LR(K) if and only if the following conditions apply: 

For any w, w 1, x c T * , ; , o, o: 1, /3 , f3 1 € V * , X, X' c N th en if 

(1) S =>r* o:Xw =>r o:/Jw == ;w 

and hence ;w has ( X-+ /3, fo:/31) as a handle 

(2) S =>r * a: 1X 1x =>r o/ f3 1x = ,w' 
and hence ;w1 has (X' -+ /3 1, la' ,81

f as a handle 

then 

(4) ( x'-+ ,a', 1°1/3'1) = ( X-+ /3, l0 PI) 

Some relationships can be seen from the above definition. Since the two handles 

are equal in number (4), we have X = X 1
, /3=/3 1

, and la/3l=lo' /3 1
1 = some integer i. 

Also, ;w=a:f3w, ;w1=o:1 {3 1x where 1=o:f3. Hence af3w'=,w'=a' {3 1x. Thus 

a,B=Firsti( o:,Bw1) = Firsti( a 1,B1x) = a 1 ,81 since la/31 = la' ,8 1
1 = i. Hence since a,B=a' ,81 

and /3=/31 we have a=o:1• Also, since af3w1=o:1 f3 1x and af3=a1 /3 1 we have w'=x. 
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The above definition does not provide an easy way to tell if a grammar is 

LR(K). It does, however, provide the basis for determining whether or not a grammar 

is LR(K) since it clearly states that for a grammar to be LR(K) we must be able to 

determine at each stage of the parse, with K lookaheads, exactly what production 

reduction, if any, to apply. There will be one and only one possibility at each stage of 

the parse. 

Looking at the previous string a + g * d - f / 10 # in grammar G 1 , which is 

LR(l ), the following demonstrates how an LR(K) parser would correctly parse the 

string. The productions i11 Gl have been numbered from 1 to 12. 

STACK ACTION REMAINING INPUT 
) a+g*d-f/10# 
a shift +g*d-f/10# 
F reduce,7 +g*d-f/10# 
T reduce,4 +g*d-f/10# 
E reduce,2 +g*d-f/10# 
E+ shift g*d-f/10# 
EA reduce,9 g*d-f/10# 
EAg shift *d-f/10# 
EAF reduce,7 *d-f/10# 
EAT reduce,4 *d-f/10# 
EAT* shift d-f/10# 
EATM reduce,11 d-f/10# 
EATMd shift -f/10# 
EATMF reduce, 7 -f/10# 
EAT reduce,5 -f/10# 
E reduce,3 -f/10# 
E- shift f/10# 
EA reduce,10 f/10# 
EAf shift /10# 
EAF reduce,7 /10# 
EAT reduce,4 /10# 
EAT/ shift 10# 
EATM reduce,12 10# 
EATMlO shift # 
EATMF reduce,8 # 
EAT reduce,5 # 
E reduce,3 # 
E# shift A 
E' reduce,1 A 
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CIIAPTER 2 

LR PARSING 

2.1 GENERAL PARSER CONSTRUCTION 

Since the accompaning computer program is only concerned with LR(O) and 

LALR( 1) grammars the discussion from now on will refer to O or 1 lookaheads. All 

1ideas can be extended to k lookaheads by considering strings of k lookahead symbols. 

For the moment, the discussio11 is concerned with LR(O) and LR(l). LALR(l), a 

subset of LR( 1) , will be explained later on. 

All LR(l) parsing methods depend upo~ an item of the form 
r 

where L = {1 112 ... Im}, Ii t:T U {.-\}, A E P, Xi € N UT or, equivalently, 

If a grammar is LR(O), the set of lookaheads L is eliminated from the definition 

of an item since the parse will precede without having to examine any lookaheads for 

production reductions. 

The • symbol indicates how much of the production has been parsed. The 

symbols on the left hand side of the • have been parsed and are on the stack, and the 

symbols on the right hand side of the • are still contained in the input string. The set 

of lookaheads L are the terminal symbols (plus .-\) which can follow the production A at 
.,. 

this point in the parse. Thus, if there exists a rightmost derivative S =}r * aAx 

In order to construct any LR( 1) parser it is necessary to construct a collection 

of sets of the above items. Each set of items represents a state in the action of the 

parser. Transitions between these states are determined by constructing a GoTo 

Function for the grammar and actions ( shift or reduce) are determined by constructing 
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a Parsing Action Table for the grammar. These two tables will drive the shift-reduce 

parser. 

The GoTo Function for a grammar G is the transition function of a 

deterministic finite state automaton that recognizes the viable prefixes of G. Since the 

GoTo Function is used to construct the collection of item sets of grammar G, the 

collection of item sets also recognizes the viable prefixes of G. The Go To Function 

Table is indexed by the states in the parse and the vocabulary symbols of the 

grammar. Thus GoTo(i,X) = j, where iJ are states and X € N U T. Thus, in state i 

with next symbol X GoTo state j. 

The Parsing Action Table indicates if a shift or reduce action should be taken 

depending on the current state of the parse and the lookahead string. This table is 

indexed by the states and the terminal symbols. The possible actions indicated by the 

Parsing Action Table can be determined as follows. 

Let P = Parsing Action Function, {S 0 , S1, ... , Sn} = collection of sets of items 

( the set of states ), A,B c N , o, /3 c V*, and a,b c T. Then P(Si, a) = action in state 

Si with lookahead symbol a. 

1) if the item B -+ a • b/3 , L c S; then P(S;,b) = shift = ( s ). 

2) if the item B -+ o • , L c S; then for all b c L ,P( S;, b) = reduce by B -+ o , 

= (rJ) where j refers to production B-+ a. 

3) accept is the special case where if the augmented production S1 -+ S • # ,{,\} 

€ Si then P(Si, #) = shift and P(S 0 , S1) = accept. 

4) all other entries are error. 

A configuration of an LR(l) parser is acturately described as follows, where S; is 

a state, X; € N U T, and ai € T. 

SoX1S1X2S2 ... XmSm , aiai+l ... an# 
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In the above, S0 X1 ... SmXm are the contents of the parse stack, and ai ... an# 
are the rest of the input string. It is ,of course , possible for ai ... an to be A. The above 
represents the rightmost derivative S => r *X1X 2X 3 .. . Xmai ... an#· The dot position • is 
between Xm and ai. At each step of the parse, the parser examines the next input 
symbol and decides if it should shift the next symbol or if it should reduce by a 
particular production( i.e. a handle has been recognized). 

The relation r- is defined as a move from one configuration to another 
configuration. The relation r- can consist of either a shift a € T ( a read) or a reduce by 
A-+o. 

If the parser shifts a symbol, it then examines the GoTo Function to determine 
what state to go to next. This next state is then shifted onto the stack. If the parser 
action is to reduce by production A -+ o the parser pops 2 x lo:I symbols off the stack 
if a state and a vocabularly symbol were originally pushed onto the stack. It then 
examines the GoTo Function for the state at the top of the stack and the nonterminal 
A. The nonterminal A is now shifted· onto the stack, followed by the next state 
indicated by the GoTo Function. 

It is important to note here that the LR(l) parser does not need the 
vocabularly symbol Xi on the stack. The state symbol and the next lookahead is all 
that is needed to describe all parsing actions. So the LALR(l) parser program which I 
have writt"en only pushes states on the stack. 

It is also important to note that the GoTo Function and the Parsing Action 
Table can be more efficiently compacted into one table indexed by the states and the 
vocabularly symbols. Thus if a c T indicates a shift, the parser shifts a and goes to 
state j indicated by the GoTo Function. The appropriate entry in the table becomes 
(sj). After a reduction A-+a the parser shifts on the nonterminal A created by the 
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reduction and goes to the state indicated by the GoTo Function. The reduction is 

recorded in the table by ( r ,k) where k indicates the production A -+a . The appropriate 

shift action for A is recorded as (sJ), as above. Thus a reduction requires two actions. 

First in state I with a on the top of the stack, reduce by k, popping lal symbols off the 

stack. Second, having popped back to state i, shift A and GoTo j (i.e. (sj) ). 

The combined table will be called the Parse Table, or PAT. 

If a grammar is LR(O), LR(l), or LALR(l) there will be only one possible 

action in each state of the parse. An inconsistent state will have a conflict. The possible 

conflicts are a shift-reduce conflict or a reduce-reduce conflict. The former arises when 

a lookahead symbol indicates a possible shift action and a reduce action. The lattf:~r 

arises when a lookahead symbol indicates two or more possible reduce actions. A 

grammar is LR(O) if there are no inconsistent states when no lookaheads are examined. 

A grammar is LR(l) or LALR(l) when there are no inconsistent states when one 

lookahead is examined. 

2.2 CONSTRUCTION OF THE COLLECTION OF SETS OF ITEMS 

In order to construct the collection of item sets , it is necessary to start with 

the augmented production S1 -+ • S#, {A} . Intuitively this means that at the beginning 

of the parse we are looking for all symbols that are derived from the start symbol S 

followed by the end of string #. The augmented symbol S1 can only be followed by A. 

Also, by including the augmented production S 1 -+ • S# , we have made S# a viable 

prefix of the grammar. 

Using the grammar G 1 listed earlier, we start with E1 -+ • E# , { .,\}. In this 

item, since E is a nonterminal it can be expanded to predict more productions and more 

configu-rations. This is done by the closure operation. Every nonterminal that follows a 
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dot is expanded by predicting its production plus any terminal symbols that can follow 

the production at this stage of the parse. Thus from E 1 -+ • E#,{,\} we would predict 

E-+•T,{#} 
E-+•EAT,{#} 

Now since T follows a dot, we further predict 

T-+•F,{#} 
T-+•TMF,{#} 

Further predict F by 

F-+• ( E), {#} 
F-+eid,{#} 
F -+ • intliteral, { #} 

The second E from E -+ • E A T, { #} must be further expanded by 

E-+•T,{+ -} 
E-+eEAT,{+ -} 

,· 

This T and the second T from T -+ • T M F, { #} must be further expanded to 
predict 

T-+ • T M F, { + - * /} 
T-+•F,{+ -*/} 

This new F must also be expanded to 

F -+ • ( E ), { + - * /} 
F -+ • id, { + - * /} 
F -+ • intliteral, { + - * /} 

There are no more predictions that will create any new follow symbols, so the 

above can be condensed to 

STATE 0 

E1 -+ • E#, {A} 
E -+•T,{+ -#} 
E-+•EAT,{+-#} 
T-+•F,{+-*/#} 
T -+•TMF,{+-*/#} 
F -+•(E),{+-*/#} 
F -+ • id , { + - * / #} 
F -+ • intliteral , { + - * / #} 

12 

\ 
\ 

\ 

., 



Basically the two steps performed here were 

1. In S0 = State O add the augmenting production S1 -+ • S#, {A}. 

2. If A-+• Ba, L c S0 and B-+ /J is a production in G then add B-+•/J,{x} to 

S0 for all x c First 1(aL). Note that a can equal ,\ here. Repeat step 2 until no 

new items are added to S0 • As above, take the union of all the follow sets to 

form the final prediction. This is the closure of S 1 -+ • S#, { ,\ }. 

To form the next set of items, form the GoTo Function from State S
0

• Consider 

each vocabularly symbol after the • and go past this symbol to the next state in the 

parse. Intuitively this means the parse has consumed this symbol and the symbol is on 

the parse stack. Form the closure in each state. Six states will be formed by doing this. 

They are 

ST ATE 1 == GOTO(O,E) 
E 1

-+ E • #, {;\} 
E -+ E • A T, { + - #} 
A -+ • +, {id in tliteral} 
A -+ • - , {id in tliteral} 

STATE 2 == GOTO(O,T) 
E-+T•,{+-#} 
T -+T•MF,{+-*/#} 
M -+ • *, {id intliteral} 
M -+ • /, {id intliteral} 

STATE 3 == GOTO(O,F) 
T -+F•,{+-*/#} 

STATE 4 == GOTO(O,() 
F -+ ( • E ), { + - * / #} 
E-+ • T, { + - )} 
E-+ • EAT, { + - )} 
T-+ • F, { + - * / )} 
T-+ • T M F, { + - * / )} 
F-+ • ( E ), { + - * I )} 
F-+ •id,{+ - * / )} 
F-+ • intliteral, { + - * / )} 

STATE 5 = GOTO(O,id) 
F -+ id • ' { + - * I #} 

0 STATE 6 = GOTO(O,intliteral) 
F -+ intliteral • , { + - * / #} 

All states are formed by continuing in this way until no new item sets are 

created. The basic rules used to form the GoTo Sets are 

1. If A-+ a• X{J, L c S; then add A-+ aX • {J, L to GoTo(i,X) = Si where X 

cNUT 

2. Take the closure of state S;, If A-+ a • B,8, L c Si and B -+ r is a 

production in P, add B -+ • r, { x} to Si for all x c First
1 
(/JL ). As before fJ can 
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be ,\. Repeat until no new items are created. 

The above operations are continued until no new states are formed. 

A kernel item is defined to be the initial item E 1 -+ • E#, { ,\} and all other 

items whose dots are not at tl1e left end of the right hand side of the production ( these 

are actually all items formed by moving the dot over and moving to the next state by 

GoTo(Si, X) ). Thus, all nonkernel items have dots at the left end of the right hand 

side of the production and are actually formed by performing the closure operation. 

It is instructive to note that every state is determined by its kernel items. 

States with identical kernel items will always remain the same after the closure 

operation is performed. 'fhus, space could be saved by only storing the kernel items 

and by performing the closure operation whenever necessary. I did not do this in the 

computer program since the LALR(l) collection of sets is considerably smaller then the 

LR(l) collection of sets. It would be extremely time consuming to continually create 

the closure items. 

An efficient way of representing an item is by the trio (ij,L) wl1ere i == a 

production number, j = the position of the dot and O < j < length of production i, and 

L = set of follow symbols. The LR(O) collection of sets would have no follow sets with 

the items. It is called the LR(O) finite state machine. 

2.3 DEFINITION OF LALR(l) 

As the LR( 1) sets are for1ned, it becomes very appare11 t that several states will 

be the same in the productions and the dot positions, but differ in the follow symbols. 

For example, in the above expression grammar, the construction of the GoTo Sets 

would create, among others, the following two states. 

ST ATE 3 = GOTO(O,F) 
T -+ F •, { + - * / #} 
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GOT0(4,F) 
T-+ F •, { + - * / )} 

It is very evident that these two states differ only in their follow sets. 

Similarly, the LR(l) machine will contain the following two states. 

Continuing from State 4 from the kernel item F -+ ( • E ), { + - * / #} 
we will create a state with the following item 
F-+(E)•,{+-*/#} 

Continuing from State 4 from the closure item F-+ • ( E ), { + - * / )} 
we will create a state with the following item 
F-+ ( E ) • , { + - * / )} 

) 

If all states such as the above are combined by taking the union of the follow 

sets in items in which tl1e dot position and the production numbers are identical the 

four states above are reduced to two. They are 

State I 
T-+F•,{+-*/)#} 

State J 
F-+(E)•,{+ -*/)#} 

The grammar created in this way is called an LALR( 1) grammar if there are no 

inconsistent states when one lookahead is examined. This means there can be no shift­

reduce or reduce-reduce conflicts after all the appropriate states have been merged. 

Either the entire LR(l) machine can be formed and the appropriate states merged or 

the states can be merged as the LR(l) machine is constructed. 

The LALR(l) machine formed in this way is identical to the LR(O) finite state 

machine with the appropriate follow sets attached to each item. That is, there are 

exactly the same number of states and exactly the same items in each state. The 

parsing actions are determined exactly the same as for the LR(l) machine. 

This suggests that it would be much more efficient to construct the LR(O) 

machine and compute the lookaheads needed in inconsistent states since the LR(O) 

machine will generally have considerably fewer states then the LR(l) machine. Thus, 
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I 

considerable time and space is saved by approaching the problem in this way. This is 

exactly the approach taken by DcReemer and Pennello. 

The expression grammar Gl is not only LALR(l), it is also SLR(l). A 

grammar is SLR(l) if there are no conflicts when the follow sets of the nonterminal 

symbols in the grammar ca11 be used for the lookal1ead sets. The LR(O) machine is 

constructed and all indicated reductions A-+a• must be legal for a c Follow(A), where 

a is the next lookahead symbol. If a grammar is SLR( 1), no lookaheads need to be 

computed as the follow sets of each nonterminal become the second part of the item, 

i.e. reduce by A-+a•, {a1 ... an} where ai c Follow(A). A shift action is exactly the 

same as for LR(l) or LALR(l). 

The following two gramrnars will be used to illustrate DeReemer's and 

Pennello's method for computing lookaheads. The first,G2, is LALR(l) but not 

SLR(l). The second,G3, is not LALR(l). Their respective LR(O) finite state machines 

are included below, plus the finite state machine for G 1. In all three cases the 

augmented production has been added. 

G2 = (N, T, P, S) where 
N = { G, E, T }, T == {=,a, +, * }, S = G, 
G 1= augmented production symbol, # = end of string symbol 
P= 

G1 -+ G# 
G -+E==E 
G -+ a 

E -+ T 
E-+E+T 
T -+ a 

T -+T*a 

G3 = (N, T, P, S) where 
N = { Y, Z }, T = { c, b }, S = Y, 
Y 1 == augmented production symbol, # = end of string symbol 
P= 

Y 1 -+ Y# 
Y -+ccZb 
Z -+ A 
Z -+CZ 

Z -+cZb 
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I STATE O I 

E1 -+ • E# 
E -+ • T 
E -+•EAT 
T -+ • F 
T .... •TM F 
F .... • ( E) 
F .... • id 
F .... • intliteral 

I STATE 11 

E 1 
.... E • # 

E .... E•AT 
A ..... + 
A ..... -

I STATE 21 

E .... T • 
T .... T•MF 
M .... • * 
M -+. I 

I STATE 3! 

T -+ F • 

!STATE4! 

F -+(•E) 
E -+ • T 
E -+•EAT 
T -+ • F 
T .... •TM F 
F .... • ( E) 
F -+. id 
F .... • intliteral 

1STATE5! 

F -+ id • 

I STATE 6 I 

F -+ intliteral • 

I STATE 71 

E-+EA•T 
T-+ • F 
T-+•TMF 
F .... • ( E) 
F -+ • id 
F -+ • in tli teral 

I STATE 8 ! 

A .... +• 

I STATE 9 ! 

A .... - • 

I STATE 10 ! 

E 1 
.... E# • 

!STATEll! 

T .... TM•F 
F .... • ( E) 
F -+ • id 
F .... • intliteral 

I S1-,A TE 12 ! 

M-+ * • 

1STATE13I 

M-+ I. 

1STATE14I 

F-+(E•) 
E-+E•AT 
A-+•+ 
A-+• -

!STATE15I 

E-+EAT• 
T-+T•MF 
M-+ • * 
M-+. I 

I STATE 16 ! 

T-+TMF• 

ISTATE17l 

F-+(E)• 

I Figure 2.1 Finite State Machine for G 1 I 
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ISTATEO' 

G'-+ • G# 
G -+•E=E 
G -+•a 
E -+ • T 
E-+•E+T 
T -+•a 

T -+•T*a 

I STATE 1 J 

G 1
-+ G • # 

l STATE 2 I 

G -+E•=E 
E-+E•+T 

I STATE 3f 

I STATE 41 

G -+a• 
T -+a• 

!STATE 5 J 

G 1 -+ G# • 

I STATE 61 

G -+E=•E 
E -+ • T 
E -+•E+T 
T -+•a 
T -+ • T * a 

\ 

(STATE 71 

E-+E+•T 
T-+ • a 
T-+•T*a 

I STATE 81 

[STATE91 

G-+E=E• 
E-+E•+T 

f STATE 10 f 

T-+ a• 

I STATE 11 J 

ISTATE12I 

Figure 2.2 Finite State Machine for G2 
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I STATE o I 

y'-+ • Y# 
Y -+•ccZb 

(STATEll 

y'-+ y. # 

I STATE 21 

Y -+c•cZb 

(STATE3! 

y'-+ Y# • 

( STATE 4 l 

Y -+cc•Zh 
z -+ • 
Z-+•cZ 
Z -+•cZb 

!STATE 5! 

Y -+ccZ•b 

( STATE 6 ! 

Z-+c•Z 
Z-+c•Zh 
z-+. 
Z-+ecZ 
Z-+ecZb 

!STATE 71 

Y-+ccZb• 

(STATE 8 ! 

Z-+cZ• 
Z-+cZ•h 

!STATE 9 ! 

Z-+cZb• 

I Figure 2.3 Finite State Machine for G3 j 
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CIIAPTER 3 

COMI)U'f ATION OF l.,ALR(l) LOOKAIIEAD SETS 

3.1 BACKGROUND 

The method outlined in this section to compute the lookahead sets necessary to 

determine if a grammar is LALR(l) and incorporated into the accompaning computer 

program is due to DeRcemer and Pennello. 1 

Recall that each inconsistent state in the LR(O) Finite State Machine requires 

lookahead informatif.Jn to resolve the shift-reduce or reduce-reduce conflict. The 

definition of the lookahead set in an inconsistent state q for the reduction involving the 

application of the pr()d ucti()n A-+w is 

LA(q, A-+ w) == { ac,-f IS =>r + ,Aaw and 1 w accesses q } 

Thus, the parse ha,s J)reccde<l to state q, 1 w is on the stack, and I.JA arc aJI 

possible terminal symbols which can follow ,A in a rightmost sentential form. The item 

A-+w • will belong to state q. 1 w will be the viable prefix that state q recognizes. 

Note in the ab(JVe that A is a nonterrninal in the grammar G. Thus there 111ust 

be a transition G0To(11,A) == q1 in the Finite State M,1chine (FSM) ancl also the Go,-fo 

Table for G. This is the nontcrrninal transition (p,A) in the FSM. It occurs after a 

reduction such as A-+w. 'I'he next step in the parse rnust l>e to shift an A. The question 

becomes : What terminal symbols can follow the nonterminal transition (p,A)? 

DeReemer and J>cnncllo have decompose<] the computation of the above LA 

into the following four cornponents. 

1) Compute Direct Read sets for nonterminal transitions by inspecting the 

LR(O) machine. 

1
Frank DeReemer, Thomas Pennello,"Efficient Computation of LALR{l) Look­

Ahead Sets," ACM Transactions on Program Languages and Systems,Vo1 4,No.4 (October 
1982) ,pp.615-649. 
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2) Compute Read sets from the Direct Read sets and the READS relation. The 

READS relation is computed by inspecting the LR(O) machine for possible nullable 

nonterminal transitions. 

3) Compute the Follow sets of nonterminal transitions from the Read sets. 

4) Compute the LA from the Follow sets of nonterminal transitions. 

It is important to notice at this point that a single reduce state such as State 5, 

State 10, and State 12 in the FSM for G2 does not qualify as an inconsistent state. 

There is no shift-reduce or reduce-reduce conflict. Thus no lookaheads should have to 

be computed for these reductions. In fact, it is unnecessary to calculate the lookaheads 

and the states themselves will actually be eliminated from the Parse Table. This is 

explained in Chapter 4. 

The concept of lookahead can be further expanded to mean the following. 

Let the symbol [1 w] represent the path (sequence of states) taken to consume 

,w, i.e. starting in state S0 the path S0S1 ... Sm is the series of state transitions to 

consume ;w. Hence there is a path starting at S0 and ending ar Sm = q with 1 w on the 

stack, or 1 w accesses q. Note that 1 w on the stack is equivalent to to the series of 

states S0 ... q being on the stack. Thus a definition for LA where [ J = start state S
0

, x 

= input string, z € T*, 1 w € V* ,A € N is 

LA(q,A-+w) = {acT I [ ]x 1-+[,w]az I- d [,AJaz 1-+[S#],\} 
re uce 

The definition for lookahead given above is identical to the definition given 

earlier. The earlier definition relates LA to the rightmost derivative while the latter 

definition relates LA to the inverse of the rightmost derivative, i.e. a transformation 

from one configuration to the next in the parse of a sentence beginning in state S
0 

with 

the sentence as input and ending with S# on the stack and no more input. The final 

step is to reduce by S1--.S#, dropping back to state S0 with S1 the next symbol. This is 
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acceptance. 

Thus the LALR(l) parser is identical to the LR(O) parser with the concept of 

reduce in an inconsistent state q. The concept of reduce in state q by production A-+w 

€ P with lookahead acT can be formulated as 

Reduce(q,a) = {A-+w I a€ LA(q,A-+w)} 

Relating this reduce( q,a) to the combined Parse Table (PAT) entry yields 

PAT(q,a) = (r,A-+w) where a€ LA(q,A-+w) 

Thus, inorder to determine when to reduce( q,a), it is necessary to determine 

how to compute LA(q,A-+w). 

3.2 COMPUTATION OF LA 

The calculation of LA is directly related to the concept of follow sets of 

nonterminal transitions. These are defined to be the Follow(p,A) where (p,A) is a 

nonterminal transition i11 tl1e FSM. The definition of Follow(p,A) is 

Follow(p,A) = { acT I [,A]az ~*[S#] and , accesses p } 

Thus 'a' are all tl1e terminal symbols which can follow A in a righmost 

sentential form with prefix ,. Thus in state p there exists an item of the form B-+,•Ax 

and a= First 1(x). Stated in terms of the derivative 

Follow(p,A) = { acT I S =} + ,Aaz } 

The LA set will be constructed from the union of these follow sets, or 

LA(q,A-+w) = LJ {Follow(p,A) f (p,A) is a transition and p -·· .~ ·-+ q} 

The symbol p -· · · ~ ·-+ q means there exists a series of single state transitions 

from p-+ r 0-+ r 1-+ · · · -+ q which consumes w. In state q there exists an item of the form 

A-+w • . The reason for the union is that state q can possibly be reached from various 

states to consume w. Referring to Figure 3.1,2 in state q after the reduction A-+w the 
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parse pops back lwl to the appropriate Pi and after reading A must be followed by the 

corresponding ai. 

A Follow(pi, A) ••• is contained in 
.w 
• • 

• 
~ LA(q, A-+ w) • which contains 

• w/ 
• • • 

A 
Follo\v(p". A) ••• 

[ Figure 3.1 Lookahead Set In Terms Of Follow Sets I 

The nonterminal transitions (Pi,A) needed for each LA(q,A-+w) can be 

determined by defining the lookba.ck relation. Thus 

( q,A-+w) look back (p,A) iff p -· · · ~ ·-+ q. 

In the above example the look back for ( q,A-+w) contains the following ordered 

pairs (p1 ,A), (p 2 ,A), · · · (Pn,A). Thus, each (q,A-+w) must keep a record of all the 
nonterminal transitions in its lookback relation. In the computer program this is kept 

as a linked list. 

Thus, if in inconsistent state q in Grammar GI, for example, there exists the 

item E -+ E A T • , we must create ( q,E-+ E A T). The (Pi ,E) are found by traversing 

the GoTo Table from state q back thru the states spelling out (backwards) T A E. 

This involves a recursive tree traversal since from state q, the string T A E may go 

back to many Pi's. There must exist a (Pi,E) when Pi is reached resulting from the 

2Frank DeReemer,Thomas Pennello, "Efficient Computation of LALR(l) Look­Ahead Sets," ACM Transactions on Program Languages and Systems,Vol 4,No.4(0ctober 1982),p.621. 
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item E' .... • E#, F .... ( • E ), or E -+ • E A T (\\·hich must exist in state Pi). 
Essentially, there must exist an item with an E after the •. The list of ordered pairs is 
created in this manner. 

Applying the above definition for lookback to LA(q,A .... w) produces 
LA(q,A-+w) = LJ {Follow(p,A) I (q,A-+w) lookback (p,A)} 
The follow sets n1 ust now be determined. 

3.3 INTERRELATION OF FOLLO\V SETS 

' 

The follow sets of nonterminal transitions can be related via a new relation 
called includes. If B-+ /3A,,; =>•..\,and p 1 -···~·-+ p then 

Follow(p' ,B) ~ Follow(p,A). 

Thus those symbols which can follow B in state p1 can also follow A in state p. 
The diagram in Figure 3.23 illustrates this relationship. 

B ,..__~ ... 

•. B 
• 

A 

Follow(p', B) 
is contained in 

• 
Follow(p, A) 

I Figure 3.2 Interrelationships Among Follow Sets j 
In state p there must exist an item B-+/3•A, where 1 =} • A, or 

(p,A) includes (p',B) iff B-+ /3A;, 1 ~· ..\, and p 1 -···~·-+ p. 

3Frank DeReemer,Thomas Pennello,"Efficient Comp.utation of LALR(l) Look­Ahead Sets," ACM transactions on Program Languages and Systems,Vol 4,No.4{0ctober 1982),p.621. 
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This means that 

Follow(p1 ,B) C Follow(p,A) if (p,A) includes (p1 ,B ). 

The includes relation is determined in the following manner. 

For each set of nonterminal transitions (i,A) in the FSM, where i=state, Ac N 

a) Examine state i in the collection of item sets. 

b) In state i there must exist an item of the form B-+P•A, ( or (i,A) would not 

exist). If, is the empty string or ,=}• A , add (i,A) includes (j,B) where j is determined 

exactly as in lookback by backtracking recursively in the GoTo Table I.Bl states to get j 

and th us (j ,B ). Note that P can be the empty string. 

c) To (i,A) add (j ,B) by a linked list of include pairs. 

Note that in state i tl1ere could be more than one item of the form B-+,B•A,. 

Thus, there could be other items C-+a•Aw. All must be examined for the includes 

relation. 

It is very evident that after a nonterminal transition (p,A), all the terminal 

symbols which can be read in the next state must belong to the Follow(p,A). This 

leads to another definition the Read(p,A) where Read(p,A) f; Follow(p,A). 

3.4 DETERMINING READ(p,A) 

The Read(p,A) is defined as the set of nonterminals which can be read before 

any phrases containing A are reduced. If there are no empty productions following the 

nonterminal transition (p,A), the Read(p,A) becomes the DR(p,A) where DR are the 

direct read symbols and are simply 

DR(p,A) = { acT I p A • q a • } 

The DR can be obtained very simply by inspecting the GoTo Table of the FSM 

and recording what terminal symbols can follow in state q where GoTo(p,A) = q. In 
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state q the possible terminal sy1nbols are obtained directly from the GoTo Table. 

These come from the items in state q of the form B-+rA•az. Thus in state q the entry 

for PAT(q,a) = (s,i) = shift and GoTo state i. 

Read(p,A) becomes much more complicated if there exists in state q some 

nullable nonterminal transitions such as (q,C) where C=>"' ..\, or, perhaps, a series of 

possible transitions through several states consuming r-+ C1 C 2C3 and r => • ..\. 

Diagrammatically this means 

p a • and , => • ,\ 

This means that the Read(p,A) must be further defined to include a relation 

called the reads relation where 

( p ,A) reads ( t, C) i ff p A • t C • and C => • ,\. 

The reads relation computes those symbols which can be indirectly read after 

(p,A). Now Read(p,A) must be computed by 

Read(p,A) = DR(p,A) U LJ{ Read(t,C) I (p,A) reads (t,C) } 

Consider Figure 3.3 below .4 Since 

. . . . . . 

. . . . . . 

( q m-2 , B m _ 1) reads ( q m _ 1, B m), i.e. B m => • ,,\ 

Thus a£ Read(p,A) since DR(qm_ 1,Bm) C Read(p,A). 

DeReemer and Pennello have written a very efficient algorithm called Digraph 

which traverses a graph inorder to calculate the Read(p,A) from the DR and the reads 

relation. This is included below. 

4Jean-Paul Trembley, Paul G. Sorenson, The Theory and Practice of Compiler 
Writing,(1985), p.380. 
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READS READS READS 

• • • 

I Figure 3.3 The READS relation ) 

Thus the final formula to compute the Follow(p,A) is 

Follow(p,A) = Read(p,A) U { Follow(p ,B) I (p,A) includes (p ,B) } U ' . , 
The algorithm Digraph is also applied to calculate the Follow(p,A). 

3.5 APPLYING ALGORITHM DIGRAPH 

The following algorithn1 has as input a set X, a relation R(reads or includes), 

and a set-valued function F'( a function from X to sets). The output (Read or Follow) 

is the set valued function F such that 

F(x) == F1(x) U LJ { F(y) I xRy } where x,yeX. 

F(x) is computed by traversing the directed graph G = (X,R) induced by the 

relation R where X denotes the 'set of vertices in G and R denotes the edges. 

The algorithm is applied twice in the program, as follows. 

I) To compute the Read sets 

NOTE: This is only necessary if there is a possibility of a reads relation, i.e. if 

there exists some nullable nonterminals, Otherwise, Read = DR and the algorithm is 

not applied. 

X = set of nonterminal transitions = vertices 

F 1 = DR = initial values for Read 

R = reads relation = list of nullable nonterminals which can follow a 

nonterminal transition (p,A). Tl1is is obtained by examining the next state q for 

possible nullable nonterminals. Since so few reads relations actually exist in a grammar 
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this was made a local linked list in tl1e program and was calculated as needed. 

F = output = Read = initial values for Follow(p,A) 

II) To compute Follow sets 

X = set of nonterminal transitions 

F1 = Read = initial values for Follow(p,A) 

R = includes relation. This was obtained as described previously. 

F = output = Fc)llow 

What follows is the algorithm as implemented in the program. 

Stack is a stack containing clements of X, initially empty. N is a vector of 

integers (one to each nontcr1ninal transition) with each initially set to 0. F(x) uses the 

same variable name each time, called ReadFollow , in which to accumulate results. 

RcadFollow contains Read or Follow depending on which traversal is called. Recall 

that if the reads relation is R, F1(x) == initial F(x) == initial ReadFollow == DR and if 

the includes relation is R, l''(x) = initial F(x) = initial ReadFollow which has been 

initialized by calculating Ilead. 

Obviously, from the equations, Read is called first. 

Algorithm Digraph (R); 

1. Initialize 
N +- 0 
stack +- nil 

2. compute F(x) 
for each xcX 

if N[x] == 0 tl1en 
Traverse (x,R) 

3. Return 

The following computes F(x) given a vertex x of the graph. TOPV returns the 

top element of the stack. MIN returns the smallest of its two arguments. DepthOfStack 

keeps a constant record of the depth of the stack. y, element, and d are local variables. 

y and element are nonterminal transitions ( € X) and d is an integer. 
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Algorithm Traverse (x, R) 

1. Initialize 
Push(x) 
d +- DepthOfStack 
N[x] +- d 

2. Complete the Closure 
If relation = reads then 

Compute reads relation locally 
Repeat for each y c X such that xRy 

If N[y] = 0 then 
Traverse(y ,R) 

N [ x] +- MIN ( N [ x] , N [y] ) 
F(x) +- F(x) U F(y) 

If N[x] = d then 
N[TOPV(stack)) +- oo 
If x <> TOPV(stack) then 

F(TOPV(stack)) +- F(x) 
element+- POP(stack) 
Repeat while element <> x 

N[TOPV(stack)] +- oo 

3. Return 

if x <> TOPV(stack) then 
F(TOPV(stack)) +- F(x) 

element+- POP(stack) 

The vector N[x] serves three purposes. If N[x] = 0, it indicates that x has not 

been pushed on the stack yet. If O < N[x) < oo, x is under consideration and is still on 

the stack. If N[x] = oo, the strongly connected component (SCC) of the vertex x has 

already been computed. Marking each vertex x avoids recomputation of F(x) if two 

vertices share the same child. The first time the vertex is encountered it is marked and 

marked vertices are never traversed again. 

When Traverse pushes x on the stack, it records N[x] as the depth of the stack. 

It then traverses its subtrees (xRy). If an edge is ever encountered from a descendent 

'd' to an ancestor 'a' already on the stack, the a and d and the intervening nodes on 

the stack are part of an SCC (there exists a path from a to d to a). The N(d] is 

minimized to N[a] to prevent d from being popped as the recursion unwinds. 
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3.6 STEPS TO COMPUTE LA 

The following steps were applied to compute the LALR(l) lookahead sets from 

the LR(O) FSM. 

1) Determine all nullable nonterminals in the grammar. 

2) Determine all nonterminal transitions (p,A) from the LR(O) FSM. 

3) Determine the inconsistent states and the production reductions for which we need 

to calculate lookaheads, i.e. LA( q,A-+w ). 

4) Determine the DR from the LR(O) FSM to initialize each ReadFollow for each 

nonterminal transition. 

5) Determine the look back relation for each LA( q,A-+w ). 

6) Determine the includes relation for all nonterminal transitions. 

7) Apply Algorithm Digraph to reads to compute Read, if necessary. 

8) Apply Algorithm Digraph to includes to compute Follow(p,A) for each ReadFollow 

sets for each nonterminal transition. 

9) For each production LA union the follow sets in that productions lookback links. 

10) Check for conflicts. If none exist, the grammar is LA.LR(l). 

It is instructive to describe two basic structures used in the computation of LA. 

First, there is an array of production lookaheads. This array of records, called 

ProdLAS, consists of the following items. 

ProdLAS = 

ProdLAS = 

state number i 
number j indicating the actual production applied 
Pointer to lookback pairs 
(i,j,Ptr) 

Second, there is an array of records, called NTTRANS, consisting of the 

following items. 

NTTRANS state number i 
nonterm symbol XcN 
StackDepth - N in Algorithm Digraph 
ReadFollow = set of terminal symbols 
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Pointer to includes pairs 
NTTRANS= ( i, X, N, { follow symbols }, Ptr ) 

Since it would be a waste of storage to allocate a set of follow symbols for each 

item in the collection of item sets(tl1e FSM), or even in the Pro<lLAS array, the follow 

sets are kept as a local variable and as the union of the follow sets is accomplished 

( step 9 above) the necessary items indicating reductions are added to the PAT. 

Consistency is checked at the same time. If an inconsistency is found ( step 10 above) 

an appropriate message is written to a file. All inconsistencies are recorded. 
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CHAPTER 4 

SINGLE REDUCE STATE ELIMINATION 

4.1 LR(O) ROW ELIMINATION 

A single reduce state has only one action associated with it - reduce by a 

particular production. In Figure 2.2 for G2 State 5, State 10, and State 12 are single 

reduce states. Most LR(O) machines have several single reduce states. Suppose the 

reduction is made in a single reduce state for any lookahead. If the lookahead is 

incorrect, the error will be detected as soon as an attempt is made to shift the incorrect 

lookahead. Consider the following: 

The lookahead for a production is defined as 

LA(q,A-+w) = LJ { Follow(p,A) I (p,A) is a transition and p -···~·-+ q} and 

Follow(p,A) = { acT I S :::}r * , Aaz } 

Suppose I accesses state Pi and 1 w accesses state q as in Figure 3.1. Suppose q 

is a single reduce state. Allow the parser to perform the reduction A-+w in state q 

with.out checking any lookaheads. After dropping to state Pi and reading A, the GoTo 

transition is made for GoTo(pi,A) = r. In state r there must exist either a shift on 

symbol a or a reduce on symbol a. If r happens to be a single reduce state, reduction is 

made as above until a shift is called for. The point is that if a reduction is made with 

an invalid lookahead, the parser will halt as soon as it attempts to shift the lookahe.ad. 

Actually the LALR(l) parsing techniques really use only approximate 

lookaheads at all times. Consider Figure 3.1 • again. Suppose LA(q,A-+w) 

{ a 1 ,a2 ,a3 ···an}. Suppose the next lookahead is aj and the parser performs the 

reduction. Recall that the lookaheads in state q come from the union of the Follow(A) 

in state p1 · · ·Pn· Suppose the transition in this case was Pi -· · · ~ ·-+ q and aj does not 

belong to Follow(A) in Pi· After the parser drops back to Pi, reads A, and then tries to 
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shift aj, the error will be detected. So there is often a chance of doing an invalid 

reduction in a LALR(l) parse. The important point is that the parser will never do an 

invalid shift. 

If you can reduce by any lookahead in a single reduce state, why go to the state 

at all? 

4.2 SHIFT-REDUCE OR L-ACTION 

So far we have shift(S) and reduce(R) actions in the parser. We will now 

replace any parse table entry that indicates a shift(S) followed by a GoTo state i where 

i is a single reduce state with an L-action and the production number that is in the 

single reduce state. Thus the parser will pop one less symbol off the stack and drop 

back to the same state as if it had shifted the terminal symbol onto the stack, gone to 

the single reduce state, and then done the reduction. 

The removal of single reduce states is a simple operation. For this reason, no 

LA iri single reduce states will be calculated, since the state is eliminated from the final 

Parse Table. 
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CIIAPTER 5 

APPLICATION TO GRAMMARS G2 AND G3 

5.1 G2 APPLICATION 

The finite state machine for G2 is given in Figure 2.2. This is directly 
transferable to the following GoTo Table. Note that the shift symbol S is used for 
clarity even though it is really part of the Parsing Action Table (and tl1us the final 
combined Parse Table ). 

ST LOOKAIIEADS 

G E T - a + * # -

0 Sl S2 S3 S4 

1 
S5 

2 S6 S7 

3 
S8 

4 

5 

6 S9 S3 S10 

7 Sll S10 

8 S12 

9 
S7 

10 

11 
S8 

12 

I :F'IGURE 5.1 GOTO TABLE FOR G2 I 
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• 

The list of nonterminal transitions for G2 is: 

(O,G), (O,E), (O,T), (6,E), (6,T), (7,T) 

There are only four inconsistent states. They are State 3, State 4, State 9, and 

State 11 .. Thus the LA to be computed are: 

LA( 3, E-+T) 

LA( 4, G-+a) 

LA( 4, T-+a) 

LA( 9, G-+E==E ) 

LA( 11, E-+E+T ) 

The DR symbols are obtainable directly from the LR(O) FSM. Since there are 

no nullable nonterminals i11 G2 they are the same as Read. 

NTTRANS DR Read 

(O,G) { # } { #} 
(O,E) { = +} { = +} 
(O,T) { * } { * } 
(6,E) { + } { + } 
(6,T) { * } { * } 
(7,T) { * } { * } 

The look back relation for each LA( q,A-+w) is determined as follows: 

( 3, E-+T ), fwl = f TJ == 1. Examining the GoTo Table yields two paths back. 

They are 

@] T • [ill and @] T • [Q] 

( 4, G-+a), and ( 4,T-+a), fwf = faf == 1. There is only one path back here. It is 

@] a • [Q] for each 

( 9, G-+E=E ), f wl = f E==Ef == 3. There is only one path back here, also. It is 

(ill E • [ill == • [2) E • [Q] 

( 11, E-+E+T), fwf = fE+TI = 3. There are two paths back. They are 

[ill T•flJ +.[2) E•[Q] 
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Thus, the lookback pairs are: 

LA 

(3,E-+T) 
( 4,G-+a) 
( 4,T-+a) 
(9,G-+E=E) 
(11,E-+E+T) 

lookback pairs 

(O,E), (6,E) 
(O,G) 
(O,T) 
(O,G) 
(O,E), (6,E) 

Interpreting the lookback for LA(ll,E-+E+T) as an example yields the 

following: the terminal symbols which can follow E in state O and E in state 6 can also 

follow E+T in state 11. 

The includes relation involves studying each nonterminal transition. Recall that 

(p,A) includes (p1,B) iff B -+{3A;, ;=?• >. and p1 -· · ./!. ·-+ p. 

1) nonterminal transition (O,G): Examining state O for the items in which the G 

appears after the • yields the item G 1-+ •G#. Since a # symbol is after the G, G can 

never be follow by A here so the includes relation is empty. 

2) nonterminal transition (O,E): Examining state O in a similar manner yields the items 

G-+•E=E and E-+•E+T. Again, since the string "=E" or "+T" follow E here and 

neither can ever be A the includes relation is empty. 

3) nonterminal transition (O,T): This nonterminal transition comes from the two items 

E-+eT and T-+•T*a. In tl1e first item E-+•T, the empty string follows T. Thus, using 

the includes formula listed above where {3 equals the empty string (i.e. lfJI = 0) we stay 

in the same state which yields (O,T) includes (O,E). The second item yields nothing 

since "*a" is never ..\. 

4) nonterminal transition (6,E): This nonterminal transition comes from the two items 

G ..... E=•E and &-.•E+T. Since the empty string follows E above and f,Bf = f E= f = 2, 

traverse back in the GoTo Table as follows 
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[ID = • ~ E • [m. 

Thus, (6,E) includes (O,G). The second item yields nothing since "+T" is never empty. 

5) nontermi:nal transition (6,T): The two items important here are E--..eT and T-+•T*a. 

The first item yields (6,E), or (6,T) includes (6,E). The second item yields nothing. 

6) nonterminal transition (7,T): This transition comes from E-+E+•T and T-+•T*a. 

Only the first is important. Here l,BI = I E+ I = 2. Going back two states yields 

IT] +.[2] E•[QJ 

IT] + • [ill E • [§] 

Thus, (7,T) includes (O,E) and (6,E) 

Interpreting includes using 6) above yields: The terminal symbols which can 

follow (O,E) and (6,E) can also follow (7,T). 

Next compute 

Follow(p,A) = Read(p,A) uLJ {Follow(p1,B) I (p,A) includes (p1,B)} 

NTTRANS DR-READ INCLUDES FOLLOW 

(O,G) {#} nil {#} 
(O,E) {= +} nil {= +} 
(O,T) {*} (O,E) {* = +} 
(6,E) {+} (O,G) {+ #} 
(6,T) {*} (6,E) {* + #} 
(7,T) {*} (O,E), (6,E) {* = + #} 

Now apply 

LA(q,A-+w) = U {Follow(p,A) f (q,A-+w) lookback (p,A)} to yield 

LA(3,E-+T) = Follow(O,E) U Follow(6,E) = { = +} U { + #} = { = + #} 

LA(4,G-+a) = Follow(O,G) = {#} 

LA(4,T-+a) = Follow(O,T) = {* = +} 

LA(9,G-+E=E) = Follow(O,G) = { #} 

LA(ll,E-+E+T) = Follow(O,E) U Follow(6,E) = {= +} U { + #} = {= + #} 

The follow symbols for the reductions in single reduce states are never 
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calculated since they will be eliminated by a shift-reduce( L) action. 

The following conflicts have been resolved. In state 3 reduce by E-+T with 

lookahead { = + # }. With a "*" shift. In state 4 with lookahead { #} reduce by G-+a, 

with lookahead { * = +} reduce by T-+a. In state 9 with lookahead { #} reduce by 

G-+E+E, with lookahead "+", shift. In state 11 with lookahead {= + #} reduce by 

E-+E+T, with lookahead "*", shift. 

Adding the appropriate L and R actions gives the final Parse Table for G2 

shown in Figure 5.2. 

ST LOO KAH EADS 

G E T - a + * # -

0 Sl S2 S3 S4 

1 Ll 

2 S5 S6 

3 R4 R4 S7 R4 

4 R6 R6 R6 R3 

5 S8 S3 L6 

6 S9 L6 

7 L7 

8 S6 R2 

9 R5 R5 S7 R5 

f Figure 5.2 Final Parse Table For G2 j 

Accept in this combined Parsing Action Table and GoTo Table comes after 

the Ll in State 1. The parse shifts the # symbol, reduces by G1-+G#, and drops back 
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to State 0. The entry for P AT(O,G 1) is accept. This is accept in every Parse Table the 

program creates. It is added in the shift-reduce parser program to every parse table. 

It is interesting to note that G2 is not SLR(l) so the follow symbols of each 

nonterminal can not be used for the lookahead set. The follow sets of G = { #} and T 

= { = + # * }. Thus in state 4 if a "#" were the next input symbol the parser would 

not know what reduction to do. Using the LALR(l) techniques resolves this conflict, 

since in state 4 T-+a cannot be followed by a "#". This can be seen by observing that 

State 4 can only be reached from State 0. In state O the item T-+•a comes from 

expanding G-+•E=E via E-+•T, E-+•E+T, T-+•a, T-+•T*a. Thus the follow of T l1ere 

can only be { * = + }. This, of course, is exactly what DeReemer's and Pennello's 

method calculated for the follow set. 

5.2 G3 APPLICATION 

The finite state machine for G3 is given in Figure 2.3. The GoTo Table in 

Figure 5.3 represents the FSM for G3. 

The list of the nonterminal transitions for G3 is: 

(O,Y), ( 4,Z), (6,Z). 

There are three inconsistent states. They are State 4, State 6, and State 8. The 

LA to be calculated are 

LA( 4, Z-+.X ), LA(6, Z-+A), LA(8, Z-+ cZ). 

The DR symbols and the Read symbols are computed as follows. Note that 

after nonterminal transition (O,Y), the parser goes to State 1. State 1 has no transition 

on Z (the only .X nonterminal), so the reads relation for (O,Y) is nil. After ( 4,Z) the 

parser goes to State 5 which also has no transition on Z. The same is true for (6,Z). 

Thus all the reads relations are nil and Read = DR. 
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ST LOO KAH EADS 

y z C b # 

0 Sl S2 

1 S3 

2 S4 

3 

4 S5 S6 

5 S7 

6 S8 S6 

7 

8 S9 

9 

! Figure 5.3 GoToTable for G3 l 
The following chart is directly obtainable from the above GoTo Table 

NTTRANS 

(O,Y) 
( 4,Z) 
(6,Z) 

DR 

{ # } 
{ b } 
{ b } 

reads 

nil 
nil 
nil 

Read 

{ # } 
{ b } 
{ b } 

The look back relation for each LA( q,A-+w) is determined as follows. 

( 4, Z-+..\ ), lwl = I..\I = 0, so ( 4, Z-+..\) lookback ( 4,Z) 

( 6, Z-+..\ ), lwl = I..\I = 0, so (6, Z-+..\) lookback (6,Z) 

( 8, Z-+cZ ), fwf = I cZ I = 2. Examining the GoTo Table yields two paths back. 

They are 

~ Z •lfil C •l1l 

~ Z •lfil C •ffiJ 
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Thus the lookback pairs are 

LA 

( 4,Z-+,\) 
( 6,Z-+,\) 
(8, Z-+cZ) 

lookback 

(4,Z) 
(6,Z) 
( 4,Z), (6,Z) 

The includes relation is calculated as before to yield the following 

1) nonterminal transition (O,Y): Examining State O yields the item Y 1-+ •Y#. 

Obviously Y can never be followed by ..\ so the includes relation is empty. 

2) nonterminal transitio11 (4,Z): The only item relevant is State 4 is Y-+cc•Zb. Again, 

since Z is never followed by ..\ l1ere the includes relation is empty. 

3) nonterminal transition (6,Z): Two items are of importance here, Z-+c•Z and Z-..ceZb. 

In the former item Z is followed by the empty string and the includes relation yields 

the two paths [fil c • @] an d [fil c • fill 

Thus, ( 6, Z) in cl u des ( 4 , Z) a11 d ( 6, Z) . 

Computing the Follow as before results in the following chart 

NTTRANS 

(O,Y) 
( 4,Z) 
(6,Z) 

READ 

{ # } 
{ b } 
{ b } 

INCLUDES 

nil 
nil 
(4,Z), (6,Z) 

Taking the union of the Follow in the lookback yields 

LA( 4, Z-+..\) = Follow( 4,Z) = { b } 

LA(6, z .... ..\) = Follow(6,Z) = { b } 

LA(8, z .... cz) = Follow( 4,Z) U Follow(6,Z) = { b } 

FOLLOW 

{ # } 
{ b } 
{ b } 

In State, 4 and State 6 we reduce by Z-+..\ if "b" is the next input symbol. 

There is no conflict in either of these two states. However, in State 8 there is definitely 

a conflict. When the next input symbol is a "b", the parser calls for a reduction by 

Z-+cZ and a shift because of Z-+cZ • b. State 8 is still inconsistent so the grammar is 

not LALR(l). 
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Using LR techniques would not have resolved any conflicts in the grammar. 

The grammar is not LR(k) for any k and can not be parsed by any LR tecl1nique. In 

fact, DeReemer and Pennello have included the following conjector in their article 

which exactly applies here: 

Let (p,A) be a nonterminal transition that is in a nontrivial SCC of the digraph 

induced by the includes relation. Then the corresponding grammar is not LR(k) for any 

k if Read(p,A) # 0. 

Note that (6,Z) includes ( 4,Z) and (6,Z). Thus there is a nontrivial SCC of the .. 

digraph. Also note that Read(6,Z) = { b } which "# 0. Not only is the grammar not 

LALR(l) but it is not LR(k) for any k. 

The Parse Table for G 1 can be generated by these exact techniques or by 

simply using the follow symbols of its nonterminals for the lookahead sets. Both 

methods generate the same follow sets since Gl is not only LALR(l) but is also 

SLR(l). The final Parse Table for Gl is given i11 Chapter 6. The diagnostic output for 

Gl, as calculated by the program, is included in Appendix A. 

", .· - ,_/ 
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CHAPTER 6 

OPTIMIZING PARSE TABLES 

6.1 SPAR,SE MATRIX REPRESENTATION 

All parsing action tables and goto tables have many error entries in them. The 

two-dimensional matrix representation which I have been using to demonstrate the 
tables is very efficient for table lookup but very space consuming. G 1, G2, and G3 are 

very small grammars but typical programming languages contain hundreds of states. 

The simple grammar PLO which has 51 tokens (terminal and nonterminal symbols) and 

46 productions (with the augmented production added) generates 88 states for the 

LR(O) machine. This would require a 51 x 88 matrix, and PLO is much smaller then 
most programming languages. 

One way to reduce the size of the parse table is to encode the table using a 
sparse matrix. The sparse matrix will be slower in table lookup but will require much 
less space since all error entries will be eliminated from the table. A sparse matrix with 

pointers is used to represent the parse table in the computer program which generates 
the LALR( 1) parse table. The second program ( the shift-reduce parser) uses a one­
dimensional array to represent the table created by the first program. There are several 
reasons for using different representations. 

As was shown in G2, the final parse table is smaller then the original parse 

table since single reduce states are eliminated. The final parse table is also static, i.e. it 
does not change. The original parse table is constantly being changed as R and L 
actions are inserted into it and single reduce states are eliminated from it. Insertions 
and deletions are easier to do with pointers. Also, the first program must traverse the 
table in both directiions - i.e. across the rows (states) and down the columns ( vocab 

symbols). This would be extremely inefficient • 
Ill the one-dimensional array 
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representation. Also, the constant table lookup which the shift-reduce parser must do is 

much more efficient with the one-dimensional array then with a pointer matrix. Since 

the table created by the first program is input to the second program, there is no need 

to use the same representation. 

The program which generates the LALR(l) parse table uses the following 

representation: 

GoTo Function = array[state] of ParsePtr 

Down Function = array[vocab] of ParsePtr 

Pa,rse Ptr is a pointer to the following parse record: 

ParseRec = record 
StN u1n : state 
VocabNum : vocab 
Action : PAC Rec 
NextRec : ParsePtr 
DownRec : ParsePtr 
end 

where Action consists of one of the following 
(Si) = shift and go to state i 
(Rj) = reduce by j production 
(Lj) = L-reduce by j production . 

The reason for the two sets of pointers (both across and down the matrix) is 

that sometimes it is necessary to traverse the matrix down a vocabulary symbol 

through the states rather then across a state through the vocabularly symbols. This is 

the case when computing tl1e lookback and the includes relations. The 1nost efficient 

way to do this traversal is by including a second set of pointers. 
"' 

Any entry not included in the sparse matrix is, of course, an error condition. 

In the shift-reduce parser two one-dimensional arrays are actually used to 

represent the parse table. The first array references the location of the start of each 

state in the parse table array. The parse table array consists of records containing the 

following two items: a vocab symbol, and an Action record which is identical to the one 
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above except that an Accept action is now added. As mentioned earlier, Accept is 

always the first entry in the final Parse Table. In state O with the next input symbol 

the augmented symbol, the action is to accept. The shift-reduce parser program 

automatically inserts this entry as the first item in each Parse Table. When searcl1ing 

the parse table for a particular entry the program does a binary search from the start 

to the finish of the entries pertinent to the state being searched. Any entry not 

included is, as before, an error. 

The final parse tables for G 1 and G2 are shown in section 6.2 and 6.3. 

6.2 DEFAULT PARSE TABLE ENTRIES 

Observe that in Figure 5.2 of the final parse table for G2, state 3, state 4, and 

state 9 are almost single reduce states. Each contain a reduction by one production on 

several ( three here ) lookahead symbols. Since reductions can be made in single reduce 

states without examining any lookaheads, thereby delaying error detection but not 

eliminating it, why not do something similar in a state in which there are several 

reduction entries for the same production number? This is called a default parse table 

entry. 

The default parse table entry must always be a reduction or an error entry. It 

can never involve a shift action. Therefore, it can never involve an L-action. The reason 

for the introduction of the error entry is that if we are going to add a default entry, it 

is easier to have one all the time, which means sometimes the only possible entry will 

be an error. 

Referring back to Figure 5.2, state O would contain four shift entries plus a 

default error entry. State 1 contains one L-entry plus a default error entry. State 2 

contains two shift entries plus a default error entry. State 3 contains one shift entry 

45 



plus a default reduction en try. The rest of the table is calculated similarly. 

The parse table wl1ich the shift-reduce parser works with is shown below. 

State 0, default= error, (G 1, accept), (G, Sl), (E, S2), (T, S3), (a, S4) 

State 1, default= error,(#, Ll) 

State 2, default = error, ( =, S5), ( +, S6) 

State 3, default = R4, ( *, S7) 

State 4, default= R6, (#, R3) 

State 5, default= error, (E, SB), (T, S3), (a, L6) 

State 6, default = error, (T, S9), (a, L6) 

State 7, default = error, ( a, L 7) 

State 8, default = error, ( +, S6), ( #, R2) 

State 9, default= R5, (*, S7) 

In larger grammars, such as PLO, several states have 10 - 15 entries for one 

reduction. The space savings is more apparent then in a small grammar such as G2. 

As with single reduce states, if a default reduction is performed with an invalid 

lookahead, the error will be detected as soon as an attempt is made to sl1ift tl1e 

lookahead. 

6.3 SINGLE-PRODUCTION ELIMINATION 

The above techniques help to reduce the size of the parse table in LALR or LR 

parsing. Single-production elimination helps to increase the speed of the parse. 

Many programming-language grammars contain productions of the form A-+B, 

where A,B € N. A good example of this is the expression grammar Gl. This grammar 

contains E-+T and T-+F where E,T,F € N. Two other unit productions in the grammar 

are F-+id and F-+intliteral, where id, intliteral cT. Suppose as the grammar parses, it 
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produces a chain of unit reductions. An example of this would be a parse of the simple 

expression 10#. The parser would reduce as follows: F-+in tliteral, T-+F, E-+T. It would 

obviously speed up the parse to simply reduce by E-+intliteral. 

The LR(O) machine for grammar Gl is shown in Figure 2.1. Adding the follow 

symbols produces: 

STATE 0 

E1 -+ • E#, {.-\} 
E-+•T,{+-#} 
E-+eEAT,{+-#} 
T-+eF,{+-*/#} 
T -+•TMF,{+ -*/#} 
F-+•(E),{+-*/#} 
F -+ • id , { + - * / #} 
F -+ • int Ii t er al , { + - * / #} 

\ 
I 

\ 

\ 
I 

After shifting an i<l or an intlitcral the possible i(Jokaheads are { + - * / # }. If 

the lookahead is* or/, i<l or intlitcral would be reduced to }i.,, then F to T. If+, -, or 

# is the lookahead, the chain is F-+ id f intliteral, ,-f-+F, E-+T. The chain could be 

sl1ortene<l by including in the next state the pseudo production T-+id f intliteral for a*, 

/ lookahead and E-+i<l I intliteral for a +, -, # lookahead. 

The obvious prc)blern with tl1e above is two-fold. First, DeReemer and 

f>ennello's rr1ethod <lc)es nc)t calculate all the lookahca<ls for each item in the l.1R,(O) 

machine. Second, the next state in the LR(O) machine is a single-reduce state and 

single-reduce states are eliminated from the final parse table. These are very necessary 

space saving techniques and are rr1ore important tl1cn the slight time-saving achieved 

lly keeping tl1e state and essentially changing it frc,m a single reduce state. DeRccmcr's 

and Pennello's method docs not support this technique for single-production 

elimination. 

In some states a chain of reductions occurs independently of lookaheads. This 
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can very easily be incorporated into the program. 

Recall that the LR(O) machine for G 1 contains 18 states. The final parse table 

contains only 8 states, as shown in Figure 6.1 below. Rewriting and numbering the 

productions gives: 

1) E' -+ E# 
2) E -+ T 
3) E -+ EAT 
4) T -+ F 
5) T -+ TMF 
6) F -+ ( E) 
7) F -+ id 
8) F -+ intliteral 
9) A -+ + 
10) A -+ 

11) M -+ * 12) M -+ I 

ST LOO KAH EADS 

E T F A M ( ) + - * I id int # 

0 Sl S2 L4 S3 L7 LS 

1 S4 L9 LlO Ll 

2 S5 R2 R2 R2 Lll L12 R2 

3 S6 S2 L4 S3 L7 L8 

4 S7 L4 S3 L7 L8 

5 L5 S3 L7 LS 

6 S4 L6 L9 LlO 

7 S5 R3 R3 R3 Lll L12 R3 

j Figure 6.1 Parse Table For Gl j 

Note that in state O there is a chain reduction starting with L 7 and L8. Thus 

with an id as the next lookahead perform F-+id, T-+F. With an intliteral perform 

F-+intliteral, T-tF. This could be optimized by performing the pseudo reduction T-+id 
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or T-+intliteral. A similar situation arises in state 3 and state 4. 

To accomplish the pseudo reduction above, it is necessary to create two new 

productions. They are 

13) T -+ id 

14) T -+ intliteral 

The new parse table utilizing these productions is the same as Figure 6.1 except 

that the entry for PAT(O,id) = Ll3, PAT(O,int) = L14, PAT(3,id) = L13, PAT(3,int) 

= L14, PAT( 4,id) = L13, and PAT( 4,int) = L14. 

The parse table used by the shift-reduce parser (with default entries added) is 

as follows: 

State 0, default = error, (E1
, accept), (E, Sl), (T, S2), (F, L4), ( (, S3), 

(id, L13), (int, L14) 

State 1, default= error, (A, S1), ( +, L9), (-, I~lO), (#, Ll) 

State 2, default= R2, (M, S5), (*, Lll), (/, Ll2) 

State 3, default = error, (E, S6), (T, S2), (F, L4), ( (, S3), (id, L13), (int, L14) 

State 4, default = error, (T ,S 7), ( F, L4 ), ( (, S3), (id, L 13), (int, L 14) 

State 5, default = error, (J?, L5), ( (, S3), (id, L7), (int, L8) 

State 6, default = error, (A, S4), ( ), L6), ( +, L9), (-, LIO) 

St ate 7, def au It = R3, ( M , S 5) , ( * , L 11 ) , ( /, L 12) 

The original parse table had the potential of 18 states x 15 vocab symbols, or 

270 entries. 1"'l1e above parse table has 43 entries. 

6.4 SIZE O~., PLO PAilSE ~l"'ABLE 

As stated earlier, the LR(O) machine for PLO has 88 states. Since there are 51 

vocab symbols the parse table if stored as a two-dimensional matrix would contain 
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4488 entries. Since the final parse table has only 51 states, this would reduce to 2601 

entries. 

Using the sparse matrix representation as described above with default 

reduction entries the parse table which the shift-reduce parser works with for PLO 

contains 235 entries. This is a dramatic reduction and indicates that normal 

programming language parse tables can be stored in a reasonable amount of space. 

It is interesting to note that PLO has 10 nullable nonterminables and 66 

nonterminal transitions. Of these 66 nonterminal transitions only 23 have entries in the 

reads relations. This rei11forces, as DeReemer and Pennello suggest, that since so few 

reads relations actually exist in a grammar it saves space to make the reads relation a 

local variable in the Digraph procedure and compute the relation as needed. 

PLO has 20 inconsistent states in the LR(O) machine and 20 lookahead 

productions to compute the follow symbols for. It is LALR(l) as was to be expected, 

since it is also LL(l ). 
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CHAPTER 7 

GENERALIZATIONS 

With the introduction of LALR(l) parsing techniques, the size of the parse 

table needed to parse LR grammars is greatly reduced. Since all LL(l) grammars are 

LR(l) and almost all are LALR(l), it has become reasonable to consider LALR(l) 

parsing techniques as a viable alternative to ~L( 1) techniques. 

One advantage to LALR grammars is that, unlike LL grammars, they allow 

left recursion and productions which share a common prefix. It is generally easier to 

put a grammar into LALR form then into LL form. Often LALR grammars are easier 

to write, and frequently they are easier to read. In short, LALR techniques can handle 

a broader class of grammars then LL techniques. 

In constructing an LALR(l) parse table considerable storage is required for the 

collection of item sets. However, since DeReemer's and Pennello's method only utilizes 

the LR(O) machine even the space needed to store the collection of sets is reduced. 

With the utilization of sparse matrix techniques for the parse tables, the size of these 

tables becomes less significant. 

The use of pointers while generating the parse table may slow the construction 

of the table, but this initial program should only have to be run once. The actual shift­

reduce parser is an extremely simple concept and very easy to implement. The use of a 

one-dimensional array and a binary search routine for the parse table makes the speed 

of the parser comparable to LL parsing techniques. 

Of all the methods used to generate lookahead symbols (such as compatible 

state merger and propagating symbols through the states from item to item), 

DeReemer's and Pennello's method definitely seems to be the most efficient both in 

time and space considerations. Once the concepts are understood, it adapts very well to 
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implementation on a computer . 

• 
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CHAPTER 8 

PROGRAM IMPLEMENTATION 

Both programs, the LALR(l) table generator and the shift-reduce parser are 

written in Turbo 4 Pascal. 

8.1 IMPORTANT DATA STRUCTURES 

Inorder to include any of the source code it is necessary to describe in detail the 

commonly used data structures and constant definitions. The constant definitions apply 

to both programs and may be changed as needed. 

8.1.1 CONSTANT DEFINITIONS 

MaxVocabSym = 101; 
MaxNumProd = 50; 
MaxProdLen = 7; 
MaxLenVocabTab = 300; 
MaxStateNum = 250; 
MaxNTTrans = 125; 

MaxProdLA = 65; 

MaxKernelNum = 400; 

( * max # of Vocab Symbols *) 
( * max # of productions *) 
( * max length of each production *) 
( * max # of chars in all ter and nt combined *) 
( * max # for collection of sets *) 
( * max # of non terminal transitions -

approximately 1/2 of MaxStateNum *) 
( * max # of production lookaheads to be 

calculated-approximately 1/4 of MaxStateNum *) 
( * max # of kernel items in all sets combined *) 

8.1.2 NONTERMINAL AND TERMINAL SYMBOLS 

As the nonterminal and terminal symbols are entered into the initial program 

they are stored in a VocabTab and a 1-1 correspondence is set up between each symbol 
' . 

and a number. Thus, 

type 
vocab= 1 .. MaxVocabSym;(*nu1nber represe11tation of grammar symbols*) 
VocabSymbols = packed array ( 1 .. MaxLenVocabTab J of char; 
Vocablnts = packed array ( 1 .. MaxVocabSym] of 1 .. MaxLenVocabTab; 

var 
VocabTab : VocabSymbols; 
Vocablnt : Vocablnts; 

LastNonTerm : vocab; 
LastTerm : vocab; 

( * table of all symbols possible in grammar *) 
( * 1-1 correspondence between grammar 

symbols and integers *) 
( * last place in Vocablnt for NT symbols *) 
( * last place in Vocablnt for ter symbols *) 
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All the symbols are keJlt in the VocabTab. Vocablnt[I] represents the vocal) 
-1 

symbol I and references the start of the symbol in VocabTab. Thus the symbol 

represented by I starts in the VocabTab at Vocablnt[I) for its character representation 

and ends at Vocablnt[I + 1] - 1. Other then input and output, both programs work 

only with the number rcJJrescntation of each terminal and nonterminal symbol. For the 

expression grammar Gl Vocab1~ab is 

AUGSYMETF AM()+-*/IDINTLITERAL# 

and the Vocablnt table is 

Vocablnt(l) = 1 
Vocablnt(2) == 7 
Vocablnt(3) = 8 
Vocabint(4) = 9 
Vocablnt( 5) == 10 
Vocablnt(6) == 11 
Vocablnt(7) == 12 
Vocablnt(8) == 13 
Vocablnt(9) == 14 
Vocabint(lO) = 15 
Vocablnt(ll) = 16 
Vocabint(12) == 17 
Vocabint(13) = 18 
Vocabint(14) = 20 
Vocabint(15) = 30 

AUGSYM 
E 
T 
F 
A 
M 
( 
) 
+ 

* 
I 
ID 
INTLITERAL 
# ( * end of string symbol *) 

8.1.3 PRODUCTION REPRESENTATION 

As the productions for the grammar are entered, tl1e parse table generator 

checks that the left l1and side of the production is a nonterminal symbol and also 

checks that all symbols have been entered into VocabTab, and correspondingly into 

Vocablnt. If an unknown symbol is encountered the program terminates with an error 

message. 

The important structures here are 

type 
Prod = 1 .. MaxNumProd; ( * production # *) 
OneProdRec = record 

LHS : vocab; (* left hand nonterminal sumbol*) 
NumElem: 0 .. MaxProdLen; (*# of symbols in RIIS*) 
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RHS: array ( 1 .. MaxProdLen ] of vocab;( *symbols in RHS *) 
end; 

ProRecords = array (Prod] of OneProdRec; 
var 

Productions: ProRecords; 

An example for grammar G 1 is: 

augsym-+ E# 
Productions[l].LHS == 1 
Productions[l].NumElem = 2 
Productions[l].RHS[l] == 2 
Productions[l].RHS[2] == 15 

E-+ T 
Productions[2].LHS = 2 
Productions[2].NumElem = 1 
Productions[2].RIIS[l] == 3 

8.1.4 COLLECTION OF SETS 

The collection of i tern sets is represented by 

1) a base table indexed by the state number which contains the start of the 

kernel items for that particular state in the array of kernel items and a pointer to the 

closure items for the state. The closure items are kept in a pointer list because many 

states contain only kernel items. 

2) An array of all ker11el items in all the states. 

The important data structures here are: 

type 
Set Rec == record ( * an item is a 

ProdNum : Prod; production # and a 
Dot Place: 0 .. MaxProdLen; dot position *) 

end; 
KernelSet = array[ 0 .. Maxl(ernelN um] Of Set Rec; 
ptr = "ClosureRec; 
KernelNums = 0 .. MaxKernelNum; . 
BaseTab = array [ 0 .. MaxStateNum ] of 

record 
KernelRef: KernelNums; (* start of kernel elements*) 
ClosurePtr : ptr; ( * pts to closure of each st *) 

end; 
ClosureRec = record ( * closure for each st *) 

ThisSet : SetRec; 
ClosurePtr : ptr; 
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end· 
' var 

Kernel Tab : BaseTab; ( * table of references to st of each kernel set for each 
state *) 

l(erne1Sets: l(erne1Set; ( * array of kernel items *) 

As an example of the collection of sets, consider state 1 in the LR(O) machine 

for grammar G 1. The productions for grammar G 1 are shown on page 5. State 1 is 

shown in Figure 2.1. Since state O had only one kernel item , the kernel items for state 

1 will start in 1. There are two kernel items, E 1-+ E • # and E-+ E • A T. The closure 

items are A-+•+ and A-+•-. Thus, 

KernelTab(l].KernelRef = 1 
KernelTab(l].ClosurePtr -+ (9,0)-+ (10,0)-+ nil 
KernelSets(l].ProdNum = 1 
Kerne1Sets(l] .Dot Place = 1 
Kerne1Sets(2].ProdNum = 3 
Kerne1Sets(2]. Dot Place = 1 
where (9,0) and (10,0) above represent the ProdNum and the DotPlace in the 

closure records. 

All closure item records have O as the dot position, so it would be possible not 

to include this in a closure record. However, the program works with closure and kernel 

items in the same procedures, so it is more convenient to record the dot position. 

8.1.5 COMBINED PARSE TABLE 

The parse table in the initial program is created as a sparse matrix with 

pointers. As explained in cl1apter 6, inorder to traverse the parse table in both 

directions, two pointers are kept in each parse record, one for across the state and one 

for down the vocab symbols. The important structures here are 

type 
optype = (R, S, L, AC) 
PACRec = record 

case op : optype of 
R, L: (numl: prod);(* reduce by numl *) 
S : (num2 : state); ( * shift and goto nurn2 *) 
AC : (); ( * not inc until 2nd program *) 

end· 
' ParsePtr = ... ParseRec; 

ParseRec == record 
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StNum : state; 
VocabNum : vocab; 
Ref : N umNTTrans; ( * used in Digraph algorithm *) 

( * ref non terminal trans array *) 
Action : PAC Rec; 
Next Rec : ParsePtr; ( * across matrix *) 
Down Rec : ParsePtr; ( * down matrix *) 
end; 

GoToFunction = array[state] of ParsePtr; 
DownFunction == array[vocab] of ParsePtr; 

var 
GoToTab : GoToFunction; 
DownTab : DownFunction; 

( * used to create combined parse table *) 
( * used in traversal for includes and look back *) 

The parse table in the shift-reduce parser is stored in two separate one­

dimensional arrays. The first GoToTab contains 1) a reference to the start of the 

entries for each state in the second table and 2) the default entry for the state. The 

second table PAT contains the actual parsing action table entries , excluding the 

default entry. The default entry is actually recorded as a reduction by a number which 

is greater then the n um her of productions in the grammar. This indicates an error 

action. Thus, 

const 
MaxPATEntry = 750 ; (*·max entries in PAT *) 

type 
OpType = (R, S, L, AC, ER ); 
PAC Rec = record 

case op : optype of 
R, L : (numl : prod); 
S : (num2 : state); 
AC : (); 
ER : (); 

end; 
ParseRec == record 

VocabNum : vocab; 
Action : PACRec; 
end; 

ParseRecs == array[ 1 .. MaxP A TEntry] of ParseRec; 
ParseRef == record 

first : integer; 
default : prod; 
end; 

( * location of start of st in GoToTab *) 
( * default reduction # or error indicator *) 

GoToFunction = array[state] of ParseRef; 
var 

GoToTab : GoToFunction; 
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PAT : Parse Recs; 

' ' 

Thus to reference the entries for state I look at P AT[GoToTab[I].first] for the 

first action record up to a11d i11cluding PAT[GoToTab[I + 1].first] -1. 

8.1.6 CALCULATING LOOl{AIIEAD SYMDOLS 

The structures for tl1e nonterminal transitions and the structures for the 

production lookaheads (LA) are as follows: 

type 

TraPtr = " lncList; 
IncList = record ( * used in look back, includes, and reads relation *) 

Ref: NumNTTrans; ( * location in non term trans array *) 
Next : TraPtr; 
end; 

NTTransition = record 
StN um : state; 
NonTerm : vocab; 
St Depth : integer; ( * stack <leJ)th in Digraph algorithm *) 
ReadFollow : set of vocab; 
Next : TraPtr; ( * for includes *) 

end; 
ProdLookAhead = record 

ProdStNum : state; 
ProdRed : Prod; 
Next : TraPtr ; ( * for Look-Back *) 

end; 
NTTran = array[ NumNTTrans ] of NTTransition; 
ProdLA = array[ NumProdLA J of ProdLookAhead; 
DigraphStack = " StackRec; 
StackRec = record (* stack of nonterm trans in digraph algorithm*) 

Num : NumNTTrans; 
Next : DigraJ)hStack; 
end; 

var 
NTTrans : NTTran; 
ProdLAS : ProdLA; 

( * non term transitions pl us includes relation *) 
( * Production reductions in inconsistent states 

pl us look back relation *) 
LastNtTrans : NumNTTrans; 
LastProdLa : NumProdLA; 
stack : Digrapl1Stack; 

8.2 FORMING THE LR(O) MAC11INE 

The procedures needed to build the CFSM are as follows: 

Procedure Closure Figure 8.1 
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Procedure GoToSet 
Function CheckGoTo 
Procedure FormGoTo 
Procedure BuildCFSM 

1' ' ) 
' •' 

Figure 8.2 
Figure 8.3 
Figure 8.4 
Figure 8.5 

' . \ Procedure BuildCFSM l1as tl1ree pa~i~ functions: 
\ 

I 
I 

1) To build tl1e CFSM. For this it calls Go1,oSct, FormGo1,o, Closure, and 

Check Go To 

2) To create tl1e NonTern1inal transition array 

3) to determine wl1icl1 states are inconsistent ar1<l to create tl1e 

Production l"'ookahcads (LA) in inconsistcr1t states. 

Procedure l~ormGurl,o forrns tl1c GoTo Function and PAT for shift actions. It 
attaches tl1e itern in tl1e sparse matrix. 

Function CheckGoTo returns true if the state just formed by BuildCF,SM is a 

different kernel state. It returns false if this state already exists in an 

earlier state. 

Procedure GoToSct adds a new kernel item to the next set if the kernel item 

being checked l1as tl1e vocab symbol under consideration after the dot. This 
check is made for every possible vocab symbol arid for each item in the 

current state. 

Procedure Closure forms tl1e closure of state I. 

8.3 CALCULATING TIIT~ LOOl(AIIEADS 

The procedures needed to calculate the lookahea<ls using Dellcemcr's ar1<l 
Penncllo's method are as follows: 

Procedure DircctRead 
Procedure Traverse Back 
Procedure Lookback 
Procedure CkI11cludes 
Procedure Includes 
Procedure Traverse 
Procedure Digraph 
Procedure Union 
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Figure 8.6 
Figure 8. 7 
Figure 8.8 
Figure 8.9 
Figure 8.10 
Figure 8.11 
Figure 8.12 
Figure 8.13 



Procedure FindLookAheads Figure 8.14 

Procedure DirectRead adds the direct reads to initialize each ReadFollow Set 

for each non tcr1ninal transition. 

Procedure TravcrseBack traverses back in the Gorfo Function to make the 

includes list for each nontern1inal transition (N'I'Trans) and to make the 

lookback list for eacl1 J)roduction in the list of productions requiring 

lookaheads calculated (l>rodLAS).The procedure is called recursively as there 

may be many paths back.Tl1e traversal is througl1 the voca.b symtJols 

(DownRec) pointers. 

Procedure Lookilack calculates the lookback relation for each pro(luctifln 

reduction in an inconsistent state. Lookllack calls Traversellack. 

Procedure Cklncludes checks if the set record under consideration can go to 

lambda after the f)ot[>lace + 1 f)osition - i.e. if it should be added to the 

includes list for NrfTrans I. Cklnclu<les calls Traversellack. 

Procedure Includes caJculatcs the includes relation for a1l nontern1inal 

transitions. The procedure accesses all nonterminal transitions in NTTrans 

array. It then checks all items in the state of each nonterminal transition to 

see if after reading the nonterminal vocab symbol under consideration the 

remaining symbols can go to lamlJda ( calls Ckincludes). 

Procedure Traverse an<l I1 rocedure Digraph are the irr1plementatic)n of 

DeReemer's and Penncllo's algorithm detailed in Chapter 3. 
ff'· ' L,µ, .. t 

'6- ·: 

Procedure Union takes the union ( for each production in an inconsistent state) 

of the follow in that production's lookba.ck relation. Union ca.lls Procedure 

Attach which attaches the reduction record in the PAT. Union also checks 

for inconsistencies in the state and reports if an inconsistent LAI.JR(l) state 
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has been detected. All records are attached, even if an inconsistency has 

been observed. In this way all possible inconsistencies can be reported. 

Procedure FindLookAheads calls all the procedures necessary to calculate the 

lookaheads for each production in an inconsistent state. If an inconsistency 

is found ( i.e. the grammar is not LALR(l) ) the program terminates with 

an appropriate message. 

8.4 FINAL PARSE TABLE MODIFICATIONS 

Two procedures are of interest here. They are 

Procedure Co11denseP AT 
Procedure Elim Unit Prods 

Figure 8.15 
Figure 8.16 

Procedure Conde11sePat removes all single reduce states from the sparse matrix, 

renumbering all shift actions as needed. 

Procedure Elim_ Unit_Prods eliminates unit productions only when there is 

a chain reduction which stays in the same state. This implys they are 

independent of lookahead as explained in Chapter 6. Since they are unit 

productions they must be L-reductions. 

8.5 THE SHIFT-REDUCE PARSER 

There are three procedures of interest in the shift-reduce parser. They are: 

Procedure Shift 
Procedure Reduction 
Procedure Parse 

Figure 8.17 
Figure 8.18 
Figure 8.19 

Procedure Shifts shifts the next state on the parse stack. It is important to 

realize that only the state is needed on the stack. The terminal or 

nonterminal symbol is unnecessary. 

Procedure Reduction performs either an L-reduction or a straight reduction. 

This is a recursive procedure as there can be a chain of reductions. 

Procedure Parse parses the input string. It calls shift and reduction until an 
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error or an accept action is reached. 

The following pages contain the program segments which represent the above 

sections of the program. The two programs (the generator for the LALR(l) parsing 

action table and the shift-reduce parser) are in the possession of Professor Samuel 

Gulden. 
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Procedure Closure(statenum: state; LastKernelNum: l{ernelNums); 
( * form closure of state at statenum *) 
var 

<: 

I: vocab; 
Next ,Last :ptr; 
First Kernel, Next Kernel: KernelN urns; 
Added: array[Prod] of boolean; ( * array of boolean indexed by NT symbols *) 

( * at most each prod is a different NT symbol *) 
( * indicate if NT symbol has been added to the closure *) 

( * if so, don't repeat *) 

Procedure AddProd(NTSymbol: vocab); 
( * add to closure the NT indicated by NTSymbol *) 
var 

I: Prod; 
begin 

for I:= 1 to NumProd do 
if Productions(I].LI-IS = NTSymbol then 

begin 
if Last = nil then 

begin ( * first addition *) 
new(KernelTab[Staten um] .ClosurePtr ); 
Last := KernelTab[Statenum].ClosurePtr; 
end 

else 
begin 
new(Last .... ClosurePtr ); 
Last :== Last". ClosurePtr; 
end; 

Last".ThisSet.ProdNum :== I; 
Last .... ThisSet.DotPlacc :== O; 
Last". ClosurePtr :== nil; 
end; 

end;(* AddProd *) 

begin 
for I:== 1 to LastNonTerm do 

Added[I] := false; 
First Kern el : == Kern el Tab (St ate Nu m] . Kern el Ref; 
Last := Nil; 
for NextKernel :== FirstKernel to LastKernelNum do 

( * check kernel items *) 
with Kerne1Sets[N ext Kernel] do 

if (DotPlace < Productions[ProdNum].NumElem) then 
if (Productions[ProdNum].RHS(DotPlace+l] <= LastNonTerm) then 

I FIGURE 8.1 Procedure Closure 
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( * add NT to closure if not already in *) 
if Added[Prod uctions[ProdN um]. RHS[DotPlace+ 1 ]] = false 

then 
begin 
Add Prod{ Prod uctions[Prod N um]. RH S [Dot Place+ 1]); 
Added[Productions[ProdNum].RHS[DotPlace+l]] := true; 
end; 

( * check closure items *) 
Next := KernelTab[StateNum].ClosurePtr; 
while next <> nil do 

begin 
with next .... ThisSet do 

if Productions[ProdNum].NumElem <> 0 then 
if Productions[ProdNum].RHS[l] <= LastNonTerm then 

( * add NT to closure if not already in *) 
if Added[Productions(ProdNum].RHS(l]] = false 

then 
begin 
Add Prod (Productions (Prod Nu m]. RIIS [ 1]); 
Added[Productions(ProdNum].RHS[l]] := true; 

J end;(* if*) 
Ne~t := Next" .ClosurcPtr; 
end; ( * while *) 

end; ( * closure *) 

! FIGURE 8.1 CLOSURE ,CONTINUED j 

Procedure GoToSet(var OneSet: SetRec; var Temp: KernelNums; 
I: vocab; LastStateN um: state); 

( * Add a new kernel ite1n to the next set if the kernel item being checked 
(OneSet) has the vocab symbol under consideration (I) after the dot . 

. This check is made for every possible vocab symbol and for each item 
in the current state. The new set (state) is being created at 
LastStateN um + 1 · *) 

begin 
with On~Set do 

if DotPlace < Productions[ProdNum].NumElem then 
if ( Productions[Pro<lNum).RllS[DotPlace + 1] = I ) then 

begin ( * go to *) 
If Temp = Maxl(crnelNum then 

Fatal( 13); 
Temp := Temp + 1; 
if LastStateNum == MaxStateNum then 

Fatal(14); 
(* move the dot*) 
KernelSets[Temp).ProdNum := ProdNum; 
KernelSets[Temp].DotPlace := DotPlace +1; 
end; (*if*) 

end; ( * GoToSet *) 
I FIGURE 8.2 Procedure GoToSet I 
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Function CheckGoTo(J:state; OldKerNum, Temp:KernelNums): boolean; 
( * return true if this state - J - is a different kernel state *) 
( * return false if this state - J - already exists in an earlier state *) 
( * This procedure checks the state formed by GoToSet *) 
var 

11, 12, Kl: KernelNums; 
found: boolean; 

begin 
found := false; 
11 := KernelTab[J].l{ernelRef; 
if J = LastStateNum then 

12 := LastKernelNum 
else 

12 := KernelTab[J +1].l(ernelRef-1; 
if (12 - 11) <> (Temp - OldKerNum) then 

CheckGoTo := true ( * must be different *) 
else 

begin 
repeat 

kl := OldKerNum; 
repeat 

if (KernelSets[Il].ProdNum = Kerne1Sets[kl]. ProdNum ) and 
(KernelSets[Il].DotPlace = KernelSets[Kl].DotPlace ) then 

found := true; 
Kl := Kl + 1; 

until found or (1(1 > Temp); 
11 := 11 + 1; 

until (not found) or (11 > 12); 
CheckGoTo := not found; 
end; ( * else *) 

end; ( * CheckGoTo *) 

I FIGURE 8.3 Function CheckGoTo I 
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Procedure FormGoTo( CurrentState, St:state; I: vocab); 
( * form the Go To Function and PAT for shifts *) 
( * attach to GoTo Tab - both acroos and down pointers *) 

var 
Across: ParsePtr; 
Down:ParsePtr; 

begin 
if GoToTab[CurrentState] = nil then 

begin ( * 1st element *) 
new(GoToTab[CurrentState]); 
Across :== GoToTab[CurrentState]; 
end 

else 
begin 
across := GoToTab[CurrentState]; 
while (Across"' .NextRec <> nil) do 

across :== across" .Next Rec; 
new( across" . Next Rec); 
across := across" .Next Rec; 
end; 

with across" do 
begin 
StNum := CurrentState; 
VocabNum := I; 
Action .op : = S; 
Action.num2 := St; 
NextRec := nil; 
DownRec := nil; 
if I <= LastNonTerm then 

Ref := LastNTTrans; ( * add ref to PAT for non term trans *) 
end; 

( * add down pointers *) 
if DownTab[I] = nil then 

DownTab[I] := across 
else 

begin 
Down:= DownTab[I]; 
while (Down"' .DownRec <> nil) do 

down := down"' .DownRec; 
Down"' .Down Rec := across; 
end; 

end; ( * FormGoTo *) 

I FIGURE 8.4 · Procedure FormGoTo I 
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Procedure BuildCFSM(var LastStateNum: state; var LastKernelNum: KernelNums); 
( * 1) build LR[O] machine 

2) create NonTerminal transition array 
3) Create array of Production Look Aheads in inconsistant states *) 

var 
Curren tState, St :state; 

I: vocab; 
TempLastKernel, J, K: l(ernelNums; 
Across: ptr; t 
New: boolean; 
Shift: boolean; ( * is there a shift in a state *) 
Reduce: integer; ( * number of reductions in a state *) 
ReduceNum : set of Prod; ( * production # for reductions *) 
P: Prod; 

begin 
KernelTab[O] .ClosurePtr := nil; ( * create start state *) 
KernelTab[O]. Kernel Ref := O; 
l{erne1Sets[O]. ProdN um := 1; 
KernelSets[O].DotPlace :=0; 
LastKernelNum :=0; 
LastStateNum := O; 
CurrentState := O; 
Closure(O,O); 
For I := 1 to LastTerm do 

DownTab[I] := nil; 
LastNtTrans := 1; 
LastProdLA := 1; 
repeat ( * create all GoTo states *) 

GoToTab[CurrentState] := nil; 
for I:= 1 to LastTerm do 

begin ( * check each symbol after dot to form goto *) 
if CurrentState < LastStateNum then 

K:= KernelTab[CurrentState+ 1] .Kernel Ref -1 
else 

K:== LastKernelNum; 
TempLastKernel := LastKernelNum; 
( * forming GoTo(CurrentState,I) == LastStateNum *) 
( * kernel i terns *) 
for J:= KernelTab[CurrentState].KernelRef to K do 

GoToSet( Kerne1Sets[ J], Tern pLast Kernel ,l,LastStateN um); 
( * closure items *) 
across := KernelTab[CurrentState] .ClosurePtr; 
while across <> nil do 

begin 
GoToSet( across" .ThisSet,TempLastKernel,I, LastStateN um); 
across := across" .ClosurePtr; 
end; 

I FIGURE 8.5 Procedure BuildCFSM I 
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( * were any new kernel items added *) 
( * if not, no state was formed *) 
if (TempLastKernel > LastKernelNum) then 

begin ( * check if have new kernel *) 
St := O; 
repeat 

new := CheckGoTo(St, L~stKernelNum + 1, TempLastl(ernel); 
St := St + 1; 

until ( not new) or (St > LastStateNum); 
if new then 

begin ( * this is a new state *) 
LastStateNum := LastStateNum +1; 
FormGoTo(CurrentState, LastStateNum, I); 
with KernelTab(LastStateNum] do 

begin 
ClosurePtr :== nil; 
KernelRef := LastKernelNum +1; 
end; 

LastKernelNu1n := TempLastl(ernel; 
closure(LastStateNum, LastKernelN um); 
end (* if new*) 

else ( * are going to an earlier, pre-existing state *) 
Form Go To( Curren tState,St-1,1); 

( * form Non Terminal transitions *) 
if ( I <= LastNonTerm ) then 

begin ( * non terminal transition *) 
NTTrans[LastNTTrans].StNum := CurrentState; 
NTTrans[LastNTTrans].NonTerm := I; 
if LastNtTrans = MaxNTTrans then 

Fatal(15); 
LastNTTrans := LastNTTrans +1; 
end; 

end;(* if*) 
end; ( * for I *) 

( * check Current State for LR[O] consistency *) 
Shift:= false; 
Reduce:== O; 
ReduceNum :== []; 
for J:= KernelTab[CurrentState].KernelRef to K do 

if KernelSets(J].DotPlace < 

else 

Prod uctions[I{erne1Sets[ J]. ProdN um] .N um Elem then 
Shift:== true 

begin 
Reduce:== Reduce +1; 
ReduceNum := ReduceNum + (KernelSets[J].ProdNum]; 
end· 

' across:= Kernel Tab ( Curren tState]. ClosurePtr; 

I FIGURE 8.5 BuildCFSM, CONTINUED I 
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while across < > nil do 
begin 
if across .... ThisSet. Dot Place < 

else 

Productions[ across". Tl1isSet .Prod N um]. N um Elem then 
Shift:= true 

begin 
Reduce:= Reduce +1; 
ReduceNum := ReduceNum + [across" .ThisSet.ProdNum]; 
end; 

across := across" .ClosurePtr; 
end; ( * while *) 

if ((Shift = true) and (Reduce <> 0)) or (Reduce >1) then 
begin ( * have an inconsistent state *) 
Writeln(List,CurrentState:l, 'is an inconsistent state'); 
( * add to Prod LookAheads *) 
for P := 1 to NumProd do 

if P IN ReduceNum then 
begin 
ProdLAS[LastProdLA].ProdStNum := CurrentState; 
ProdLAS[LastProdLA].ProdRed := P; 
if LastProdLA = MaxProdLA then 

Fatal( 16 ); 
LastProdLA :== LastProdLA + 1; 
end; ( * for and if *) 

end; ( * if *) 
if ( CurrentState = MaxStateNum) then 

fatal(14); 
CurrentState := CurrentState + 1; 

until CurrentState > LastStateNum; 
end; ( * BuildCFSM *) 

I FIGURE 8.5 BuildCFSM, CONTINUED I 
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procedure DirectRead; 
( * add the direct reads to initialize each Read Follow for 

each non terminal transition *) 
var 

I: NumNTTrans; 
across: ParsePtr; 
NextSt:state; 
J: vocab; 

begin 
for I:= 1 to (LastNTTrans -1) do 

with NTTrans[I] do 
begin 
ReadFollow :== []; 
across :== GoTorI'ab[StNum]; 
while (across" .VocabNun1 <> NonTerm) do 

across : = across .... Next Rec; 
NextSt :== across" .action.num2; 
across :== GoToTab[NextSt]; 
while across <> nil do 

begin 

•· . 

if ( across"' .VocabNum > LastNonTerm ) then 
ReadFollow :== Read Follow + [across .... VocabNum]; 

across :== across .... Next Rec; 
end; ( * while *) 

end; ( * with *) 
end; ( * directly reads *) 

I FIGURE 8.6 Procedure DirectRead I 
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procedure TraverseBack(var First, Tree:TraPtr; st:state; num: Prod; 

length:integer ); 

( * traverse back in GoTo function to make the include list for each 

non terminal trans and tl1e look-back list for each production in 

the lookahead list. Tl1is procedure is called recursively as there 

may be several paths back *) 

var 
across, Ptr: ParsePtr; 

J: vocab; 

begin 
if length = 0 then 

( * have gone back all the way *) 

begin ( * are at last state *) 

if tree == nil then 
begin ( * add to TraPtr List for *) 

new( tree); ( * Look back or includes *) 

First :== tree; 
end 

else 
begin 
new(tree" .next); 
tree:= tree" .next; 
end; 

across := GoToTab[st]; 

while (across" .VocabNum <> Productions[num].LlIS ) do 

across := across" .Next Rec; 

tree" .Ref:= across" .Ref; ( * Ref - NTTrans arrary element *) 

tree" .next := nil; 
end 

else ( * keep going back *) 
begin 
J:= Productions[num].RHS[length]; 

length := length - l; 

Ptr := DownTab[J]; (* going down vocab symbols*) 

while {Ptr <> nil ) do 
begin 
if ( Ptr" .action .n um2 == st) then 

TraverseBack(F.,irst,tree ,Ptr" .StNum,num, length); 

ptr := ptr" .Down Rec; ( * next state for this vocab symbol *) 

end; ( * while *) 
end; ( * else *) 

end; ( * TraverseBack *) 

I FIGURE 8.7 Procedure TraverseBack 
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procedure LookBack; 
( * calculate the look-back relation for each production reduction 

in an inconsistent state *) 
var 

I: NumProdLA; 
Length: integer; 
First:TraPtr; 

begin 
for I:= 1 to (Last Prod LA - 1) do 

begin 
length := productions[ProdLAS[I].ProdRed].NumElcm; 
ProdLAS[I].Next :== nil; 
TraverseBack(First, ProdLAS(I].next , ProdLAS[I].ProdStNum, 

ProdLAS[I].ProdRed, length); 
ProdLAS[I].Next :== First; 
end; ( * for *) 

end; ( * Look Back *) 

I F'IG UllE 8.8 Procedure Look Back I 

procedure Cklncludes(OneSet:SetRec; l:NumNTTrans; var First:TraPtr); 
( * Check if set record OneSet can go to lambda after Dot Place + 1 -

i.e., if it should be added to the includes relation for NTTrans I *) 
var 

J: integer; 
lambda: boolean; 

begin 
with OneSet do 

if (DotPlace + 1) = Productions[ProdNum].NumElem then 
( * followed by lan1 bda *) 
TraverseBack(First, NTTrans[I].next, NTTrans[I].StNum, 

ProdNum, DotPlace) 
else ( * check all productions after Dot Place + 1 *) 

begin 
J := Dot Place +2; ( * first one to check *) 
lambda := true; 
while (( J <= Productions[ProdNum].NumElem ) and lambda) do 

if ( Productions[ProdNum].RIIS[J] In NullNonTerms ) then 
J := J + 1 

else 
lambda :== false; 

if lambda then 
( * can go to lambda *) 
TraverseBack(First,NTTrans[I] .next, NTTrans[I] .StN um, 

ProdNum, DotPlace); 
end; ( * else *) 

end; ( * Cklncludes *) 

I FIGURE 8.9 Procedure Cklncludes I 

72 



procedure Includes; 

( * calculate includes relation for all non terminal transitions *) 
var 

I: NumNTTrans; 
J ,K: KernelN urns; 
across: ptr; 
St:state; 
First :TraPtr; 

begin 

for I := 1 to ( LastNTTrans - 1 ) do 

begin ( * access all elements in nonterminal trans array *) 
First := nil; 
NTTrans[I] .next := nil; 
st := NTTrans[I].StNum; 
if st < LastStateNum then 

K :== KernelTab[st + 1 ].l(ernelRef - 1 
else 

K := LastKernelNum; 
( * kernel items *) 
( * check all items in state of NTTrans[I] to see if after 

reading the nonter1ninal transition under consideration 
the rest can go to lambda *) 

for J:= KernelTab[st].l(ernelRef to K do 
if Productions[KernelSets[J].ProdNum].NumElem <> 

KernelSets[J].DotPlace then 

if (Prod uctions[KernelSets[ JJ .ProdN um J. RHS [KernelSets[ JJ. Dot Place + 1] 
= NTTrans[I].NonTerm ) then 

Cklncludes(Kerne1Sets[ J], I,First ); 
( * closure *) 
across := KernelTab[st].ClosurePtr; 
while across <> nil do 
begin 

if Productions[across". ThisSet.ProdN um] .N um Elem < > 
across" .ThisSet.DotPlace then 

if ( Productions[ across·. ThisSet.ProdN um] .RHS[ across·. ThisSet.DotPlace+ 1 J 
= NTTrans[I].NonTerm ) then 

Cklncludes( across". This Set ,I,First); 
across := across" .ClosurePtr; 
end; 

NTTrans(I].next := First; ( * connect beginning *) 
end; ( * for *) 

end; ( * Includes *) 

I FIG URE 8.10 Procedure Includes I 
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procedure Traverse(X: NumNTTrans; var DepthOfSt:integer; Relation: char); 
( * called by Digraph algorithm below *) 
( * adaptation of DeReemer's and Pennello~s algorithm *) 

var 
NewPtr: TraPtr; ( * used in forming Reads relation locally *) 
RelationPtr: TraPtr; ( * accesses Includes or Reads relation *) 
Ptr: ParsePtr; 
Y, element : NumNTTrans; 
d: integer; 

Procedure FormReads; 
( * form reads relation *) 
var 

Next St: state; 
done: boolean; 

begin 
Ptr := GoToTab[NTTrans(X].StNum]; 
while (Ptr" .VocabNum <> NTTrans[X].NonTerm ) do 

Ptr := Ptr" .NextRec; 
NextSt := Ptr" .Action.Num2; 
RelationPtr := nil; 
Ptr := GoToTab[NextSt]; 
done :== false; 
while not done do 

if ptr == nil then 
done := true 

else if (Ptr" .VocabNum > LastNonTerm ) then 
done := true 

else if (Ptr" .VocabNum IN NullNonTerms ) then 
begin 
if RelationPtr = nil then 

begin 
new(RelationPtr ); 
New Ptr :== RelationPtr; 
end 

else 
begin 
new(NewPtr" .Next); 
NewPtr := NewPtr" .Next; 
end; 

NewPtr" .Ref:= Ptr" .Ref; 
NewPtr" .Next :== nil; 
Ptr :== Ptr" .NextRec; 
end 

else 
Ptr := Ptr" .NextRec; . 

end; ( * FormReads *) 

I FIGURE 8.11 Procedure Traverse I 
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begin ( * Traverse *) 
push(X, DepthOfSt ); 
d := DepthOfSt; 
NTTrans(X].StDepth := d; 
( * complete the closure process *) 
if Relation = 'R' then 

Form Reads 
else 

RelationPtr := NTTrans[X].N ext; ( * Includes *) 
while RelationPtr <> nil do 

begin 
Y : = Relation Pt r " . Ref; 
if ( NTTrans[Y].StDcpth = 0 ) then 

Traverse(Y, Deptl10fSt,Rclation ); 
if (NTTrans[X].StDepth > NTTrans[Y].StDeptl1 ) then 

NTTrans[X].StDepth := NTTrans[Y].StDepth; 
NTTrans[X].ReadFollow := NTTrans[X].ReadFollow + NTTrans[Y].ReadFollow; 
RelationPtr := RelationPtr" .Next; 
end; ( * while *) 

if ( NTTrans[X].StDepth == d ) then 
begin 
NTTrans[Stack" .Num].StDepth :== Maxlnt; 
if( Stack".Num <> X) then 

NTTrans[Stack" .Num].RcadFollow :== NTTrans[X].ReadFollow; 
pop( element,DepthOfSt ); 
while ( element <> X ) do 

begin 
NTTrans[Stack" .Num].StDepth := Maxlnt; 
if ( Stack" .Num <> X ) then 

NTTrans[Stack" .Num].RcadFollow := NTTrans[X].ReadFollow; 
pop( element,DepthOfSt ); 
end; ( * while *) 

end; ( * if*) 
end; ( * Traverse *) 

I FIGURE 8.11 Traverse, CONTINUED J 
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Procedure Digraph( Relation:char ); 
( * DeReemer's Digrapl1 algorithm for traversing the Digraph -

the GoToFunction - to apply the Reads and Includes Relations *) 

var 
I: NumNTTrans; 
DepthOfSt: integer; 

begin 
for I:= 1 to (LastNTTrans - 1) do 

NTTrans[I].StDeptl1 :== O; 
Stack := nil; 
DepthOfSt :== O; 
for I:= 1 to ( LastNTTrans - 1 ) do 

if NTTrans[I].StDepth = 0 then 
Traverse(!, DepthOfSt, Relation); 

end; ( * Digraph *) 

I FIGUllE 8.12 Procedure Digraph I 

procedure Union(J: NumProdLA); 
( * Take the union - for each production in an inconsistent 

state - of the follow in tl1at productions's look-Back. *) 

( * Also call attach to add the reductions to PAT. 
Check for consistency in each state and report any inconsistent states *) 

var 
Follow: set of vocab; 
First: ParsePtr; 
Ptr: TraPtr; 
done: boolean; 
v: vocab; 
I: NumNTTrans; 
st: state; 

begin 
Ptr :== ProdLAS[J].Ncxt; 
Follow :== []; 

writeln(List,'The Follow for Production-LookAheads for Item ', J:1); 

while ( Ptr <> nil ) do 
begin 
I := Ptr .... Ref; 
Follow :== Follow + NTTrans[I].ReadFollow; 
Ptr := Ptr" .Next; 
end· 

' ( * add to PAT - attach and check LALR[l] consistency *) 
(* PRINT ALL FOLLOW PLUS INCONSISTENT STATES*) 

st :== ProdLAS[J]. ProdStNum; 
First := GoToTab[st]; 

I FIGURE 8.13 Procedure Union I 
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for v:= ( LastNonTern1 + 1 ) to LastTerm do 
begin 
if v IN Follow then 

begin 
write(List, v:l,' ,'); 
if GoToTab[st] = nil then 

attach(First,v ,st,ProdLas[J] .Prod Red) 
else 

begin 
done := false; 
while not done <lo 

begin 
if ((First = GoToTab[st] ) and ( v <== First" .VocabNum )) then 

begin 
done := true; 
if ( v = First". VocabN u1n) then 

begin 
writeln(List,'Inconsistent LALR[l] st ',St:1, 

'with production LA ', J:l ); 
LALRl :== false; 
end; 

attach( First, v ,st, Prod LAS[ J]. Prod Red); 
end 

else if (First" .Next Rec <> nil) tl1en 
begin 
if( v <== First".NextRec".VocabNum) then 

begin 
done := true; 
if ( v == First" .Next Rec" .VocabNum ) then 

begin 
writeln(List,'Inconsistent LALR(l] st ',St:1, 

' witl1 production LA ', J: 1 ) ; 
LALRl := false; 
end; 

attach(First, v, st, ProdLAS[J].ProdRed); 
end; 

end 
else ( * are at e11d of state *) 

begin 
done := true; 
attach(First,v ,st,ProdLAS[J].ProdRed ); 
end; 

if ( not done ) then 
First := First" .Next Rec; 

end; ( * while *) 
end; ( * else *) 

end; ( * if v IN Follow *) 
end;(* for*) 

writeln(List ); 
end;(* Union*) 

j FIGURE 8.13 Union, CONTINUED f 
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procedure FindLookAheads; 
( * calculate lookaheads for each production in an inconsistent state *) 
var 

J: NumProdLA; 

begin 
Direct Read; 
Look Back; 
Includes; 
if NullNonTerms <> [] then 

Digraph ( 'R'); 
Digraph( 'I'); 
LALRl :== true; 
for J:= 1 to ( LastProdLA - 1 ) do 

Union( J); 
if ( not LALRl ) then 

Fatal(18); 
end; 

l FIGURE 8.14 Procedure FindLookAheads j 

procedure CondenseP AT; 
( * remove all single reduce states from PAT *) 

var 
I, J: integer; 
NumSinRedElim: state; ( * the number of single reduce states you have 

elin1inated *) 
Reduction : Prod; 
found: boolean; 
Ptr: ParsePtr; 

begin 
NumSinRedElim :== O; 
I ·- O· .- ' 
repeat 

found :== false; 
while ( not found ) do 

if I <= LastStateNum tl1en 
if GoToTab[I] == nil then 

found := true 
else 

I := I + 1 
else 

found := true; 
if I <= LastStateNu1n then 

begin ( * have found a single reduce state *) 
J := KernelTab[I.+ NumSinRedElim].KernelRef; 
Reduction := Ker11elSets[J].ProdNum; 

I FIGURE 8.15 Procedure CondensePAT 

78 



for J := 0 to LastStateNum do 
begin ( * go thru entire PAT *) 
Ptr:= GoToTab[J]; 
while Ptr <> nil do 

begin 
if Ptr" .Action.op = S then 

if Ptr" .Action .n um2 = I then 
begin ( * is a shift to the state to be eliminated *) 
Pt r .... Action .op : = L; 
Ptr .... Action.numl := Reduction; 
end 

else 
if Ptr" .Action.num2 > I then 

Ptr" .Action.num2 := Ptr" .Action.num2 - 1; 
Ptr := Ptr" .NextRec; 
end; (*while*) 

end; ( * for *) 
for J := I to ( LastStateN um - 1 ) do 

GoToTab(J] := GoToTab(J + 1]; 
NumSinRedElim := NumSinRedElim + 1; 
LastStateNum := LastStateNum - l; 
end; ( * if*) 

until(! > LastStateNum); 
end; ( * CondenseP AT *) 

I FIGURE 8.15 CondensePAT, CONTINUED j 

r, 

Procedure Elim Unit Prods; - -
( * eliminate unit productions only per state for L-red uctions 

which are unit and thus will remain in the same state *) 

var 
I: integer; 
UnitProd: set of prod; 
NewNumProd: prod; ( * the elimination creats new productions *) 
s: state; 
Ptrl, Ptr2: ParsePtr; 
changes: integer; ( * Indicates if any new changes were made 

to the parse table and if there is a 
possibility to add a pseudo-production *) 

j FIGURE 8.16 Procedure Elim Unit_Prods I 
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Procedure Check Prods; -
( * check if a new unit production must be added to our set of productions *) 
var 

found: boolean; 
I: integer; 

begin 
found := false; 
I := NumProd + 1; 
while ( I <= NewNurnProd ) and ( not found ) do 

( * search for production *) 
if ( Productions[I].LIIS = Productions[Ptrl A .Action.numl].LIIS ) 

and 
(Productions[I].RlIS[l] = Ptr2 A .VocabN um ) tl1en 

found :== true 
else 

I := I + 1; 
if found then 

Ptr2" .Action.numl :== I 
else 

begin ( * make new prod *) 
if (NewNumProd = MaxNumProd ) then 

fatal( 8); 
NewNumProd := NcwNumProd + 1; 
Productions[NewNu1nProd].LHS :== Productions[Ptrl .... Action.numl].LIIS; 
Productions[NewNu1nProd].Nun1Elem := 1; 
Productions[NewNurr1Prod].RIIS[l] := Ptr2" .VocabNum; 
UnitProd := UnitProd + [NewNumProd]; 
Ptr2" .Action.numl :== NewNumProd; 
end; ( * else *) 

end; (* Check_Prods *) 

begin 
Unit Prod := []; 
changes :==0; 
for I := 1 to NumProd do 

if (Productions[I].NumElem = 1 ) then 
begin 
UnitProd :== UnitProd + [I]; 
if (Productions[I].Rl1S[l] <= LastNonTerm) tl1en 

changes :=1; ( * RIIS is a non term *) 
end; 

NewNumProd := NumProd; 
if changes > 0 then 

begin 
for s := 0 to LastStateNum do 
repeat 
changes := O; 
Ptrl := GoToTab[s]; 

( FIGURE 8.16 Elim_Unit_Prods, CONTINUED j 
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while ptrl <> nil do 
begin 
if iPtrl" .Action.op = L ) then 
Jr (Ptrl A .Action.numl IN UnitProd ) then 

if Productions[Ptrl ".Action.numl].RHS[l] <= LastNonTerm then 
begin ( * RIIS is a non term - look for it *) 
ptr2 := GoToTab[s]; 
while ( Ptr2 < > nil ) do 

begin 
If (( Ptr2 <> Ptrl ) and (Ptr2" .Action.op == L )) then 

if ((Ptrl A .VocabNum = Productions[Ptr2" .Action.numl].LHS) 
and 

(Ptr2A .Action.numl IN UnitProd ) ) then 
begin 
changes :== l; 
Check_Prods; 
end; 

ptr2 :== Ptr2" .Ne tR c; 
end; ( * while Ptr2 * 

end; ( * if*) 
Ptrl := Ptrl A.Next Rec; 
end; ( * while Ptrl *) 

until ( changes = 0 ); ( * are done with a state if no changes made *) 
If NewNumProd > NumProd then 

begin 
writeln(List,'The Pseudo-Productions added are'); 
for changes := (NumProd + 1) to NewNumProd do 

Write_Prod(changes, MaxProdLen + 1); 
end; 

NumProd := NewNumProd; 
end; (* if UnitProd <>nil*) 

end; ( * Elim *) 

I FIGURE 8.16 Elim_ Unit_Prods, CONTINUED l 
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Procedure Shift(NextState:state); 
( * shift a terminal symbol or a non-terminal symbol on the stack by putting the next state on the stack *) var 

stk: stack; 

begin 
new(stk); 
stk" .st := NextState; 
stk" .next := TOS; 
TOS := stk; 

end; ( * shift *) 

I FIGURE 8.17 Procedure Shift l 

Procedure Reduction( reduce:prod; var CurrentAction: OpType); ( * perrform either an L-reduction or a straight reduction *) 
( * recursive call *) 
( * SearchP AT is the call to tl1e binary search routine for PAT *) var 

I, NumTimes: integer; 
VocabSym: vocab; 
CurrentState: state; 
entry: integer; 

begin 
NumTimes := Productions[reduce].NumElem; 
if (CurrentAction = L ) then 

NumTimes := NumTimes - l; 
for I :== 1 to NumTimes do 

TOS := TOS" .next; ( * pop stack *) 
VocabSym := Productions[reduce].LHS; (* non term*) Current State := TOS .... st; 
entry := SearchP AT( GoToTab[CurrentState].first, 

GoToTab(CurrentState + l].first - 1, VocabSym); if ( entry == 0 ) then 
fatal(3); ( * impossible situation *) 

CurrentAction := PAT[entry].Action.Op; 
case CurrentAction of 

S: shift(P AT[entry].Action.num2); 
L: Reduction(P AT[entry].Action.numl, CurrentAction); 
R: fatal( 4); ( * impossible situation - cannot have reduce in the 

non term part of the Go To table *) 
AC:; 
end; (*case*) 

end; ( * reduction *) 

I FIGURE 8.18 Procedure Reduction I 
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Procedure Parse; 
( * parse the input string *) 
( * SearchP AT is the call to the binary search rtn for the PAT *) 
var 

CurrentAction: OpType; 
CurrentState: state; 

I, entry: integer; 
Next State: state; 
begin 
repeat 

CurrentState:= TOS" .st; 
entry := SearchP AT( GoToTab[CurrentState] .first, 

GoToTab[CurrentState + l).first - 1, NextToken); 
if entry = 0 then 

( * default action *) 
if (GoToTab[CurrentState].default <= NumProd) then 

begin ( * actual reduction *) 
CurrentAction := R; 
Reduction( GoToTab[Curren tState] .default, CurrentAction); 
end 

~ else 
CurrentAction := ER 

else ( * found an entry - no default *) 
begin 
CurrentAction := P AT[entry].Action.op; 
Case CurrentAction of 

S: begin 
NextState := PAT[entry].Action.num2; 
shift(N ext State); 
NextSym; 
end; 

R: Reduction(P AT[entry].Action.numl,CurrentAction); 
L: begin 

Reduction(P AT[entry] .Action.numl,CurrentAction ); 
if ( CurrentAction <> AC ) then 

NextSym; ( * go past original terminal in tl1e L-reduction *) 
end; 

AC:; 
ER: ; ( * never in PAT *) 

end; ( * case *) 
end; ( * else *) 

until ((CurrentAction = ER) or (CurrentAction == AC)); 
if (CurrentAction = ER ) then 

List_ Errors( Current State) 
else 

begin 
writeln( output, 'Parse O.K. '); 
writeln(List,' Parse O.K. '); 
end; 

end; ( * Parse *) 
I FIGURE 8.19 Procedure Parse I 
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APPENDIXES 

APPENDIX A - INPUT AND OUTPUT FOR Gen_LALRl_Parse_Table Program 

I. File References 

1) The user is prompted to enter the file name containing the nonterminal, terminal 

symbols and productions in the grammar. The program displays on the screen: 

Input > 

2) After entering the file name containing the grammar symbols, the user is prompted 

to specify a file name for diagnostic output ( collection of sets, etc. ). The program 

displays on the screen: 

List File For Sets > 

If the output is to be to the screen, the user presses return. 

3) If the grammar is found to be LALR(l) the program prompts the user to enter the 

file name in which to write the parse table and other necessary items which will be 

input to the shift-reduce parser. For this the program displays on the screen: 

The input file for the Parse Program is being created 

List File For This File > 

If the grammar was not LALR(l) the following message is printed to the screen and no 

parse table is written: 

The grammar is not LALR(l), no table is created. 

II. Entering the grammar 

The grammar is entered in the following order. Neither the augmented 

production symbol nor the augmented production are entered. The program creates 

these. All nonterminal and terminal symbols are converted to upper case letters. 

1) Nonterminal Symbols 
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a) The nonterminal symbols are preceeded by the symbol '<' and terminated 

by the symbol'>'. 

b) The start symbol of the grammar must be entered first. 

c) The symbols must be separated by blanks. 

d) The list may take as many lines as needed. 

2) Terminal Symbols 

a) All terminal sy1n bols must be separated by blanks. 

b) Entering the symbol id will permit tl1e parse program to input standard 

user-defined id names ( i.e. a, b. cl, etc.) as part of the grammar. 

c) entering the symbol intliteral will permit the parser program to input 

integers as part of the grammar. 

d) The list of terminal symbols may span multiple lines. 

e) The list of terminal symbols is terminated by the end-of-string character 

(EOS) defined in the program. Currently this is the '#' symbol. This is 

defined in the CONST definition of the program and may be changed if 

needed. 

3) Productions 

a) Each production starts with the symbol'<<' and is terminated by the 

string '> > '. 

b) The production is entered in the form 

<< LHS --> RHS >> 

c) LHS must, of course, be a nonterminal. If it isn't, the program terminates 

with an error message. If LHS is absent, the LHS of the preceeding 

production is assumed. 

d) '-->' is the symbol which must be used for arrowsym. 
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e) RHS is a series of nonterminal and terminal symbols. If the RIIS is absent, 

Lambda is assumed. Thus, to enter a..\ nonterminal X enter 

<< X --> >> 

f) RIIS may span rnultiple lines. 

g) The list of productions are terminated by the string 'endofprocs'. 

Included below is the actual input for the expression grammar Gl and for PLO. 

GRAMMAR Gl 

<E TFAM> 
( ) + - * / ID IN'fLITERAL # 
<< E --> T >> 
< < E -- > E A T > > 
<< T --> F >> 
<< T --> T M F >> 
< < F --> ( E ) > > 
<< F --> ID >> 
<< F --> INTLI'fERAL >> 
<< A --> + >> 
<< A --> - >> 
<< M --> * >> 
<< m --> I >> 
ENDOFPROCS 

PLO 

< program cpart ctail vpart J)part block statement 
cstat condition expression sign term factor addop 
sexpression sxptail relop t tail m ulop vtail > 
. , ; id := exec begin end 
if then while do odd 
<> < > <== >== + - * I ( ) 

intliteral const var procedure # 
< < program -- > block . > > 
< < cpart --> canst id = intlitcral ct ail ; > > 
<< cpart --> >> 
< < ct ail --> , id i 11 t liter al ct ail > > 
<< ctail --> >> 
< < vpart -- > var id vtail ; > > 
<< vpart --> >> 
<< ppart --> procedure id ; block ; ppart >> 
<< ppart --> >> 
<< block--> cpart vpart ppart statement >> 
<< statement--> id := expression >> 
<< statement--> exec id >> 
<< statement--> begin staterncnt cstat end >> 
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<< statement--> >> 
<< statement--> if condition then statement >> 
< < statement -- > while condition do statement > > 
< < cstat -- > ; statement cstat > > 

<< cstat --> >> 
< < condition -- > odd expression > > 
< < condition -- > expression relop expression > > 

< < expression -- > sexpression > > 
• • • < < expression -- > sign sexpress1on > > 

<< sign --> + >> 
<< sign --> >> 
< < term -- > factor t tail > > 
<< factor --> id >> 
< < factor -- > in tliteral > > 
< < factor -- > ( expression ) > > 
<< addop --> + >> 
<< addop --> >> 

• < < sexpression 
< < sxptail -- > 
< < sxptail -- > 
<< relop --> 
<< relop --> 
<< relop --> 
<< relop --> 
<< relop --> 
<< relop --> 
<< ttail --> 
< < ttail --> 

-- > term sxptail > > 
addop term sxptail > > 

>> 
>> 

<> >> 
< >> 
> >> 
>= >> 
<= >> 

mulop factor ttail > > 

>> 
<< mulop --> * >> 
<< mulop --> / >> 
< < vtail --> , id vtail > > 
<< vtail --> >> 
endofprocs 

III. Diagnostic Output 

The output produced in the file specified by the user after the prompt 

List File For Sets > 

is as follows: 

1) The number representation of each terminal and nonterminal symbol. The start of 

its location in VocabTab. The actual character string of the terminal or nonterminal. 

This information is necessary since most of the diagnostic output references the number 
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representation, not the actual string. 

2) The location of LastNonTerm in Vocablnt. The location of LastTerm in Vocablnt. 

The last location used in VocabTab ( the location for the EOS symbol ). 

3) All productions in the grammar. 

4) The number of null nonterminals, and the null nonterminals, if any. 

5) The inconsistent states, if any. 

6) A message indicating if the grammar is LR(O). If there are any inconsistent states 

listed in 5, the grammar is, of course, not LR(O). 
l 

7) The LR(O) collection of item sets. 

8) The number of nonterminal transitions and the actual nonterminal transitions listed 

as (state, number representation for nonterminal transition). 

9) The number of lookahead productions (LA) for which lookaheads needed to be 

calculated and the actual list of productions shown as (state, production number). 

10) The Directly Reads calculated by the program for each nonterminal transition 

shown as a list of terminal symbols (their n um her representation). 

11) The lookback calculated for each lookahead production shown as a list of 

nonterminal transitions ( number 8 above ). 

12) The includes relation, if any, for each nonterminal transition shown as a list of 

nonterminal transitions (number 8 above). 

13) The Follow for each production lookahead shown as a list of terminals (their 

number representation). If an inconsistent state is found at this point it is reported as 

Inconsistent LALR(l) state # with production LA # 

14) Any new Pseudo-Productions added by eliminating unit productions. 

15) The final parsing action table (without the default entries). 

The following is the actual output created for the expression grammar G 1. 
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1 1 
2 7 
3 8 
4 9 
5 10 
6 11 
7 12 
8 13 
9 14 
10 15 
11 16 
12 17 
13 18 
14 20 
15 30 

augsym 
E 
T 
F 

A 
M 
( 
) 
+ 

* 
I 
ID 
INTLITERAL 

# 
LastNonTerm = 6 
LastTerm = 15 
EndOfVocab = 30 

augsym -- > E # 
E --> T 
E -->EAT 
T --> F 
T -->TM F 
F --> ( E ) 
F --> ID 
F --> INTLITERAL 
A-->+ 
A--> -
M --> * 
M --> I 
The Number of Null NonTerminals = 0 
2 is an inconsistent state 
15 is an inconsistent state 
The grammar is not LR(O] 

**************************************** 
State 0 
augsym --> .E # 
E --> .T · 
E --> .EAT 
T --> .F 
T --> .T M F 
F --> .( E ) 
F --> .ID 
F -- > .INTLITERAL 

**************************************** 
State 1 
augsym --> E .# 
E --> E .AT 
A --> .+ 
A --> .-
**************************************** 
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State 2 
E --> T . 
T --> T .MF 
M --> ·* 
M --> ./ 
**************************************** 
State 3 
T --> F . 

**************************************** 
State 4 

F --> ( .E ) 
E --> .T 
E --> .EAT 
T --> .F 
T --> .T M F 
F --> .( E ) 
F --> .ID 
F --> .INTLITERAL 

**************************************** 
State 5 
F --> ID I 

**************************************** 
State 6 
F --> INTLITERAL . 

**************************************** 
State 7 
E --> EA .T 
T --> .F 
T --> .TM F 
F --> .( E ) 
F --> .ID 
F --> .INTLITERAL 

**************************************** 
State 8 

A --> + I 

**************************************** 
State 9 
A --> - I 

**************************************** 
State 10 
augsym --> E # . 
**************************************** 
State 11 
T -->TM .F 
F --> .( E) 
F --> .ID 
F --> .INTLITERAL 

**************************************** 
State 12 
M --> * I 

**************************************** 
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State 13 
M --> I . 
**************************************** 
State 14 
F --> ( E .) 
E --> E .AT 
A--> .+ 
A --> .-
**************************************** 
State 15 
E --> EAT. 
T --> T .M F 

M --> ·* 
M --> ./ 
**************************************** 
State 16 
T --> T M F . 

**************************************** 
State 17 
F --> ( E ) . 
The number of NonTern1inal Transitions are 13 
1 ( 0,2 ) 
2 ( 0,3 ) 
3 ( 0,4 ) 
4 ( 1,5 ) 
5 ( 2,6 ) 
6 ( 4,2 ) 
7 ( 4,3 ) 
8 ( 4,4 ) 
9 ( 7,3 ) 
10 ( 7 ,4 ) 
11 ( 11,4 ) 
12 ( 14,5 ) 
13 ( 15,6 ) 

The number of LookAhead Productions are 2 
( 2,2 ) ( 15,3 ) 
The directly reads for non terminal transition ( 0,2 ) are : 
9 ,10 ,15 , 
The directly reads for non terminal transition ( 0,3 ) are·: ',. 
11 ,12 , 
The directly reads for non terminal transition ( 0,4 ) are : 

The directly reads for non terminal transition ( 1,5 ) are : 
7 ,13 ,14 , 
The directly reads for non terminal transition ( 2,6 ) are : 
7 ,13 ,14 , 
The directly reads for non terminal transition ( 4,2 ) are : 
8 ,9 ,10 , 
The directly reads for non terminal transition ( 4,3 ) are : 
11 ,12 , 
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The directly reads for non terminal transition ( 4,4 ) are : 

The directly reads for non terminal transition ( 7 ,3 ) are : 
11 ,12 , 
The directly reads for non terminal transition ( 7 ,4 ) are : 

The directly reads for non terminal transition ( 11,4 ) are : 

The directly reads for non terminal transition ( 14,5 ) are : 
7 ,13 ,14 , 
The directly reads for non terminal transition ( 15,6 ) are : 
7 ,13 ,14 , 
The Look-Back for ( 2,2 ) is : 
1 , 6 , 
The Look-Back for ( 15,3 ) is : 
1 , 6 , 
The Includes relation for ( 0,2 ) is: 

The Includes relation for ( 0,3 ) is: 

1 ' 
The Includes relation for ( 0,4 ) is: 

2 ' 
The Includes relation for ( 1,5 ) is: 

The Includes relation for ( 2,6 ) is: 

The Includes relation for ( 4,2 ) is: 

The Includes relation for ( 4,3 ) is: 

6 ' 
The Includes relation for ( 4,4 ) is: 

7 ' 
The Includes relation for ( 7 ,3 ) is: 
1 , 6 , 
The Includes relation for ( 7 ,4 ) is: 

9 ' 
The Includes relation for ( 11,4 ) is: 
2 , 7 , 9 , 
The Includes relation for ( 14,5 ) is: 

The Includes relation for ( 15,6 ) is: 

-

The Follow for Production-LookAheads for Item 1 
8 ,9 ,10 ,15 , 
The Follow for Production-LookAheads for Item 2 
8 ,9 ,10 ,15 , 
The Pseudo-Productions added are 
T --> ID 
T --> INTLITERAL 
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The PAT Is 
----------------------------------------------------------------------------------
State 0 

2, Sl 3, S2 4, L4 7, S3 13, L13 14, L14 
----------------------------------------------------------------------------------
State 1 

5, S4 9, L9 10, LlO 15, Ll 
----------------------------------------------------------------------------------
State 2 

6, S5 8, R2 9, R2 10, R2 11, Lll 12, L12 15, R2 
----------------------------------------------------------------------------------
State 3 

2, S6 3, S2 4, L1 7, S3 13, L13 14, L14 
----------------------------------------------------------------------------------
State 4 

3, S7 4, L4 7, S3 13, L13 14, L14 

State 5 
4, LS 7, S3 13, L7 14, L8 

State 6 
5, S4 8, L6 9, L9 10, LlO 

----------------------------------------------------------------------------------
State 7 

6, S 5 8, R3 9, R3 10, R3 11, L 11 12, L 12 15, R3 

IV. The Parse Table To Ile Input to the Shift-Reduce Parser 

This is the output produced by the user after the prompt 

The Input File for the Parse Program is being created 

List File for the F,ile > 

1) The file name used to input the grammar. This is solely for ease in referencing which 

grammar this is since most of the input is in number representation. 

2) LastNonTerm, LastTcrm, En<lOf Vocab, LastStateNum, NumProd 

3) The VocabTab Table 

4) The Vocablnt Table 

5) The productions in the grammar- LI-IS, NumElern, RIIS for each production 

6) The parsing action table with default entries. 
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Number 6 above is the only instructive item to demonstrate, since items 1 - 5 

are really internal representations of the grammar. The Parsing Action Table for Gl is 

as follows. It is the table used in the shift-reduce parser, with accept added by the 

parse program itself. 

6 STATE 0 
2 Sl 3 S2 4 L4 7 S3 13 L13 14 L14 

15 DEFAULT ERROR 
4 STATE 1 

5 S4 9 L9 10 LlO 15 Ll 
15 DEFAULT ERROR 
3 STATE2 

6 S5 11 Lll 12 L12 
2 DEFAULT REDUCTION 
6 STATE 3 

2 S6 3 S2 4 L4 7 S3 13 L13 14 L14 
15 DEFAULT ERROR 
5 STATE 4 

3 S 7 4 L4 7 S 3 13 L 13 14 L 14 
15 DEFAULT ERROR 
4 STATE 5 

4 LS 7 S3 13 L 7 14 L8 
15 DEFAULT ERROR 
4 STATE 6 

5 S4 8 L6 9 L9 10 LlO 
15 DEFAULT ERROR 
3 STATE 7 

6 S5 11 Lll 12 L12 
3 DEFAULT REDUCTION 
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APPENDIX B INPUT AND OUTPUT FOR Shift_Reduce_l>arser l)rograrn 

I. File Input 

The user is prompted for 

1) The file created in IV in Appendix A ( the parse table ) by 

Name of File Containing Parsing Action Table > 

2) The file containing the string to be parsed by 

Input F'ile Containing String To Parse > 

3) The file tc) be used for the result (output) of the parse 

List I?ile for Output of Pc1rse > 

I~ressing return will put the output to the screen. 

1,hc follc)wi ng are the results of sever a.I runs <)f the parse prograrn fc)r the 

expressicJn grarn111,1r (Jl and f>I-.10. Note that all strings ,1rc tcrrninatcd with the# 

Strings testing (_; 1 

a*(b-c/(c+f))-g# 
Parse O.K. 

a+g*d-f/h*g# 
Parse 0.K. 

a+b+c+d# 
Parse () . I{ . 

a * ( 2 * ( C / ( f * 10 ) ) ) + 6 # 
Parse 0.K. 

a+ be* 2 # 
Parse O.K. 

a+ - 10 # 
"error in Parse 

EXPEC1'ED ( ID IN'fLI1'ERAL 

a+(b*g))# 
"error in Parse 

EXPECTED + - # 
a + ( ( b * g ) - 10 # 

"error in Parse 
EXPECTED ) + -
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Testing Strings in PLO 

; # ( * parse 1 *) 
"'error in Parse 
EXPECTED . 

• # ( * parse 2 *) 
Parse O.K. 

if a>= 10 then 
a := b + c ; # ( * parse 3 *) 

"error in Parse ') 
EXPECTED . 

if a >= 10 then 
a:= b + C. # 

Parse O.K. 

const 
X = 10, 
y = 15; 

var 

( * parse 4 *) 

a,b,c,; (*parse# 5 *) 
"error in Parse 

EXPECTED ID 

const 
X = 10, 
y = 15, 
z = 25; 

var 

a, b , C ; 

begin 
a:= b + c; 
b := 10 - 15; 
• 

' • 
' end. # 

Parse O.K. 

var 

a, b, C; 
begin 

a:= b + c; 
b := 10 - 15; 
• 

' • 
' end. # 

Parse 0.K. 

( * parse # (j *) 

( * parse # 7 *) 
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var 
a, b , C ; 

procedure xx( Y , z ) ; ( * par8,~ # 8 *) 
A err<>r in l>a,rse 

I~:X J> Ji:Crr, I!: I) ; 

const 

X == 1(), 

y == 1,5, 
z == y ; ( * parse # !) *) 

A error in J>arRc 

I~X J> l~:C 'I' l~ l) IN 'I' I..1 I' l' l~ llA I .1 

const 
X == 1 (), 
y = 1,5, 
Z - 2h) • 

'J - • ' 

var 

a, b , C ; 

p fC)C<~d lJ ff! XX ; 

a:== 10; 

begin 

a := h + c; 
.) : = 10 - 15; 
exec xx ; 
• 

' end. # 
I>arse O.K. 

( * p«:trse # 10 *) 

'l'he sca,nncr f<Jl' tlie JH-trHe prc)gra,111 1nust lia,vc aJJ Hpcci,tl H.y,nb<JlH scp,tra,tcd by 

bl,tnks. 'l'his rr1cans th,1t the J>a,r·scr can fH·1rse tlic string a,:==b witlic,ut bJa,llkH, hut will 

take the string a:= :3*(b+c*(d+c)) a,R incorrect unless ther,~ a,rc b]a,nks bctw,~en the* 

a.nd the ( and l)ctween the )a,st twc, parentl1eses. It wiJI ta,ke tlie s.y111bcJJR '))' ;is <)ll<~ 

special character rather tllcn a,s tw,, cha.racterr;, ')' a.nd ')'. 'l'he r;a,rnc ir; true f<)r '•('. 

(~hanging this is extrcrru~ly sin1r>le, a,s it requires ,tdding a, Hirnpl,~ check f<,r aJl 'sp,~ciaJ' 

characters which are <)ften written tclgether i11 specific J>J'<lgra1nrning la.ngua,ges (withc>ut 

intervening blanks) but which ,1rc nclrrnaJly ccJnsidered Hepa.ra,tely. 'J'his wa.s nc,t 
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included in the shift-reduce parser so it could apply to 'any' grammar, not a specific 

one. 
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