Development of an LALR(1) parser generator

Marie Schneck
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd
Part of the Electrical and Computer Engineering Commons

Recommended Citation

Schneck, Marie, "Development of an LALR(1) parser generator" (1989). Theses and Dissertations. 5247.
https:/ / preserve.lehigh.edu/etd/5247

Development of an LALR(1)

Parser Generator

By

Marie Schneck

A Thesis
Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science
in
Computer Science
Lehigh University

This thesis is accepted and approved in partial fulfillment of the requirements for the Degree of Master of Science.

$\frac{\text { May } 5,1989}{\text { (date) }^{2}}$

ACKNOWLEDGEMENTS

I would like to thank Dr. William Seaman, formerly of Muhlenberg College, for introducing me to Compiler Design and to LR grammars and LR parsing. He initiated my interest in the subject, which was further increased by Prof. Samuel Gulden in his Compiler Design Courses at Lehigh. I also greatly appreciate the knowledge gained from both Dr. Edwin Kay and Dr. Robert Barnes in the area of Formal Grammars and Finite Automata, which was invaluable in the the development of this thesis.

TABLE OF CONTENTS

List of Figures vi
Abstract 1
Chapter 1 Terminology and Definitions 3
1.1 Terminology 3
1.2 Shift-Reduce Parsing 4
1.3 Definition of an LR(K) Grammar 6
Chapter 2 LR Parsing 8
2.1 General Parser Construction 8
2.2 Construction of the Collection 11
of Sets of Items
2.3 Definition of LALR(1) 14
Chapter 3 Computation of LALR(1) Lookahead Sets 20
3.1 Background 20
3.2 Computation of LA 22
3.3 Interrelation of Follow Sets 24
3.4 Determining $\operatorname{Read}(\mathrm{p}, \mathrm{A})$ 25
3.5 Applying Algorithm Digraph 27
3.6 Steps to Compute LA 30
Chapter 4 Single Reduce State Elimination 32
4.1 LR(0) Row Elimination 32
4.2 Shift-Reduce or L-Action 33
Chapter 5 Application to Grammars G2 and G3 34
5.1 G2 Application 34
5.2 G3 Application 39
Chapter 6 Optimizing Parse Tables 43
6.1 Sparse Matrix Representation 43
6.2 Default Parse Table Entries 45
6.3 Single-Production Elimination 46
6.4 Size of PL0 Parse Table 49
Chapter 7 Generalizations 51
Chapter 8 Program Implementation 53
8.1 Important Data Structures 53
8.1.1 Constant Definitions 53
8.1.2 Nonterminal and Terminal Symbols 53
8.1.3 Production Representation 54
8.1.4 Collection of Sets 55
8.1.5 Combined Parse Table 56
8.1.6 Calculating Lookahead Symbols 58
8.2 Forming the LR(0) Machine 58
8.3 Calculating the Lookaheads 59
8.4 Final Parse Table Modifications 61
8.5 The Shift-Reduce Parser 61
Bibliography 84
Appendixes85
Appendix A Input and Output for 85
Gen_LALR1_Parse_Table_Program
Appendix B Input and Output for 96Shift_Reduce_Parser Program
Biography100

LIS'T OF FIGURES

Figure 2.1 Finite State Machine for G1 17
Figure 2.2 Finite State Machine for Ci2 18
Figure 2.3 Finite State Machine for (i3 19
Figure 3.1 Lookahead Sets In Terms Of Follow Sets 23
Figure 3.2 Interrelation Among Follow Sets 24
Figure 3.3 The Reads Relation 27
Figure 5.1 GoToTable for Gi2 34
Figure 5.2 Final Parse Table for (i2 38
Figure 5.3 GoToTable for (i3 40
Figure 6.1 Parse Table for G1 48
Figure 8.1 Procedure Closure 63
Figure 8.2 Procedure Go'ToSet 64
Figure 8.3 Function CheckGo'To 65
Figure 8.4 Procedure FormGo'To 66
Figure 8.5 Procedure BuildCFSM 67
Figure 8.6 Procedure DirectRead 70
Figure 8.7 Procedure TraverseBack 71
Figure 8.8 Procedure LookBack 72
Figure 8.9 Procedure CkIncludes 72
Figure 8.10 Procedure Includes 73
Figure 8.11 Procedure Traverse 74
Figure 8.12 Procedure Digraph 76
Figure 8.13 Procedure Union $\quad 76$
Figure 8.14 Procedure FindLookAheads 78
Figure 8.15 Procedure CondensePA'T 78

Figure 8.16 Procedure Elim_Unit_Prads 79
Figure 8.17 Procedure Shift 82
Figure 8.18 Procedure Reduction 82
Figure 8.19 Procedure Parse 83

Development of an LALR(1) Parser Generator

Marie Schneck

ABSTRACT

LALR(1) grammars are a subset of LR(1) grammars. The techniques used to create $\operatorname{LR}(1)$ parsing tables can be directly applied to LALR(1) table construction and the LALR(1) table can be formed by merging states while constructing the $\operatorname{LR}(1)$ parsing table. This method is inefficient if one is only looking for LALR(1) grammars as it requires essentially forming the $\operatorname{LR}(1)$ machine by computing all the required lookaheads and then merging compatible states.

The method outlined in this thesis and incorporated into the accompaning computer program to generate the $\operatorname{LALR}(1)$ parsing action table is due to Frank DeReemer and Thomas Pennello. The method is extremely efficient in that it works from the $\operatorname{LR}(0)$ machinc and generates only the lookaheads needed for production reduction in inconsistent states. No other lookaheads are computed. Thus the number of states to be computed is kept to a minimum by only generating the $\operatorname{LR}(0)$ machine and computation of lookaheads is kept to a minimum by only determining the lookaheads needed in inconsistent states.

The one disadvantage to deReemer's and Pennello's method is that if the grammar is not LALR(1) it is not possible to discover if the grammar is LR(1) since all the $\mathrm{LR}(1)$ states were never constructed. However, since most grammars which are $\operatorname{LR}(1)$ are also LALR(1), the efficiency of the method outweighs this disadvantage. Also, the program gives several diagnostics which show exactly where the grammar is
not LALR(1). These diagnostics can be used to change the grammar to $\operatorname{LALR}(1)$, if at all possible.

The parsing action table is input to a shift-reduce parser which is then used to parse strings in the language.

CHAPTER 1

TERMINOLOGY AND DEFINITIONS

1.1 TERMINOLOGY

The following terminology will be used through out the paper.
A context-free grammar, or CFG, G is specified by a quadruple ($\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S}$), where

N is the finite set of nonterminal symbols
T is the finite set of terminal symbols and N and T are disjoint
$\mathrm{P} \subseteq \mathrm{N} \times(\mathrm{N} \cup \mathrm{T})$ * is a finite set of productions
S in N is the start symbol
The vocabulary of G refers to $N \cup T$ and is denoted by V. A production in G is denoted by $\mathrm{A} \rightarrow \alpha$ where $\mathrm{A} \varepsilon \mathrm{N}$ and $\alpha \varepsilon \mathrm{V}^{*}$. The empty string is denoted by λ. The length of any string α is denoted by $|\alpha|$.

The following usual conventions will be observed.

$$
\begin{array}{lc}
\mathrm{S}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \ldots & \varepsilon \mathrm{~N} \\
\mathrm{a}, \mathrm{~b}, \mathrm{c}, \ldots & \varepsilon \mathrm{~T} \\
\ldots \mathrm{x}, \mathrm{y}, \mathrm{z} & \varepsilon \mathrm{~T}^{*} \\
\alpha, \beta, \gamma, \ldots & \varepsilon \mathrm{~V}^{*}
\end{array}
$$

There exists an augmented production $S^{\prime} \rightarrow S$ \# where S is the start symbol of the grammar $G, \# \varepsilon \mathrm{~T}$ and is considered the end of string of the grammar, and S^{\prime} and \# appear in no other productions. In the program which generates the LALR(1) parsing action table, this production will be added by the program and is considered an augmented production, i.e. not part of the original grammar. Thus the end of string symbol \# must not be part of the original grammar.

The notation \Rightarrow_{r} refers to a rightmost derivation. Thus for all $\mathrm{A} \varepsilon \mathrm{N}, \alpha, \beta \varepsilon$ $\mathrm{V}^{*}, \mathrm{y} \varepsilon \mathrm{T}^{*}$ and $\mathrm{A} \rightarrow \alpha \varepsilon \mathrm{P}$, if $\mathrm{S} \Rightarrow r^{*} \beta \mathrm{Ay} \Rightarrow{ }_{r} \beta \alpha \mathrm{y}$ is a rightmost derivative in G then both $\beta \mathrm{Ay}$ and $\beta \alpha y$ are rightmost sentential forms (i.e. sentential forms produced by a rightmost derivative). A nullable nonterminal A is one which produces λ (i.e. $\mathrm{A} \Rightarrow^{*} \lambda$). The language $L(G)$ of the grammar G is the set of all sentences $y \varepsilon T^{*}$ such that $S \Rightarrow *$ y, where S is the start symbol of grammar G.

1.2 SHIFT-REDUCE PARSING

A shift-reduce parser is a bottom-up parser which operates by shifting input symbols onto a stack until the right hand side of some production is recognized which can be replaced by the left hand side of that production at that point. Since the shiftreduce parser operates by essentially doing an inverse rightmost derivative, the point at which the reduction $\mathrm{A} \rightarrow \alpha$ would be done is exactly the point at which A would be replaced by α in the rightmost derivation.

As the parser shifts symbols onto the stack, the current sentential form will always be on the stack combined with the remaining input. The parser must determine when to do a reduction by determining what portion of the current sentential form, if any, is the handle. The handle of a right sentential form γ is a production $\mathrm{A} \rightarrow \beta$ and a position of γ where the string β may be found and replaced by A to produce the previous right sentential form in a rightmost derivative of γ. Thus if the following derivation exists, $\mathrm{S} \Rightarrow{ }_{r}{ }^{*} \alpha \mathrm{Ay} \Rightarrow_{r} \alpha \beta \mathrm{y}=\gamma$ then $\mathrm{A} \rightarrow \beta$ in the position following α is a handle of $\alpha \beta y$. The handle for γ may be denoted by the pair (π, i) where $\pi \varepsilon \mathrm{P}, \mathrm{i} \geq$ 0 is the position where the replacement occurs. In the previous example, the handle for γ is $(\mathrm{A} \rightarrow \beta,|\alpha \beta|)$. The handle is always on the top of the stack.

The stack will always contain the viable prefixes of the right sentential forms of
the grammar. A string $\alpha \beta$ is called a viable prefix if there is some right sentential form containing $\alpha \beta$. In the above example $\alpha \beta$ is a viable prefix (and so is $\alpha \mathrm{A}$).

If the shift-reduce parser is to be totally deterministic (no back tracking), the parser must be able to determine at each step what the handle is, if any, and what production reduction to apply.

Thus, a shift-reduce parser will start with an empty stack and an input string to parse and will finish with the start symbol of the grammar on the stack and an empty input string.

Consider the following expression grammar G1 with the augmented production added:

$$
\begin{array}{lllll}
\mathrm{E}^{\prime} & \rightarrow & \mathrm{E} & \# & \\
\mathrm{E} & \rightarrow & \mathrm{~T} & & \\
\mathrm{E} & \rightarrow & \mathrm{E} & \Lambda & \mathrm{~T} \\
\mathrm{~T} & \rightarrow & \mathrm{~F} & & \\
\mathrm{~T} & \rightarrow & \mathrm{~T} & \mathrm{M} & \mathrm{~F} \\
\mathrm{~F} & \rightarrow & (\mathrm{E} & \\
\mathrm{F} & \rightarrow & \text { id } & \\
\mathrm{F} & \rightarrow & \text { intliteral } \\
\mathrm{A} & \rightarrow & + & \\
\mathrm{A} & \rightarrow & - & & \\
\mathrm{M} & \rightarrow & * & & \\
\mathrm{M} & \rightarrow & / & &
\end{array}
$$

Consider the rightmost derivative of the string $a+g * d-f / 10 \#$ in G1.
Note that the string is terminated by the end of string symbol \#.

$$
\begin{aligned}
& \mathrm{E}^{\prime} \quad \Rightarrow_{r} \mathrm{E} \# \Rightarrow_{r} \mathrm{EAT} \# \Rightarrow_{r} \mathrm{EATM} \mathrm{~T} \# \Rightarrow \mathrm{E}_{\mathrm{C}} \\
& \Rightarrow_{r} \text { EAT } / 10 \# \Rightarrow r \text { EA F } / 10 \# \# \Rightarrow r_{r} \text { EA T M } 10 \# \\
& \text { \# } \Rightarrow_{r} \text { EAf/ } 10 \text { \# } \\
& \Rightarrow_{r} \mathrm{E}-\mathrm{f} / 10 \# \Rightarrow_{r} \mathrm{EAT} \text { - } \mathrm{f} / 10 \#
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow_{r} \mathrm{EAT} * \mathrm{~d}-\mathrm{f} / 10 \# \Rightarrow_{r} \mathrm{EAAF} * \mathrm{~d}-\mathrm{f} / 10 \# \\
& \Rightarrow_{r} \mathrm{EA} \mathrm{~g} * \mathrm{~d}-\mathrm{f} / 10 \# \Rightarrow_{r} \mathrm{E}+\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10 \# \\
& \begin{array}{l}
\Rightarrow_{r} \mathrm{~T}+\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10 \# \Rightarrow_{r} \mathrm{~F}+\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10 \# \\
\Rightarrow_{r} \mathrm{a}+\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10 \#
\end{array}
\end{aligned}
$$

The following is the inverse of this rightmost derivative, so it demonstrates the way a shift-reduce parser would correctly parse the string (by doing the proper shifts and reductions).

```
a+g*d-f/10#
F}+\textrm{g}*\textrm{d}-\textrm{f}/10
T+g*d - f/ 10 #
E+g*d-f/10#
EAg*d-f/10#
EAF*d-f/10##
EAT*d-f/10#
E A T M d - f / 10 #
E A T M F - f / 10##
E A T - f / 10 #
E - f / 10 #
EAf/10#
E A F / 10 #
E A T / 10 #
EAT M10#
EATMMF#
E A T #
E#
E'
```


1.3 DEFINITION OF AN LR(K) GRAMMAR

A grammar G is said to be $L R(K)$ if and only if the following conditions apply:
For any $\mathrm{w}, \mathrm{w}^{\prime}, \mathrm{x} \varepsilon \mathrm{T}^{*}, \gamma, \alpha, \alpha^{\prime}, \beta, \beta^{\prime} \varepsilon \mathrm{V}^{*}, \mathrm{X}, \mathrm{X}^{\prime} \varepsilon \mathrm{N}$ then if
(1) $\mathrm{S} \Rightarrow{ }_{r}^{*} \alpha \mathrm{Xw} \Rightarrow_{r} \alpha \beta \mathrm{w}=\gamma \mathrm{w}$
and hence $\gamma \mathrm{w}$ has $(\mathrm{X} \rightarrow \beta,|\alpha \beta|)$ as a handle
(2) $\mathrm{S} \Rightarrow_{r}^{*} \alpha^{\prime} \mathrm{X}^{\prime} \mathrm{x} \Rightarrow{ }_{r} \alpha^{\prime} \beta^{\prime} \mathrm{x}=\gamma \mathrm{w}^{\prime}$
and hence $\gamma \mathrm{w}^{\prime}$ has $\left(\mathrm{X}^{\prime} \rightarrow \beta^{\prime},\left|\alpha^{\prime} \beta^{\prime}\right|\right.$ as a handle
(3) $\operatorname{First}_{k}(\mathrm{w})=\operatorname{First}_{k}\left(\mathrm{w}^{\prime}\right)$
then
(4) $\left(\mathrm{X}^{\prime} \rightarrow \beta^{\prime},\left|\alpha^{\prime} \beta^{\prime}\right|\right)=(\mathrm{X} \rightarrow \beta,|\alpha \beta|)$

Some relationships can be seen from the above definition. Since the two handles are equal in number (4), we have $\mathrm{X}=\mathrm{X}^{\prime}, \beta=\beta^{\prime}$, and $|\alpha \beta|=\left|\alpha^{\prime} \beta^{\prime}\right|=$ some integer i. Also, $\quad \gamma \mathrm{w}=\alpha \beta \mathrm{w}, \quad \gamma \mathrm{w}^{\prime}=\alpha^{\prime} \beta^{\prime} \mathrm{x}$ where $\quad \gamma=\alpha \beta$. Hence $\alpha \beta \mathrm{w}^{\prime}=\gamma \mathrm{w}^{\prime}=\alpha^{\prime} \beta^{\prime} \mathrm{x}$. Thus $\alpha \beta=\operatorname{First}_{i}\left(\alpha \beta \mathrm{w}^{\prime}\right)=\operatorname{First}_{i}\left(\alpha^{\prime} \beta^{\prime} \mathrm{x}\right)=\alpha^{\prime} \beta^{\prime}$ since $|\alpha \beta|=\left|\alpha^{\prime} \beta^{\prime}\right|=\mathrm{i}$. Hence since $\alpha \beta=\alpha^{\prime} \beta^{\prime}$ and $\beta=\beta^{\prime}$ we have $\alpha=\alpha^{\prime}$. Also, since $\alpha \beta \mathrm{w}^{\prime}=\alpha^{\prime} \beta^{\prime} \mathrm{x}$ and $\alpha \beta=\alpha^{\prime} \beta^{\prime}$ we have $\mathrm{w}^{\prime}=\mathrm{x}$.

The above definition does not provide an easy way to tell if a grammar is LR(K). It does, however, provide the basis for determining whether or not a grammar is $\operatorname{LR}(\mathrm{K})$ since it clearly states that for a grammar to be $\operatorname{LR}(\mathrm{K})$ we must be able to determine at each stage of the parse, with K lookaheads, exactly what production reduction, if any, to apply. There will be one and only one possibility at each stage of the parse.

Looking at the previous string $\mathrm{a}+\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10$ \# in grammar G 1 , which is $\operatorname{LR}(1)$, the following demonstrates how an $\mathrm{LR}(\mathrm{K})$ parser would correctly parse the string. The productions in G1 have been numbered from 1 to 12.

STACK	ACTION	REMAINING INPUT
λ		$\mathrm{a}+\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10 \#$
a	shift	+g*d-f/10\#
F	reduce, 7	+ $\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10$ \#
T	reduce, 4	+g*d-f/10\#
E	reduce, 2	+g*d-f/10\#
E+	shift	$\mathrm{g} * \mathrm{~d}-\mathrm{f} / 10 \#$
EA	reduce, 9	g*d-f/10\#
EAg	shift	*d-f/10\#
EAF	reduce, 7	*d-f/10\#
EAT	reduce, 4	*d-f/10\#
EAT*	shift	d-f/10\#
EATM	reduce,11	d-f/10\#
EATMd	shift	-f/10\#
EATMF	reduce, 7	-f/10\#
EAT	reduce, 5	-f/10\#
E	reduce, 3	-f/10\#
E-	shift	f/10\#
EA	reduce,10	f/10\#
EAf	shift	/10\#
EAF	reduce, 7	/10\#
EAT	reduce, 4	/10\#
EAT/	shift	10\#
EATM	reduce,12	10\#
EATM10	shift	\#
EATMF	reduce, 8	\#
EAT	reduce, 5	\#
E	reduce, 3	\#
$\mathrm{E}^{\mathrm{E}} \mathrm{E}^{\prime \prime}$	shift	λ
E	reduce,1	λ

CHAPTER 2

LR PARSING

2.1 GENERAL PARSER CONSTRUCTION

Since the accompaning computer program is only concerned with $\operatorname{LR}(0)$ and LALR(1) grammars the discussion from now on will refer to 0 or 1 lookaheads. All ideas can be extended to k lookaheads by considering strings of k lookahead symbols. For the moment, the discussion is concerned with $\operatorname{LR}(0)$ and $\operatorname{LR}(1)$. LALR(1), a subset of $\mathrm{LR}(1)$, will be explained later on.

All LR(1) parsing methods depend upon an item of the form
$\mathrm{A} \rightarrow \mathrm{X}_{1} \ldots \mathrm{X}_{i} \bullet \mathrm{X}_{i+i} \ldots \mathrm{X}_{j}, \mathrm{~L}$
where $L=\left\{l_{1} l_{2} \ldots l_{m}\right\}, l_{i} \varepsilon T \cup\{\lambda\}, A \varepsilon P, X_{i} \varepsilon N \cup T$ or, equivalently,
$\mathrm{A} \rightarrow \beta_{1} \bullet \beta_{2}, \mathrm{~L}$ where $\beta_{1}, \beta_{2} \varepsilon \mathrm{~V}^{*}$.
If a grammar is $\operatorname{LR}(0)$, the set of lookaheads L is eliminated from the definition of an item since the parse will precede without having to examine any lookaheads for production reductions.

The - symbol indicates how much of the production has been parsed. The symbols on the left hand side of the - have been parsed and are on the stack, and the symbols on the right hand side of the \bullet are still contained in the input string. The set of lookaheads L are the terminal symbols (plus λ) which can follow the production A at this point in the parse. Thus, if there exists a rightmost derivative $\mathrm{S} \Rightarrow_{r}{ }^{*} \alpha \mathrm{Ax}$ $\Rightarrow_{r} \alpha \beta_{1} \beta_{2} \mathrm{x}$ then $\mathrm{L}=\operatorname{First}_{1}(\mathrm{x}), \mathrm{x} \varepsilon \mathrm{T}^{*}$.

In order to construct any $L R(1)$ parser it is necessary to construct a collection of sets of the above items. Each set of items represents a state in the action of the parser. Transitions between these states are determined by constructing a GoTo Function for the grammar and actions (shift or reduce) are determined by constructing
a Parsing Action Table for the grammar. These two tables will drive the shift-reduce parser.

The GoTo Function for a grammar G is the transition function of a deterministic finite state automaton that recognizes the viable prefixes of G. Since the GoTo Function is used to construct the collection of item sets of grammar G, the collection of item sets also recognizes the viable prefixes of G. The GoTo Function Table is indexed by the states in the parse and the vocabulary symbols of the grammar. Thus $\operatorname{GoTo}(\mathrm{i}, \mathrm{X})=\mathrm{j}$, where i, j are states and $\mathrm{X} \varepsilon \mathrm{N} \cup \mathrm{T}$. Thus, in state i with next symbol X GoTo state j .

The Parsing Action Table indicates if a shift or reduce action should be taken depending on the current state of the parse and the lookahead string. This table is indexed by the states and the terminal symbols. The possible actions indicated by the Parsing Action Table can be determined as follows.

Let $\mathrm{P}=$ Parsing Action Function, $\left\{\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}\right\}=$ collection of sets of items (the set of states), $\mathrm{A}, \mathrm{B} \varepsilon \mathrm{N}, \alpha, \beta \varepsilon \mathrm{V}^{*}$, and a,b $\varepsilon \mathrm{T}$. Then $\mathrm{P}\left(\mathrm{S}_{i}, \mathrm{a}\right)=$ action in state S_{i} with lookahead symbol a.

1) if the item $\mathrm{B} \rightarrow \alpha \bullet \mathrm{b} \beta, \mathrm{L} \varepsilon \mathrm{S}_{i}$ then $\mathrm{P}\left(\mathrm{S}_{i}, \mathrm{~b}\right)=$ shift $=(\mathrm{s})$.
2) if the item $\mathrm{B} \rightarrow \alpha \bullet, \mathrm{L} \varepsilon \mathrm{S}_{i}$ then for all $\mathrm{b} \varepsilon \mathrm{L}, \mathrm{P}\left(\mathrm{S}_{i}, \mathrm{~b}\right)=$ reduce $\mathrm{by} \mathrm{B} \rightarrow \alpha$, $=(\mathrm{r}, \mathrm{j})$ where j refers to production $\mathrm{B} \rightarrow \alpha$.
3) accept is the special case where if the augmented production $\mathrm{S}^{\prime} \rightarrow \mathrm{S} \bullet \#,\{\lambda\}$ εS_{i} then $\mathrm{P}\left(\mathrm{S}_{i}, \#\right)=$ shift and $\mathrm{P}\left(\mathrm{S}_{0}, \mathrm{~S}^{\prime}\right)=$ accept.
4) all other entries are error.

A configuration of an $\operatorname{LR}(1)$ parser is acturately described as follows, where S_{i} is a state, $\mathrm{X}_{j} \varepsilon \mathrm{~N} \cup \mathrm{~T}$, and $\mathrm{a}_{i} \varepsilon \mathrm{~T}$.

$$
S_{0} X_{1} S_{1} X_{2} S_{2} \ldots X_{m} S_{m}, a_{i} a_{i+1} \ldots a_{n} \#
$$

In the above, $S_{0} X_{1} \ldots S_{m} X_{m}$ are the contents of the parse stack, and $a_{i} \ldots a_{n} \#$ are the rest of the input string. It is ,of course, possible for $a_{i} \ldots a_{n}$ to be λ. The above represents the rightmost derivative $S \Rightarrow r^{*} X_{1} X_{2} X_{3} \ldots X_{m} a_{i} \ldots a_{n} \#$. The dot position \bullet is between X_{m} and a_{i}. At each step of the parse, the parser examines the next input symbol and decides if it should shift the next symbol or if it should reduce by a particular production(i.e. a handle has been recognized).

The relation \vdash is defined as a move from one configuration to another configuration. The relation \vdash can consist of either a shift a $\varepsilon \mathrm{T}$ (a read) or a reduce by $\mathrm{A} \rightarrow \alpha$.

If the parser shifts a symbol, it then examines the GoTo Function to determine what state to go to next. This next state is then shifted onto the stack. If the parser action is to reduce by production $\mathrm{A} \rightarrow \alpha$ the parser pops $2 \times|\alpha|$ symbols off the stack if a state and a vocabularly symbol were originally pushed onto the stack. It then examines the GoTo Function for the state at the top of the stack and the nonterminal A. The nonterminal A is now shifted onto the stack, followed by the next state indicated by the GoTo Function.

It is important to note here that the $L R(1)$ parser does not need the vocabularly symbol X_{i} on the stack. The state symbol and the next lookahead is all that is needed to describe all parsing actions. So the LALR(1) parser program which I have written only pushes states on the stack.

It is also important to note that the GoTo Function and the Parsing Action Table can be more efficiently compacted into one table indexed by the states and the vocabularly symbols. Thus if a $\varepsilon \mathrm{T}$ indicates a shift, the parser shifts a and goes to state j indicated by the GoTo Function. The appropriate entry in the table becomes (s, j). After a reduction $\mathrm{A} \rightarrow \alpha$ the parser shifts on the nonterminal A created by the
reduction and goes to the state indicated by the GoTo Function. The reduction is recorded in the table by (r, k) where k indicates the production $\mathrm{A} \rightarrow \alpha$. The appropriate shift action for A is recorded as (s, j), as above. Thus a reduction requires two actions. First in state 1 with α on the top of the stack, reduce by k , popping $|\alpha|$ symbols off the stack. Second, having popped back to state i, shift A and GoTo j (i.e. (s, j)).

The combined table will be called the Parse Table, or PAT.
If a grammar is $\operatorname{LR}(0), \operatorname{LR}(1)$, or $\operatorname{LALR}(1)$ there will be only one possible action in each state of the parse. An inconsistent state will have a conflict. The possible conflicts are a shift-reduce conflict or a reduce-reduce conflict. The former arises when a lookahead symbol indicates a possible shift action and a reduce action. The latter arises when a lookahead symbol indicates two or more possible reduce actions. A grammar is $\operatorname{LR}(0)$ if there are no inconsistent states when no lookaheads are examined. A grammar is $\operatorname{LR}(1)$ or $\operatorname{LALR}(1)$ when there are no inconsistent states when one lookahead is examined.

2.2 CONSTRUCTION OF THE COLLECTION OF SETS OF ITEMS

In order to construct the collection of item sets, it is necessary to start with the augmented production $S^{\prime} \rightarrow \bullet S \#,\{\lambda\}$. Intuitively this means that at the beginning of the parse we are looking for all symbols that are derived from the start symbol S followed by the end of string \#. The augmented symbol S^{\prime} can only be followed by λ. Also, by including the augmented production $S^{\prime} \rightarrow \bullet S \#$, we have made $\mathrm{S} \#$ a viable prefix of the grammar.

Using the grammar G1 listed earlier, we start with $\mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E} \#,\{\lambda\}$. In this item, since E is a nonterminal it can be expanded to predict more productions and more configurations. This is done by the closure operation. Every nonterminal that follows a
dot is expanded by predicting its production plus any terminal symbols that can follow the production at this stage of the parse. Thus from $\mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E} \#,\{\lambda\}$ we would predict

$$
\begin{aligned}
& \mathrm{E} \rightarrow \bullet \mathrm{~T},\{\#\} \\
& \mathrm{E} \rightarrow \bullet \mathrm{E} \mathrm{~A} T,\{\#\}
\end{aligned}
$$

Now since T follows a dot, we further predict
$\mathrm{T} \rightarrow \bullet \mathrm{F},\{\#\}$
$\mathrm{T} \rightarrow \bullet \mathrm{T} \mathrm{MF},\{\#\}$
Further predict F by
$F \rightarrow \bullet(E),\{\#\}$
$\mathrm{F} \rightarrow \bullet \mathrm{id},\{\#\}$
$\mathrm{F} \rightarrow \bullet$ intliteral, $\{\#\}$
The second E from $E \rightarrow \bullet E A T,\{\#\}$ must be further expanded by

$$
\begin{aligned}
& \mathrm{E} \rightarrow \bullet \mathrm{~T},\{+-\} \\
& \mathrm{E} \rightarrow \bullet \mathrm{EAT},\{+-\}
\end{aligned}
$$

This T and the second T from $\mathrm{T} \rightarrow \bullet \mathrm{T} M \mathrm{~F},\{\#\}$ must be further expanded to predict

$$
\begin{aligned}
& \mathrm{T} \rightarrow \bullet \mathrm{~T} \mathrm{M} \mathrm{~F},\{+-* /\} \\
& \mathrm{T} \rightarrow \bullet \mathrm{~F},\{+-* /\}
\end{aligned}
$$

This new F must also be expanded to
$\mathrm{F} \rightarrow \bullet(\mathrm{E}),\{+-* /\}$
$\mathrm{F} \rightarrow \bullet \mathrm{id},\{+-* /\}$
$\mathrm{F} \rightarrow \bullet$ intliteral, $\{+-* /\}$

There are no more predictions that will create any new follow symbols, so the above can be condensed to

STATE 0

$\mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E} \#,\{\lambda\}$
$\mathrm{E} \rightarrow \bullet \mathrm{T},\{+-\#\}$
$\mathrm{E} \rightarrow \bullet \mathrm{EAT},\{+-\#\}$
$\mathrm{T} \rightarrow \bullet \mathrm{F},\{+-* / \#\}$
$\mathrm{T} \rightarrow \bullet \mathrm{TM} \mathrm{M},\{+-* / \#\}$
$\mathrm{F} \rightarrow \bullet(\mathrm{E}),\{+-* / \#\}$
$\mathrm{F} \rightarrow \bullet$ id,$\{+-* / \#\}$
$\mathrm{F} \rightarrow \bullet$ intliteral,$\{+-* / \#\}$

Basically the two steps performed here were

1. In $S_{0}=$ State 0 add the augmenting production $S^{\prime} \rightarrow \bullet S \#,\{\lambda\}$.
2. If $\mathrm{A} \rightarrow \bullet \mathrm{B} \alpha, \mathrm{L} \varepsilon \mathrm{S}_{0}$ and $\mathrm{B} \rightarrow \beta$ is a production in G then add $\mathrm{B} \rightarrow \bullet \beta,\{\mathrm{x}\}$ to S_{0} for all $\mathrm{x} \varepsilon$ First $_{1}(\alpha \mathrm{~L})$. Note that α can equal λ here. Repeat step 2 until no new items are added to S_{0}. As above, take the union of all the follow sets to form the final prediction. This is the closure of $S^{\prime} \rightarrow \bullet S \#,\{\lambda\}$.

To form the next set of items, form the GoTo Function from State S_{0}. Consider each vocabularly symbol after the - and go past this symbol to the next state in the parse. Intuitively this means the parse has consumed this symbol and the symbol is on the parse stack. Form the closure in each state. Six states will be formed by doing this. They are

All states are formed by continuing in this way until no new item sets are created. The basic rules used to form the GoTo Sets are

1. If $\mathrm{A} \rightarrow \alpha \bullet \mathrm{X} \beta, \mathrm{L} \varepsilon \mathrm{S}_{i}$ then add $\mathrm{A} \rightarrow \alpha \mathrm{X} \bullet \beta$, L to $\operatorname{GoTo}(\mathrm{i}, \mathrm{X})=\mathrm{S}_{j}$ where X
$\varepsilon N \cup T$
2. Take the closure of state S_{j}. If $\mathrm{A} \rightarrow \alpha \bullet \mathrm{B} \beta, \mathrm{L} \varepsilon \mathrm{S}_{j}$ and $\mathrm{B} \rightarrow \gamma$ is a production in P , add $\mathrm{B} \rightarrow \bullet \gamma,\{\mathrm{x}\}$ to S_{j} for all $\mathrm{x} \varepsilon \operatorname{First}_{1}(\beta \mathrm{~L})$. As before β can
be λ. Repeat until no new items are created.
The above operations are continued until no new states are formed.
A kernel item is defined to be the initial item $\mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E} \#,\{\lambda\}$ and all other items whose dots are not at the left end of the right hand side of the production (these are actually all items formed by moving the dot over and moving to the next state by $\operatorname{GoTo}\left(\mathrm{S}_{i}, \mathrm{X}\right)$). Thus, all nonkernel items have dots at the left end of the right hand side of the production and are actually formed by performing the closure operation.

It is instructive to note that every state is determined by its kernel items. States with identical kernel items will always remain the same after the closure operation is performed. Thus, space could be saved by only storing the kernel items and by performing the closure operation whenever necessary. I did not do this in the computer program since the LALR(1) collection of sets is considerably smaller then the $L R(1)$ collection of sets. It would be extremely time consuming to continually create the closure items.

An efficient way of representing an item is by the trio (i, j, L) where $i=a$ production number, $\mathrm{j}=$ the position of the dot and $0 \leq \mathrm{j} \leq$ length of production i , and $L=$ set of follow symbols. The $L R(0)$ collection of sets would have no follow sets with the items. It is called the $\operatorname{LR}(0)$ finite state machine.

2.3 DEFINITION OF LALR(1)

As the $L R(1)$ sets are formed, it becomes very apparent that several states will be the same in the productions and the dot positions, but differ in the follow symbols. For example, in the above expression grammar, the construction of the GoTo Sets would create, among others, the following two states.

STATE $3=\operatorname{GOTO}(0, F)$
$\mathrm{T} \rightarrow \mathrm{F} \bullet,\{+-* / \#\}$
$\operatorname{GOTO}(4, F)$
$\mathrm{T} \rightarrow \mathrm{F} \bullet,\{+-* /)\}$

It is very evident that these two states differ only in their follow sets.
Similarly, the $\operatorname{LR}(1)$ machine will contain the following two states.
Continuing from State 4 from the kernel item $\mathrm{F} \rightarrow(\bullet \mathrm{E}),\{+-* / \#\}$ we will create a state with the following item $\mathrm{F} \rightarrow(\mathrm{E}) \bullet,\{+-* / \#\}$

Continuing from State 4 from the closure item $\mathrm{F} \rightarrow$ • (E$),\{+-* /)\}$ we will create a state with the following item $\mathrm{F} \rightarrow(\mathrm{E}) \bullet,\{+-* /)\}$

If all states such as the above are combined by taking the union of the follow sets in items in which the dot position and the production numbers are identical the four states above are reduced to two. They are

State I
$\mathrm{T} \rightarrow \mathrm{F} \bullet,\{+-* /) \#\}$
State J
$\mathrm{F} \rightarrow(\mathrm{E}) \bullet,\{+-* /) \#\}$

The grammar created in this way is called an LALR(1) grammar if there are no inconsistent states when one lookahead is examined. This means there can be no shiftreduce or reduce-reduce conflicts after all the appropriate states have been merged. Either the entire LR(1) machine can be formed and the appropriate states merged or the states can be merged as the $\operatorname{LR}(1)$ machine is constructed.

The $\operatorname{LALR}(1)$ machine formed in this way is identical to the $\operatorname{LR}(0)$ finite state machine with the appropriate follow sets attached to each item. That is, there are exactly the same number of states and exactly the same items in each state. The parsing actions are determined exactly the same as for the $\operatorname{LR}(1)$ machine.

This suggests that it would be much more efficient to construct the $\operatorname{LR}(0)$ machine and compute the lookaheads needed in inconsistent states since the LR(0) machine will generally have considerably fewer states then the $\operatorname{LR}(1)$ machine. Thus,
considerable time and space is saved by approaching the problem in this way. This is exactly the approach taken by DeReemer and Pennello.

The expression grammar $G 1$ is not only $\operatorname{LALR}(1)$, it is also $\operatorname{SLR}(1)$. A grammar is $\operatorname{SLR}(1)$ if there are no conflicts when the follow sets of the nonterminal symbols in the grammar can be used for the lookahead sets. The $\operatorname{LR}(0)$ machine is constructed and all indicated reductions $\mathrm{A} \rightarrow \alpha \bullet$ must be legal for a ε Follow(A), where a is the next lookahead symbol. If a grammar is $\operatorname{SLR}(1)$, no lookaheads need to be computed as the follow sets of each nonterminal become the second part of the item, i.e. reduce by $\mathrm{A} \rightarrow \alpha \bullet,\left\{\mathrm{a}_{1} \ldots \mathrm{a}_{n}\right\}$ where $\mathrm{a}_{i} \varepsilon \operatorname{Follow}(\mathrm{~A})$. A shift action is exactly the same as for $\operatorname{LR}(1)$ or $\operatorname{LALR}(1)$.

The following two grammars will be used to illustrate DeReemer's and Pennello's method for computing lookaheads. The first, G2, is LALR(1) but not SLR(1). The second, G3, is not $L A L R(1)$. Their respective $L R(0)$ finite state machines are included below, plus the finite state machine for $G 1$. In all three cases the augmented production has been added.

```
\(\mathrm{G} 2=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) where
\(\mathrm{N}=\{\mathrm{G}, \mathrm{E}, \mathrm{T}\}, \mathrm{T}=\{=, \mathrm{a},+, *\}, \mathrm{S}=\mathrm{G}\),
\(G^{\prime}=\) augmented production symbol, \(\#=\) end of string symbol
\(\mathrm{P}=\)
    \(\mathrm{G}^{\prime} \rightarrow \mathrm{G} \#\)
    \(\mathrm{G} \rightarrow \mathrm{E}=\mathrm{E}\)
    \(\mathrm{G} \rightarrow \mathrm{a}\)
    \(\mathrm{E} \rightarrow \mathrm{T}\)
    \(E \rightarrow E+T\)
    \(T \rightarrow \mathbf{a}\)
    \(\mathrm{T} \rightarrow \mathrm{T} * \mathrm{a}\)
\(\mathrm{G} 3=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})\) where
\(\mathrm{N}=\{\mathrm{Y}, \mathrm{Z}\}, \mathrm{T}=\{\mathrm{c}, \mathrm{b}\}, \mathrm{S}=\mathrm{Y}\),
\(\mathrm{Y}^{\prime}=\) augmented production symbol, \(\#=\) end of string symbol
\(\mathrm{P}=\)
    \(\mathrm{Y}^{\prime} \rightarrow \mathrm{Y} \#\)
    \(\mathrm{Y} \rightarrow \mathrm{c} \mathrm{c} Z \mathrm{~b}\)
    \(Z \rightarrow \lambda\)
    \(Z \rightarrow c \mathrm{Z}\)
    \(\mathrm{Z} \rightarrow \mathrm{c} \mathrm{Z}\) b
```

STATE 0

$$
\begin{aligned}
& \mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E} \# \\
& \mathrm{E} \rightarrow \bullet \mathrm{~T} \\
& \mathrm{E} \rightarrow \bullet \mathrm{E} \mathrm{~A} \mathrm{~T} \\
& \mathrm{~T} \rightarrow \bullet \mathrm{~F} \\
& \mathrm{~T} \rightarrow \bullet \mathrm{~T} \text { M F } \\
& \mathrm{F} \rightarrow \bullet \text { (E) } \\
& \mathrm{F} \rightarrow \bullet \text { id } \\
& \mathrm{F} \rightarrow \text { intliteral }
\end{aligned}
$$

STATE 1
$\mathrm{E}^{\prime} \rightarrow \mathrm{E} \cdot \#$
$\mathrm{E} \rightarrow \mathrm{E} \bullet \mathrm{A} T$
$\mathrm{A} \rightarrow \bullet+$
$\mathrm{A} \rightarrow \bullet-$
STATE 2
$\mathrm{E} \rightarrow \mathrm{T}$ •
$\mathrm{T} \rightarrow \mathrm{T} \bullet \mathrm{M} F$
$\mathrm{M} \rightarrow \bullet$ *
M \rightarrow • /
STATE 3
$\mathrm{T} \rightarrow \mathrm{F} \bullet$
STATE 4
$F \rightarrow(\bullet E)$
$\mathrm{E} \rightarrow$ •T
$\mathrm{E} \rightarrow$ - EAT
$T \rightarrow \bullet F$
$\mathrm{T} \rightarrow \bullet \mathrm{TMF}$
$F \rightarrow \bullet(E)$
$\mathrm{F} \rightarrow \bullet$ id
F \rightarrow • intliteral
STATE 5
$\mathrm{F} \rightarrow \mathrm{id}$ 。

STATE 6

F \rightarrow intliteral •

STATE 7
$\mathrm{E} \rightarrow \mathrm{EA} \bullet \mathrm{T}$
$\mathrm{T} \rightarrow$ • F
$\mathrm{T} \rightarrow$ • T M F
$\mathrm{F} \rightarrow$ • (E)
$\mathrm{F} \rightarrow \bullet$ id
$\mathrm{F} \rightarrow \bullet$ intliteral

STATE 8

$\mathrm{A} \rightarrow+\bullet$
STATE 9
$\mathrm{A} \rightarrow-\bullet$

STATE 10
$\mathrm{E}^{\prime} \rightarrow \mathrm{E} \# \bullet$

STATE 11

$\mathrm{T} \rightarrow \mathrm{TM} \bullet \mathrm{F}$
$F \rightarrow \bullet(E)$
$F \rightarrow \bullet$ id
$\mathrm{F} \rightarrow \bullet$ intliteral
STATE 12
M \rightarrow •
STATE 13
$\mathrm{M} \rightarrow$ / \bullet
STATE 14

$$
\begin{aligned}
& \mathrm{F} \rightarrow(\mathrm{E} \bullet) \\
& \mathrm{E} \rightarrow \mathrm{E} \bullet \mathrm{~A} T \\
& \mathrm{~A} \rightarrow \bullet+ \\
& \mathrm{A} \rightarrow \bullet-
\end{aligned}
$$

STATE 15

$\mathrm{E} \rightarrow \mathrm{EAT}$ -
$\mathrm{T} \rightarrow \mathrm{T} \bullet \mathrm{MF}$
$\mathrm{M} \rightarrow$ • *
$\mathrm{M} \rightarrow \bullet$ /

STATE 16
$\mathrm{T} \rightarrow \mathrm{T}$ M F •
STATE 17
$\mathrm{F} \rightarrow(\mathrm{E}) \bullet$

STATE 0
STATE 7

$\mathrm{G}^{\prime} \rightarrow \bullet \mathrm{G} \#$

$\mathrm{G} \rightarrow \bullet \mathrm{E}=\mathrm{E}$
$\mathrm{G} \rightarrow$ • a
$\mathrm{E} \rightarrow$ • T
$\mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}$
$\mathrm{T} \rightarrow \bullet \mathbf{a}$
$\mathrm{T} \rightarrow \bullet \mathrm{T} * \mathrm{a}$
STATE 1
$\mathrm{G}^{\prime} \rightarrow \mathrm{G} \bullet \#$

STATE 2

$\mathrm{G} \rightarrow \mathrm{E} \bullet=\mathrm{E}$
 $\mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}$

STATE 3
$\mathrm{E} \rightarrow \mathrm{T}$ •
$\mathrm{E} \rightarrow \mathrm{T} \bullet * \mathrm{a}$

STATE 4

$\mathrm{G} \rightarrow \mathrm{a}$ -
$\mathrm{T} \rightarrow \mathrm{a} \bullet$
STATE 5
$\mathrm{G}^{\prime} \rightarrow \mathrm{G} \# \bullet$
STATE 6
$\mathrm{G} \rightarrow \mathrm{E}=\bullet \mathrm{E}$
$\mathrm{E} \rightarrow$ •T
$\mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}$
$\mathrm{T} \rightarrow$ • a
$\mathrm{T} \rightarrow$ • $\mathrm{T} * \mathrm{a}$
$\mathrm{E} \rightarrow \mathrm{E}+\bullet \mathrm{T}$
$\mathrm{T} \rightarrow$ • a
$\mathrm{T} \rightarrow$ • $\mathrm{T} * \mathrm{a}$
STATE 8
$\mathrm{T} \rightarrow \mathrm{T} * \bullet \mathrm{a}$
STATE 9
$\mathrm{G} \rightarrow \mathrm{E}=\mathrm{E}$ -
$\mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}$
STATE 10
$\mathrm{T} \rightarrow \mathrm{a}$ 。

STATE 11

$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$ •
$\mathrm{T} \rightarrow \mathrm{T} \bullet * \mathrm{a}$
STATE 12
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{a} \bullet$

STATE 0

$$
\begin{aligned}
& \mathrm{Y}^{\prime} \rightarrow \bullet \mathrm{Y} \# \\
& \mathrm{Y} \rightarrow \bullet \mathrm{cc} \mathrm{Z} \mathrm{~b}
\end{aligned}
$$

STATE 1
$\mathrm{Y}^{\prime} \rightarrow \mathrm{Y} \bullet \#$
STATE 2
$\mathrm{Y} \rightarrow \mathrm{c} \bullet \mathrm{c} \mathrm{Z}$ b
STATE 3
$\mathrm{Y}^{\prime} \rightarrow \mathrm{Y} \# \bullet$

STATE 4
$\mathrm{Y} \rightarrow \mathrm{c} \cdot \bullet \mathrm{Z}$ b
Z \rightarrow
$Z \rightarrow \bullet$ Z
$\mathrm{Z} \rightarrow \bullet \mathrm{c} \mathrm{Z}$ b
STATE 5
$\mathrm{Y} \rightarrow \mathrm{cc} \mathrm{Z} \bullet \mathrm{b}$

STATE 6

$$
\begin{aligned}
& Z \rightarrow c \bullet Z \\
& Z \rightarrow c \bullet Z b \\
& Z \rightarrow \bullet \\
& Z \rightarrow \bullet c \\
& Z \rightarrow \bullet \mathrm{Z}
\end{aligned}
$$

STATE 7

$\mathrm{Y} \rightarrow \mathrm{cc} \mathrm{Z}$ b -
STATE 8

$$
\begin{aligned}
& \mathrm{Z} \rightarrow \mathrm{c} \mathrm{Z} \bullet \\
& \mathrm{Z} \rightarrow \mathrm{c} \mathrm{Z} \bullet \mathrm{~b}
\end{aligned}
$$

STATE 9

$\mathrm{Z} \rightarrow \mathrm{c} \mathrm{Z}$ b \bullet

CIIAPTER 3

COMPUTATION OF LALR(1) LOOKAIIEAD SETS

3.1 BACKGROUND

The method outlined in this section to compute the lookahead sets necessary to determine if a grammar is $L \Lambda L R(1)$ and incorporated into the accompaning computer program is due to DeReemer and Pennello. ${ }^{1}$

Recall that each inconsistent state in the $\operatorname{LR}(0)$ Finite State Machine requires lookahead information to resolve the shift-reduce or reduce-reduce conflict. The definition of the lookahead set in an inconsistent state q for the reduction involving the application of the production $A \rightarrow \omega$ is

$$
\operatorname{LA}(\mathrm{q}, \Lambda \rightarrow \omega)=\left\{\mathrm{a} \varepsilon \mathrm{~T} \mid \mathrm{S} \Rightarrow_{r}^{+} \gamma \text { Aaw and } \gamma \omega \text { accesses } \mathrm{q}\right\}
$$

Thus, the parse has preceded to state $q, \gamma \omega$ is on the stack, and LA are all possible terminal symbols which can follow $\gamma \mathrm{A}$ in a rightmost sentential form. The item $A \rightarrow \omega$ • will belong to state q. $\gamma \omega$ will be the viable prefix that state q recognizes.

Note in the above that A is a nonterminal in the grammar G. Thus there must be a transition $\operatorname{Go} \operatorname{To}(\mathrm{p}, \Lambda)=\mathrm{q}^{\prime}$ in the Finite State Machine (FSM) and also the Go To Table for G. This is the nonterminal transition (p, A) in the FSM. It occurs after a reduction such as $A \rightarrow \omega$. The next step in the parse must be to shift an A. The question becomes: What terminal symbols can follow the nonterminal transition (p, A)?

DeReemer and Pennello have decomposed the computation of the above LA into the following four components.

1) Compute Direct Read sets for nonterminal transitions by inspecting the LR(0) machine.

[^0]2) Compute Read sets from the Direct Read sets and the READS relation. The READS relation is computed by inspecting the $L R(0)$ machine for possible nullable nonterminal transitions.
3) Compute the Follow sets of nonterminal transitions from the Read sets.
4) Compute the LA from the Follow sets of nonterminal transitions.

It is important to notice at this point that a single reduce state such as State 5 , State 10, and State 12 in the FSM for G2 does not qualify as an inconsistent state. There is no shift-reduce or reduce-reduce conflict. Thus no lookaheads should have to be computed for these reductions. In fact, it is unnecessary to calculate the lookaheads and the states themselves will actually be eliminated from the Parse Table. This is explained in Chapter 4.

The concept of lookahead can be further expanded to mean the following.
Let the symbol $[\gamma \omega]$ represent the path (sequence of states) taken to consume $\gamma \omega$, i.e. starting in state S_{0} the path $S_{0} S_{1} \ldots S_{m}$ is the series of state transitions to consume $\gamma \omega$. Hence there is a path starting at S_{0} and ending ar $S_{m}=q$ with $\gamma \omega$ on the stack, or $\gamma \omega$ accesses q. Note that $\gamma \omega$ on the stack is equivalent to to the series of states $S_{0} \ldots q$ being on the stack. Thus a definition for LA where [] = start state S_{0}, x $=$ input string, $\mathrm{z} \varepsilon \mathrm{T}^{*}, \gamma \omega \varepsilon \mathrm{~V}^{*}, \mathrm{~A} \varepsilon \mathrm{~N}$ is

$$
\operatorname{LA}(\mathrm{q}, \mathrm{~A} \rightarrow \omega)=\left\{\mathrm{a} \varepsilon \mathrm{~T} \mid[] \mathrm{x} \vdash^{+}[\gamma \omega] \mathrm{az} \vdash_{\text {reduce }}[\gamma \mathrm{A}] \mathrm{az} \vdash^{+}[\mathrm{S} \#] \lambda\right\}
$$

The definition for lookahead given above is identical to the definition given earlier. The earlier definition relates $L A$ to the rightmost derivative while the latter definition relates LA to the inverse of the rightmost derivative, i.e. a transformation from one configuration to the next in the parse of a sentence beginning in state S_{0} with the sentence as input and ending with $S \#$ on the stack and no more input. The final step is to reduce by $S^{\prime} \rightarrow S \#$, dropping back to state S_{0} with S^{\prime} the next symbol. This is
acceptance.
Thus the $\operatorname{LALR}(1)$ parser is identical to the $\operatorname{LR}(0)$ parser with the concept of reduce in an inconsistent state q . The concept of reduce in state q by production $\mathrm{A} \rightarrow \omega$ $\varepsilon \mathrm{P}$ with lookahead $\mathrm{a} \varepsilon \mathrm{T}$ can be formulated as
$\operatorname{Reduce}(\mathrm{q}, \mathrm{a})=\{\mathrm{A} \rightarrow \omega \mid \mathrm{a} \varepsilon \operatorname{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)\}$
Relating this reduce (q, a) to the combined Parse Table (PAT) entry yields
$\operatorname{PAT}(\mathrm{q}, \mathrm{a})=(\mathrm{r}, \mathrm{A} \rightarrow \omega)$ where a $\varepsilon \operatorname{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)$
Thus, inorder to determine when to reduce (q, a), it is necessary to determine how to compute $\mathrm{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)$.

3.2 COMPUTATION OF LA

The calculation of LA is directly related to the concept of follow sets of nonterminal transitions. These are defined to be the $\operatorname{Follow}(\mathrm{p}, \mathrm{A})$ where (p, A) is a nonterminal transition in the FSM. The definition of $\operatorname{Follow}(\mathrm{p}, \mathrm{A})$ is

Follow $(\mathrm{p}, \mathrm{A})=\left\{\mathrm{a} \varepsilon \mathrm{T} \mid[\gamma \mathrm{A}] \mathrm{az} \vdash^{*}[\mathrm{~S} \#]\right.$ and γ accesses p$\}$
Thus ' a ' are all the terminal symbols which can follow A in a righmost sentential form with prefix γ. Thus in state p there exists an item of the form $\mathrm{B} \rightarrow \gamma \bullet \mathrm{Ax}$ and $\mathrm{a}=$ First $_{1}(\mathrm{x})$. Stated in terms of the derivative

Follow $(\mathrm{p}, \mathrm{A})=\left\{\mathrm{a} \varepsilon \mathrm{T} \mid \mathrm{S} \Rightarrow^{+} \gamma \mathrm{Aaz}\right\}$
The LA set will be constructed from the union of these follow sets, or
$\operatorname{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)=\bigcup\{\operatorname{Follow}(\mathrm{p}, \mathrm{A}) \mid(\mathrm{p}, \mathrm{A})$ is a transition and $\mathrm{p} \rightarrow \ldots \underset{\mathrm{H}}{\mathrm{m}} \mathrm{q}\}$
The symbol $\mathrm{p}-\ldots \underset{\mathrm{C}}{\boldsymbol{\omega}} \mathrm{q}$ means there exists a series of single state transitions from $p \rightarrow r_{0} \rightarrow r_{1} \rightarrow \cdots \rightarrow q$ which consumes ω. In state q there exists an item of the form $A \rightarrow \omega$ - . The reason for the union is that state q can possibly be reached from various states to consume ω. Referring to Figure $3.1,{ }^{2}$ in state q after the reduction $A \rightarrow \omega$ the
parse pops back $|\omega|$ to the appropriate p_{i} and after reading A must be followed by the corresponding \mathbf{a}_{i}.

Figure 3.1 Lookahead Set In Terms Of Follow Sets
Thus, $\operatorname{LA}(q, A \rightarrow \omega)=\left\{a_{1}, a_{2} \cdots a_{n}\right\}$
The nonterminal transitions ($\left.p_{i}, A\right)$ needed for each $L A(q, A \rightarrow \omega)$ can be determined by defining the lookback relation. Thus
$(q, A \rightarrow \omega)$ lookback (p, A) iff $p-\cdots \xrightarrow{\mu} \rightarrow$.
In the above example the lookback for $(q, A \rightarrow \omega)$ contains the following ordered pairs $\left(p_{1}, A\right),\left(p_{2}, A\right), \cdots\left(p_{n}, A\right)$. Thus, each $(q, A \rightarrow \omega)$ must keep a record of all the nonterminal transitions in its lookback relation. In the computer program this is kept as a linked list.

Thus, if in inconsistent state q in Grammar G1, for example, there exists the item $E \rightarrow E A T \bullet$, we must create $(q, E \rightarrow E A T)$. The $\left(p_{i}, E\right)$ are found by traversing the GoTo Table from state q back thru the states spelling out (backwards) TAE. This involves a recursive tree traversal since from state q, the string T A E may go back to many p_{i} 's. There must exist a $\left(p_{i}, E\right)$ when p_{i} is reached resulting from the

[^1]item $E^{\prime} \rightarrow \bullet E \#, F \rightarrow(\bullet E)$, or $E \rightarrow \bullet E A T$ (which must exist in state p_{i}). Essentially, there must exist an item with an E after the e. The list of ordered pairs is created in this manner.

Applying the above definition for lookback to $\operatorname{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)$ produces
$\operatorname{LA}(q, A \rightarrow \omega)=\bigcup\{\operatorname{Follow}(p, A) \mid(q, A \rightarrow \omega)$ lookback $(p, A)\}$
The follow sets must now be determined.

3.3 INTERRELATION OF FOLLOW SETS

The follow sets of nonterminal transitions can be related via a new relation called includes. If $\mathrm{B} \rightarrow \beta \mathrm{A} \gamma, \gamma \Rightarrow * \lambda$, and $\mathrm{p}^{\prime}-\cdots \stackrel{\beta}{\cdots} \rightarrow \mathrm{p}$ then

Follow $\left(\mathrm{p}^{\prime}, \mathrm{B}\right) \subseteq \operatorname{Follow}(\mathrm{p}, \mathrm{A})$.
Thus those symbols which can follow B in state p^{\prime} can also follow A in state p. The diagram in Figure 3.2^{3} illustrates this relationship.

Figure 3.2 Interrelationships Among Follow Sets
In state p there must exist an item $\mathrm{B} \rightarrow \beta \bullet \mathrm{A} \gamma$ where $\gamma \Rightarrow^{*} \lambda$, or (p, A) includes $\left(\mathrm{p}^{\prime}, \mathrm{B}\right)$ iff $\mathrm{B} \rightarrow \beta \mathrm{A} \gamma, \gamma \Rightarrow * \lambda$, and $\mathrm{p}^{\prime}-\cdots \stackrel{\beta}{\beta} \rightarrow \mathrm{p}$.

[^2]This means that
Follow $\left(\mathrm{p}^{\prime}, \mathrm{B}\right) \subseteq \operatorname{Follow}(\mathrm{p}, \mathrm{A})$ if (p, A) includes $\left(\mathrm{p}^{\prime}, B\right)$.
The includes relation is determined in the following manner.
For each set of nonterminal transitions (i,A) in the FSM, where $i=s t a t e, A \varepsilon N$
a) Examine state i in the collection of item sets.
b) In state i there must exist an item of the form $\mathrm{B} \rightarrow \beta \bullet \mathrm{A} \gamma$ (or (i, A) would not exist). If γ is the empty string or $\gamma \Rightarrow^{*} \lambda$, add (i, A) includes (j, B) where j is determined exactly as in lookback by backtracking recursively in the GoTo Table $|\beta|$ states to get j and thus (j,B). Note that β can be the empty string.
c) To (i,A) add (j, B) by a linked list of include pairs.

Note that in state i there could be more than one item of the form $\mathrm{B} \rightarrow \beta \bullet \mathrm{A} \gamma$. Thus, there could be other items $\mathrm{C} \rightarrow \alpha \bullet \mathrm{A} \omega$. All must be examined for the includes relation.

It is very evident that after a nonterminal transition (p, A), all the terminal symbols which can be read in the next state must belong to the Follow(p,A). This leads to another definition the $\operatorname{Read}(p, A)$ where $\operatorname{Read}(p, A) \subseteq \operatorname{Follow}(p, A)$.

3.4 DETERMINING READ (p, A)

The $\operatorname{Read}(p, A)$ is defined as the set of nonterminals which can be read before any phrases containing A are reduced. If there are no empty productions following the nonterminal transition (p, A), the $\operatorname{Read}(p, A)$ becomes the $\operatorname{DR}(p, A)$ where $D R$ are the direct read symbols and are simply

$$
\operatorname{DR}(\mathrm{p}, \mathrm{~A})=\{\mathrm{a} \varepsilon \mathrm{~T} \mid \mathrm{p} \xrightarrow{\mathrm{~A}} \mathrm{q} \xrightarrow{\mathrm{a}}\}
$$

The DR can be obtained very simply by inspecting the GoTo Table of the FSM and recording what terminal symbols can follow in state q where $\operatorname{GoTo}(p, A)=q$. In
state q the possible terminal symbols are obtained directly from the GoTo Table. These come from the items in state q of the form $B \rightarrow \gamma A \bullet a z$. Thus in state q the entry for $\operatorname{PAT}(\mathrm{q}, \mathrm{a})=(\mathrm{s}, \mathrm{i})=$ shift and GoTo state i .
$\operatorname{Read}(\mathrm{p}, \mathrm{A})$ becomes much more complicated if there exists in state q some nullable nonterminal transitions such as (q, C) where $\mathrm{C} \Rightarrow{ }^{*} \lambda$, or, perhaps, a series of possible transitions through several states consuming $\gamma \rightarrow \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ and $\gamma \Rightarrow{ }^{*} \lambda$. Diagrammatically this means

$$
\mathrm{p} \xrightarrow{\mathrm{~A}} \mathrm{q}_{1}-\cdots \xrightarrow{\gamma} \mathrm{q}_{m} \xrightarrow{\mathrm{a}} \text { and } \gamma \Rightarrow{ }^{*} \lambda
$$

This means that the $\operatorname{Read}(\mathrm{p}, \mathrm{A})$ must be further defined to include a relation called the reads relation where

$$
(\mathrm{p}, \mathrm{~A}) \text { reads }(\mathrm{t}, \mathrm{C}) \text { iff } \mathrm{p} \xrightarrow{\mathrm{~A}} \mathrm{t} \xrightarrow{\mathrm{C}} \text { and } \mathrm{C} \Rightarrow{ }^{*} \lambda .
$$

The reads relation computes those symbols which can be indirectly read after (p, A). Now $\operatorname{Read}(\mathrm{p}, \mathrm{A})$ must be computed by

$$
\operatorname{Read}(\mathrm{p}, \mathrm{~A})=\operatorname{DR}(\mathrm{p}, \mathrm{~A}) \cup \bigcup\{\operatorname{Read}(\mathrm{t}, \mathrm{C}) \mid(\mathrm{p}, \mathrm{~A}) \operatorname{reads}(\mathrm{t}, \mathrm{C})\}
$$

Consider Figure 3.3 below. ${ }^{4}$ Since
(p, A) reads $\left(\mathrm{q}_{0}, \mathrm{~B}_{1}\right)$, i.e. $\mathrm{B}_{1} \Rightarrow{ }^{*} \lambda$
$\left(q_{0}, B_{1}\right)$ reads $\left(q_{1}, B_{2}\right)$, i.e. $B_{2} \Rightarrow^{*} \lambda$
......
$\left(\mathrm{q}_{\mathrm{m}-2}, \mathrm{~B}_{\mathrm{m}-1}\right)$ reads $\left(\mathrm{q}_{\mathrm{m}-1}, \mathrm{~B}_{\mathrm{m}}\right)$, i.e. $\mathrm{B}_{\mathrm{m}} \Rightarrow{ }^{*} \lambda$
Thus a $\varepsilon \operatorname{Read}(\mathrm{p}, \mathrm{A})$ since $\operatorname{DR}\left(\mathrm{q}_{\mathrm{m}-1}, \mathrm{~B}_{\mathrm{m}}\right) \subseteq \operatorname{Read}(\mathrm{p}, \mathrm{A})$.
DeReemer and Pennello have written a very efficient algorithm called Digraph which traverses a graph inorder to calculate the $\operatorname{Read}(p, A)$ from the $D R$ and the reads relation. This is included below.
${ }^{4}$ Jean-Paul Trembley, Paul G. Sorenson, The Theory and Practice of Compiler Writing,(1985), p. 380.

Figure 3.3 The READS relation
Thus the final formula to compute the Follow (p, A) is
Follow $(\mathrm{p}, \mathrm{A})=\operatorname{Read}(\mathrm{p}, \mathrm{A}) \cup \bigcup\left\{\operatorname{Follow}\left(\mathrm{p}^{\prime}, \mathrm{B}\right) \mid(\mathrm{p}, \mathrm{A})\right.$ includes $\left.\left(\mathrm{p}^{\prime}, B\right)\right\}$
The algorithm Digraph is also applied to calculate the Follow(p,A).

3.5 APPLYING ALGORITHM DIGRAPH

The following algorithm has as input a set X, a relation R (reads or includes), and a set-valued function F^{\prime} (a function from X to sets). The output (Read or Follow) is the set valued function F such that
$F(x)=F^{\prime}(x) \cup \bigcup\{F(y) \mid x R y\}$ where $x, y \in X$.
$F(x)$ is computed by traversing the directed graph $G=(X, R)$ induced by the relation R where X denotes the set of vertices in G and R denotes the edges.

The algorithm is applied twice in the program, as follows.
I) To compute the Read sets

NOTE: This is only necessary if there is a possibility of a reads relation, i.e. if there exists some nullable nonterminals, Otherwise, Read $=D R$ and the algorithm is not applied.

$$
\begin{aligned}
& X=\text { set of nonterminal transitions }=\text { vertices } \\
& F^{\prime}=D R=\text { initial values for Read } \\
& R=\text { reads relation }=\text { list of nullable nonterminals which can follow a }
\end{aligned}
$$ nonterminal transition (p, A). This is obtained by examining the next state q for possible nullable nonterminals. Since so few reads relations actually exist in a grammar

this was made a local linked list in the program and was calculated as needed.

$$
\mathrm{F}=\text { output }=\text { Read }=\text { initial values for } \operatorname{Follow}(\mathrm{p}, \Lambda)
$$

II) To compute Follow sets

X = set of nonterminal transitions
$\mathrm{F}^{\prime}=$ Read $=$ initial values for $\operatorname{Follow}(\mathrm{p}, \mathrm{A})$
$\mathrm{R}=$ includes relation. This was obtained as described previously.
$\mathrm{F}=$ output $=$ Follow
What follows is the algorithm as implemented in the program.
Stack is a stack containing elements of X , initially empty. N is a vector of integers (one to each nonterminal transition) with each initially set to $0 . F(x)$ uses the same variable name each time, called ReadFollow, in which to accumulate results. ReadFollow contains Read or Follow depending on which traversal is called. Recall that if the reads relation is $R, F^{\prime}(x)=$ initial $F(x)=$ initial ReadFollow $=D R$ and if the includes relation is $R, F^{\prime}(x)=$ initial $F(x)=$ initial ReadFollow which has been initialized by calculating Read.

Obviously, from the equations, Read is called first.
Algorithm Digraph (R);

1. Initialize
$\mathrm{N} \leftarrow 0$
stack \leftarrow nil
2. compute $\mathrm{F}(\mathrm{x})$ for each $\mathrm{x} \varepsilon \mathrm{X}$
if $N[x]=0$ then
Traverse (x, R)

3. Return

The following computes $\mathrm{F}(\mathrm{x})$ given a vertex x of the graph. TOPV returns the top element of the stack. MIN returns the smallest of its two arguments. DepthOfStack keeps a constant record of the depth of the stack. y, element, and d are local variables. y and element are nonterminal transitions ($\varepsilon \mathrm{X}$) and d is an integer.

Algorithm Traverse (x, R)

1. Initialize

Push(x)
$\mathrm{d} \leftarrow$ DepthOfStack
$\mathrm{N}[\mathrm{x}] \leftarrow \mathrm{d}$
2. Complete the Closure

If relation $=$ reads then
Compute reads relation locally
Repeat for each $y \varepsilon X$ such that $x R y$ If $\mathrm{N}[\mathrm{y}]=0$ then

Traverse(y, R)
$\mathrm{N}[\mathrm{x}] \leftarrow \operatorname{MIN}(\mathrm{N}[\mathrm{x}], \mathrm{N}[\mathrm{y}])$ $\mathrm{F}(\mathrm{x}) \leftarrow \mathrm{F}(\mathrm{x}) \cup \mathrm{F}(\mathrm{y})$
If $\mathrm{N}[\mathrm{x}]=\mathrm{d}$ then
$\mathrm{N}[$ TOPV (stack) $] \leftarrow \infty$
If $\mathrm{x}<>\operatorname{TOPV}$ (stack) then
$F($ TOPV $($ stack $)) \leftarrow F(x)$
element \leftarrow POP(stack)
Repeat while element $<>x$
$\mathrm{N}[$ TOPV (stack $)] \leftarrow \infty$
if $x<>$ TOPV (stack) then $\mathrm{F}($ TOPV $($ stack $)) \leftarrow \mathrm{F}(\mathrm{x})$
element $\leftarrow \mathrm{POP}($ stack $)$
3. Return

The vector $N[x]$ serves three purposes. If $N[x]=0$, it indicates that x has not been pushed on the stack yet. If $0<\mathrm{N}[\mathrm{x}]<\infty$, x is under consideration and is still on the stack. If $\mathrm{N}[\mathrm{x}]=\infty$, the strongly connected component (SCC) of the vertex x has already been computed. Marking each vertex x avoids recomputation of $F(x)$ if two vertices share the same child. The first time the vertex is encountered it is marked and marked vertices are never traversed again.

When Traverse pushes x on the stack, it records $\mathrm{N}[\mathrm{x}]$ as the depth of the stack. It then traverses its subtrees (xRy). If an edge is ever encountered from a descendent ' d ' to an ancestor 'a' already on the stack, the a and d and the intervening nodes on the stack are part of an SCC (there exists a path from a to d to a). The N[d] is minimized to $N[a]$ to prevent d from being popped as the recursion unwinds.

3.6 STEPS TO COMPUTE LA

The following steps were applied to compute the LALR(1) lookahead sets from the $\mathrm{LR}(0) \mathrm{FSM}$.

1) Determine all nullable nonterminals in the grammar.
2) Determine all nonterminal transitions (p, A) from the $\operatorname{LR}(0)$ FSM.
3) Determine the inconsistent states and the production reductions for which we need to calculate lookaheads, i.e. $\operatorname{LA}(q, A \rightarrow \omega)$.
4) Determine the DR from the $\operatorname{LR}(0)$ FSM to initialize each ReadFollow for each nonterminal transition.
5) Determine the lookback relation for each $\mathrm{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)$.
6) Determine the includes relation for all nonterminal transitions.
7) Apply Algorithm Digraph to reads to compute Read, if necessary.
8) Apply Algorithm Digraph to includes to compute Follow(p, A) for each ReadFollow sets for each nonterminal transition.
9) For each production LA union the follow sets in that productions lookback links.
10) Check for conflicts. If none exist, the grammar is LALR(1).

It is instructive to describe two basic structures used in the computation of LA.
First, there is an array of production lookaheads. This array of records, called ProdLAS, consists of the following items.

ProdLAS $=\quad$| state number i |
| :--- |
| number j indicating the actual production applied |
| Pointer to lookback pairs |

ProdLAS $=(\mathrm{i}, \mathrm{j}, \mathrm{Ptr})$

Second, there is an array of records, called NTTRANS, consisting of the following items.

```
NTTRANS = state number i
    nonterm symbol X }\varepsilon\mathrm{ N
    StackDepth - N in Algorithm Digraph
    ReadFollow = set of terminal symbols
```


Pointer to includes pairs
 NTTRANS $=(\mathrm{i}, \mathrm{X}, \mathrm{N},\{$ follow symbols \}, Ptr $)$

Since it would be a waste of storage to allocate a set of follow symbols for each item in the collection of item sets(the FSM), or even in the ProdLAS array, the follow sets are kept as a local variable and as the union of the follow sets is accomplished (step 9 above) the necessary items indicating reductions are added to the PAT. Consistency is checked at the same time. If an inconsistency is found (step 10 above) an appropriate message is written to a file. All inconsistencies are recorded.

CHAPTER 4

SINGLE REDUCE STATE ELIMINATION

4.1 LR(0) ROW ELIMINATION

A single reduce state has only one action associated with it - reduce by a particular production. In Figure 2.2 for G2 State 5 , State 10 , and State 12 are single reduce states. Most $L R(0)$ machines have several single reduce states. Suppose the reduction is made in a single reduce state for any lookahead. If the lookahead is incorrect, the error will be detected as soon as an attempt is made to shift the incorrect lookahead. Consider the following:

The lookahead for a production is defined as
$\operatorname{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)=\bigcup\{\operatorname{Follow}(\mathrm{p}, \mathrm{A}) \mid(\mathrm{p}, \mathrm{A})$ is a transition and $\mathrm{p}-\ldots \varphi \cdot \mathrm{q}\}$ and
Follow $(\mathrm{p}, \mathrm{A})=\left\{\mathrm{a} \varepsilon \mathrm{T} \mid \mathrm{S} \Rightarrow{ }_{\mathrm{r}}{ }^{*} \gamma \mathrm{Aaz}\right\}$
Suppose γ accesses state p_{i} and $\gamma \omega$ accesses state q as in Figure 3.1. Suppose q is a single reduce state. Allow the parser to perform the reduction $A \rightarrow \omega$ in state q without checking any lookaheads. After dropping to state p_{i} and reading A, the GoTo transition is made for $\operatorname{GoTo}\left(\mathrm{p}_{i}, \mathrm{~A}\right)=\mathrm{r}$. In state r there must exist either a shift on symbol a or a reduce on symbol a. If r happens to be a single reduce state, reduction is made as above until a shift is called for. The point is that if a reduction is made with an invalid lookahead, the parser will halt as soon as it attempts to shift the lookahead.

Actually the $\operatorname{LALR}(1)$ parsing techniques really use only approximate lookaheads at all times. Consider Figure 3.1 again. Suppose LA $(q, A \rightarrow \omega)=$ $\left\{a_{1}, a_{2}, a_{3} \cdots a_{n}\right\}$. Suppose the next lookahead is a_{j} and the parser performs the reduction. Recall that the lookaheads in state q come from the union of the Follow(A) in state $p_{1} \cdots p_{n}$. Suppose the transition in this case was $p_{i} \rightarrow \cdots \mu \rightarrow \mathrm{q}$ and a_{j} does not belong to Follow(A) in p_{i}. After the parser drops back to p_{i}, reads A, and then tries to
shift a_{j}, the error will be detected. So there is often a chance of doing an invalid reduction in a LALR(1) parse. The important point is that the parser will never do an invalid shift.

If you can reduce by any lookahead in a single reduce state, why go to the state at all?

4.2 SHIFT-REDUCE OR L-ACTION

So far we have $\operatorname{shift}(\mathrm{S})$ and reduce(R) actions in the parser. We will now replace any parse table entry that indicates a shift(S) followed by a GoTo state i where i is a single reduce state with an L-action and the production number that is in the single reduce state. Thus the parser will pop one less symbol off the stack and drop back to the same state as if it had shifted the terminal symbol onto the stack, gone to the single reduce state, and then done the reduction.

The removal of single reduce states is a simple operation. For this reason, no LA in single reduce states will be calculated, since the state is eliminated from the final Parse Table.

CHAPTER 5

APPLICATION TO GRAMMARS G2 AND G3

5.1 G2 APPLICATION

The finite state machine for G2 is given in Figure 2.2. This is directly transferable to the following GoTo Table. Note that the shift symbol S is used for clarity even though it is really part of the Parsing Action Table (and thus the final combined Parse Table).

ST	LOOKAHEADS							
	G	E	T	$=$	a	$+$	*	\#
0	S1	S2	S3		S4			
1								S5
2				S6		S7		
3							S8	
4								
5								
6		S9	S3		S10			
7			S11		S10			
8					S12			
9						S7		
10								
11							S8	
12								

FIGURE 5.1 GOTO TABLE FOR G2

The list of nonterminal transitions for G2 is:
$(0, \mathrm{G}),(0, \mathrm{E}),(0, \mathrm{~T}),(6, \mathrm{E}),(6, \mathrm{~T}),(7, \mathrm{~T})$
There are only four inconsistent states. They are State 3, State 4, State 9, and State 11. Thus the LA to be computed are:
$\mathrm{LA}(3, \mathrm{E} \rightarrow \mathrm{T})$
$\mathrm{LA}(4, \mathrm{G} \rightarrow \mathrm{a})$
$\mathrm{LA}(4, \mathrm{~T} \rightarrow \mathrm{a})$
$\mathrm{LA}(9, \mathrm{G} \rightarrow \mathrm{E}=\mathrm{E})$
$\mathrm{LA}(11, \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T})$
The DR symbols are obtainable directly from the LR(0) FSM. Since there are no nullable nonterminals in G2 they are the same as Read.

NTTRANS	DR	Read
$(0, \mathrm{G})$	$\{\#\}$	$\{\#\}$
$(0, \mathrm{E})$	$\{=+\}$	$\{=+\}$
$(0, \mathrm{~T})$	$\{*\}$	$\{*\}$
$(6, \mathrm{E})$	$\{+\}$	$\{+\}$
$(6, \mathrm{~T})$	$\{*\}$	$\{*\}$
$(7, \mathrm{~T})$	$\{*\}$	$\{*\}$

The lookback relation for each $\operatorname{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)$ is determined as follows:
($3, \mathrm{E} \rightarrow \mathrm{T}),|\omega|=|\mathrm{T}|=1$. Examining the GoTo Table yields two paths back.
They are
(3) $\xrightarrow{\mathrm{T}} 6$ and $3 \xrightarrow{\mathrm{~T}} 0$
$(4, G \rightarrow a)$, and $(4, T \rightarrow a),|\omega|=|a|=1$. There is only one path back here. It is (4) $\xrightarrow{\mathrm{a}} 0$ for each
($9, G \rightarrow E=E),|\omega|=|E=E|=3$. There is only one path back here, also. It is (9) $\xrightarrow{\mathrm{E}} 6 \xrightarrow{\mathrm{E}}$ 2 0
(11, $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}),|\omega|=|\mathrm{E}+\mathrm{T}|=3$. There are two paths back. They are

$$
11 \xrightarrow{\mathrm{~T}} 7 \xrightarrow{+} 2 \xrightarrow{\mathrm{E}} 0
$$

$$
\left[1 1 \xrightarrow { \mathrm { T } } \left[7 \xrightarrow { + } \left[\begin{array}{l}
\mathrm{E} \\
6
\end{array}\right.\right.\right.
$$

Thus, the lookback pairs are:

LA	lookback pairs
$(3, \mathrm{E} \rightarrow \mathrm{T})$	$(0, \mathrm{E}),(6, \mathrm{E})$
$(4, \mathrm{G} \rightarrow \mathrm{a})$	$(0, \mathrm{G})$
$(4, \mathrm{~T} \rightarrow \mathrm{a})$	$(0, \mathrm{~T})$
$(9, \mathrm{G} \rightarrow \mathrm{E}=\mathrm{E})$	$(0, \mathrm{G})$
$(11, \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T})$	$(0, \mathrm{E}),(6, \mathrm{E})$

Interpreting the lookback for $\mathrm{LA}(11, \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T})$ as an example yields the following: the terminal symbols which can follow E in state 0 and E in state 6 can also follow $\mathrm{E}+\mathrm{T}$ in state 11 .

The includes relation involves studying each nonterminal transition. Recall that (p, A) includes $\left(\mathrm{p}^{\prime}, \mathrm{B}\right)$ iff $\mathrm{B} \rightarrow \beta \mathrm{A} \boldsymbol{\gamma}, \gamma \Rightarrow{ }^{*} \lambda$ and $\mathrm{p}^{\prime}-\cdots \stackrel{\beta}{\beta} \rightarrow \mathrm{p}$.

1) nonterminal transition ($0, \mathrm{G}$): Examining state 0 for the items in which the G appears after the • yields the item $G^{\prime} \rightarrow \bullet G \#$. Since a \# symbol is after the G, G can never be follow by λ here so the includes relation is empty.
2) nonterminal transition ($0, \mathrm{E}$): Examining state 0 in a similar manner yields the items $\mathrm{G} \rightarrow \mathrm{E}=\mathrm{E}$ and $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$. Again, since the string "=E" or " +T " follow E here and neither can ever be λ the includes relation is empty.
3) nonterminal transition ($0, \mathrm{~T}$): This nonterminal transition comes from the two items $\mathrm{E} \rightarrow \mathrm{T}$ and $\mathrm{T} \rightarrow \odot \mathrm{T} * \mathrm{a}$. In the first item $\mathrm{E} \rightarrow \odot \mathrm{T}$, the empty string follows T . Thus, using the includes formula listed above where β equals the empty string (i.e. $|\beta|=0$) we stay in the same state which yields $(0, T)$ includes $(0, \mathrm{E})$. The second item yields nothing since "*a" is never λ.
4) nonterminal transition ($6, \mathrm{E}$): This nonterminal transition comes from the two items $\mathrm{G} \rightarrow \mathrm{E}=\bullet \mathrm{E}$ and $\mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}$. Since the empty string follows E above and $|\beta|=|\mathrm{E}=|=2$, traverse back in the GoTo Table as follows

$$
\text { 目 } \underset{\longrightarrow}{\mathrm{E}} \xrightarrow{\mathrm{E}} \text { 回. }
$$

Thus, $(6, E)$ includes $(0, G)$. The second item yields nothing since " $+T$ " is never empty.
5) nonterminal transition (6,T): The two items important here are $E \rightarrow \mathrm{E}_{\mathrm{C}} \mathrm{T}$ and $\mathrm{T} \rightarrow \odot \mathrm{T} * \mathrm{a}$.

The first item yields $(6, \mathrm{E})$, or $(6, \mathrm{~T})$ includes $(6, \mathrm{E})$. The second item yields nothing.
6) nonterminal transition ($7, \mathrm{~T}$): This transition comes from $\mathrm{E} \rightarrow \mathrm{E}+\bullet \mathrm{T}$ and $\mathrm{T} \rightarrow \bullet \mathrm{T} * \mathrm{a}$.

Only the first is important. Here $|\beta|=|E+|=2$. Going back two states yields

Thus, $(7, \mathrm{~T})$ includes $(0, \mathrm{E})$ and $(6, \mathrm{E})$
Interpreting includes using 6) above yields: The terminal symbols which can follow $(0, E)$ and $(6, E)$ can also follow $(7, T)$.

Next compute
Follow $(\mathrm{p}, \mathrm{A})=\operatorname{Read}(\mathrm{p}, \mathrm{A}) \cup \bigcup\left\{\operatorname{Follow}\left(\mathrm{p}^{\prime}, \mathrm{B}\right) \mid(\mathrm{p}, \mathrm{A})\right.$ includes $\left.\left(\mathrm{p}^{\prime}, \mathrm{B}\right)\right\}$

NTTRANS	DR-READ	INCLUDES	FOLLOW
$(0, \mathrm{G})$	$\{\#\}$	nil	$\{\#\}$
$(0, \mathrm{E})$	$\{=+\}$	nil	$\{=+\}$
$(0, \mathrm{~T})$	$\{*\}$	$(0, \mathrm{E})$	$\{*=+\}$
$(6, \mathrm{E})$	$\{+\}$	$(0, \mathrm{G})$	$\{+\#\}$
$(6, \mathrm{~T})$	$\{*\}$	$(6, \mathrm{E})$	$\{*+\#\}$
$(7, \mathrm{~T})$	$\{*\}$	$(0, \mathrm{E}),(6, \mathrm{E})$	$\{*=+\#\}$

Now apply
$\operatorname{LA}(q, A \rightarrow \omega)=U\{$ Follow $(p, A) \mid(q, A \rightarrow \omega)$ lookback $(p, A)\}$ to yield
$\operatorname{LA}(3, \mathrm{E} \rightarrow \mathrm{T})=\operatorname{Follow}(0, \mathrm{E}) \cup \operatorname{Follow}(6, \mathrm{E})=\{=+\} \cup\{+\#\}=\{=+\#\}$
$\operatorname{LA}(4, G \rightarrow \mathrm{a})=\operatorname{Follow}(0, G)=\{\#\}$
$\mathrm{LA}(4, \mathrm{~T} \rightarrow \mathrm{a})=\operatorname{Follow}(0, \mathrm{~T})=\{*=+\}$
$\mathrm{LA}(9, G \rightarrow \mathrm{E}=\mathrm{E})=\operatorname{Follow}(0, G)=\{\#\}$
$\mathrm{LA}(11, \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T})=\operatorname{Follow}(0, \mathrm{E}) \cup \operatorname{Follow}(6, \mathrm{E})=\{=+\} \cup\{+\#\}=\{=+\#\}$
The follow symbols for the reductions in single reduce states are never
calculated since they will be eliminated by a shift-reduce(L) action.
The following conflicts have been resolved. In state 3 reduce by $E \rightarrow T$ with lookahead $\{=+\#\}$. With a "*" shift. In state 4 with lookahead $\{\#\}$ reduce by $G \rightarrow a$, with lookahead $\{*=+\}$ reduce by $T \rightarrow$ a. In state 9 with lookahead $\{\#\}$ reduce by $\mathrm{G} \rightarrow \mathrm{E}+\mathrm{E}$, with lookahead " + ", shift. In state 11 with lookahead $\{=+\#\}$ reduce by $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$, with lookahead "*", shift.

Adding the appropriate L and R actions gives the final Parse Table for G2 shown in Figure 5.2.

ST	LOOKAHEADS									
	G	E	T	$=$	a	+	$*$	\#		
0	S 1	S 2	S 3		S 4					
1								L1		
2				S 5		S 6				
3				R 4		R 4	S 7	R 4		
4				R 6		R 6	R 6	R 3		
5		S 8	S 3		L 6					
6			S 9		L 6					
7					L 7					
8						S 6		R 2		
9				R 5		R 5	S 7	R 5		

Accept in this combined Parsing Action Table and GoTo Table comes after the L 1 in State 1 . The parse shifts the \# symbol, reduces by $G^{\prime} \rightarrow G \#$, and drops back
to State 0. The entry for $\operatorname{PAT}\left(0, G^{\prime}\right)$ is accept. This is accept in every Parse Table the program creates. It is added in the shift-reduce parser program to every parse table.

It is interesting to note that G2 is not $\operatorname{SLR}(1)$ so the follow symbols of each nonterminal can not be used for the lookahead set. The follow sets of $G=\{\#\}$ and T $=\{=+\# *\}$. Thus in state 4 if a "\#" were the next input symbol the parser would not know what reduction to do. Using the LALR(1) techniques resolves this conflict, since in state $4 \mathrm{~T} \rightarrow \mathrm{a}$ cannot be followed by a "\#". This can be seen by observing that State 4 can only be reached from State 0 . In state 0 the item $T \rightarrow \infty$ comes from expanding $\mathrm{G} \rightarrow \mathrm{E}=\mathrm{E}$ via $\mathrm{E} \rightarrow \bullet \mathrm{T}, \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}, \mathrm{T} \rightarrow \bullet \mathrm{a}, \mathrm{T} \rightarrow \bullet \mathrm{T} * \mathrm{a}$. Thus the follow of T here can only be $\{*=+\}$. This, of course, is exactly what DeReemer's and Pennello's method calculated for the follow set.

5.2 G3 APPLICATION

The finite state machine for G3 is given in Figure 2.3. The GoTo Table in Figure 5.3 represents the FSM for G3.

The list of the nonterminal transitions for G3 is:
$(0, Y),(4, Z),(6, Z)$.
There are three inconsistent states. They are State 4 , State 6 , and State 8 . The LA to be calculated are

$$
\mathrm{LA}(4, \mathrm{Z} \rightarrow \lambda), \quad \mathrm{LA}(6, \mathrm{Z} \rightarrow \lambda), \quad \mathrm{LA}(8, \mathrm{Z} \rightarrow \mathrm{cZ})
$$

The DR symbols and the Read symbols are computed as follows. Note that after nonterminal transition $(0, Y)$, the parser goes to State 1 . State 1 has no transition on Z (the only λ nonterminal), so the reads relation for $(0, Y)$ is nil. After $(4, Z)$ the parser goes to State 5 which also has no transition on Z. The same is true for $(6, Z)$. Thus all the reads relations are nil and Read $=D R$.

ST	LOOKAHEADS					
	Y	Z	c	b	\#	
0	S 1		S 2			
1					S 3	
2			S 4			
2						
4		S 5	S 6			
4				S 7		
6		S 8	S 6			
7						
8				S 9		
9						

Figure 5.3 GoToTable for G3
The following chart is directly obtainable from the above GoTo Table

NTTRANS	DR	reads	Read
$(0, Y)$	$\{\#\}$	nil	$\{\#\}$
$(4, Z)$	$\{b\}$	nil	$\{b\}$
$(6, Z)$	$\{b\}$	nil	$\{b\}$

The lookback relation for each $\mathrm{LA}(\mathrm{q}, \mathrm{A} \rightarrow \omega)$ is determined as follows.
$(4, Z \rightarrow \lambda),|\omega|=|\lambda|=0$, so $(4, Z \rightarrow \lambda)$ lookback $(4, Z)$
$(6, \mathrm{Z} \rightarrow \lambda),|\omega|=|\lambda|=0$, so $(6, \mathrm{Z} \rightarrow \lambda)$ lookback $(6, \mathrm{Z})$
$(8, Z \rightarrow c Z),|\omega|=|c Z|=2$. Examining the GoTo Table yields two paths back.
They are

$$
\begin{aligned}
& 8 \xrightarrow{\mathrm{Z}} 6 \xrightarrow{\mathrm{c}}[4 \\
& 8 \xrightarrow{\mathrm{Z}} 6 \xrightarrow{\mathrm{c}} 6
\end{aligned}
$$

Thus the lookback pairs are

LA	lookback
$(4, \mathrm{Z} \rightarrow \lambda)$	$(4, \mathrm{Z})$
$(6, \mathrm{Z} \rightarrow \lambda)$	$(6, \mathrm{Z})$
$(8, \mathrm{Z} \rightarrow \mathrm{cZ})$	$(4, \mathrm{Z}),(6, \mathrm{Z})$

The includes relation is calculated as before to yield the following

1) nonterminal transition ($0, \mathrm{Y}$): Examining State 0 yields the item $\mathrm{Y}^{\prime} \rightarrow \bullet \mathrm{Y} \#$. Obviously Y can never be followed by λ so the includes relation is empty.
2) nonterminal transition (4,Z): The only item relevant is State 4 is $\mathrm{Y} \rightarrow \mathrm{cc} \bullet \mathrm{Zb}$. Again, since Z is never followed by λ here the includes relation is empty.
3) nonterminal transition ($6, Z$): Two items are of importance here, $Z \rightarrow c \bullet Z$ and $Z \rightarrow c \cdot Z b$. In the former item Z is followed by the empty string and the includes relation yields the two paths $6 \xrightarrow{c}$ 目 and $6 \xrightarrow{c} 6$

Thus, $(6, Z)$ includes $(4, Z)$ and ($6, Z$).
Computing the Follow as before results in the following chart

NTTRANS	READ	INCLUDES	FOLLOW
$(0, \mathrm{Y})$	$\{\#\}$	nil	$\left\{\begin{array}{c}\text { \# } \\ (4, \mathrm{Z})\end{array}\right.$
$(6, \mathrm{Z})$	$\{\mathrm{b}\}$	nil	$\{\mathrm{b}\}$
	$\{\mathrm{b}\}$	$(4, \mathrm{Z}),(6, \mathrm{Z})$	$\{\mathrm{b}\}$

Taking the union of the Follow in the lookback yields

$$
\begin{aligned}
& \operatorname{LA}(4, \mathrm{Z} \rightarrow \lambda)=\operatorname{Follow}(4, \mathrm{Z})=\{\mathrm{b}\} \\
& \operatorname{LA}(6, \mathrm{Z} \rightarrow \lambda)=\operatorname{Follow}(6, \mathrm{Z})=\{\mathrm{b}\} \\
& \operatorname{LA}(8, \mathrm{Z} \rightarrow \mathrm{cZ})=\operatorname{Follow}(4, \mathrm{Z}) \cup \operatorname{Follow}(6, \mathrm{Z})=\{\mathrm{b}\}
\end{aligned}
$$

In State 4 and State 6 we reduce by $\mathrm{Z} \rightarrow \lambda$ if "b" is the next input symbol. There is no conflict in either of these two states. However, in State 8 there is definitely a conflict. When the next input symbol is a "b", the parser calls for a reduction by $\mathrm{Z} \rightarrow \mathrm{cZ}$ and a shift because of $\mathrm{Z} \rightarrow \mathrm{cZ}$ • b. State 8 is still inconsistent so the grammar is not LALR(1).

Using LR techniques would not have resolved any conflicts in the grammar. The grammar is not $L R(k)$ for any k and can not be parsed by any $L R$ technique. In fact, DeReemer and Pennello have included the following conjector in their article which exactly applies here:

Let (p, A) be a nonterminal transition that is in a nontrivial SCC of the digraph induced by the includes relation. Then the corresponding grammar is not LR(k) for any k if $\operatorname{Read}(p, A) \neq \emptyset$.

Note that $(6, Z)$ includes $(4, Z)$ and $(6, Z)$. Thus there is a nontrivial SCC of the digraph. Also note that $\operatorname{Read}(6, Z)=\{b\}$ which $\neq \emptyset$. Not only is the grammar not $\operatorname{LALR}(1)$ but it is not $\operatorname{LR}(k)$ for any k.

The Parse Table for G1 can be generated by these exact techniques or by simply using the follow symbols of its nonterminals for the lookahead sets. Both methods generate the same follow sets since G1 is not only $\operatorname{LALR}(1)$ but is also SLR(1). The final Parse Table for G1 is given in Chapter 6. The diagnostic output for G1, as calculated by the program, is included in Appendix A.

CHAPTER 6

OPTIMIZING PARSE TABLES

6.1 SPARSE MATRIX REPRESENTATION

All parsing action tables and goto tables have many error entries in them. The two-dimensional matrix representation which I have been using to demonstrate the tables is very efficient for table lookup but very space consuming. G1, G2, and G3 are very small grammars but typical programming languages contain hundreds of states. The simple grammar PL0 which has 51 tokens (terminal and nonterminal symbols) and 46 productions (with the augmented production added) generates 88 states for the $L R(0)$ machine. This would require a 51×88 matrix, and PL0 is much smaller then most programming languages.

One way to reduce the size of the parse table is to encode the table using a sparse matrix. The sparse matrix will be slower in table lookup but will require much less space since all error entries will be eliminated from the table. A sparse matrix with pointers is used to represent the parse table in the computer program which generates the LALR(1) parse table. The second program (the shift-reduce parser) uses a onedimensional array to represent the table created by the first program. There are several reasons for using different representations.

As was shown in G2, the final parse table is smaller then the original parse table since single reduce states are eliminated. The final parse table is also static, i.e. it does not change. The original parse table is constantly being changed as R and L actions are inserted into it and single reduce states are eliminated from it. Insertions and deletions are easier to do with pointers. Also, the first program must traverse the table in both directiions - i.e. across the rows (states) and down the columns (vocab symbols). This would be extremely inefficient in the one-dimensional array
representation. Also, the constant table lookup which the shift-reduce parser must do is much more efficient with the one-dimensional array then with a pointer matrix. Since the table created by the first program is input to the second program, there is no need to use the same representation.

The program which generates the LALR(1) parse table uses the following representation:

GoTo Function $=$ array[state] of ParsePtr
Down Function $=$ array[vocab] of ParsePtr
Parse Ptr is a pointer to the following parse record:
ParseRec $=$ record
StNum : state
VocabNum : vocab
Action: PACRec
NextRec : ParsePtr
DownRec: ParsePtr end
where Action consists of one of the following
$(\mathrm{Si})=$ shift and go to state i
$(\mathrm{Rj})=$ reduce by j production
$(\mathrm{Lj})=$ L-reduce by j production

The reason for the two sets of pointers (both across and down the matrix) is that sometimes it is necessary to traverse the matrix down a vocabulary symbol through the states rather then across a state through the vocabularly symbols. This is the case when computing the lookback and the includes relations. The most efficient way to do this traversal is by including a second set of pointers.

Any entry not included in the sparse matrix is, of course, an error condition.
In the shift-reduce parser two one-dimensional arrays are actually used to represent the parse table. The first array references the location of the start of each state in the parse table array. The parse table array consists of records containing the following two items: a vocab symbol, and an Action record which is identical to the one
above except that an Accept action is now added. As mentioned earlier, Accept is always the first entry in the final Parse Table. In state 0 with the next input symbol the augmented symbol, the action is to accept. The shift-reduce parser program automatically inserts this entry as the first item in each Parse Table. When searching the parse table for a particular entry the program does a binary search from the start to the finish of the entries pertinent to the state being searched. Any entry not included is, as before, an error.

The final parse tables for G1 and G2 are shown in section 6.2 and 6.3 .

6.2 DEFAULT PARSE TABLE ENTRIES

Observe that in Figure 5.2 of the final parse table for G2, state 3, state 4, and state 9 are almost single reduce states. Each contain a reduction by one production on several (three here) lookahead symbols. Since reductions can be made in single reduce states without examining any lookaheads, thereby delaying error detection but not eliminating it, why not do something similar in a state in which there are several reduction entries for the same production number? This is called a default parse table entry.

The default parse table entry must always be a reduction or an error entry. It can never involve a shift action. Therefore, it can never involve an L -action. The reason for the introduction of the error entry is that if we are going to add a default entry, it is easier to have one all the time, which means sometimes the only possible entry will be an error.

Referring back to Figure 5.2 , state 0 would contain four shift entries plus a default error entry. State 1 contains one Lentry plus a default error entry. State 2 contains two shift entries plus a default error entry. State 3 contains one shift entry
plus a default reduction entry. The rest of the table is calculated similarly.
The parse table which the shift-reduce parser works with is shown below.

```
    State 0, default \(=\) error, \(\left(G^{\prime}\right.\), accept \(),(G, S 1),(E, S 2),(T, S 3),(a, S 4)\)
    State 1, default \(=\) error, (\#, L1)
    State 2 , default \(=\) error, \((=, \mathrm{S} 5),(+, \mathrm{S} 6)\)
    State 3, default \(=\mathrm{R} 4,(*, \mathrm{~S} 7)\)
    State 4, default \(=\mathrm{R} 6,(\#, \mathrm{R} 3)\)
    State 5, default \(=\) error, \((E, S 8),(T, S 3),(a, L 6)\)
    State 6, default \(=\) error, \((T, S 9),(a, L 6)\)
    State 7, default \(=\) error, (a, L7)
    State 8 , default \(=\) error \(,(+, S 6),(\#, R 2)\)
    State 9 , default \(=R 5,(*, S 7)\)
```

In larger grammars, such as PL0, several states have 10-15 entries for one reduction. The space savings is more apparent then in a small grammar such as G2.

As with single reduce states, if a default reduction is performed with an invalid lookahead, the error will be detected as soon as an attempt is made to shift the lookahead.

6.3 SINGLE-PRODUCTION ELIMINATION

The above techniques help to reduce the size of the parse table in LALR or LR parsing. Single-production elimination helps to increase the speed of the parse.

Many programming-language grammars contain productions of the form $A \rightarrow B$, where $A, B \varepsilon N$. A good example of this is the expression grammar G1. This grammar contains $\mathrm{E} \rightarrow \mathrm{T}$ and $\mathrm{T} \rightarrow \mathrm{F}$ where $\mathrm{E}, \mathrm{T}, \mathrm{F} \varepsilon \mathrm{N}$. Two other unit productions in the grammar are $\mathrm{F} \rightarrow \mathrm{id}$ and $\mathrm{F} \rightarrow$ intliteral, where id, intliteral $\varepsilon \mathrm{T}$. Suppose as the grammar parses, it
produces a chain of unit reductions. An example of this would be a parse of the simple expression $10 \#$. The parser would reduce as follows: $\mathrm{F} \rightarrow$ intliteral, $\mathrm{T} \rightarrow \mathrm{F}, \mathrm{E} \rightarrow \mathrm{T}$. It would obviously speed up the parse to simply reduce by $\mathrm{E} \rightarrow$ intliteral.

The $L R(0)$ machine for grammar G1 is shown in Figure 2.1. Adding the follow symbols produces:

STATE 0
$\mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E} \#,\{\lambda\}$
$\mathrm{E} \rightarrow \bullet \mathrm{T},\{+-\#\}$
$\mathrm{E} \rightarrow \bullet \mathrm{EAT},\{+-\#\}$
$\mathrm{T} \rightarrow \bullet \mathrm{F},\{+-* / \#\}$
$\mathrm{T} \rightarrow \bullet \mathrm{TM} \mathrm{M},\{+-* / \#\}$
$\mathrm{F} \rightarrow \bullet(\mathrm{E}),\{+-* / \#\}$
$\mathrm{F} \rightarrow \bullet \mathrm{id},\{+-* / \#\}$
$\mathrm{F} \rightarrow \bullet$ intliteral,$\{+-* / \#\}$

After shifting an id or an intliteral the possible lookaheads are $\{+-* / \#\}$. If the lookahead is $*$ or $/$, id or intliteral would be reduced to F , then F to T . If,+- , or $\#$ is the lookahead, the chain is $F \rightarrow$ id \mid intliteral, $T \rightarrow F, E \rightarrow T$. The chain could be shortened by including in the next state the pseudo production $\mathrm{T} \rightarrow \mathrm{id} \mid$ intliteral for $\mathrm{a} *$, / lookahead and $\mathrm{E} \rightarrow \mathrm{id} \mid$ intliteral for $a+,-, \#$ lookahead.

The obvious problem with the above is two-fold. First, DeReemer and Pennello's method does not calculate all the lookaheads for cach item in the LR(0) machine. Second, the next state in the $\operatorname{LR}(0)$ machine is a single-reduce state and single-reduce states are climinated from the final parse table. These are very necessary space saving techniques and are more important then the slight time-saving achieved by keeping the state and essentially changing it from a single reduce state. DeReemer's and Pennello's method does not support this technique for single-production elimination.

In some states a chain of reductions occurs independently of lookaheads. This
can very easily be incorporated into the program.
Recall that the $\operatorname{LR}(0)$ machine for G 1 contains 18 states. The final parse table contains only 8 states, as shown in Figure 6.1 below. Rewriting and numbering the productions gives:

1)	E^{\prime}		$\mathrm{E} \#$
2)	E	\rightarrow	T
3)	E	\rightarrow	E A T
4)	T	\rightarrow	F
5)	T	\rightarrow	T M F
6)	F	\rightarrow	(E)
7)	F	\rightarrow	id
8)	F	\rightarrow	intliteral
9)	A	\rightarrow	+
10)	A	\rightarrow	-
11)	M	\rightarrow	$*$
12)	M	\rightarrow	$/$

ST	LOOKAHEADS													
	E	T	F	A	M	()	+	-	*	1	id	int	\#
0	S1	S2	L4			S3						L7	L8	
1				S4				L9	L10					L1
2					S5		R2	R2	R2	L11	L12			R2
3	S6	S2	L4			S3						L7	L8	
4		S7	L4			S3						L7	L8	
5			L5			S3						L7	L8	
6				S4			L6	L9	L10					
7					S5		R3	R3	R3	L11	L12			R3

Figure 6.1 Parse Table For G1

Note that in state 0 there is a chain reduction starting with L7 and L8. Thus with an id as the next lookahead perform $\mathrm{F} \rightarrow \mathrm{id}, \mathrm{T} \rightarrow \mathrm{F}$. With an intliteral perform $\mathrm{F} \rightarrow$ intliteral, $\mathrm{T} \rightarrow \mathrm{F}$. This could be optimized by performing the pseudo reduction $\mathrm{T} \rightarrow \mathrm{id}$
or $\mathrm{T} \rightarrow$ intliteral. A similar situation arises in state 3 and state 4.
To accomplish the pseudo reduction above, it is necessary to create two new productions. They are
13) $\mathrm{T} \rightarrow \mathrm{id}$
14) $\mathrm{T} \rightarrow$ intliteral

The new parse table utilizing these productions is the same as Figure 6.1 except that the entry for $\operatorname{PAT}(0, \mathrm{id})=\mathrm{L} 13, \operatorname{PAT}(0, \mathrm{int})=\mathrm{L} 14, \operatorname{PAT}(3, \mathrm{id})=\mathrm{L} 13, \operatorname{PAT}(3$, int $)$ $=\mathrm{L} 14, \operatorname{PAT}(4, \mathrm{id})=\mathrm{L} 13$, and $\operatorname{PAT}(4, \mathrm{int})=\mathrm{L} 14$.

The parse table used by the shift-reduce parser (with default entries added) is as follows:

$$
\begin{aligned}
& \text { State } 0 \text {, default }=\text { error, }\left(E^{\prime}, \text { accept }\right),(E, S 1),(T, S 2),(F, L 4),((, S 3), \\
& \text { (id, L13), (int, L14) } \\
& \text { State 1, default }=\operatorname{error},(\Lambda, \mathrm{S} 4),(+, \mathrm{L} 9),(-, \mathrm{L} 10),(\#, \mathrm{~L} 1) \\
& \text { State 2, default }=\text { R2, (M, S5), (*, L11) , (/, L12) } \\
& \text { State 3, default }=\text { error, }(E, S 6),(T, S 2),(F, L 4),((, S 3),(i d, L 13),(i n t, L 14) \\
& \text { State 4, default }=\operatorname{error},(\mathrm{T}, \mathrm{~S} 7),(\mathrm{F}, \mathrm{~L} 4),((, S 3),(i d, L 13),(\text { int, L14) } \\
& \text { State } 5 \text {, default }=\text { error, }(F, L 5),(\text { (, S3) },(i d, L 7),(i n t, L 8) \\
& \text { State 6, default }=\text { crror, }(A, S 4),(), L 6),(+, L 9),(-, L 10) \\
& \text { State 7, default }=\mathrm{R} 3,(\mathrm{M}, \mathrm{~S} 5),(*, \mathrm{~L} 11),(/, \mathrm{L} 12)
\end{aligned}
$$

The original parse table had the potential of 18 states $\times 15$ vocab symbols, or 270 entries. The above parse table has 43 entries.

6.4 SIZE OF PLO PARSE TABLE

As stated earlier, the $L R(0)$ machine for PL0 has 88 states. Since there are 51 vocab symbols the parse table if stored as a two-dimensional matrix would contain

4488 entries. Since the final parse table has only 51 states, this would reduce to 2601 entries.

Using the sparse matrix representation as described above with default reduction entries the parse table which the shift-reduce parser works with for PL0 contains 235 entries. This is a dramatic reduction and indicates that normal programming language parse tables can be stored in a reasonable amount of space.

It is interesting to note that PL0 has 10 nullable nonterminables and 66 nonterminal transitions. Of these 66 nonterminal transitions only 23 have entries in the reads relations. This reinforces, as DeReemer and Pennello suggest, that since so few reads relations actually exist in a grammar it saves space to make the reads relation a local variable in the Digraph procedure and compute the relation as needed.

PL0 has 20 inconsistent states in the $\operatorname{LR}(0)$ machine and 20 lookahead productions to compute the follow symbols for. It is $\operatorname{LALR}(1)$ as was to be expected, since it is also $\mathrm{LL}(1)$.

CHAPTER 7

GENERALIZATIONS

With the introduction of $\operatorname{LALR}(1)$ parsing techniques, the size of the parse table needed to parse LR grammars is greatly reduced. Since all LL(1) grammars are $\operatorname{LR}(1)$ and almost all are $\operatorname{LALR}(1)$, it has become reasonable to consider $\operatorname{LALR}(1)$ parsing techniques as a viable alternative to $\operatorname{LL}(1)$ techniques.

One advantage to LALR grammars is that, unlike LL grammars, they allow left recursion and productions which share a common prefix. It is generally easier to put a grammar into LALR form then into LL form. Often LALR grammars are easier to write, and frequently they are easier to read. In short, LALR techniques can handle a broader class of grammars then LL techniques.

In constructing an $\operatorname{LALR}(1)$ parse table considerable storage is required for the collection of item sets. However, since DeReemer's and Pennello's method only utilizes the $\operatorname{LR}(0)$ machine even the space needed to store the collection of sets is reduced. With the utilization of sparse matrix techniques for the parse tables, the size of these tables becomes less significant.

The use of pointers while generating the parse table may slow the construction of the table, but this initial program should only have to be run once. The actual shiftreduce parser is an extremely simple concept and very easy to implement. The use of a one-dimensional array and a binary search routine for the parse table makes the speed of the parser comparable to LL parsing techniques.

Of all the methods used to generate lookahead symbols (such as compatible state merger and propagating symbols through the states from item to item), DeReemer's and Pennello's method definitely seems to be the most efficient both in time and space considerations. Once the concepts are understood, it adapts very well to
implementation on a computer.

CHAPTER 8

PROGRAM IMPLEMENTATION

Both programs, the LALR(1) table generator and the shift-reduce parser are written in Turbo 4 Pascal.

8.1 IMPORTANT DATA STRUCTURES

Inorder to include any of the source code it is necessary to describe in detail the commonly used data structures and constant definitions. The constant definitions apply to both programs and may be changed as needed.

8.1.1 CONSTANT DEFINITIONS

```
MaxVocabSym = 101;
MaxNumProd \(=50\);
MaxProdLen =7;
MaxLenVocabTab \(=300\);
MaxStateNum = 250;
MaxNTTrans \(=125\);
MaxProdLA \(=65\);
MaxKernelNum \(=400\);
```

(* max \# of Vocab Symbols *)
(* max \# of productions *)
(* max length of each production *)
(* max \# of chars in all ter and nt combined *)
(* max \# for collection of sets *)
(* max \# of non terminal transitions approximately $1 / 2$ of MaxStateNum *)
(* max \# of production lookaheads to be calculated-approximately $1 / 4$ of MaxStateNum *)
($*$ max \# of kernel items in all sets combined *)

8.1.2 NONTERMINAL AND TERMINAL SYMBOLS

As the nonterminal and terminal symbols are entered into the initial program they are stored in a VocabTab and a 1-1 correspondence is set up between each symbol and a number. Thus,

```
type
    vocab \(=1\).. MaxVocabSym;(*number representation of grammar symbols *)
    VocabSymbols = packed array [ 1 .. MaxLenVocabTab ] of char;
    VocabInts = packed array [ 1 .. MaxVocabSym ] of 1 .. MaxLenVocabTab;
var
    VocabTab : VocabSymbols; (* table of all symbols possible in grammar *)
    VocabInt : VocabInts;
    (* 1-1 correspondence between grammar
        symbols and integers *)
    LastNonTerm : vocab; (* last place in VocabInt for NT symbols *)
    LastTerm : vocab;
    (* last place in VocabInt for ter symbols *)
```

All the symbols are kept in the VocabTab. VocabInt[I] represents the vocab symbol I and references the start of the symbol in VocabTab. Thus the symbol represented by I starts in the VocabTab at VocabInt[I] for its character representation and ends at VocabInt[I + 1] - 1. Other then input and output, both programs work only with the number representation of each terminal and nonterminal symbol. For the expression grammar G1 VocabTab is

AUGSYMETFAM()+-*/IDINTLITERAL\#

 and the VocabInt table is```
VocabInt(1) = 1 AUGSYM
VocabInt(2) = 7 E
VocabInt(3) = 8 T
VocabInt(4) = 9 F
VocabInt(5) = 10 A
VocabInt(6) = 11 M
VocabInt(7) = 12
VocabInt(8) = 13)
VocabInt(9) = 14 +
VocabInt(10) = 15 -
VocabInt(11) = 16 *
VocabInt(12)=17 /
VocabInt(13) = 18 ID
VocabInt(14) = 20 INTLITERAL
VocabInt(15) = 30 # (* end of string symbol *)
```


### 8.1.3 PRODUCTION REPRESENTATION

As the productions for the grammar are entered, the parse table generator checks that the left hand side of the production is a nonterminal symbol and also checks that all symbols have been entered into VocabTab, and correspondingly into VocabInt. If an unknown symbol is encountered the program terminates with an error message.

The important structures here are

## type

Prod $=1$.. MaxNumProd; (* production \# *)
OneProdRec $=$ record
LHS : vocab; (* left hand nonterminal sumbol*)
NumElem : 0 .. MaxProdLen; ( $* \#$ of symbols in RHS *)

RHS: array [ 1 .. MaxProdLen ] of vocab;(*symbols in RHS *) end;
ProRecords $=$ array [Prod] of OneProdRec; var

Productions: ProRecords;
An example for grammar G1 is:

```
augsym }->\mathrm{ E#
 Productions[1].LHS = 1
 Productions[1].NumElem = 2
 Productions[1].RHS[1] = 2
 Productions[1].RHS[2] = 15
E T T
 Productions[2].LHS = 2
 Productions[2].NumElem = 1
 Productions[2].RHS[1] = 3
```


### 8.1.4 COLLECTION OF SETS

The collection of item sets is represented by

1) a base table indexed by the state number which contains the start of the kernel items for that particular state in the array of kernel items and a pointer to the closure items for the state. The closure items are kept in a pointer list because many states contain only kernel items.
2) An array of all kernel items in all the states.

The important data structures here are:
type

$$
\begin{gathered}
\text { SetRec }=\text { record } \\
\text { ProdNum : Prod; } \begin{array}{c}
(* \text { an item is a } \\
\text { production \# and a }
\end{array} \\
\text { DotPlace: } 0 . . \text { MaxProdLen; dot position } *)
\end{gathered}
$$

end;
var
KernelTab : BaseTab; (* table of references to st of each kernel set for each state *)
KernelSets: KernelSet; (* array of kernel items *)

As an example of the collection of sets, consider state 1 in the $L R(0)$ machine for grammar G1. The productions for grammar G1 are shown on page 5 . State 1 is shown in Figure 2.1. Since state 0 had only one kernel item, the kernel items for state 1 will start in 1 . There are two kernel items, $\mathrm{E}^{\prime} \rightarrow \mathrm{E} \bullet \#$ and $\mathrm{E} \rightarrow \mathrm{E} \bullet \mathrm{A} T$. The closure items are $\mathrm{A} \rightarrow \mathrm{O}_{+}$and $\mathrm{A} \rightarrow 0-$. Thus,

KernelTab[1].KernelRef $=1$
KernelTab[1]. ClosurePtr $\rightarrow(9,0) \rightarrow(10,0) \rightarrow$ nil
KernelSets[1].ProdNum $=1$
KernelSets[1]. DotPlace $=1$
KernelSets[2].ProdNum $=3$
KernelSets[2]. DotPlace $=1$
where $(9,0)$ and $(10,0)$ above represent the ProdNum and the DotPlace in the closure records.

All closure item records have 0 as the dot position, so it would be possible not to include this in a closure record. However, the program works with closure and kernel items in the same procedures, so it is more convenient to record the dot position.

### 8.1.5 COMBINED PARSE TABLE

The parse table in the initial program is created as a sparse matrix with pointers. As explained in chapter 6 , inorder to traverse the parse table in both directions, two pointers are kept in each parse record, one for across the state and one for down the vocab symbols. The important structures here are

```
type
 optype \(=(\mathrm{R}, \mathrm{S}, \mathrm{L}, \mathrm{AC})\)
 PACRec \(=\) record
 case op : optype of
 R, L : (num1: prod); (* reduce by num \(1 *\))
 \(\mathrm{S}:(\) num \(2:\) state \() ; \quad(*\) shift and goto num \(2 *)\)
 \(\mathrm{AC}:() ; \quad(*\) not inc until 2nd program \(*)\)
 end;
 ParsePtr = ^ ParseRec;
 ParseRec \(=\) record
```

```
 StNum : state;
 VocabNum : vocab;
 Ref : NumNTTrans; (* used in Digraph algorithm *)
 (* ref non terminal trans array *)
 Action : PACRec;
 NextRec : ParsePtr; (* across matrix *)
 DownRec : ParsePtr; (* down matrix *)
 end;
 GoToFunction = array[state] of ParsePtr;
 DownFunction = array[vocab] of ParsePtr;
var
 GoToTab : GoToFunction; (* used to create combined parse table *)
 DownTab : DownFunction; (* used in traversal for includes and lookback *)
```

The parse table in the shift-reduce parser is stored in two separate onedimensional arrays. The first GoToTab contains 1) a reference to the start of the entries for each state in the second table and 2) the default entry for the state. The second table PAT contains the actual parsing action table entries, excluding the default entry. The default entry is actually recorded as a reduction by a number which is greater then the number of productions in the grammar. This indicates an error action. Thus,

```
 const
 MaxPATEntry \(=750 ; \quad\) (* max entries in PAT *)
 type
 OpType \(=(\mathrm{R}, \mathrm{S}, \mathrm{L}, \mathrm{AC}, \mathrm{ER})\);
 PACRec \(=\) record
 case op : optype of
 R, L: (num1 : prod);
 S: (num2: state)
 AC: ();
 ER : ();
 end;
 ParseRec \(=\) record
 VocabNum : vocab;
 Action : PACRec;
 end;
 ParseRecs \(=\) array[1 .. MaxPATEntry] of ParseRec;
 ParseRef \(=\) record
 first : integer; (* location of start of st in GoToTab *)
 default : prod; (* default reduction \# or error indicator \(*\))
 end;
 GoToFunction \(=\) array[state] of ParseRef;
var
 GoToTab : GoToFunction;
```

PAT : ParseRecs;

Thus to reference the entries for state I look at PAT[GoToTab[I].first] for the first action record up to and including PAT[GoToTab[I +1 ].first] -1 .

### 8.1.6 CALCULATING LOOKAIIEAD SYMBOLS

The structures for the nonterminal transitions and the structures for the production lookaheads (LA) are as follows:
type
TraPtr $={ }^{\wedge}$ IncList;
IncList $=$ record $\quad(*$ used in lookback, includes, and reads relation $*)$
Ref: NumNTTrans; (* location in nonterm trans array *)
Next: TraPtr;
end;
NTTransition $=$ record StNum : state; NonTerm : vocab; StDepth : integer; (* stack depth in Digraph algorithm *) ReadFollow : set of vocab; Next: TraPtr; ( $*$ for includes *) end;
ProdLookAhead $=$ record ProdStNum : state; ProdRed : Prod; Next : TraPtr; (* for Look-Back *) end;
NTTran = array[ NumNTTrans ] of NTTransition;
ProdLA $=$ array [ NumProdLA ] of ProdLookAhead;
DigraphStack $={ }^{\wedge}$ StackRec;
StackRec $=$ record $\quad(*$ stack of nonterm trans in digraph algorithm $*)$
Num : NumNTTrans;
Next : DigraphStack; end;
var
NTTrans : NTTran; (* nonterm transitions plus includes relation *)
ProdLAS : ProdLA; (* Production reductions in inconsistent states plus lookback relation *)
LastNtTrans: NumNTTrans;
LastProdLa : NumProdLA;
stack: DigraphStack;

### 8.2 FORMING THE LR(0) MACHINE

The procedures needed to build the CFSM are as follows:
Procedure Closure
Figure 8.1

Procedure GoToSet Function CheckGoTo
Procedure FormGoTo
Procedure BuildCFSM

Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

Procedure BuildCFSM has three basic functions:

1) To build the CFSM. For this it calls GoToSet, FormGoTo, Closure, and CheckGoTo
2) To create the NonTerminal transition array
3) to determine which states are inconsistent and to create the Production Lookahcads (LA) in inconsistent states.

Procedure FormGioTo forms the GoTo Function and PAT for shift actions. It attaches the item in the sparse matrix.

Function CheckGoTo returns true if the state just formed by BuildCFSM is a different kernel state. It returns false if this state already exists in an carlier state.

Procedure GoToSet adds a new kernel item to the next set if the kernel item being checked has the vocab symbol under consideration after the dot. This check is made for every possible vocab symbol and for each item in the current state.

Procedure Closure forms the closure of state I.

### 8.3 CALCULATING TIE LOOKAIIEADS

The procedures needed to calculate the lookaheads using DeReemer's and Pennello's method are as follows:

Procedure DirectRead
Procedure TraverseBack
Procedure Lookback
Procedure CkIncludes
Procedure Includes
Procedure Traverse
Procedure Digraph
Procedure Union

Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13

Procedure DirectRead adds the direct reads to initialize each ReadFollow Set for each nonterminal transition.

Procedure TraverseBack traverses back in the Go'To Function to make the includes list for each nonterminal transition (NTTTrans) and to make the lookback list for each production in the list of productions requiring lookaheads calculated ( $\operatorname{ProdL} \Lambda \mathrm{S}$ ). The procedure is called recursively as there may be many paths back.The traversal is through the vocab symbols (DownRec) pointers.

Procedure LookBack calculates the lookback relation for each production reduction in an inconsistent state. LookBack calls TraverseBack.

Procedure CkIncludes checks if the set record under consideration can go to lambda after the DotPlace +1 position - i.e. if it should be added to the includes list for NTTrans I. CkIncludes calls TraverseBack.

Procedure Includes calculates the includes relation for all nonterminal transitions. The procedure accesses all nonterminal transitions in NTTrans array. It then checks all items in the state of each nonterminal transition to see if after reading the nonterminal vocab symbol under consideration the remaining symbols can go to lambda (calls CkIncludes).

Procedure Traverse and Procedure Digraph are the implementation of DeReemer's and Pennello's algorithm detailed in Chapter 3.
4.

Procedure Union takes the union (for each production in an inconsistent state) of the follow in that production's lookback relation. Union calls Procedure Attach which attaches the reduction record in the PAT. Union also checks for inconsistencies in the state and reports if an inconsistent $\operatorname{LALR}(1)$ state
has been detected. All records are attached, even if an inconsistency has been observed. In this way all possible inconsistencies can be reported.

Procedure FindLookAheads calls all the procedures necessary to calculate the lookaheads for each production in an inconsistent state. If an inconsistency is found (i.e. the grammar is not LALR(1)) the program terminates with an appropriate message.

### 8.4 FINAL PARSE TABLE MODIFICATIONS

Two procedures are of interest here. They are
Procedure CondensePAT
Procedure Elim_Unit_Prods

Figure 8.15
Procedure Elim_Unit_Prods
Figure 8.16

Procedure CondensePat removes all single reduce states from the sparse matrix, renumbering all shift actions as needed.

Procedure Elim_Unit_Prods eliminates unit productions only when there is a chain reduction which stays in the same state. This implys they are independent of lookahead as explained in Chapter 6. Since they are unit productions they must be L-reductions.

### 8.5 THE SHIFT-REDUCE PARSER

There are three procedures of interest in the shift-reduce parser. They are:

Procedure Shift Procedure Reduction Procedure Parse

Figure 8.17
Figure 8.18
Figure 8.19

Procedure Shifts shifts the next state on the parse stack. It is important to realize that only the state is needed on the stack. The terminal or nonterminal symbol is unnecessary.

Procedure Reduction performs either an L-reduction or a straight reduction.
This is a recursive procedure as there can be a chain of reductions.
Procedure Parse parses the input string. It calls shift and reduction until an
error or an accept action is reached.
The following pages contain the program segments which represent the above sections of the program. The two programs (the generator for the LALR(1) parsing action table and the shift-reduce parser) are in the possession of Professor Samuel Gulden.

```
Procedure Closure(statenum: state; LastKernelNum: KernelNums);
(* form closure of state at statenum *)
var
 I: vocab;
 Next,Last:ptr;
 FirstKernel, NextKernel: KernelNums;
 Added: array[Prod] of boolean; (* array of boolean indexed by NT symbols *)
 (* at most each prod is a different NT symbol *)
 (* indicate if NT symbol has been added to the closure *)
 (* if so, don't repeat *)
 Procedure AddProd(NTSymbol: vocab);
 (* add to closure the NT indicated by NTSymbol *)
 var
 I: Prod;
 begin
 for I:= 1 to NumProd do
 if Productions[I].LHS = NTSymbol then
 begin
 if Last = nil then
 begin (* first addition *)
 new(KernelTab[Statenum].ClosurePtr);
 Last := KernelTab[Statenum].ClosurePtr;
 end
 else
 begin
 new(Last`.ClosurePtr);
 Last := Last`.ClosurePtr;
 end;
 Last`.ThisSet.ProdNum := I;
 Last`.ThisSet.DotPlace := 0;
 Last`.ClosurePtr := nil;
 end;
end; (* AddProd *)
begin
 for I:= 1 to LastNonTerm do
 Added[I]:= false;
 FirstKernel := KernelTab[StateNum].KernelRef;
 Last := Nil;
 for NextKernel := FirstKernel to LastKernelNum do
 (* check kernel items *)
 with KernelSets[NextKernel] do
 if (DotPlace < Productions[ProdNum].NumElem) then
 if (Productions[ProdNum].RHS[DotPlace+1] <= LastNonTerm) then
```

(* add NT to closure if not already in *)
if Added[Productions[ProdNum].RHS[DotPlace +1$]$ ] $=$ false then begin AddProd(Productions[ProdNum].RHS[DotPlace+1]); Added $[$ Productions $[$ ProdNum].RHS[DotPlace+1]] := true; end;
(* check closure items *)
Next := KernelTab[StateNum].ClosurePtr;
while next <> nil do
begin
with next ${ }^{\wedge}$.ThisSet do
if Productions[ProdNum].NumElem $<>0$ then
if Productions[ProdNum].RHS[1] $<=$ LastNonTerm then
(* add NT to closure if not already in *)
if Added[Productions[ProdNum].RHS[1]] = false then begin AddProd(Productions[ProdNum].RHS[1]); Added[Productions[ProdNum].RHS[1]] := true; end; (* if $*$ )
Next $:=$ Next $^{\wedge}$.ClosurePtr;
end; (* while *)
end; (* closure *)
FIGURE 8.1 CLOSURE,CONTINUED
Procedure GoToSet(var OneSet: SetRec; var Temp: KernelNums; I: vocab; LastStateNum: state);
(* Add a new kernel item to the next set if the kernel item being checked (OneSet) has the vocab symbol under consideration (I) after the dot. This check is made for every possible vocab symbol and for each item in the current state. The new set (state) is being created at
LastStateNum +1
*)
begin
with OneSet do
if DotPlace < Productions[ProdNum].NumElem then
if ( Productions[ProdNum].RHS[DotPlace +1$]=I$ ) then
begin (* go to *)
If Temp $=$ MaxKernelNum then
Fatal(13);
Temp := Temp + 1;
if LastStateNum $=$ MaxStateNum then
Fatal(14);
(* move the dot *)
KernelSets[Temp].ProdNum := ProdNum;
KernelSets[Temp].DotPlace := DotPlace +1 ;
end; ( $*$ if $*$ )
end; (* GoToSet *)
FIGURE 8.2 Procedure GoToSet

```
Function CheckGoTo(J:state; OldKerNum, Temp:KernelNums): boolean;
(* return true if this state - J - is a different kernel state *)
(* return false if this state - J - already exists in an earlier state *)
(* This procedure checks the state formed by GoToSet
var
 I1, I2, K1: KernelNums;
 found: boolean;
begin
 found := false;
 I1 := KernelTab[J].KernelRef;
 if J = LastStateNum then
 I2 := LastKernelNum
 else
 I2 := KernelTab[J+1].KernelRef-1;
 if (I2-I1) <> (Temp - OldKerNum) then
 CheckGoTo := true (* must be different *)
 else
 begin
 repeat
 k1 := OldKerNum;
 repeat
 if (KernelSets[I1].ProdNum = KernelSets[k1]. ProdNum) and
 (KernelSets[I1].DotPlace = KernelSets[K1].DotPlace) then
 found := true;
 K1:= K1 + 1;
 until found or (K1 > Temp);
 I1 := I1 + 1;
 until (not found) or (I1 > I2);
 CheckGoTo := not found;
 end; (* else *)
end; (* CheckGoTo *)
```

Procedure FormGoTo( CurrentState, St:state; I: vocab);
(* form the GoTo Function and PAT for shifts *)
(* attach to GoTo Tab - both acroos and down pointers *)

```
var
 Across: ParsePtr;
 Down:ParsePtr;
begin
 if GoToTab[CurrentState] = nil then
 begin (*1st element *)
 new(GoToTab[CurrentState]);
 Across \(:=\) GoToTab[CurrentState];
 end
 else
 begin
 across \(:=\) GoToTab[CurrentState];
 while (Across \({ }^{\wedge}\).NextRec \(<>\) nil) do
 across \(:=\) across \({ }^{\wedge}\). NextRec;
 new(across \({ }^{\wedge}\).NextRec);
 across \(:=\) across \({ }^{\wedge}\).NextRec;
 end;
 with across^ do
 begin
 StNum := CurrentState;
 VocabNum :=I;
 Action.op :=S;
 Action.num2 := St;
 NextRec := nil;
 DownRec := nil;
 if I <= LastNonTerm then
 Ref \(:=\) LastNTTrans; (* add ref to PAT for non term trans *)
 end;
 (* add down pointers *)
 if DownTab[I] = nil then
 DownTab[I] := across
 else
 begin
 Down:= DownTab[I];
 while (Down ^.DownRec \(<>\) nil) do
 down \(:=\) down \({ }^{\wedge}\).DownRec;
 Down ^.DownRec := across;
 end;
 end; (* FormGoTo *)
```

        FIGURE 8.4 Procedure FormGoTo
    Procedure BuildCFSM(var LastStateNum: state; var LastKernelNum: KernelNums); (* 1) build LR[0] machine
2) create NonTerminal transition array
3) Create array of Production Look Aheads in inconsistant states *)
var
CurrentState, St :state;
I: vocab;
TempLastKernel, J, K: KernelNums;
Across: ptr;
1
New: boolean;
Shift: boolean; (* is there a shift in a state *)
Reduce: integer; (* number of reductions in a state $*$ )
ReduceNum : set of Prod; (* production \# for reductions *)
P: Prod;
begin
KernelTab[0].ClosurePtr $:=$ nil; (* create start state $*)$
KernelTab[0].KernelRef $:=0$;
KernelSets[0].ProdNum :=1;
KernelSets[0].DotPlace :=0;
LastKernelNum :=0;
LastStateNum :=0;
CurrentState $:=0$;
Closure ( 0,0 );
For $I:=1$ to LastTerm do
DownTab[I]:= nil;
LastNtTrans : $=1$;
LastProdLA :=1;
repeat (* create all GoTo states *)
GoToTab[CurrentState] := nil;
for $\mathrm{I}:=1$ to LastTerm do
begin (* check each symbol after dot to form goto *)
if CurrentState < LastStateNum then
$\mathrm{K}:=$ KernelTab[CurrentState+1].KernelRef -1
else
$\mathrm{K}:=$ LastKernelNum;
TempLastKernel := LastKernelNum;
(* forming GoTo(CurrentState,I) $=$ LastStateNum *)
(* kernel items *)
for $\mathrm{J}:=$ KernelTab[CurrentState].KernelRef to K do
GoToSet(KernelSets[J],TempLastKernel,I,LastStateNum);
(* closure items *)
across $:=$ KernelTab[CurrentState].ClosurePtr;
while across <> nil do
begin
GoToSet(across ^.ThisSet,TempLastKernel,I, LastStateNum);
across $:=$ across ${ }^{\wedge}$. ClosurePtr;
end;

FIGURE 8.5 Procedure BuildCFSM

```
 (* were any new kernel items added *)
(* if not, no state was formed *)
if (TempLastKernel > LastKernelNum) then
 begin (* check if have new kernel *)
 St:=0;
 repeat
 new := CheckGoTo(St, LastKernelNum + 1, TempLastKernel);
 St:=St+1;
 until (not new) or (St > LastStateNum);
 if new then
 begin (* this is a new state \(*\))
 LastStateNum := LastStateNum +1;
 FormGoTo(CurrentState, LastStateNum, I);
 with KernelTab[LastStateNum] do
 begin
 ClosurePtr := nil;
 KernelRef := LastKernelNum +1;
 end;
 LastKernelNum := TempLastKernel;
 closure(LastStateNum, LastKernelNum);
 end (* if new *)
 else (* are going to an earlier, pre-existing state *)
 FormGoTo(CurrentState,St-1,I);
 (* form NonTerminal transitions *)
 if (\(\mathrm{I}<=\) LastNonTerm) then
 begin (\(*\) non terminal transition \(*\))
 NTTrans[LastNTTrans].StNum \(:=\) CurrentState;
 NTTrans[LastNTTrans].NonTerm := I;
 if LastNtTrans \(=\) MaxNTTrans then
 Fatal(15);
 LastNTTrans \(:=\) LastNTTrans +1 ;
 end;
 end; (* if *)
end; (\(*\) for \(\mathrm{I} *)\)
(* check Current State for LR[0] consistency *)
Shift:= false;
Reduce: \(=0\);
ReduceNum := [];
for J:= KernelTab[CurrentState].KernelRef to K do
 if KernelSets[J].DotPlace <
 Productions[KernelSets[J].ProdNum].NumElem then
 Shift:= true
 else
 begin
 Reduce: \(=\) Reduce +1 ;
 ReduceNum := ReduceNum + [KernelSets[J].ProdNum];
 end;
across: \(=\) KernelTab[CurrentState].ClosurePtr;
```

FIGURE 8.5 BuildCFSM, CONTINUED

```
 while across <<> nil do
 begin
 if across^.ThisSet.DotPlace <
 Productions[across `.ThisSet.ProdNum].NumElem then
 Shift:= true
 else
 begin
 Reduce:= Reduce +1;
 ReduceNum := ReduceNum + [across^.ThisSet.ProdNum];
 end;
 across := across^.ClosurePtr;
 end; (* while *)
 if ((Shift = true) and (Reduce <> 0)) or (Reduce >1) then
 begin (* have an inconsistent state *)
 Writeln(List,CurrentState:1,' is an inconsistent state');
 (* add to Prod LookAheads *)
 for P := 1 to NumProd do
 if P IN ReduceNum then
 begin
 ProdLAS[LastProdLA].ProdStNum := CurrentState;
 ProdLAS[LastProdLA].ProdRed := P;
 if LastProdLA = MaxProdLA then
 Fatal(16);
 LastProdLA := LastProdLA + 1;
 end; (* for and if *)
 end; (* if *)
 if (CurrentState = MaxStateNum) then
 fatal(14);
 CurrentState := CurrentState + 1;
 until CurrentState > LastStateNum;
end; (* BuildCFSM *)
```

```
procedure DirectRead;
(* add the direct reads to initialize each ReadFollow for
 each non terminal transition *)
var
 I: NumNTTrans;
 across: ParsePtr;
 NextSt:state;
 J: vocab;
begin
 for I:= 1 to (LastNTTrans -1) do
 with NTTrans[I] do
 begin
 ReadFollow := [];
 across := GoTo'Tab[StNum];
 while (across^.VocabNum <> NonTerm) do
 across := across^.NextRec;
 NextSt := across^.action.num2;
 across := GoToTab[NextSt];
 while across <> nil do
 begin
 if (across^.VocabNum > LastNonTerm) then
 ReadFollow := ReadFollow + [across }\mp@subsup{}{}{\wedge}\mathrm{ .VocabNum];
 across := across^.NextRec;
 end; (* while *)
 end; (* with *)
end; (* directly reads *)
```

procedure TraverseBack(var First, Tree:TraPtr; st:state; num: Prod;
length:integer);
(* traverse back in GoTo function to make the include list for each non terminal trans and the look-back list for each production in the lookahead list. This procedure is called recursively as there may be several paths back
var
across, Ptr: ParsePtr;
J : vocab;
begin
if length $=0$ then
(* have gone back all the way *)
begin (* are at last state $*)$
if tree $=$ nil then
begin (* add to TraPtr List for *)
new(tree); (* Lookback or includes *)
First := tree;
end
else
begin
new(tree ${ }^{\wedge}$.next);
tree $:=$ tree^.next;
end;
across : = GoToTab[st];
while (across^. VocabNum $<>$ Productions[num].LIIS ) do
across $:=$ across $^{\wedge}$. NextRec;
tree^.Ref $:=$ across^.Ref; (* Ref - NTTrans arrary element *)
tree^.next $:=$ nil;
end
else (* keep going back *)
begin
$\mathrm{J}:=$ Productions[num].RHS[length];
length $:=$ length -1 ;
$\operatorname{Ptr}:=$ DownTab[J]; (* going down vocab symbols $*$ )
while ( $\mathrm{Ptr}<>$ nil ) do
begin
if ( $\mathrm{Ptr}^{\wedge}$.action.num2 $=$ st) then
TraverseBack(First,tree , Ptr^. .StNum,num, length);
$\mathrm{ptr}:=\mathrm{ptr}{ }^{\wedge}$. DownRec; $\quad(*$ next state for this vocab symbol $*)$
end; (* while *)
end; (* else *)
end; (* TraverseBack *)

```
procedure LookBack;
(* calculate the look-back relation for each production reduction
 in an inconsistent state *)
var
 I: NumProdLA;
 Length: integer;
 First:TraPtr;
begin
 for \(I:=1\) to (LastProdLA - 1) do
 begin
 length := productions[ProdLAS[I].ProdRed].NumElem;
 ProdLAS[I].Next := nil;
 TraverseBack(First, ProdLAS[I].next, ProdLAS[I].ProdStNum,
 ProdLAS[I].ProdRed, length);
 ProdLAS[I].Next \(:=\) First;
 end; (* for *)
end; (* LookBack *)
```

FIGURE 8.8 Procedure LookBack
procedure CkIncludes(OneSet:SetRec; I:NumNTTrans; var First:TraPtr);
(* Check if set record OneSet can go to lambda after DotPlace +1
i.e., if it should be added to the includes relation for NTTrans I *)
var
J : integer;
lambda: boolean;
begin
with OneSet do
if $($ DotPlace +1$)=$ Productions[ProdNum].NumElem then
(* followed by lambda *)
TraverseBack(First, NTTrans[I].next, NTTrans[I].StNum,
ProdNum, DotPlace)
else (* check all productions after DotPlace $+1 *$ )
begin
$\mathrm{J}:=\operatorname{DotPlace}+2 ;(*$ first one to check $*)$
lambda $:=$ true;
while (( $\mathrm{J}<=$ Productions[ProdNum].NumElem ) and lambda ) do
if ( Productions[ProdNum].RHS[J] In NullNonTerms ) then
$\mathrm{J}:=\mathrm{J}+1$
else
lambda := false;
if lambda then
(* can go to lambda *)
TraverseBack(First,NTTrans[I].next, NTTrans[I].StNum,
ProdNum, DotPlace);
end; (* else *)
end; (* CkIncludes *)

```
 procedure Includes;
 (* calculate includes relation for all non terminal transitions *)
 var
 I: NumNTTrans;
 J,K: KernelNums;
 across: ptr;
 St:state;
 First:TraPtr;
 begin
 for I:= 1 to (LastNTTrans - 1) do
 begin (* access all elements in nonterminal trans array *)
 First := nil;
 NTTrans[I].next := nil;
 st:= NTTrans[I].StNum;
 if st < LastStateNum then
 K := KernelTab[st + 1].KernelRef - 1
 else
 K:= LastKernelNum;
 (* kernel items *)
 (* check all items in state of NTTrans[I] to see if after
 reading the nonterminal transition under consideration
 the rest can go to lambda *)
 for J:= KernelTab[st].KernelRef to K do
 if Productions[KernelSets[J].ProdNum].NumElem <>
 KernelSets[J].DotPlace then
 if (Productions[KernelSets[J].ProdNum].RHS[KernelSets[J].DotPlace +1]
 = NTTrans[I].NonTerm) then
 CkIncludes(KernelSets[J], I,First);
 (* closure *)
 across := KernelTab[st].ClosurePtr;
 while across <> nil do
 begin
 if Productions[across`.ThisSet.ProdNum].NumElem <>
 across^.ThisSet.DotPlace then
 if (Productions[across^.ThisSet.ProdNum].RHS[across^.ThisSet.DotPlace+1]
 = NTTrans[I].NonTerm) then
 CkIncludes(across^.ThisSet,I,First);
 across := across^.ClosurePtr;
 end;
 NTTrans[I].next := First; (* connect beginning *)
 end; (* for *)
end; (* Includes *)
```

```
procedure Traverse(X: NumNTTrans; var DepthOfSt:integer; Relation: char);
 (* called by Digraph algorithm below *)
 (* adaptation of DeReemer's and Pennello's algorithm *)
var
 NewPtr: TraPtr; (* used in forming Reads relation locally *)
 RelationPtr: TraPtr; (* accesses Includes or Reads relation *)
 Ptr: ParsePtr;
 Y, element : NumNTTrans;
 d: integer;
 Procedure FormReads;
 (* form reads relation *)
 var
 NextSt: state;
 done: boolean;
begin
 Ptr:= GoToTab[NTTrans[X].StNum];
 while (Ptr^.VocabNum <> NTTrans[X].NonTerm) do
 Ptr := Ptr^.NextRec;
 NextSt := Ptr`.Action.Num2;
 RelationPtr := nil;
 Ptr := GoToTab[NextSt];
 done := false;
 while not done do
 if ptr = nil then
 done := true
 else if (Ptr^}\mp@subsup{}{}{\wedge}\mathrm{ .VocabNum > LastNonTerm) then
 done := true
 else if (Ptr^.VocabNum IN NullNonTerms) then
 begin
 if RelationPtr = nil then
 begin
 new(RelationPtr);
 NewPtr := RelationPtr;
 end
 else
 begin
 new(NewPtr^.Next);
 NewPtr := NewPtr^.Next;
 end;
 NewPtr^.Ref := Ptr^.Ref;
 NewPtr^.Next := nil;
 Ptr := Ptr ^.NextRec;
 end
 else
 Ptr := Ptr^.NextRec;
 end; (* FormReads *)
```

```
begin (* Traverse *)
 push(X, DepthOfSt);
 d := DepthOfSt;
 NTTrans[X].StDepth := d;
 (* complete the closure process *)
 if Relation = 'R' then
 FormReads
 else
 RelationPtr := NTTrans[X].Next; (* Includes *)
 while RelationPtr <> nil do
 begin
 Y:= RelationPtr`.Ref;
 if (NTTrans[Y].StDepth = 0) then
 Traverse(Y, DepthOfSt,Rclation);
 if (NTTrans[X].StDepth > NTTrans[Y].StDepth) then
 NTTrans[X].StDepth := NTTrans[Y].StDepth;
 NTTrans[X].ReadFollow := NTTrans[X].ReadFollow + NTTrans[Y].ReadFollow;
 RelationPtr := RelationPtr }\mp@subsup{}{}{\wedge}.Next
 end; (* while *)
if (NTTrans[X].StDepth = d) then
 begin
 NTTrans[Stack^.Num].StDepth := MaxInt;
 if (Stack^.Num <> X) then
 NTTrans[Stack^.Num].RcadFollow := NTTrans[X].ReadFollow;
 pop(element,DepthOfSt);
 while (element <> X) do
 begin
 NTTrans[Stack^.Num].StDepth := MaxInt;
 if (Stack^.Num <> X) then
 NTTrans[Stack^.Num].ReadFollow := NTTrans[X].ReadFollow;
 pop(element,DepthOfSt);
 end; (* while *)
 end;(* if *)
end; (* Traverse *)
```

Procedure Digraph(Relation:char);
(* DeReemer's Digraph algorithm for traversing the Digraph
the GoToFunction - to apply the Reads and Includes Relations *)

```
var
 I: NumNTTrans;
 DepthOfSt: integer;
begin
 for I:= 1 to (LastNTTrans-1) do
 NTTrans[I].StDepth := 0;
 Stack := nil;
 DepthOfSt := 0;
 for I:= 1 to (LastNTTrans - 1) do
 if NTTrans[I].StDepth = 0 then
 Traverse(I, DepthOfSt, Relation);
end; (* Digraph *)
```

FIGURE 8.12 Procedure Digraph
procedure Union(J: NumProdLA);
(* Take the union - for each production in an inconsistent
state - of the follow in that productions's look-Back. *)
(* Also call attach to add the reductions to PAT.
Check for consistency in each state and report any inconsistent states *)
var
Follow: set of vocab;
First: ParsePtr;
Ptr: TraPtr;
done: boolean;
v: vocab;
I: NumNTTrans;
st: state;
begin
Ptr := ProdLAS[J].Next;
Follow := [];
writeln(List,'The Follow for Production-LookAheads for Item ', J:1);
while ( $\mathrm{Ptr}<>$ nil ) do
begin
I $:=$ Ptr ${ }^{\wedge}$.Ref;
Follow := Follow + NTTrans[I].ReadFollow;
Ptr $:=\operatorname{Ptr}{ }^{\wedge}$.Next;
end;
(* add to PAT - attach and check LALR[1] consistency *)
(* PRINT ALL FOLLOW PLUS INCONSISTENT STATES *)
st $:=$ ProdLAS[J]. ProdStNum;
First := GoToTab[st];

```
 for v:= (LastNonTerm + 1) to LastTerm do
 begin
 if v IN Follow then
 begin
 write(List, v:1,',');
 if GoToTab[st] = nil then
 attach(First,v,st,ProdLas[J].ProdRed)
 else
 begin
 done := false;
 while not done do
 begin
 if ((First = GoToTab[st]) and (v <= First`.VocabNum)) then
 begin
 done := truc;
 if (v = First }\mp@subsup{}{}{`}.VocabNum) the
 begin
 writeln(List,'Inconsistent LALR[1] st ',St:1,
 ' with production LA ', J:1);
 LALR1 := false;
 end;
 attach(First, v,st, ProdLAS[J].ProdRed);
 end
 else if (First`.NextRec <> nil) then
 begin
 if (v <= First`.NextRec^.VocabNum) then
 begin
 done := true;
 if (v = First`.NextRec`.VocabNum) then
 begin
 writeln(List,'Inconsistent LALR[1] st ',St:1,
 ' with production LA ', J:1);
 LALR1 := false;
 end;
 attach(First, v, st, ProdLAS[J].ProdRed);
 end;
 end
 else (* are at end of state *)
 begin
 done:= true;
 attach(First,v,st,ProdLAS[J].ProdRed);
 end;
 if (not done) then
 First := First`.NextRec;
 end; (* while *)
 end; (* else *)
 end; (* if v IN Follow *)
 end; (* for *)
 writeln(List);
end; (* Union *)
 FIGURE 8.13 Union, CONTINUED
```

```
procedure FindLookAheads;
(* calculate lookaheads for each production in an inconsistent state *)
var
 J: NumProdLA;
begin
 DirectRead;
 LookBack;
 Includes;
 if NullNonTerms <> [] then
 Digraph('R');
 Digraph('I');
 LALR1 := true;
 for J:= 1 to (LastProdLA - 1) do
 Union(J);
 if (not LALR1) then
 Fatal(18);
end;
```

                                    FIGURE 8.14 Procedure FindLookAheads
    procedure CondensePAT;
(* remove all single reduce states from PAT *)
var
I, J: integer;
NumSinRedElim: state; (* the number of single reduce states you have
eliminated *)
Reduction : Prod;
found: boolean;
Ptr: ParsePtr;
begin
NumSinRedElim := 0;
$\mathrm{I}:=0$;
repeat
found := false;
while ( not found ) do
if $\mathrm{I}<=$ LastStateNum then
if GoToTab[I] = nil then
found := true
else
$\mathrm{I}:=\mathrm{I}+1$
else
found := true;
if I <= LastStateNum then
begin (* have found a single reduce state $*$ )
$\mathrm{J}:=$ KernelTab[I + NumSinRedElim].KernelRef;
Reduction := KernelSets[J].ProdNum;

```
 for J := 0 to LastStateNum do
 begin (* go thru entire PAT *)
 Ptr:= GoToTab[J];
 while Ptr <> nil do
 begin
 if Ptr`.Action.op = S then
 if Ptr}\mp@subsup{}{}{\wedge}.Action.num2 = I then
 begin (* is a shift to the state to be eliminated *)
 Ptr}\mp@subsup{}{}{\wedge}\mathrm{ .Action.op := L;
 Ptr`.Action.num1 := Reduction;
 end
 else
 if Ptr`}\mp@subsup{}{}{\wedge}\mathrm{ .Action.num2 > I then
 Ptr^.Action.num2 := Ptr`.Action.num2-1;
 Ptr := Ptr^.NextRec;
 end; (* while *)
 end; (* for *)
 for J := I to (LastStateNum-1) do
 GoToTab[J]:= GoToTab[J + 1];
 NumSinRedElim := NumSinRedElim + 1;
 LastStateNum := LastStateNum - 1;
 end; (* if *)
 until(I > LastStateNum);
end; (* CondensePAT *)
```

FIGURE 8.15 CondensePAT, CONTINUED

```
Procedure Elim_Unit_Prods;
(* eliminate unit productions only per state for L-reductions
 which are unit and thus will remain in the same state
var
 I: integer;
 UnitProd: set of prod;
 NewNumProd: prod; (* the elimination creats new productions *)
 s: state;
 Ptr1, Ptr2: ParsePtr;
 changes: integer; (\(*\) indicates if any new changes were made
 to the parse table and if there is a
 possibility to add a pseudo-production \(*\))
```

                FIGURE 8.16 Procedure Elim_Unit_Prods
    ```
Procedure Check_Prods;
(* check if a new unit production must be added to our set of productions *)
var
 found: boolean;
 I: integer;
begin
 found := false;
 I := NumProd + 1;
 while (I <= NewNumProd) and (not found) do
 (* search for production *)
 if (Productions[I].LHS = Productions[Ptr1^.Action.num1].LHS)
 and
 (Productions[I].RHS[1] = Ptr2^.VocabNum) then
 found := true
 else
 I := I + 1;
 if found then
 Ptr2^.Action.num1:= I
 else
 begin (* make new prod *)
 if (NewNumProd = MaxNumProd) then
 fatal(8);
 NewNumProd:= NewNumProd + 1;
 Productions[NewNumProd].LHS := Productions[Ptr1^.Action.num1].LHS;
 Productions[NewNumProd].NumElem := 1;
 Productions[NewNumProd].RHS[1]:= Ptr2^.VocabNum;
 UnitProd := UnitProd + [NewNumProd];
 Ptr2^.Action.num1 := NewNumProd;
 end; (* else *)
end; (* Check_Prods *)
begin
 UnitProd := [];
 changes:=0;
 for I:= 1 to NumProd do
 if (Productions[I].NumElem = 1) then
 begin
 UnitProd := UnitProd + [I];
 if (Productions[I].RHS[1] <= LastNonTerm) then
 changes :=1; (* RHS is a nonterm *)
 end;
 NewNumProd := NumProd;
 if changes > 0 then
 begin
 for s:= 0 to LastStateNum do
 repeat
 changes:= 0;
 Ptr1:= GoToTab[s];
 FIGURE 8.16 Elim_Unit_Prods, CONTINUED
```

```
 while ptr1 <> nil do
 begin
 if (Ptr1^.Action.op = L) then
 if (Ptr1^.Action.num1 IN UnitProd) then
 if Productions[Ptr1^.Action.num1].RHS[1] <= LastNonTerm then
 begin (* RHS is a nonterm - look for it *)
 ptr2 := GoToTab[s];
 while (Ptr2 <> nil) do
 begin
 If ((Ptr2 <> Ptr1) and (Ptr2^.Action.op = L)) then
 if ((Ptr1^.VocabNum = Productions[Ptr2^.Action.num1].LHS)
 and
 (Ptr2^.Action.num1 IN UnitProd)) then
 begin
 changes := 1;
 Check_Prods;
 end;
 ptr2 := Ptr2 2^.NextRec;
 end; (* while Ptr2*)
 end; (* if *)
 Ptr1 := Ptr1^.NextRec;
 end; (* while Ptr1 *)
 until (changes = 0); (* are done with a state if no changes made *)
 If NewNumProd > NumProd then
 begin
 writeln(List,'The Pseudo-Productions added are');
 for changes }:=(\mathrm{ NumProd +1) to NewNumProd do
 Write_Prod(changes, MaxProdLen + 1);
 end;
 NumProd := NewNumProd;
 end; (* if UnitProd <> nil *)
end; (* Elim *)
```

FIGURE 8.16 Elim_Unit_Prods, CONTINUED

```
Procedure Shift(NextState:state);
(* shift a terminal symbol or a non-terminal symbol on the stack
 by putting the next state on the stack
 *)
var
 stk: stack;
begin
 new(stk);
 stk^.st := NextState;
 stk^.next := TOS;
 TOS := stk;
end; (* shift *)
```

Procedure Reduction( reduce:prod; var CurrentAction: OpType);
(* perrform either an L-reduction or a straight reduction *)
(* recursive call *)
(* SearchPAT is the call to the binary search routine for PAT *)
I, NumTimes: integer;
VocabSym: vocab;
CurrentState: state;
entry: integer;
begin
NumTimes $:=$ Productions[reduce].Num Elem;
if (CurrentAction $=\mathrm{L}$ ) then
NumTimes := NumTimes - 1;
for $\mathrm{I}:=1$ to NumTimes do TOS $:=$ TOS $^{\wedge}$.next; $\quad(*$ pop stack $*)$
VocabSym := Productions[reduce].LHS; (* non term *)
CurrentState $:=$ TOS^.st;
entry $:=$ SearchPAT(GoToTab[CurrentState].first,
GoToTab[CurrentState + 1].first - 1, VocabSym);
if (entry $=0$ ) then
fatal(3); (* impossible situation *)
CurrentAction :=PAT[entry].Action.Op;
case CurrentAction of
S: shift(PAT[entry].Action.num2);
L: Reduction(PAT[entry].Action.num1, CurrentAction);
R : fatal(4); (* impossible situation - cannot have reduce in the non term part of the GoTo table *)
AC: ;
end; (* case *)
end; (* reduction *)

```
Procedure Parse;
(* parse the input string *)
(* SearchPAT is the call to the binary search rtn for the PAT *)
var
 CurrentAction: OpType;
 CurrentState: state;
I, entry: integer;
 NextState: state;
 begin
 repeat
 CurrentState:= TOS`.st;
 entry := SearchPAT(GoToTab[CurrentState].first,
 GoToTab[CurrentState + 1].first - 1, NextToken);
 if entry = 0 then
 (* default action *)
 if (GoToTab[CurrentState].default <= NumProd) then
 begin (* actual reduction *)
 CurrentAction := R;
 Reduction(GoToTab[CurrentState].default, CurrentAction);
 end
 else
 CurrentAction := ER
 else (* found an entry - no default *)
 begin
 CurrentAction := PAT[entry].Action.op;
 Case CurrentAction of
 S: begin
 NextState:= PAT[entry].Action.num2;
 shift(NextState);
 NextSym;
 end;
 R: Reduction(PAT[entry].Action.num1,CurrentAction);
 L: begin
 Reduction(PAT[entry].Action.num1,CurrentAction);
 if (CurrentAction <> AC) then
 NextSym; (* go past original terminal in the L-reduction *)
 end;
 AC: ;
 ER:; (* never in PAT *)
 end; (* case *)
 end; (* else *)
 until ((CurrentAction = ER) or (CurrentAction = AC));
 if (CurrentAction = ER) then
 List_Errors(CurrentState)
 else
 begin
 writeln(output, 'Parse O.K. ');
 writeln(List,' Parse O.K. ');
 end;
end; (* Parse *)

\section*{BIBLIOGRAPHY}

Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D. 1987. Compilers, Techniques, and Tools. Reading, Mass. : Addison - Wesley.

Barrett, William A., and Couch, John D. 1979. Compiler Construction : Theory and Practice. U.S.A. : Science Research Associates, Inc.

DeReemer, Frank, and Pennello, Thomas. 1982. "Efficient Computation of LALR(1) Look-Ahead Sets." ACM Transactions on Programming Languages and Systems, 4(4), pp. 615-648.

Fischer, Charles N., and LeBlanc, Jr., Richard J. 1988. Crafting A Compiler. Menlo Park, California : The Benjamin/Cummings Publishing Co.

Korenjak, A. J. 1969. "A Practical Method for Constructing LR(K) Processes," Comm. ACM 12(11), pp. 613-623.

Kristensen, Bent Bruun, and Madsen, Ole L. 1981. "Methods for Computing LALR(K) Lookahead." ACM Transactions on Programming Languages and Systems, 3(1), pp. 60 82.

Pyster, Arthur B. 1980. Compiler Design and Construction. Boston, Mass. : PWS Publishers.

Tremblay, Jean-Paul, and Sorenson, Paul G. 1985. The Theory and Practice of Compiler Writing. U.S.A. : McGraw-Hill, Inc.

Wood, Derrick. 1987. Theory of Computation. New York, N.Y. : Harper\&Row.

\section*{APPENDIXES}

\section*{APPENDIX A - INPUT AND OUTPUT FOR Gen_LALR1_Parse_Table Program}

\section*{I. File References}
1) The user is prompted to enter the file name containing the nonterminal, terminal symbols and productions in the grammar. The program displays on the screen:

Input >
2) After entering the file name containing the grammar symbols, the user is prompted to specify a file name for diagnostic output (collection of sets, etc.). The program displays on the screen:

List File For Sets >
If the output is to be to the screen, the user presses return.
3) If the grammar is found to be LALR(1) the program prompts the user to enter the file name in which to write the parse table and other necessary items which will be input to the shift-reduce parser. For this the program displays on the screen:

The input file for the Parse Program is being created

\section*{List File For This File >}

If the grammar was not \(\operatorname{LALR}(1)\) the following message is printed to the screen and no parse table is written:

The grammar is not \(\operatorname{LALR}(1)\), no table is created.

\section*{II. Entering the grammar}

The grammar is entered in the following order. Neither the augmented production symbol nor the augmented production are entered. The program creates these. All nonterminal and terminal symbols are converted to upper case letters.
1) Nonterminal Symbols
a) The nonterminal symbols are preceeded by the symbol ' \(<\) ' and terminated by the symbol '>'.
b) The start symbol of the grammar must be entered first.
c) The symbols must be separated by blanks.
d) The list may take as many lines as needed.
2) Terminal Symbols
a) All terminal symbols must be separated by blanks.
b) Entering the symbol id will permit the parse program to input standard user-defined id names (i.e. a, b. c1, etc.) as part of the grammar.
c) entering the symbol intliteral will permit the parser program to input integers as part of the grammar.
d) The list of terminal symbols may span multiple lines.
e) The list of terminal symbols is terminated by the end-of-string character (EOS) defined in the program. Currently this is the '\#' symbol. This is defined in the CONST definition of the program and may be changed if needed.
3) Productions
a) Each production starts with the symbol ' \(\ll\) ' and is terminated by the string ' \(\gg\) '.
b) The production is entered in the form
\[
\ll \text { LHS }->\text { RHS } \gg
\]
c) LHS must, of course, be a nonterminal. If it isn't, the program terminates with an error message. If LHS is absent, the LHS of the preceeding production is assumed.
d) ' \(-->\) ' is the symbol which must be used for arrowsym.
e) RHS is a series of nonterminal and terminal symbols. If the RHS is absent,

Lambda is assumed. Thus, to enter a \(\lambda\) nonterminal \(X\) enter
\[
\ll \quad \mathrm{X} \quad-\mathrm{l}, \quad \gg
\]
f) RHS may span multiple lines.
g) The list of productions are terminated by the string 'endofprocs'.

Included below is the actual input for the expression grammar G1 and for PL0.
GRAMmAR G1
```

< T T F A M >
( ) + - * / ID IN'TLITERAL \#
<< E --> T >>
<< E --> E A T >>
<< T --> F >>
<< T --> T M F >>
<< F --> ( E ) >>
<< F --> ID >>
<< F --> INTLITERAL >>
<< A --> + >>
<< A --> - >>
<< M --> * >>
<< m --> / >>
ENDOFPROCS

```

PL0
< program cpart ctail vpart ppart block statement cstat condition expression sign term factor addop sexpression sxptail relop ttail mulop vtail
. , ; id \(=:=\) exec begin end
if then while do odd
\(<><><=>=+-* /()\)
intliteral const var procedure \#
<< program --> block . >>
\(\ll\) cpart \(->\) const id \(=\) intliteral ctail ; \(\gg\)
\(\ll\) cpart --\gg>
\(\ll\) ctail \(->\), id \(=\) intliteral ctail \(\gg\)
\(\ll\) ctail --> \(\gg\)
\(\ll\) vpart \(-->\) var id vtail ; \(\gg\)
<< vpart --> \(\gg\)
<< ppart --> procedure id ; block ; ppart >>
<< ppart --\gg>
\(\ll\) block --> cpart vpart ppart statement \(\gg\)
\(\ll\) statement --> id := expression \(\gg\)
\(\ll\) statement \(->\) exec id \(\gg\)
\(\ll\) statement \(-->\) begin statement cstat end \(\gg\)
```

<< statement --> >>
<< statement --> if condition then statement >>
<< statement --> while condition do statement >>
<< cstat --> ; statement cstat >>
<< cstat --> >>
<< condition --> odd expression >>
\lll ~ c o n d i t i o n ~ - - > ~ e x p r e s s i o n ~ r e l o p ~ e x p r e s s i o n ~ \gg ~
<< expression --> sexpression >>
<< expression --> sign sexpression >>
<< sign --> + >>
<< sign --> - >>
<< term --> factor ttail >>
<< factor --> id >>
<< factor --> intliteral >>
<< factor --> ( expression ) >>
<< addop --> + >>
<< addop --> - >>
<< sexpression --> term sxptail >>
<< sxptail --> addop term sxptail >>
<< sxptail --> >>
<< relop --> = >>
<< relop --> <> >>
<< relop --> < >>
<< relop --> > >>
<< relop --> >= >>
<< relop --> <= >>
<<ttail --> mulop factor ttail >>
<< ttail --> >>
<< mulop --> * >>
<< mulop --> / >>
<< vtail --> , id vtail >>
<< vtail --> >>
endofprocs

```
III. Diagnostic Output

The output produced in the file specified by the user after the prompt
List File For Sets >
is as follows:
1) The number representation of each terminal and nonterminal symbol. The start of its location in VocabTab. The actual character string of the terminal or nonterminal.

This information is necessary since most of the diagnostic output references the number
representation, not the actual string.
2) The location of LastNonTerm in VocabInt. The location of LastTerm in VocabInt. The last location used in VocabTab (the location for the EOS symbol).
3) All productions in the grammar.
4) The number of null nonterminals, and the null nonterminals, if any.
5) The inconsistent states, if any.
6) A message indicating if the grammar is \(\operatorname{LR}(0)\). If there are any inconsistent states listed in 5 , the grammar is, of course, not \(\operatorname{LR}(0)\).
7) The \(L R(0)\) collection of item sets.
8) The number of nonterminal transitions and the actual nonterminal transitions listed as (state, number representation for nonterminal transition).
9) The number of lookahead productions (LA) for which lookaheads needed to be calculated and the actual list of productions shown as (state, production number).
10) The Directly Reads calculated by the program for each nonterminal transition shown as a list of terminal symbols (their number representation).
11) The lookback calculated for each lookahead production shown as a list of nonterminal transitions (number 8 above).
12) The includes relation, if any, for each nonterminal transition shown as a list of nonterminal transitions (number 8 above).
13) The Follow for each production lookahead shown as a list of terminals (their number representation). If an inconsistent state is found at this point it is reported as

Inconsistent LALR(1) state \# with production LA \#
14) Any new Pseudo-Productions added by eliminating unit productions.
15) The final parsing action table (without the default entries).

The following is the actual output created for the expression grammar G1.
```

1 1 augsym
2 7 E
3 8 T
4 9 F
5 10 A
6 11 M
7 12
8 13 )
9 14 +
10 15
11 16 *
12 17 /
13 18 ID
14 20 INTLITERAL
15 30 \#
LastNonTerm = 6
LastTerm = 15
EndOfVocab = 30
augsym --> E \#
E --> T
E --> EAT
T --> F
T --> T M F
F --> (E )
F --> ID
F --> INTLITERAL
A --> +
A --> -
M --> *
M --> /
The Number of Null NonTerminals = 0
2 is an inconsistent state
15 is an inconsistent state
The grammar is not LR[0]
****************************************
State 0
augsym --> .E \#
E --> .T
E --> .E A T
T --> .F
T -->.T M F
F --> .(E )
F --> .ID
F --> .INTLITERAL
****************************************
State 1
augsym --> E.\#
E --> E .A T
A --> .+
A --> .-
****************************************

```
```

    State 2
    E --> T
    T --> T .M F
    M --> .*
    M --> ./
    ******************************************
    State 3
    T --> F .
    ******************************************
    State 4
    F --> (.E )
    E --> .T
    E --> .E A T
    T --> .F
    T -->.T M F
    F --> .(E )
    F --> .ID
    F --> .INTLITERAL
    ******************************************
    State 5
    F --> ID .
    ******************************************
State 6
F --> INTLITERAL .
*******************************************
State 7
E --> E A .T
T --> .F
T --> .T M F
F --> .( E )
F --> .ID
F --> .INTLITERAL
****************************************
State 8
A --> + .
****************************************
State 9
A --> - .
****************************************
State 10
augsym --> E \# .
****************************************
State 11
T --> T M .F
F --> .(E)
F --> .ID
F --> .INTLITERAL
****************************************
State 12
M --> * .
****************************************

```

State 13
M --> / .
**
State 14
F --> (E.)
E --> E.A T
A \(-->\). +
A --> .-
**
State 15
E --> EAT .
T \(-->\) T.M F
M --> .*
M --> ./
**
State 16
T --> T M F .
**
State 17
F \(->\) (E).
The number of NonTerminal Transitions are 13
1 (0,2)
\(2 \quad(0,3)\)
\(3 \quad(0,4)\)
\(4 \quad(1,5)\)
\(5 \quad(2,6)\)
\(6 \quad(4,2)\)
\(7 \quad(4,3)\)
\(8 \quad(4,4)\)
\(9 \quad(7,3)\)
\(10 \quad(7,4)\)
11 (11,4)
\(12(14,5)\)
\(13(15,6)\)

The number of LookAhead Productions are 2
\((2,2)(15,3)\)
The directly reads for non terminal transition (0,2) are : , 10, 15,
The directly reads for non terminal transition (0,3) are :
11,12,
The directly reads for non terminal transition (0,4) are :
The directly reads for non terminal transition (1,5) are : 7 ,13,14,
The directly reads for non terminal transition (2,6) are : 7 ,13,14,
The directly reads for non terminal transition (4,2) are : 8 ,9,10,
The directly reads for non terminal transition (4,3) are :
11,12,

The directly reads for non terminal transition (4,4) are :
The directly reads for non terminal transition (7,3) are : 11,12,
The directly reads for non terminal transition (7,4) are :
The directly reads for non terminal transition (11,4) are :
The directly reads for non terminal transition (14,5) are :
\(7,13,14\),
The directly reads for non terminal transition (15,6) are :
7 , 13, 14,
The Look-Back for (2,2) is :
1, 6,
The Look-Back for \((15,3)\) is :
1, 6,
The Includes relation for (0,2) is:
The Includes relation for (0,3) is:
1 ,
The Includes relation for (0,4) is:
2 ,
The Includes relation for (1,5) is:
The Includes relation for (2,6) is:
The Includes relation for \((4,2)\) is:
The Includes relation for \((4,3)\) is: 6 ,
The Includes relation for \((4,4)\) is: 7 ,
The Includes relation for \((7,3)\) is: 1, 6,
The Includes relation for \((7,4)\) is:
9 ,
The Includes relation for (11,4) is:
\(2,7,9\),
The Includes relation for (14,5) is:
The Includes relation for (15,6) is:
The Follow for Production-LookAheads for Item 1
\(8,9,10,15\),
The Follow for Production-LookAheads for Item 2
\(8,9,10,15\),
The Pseudo-Productions added are
T --> ID
T --> INTLITERAL

The PAT Is
State 0
2, S1 3, S2 4, L4 7, S3 13, L13 14, L14
State 1
5, S4 9, L9 10, L10 15, L1
State 2
6, S5 8, R2 9, R2 10, R2 11, L11 12, L12 15, R2
State 3
2, S6 3, S2 4, L4 7, S3 13, L13 14, L14
State 4
3, S7 4, L4 7, S3 13, L13 14, L14
State 5
4, L5 7, S3 13, L7 14, L8
State 6
5, S4 8, L6 \(\quad 9, \mathrm{~L} 9 \quad 10, \mathrm{~L} 10\)
State 7
6, S5 8, R3 9, R3 10, R3 11, L11 12, L12 15, R3
IV. The Parse Table To Be Input to the Shift-Reduce Parser

This is the output produced by the user after the prompt
The Input File for the Parse Program is being created
List File for the File >
1) The file name used to input the grammar. This is solely for ease in referencing which grammar this is since most of the input is in number representation.
2) LastNonTerm, LastTerm, EndOf Vocab, LastStateNum, NumProd
3) The VocabTab Table
4) The VocabInt Table
5) The productions in the grammar- LHS, NumElem, RHS for each production
6) The parsing action table with default entries.

Number 6 above is the only instructive item to demonstrate, since items 1 - 5 are really internal representations of the grammar. The Parsing Action Table for G1 is as follows. It is the table used in the shift-reduce parser, with accept added by the parse program itself.
```

STATE 0
2 S1 3 S2 4 L4 7 S3 13 L13 14 L14
15 DEFAULT ERROR
STATE 1
5 S4 9 L9 10 L10 15 L1
15 DEFAULT ERROR
3 STATE 2
6 S5 11 L11 12 L12
2 DEFAULT REDUCTION
STATE 3
2 S6 3 S2 4 L4 7 S3 13 L13 14 L14
15 DEFAULT ERROR
5 STATE 4
3 S7 4 L4 7 S3 13 L13 14 L14
15 DEFAULT ERROR
4 STATE 5
4 L5 7 S3 13 L7 14 L8
15 DEFAULT ERROR
STATE 6
5 S4 8 L6 9 L9 10 L10
15 DEFAULT ERROR
3 STATE 7
6 S5 11 L11 12 L12
3 DEFAULT REDUCTION

```

\section*{APPENDIX B INPUT AND OUTPUT FOR Shift_Reduce_Parser Program}
I. File Input

The user is prompted for
1) The file created in IV in Appendix A (the parse table) by

Name of File Containing Parsing Action Table >
2) The file containing the string to be parsed by

Input File Containing String To Parse \(>\)
3) The file to be used for the result (output) of the parse

List File for Output of Parse >
Pressing return will put the output to the screen.
The following are the results of several runs of the parse program for the expression grammar G1 and PL0. Note that all strings are terminated with the \# (EOS) symbol.

Strings testing G1
\(\mathrm{a} *(\mathrm{~b}-\mathrm{c} /(\mathrm{c}+\mathrm{f}))-\mathrm{g} \#\)
Parse O.K.
\(\mathrm{a}+\mathrm{g} * \mathrm{~d}-\mathrm{f} / \mathrm{h} * \mathrm{~g} \#\)
Parse O.K.
\(a+b+c+d \#\)
Parse O.K.
\(\mathrm{a} *(2 *(\mathrm{e} /(\mathrm{f} * 10)))+6 \#\)
Parse O.K.
\(a+b c * 2 \#\)
Parse O.K.
\(a+-10\) \#
error in Parse
EXPECTED (ID INTLITERAL
\(\mathrm{a}+(\mathrm{b} * \mathrm{~g}))\) \#
error in Parse
EXPECTED + - \#
\(\mathrm{a}+((\mathrm{b} * \mathrm{~g})-10 \#\)
error in Parse
EXPECTED) + -

Testing Strings in PLO
```

; \# (* parse 1 *)
`error in Parse
EXPECTED

```
```


## 

                                (* parse 2 *)
    ```
if \(\mathrm{a}>=10\) then
 \(\mathrm{a}:=\mathrm{b}+\mathrm{c} ; \# \quad(*\) parse \(3 *)\)
 error in Parse
EXPECTED
if \(\mathrm{a}>=10\) then
 \(\mathrm{a}:=\mathrm{b}+\mathrm{c} . \quad\) \# (* parse \(4 *)\)
 Parse O.K.
const
 \(\mathrm{x}=10\),
 \(\mathrm{y}=15 ;\)
var
 a,b,c, ; (* parse \# 5 *)
 error in Parse
EXPECTED ID
const
 \(x=10\),
 \(\mathrm{y}=15\),
 \(\mathrm{z}=25\);
var
 a, b, c;
begin
 \(\mathrm{a}:=\mathrm{b}+\mathrm{c}\);
 b \(:=10-15\);
 ;
 ;
 end. \# (* parse \# 6 *)
Parse O.K.
var
 a, b, c;
begin
 \(\mathrm{a}:=\mathrm{b}+\mathrm{c}\);
 b := 10-15;
 ;
 ;
 end. \# (* parse \# 7 *)
 Parse O.K.
```

var
a,b,c;
procedure xx( Y ,z ); (* parse \# 8*)
error in Parse
EXPECTED ;
const
x = 10,
y = 15,
z=Y; (* parse \# ) *)
evror in Parse

```
EXPEC'TED INTLITERAL
```

const
x = 10,
y = 15,
z=25;
var
a,b,c;

```
procedure xx ;
 \(\mathrm{a}:=10\);
begin
 \(a:=b+c ;\)
 b \(:=10-15\);
 exec xx ;
 ;
 end. \# (* parse \# 10*)
Parse O.K.

The scanner for the parse program must have all special symbols separated by blanks. This means that the parser can parse the string a:=b without blanks, but will take the string \(\mathrm{a}:=3 *(\mathrm{~b}+\mathrm{c} *(\mathrm{~d}+\mathrm{e}))\) as incorrect unless there are blanks between the * and the (and between the last two parentheses. It will take the symbols '))' as one special character rather then as two characters, ')' and ')'. The same is true for ' \(*(\) ('. Changing this is extremely simple, as it requires adding a simple check for all 'special' characters which are often written together in specific programming languages (without intervening blanks) but which are normally considered separately. This was not
included in the shift-reduce parser so it could apply to 'any' grammar, not a specific one.

\section*{BIOGRAPIIY}

Alma Marie Sechler Schneck was born in Allentown, Pa. Her parents are Alma Marie Fluck and Kenneth Fox Sechler.

Marie Sechler graduated third in her class from Allentown High School in June, 1959. She graduated second in her class from Muhlenberg College in June of 1963 with a B.S. degree in Mathematics. From 1963-1965 she was employed by PP\&L in Allentown, Pa . as a mathematician/computer programmer in the Systems Planning Department. Her primary function was to solve engineering problems on the computer. A direct result of one of the projects at PP\&L was the publication of the following IEEE paper with Mr. C. W. Watchorn: "A Computer Program for Determining the Economic Size of Pump-Strorage Hydro Sites," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-85, No.11, November, 1966 by A. Marie Schneck and C.W. Watchorn, FELLOW, IEEE.

In 1963 Marie Sechler married Henry R. Schneck, Jr. who received his M.S. degree in Civil Engineering from Lehigh in 1965. They have three children, Lisa Marie, Karen Elizabeth, and David Henry.

From 1973-1987 Marie was self-employed, operating her own ballet studio, Marie's School of Ballet Arts, in Allentown, Pa. The school trained children through adults in the art of classical ballet.

In 1987 Marie received a second degree, a Graduate Certificate, from Muhlenberg College in Computer Science. In 1987 she received a fellowship to study for a Master's Degree in Computer Science from Lehigh University. She received the degree in June, 1989.

Marie will be employed by PP\&L starting in June of 1989 as an Application Programmer in the Engineering and Scientific Systems Department. She also plans to continue to teach computer science as an adjunct faculty member.```

[^0]: ${ }^{1}$ Frank DeReemer, Thomas Pennello, "Efficient Computation of LALR(1) LookAhead Sets,"ACM Transactions on Program Languages and Systems, Vol 4,No. 4 (October 1982),pp.615-649.

[^1]: ${ }^{2}$ Frank DeReemer,Thomas Pennello, "Efficient Computation of LALR(1) LookAhead Sets,"ACM Transactions on Program Languages and Systems, Vol 4,No.4(October
 1982), p.621.

[^2]: ${ }^{3}$ Frank DeReemer,Thomas Pennello, "Efficient Computation of LALR(1) LookAhead Sets,"ACM transactions on Program Languages and Systems, Vol 4,No.4 (October

