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ABSTRACT 

Parameter• influencing sulfur trioxide formation in a pulverized

coal-fired utility boiler and resultant sulfuric acid deposition in the 

regenerative air heater were identified from literature review, analysis, 

and plant experimentation. 

Tile flame reactions involved in sulfur trioxide formation and the 

sequence of changes which render an iron surface catalytically active 

towards sulfur dioxide oxidation were determined using available 

literature. The fundamentals were contrasted with the coal-combustion, 

mineral-deposition, heat-transfer, and gas-flow processes occurring in a 

utility boiler, in order to enwnerate potential relationships between 

boiler operating conditions and sulfur trioxide levels. An effect of 

oxygen level, unit load, coal chemistry, slag condition, and coal 

grindsize on the flue-gas sulfur trioxide level was indicated. 

Sulfur trioxide concentrations were measured as a function of oxygen 

level at Potomac Electric's Morgantown Unit Two, a 600-megawatt 

supercritical unit fired tangentially using pulverized coal, Results are 

included from measurements in the duct after the economizer. These 

measurements were made while operating at 480 megawatts using a grindsize 

of 85 percent through 200 mesh. 

Characteristics of the binary condensation of sulfuric acid and water 

from a flue gas were extracted from existing information. Experimental 

and theoretical evidence for interference of entrained particulate 

material with the condensation process was recognized. The origin and 

nature of depo1its found in regenerative-air-heater passages was related 

to the characteristics of the conden1ation process and the cycling of 

metal temperatures in the air-heater ba1ket1. 

l 



l. INTRODUCTION 

i ) A regenerative air heater in a pulverized-coal-fired utility 

boiler transfers heat from the exiting flue gas to the inflowing 

combustion air, thereby increasing unit efficiency. The air heater 

contains baskets of corregated metal sheets which rotate between the 

gas and air streams, absorbing heat when exposed to the exit gases 

while releasing heat to the combustion air. Only part of the possible 

reduction in exit-gas temperatures can be realized before temperatures 

in the air-heater passages go below the condensation temperature of the 

sulfuric acid in the flue gas. Under conditions where low passage 

temperatures support high condensation rates, metal corrosion and 

passage plugging from ash accumulation become intolerable. It is 

necessary to limit secondary heat recovery by preheating inflowing 

combustion air in order to maintain tolerable condensation rates. 

Sulfuric acid results from the combination of sulfur trioxide and 

water in the product gases. The sulfur trioxide content of a flue gas 

is the net result of reactions in the flame region and catalytic 

oxidation of sulfur dioxide by active iron surfaces in the post-flame 

region. Sulfur trioxide and moisture concentrations dictate the acid 

dewpoint temperature. Condensation rates depend on acid level, fluid 

mechanics, and heat-transfer processes. 

A consolidation of the factors influencing acid condensation from 

a flue gas and assessment of their relationship to pulverized

coal-fired utility boiler operation is necessary for planning 

experiments for boiler optimization. This report was developed to 

satisfy this need. 



2, FLAME FORMATION OF SULFUR TRIOXIDE 

2,1 Flame Proce11e1 

Sulfur trioxide can be formed in flames by the oxidation of sulfur 

compound1, Knowledge of the characteristics of this process are 
l 

founded on the experimental results and analysis of Hedley. While 

burning sulfur-doped kerosene in a one-dimensional controlled-mixing 

furnace where the flame gases completely filled the combustion chamber 

under fully-developed turbulent flow, gas samples were taken at various 

distances along the furnace. Because plug-flow conditions prevailed in 

the chamber, the time history of the gases was known from the gas 

velocity. Subsequent analysis of the gases for carbon monoxide, carbon 

dioxide, sulfur dioxide, and sulfur trioxide indicated the extent to 

which the reaction had taken place. The results for runs with 2.2 

percent excess oxygen are presented in Figure 1. 

A maximum in percent conversion at an intermediate time was 

typically observed. Gases with greater residence times possessed less 

sulfur trioxide, indicating sulfur trioxide decomposition. Hedley 

calculated the maximum theoretical yield from thermodynamic 

considerations for the gas reaction 

at different locations along the furnace using measured values of 

sulfur dioxide, oxygen, and temperature, The result of this 

calculation appears in Figure 1 as "theoretical conversion". 

The actual yield of sulfur trioxide was always greater than the 

theoretical maximum, Therefore, the sulfur trioxide in flames was not 

formed by the reaction between sulfur dioxide and molecular oxygen, 

becau1e the conver1ion can not exceed the theoretical yield, Catalytic 

l 
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action in the flame wa1 ruled out becau1e a cataly1t 1erve1 only to 

influence the rate at which a reaction proceed• to equilibrium. 

Hedley 1ug1e1ted an a11ociation of sulfur dioxide with atomic 

oxy1en to form 1ulfur trioxide, followed by di11ociation according to 

the con1ecutive reaction sequence; 

ii\ "2 

80
2 

+ 0 --+ so3-+ so2 + 1/2 o2 

where k
1 

and 1c
2 

are temperature-dependent rate parameters. Sulfur 

dioxide is considered the precursor to sulfur trioxide because it is 

the only other form of sulfur in the combustion gases throughout the 

combuator. 
2 

According to Lewis and Von Elbe, the excess energy 

generated during the association of sulfur dioxide and atomic oxygen 

could be absorbed by a third body or by the vibrational and rotational 

degrees of freedom of the newly-formed molecule. In the later case, 

the extra energy would dissipate by either radiation or later molecular 

collisions. 

or 
.. 

so
2 

+ 0 -~ so3 .. 
80

3 
-~ 803 + hY 

In Hedley'• experiments, sulfur trioxide was not formed under 

fuel-rich conditions, Therefore, oxygen atoms produced in the 

combustion chain reactions such as 

CO + o
2 

-~ CO2 + 0 

CO+ o3 -~ CO2 + 20 

react preferentially with hydrocarbon constituents rather tha~ sulfur 
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dioxide. Possible sources of atomic oxygen for sulfur dioxide 

oxidation include thermal decomposition of excess oxygen and 

dissociation of oxygen molecules by collisions with aetivated molecules 

such as carbon dioxide. 

o
2 

+ 117 kcal/gmol -~ O + O 

* CO2+ 02 -~ CO 2+ 0 + 0 

2.2 The Reaction Sequence From Flame Structure 

Further evidence for the role of sulfur dioxide as the precursor 

to sulfur trioxide was found in studies of the microstructure of a 

3 
sulfur-oxidizing flame. Merryman and Levy measured concentration 

profiles of stable sulfur oxides in a hydrogen sulfide-oxygen flame 

using wet-chemistry and mass-spectrographic techniques, Results from 

this study are shown in Figure 2. 

Sulfur trioxide was first observed early in the flame at 

relatively low temperatures. This pre-flame sulfur trioxide 

concentration reached a maximum at the flameholder, and decreased to 

zero at the end of the visible flame. The composition distribution in 

the pre-flame region was attributed to consecutive equilibrium 

reactions. 

The first step was believed to be the association of sulfur 

monoxide and molecular oxygen in the presence of a third body. 

SO+ 0
2 

+ M = so3 + M G
9000

K = -58.3 kcal/gmol 

Gl300°K = -42.4 kcal/gmol 

Formulation of the first reaction was based on several arguments: 

1. Sulfur monoxide was the only form of sulfur present 

preceeding the appearance of sulfur trioxide. 

2. The maximum sulfur monoxide concentration was observed at the 

j: 
I 
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l same position as maximum pre-flame sulfur trioxide, 

suggesting mass action through a reaction involving sulfur 

oxide and sulfur trioxide. 

3, Sulfur monoxide is more likely in the cooler part of the 

flame below the flameholder because the free energy for the 

proposed reaction is lower there. 

4. Molecular oxygen must be involved because there is no source 

of pre-flame atomic oxygen. 

S. A third body must be involved to absorb excess association 

energy. 

The resulting sulfur trioxide would then decompose into sulfur dioxide 

and water by reacting with hydrogen. 

G900°K = -43.8 kcal/gmol 

Gl300°K = -49.98 kcal/gmol 

This second reaction was constructed based on the following information: 

1. The sulfur trioxide concentration decreased after the 

flameholder, indicating decomposition. 

2. Hydrogen was generated in excess by the primary flame 

reactions. Little sulfur trioxide was available in the 

region of maximum hydrogen concentration, suggesting that 

sulfur trioxide levels were diminished due to a reaction 

between sulfur trioxide and hydrogen. 

3. According to the free energy of the proposed decomposition 

reaction, decomposition was favored at the higher 

temperatures of the visible-flame zone, where the lowest 

sulfur trioxide concentrations were observed. 

Sulfur trioxide was then generated in the post-flame region and 

prevailed to the furnace exit. The formation of sulfur trioxide in 

this region was preceeded by the appearance of large quantities of 

sulfur dioxide, Because sulfur dioxide was the only identified form of 

sulfur in this zone, sulfur dioxide was acting as the precursor in the 
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formation of sulfur trioxide. The sulfur dioxide was believed to 

combine with atomic oxygen due to close agreement between the 

calculated oxygen-atom profile and the rate of formation of sulfur 

trioxide. 

2.3 Association of Sulfur D,ioxide and Atomic Oxygen 

4 Dooley and Whittingham obtained additional evidence for the 

association of atomic oxygen and sulfur dioxide in the post-flame 

region by measuring the sulfur trioxide levels in product gases from 

Bunsen flames which had been treated with known flame inhibitors and 

catalysts. Inorganic oxygen scavengers, such as carbon tetrachloride 

added to town-gas Bunsen flames, reduced the percent oxidation of 

sulfur dioxide as shown in Figure 3. 

Similarly, nitric oxide added to a town-gas Bunsen flame reduced 

sulfur dioxide oxidation, as a result of the relative success of the 

reaction NO + 0 -~ N0 2 + hY 

in competing with sulfur dioxide for atomic oxygen. In flames of 

carbon monoxide, hydrogen, and methane, the percent oxidation of sulfur 

dioxide to sulfur trioxide varied from flame to flame, following the 

order 

CO >H
2 

)CH4 

as shown in Figure 4. The higher conversions in the carbon monoxide 

and hydrogen flames were attributed to the formation of oxygen atoms by 

the reactions: 

CO+ o
2 

-~ CO2 + 0 

H + 0 
2 

-.;> OH + 0 

In these flames, oxygen atoms were available for sulfur dioxide 

oxidation because hydrocarbons were not available to compete for the 
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available atomic oxygen. 

Due to concern over possible interference of intermediate 

compounds formed when reagents were added directly to the fuel gas, 

s 
Whittingham redesigned the Bunsen-flame experiment to focus on the 

effects of flame inhibitors and catalysts on the product gases of 

coal-gas flames. Gas samples from the flame were removed through a 

sampling tube while sulfur dioxide, flame catalysts, and inhibitors 

were added to sidearms in the sampling tube. Oxidation to sulfur 

trioxide followed the order: 

The lead-based oxygen scavenger produced the lowest conversions, with 

carbon monoxide generating the largest conversion. Also, conversion 

with nitric oxide was lower than that with methane, indicative of the 

oxygen-scavenging characteristics of nitric oxide. Because the order 

of oxidation followed the order of oxygen-atom availability, it was 

concluded that the reaction scheme involved atomic oxygen. 

6 Gaydon conducted discharge tube experiments with sulfur dioxide 

and oxygen mixtures in search for conclusive evidence of a luminous 

reaction between sulfur dioxide and atomic oxygen 

as occurs with nitric oxide 

NO + 0 -.;> N02 + hY 

The mixture was passed through a discharge tube at low pressures while 

exposed to electric-discharge, thereby generating atomic oxygen by 

dissociation of molecular oxygen. The mixture did not produce a glow, 

even with slight heating. However, sulfuric acid was found on the wall 

of the tube after the experiment. Apparently, sulfur trioxide was 

12 
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generated by the non-luminous association of sulfur dioxide and atomic 

oxygen, suggesting absorption of the association energy by third bodies. 

7 Fenimore and Jones further elucidated characteristics of the 

processes involved in sulfur trioxide generation by measuring oxygen 

radical concentrations at different locations in a lean hydrogen flame. 

Atomic oxygen profiles were inferred by introducing isotopically-labeled 

water molecules into the fuel, and following the incorporation of 

isotopes in the flame products through use of mass-spectrographic 

techniques. Sulfur dioxide and sulfur trioxide profiles were obtained 

from analysis of sampled gases from flame traverses. The feasibility of 

various reaction schemes was determined by comparing species 

concentrations based on thermodynamic limits for a particular reaction to 

concentrations determined experimentally at 1600°K. Atomic oxygen levels 

exceeded those permitted by thermodynamics for thermal dissociation of 

molecular 

oxygen, indicating the importance of alternative routes to atomic oxygen 

formation. The maximum observed ratio of sulfur trioxide to sulfur 

dioxide was 0.014. 

= 0.014 

For the reaction S02 + 1/2 02 = S03 the calculated equilibrium ratio 

= 0.0827 

was lower than the observed conversion, indicating the presence of 

13 
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another reaction path. The equilibrium ratio of sulfur trioxide to 

sulfur dioxide for the reaction 

S02 + o2 • so3 + 0 

[S03] 
• 0.0001 

was less than the observed value, indicating another reaction pathway. 

For the reaction 

S02 + 0 + M = S03 + M 

[S03] 

[S02] 
= 0.78 

the calculated equilibriwn conversion was greater than the observed 

value. Therefore, this reaction is a possible route to sulfur trioxide 

formation. Because the observed levels were lower than the limiting 

values, the reaction either proceeds slowly, never attaining the 

thermodynamic limit, or decomposition of sulfur trioxide occurs. 

2.4 The Decomposition of Sulfur Trioxide 

The essence of the sulfur trioxide decomposition process was 

8 recognized by Merryman and Levy by consideration of the interaction of 

flame pressure and sulfur trioxide distributions in the post-flame 

region, In their study of pre-mixed hydrogen sulfide and carbonyl 

sulfide flames, maximum concentrations, ultimate conversions, and 

decomposition extent depended on system pressure, as shown in Figure 5. 

The ultimate amount of sulfur trioxide formed and the maximum 

conversion in a given flame system increased with pre&6l,tt'e, The rate of 

formation of sulfur trioxide also increased with pressure. At lower 

pressures, the depletion of sulfur trioxide was more apparent. A reduction 

in sulfur trioxide formation rate is expected at lower pressures due to the 

reduced colliaion frequency between sulfur dioxide and oxygen. 
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If the decomposition reaction involved only sulfur trioxide, 

decomposition rate would decrease with pressure. Therefore, another 

species with higher concentrations at low pressures must be involved, a 

characteristic of radicals like oxygen. The concentrations of radicals 

in the far post-flame region are higher at low pressure due to 

reduction in the recombination rate via: 

0 + 0 + M -~ o2 + M 

The decomposition reaction is therefore a temperature-dependent rate-

limited reaction. 

Lower conversions in the hydrogen sulfide flame compared to the COS 

flame suggest an additional mechanism involving hydrogen radicals 

The reduced conversions might also be due to the lower temperatures. 

An alternative path for decomposition was demonstrated by Nettleton and 

9 Stirling. Decomposition rates were measured by monitoring the 

emission record of a shock-heated mixture containing sulfur trioxide 

and argon at 1740°K. Direct decomposition to sulfur dioxide occurred 

in the absence of oxygen. 

for 

The magnitude of the reaction-rate constant 

SO 
3 

+ Ar -~ SO 2 + 1 / 2 0 2 + Ar 

was eight times greater than the corresponding reaction involving 

nitrogen. 

so
3 

+ N
2 

-~ so2 + 1/2 02 + N2 

Therefore, the identity of the collision partner influences the 

decomposition rate. 

The distribution of oxygen atoms in the flame directly influences 

16 
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the relative effectiveness of the forward and reverse reactions which 

dictate sulfur trioxide conversion. Other species may also interact 

directly in the process. The concentrations of any radical in the 

flame and product gases are set by fast equilibrium reactions involving 

the components. Radical concentrations depend on the temperature, 

identity, and quantity of compounds present. Thus, conversion 

ultimately depends on the compounds available in a flame, the 

distribution of the compounds in the reaction zone, and the temperature 

distribution in which combustion takes place. 

2.5 The Effect of Excess Oxygen 

Sulfur trioxide forms mainly in the post-flame region after the 

majority of hydrocarbon substitutents have reacted. The effect of 

reducing excess air-levels to stoichiometric values is to minimize 

post-flame oxygen, reducing the conversion of sulfur to sulfur trioxide 

throughout the furnace. 
1 Hedley observen this effect in studies with 

a pilot-scale furnace, as shown by his data in Figure 6. 

Stoichiometric conditions eliminated both intermediate and exit acid 

throughout the furnace. There was no decisive relationship between 

exit sulfur trioxide concentrations and oxygen levels. The principal 

effect of excess oxygen was observed in the intermediate regions of the 

furnace, where an increase in oxygen level resulted in a larger 

conversion to sulfur trioxide, Once the concentration reached a 

maximum in the intermediate region, the sulfur trioxide level decreased 

continuously throughout the remaining furnace region. The data 

suggests that further reductions in sulfur trioxide concentrations 

would have been realized if the furnace had been lengthened. 
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Barrett, Humnell, and ReidlO measured sulfur trioxide concentration 

profile• in a cooled-wall stainless steel combu1ter burning sulfur-doped 

natural ga1. These results are shown in Figure 7. The sulfur trioxide 

concentration profile did not exhibit a maximum a& in Hedley's 

measurements, but was uniform all the way to the exit of the combustion 

chamber. In addition, the sulfuric acid concentration in the gases 

exiting the furnace could be minimized by reducing the furnace oxygen 

level as shown in Figure 8, contrary to Hedley's results. The lack of 

evidence for sulfur trioxide decomposition in the Barrett et al. 

measurements is likely the result of the cooling of combustion gases by 

the combustor walls (shown in Figure 9) which reduces the rates of the 

sulfur trioxide decomposition reactions. Hedley observed the effect of 

the decomposition reactions because the combustion gases were not cooled 

by the furnace walls. 

2.6 Sulfur Trioxide formation in a Utility-Boiler Flame 

Sulfur trioxide can be present in the flue gases of a utility boiler 

as a result of the association of sulfur dioxide and atomic oxygen in the 

post-flame region of the furnace. Sulfur trioxide formed in the pre-flame 

region deco~poses in the visible-flame region of the flame, and will not 

contribute to the flue-gas sulfur trioxide level. The amount of sulfur 

trioxide formed will depend on the relative rates of the post-flame 

formation and decomposition reactions. The rates of these reactions 

depend on the availability of the molecular and radical species 

participating in the reactions, the furnace-temperature distribution, and 

the mixing characteristics of the furnace. 

Sulfur dioxide, hydrogen, and oxygen participate directly in the 

post-flame formation and decomposition reactions from which sulfur 

trioxide ia generated. The amount of sulfur and hydrogen released by the 
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coal to the flame, and the amount of oxygen used to support the flame 

will therefore affect the amount of sulfur trioxide generated. 

However, the sulfur and hydrogen content of the coal may not be related 

to the sulfur trioxide concentration in the flue gases, due to the 

presence of reactions which compete for these compounds. 

The reactions which generate and destroy sulfur trioxide molecules 

in the post-flame region of the furnace proceed at rates which are 

temperature and concentration dependent. The furnace temperature 

distribution and the concentration distribution of the reactive 

compounds govern the amount of sulfur trioxide present in a flue gas 

resulting from the association of atomic oxygen and sulfur dioxide. 

Because furnace temperature distribution and mixing characteristics are 

cast in the boiler design, there is limited control of the sulfur 

trioxide reactions through operational modification of furnace 

temperature and mixing. The quantities of sulfur trioxide found in 

flue gases and the relative influence of excess oxygen and coal 

composition on flue-gas sulfur trioxide levels will vary from boiler 

design to boiler design. 



3. CATALYTIC OXIDATION OF SULFUR DIOXIDE 

Sulfur dioxide levels in a pulverized-coal flue gas are typically 

around 2000 ppm while excess oxygen levels range from one to five 

percent. The sulfur dioxide is subject to oxidation by molecular 

oxygen to form sulfur trioxide. 

The equilibrium conversion is dependent on temperature and oxygen 

concentration as shown in Figure 10. At the high temperatures 

characteristic of the furnace (1100°C), conversion to sulfur trioxide 

by this reaction is negligible. Equilibrium conversion corresponding 

to temperatures below 400°C, characteristic of the colder sections of 

the heat recovery section, is nearly complete. These curves represent 

the upper limits for conversion to sulfur trioxide. In practice, less 

than one percent of the sulfur dioxide is converted to sulfur 

trioxide. The maximum limits set by thermodynamics are not attained 

due to the negligible rate of the reactions, even at high 

temperatures. The fraction of the total sulfur trioxide in the flue 

gas resulting from this reaction is small except when a catalyst is 

present to increase the rate of reaction. Iron present in the 

waterwall tubes and in the mineral deposits on the furnace wall (slag) 

can develop catalytic activity for this reaction. 

An iron-containing material develops catalytic activity for sulfur 

dioxide oxidation by oxidizing to iron oxide. Conversion to this form 

involves a sequence·of chemical and physical changes in the 

12 
iron-containing surface. Tally's data shown in Figure 11 

demonstrate the time dependence of catalytic activity development. 

When a clean steel tube held at 600°C was first exposed to a flow of 
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1ulfur dioxide and oxygen, little conversion to sulfur trioxide 

occurred. The conversion to sulfur trioxide increa1ed rapidly with 

continued expoaure, leveling off after ten hours. Tolly established 

the chemical and physical changes from analysis of the scale on the 

tube aurface at different stages of the catalytic development. 

In the early stages of exposure, direct reaction between iron and 

sulfur dioxide gives both ferrous sulfide and ferrous oxide. 

SFe + 2S02 -~ 2FeS + Fe 3o4 

Above 57o•c, additional consecutive reactions are operative. 

2Fe + so2 -~ 2Fe0 + S 

Fe+ S -~ FeS 

These reactions cause an increase in surface area due to the formation 

of a porous scale, Reactions between sulfur dioxide and iron produce 

sulfate which partially decomposes into iron oxide and sulfur 

trioxide, This reaction 

Feso4(s) + 1/2 o2(g)-.;> Fe 2o3(s)+ 2S03(g) 

is the principle source of iron oxide, The expanding surface area 

generated by scale-formation reactions increases contact between the 

iron oxide and sulfur dioxide resulting in enhanced sulfur trioxide 

formation. Small amounts of iron oxide and ferrous oxide are formed by 

direct oxidation of iron by oxygen. Once the scale has developed to 

the thickne11 such that the diffusion rate of iron to the gas interface 

is small, thermodynamics sets the distributions between iron sulfate, 

iron oxide, gaaeous.oxygen, and sulfur trioxide. 

The ability of an iron surface to develop catalytic activity is 
12 13 14 

temperature dependent, as shown by Tolly and others. ' ' The 

ability of a mild ateel surface below 400'C to develop catalytic 

' 

I ; 
1' 

' 



capacity and to promote sulfur dioxide oxidation is negligible, as 

shown by Tally's data presented in Figure 12. Catalytic activity 

develops at higher temperatures allowing thermodyna.mi, conversions to 

be realized. Because the maximum conversion set by thermodynamics 

decreases with temperature, a maximum in conversion occurs at 650°C. 

Above this temperature, conversion is reduced. At the lower 

temperatures, less iron oxide is formed from iron sulfate 

decomposition, reducing the catalytic capacity of the surface. The 

ability of iron oxide to catalyze sulfur dioxide oxidation is reduced 

10 
at low temperatures, as shown by Barrett's data in Figure 13. The 

presence of water vapor in the gases also reduces the catalytic 

effectiveness of the surface, as shown by Tally's data in Figure 11. 

The inhibiting effect of water is attributed to the direct oxidation of 

iron to form Fe
3
o
4

, which is catalytically inert. 

In Tally's flow experiments, the conversion of sulfur dioxide to 

sulfur trioxide was inversely proportional to the gas velocity over the 

surface, as shown by his data plotted in Figure 14. Gas velocity is 

related to the extent of sulfur dioxide oxidation because catalytic 

oxidation is a rate process which depends on the contact time between 

the gas and the catalytic surface. 

The amount of sulfur trioxide in a utility-boiler flue gas 

resulting from the catalytic oxidation of sulfur dioxide is expected to 

increase as boiler load is reduced, because contact time between 

catalytically active surfaces and flue gas increases as load is 

reduced. Due to the relationship between the rate of catalytic 

oxidation of sulfur dioxide, and the relationship between the 

equilibrium conversion for the homogeneous (catalytic) oxidation of 
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sulfur dioxide and oxygen concentration, furnace oxygen level should 

also influence the amount of sulfur trioxide generated from the 

catalytic oxidation of sulfur dioxide. The amount of sulfur dioxide 

present in a flue gas will also affect the concentration of sulfur 

trioxide resulting from catalytic oxidation. The relative influence of 

unit load, flue-gas sulfur dioxide concentration, and furnace-oxygen 

level on sulfur trioxide concentration will depend on the degree of 

catalytic activity developed by the slag and water-wall tubes in a 

boiler. Because temperature and oxygen levels set the amount of iron 

oxide formed on such surfaces, the catalytic activity of surfaces in a 

boiler will depend on the operational history of the furnace, 



4. PULVERIZED-COAL COMBUSTION CHARACTERISTICS 

The coal particles used for pulverized-coal firing are small, 

ranging in size up to 300 microns in diameter. As these particles 

enter the furnace through the burners, they are exposed to an 

oxygen-containing environment while being heated at a rate ranging 

between 1000 and 10,000°C per second. Figure 15 depicts the sequence 

of physical changes experienced by a coal particle during the 

combustion process. During the initial devolitilization (pyrolysis) 

stage, gaseous decomposition products are expelled from the surface 

with the concurrent formation of a liquid melt (known as tar) on the 

particle surface. The second devolatilization stage is characterized 

by the decomposition of the melt into additional gaseous products. 

Because volatiles are expelled at a rapid rate during the 

devolatilization stages, little oxygen reaches the particle surface and 

oxidation occurs in the gaseous zone surrounding the particle. Surface 

oxidation of the underlying char commences once devolatilization is 

essentially complete. Interstitial void areas are formed in the char 

during the heating associated with surface oxidation. Particle 

oxidation commences once the surfaces exposed during void formation 

support oxidation. High melting-point minerals present in the form of 

aggregates in the parent coal particle combine with nearby combustable 

material during the particle oxidation stages. The resulting mineral 

composites are found in the flue gases as ash particles because they 

are resistant to oxidation in the furnace due to their chemical 

composition and structure. 

4.1 Conversion of Sulfur Compounds 

In general, about one half of the sulfur found in a coal resides in 
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organic molecule,, while the remaining portion i1 bound a1 inorganic 

pyrite• and 1ulfates. Forma of organic sulfur are cla11ified according 

17 
to their relative reaiatance to thermal decomposition (Table I), 

The temperature dependence of the evolution of hydrogen sulfide from a 

18 
coal aa meaaured by Yergey using maas-spectroacopic technique& is 

presented in Figure 16. 

Mercaptana, sulfides, and disulfides comprise the loosely-bound 

sulfur group known as Organic I. During the devolatilization stages of 

combuation, Organic I sulfur evolves directly as hydrogen sulfide. 

Organic II and Organic III sulfur is contained in heterocylic rings, 

rendering it more resistant to thermal decomposition than Organic I. 

Sulfur contained in heterocyclic rings is also released into the gas as 

hydrogen sulfide during devolatilization. 

Pyritic sulfur is sulfur bound to iron (an inorganic) which is 

more resistant to thermal decomposition than the organic forms. 

Pyritic sulfur decomposes by the successive reactions: 

FeS 2(s)-~ FeS(s) + 1/2 S2 

FeS(g) -~ Fe+ 1/2 S2 

s
2 

+ H
2 

-~ 2H2S 

A fraction of the pyritic sulfur is incorporated into the tar and into 

the char as Organic P. 

Organic Pis organic sulfur which is formed during 

devolatilization as a result of reactions between reactive organic 

molecule• and sulfur released during pyrite decomposition. Organic P 

i1 highly resistant to thermal decompoaition, evolving with the tar as 

hydrogen sulfide during devolitilization or released to the gas during 
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Grouo Source Structure 

Organic I Mercaptana os• 
Sulfides os-
Diaulf ides os-•-

Organic II Thiophene and other 

0 Organic II I Heterocylic Rings 

Pyritic Pyrite S-Fe-S 

Sulfur 

Organic P Reactions between Organic 
Pyritic Sulfur and Sulfur 
Organic Molecules 

Table I. Coal Sulfur Cla11lflcatlon 
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char oxidation. 

The primary form of 1ulfur relea1ed to the flame proce11e1 durin1 

devolatili1ation 11 hydrogen 1ulfide. The 1ulfur rel1a1ed during the1e 

1ta111 combine• with hydrogen due to the highly-reactive nature of 

hydrogen at high temperature, and becauae hydrogen 11 pre1ent in large 

exce11, Once char combuation begin•, the hydrogen content of the coal 

hat been depleted, and the particle surface become• oxidizing. Oxygen 

can then compete with available hydrogen for releaaed sulfur. 

A 1ignificant portion of the sulfur entering the furnace through the 

burner• never reaches the flue gases. 
19 

Gronhoud, Tufte, and Selle 

mea1ured the 1ulfur dioxide concentration (the primary form of gas-phase 

sulfur) in atack emissions from pulverized-coal-fired unit• for a variety 

of weatern-U.S. lignite coals and related the meaaurements to coal 

compo1ition. The reaults of thia study are pre1ented in Figure 17. The 

sulfur content in the flue gases varied over a wide range and could not 

be correlated to the sulfur content of the parent coal. The sulfur 

concentration in emis1ions from units burning coal containing large 

amount• of Na
2
0 and CaO were lower than normal, while the presence of 

Si0
2 

and Al
2
o

3 
in the parent coal tended to enhance the sulfur 

content in emission,. Analy1i1 of the ash material a1sociated with the 

1ulfur-emi11ion measurements showed that the sulfur which did not enter 

the flue 1•••• wa1 being retained as an integral part of the a1h, The 

1ulfur in the a1h wa1 complexed with calcium and 1odiwn in the form of 

decompo1ition-re1i1tant alkali 1ulfate1, a reaction which apparently 

occur• durin1 the coal-particle combu1tion proce11. Silicon and alwninwn 

oxide• were al10 complexed with the calcium and 1odium in the coal, 

Sulfur 1mi11ion1 were 1reater when the coal po11e11ed 1ilicon 
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and aluminum oxides, becau.e these compounds compete with sulfur for 

available calcium and sodium, thereby reducing the sulfur-retention 

effectiveness of the ash. 

The compo1ition of the parent coal will inevitably influence the 

amount of sulfur trioxide in a flue gas. Because sulfur trioxide can 

decompose to form sulfur dioxide and oxygen through collisions with 

hydrogen radicals in the post-flame region, the hydrogen content of the 

coal is expected to affect the amount of sulfur trioxide found in a flue 

gas. In addition, the amount of moisture in a flue gas depends on the 

hydrogen content of the coal, and flue-gas moisture reduces the ability 

of iron oxide to catalyze sulfur dioxide oxidation. The amount of 

sodium, calcium, silicon, and aluminum in the coal will also influence 

the amount of sulfur trioxide generated, because the concentration of 

these materials dictates the amount of sulfur released to the flame 

reactions and the quantity of sulfur dioxide available for catalytic 

oxidation. 

4.2 Furnace Temperature Distribution 

The amount of sulfur trioxide that forms as a result of flame 

reactions depends on the relative success of the reactions from which it 

formed and decomposed, These reactions are rate-limited reactions, 

possessing unique species-concentration and temperature dependencies. 

Because the conversion of sulfur to sulfur trioxide in a boiler flame 

depends on these reactions, operational parameters which influence 

species release rate and furnace temperature distribution are of interest. 

Furnace temperature distribution is cast in the design used to 

construct the boiler, Burner location and design establishes the regions 

of energy release, while water-wall tube positioning and gas-flow 



pattern• determine where ener1y i1 tran1ferred to the 1team, The 

amount of beat removed at any location in a furnace i1 a function of 

the temperature difference between the combu,tion 1•••• and the 1team 

at that po1ition, along with the corresponding re1i1tance1 to thermal 

tran,port. The net re1i1tance to thermal tran1port (excluding 

radiation) i1 the sum of convective and conductive contributions. 

Convective re1i1tance is a function of combu1tion-ga1 flow rate and 

boiler feed-water flow, both of which are set by the boiler design and 

sy1tem load. Conductive resistance depends on the thickne11 of the 

solid material between the combustion gas and steam, and the associated 

thermal conductivity of the material. Thia solid material includes 

water-wall tube metal and deposited mineral material from the coal 

(slag). Becauae the deposition of mineral material is a continuous 

proce11, slag i1 periodically removed during operation by directing 

compre11ed air or high-pres1ure steam at the deposits (soot blowing). 

Slag thickness often exceeds water-wall tube thickness by several 

order, of magnitude in the course of normal operation. An extensive 

slag depo1it may constitute the major resistance to thermal 

20 tran1port. Because the slag distribution in a furnace affects the 

heat-removal rate, the slagging condition will affect the temperature 

di1tribution in a furnace. 

During coal devolatilization, a capsule of reactant volatile 

material compo1ed mostly of carbon and hydrogen surround, the 

particle. Oxygen diffuses inward and participate, in a gas-phase 

reaction 1equence to form carbon dioxide. 

C + 0 -+ CO 
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E1timate1 of the time required to burn the volatile• a1 a function of 

21 coal particle 1ize are given by Field and are ahown in Figure 18. 

The reaul t1 of the calculation shown are for a partial" presaure of 

oxygen• 0.0905 atmospheres, an ambient temperature of 1000°C, a mean 

molecular weight of volatiles of 100, and a volitile yield of fifty 

percent. Volatile yield and volatile mean molecular weight are 

functions of the heating rate and the specific coal used, The 

simulation shows that volatile burning time is reduced as coal particle 

size decreases. In addition, the model predicts that volatile burning 

time decreaaes as the oxygen concentraton increases. 

The influence of particle size on char-combustion rate was 

22 
demonstrated in the laboratory by Field. A flow of devolatilized 

coal particles (char) were introduced into a heated reactor tube. The 

residence time of the particles in the reactor was fixed by the tube 

length and the feed flowrate. The ratio of the mass of the feed stream 

to the amount of oxygen introduced was held constant, while the char 

size was varied. The mass of the char exiting the reactor was 

determined after rapid quenching of the reaction products. One set of 

Field's data is plotted in Figure 19. The fractional weight loss was 

greater for small particles than for large particles. Weight loss was 

greater for high-oxygen runs than it was for low-oxygen runs for the 

same size particles. 

The trends exhibited during devolatilization and particle 

combuation are identical. Volatile release rate and surface combustion 

rates are greater for small particles than for large particles. In 

addition, the volatiles burn more rapidly in an atmosphere containing 

large amounts of oxygen than in an oxygen-deprived atmosphere. 

' 
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Similarly, the char oxidize• more rapidly in an oxy1,n-enriched 

environment. The1e trend• are ob1erved becaute the oxidation reaction• 

are diffu,ion controlled, depending on the area available for ma11 

tran1fer. Fait reaction rates are favored by the lar1e surface area 

to volume (ma1s) ratio characteristic of small particles. Because the 

energy-relea1e rate is proportional to the oxidation rate, and 

oxidation rate and volatile-release rate depend on particle size, the 

temperature distribution and volatile distribution in a furnace will 

depend on the coal-particle size used. Therefore, the amount of sulfur 

trioxide generated in a flame is a function of the coal-particle size, 

due to the species-concentration dependencies and temperature 

dependencies of the rate-limited reactions from which it forms and 

decomposes, 



·--

S. SULFUR TRIOXIDE MEASUREMENTS IN A COAL-FIRED UTILITY BOILER 

During July 1984, a series of measurements was made of sulfur 

trioxide levels at Potomac Electric'& Morgantown Unit·Two using a 

continuous sulfur trioxide monitor marketed connercially by Severn 

Sciences Limited. The boiler is a 600-megawatt supercritical-pressure 

unit fired tangentially using pulverized coal. 

The sulfur trioxide monitor uses an automated isopropyl alcohol 

absorption technique to measure flue-gas sulfur trioxide 

concentration. A controlled quantity of flue gas is contacted with a 

solution of isopropyl alcohol and water. The solution absorbs sulfuric 

acid and converts gaseous sulfur trioxide to liquid sulfuric acid. The 

sulfate (equivalent to sulfuric acid) content of this liquid is 

determined by passing the sulfate-containing solution over barium 

chloranilate crystals. Each sulfate moiety generates a chloranilate 

ion, which absorbs light in the UV spectrum. The UV absorbance (535 

run) is measured with a photometer, and the electrical signal sent from 

the monitor to data logging equipment is converted to equivalent 

flue-gas sulfur trioxide concentration. 

The effect of excess air on sulfur trioxide levels was determined 

by measuring sulfur trioxide concentrations at the inlet side of the 

air heater at low (2.2 percent), medium (3.5 percent), and high (5.0 

percent) oxygen levels at various locations in the duct. Measurements 

were made using a grindsize of 85 percent through 200 mesh while unit 

load was held constant at 480 megawatts. The slag condition was not 

disturbed by soot blowing during the tests. No attempt was made to 

establish and correlate pointwise time variations in acid levels. 
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Average sulfur trioxide levels at high, medium, and low oxygen 

were 8.4, 7.8, and 4.1 ppm respectively. The concentrations were 

noticeably lower during low-excess-air operation, although there was 

not a noticeable difference between the sulfur trioxide levels during 

medium and high-oxygen firing. Representations of the measured 

distributions are shown in Figure 20. The location of a measured value 

along the duct wall is labeled in Figure 20, but the penetrations of 

two, four, six, and eight feet from the front wall are not labeled, 

The height of a point above the x-y plane is indicative of the value at 

that position. Generally, acid levels were much lower along the front 

wall. Also, sulfur trioxide concentrations close to the front wall 

were not as sensitive to oxygen level as were concentrations in the 

back of the duct. 

The behavior of sulfur trioxide levels with oxygen can not be 

attributed to one particular source. A decrease in sulfur trioxide 

could be the result of reduced contact between catalytic surfaces and 

oxygen, reductions in flame-generated acid, or both. It is also 

evident that the contributing parameter varies throughout the duct and 

perhaps with operating condition. 
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DEPOSITION PROCESSES 

The mixture of sulfuric acid, water, fly ash, and corrosion 

products can be found in the colder layers of most re8enerative air 

prebeaters. The sulfuric acid and water condense simultaneously from 

the noncondensable components in the flue gas. The sulfuric acid 

originates from the sulfur trioxid~ormed in the furnace, while the 

moisture originates from the primary combustion reactions and from 

moisture contained in the combustion air. The condensed acid layer 

traps fly-ash entrained in the gas stream. The dynamics of the 

heat-transfer processes in the air heater and the operational history 

of the boiler dictate the magnitude and location of deposits. 

6.1 The Formation and Deposition of Sulfuric Acid 

Sulfuric acid vapor in the gas phase is formed by the combination 

of sulfur trioxide and water according to the reaction: 

so3(g) + H20(g) = H2so4(g) 

It is possible to calculate equilibrium conversion as a function of 

temperature from the Gmitro and Vermeulen
23 

Kp(T) relationship for 

this reaction. The manipulations used are as follows: 

Pso3 x P920 
Kp(T) = -----------

Pa2S04 

Kp (T) = equilibrium constant given as a power series in 
temperature. 

P = partial pressure of components 
X = fractional conversion= Pa2so4/Ptot 
Ptot = Pa2so4 + Pso3 

Pa20 
X =------

The resulting plot of conversion versus temperature for a gas 

containing six percent water vapor is presented in Figure 21. 
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According to equilibrium, when the flue ga1 reache1 the colder sections 

of the air heater where acid condensation begin• (le11 than 200°C), 

e11entially all of the sulfur trioxide has combined with water to form 

sulfuric acid, The rate of this reaction is faater than the gas 

diffuaional rate, so the equilibrium conversion is attained if mixing 

24 
is complete. 

Condensation of a mixture of sulfuric acid and water from flue gas 

onto a surface is possible once the surface temperature is at or below 

the saturation (or dewpoint) temperature of the condensing components. 

The dewpoint temperature is set by thermodynamics, depending on the 

sulfuric acid concentration and water concentration in the gas. 
25 

Dewpoint temperatures calculated from the Banchero correlation in 

Figure 22 show how dewpoint temperatures decrease as acid levels are 

reduced and as water levels decrease. The dewpoint temperature is 

particularly sensitive to the acid concentration in the gas. The 

compositions of condensed liquids in equilibrium with gases of various 

26 27 
acid concentrations were calculated from the Abel and Greenwalt 

v 
correlations. The results, which appear in Table II, show that the 

acid concentration in the liquid is more sensitive to the concentration 

of the acid in the vapor at the lower (vapor acid) concentrations. 

The characteristics of sulfuric acid and water condensation from a 

clean (particle free) carrier gas were demonstrated in the laboratory 

by Taylor. 28 In his experiments, sulfuric acid and water were 

vaporized in an evaporator, mixed with air, and drawn through a 

controlled-temperature pyrex tube. The air flowrate and tube diameter 

were 1uch that laminar flow prevailed throughout the condenser. 

51 



280 

270 

260 

-u. 250 0 -
w 
CZ 
::::::, 
~ 
C 
CZ 

"' 240 ~ 
2 w 
~ 

~ z -
~ 230 m 
0 

220 

210 

200 
0.0 

Figure 22. Thermodynamic Dewpolnt as a Function 
of Sulfuric Acid Concentration 

7 H20 
6: H20 

5 H')O 
L 

2.0 4.0 6.0 8.0 10.0 

H2S04 CONCENTRATION (ppm) 

52 

/ 

' 
.~ 



Table II. Composition of Condensed Liquid 
with Various Gas H2S04 Levels. 
7.5 Percent Water Vapor 1 Atm. 

Vapor 
Volume Fraction 

(PPM) 
H2S04 

2.5 
5.0 
7.5 

10.0 
15.0 
20.0 
30.0 

Liquid 
Weight Percent 

H2S04 

80.63 
81.47 
81. 93 
82.24 
82.67 
82.97 
83.40 



The rate of acid conden1ation as a function of 1urface temperature 

waa mea1ured over the range of vapor concentration• encountered in an 

oil-fired utility boiler. Taylor's results for a 1ynthetic flue gas 

containing 7.5 percent moisture by volume are pre1ented in Figure 23. 

The experiment demonstrated how the flux of conden1ing acid increases 

as the surface is cooled below the dewpoint temperature. In addition 

to demon1trating the relationship between surface temperature and acid 

flux, the results show how reducing acid levels in the vapor decreases 

the rate of acid condensation for any given temperature difference 

between the bulk gas and the surface. At temperatures far below the 

initial condensation temperature, the flux of acid reached a maximum. 

Upon further reduction of the surface temperature, the acid flux 

decreased. 
29 30 

Flint and Kear , and Rylands and Jenkinson observed 

this behavior in similar experiments. The Rylands and Jenkinson 

apparatus permitted visual observation of the condensation process. 

Rylands and Jenkinson observed film-type condensation on the walls of 

the condenser, and reported that mist was entrained in the gas stream 

in the zone of diminished-condensation. 

The observed behavior can be rationalized by examining the heat 

and mass-transfer processes occuring. In order for the condensable 

components in a system to condense, concentration gradients must exist 

in the gas between the bulk gas and the surface. If the condensable 

components are relatively dilute, the bulk-flow of material to the 

surface is negligible, and the condensable compounds move to the 
31 

surface by diffusion along the concentration gradients. As the 

surface temperature is reduced, the gas-side interfacial concentrations 
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of the condensable materials are reduced, thereby increasing the 

concentration gradients, with a concomitant increase in condensation 

rate. 

A temperature profile also develops between the bulk gas and the 

cooled surface. Heat transport occurs by convection and by movement of 

thermal energy carried by the migrating species. Thermodynamics sets 

the maximum allowable acid concentration at positions throughout the 

gas according to local temperature and local concentrations of sulfuric 

acid and water. At positions where local vapor concentrations exceed 

those permitted by the local temperature, the gas either supersaturates 

or nucleates to form liquid droplets. The amount of supersaturaton 

tolerated by the gas will affect the concentration gradients, which in 

turn will affect the condensation rate. The reduction in acid flux 

resulting in extensive surface subcooling is likely attributed to 

reductions in the concentration of acid in the vapor phase due to the 

formation of deposition-resistant liquid droplets. 

Because the condensable components are convected with the bulk-gas 

flow, and because convection parallel to the surface affects the 

concentration gradients, the gas-flow characteristics are expected to 

interact with the condensaton rate behavior. 

6.2 Ash and Liquid-Droplet Deposition 

Ash particles of various sizes enter the air preheater with the 

flue gas. These particles can deposit onto the surfaces of the air 

preheater passages by a variety of physical processes. The operative 

process depends on particle characteristics (principally size) and the 

flow characteristics of the gas stream. Ash deposition occurs on 

surfaces whic~ are both above and below the acid-dewpoint temperature. 

56 



Although the mechanisms of deposition are similar in both regions, the 

magnitude and effect on air-heater performance is different. 

The motion of very-small solid particles in a gas stream occurs by 

Brownian motion. Brownian motion affects particles appreciably smaller 

that 1000 angstroms. The transport of these particles results from 

collisons with gas molecules and other solid particles. Therefore, the 

particles diffuse from areas of high concentration to low 

concentration, as do gases. The smallest particles comply to the 

32 
equations governing molecular diffusion. 

The movement of larger particles in a gas stream with diameters of 

up to one micron are dominated by the path of the gas stream. Ash 

particles in this size range are also subject to Brownian motion. 

Particles larger than one micron can only be transported to a 

surface perpendicular to the reaction of flow by turbulent diffusion 

processes. These particles impact a surface when kinetic energy 

imparted to them by gas eddies propell them to the surface. Turbulent 
(J 

diffusion is associated exclusively with turbulent flow, which is 

characterized by the presence of eddies. 

35 Frielander and Johnstone found that no ash-type solids 

deposited in the entrance region of a pipe when the Reynolds number 

based on pipe diameter was kept below 4000, with particles in the size 

range of a.so to 2.63 microns. 

A plot of solid deposition rate as a function of surface 

temperature measured at an oil-fired boiler downstream of the air 

34 preheater is shown in Figure 24. Above the acid condensation 

temperature, solid accumulation occurs at a noticeable rate. Below the 

condensation temperature solids accumulate at a much faster rate (note 
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the 1011cale). Although particle migration to the 1urface in the 

conden1ation and non-condensation zones are 1imilar, the agglomeration 

of sulfuric acid, water, corrosion products, and fly ash in the 

conden1ation zone is more resistant to mechanical dislodging than 

agglomerates in the non-condensation zone. Therefore, enhanced 

accumulation rates and less friable deposits are found in the 

condensation region. 

6.3 Acid Condensation Interference by 

Particles Entrained in the Gas Stream 

35 29 36 Whitingham , Flint , and Kear determined the effect of 

carbon smoke addition on dewpoint. Meter behavior using flue gases 

generated by a laboratory facility. The flue gas was generated with a 

fully-aerated Bunsen flame by combusting coal gas. The flame was 

housed in a pyrex chimney with side arms for gas sampling located well 

above the visible flame. Desired sulfur trioxide levels were 

established by directly adding sulfur trioxide (obtained from the 

oxidation of sulfur dioxide with oxygen over a catalyst), or by adding 

sulfur dioxide to the primary coal-gas supply. Carbon smoke was 

produced in and above the Bunsen flame by the partial combustion of an 

auxiliary gas supply. The smoke concentration was determined by 

weighing the amount of material deposited on a water-cooled tube 

exposed to the flame gases. 

A dewpoint meter consists of a glass thimble carrying a 

thermocouple and two electrodes across which an electrical potential is 

applied. The glass element is exposed to the flue gases while cool air 

it directed againat the backside of the thimble at a rate which 

e1tabli1he1 the deaired temperature. The presence of sulfuric acid 
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solution on the dectector is indicated by the flow of current across 

the electrodes. Current flow is monitored by a remote amp meter. 

The meaaured conductivity depends on the thickness of the condensed 

film and the conductivity of the deposited material. The dewpoint is 

obtained by cooling the probe to the point where current flow is 

present and steady. 

The bot products of combustion were drawn over the glass thimble 

of a dewpoint meter by a vacuum pump. Measurements were made of the 

dewpoint temperature and the conductivity versus time behavior 

associated with operation below the acid-dewpoint temperature. The 

dewpoint temperature did not change as the concentration of carbon 

smoke increased from zero to 0.14 mg/liter. The rate of increase in 

conductivity ten degrees Celcius below the dewpoint was determined with 

carbon smoke removed from the gases and found to vary linearly with 

time (a result of the steady increase in condensed-film thickness). 

When carbon smoke was introduced at a rate of 0.14 mg/liter, there was 

a substantial reduction in the rate of conductivity increase as shown 

in Figure 25. 

The sulfuric acid content of the gas mixture was simultaneously 

measured using the isopropyl alcohol absorption technique. The 

analysis was conducted such that the sum of the acid in the gas phase 

and acid loosely associated with the carbon smoke was measured. Little 

change in acid level occurred with up to 0.14 mg/liter of smoke 

addition, although substantial reductions resulted with higher smoke 

burdena. Therefore, the amount of gas-phase acid remained constant 

with moderate carbon-smoke addition, because both the total acid level 

and the dewpoint-meter dewpoint remained unchanged. 
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The authors attributed the reduction in conductivity rate to 

reduction• in the deposited acid layer conductivity resulting from 

chemical reactions between the acid deposit and the oaserved 

carbon-smoke deposit. It is suggested here that the carbon ash could 

also have reduced the acid-deposition rate by reducing the amount of 

acid in the vapor through acid-mist formation. 

The effects of ash entrained in boiler flue gases on condensation 

37 
behavior was also investigated by Corbett and Flint. Two 

stoker-fired boilers were adapted to auxiliary pulverized-coal firing 

in an attempt to impart the lower corrosion potential associated with 

pulverized-coal firing to the stoker-fired units. With the 

modifications, 20 percent of the full-load fuel requirement could be 

met by pulverized coal. 

At the first site, measurements of sulfur trioxide levels at the 

economizer exit using the isopropyl alcohol/water absorbtion technique 

indicated a negligible reduction in acid level with auxiliary 

pulverized-coal firing. The dewpoint temperature at this location 

measured with a dewpoint meter was not altered by auxiliary firing, 

although the rate-of-acid buildup curve generated by the device changed 

dramatically, as shown in Figure 26. Such curves are obtained by 

monitoring the rate-of-current increase at various temperatures below 

the condensation-onset temperature. The reduction in current rate 

associated with the pulverized-coal firing can be attributed to a 

reduction in the conductivity of the material depositing on the 

detector element and/or a decrease in the actual acid condensation rate. 

Similar measurements were made at an alternate site. This unit 

experienced no change in sulfur trioxide level or dewpoint-meter 
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dewpoint temperature with auxiliary firing. To complement the1e 

experiment•, acid-depo1ition rate wa1 mea1ured a1 a function of 1urface 

temperature by expo1ing a controlled temperature surface to the flue 

ga1e1 for a 1et time, followed by quantitative determination of the 

unbound 1ulfate (sulfuric acid) content in the depoait. The rate of 

acid condenaation was reduced with auxiliary pulverized-coal firing, as 

shown in Figure 27. The magnitude of the effect depended on the 

surface temperature. 

To determine if the observed phenomena resulted from the increased 

dust burden associated with auxiliary pulverized-coal firing, dust 

collected from an electrostatic precipitator of a pulverized-coal unit 

was manually introduced at the inlet of the secondary air fan while 

operating without auxiliary firing. Dewpoint-meter dewpoint 

temperatures were monitored, and rate-of-current-buildup measurements 

were made 6 Fahrenheit degrees below the instrument dewpoint. The 

results displayed in Figure 28 show that modest dust feed rates had no 

effect on dewpoint-meter dewpoint temperature, although the 

conductivity rate decreased. More significant dust burdens reduced the 

onset temperature below the limit of detectibility of the dewpoint 

meter. 

The evidence presented suggests that the presence of particles in 

the gas stream reduces the acid condensation rate onto a surface cooled 

below the condensation onset-temperature. However, condensation rates 

inferred from dewpoint-meter current rates may be obscured by changes 

in the conductivity of the condensed acid due to chemical and/or 

physical change• associated with simultaneous dust deposition. 

The mode of interaction between the particles and the condensation 
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proces1 remain• to be determined, Three mechanisms are suggested. 

1, Supersaturation reduction by enhanced nucleation 

2. 

3. 

If the gas above a cooled surface is locally 

supersaturated before particle addition, the addition of 

particulate material would reduce supersaturation by 

~ 

increasing the rate~~quid-droplet formation. This mist 

formation would reduce th~olecular-diffusion rate of acid 

to the surface by reducing the acid-concentration gradient in 

the vapor between the bulk and the vapor-liquid interface. 

Local adsorption by solid particles 

In general, the adsorption capacity of solid material 

such as carbon is greater at lower temperatures. As 

particles approach a cooled surface, they see a cooler 

environment. Such particles might absorb vapors such as 

sulfuric acid and water, reducing the concentrations of these 

components in the vapor. 

Momentum transport modification 

The velocity profile of a gas flowing through a conduit 

is a function of radial and axial position. If a solid 

particle entrained in a gas stream was large enough such that 

it experienced a non-symmetrical velocity field, the particle 

would spin and translate. Because momentum, heat, and mass

transport-rates are interrelated, the mixing caused by solid 

particles in a flowing gas stream could modify mass-transfer 

(condensation) rates. 
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6.4 Dynamics of Deposition in the Air Heater 

The nature of fouling, plugging and ultimately corrosion in the 

regenerative air heater is dependent upon the interrelationship between 

basket-metal temperatures and the dynamics of the condensation processes. 

For the design case a regenerative air heater operates with constant 

flow rates and temperatures on the gas and air sides. Temperature gradients 

in the metal in both the flow direction and the rotational direction are 

expected. Figure 29 shows simulated metal temperature distributions for the 

cold-end layer of the metal basket on the gas side at two positions in the 

rotational arc. The curve with the lower temperature represents metal that 

has just entered the hot gas stream, while the curve with higher temperatures 

is for the metal at the end of its path in the gas stream. 

Consider a flue gas with an acid dewpoint of 215°F flowing over the 

surface at these positions. Just as the metal basket enters the flue gas 

duct from the cold-air duct (lower curve on Figure 29), acid condensation 

would occur everywhere on the surface because metal temperatures are below 

the condensation point throughout, and a zone of diminished condensation and 

mist formation would develop downstream of the initial condensation point. 

At the end of its travel in the flue-gas duct (upper curve on Figure 29), 

condensation would occur only at the very end of the basket. Furthermore, if 

the acid that condensed on the surface at its first exposure to the gas 

stream did not react on the surface, it might well evaporate at this stage. 

If the magnitude of the deposition and evaporation rates are significant, 

higher sulfur trioxide levels would be observed at the gas outlet on one side 

of the duct. 

Fly-ash deposition can occur on all exposed surfaces of the air heater 
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as previously described. The deposits are subject to repeated cooling by 

inflowing combustion air and further deposition during exposure to flue gas. 

Soot blowing of the air heater removes the more friable material, but the 

temperatures associated with steam soot blowing can further reinforce the 

structure of cemented material in the condensation zone. Therefore, the 

deposits on basket metal surfaces are the result of condensation, 

evaporation, and reaction of condensate with basket metal. The magnitude, 

location and effect of the deposits are dictated by the dynamics of the 

heat-transfer processes in the air heater and the operational history of the 

boiler . 
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NOMENCLATURE 

•c • de1ree1 Celciua 

cm3 • cubic centimeter• 

ft • feet 

gmol • gram molu 

) • greater than 

hr • hours 

•K • degreu Kelvin 

ki • kinetic rate parameter 

M • chemically inert molecular 

A.I 0.. • microamp 

AJI"\ • micrometer 

mg • milligram 

m1ec • milli1econd 

min • minute, 

ppm • part, per million 

pf • pulverized coal fired 

i • percent 

h Y • radiation of energy 

component 

STP • 1tandard temperature and pre11ure 

wt • weight 

SUPEllSCRIPT 

* 

• 

• activated specie• containing additional vibrational, 
rotational, or tran1lational energy 

• degree• 
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