# Lehigh University Lehigh Preserve

Theses and Dissertations

1985

# The performance and chemical state of a sulfur poisoned Fischer-Tropsch catalyst

Chester T. Barry Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd Part of the <u>Chemical Engineering Commons</u>

**Recommended** Citation

Barry, Chester T., "The performance and chemical state of a sulfur poisoned Fischer-Tropsch catalyst" (1985). *Theses and Dissertations*. 5179. https://preserve.lehigh.edu/etd/5179

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.



Lehigh University Bethlehem, PA 18015 May 1985

Signature of Author:

Certified by:

Accepted by:

The Performance and Chemical State

of a Sulfur Poisoned Fischer-Tropsch Catalyst

bу

Chester T. Barry

BS MIT (1983)

Submitted to the Department of Chemical Engineering in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

at







the C. Chen 5/29/85-

John C. Chen, Head Department of Chemical Engineering

The Performance and Chemical State of a Sulfur Poisoned Fischer-Tropsch Catalyst

Submitted to the Department of Chemical Engineering on May 15, 1985 in partial fulfillment of the requirements for the Degree of Master of Science

The effect of prepoisoning a fused iron Fischer-Tropsch catalyst on its performance and chemical state was investigated. Following reduction at 400 °C, the catalyst was poisoned or carbided at 250  $^{\circ}$ C and 1 atm. As a result of poisoning with 1.6 mg S/g Fe, catalytic activity decreased 25% and the extent of carbide formation in the bulk after 12 hours of synthesis did not change significantly. The selectivity and chemical state of the catalyst did not change significantly. As a result of poisoning with 134 mg S/g Fe, catalytic activity decreased 95% and the extent of carbide formation in the bulk after 0.5 hours of synthesis was lowered. The selectivity was improved and the chemical state of the catalyst was different from that of an unpoisoned catalyst. The selectivity shifted toward olefin production and higher molecular weight products.

Thesis Advisor: Harvey G. Stenger, Jr. Assistant Professor of Chemical Engineering

bу

Chester T. Barry

Abstract

I dedicate this thesis to Mommy and Daddy Chester. I couldn't have done it without your love.

Dedication

AND A REAL PROPERTY OF AND TO THE ADDRESS OF THE ADDRES

Harvey, thanks so much for your guidance, enthusiasm, and support throughout my sojourn at Lehigh. It was a real horror show. Karl, you made the lab such a warm and cheery place to work. Ox, thanks for cracking the reactor each time I was too weak to do it myself. Sincere thanks go to Dr. Gary Simmons and Dave Cole in the Chemistry Department for their very patient and helpful assistance with Mossbauer Spectroscopy. Finally, I would like to thank the Department of Chemical Engineering and Exxon for supporting me and the project.

۰.

Acknowledgements

| Lis   | st  | of                         | F                          | ·i                    | g                | ų                          | r                     | e                     | s                     | .•                              | •                     |                  |                            |                                      | •                               |                                 |                       |
|-------|-----|----------------------------|----------------------------|-----------------------|------------------|----------------------------|-----------------------|-----------------------|-----------------------|---------------------------------|-----------------------|------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|
| Ι.    | Ĭ   | ntr<br>I.<br>I.<br>I.      | od<br>A.<br>B.<br>C.<br>D. | ų                     | c<br>B<br>A<br>O | t<br>f<br>c<br>b           | i<br>c<br>f<br>t<br>j | o<br>k<br>e<br>i      | n<br>g<br>c<br>v<br>c | r<br>t<br>t                     | t<br>i                | u<br>o<br>y<br>v | n<br>f<br>e                | d<br>a                               | S<br>n<br>a                     | u<br>d<br>n                     | 1                     |
| II.   | . ] | Exp<br>II                  | er<br>.A                   | i<br>•                | m<br>I<br>I<br>I | e<br>O<br>I<br>I<br>I      | n<br>p<br>•           | t<br>A<br>A<br>A      | a<br>r                | 1<br>a<br>1<br>2<br>3           | t                     | ·                | o<br>R<br>C<br>P           | n<br>e<br>a<br>o                     | a<br>t<br>i                     | •<br>C<br>a<br>s                | f<br>1                |
|       |     | II<br>II                   | .B<br>.C                   | •                     | I<br>I<br>I<br>I | I<br>C<br>P<br>I<br>I<br>I | a<br>r                | A<br>t<br>C<br>C<br>C | •<br>d<br>•           | 4<br>1<br>1<br>2<br>3<br>a      | y<br>c                | s<br>t           | S<br>t<br>I<br>D<br>R      | y<br>A<br>n<br>P<br>a<br>e           | n<br>a<br>n<br>s<br>e<br>t<br>1 | ι<br>n<br>a<br>t<br>r<br>a<br>a | t                     |
|       |     | II                         | .D                         | •                     | I                | Ċ                          | a<br>•                | t.<br>D               | a<br>•                | b<br>1<br>a<br>b<br>c           | ý                     | S                | S<br>t<br>M<br>I<br>O      | e<br>r<br>o<br>n<br>p                | 1<br>A<br>e<br>s<br>e           | e<br>n<br>p<br>s<br>r<br>n      | c<br>a<br>b<br>t<br>i |
|       |     |                            |                            |                       | I<br>I<br>I      | I<br>I<br>I                | •                     | D<br>D<br>D           | •                     | 2<br>3<br>4<br>b                | •                     |                  | S<br>O<br>D<br>J<br>J      | P<br>P<br>A<br>O                     | e<br>t<br>B<br>B                | c<br>r<br>a<br>R<br>D           | t<br>a<br>E<br>R      |
|       |     |                            |                            |                       | 1                | 1                          | •                     | D                     | •                     | 5<br>a<br>b<br>c<br>d<br>e<br>f | •                     |                  | S<br>G<br>J<br>J<br>J<br>E | 1<br>e<br>0<br>0<br>0<br>0<br>0<br>V | R<br>R<br>B<br>B<br>B<br>E      | I<br>e<br>N<br>T<br>F<br>F      |                       |
| I I I | •   | Re<br>II<br>II<br>II<br>II | su<br>I.<br>I.<br>I.       | 1<br>A<br>B<br>C<br>D |                  | I<br>S<br>I<br>I           |                       | D<br>x<br>d<br>e      | t<br>e<br>1           | 6<br>•<br>n<br>a                |                       | t<br>i<br>s      | V<br>f                     | e<br>o<br>i<br>e                     | 1<br>f<br>c                     | a<br>A<br>d                     | c<br>R<br>t           |
|       |     | II                         | I.                         | E                     |                  |                            | I<br>J<br>I<br>I<br>I | .]<br>n]<br>.]        | D<br>P<br>E<br>E      | 0                               | 1<br>2<br>1<br>1<br>2 | s<br>•           | )<br>(<br>(<br>)<br>)      |                                      | e<br>e<br>e                     | ⊥<br>er<br>d<br>1 e             | e<br>n<br>e           |

. .

# TABLE OF CONTENTS

Page

|             |            |            |         |          |            |        |         |              |            |          |          |        |           |            |         |          |            |          |         |          |          |            |            |        |        |         |                  |    |     |        |     |    |    |    |        |          | í      |
|-------------|------------|------------|---------|----------|------------|--------|---------|--------------|------------|----------|----------|--------|-----------|------------|---------|----------|------------|----------|---------|----------|----------|------------|------------|--------|--------|---------|------------------|----|-----|--------|-----|----|----|----|--------|----------|--------|
| •           | •          | •          | •       | •        | ٠          | •      | •       | •            | •          | •        | •        | •      | •         | •          | •       | •        | •          | •        | •       | ÷        | •        | •          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •  | .• | •. |        | •        | Ŧ      |
|             |            |            |         |          |            |        |         |              |            |          |          |        |           |            |         |          |            |          |         |          |          |            |            |        |        |         | ÷                |    |     |        |     |    |    |    |        |          | 1      |
| •           | ٠          | •          | •       | •.       |            | •      | •       | •            | •          | •        | •        | •      | •         | •          | •       | 1        | •          | •        | •       |          | •        |            |            |        |        |         | ·                | ·  |     |        |     |    |    |    |        |          | 1      |
| •           | ŗ          | •          | :       | •        | •          | •      | •       | י<br>ק       | ب          |          |          | h      |           | ŗ          | •       | т        | ŕ          |          | 'n      | c        | ·<br>c   | h          | •          | ĉ      | a      | t       |                  | 1  | v   | ۔<br>ب | t   | ŝ  |    |    |        |          | 1      |
|             | L<br>C     | ս          | · I     | _        | 4          |        | ~       | 1<br>. 1     | ۰¥.        | C        |          |        | , e       | T.         |         |          | r<br>f     | 0        | P       | .э<br>Э  | +        | ы<br>А     | ĩ          | v      | c<br>c | ۲.<br>۲ | a                | 1  | Į   | .)     | C   | 5  | •  | •  | •      | •        | ą      |
| 4           | U          | ц<br>П     | e       | - mi     | 1          | C<br>v | а<br>;  | . 1          | -in        | .)<br>П  | ) L      | d      | 1         | e          | ٨       | 0        | ा<br>रः    | ŗ        | 0       | а<br>Э   | с.       | h          | Ļ          | y      | 5      | Ľ       | •                | .• | • · | ٠      | .•. | •  |    | •  | •      | •        | 2      |
| ġ           |            | Ľ          | X       | ŀ.       | e          | Ţ      | T       | 111          | e          | 11       | L        | d      | T         |            | м       | Ρ        | P          | Ţ        | Ų       | a        | C        | Ļ,         | •          | •      | •      | •       | •                | •  | •.  | .•:    | •   | •  |    | •  | •      | •        | 5      |
|             |            |            |         |          |            |        |         |              |            |          |          |        |           |            |         |          |            |          |         |          |          |            |            |        |        |         |                  |    |     |        | -1  |    |    |    |        |          | 5      |
| f           | •          | D          | •       | •        |            | •      | •       | ,<br>r       | •          | ċ        | •        | •      | +         | •          | •       | •        | •          | •        | •       | •        | •        | •          | •          | •      | •      | ſ       | •                | •  | •   | •      | •   | •  | •  |    | •      | •        | 5      |
| ۲<br>۲      | ~          | л<br>~     | ę       | d<br>C   | C<br>W     | L.     | +       | 1            |            | <u>ں</u> | y        | Э      | L         | С          | 111     | •        | •          | .•       | •       | •        | •        | •          | •          |        | •      | •       | •.               | •  | •   | •      | •   | •  | •  | •  | •      | •        | 5      |
| ւ<br>1      | 0          | с<br>1     | ÷       | J        | y<br>P     | 5      | d       | .с<br>11     | с<br>П     | + 1      | י<br>י   | •      | n         | •          | ٠       | •        | •          | •        | •       | •        | •        | •          | •          | ·.•.   |        | •       | •                | •  | •   | •      | •   | į  |    | ·  |        | ļ        | 8      |
| T           | y<br>n     | 5<br>;     | L<br>n  | a        | v          | C      | u       | u            | C          | ι        | Ļ        | U      |           | •          | •       | •        | •          | •        | •       | •        | •        | •          | •          | •      | •      |         | •                | •  | •   | •      | •   | •  |    |    | •      |          | 8      |
| О<br>Ь.     | 11<br>0    | 1          | ii<br>i | .В<br>С  | •          | •      | •       | •            | •          | •        | •        | •      | •         | •          | •       | :        | •          | •.       | •       |          | •        | •          | •          |        | •      | •       | •                | •  | •   | •      |     | ļ  |    | ļ  |        | Ĵ        | 9      |
| н<br>А      | e          | D          | T       | 5        | •          | •      | •       | •            | •          |          | •        | •      | •         | •          | •       | •        | •          | •        | •       | •        | •        | •          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •  |    | Ì  |        | 1        | Ō      |
| 1           |            | N<br>N     | е<br>;  | 4        | C          | ь<br>Б | d       | 11           | с<br>С     | 5        | · •      | •      | $\hat{c}$ | ĥ          | r       |          | •          |          | •<br>F  | •        | •        | ·<br>r     | ·<br>a     | n      | ·<br>h | •<br>•  | •                | •  | •   | .•     | •   | •  | •  | •  | •      | 1        | 0      |
| T .         | y          | 5          | ٦.      | 5        | •          | U<br>0 | y<br>≁  |              | 0          | d        | Э        |        | C<br>n    | ц<br>Л     | 1       | M        | -<br>-<br> | ∘cı<br>≁ | ۰.<br>م | r        | ъ        | ч.<br>Э    | n<br>1     | P      |        | )       | •                |    | •   | •      | •   | •  | •  | •  | •      | 1        | 0      |
| r           | u<br>t     | m<br>-i    | e       | 11       | L          | a      | ι       | . <b>.</b> . | 0          | п        |          | đ      | п         | u          |         | 1.1      | d          | ٠L       | e       | T        | Ŧ        | a          | T          | 3      | •      | •       | •                | •  | •   |        | •   | •  | .• | •  | •      | ì        | ą      |
| a           | L<br>D     | 1          | ں<br>ا  | n<br>    | •          | •      | •       | •            | •          | •        | •        | •      | •         | •          | •       | •        | •          | •        | •       | •        | •        | •          | •          | ÷      | •      | •.      | •                | •  | •   | •      | •   | •  | •  | •  | •      | ]        | 5      |
|             | K.         | e          | Ū,      | u        | Č          | Ĺ      | +       | ų<br>t       |            |          |          |        | •.        | $\dot{c}$  |         | 1        | •          | •        | 1       | •        | .≁<br>+∹ | •<br>•     | •          | •<br>n | •      | •       | •                | •  | •   | •      | •   | •  | •  | •  | •      | 1        | 6      |
| Ľ.          | 1          | V.         | e       | 2        | A          | C      | .Ľ      |              | V          | 1        | L        | y      | 1         | 0          | .d<br>+ | +        | C<br>C     | u<br>n   | т       | a        | ι        | 1          | 0          | 11     | •      | •       | •                | •  | •   | •      | •   | •  | •  |    | •      | 1        | 7      |
| C           | t<br>1     | 1          | v       | 1        | L<br>-     | y      | L       | 0            | d          | ц.<br>М  | . C      | u      | 1         | d<br>h     | L.      | т<br>    | 0          | ш<br>.r  | •       | c        | 'n       | <br>20     | •          | •      | ÷      |         | .•<br>           | •  | •   | 'n     | •   | •  | •  | •  | •      | 1        | 7      |
| a           | Ļ          | y          | S       | 1        | S          |        | D       | y            | ٢          | [Y]      | 0<br>. M | S      | S         | D.         | a<br>L  | u        | e          | 1        | ~       | 3        | P<br>P   | ę          | с<br>      | Ļ<br>n | 1<br>1 | 0       | э                | Ļ  | 0   | P.     | y   | •  | •  | •  | •      | 1        | 8      |
| a           | r.         | a          | t       | 1        | 0          | n<br>C |         | 0            | I.         | 1        | M        | 0      | S         | S          | 19<br>1 | a<br>a   | u          | e<br>~   | 1       | Г        | 5        | а          | ш<br>т     | ۰۲     | T<br>T | e       | •                | •  | •   | •      | •   | ٠  | ٠  | •  | •      | 1        | R      |
| D           | a          |            | e       | r        |            | 5      | a       | m            | p          | Т<br>р   | e        |        | н<br>-    | 0          | T       | ŭ        | e          | 1        | Å       | г<br>П   | d        | υ          | I          | T      | C      | d       | Ŀ.               | T  | U   | 11     | •   | •  | •  | •  |        | 2        | 0      |
| t           | 1          | C          | h       | a        | m<br>L     | D      | e       | r<br>n       | _          | P        | r        | e<br>L | p         | a          | Γ       | a        | Ľ.         | .т.      | 0       | ņ        | ۰.       | •          | •          | ٠      | ٠      | •       | •                | •  |     | •      | •   | •  | •  | •  | •      | 2        | 2      |
| 11          | n          | g          |         | Ę        | n          | e      |         | K            | e          | a        | Ç        | Ľ.     | 0         | Т<br>      | •       | •        |            | י<br>ה   | •       | м        | •        | •          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •  | •, | •  | •.     | 2        | 2      |
| t           | r          | 0          | m       | e        | Ľ          | e      | r       |              | 5          | y        | S        | C      | e         | m          | ÷       | a        | .FI        | u<br>L   | _       | rı<br>-  | d        | L          | e          | 1      | T      | d       | 1                | 5  | •   | •      | •   | ٠  | •. | •  | •      | 2        | 2<br>0 |
| a           | t          | 1          | 0       | n        |            | 0      | ŗ       |              | 5          | p        | e        | C      | Ľ         | ŗ          | 0       | Ü        | e          | Ľ        | e       | I        | •        | •          | •          | ٠      | •      | •       | •                | •  | •   | •      | •   | •  | •  | •  | •      | ∡<br>૨   | 2      |
| ן<br>הח     | R          | e          | đ       | u        | С          | t      | 1       | 0            | ņ          | ٠        | •        | •.     | •         | •          | •       | ٠        | •          | •        | •       | •        | ٠        | •          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •. | •  | ٠  | •      | ן.<br>ג  | 1      |
| El          | U<br>D     | •          | ٠       | •        | •          | •      | •       | •            | •          | ٠        | ę.       | •      | •         | •          | •       | •        | •          | ę        | ٠       | ÷        | •.       | •          | •          | ٠      | •      | •       |                  | •  | •   | •      | •   | ٠  | .• | •  | •      | л<br>Г   | 1<br>2 |
| K           | t::        | T          | •       | •        | .•         | •      | •       | •            | •          | •        | •        | •      | •         | •          | •       | •        | •          | •<br>22  | •       | •        | •        | •          | ċ          | •      | •      | •<br>•  | •                | •  | •   | •      | •   | •  | ٠  | •  | ٠      | 2<br>2   | 2      |
| U:          | 5          | -          | S       | p        | e          | C      | t       | r            | u          | m        |          | Ľ      | V         | a.         | T       | u        | a          | τ        | 1       | n        | g        |            | С          | y      | S      | L       | e                | ш  | •   | •      | •   | ۴  | ٠  | .• | •      | ງ.<br>2  | 2      |
| ra          | a          | Ţ          | •       | ۰.       | •          | ٠      | ٠       | ٠            | •          | •        | •        | •      | •         | ٠          | •       | •        | ٠          | •        | •       | •        | •        | •          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •  | •  | ۰. | •.     | ע.<br>ק  | 2<br>२ |
| •           | •          | •          | •       | •        | •          | •      |         | ė            | •          | •        | •        | •      | •         | •          | •       | •        | •          | •        | •       | ٠        | •        | •          | •.         | •      | •.     | •       | •                | •  | •   | •      | •   | •  | •  | •  | •      | 3<br>2   | у<br>С |
| A           | P          | Ľ          | •       | •        | •          | •      | •       | •            | •          | ٠        | •        | •      | •         | •          | •       | •        | •          | •        | •       | ٠        | ٠        | •          | •          | •      | •.     | •       | •                | •  | •   | •      | •   | •  | •  | •  | .•     | 3)<br>2) | 5      |
|             | Li<br>T    | U          | •.      | •        | •          | •      | ٠       | ٠            | •          | •        | •        | •.     | •         | •          | •       | •        | •          | •        | •       | •        | •        | •          | •          | •      | •      | • .     | ÷                | •  | •   | •      | •   | •  | •  | •  | •      | 3.<br>3. | 4      |
| Ţ           | Ľ          | •          | •       | •        | ę          | •      | •       | •            | è          | •        | ٠        | ۲      | •         | •          | •       | ٠        | •          | •        | •       | •        | •        | •.         | •          | •      | ۰.     | •       | •                | •  | •   | •      | •   | ÷. | •  | ٠  | ٠      | 3        | 5      |
| • .         | •          | •          | •       | •        | •          | •      | •       | •            | •          | •        | •        | ÷      | •         | •          | •       | •        | •          | •        | •       | ٠        | •        | •          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •  | •  | •  | •      | ງ.<br>ເ  | 5      |
| С:          | 11         | C          | y       |          | U.         | a      | T       | 1            | D          | r        | ą        | L.     | ľ         | 0          | 11      | •        | •          | •        | •       | •        | •.       | ė          | • .        | •      | ۰.     | •       | •                | •  | •   | •      | •.  | •  | •  | •. | •      | J.       | 2      |
|             |            |            |         |          |            |        |         |              |            |          |          |        |           |            |         |          |            |          |         |          |          |            |            |        |        |         |                  |    | _   | _      |     |    |    |    |        | 30       | 9      |
| •. •<br>D • | •          |            | •       | •        | •          | •      | •       | •            | •          | •        | •.       | •      | •         | •          | •       | •        | •          | •        | •       | •        | •        | •          | •.         | •      | •      | •       | •                | •. | •   | •      | •   | •  | •  | •  | •      | 3        | 9      |
| K €         | = (        |            | u       | C        | ι          | f<br>T | 0       | п<br>С       | $\dot{c}$  |          | D        | •      |           | 1          |         | •        | •          | •        | •       | •        | •        | •          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •  | •  | •  | •      | 4        | 1      |
| ر ا<br>م    | L-(        |            | []<br>  | -        | ∪.<br>+    | Ļ      | ,       | ċ            | ¢.         |          | I<br>D   | e<br>0 | a<br>i    | r.<br>Ö    | ວ<br>ດີ | •.       | •          | А        | •       | ċ        | •<br>a   | • '<br>+ ' | •<br>a     | 1      | v      | •       | •<br>t           | •  | •   | •      | •   | •  |    |    | •      | 4        | 1      |
| ן י<br>ר    | د.<br>و (  | 5.<br>T    | v       | ⊥<br>h · | ι<br>r     | y      | ¢       | U<br>V       | ±<br>n     | t-       | ⊾<br>h∍  | 0      | с.<br>т   | i          | c .     |          | R          | ч<br>П   | n       | ļ        | u        | <u>ر</u>   | <b>ب</b> ب | Ē      | י נ    |         | -                |    |     |        |     |    |    |    | -<br>- | 4        | 3      |
| :           | 70         | ן<br>רי    |         | ₩.       | L<br>      | +      | י<br>ע  | y            | iı         | Ľ        | 11       | e      | 3         | <b>-</b> 1 | 3       |          | £1         | ц.       | . 1     | •        | •        | •          | •          | •      | •      | •       | •                | •  |     |        | •   |    | •  | •  |        | 4        | 3      |
| c (<br>m -  | - I<br>  / | L .        | +<br>-  | ۲.<br>1  | ÷.         | C<br>C | y<br>+∘ | •            | • '<br>+ : | •        | •        | •      | •<br>f    | •          | ċ       | •<br>a · | •<br>to    | a        | 1       | v        | s        | t          |            |        | ۳<br>د |         | -                |    |     | -      |     |    | •  |    | •      | 4        | 7      |
| ш 1<br>,    |            | - i<br>n - | а.<br>Л | ـــ<br>۱ | P          | 5      | сi<br>i | یں<br>ح      | רי<br>ה    | e<br>n   | 6        | ď      | •         | 1          | 2       | -        | с<br>h     | ŕ        |         | S        | v        | ř.         | til        | h.     | e      | s:      | i                | s  | 1   | Ri     | U   | n  | •  | •  | •      | 52       | 2      |
| ن<br>مہر    | 1 E<br>    | u, I<br>L  | u<br>i  |          | ц і<br>4 к |        | ц.<br>V | 3            | 0          | 11       | C        | u.     |           | •          | -       |          |            | •        |         | <u> </u> | J .      |            |            |        |        | <br>    | י <del>ה</del> י |    |     |        |     | •  |    |    |        | 52       | 2      |
| c (         | - 1<br>    | تا.<br>م   | L       | ۷.<br>1  | Ļ          | Ċ      | y<br>+  | •            | •          | •        | •        | •      | •`<br>f   | •          | •       | •        | •          | •        | 1       | •<br>v   | •        | •          | •          | •••    | •      | •       | •                | •  |     | •      | •   | -  |    |    | ļ      | 5        | 5      |
| ш.          | L (        | - i        | d.      | ŕ        |            | J      | L       | a            | L          | C        |          | U.     | ±.        |            | ، ب     | للت      |            | ų,       | ÷.,     | J        | 0        | -          | •          | •      | •      | •       | •                | •  | •   | •      | •   | •  | •  |    | •      | - •      |        |

III.F. Unpoisoned III.F.1. Set III.F.1. Set III.F.2. Che IV. Discussion..... IV.A. Extent of F IV.B. Activity of IV.C. Selectivity IV.D. Relative Act IV.E. Selectivity IV.F. Chemical St IV.G. Effect of S Catalys IV.H. Models of I V. Conclusions.....

VII. Appendices..... VII.A. Appendix VII.B. Appendix VII.C. Appendix VII.D. Appendix VII.E. Appendix

~. /

| d<br>le<br>em                 | ar<br>ct<br>ic             | id<br>i<br>a         | P<br>vi<br>1          | o<br>t<br>S          | is<br>y.<br>t <i>a</i>     | ;0<br>it          | n<br>e                     | e<br>·             | d<br>o f           |                  | )<br>C                | 5<br>a           | t.          | h<br>a                 | r<br>1       | y :        | Sy<br>st                | / n<br>- • | t.     | h<br>•  | е<br>• | s . | i:<br>• | s<br>• •          | • •         | ניט<br>ייי | n   | •           | •        | 5<br>5<br>6                | 8<br>8<br>1 |
|-------------------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------------|-------------------|----------------------------|--------------------|--------------------|------------------|-----------------------|------------------|-------------|------------------------|--------------|------------|-------------------------|------------|--------|---------|--------|-----|---------|-------------------|-------------|------------|-----|-------------|----------|----------------------------|-------------|
| Re<br>f<br>y<br>ct<br>y<br>ta | du<br>Un<br>of<br>iv<br>of | ici<br>po<br>l<br>it | ti<br>Jn<br>y<br>of   | o<br>so<br>po<br>i:  | n.<br>on<br>of<br>so<br>Un | e<br>s<br>n<br>P  | ·<br>d<br>o<br>P<br>e<br>o | (<br>ne<br>oi<br>d |                    | nt<br>l<br>Ca    | a<br>C<br>n<br>t<br>e | l<br>a<br>a<br>d | y<br>t<br>1 | ·<br>s<br>a<br>y<br>Ca | t<br>1<br>Ca | y<br>at    | • • •<br>• • •<br>• • • | . 1<br>. y | y<br>s | :<br>s  | ••••   |     |         | • •<br>• •<br>• • |             | •          | •   | •<br>•<br>• |          | 6<br>6<br>6<br>7<br>7<br>7 | 7779145     |
| Su<br>st<br>Ir                | lf<br>C<br>on              | uı<br>he             | ;<br>;<br>;<br>;<br>; | or<br>i c<br>Ca      | i<br>:a<br>at              | t<br>1<br>a       | h<br>1                     | e<br>St<br>yt      | :a                 | t<br>c           | e                     | B                | e           | ha                     | a v          | • •<br>v i | i o                     | r          | •      | •       | •      | • • | • •     | •                 | •           | •          | •   | •           | •        | 71<br>81                   | 7<br>1      |
| ••                            | • •                        |                      | •                     | • •                  |                            | •                 | •                          | • •                | •. •               | •                | •                     | ٠                |             | •                      | •            | • •        |                         |            | •      | •       | •      | ••  | •       | •                 | •           | •          | •   | ·           |          | 83                         | }           |
| • •                           |                            | • 1                  | ė                     | • •                  | , .                        | ÷                 | •                          | • •                | •                  |                  | •                     | •                | •           | •                      | •            | • •        | •                       | •          | •      | •       | • •    |     | • .•    | •                 | •           | •          | ٠   | •           | •        | 85                         | )           |
| I<br>II<br>II<br>IV           | -<br>-<br>I<br>-           | Mc<br>D<br>S         | )a<br>S<br>ai         | st<br>ta<br>IR<br>mp | a<br>I<br>I<br>I<br>I<br>I | u<br>R<br>U:<br>e | ei<br>ei<br>S              | i<br>Ju<br>JE      | D<br>IC<br>IO<br>X | a<br>t<br>b<br>T | t<br>i<br>s           | a<br>oı<br>F     | n<br>i      | Τı<br>1 ε              |              | an<br>bb   | ns<br>)s                | f<br>•     |        | r:<br>• | s .    | · · | •       | •                 | •<br>•<br>• |            | •   | •           | i:<br>•: | ii<br>v<br>v<br>v          |             |
| v -                           |                            | сa                   | 1.1                   | сu                   | 11                         | a                 | U I                        | L 0                | n                  | S                | ٠                     | •                | •           | • •                    | •            | •          | . • .                   | •          | •      | •       | ••     | •   | •       | •                 | •           | •          | • • | л.)         | Λ.       | ι⊥                         | •           |

# 1. Reactor System...

ł

- 2. Separation Charac of Supelco SP-170
- 3. Sample HP-5750 Ch
- 4. Mossbauer Sample
- 5. Inert Chamber....
- 6. Mossbauer Spectron
- 7. Channel Number and
- 8. Raw, Unfolded Spec
- 9. "True" Mossbauer S
- 10. Fit Spectrum of NB 57Fe-enriched alph
- 11. Mossbauer Spectra and Catalyst Reduc
- 12. Chromatogram of a
- 13. Relative Activity
- 14. C2 Olefin-to Parafi Catalyst, 98 hour S
- 15. Selectivity of Unp 98 hour Synthesis
- 16. Mossbauer Spectrum 98 hour Synthesis R
- 17. Selectivity of Unpo Poisoned Catalysts,
- 18. Mossbauer Spectra o Poisoned Catalysts,
- 19. Selectivity of Unpo Poisoned Catalysts,
- 20. Mossbauer Spectrum 0.5 hour Synthesis Two Sextets and One

| Page                                                      |
|-----------------------------------------------------------|
|                                                           |
| teristics<br>O GC Column12                                |
| romatogram14                                              |
| Holder                                                    |
|                                                           |
| meter System23                                            |
| d Velocity Correspondence25                               |
| ctrum                                                     |
| Spectrum                                                  |
| 3S Calibration Standard,<br>na-iron                       |
| of Untreated Catalyst<br>ed for 10 hours40                |
| Mixture of Light Hydrocarbons42                           |
| of Poisoned Catalysts44                                   |
| fin Ratio of Unpoisoned<br>Synthesis Run48                |
| oisoned Catalyst,<br>Run                                  |
| of Unpoisoned Catalyst,<br>Run                            |
| oisoned and 5 minute<br>12 hour Synthesis Run53           |
| of Unpoisoned and 5 minute<br>12 hour Synthesis Run       |
| isoned and 7 hour<br>0.5 hour Synthesis Run59             |
| of 7 hour Poisoned,<br>Run Catalyst Fit with<br>Doublet62 |

21. Mossbauer Spectra 0.5 hour Synthesis

- 22. C2+C3 Production a of Unpoisoned Cata
- 23. Conversion as a Fu and Paraffins Mola
- 24. Carbide Distributi as Carbidization P
- 25. Effect of Sulfur o
- 26. Effect of Sulfur o

÷

| of Unpoisoned and 7 hour Poisoned<br>Run Catalysts (peak 2 ignored)64 |
|-----------------------------------------------------------------------|
| and Percent Carbide<br>lysts                                          |
| nction of C2+C3 Olefins<br>r Area (Data from Huff, 1982)72            |
| on of Unpoisoned Catalyst<br>Progresses                               |
| n the Rate of Carbidization79                                         |
| n Carbide Distribution                                                |

I. Introduction I.A. Background

The Fischer-Tropsch reaction is the catalytic hydrogenation of carbon monoxide followed by polymerization to n-paraffins, olefins, and oxygenated species. Consequently, Fischer-Tropsch technology provides a synthetic route to liquid fuels, olefins, and other hydrocarbons. This technology is in commercial operation at SASOL in South Africa. At this time, there are no Fischer-Tropsch processes in commercial operation in the United States.

Fischer-Tropsch catalysts are usually made of iron promoted with potassium and alumina. One serious limitation of these Fischer-Tropsch catalysts is their poor selectivity. A Flory distribution of products is characteristic of the synthesis reaction. For the process to become attractive from an economic standpoint, the amount of gaseous products must be reduced and the olefinic content improved. Olefins are generally more reactive than paraffins and can more easily be upgraded to high valueadded products.

I.B. Effect of Sulfur on Fischer-Tropsch Catalysts

Sulfur severely poisons iron Fischer-Tropsch catalysts. Synthesis gas from coal gasifiers contains high

levels of H<sub>2</sub>S and other sulfur-bearing compounds. As little as 0.4 mg S/g Fe reduced the activity of a fused iron catalyst ten-fold in Taboratory studies (Karn, et al., 1963). Poisoning occurs as a result of adsorption of sulfur onto the surface of metallic catalysts (Bartholomew et al., 1982). Calculations indicate that at Fischer-Tropsch conditions, sulfur adsorption is essentially irreversible (Stenger, 1984). Sulfur poisoning is a serious problem in a number of commercial catalytic processes such as ammonia synthesis and steam reforming. In small amounts, however, sulfur is a selective poison. As it decreases the activity, it reduces the rate

In small amounts, however, sulfur is a selective poison. As it decreases the activity, it reduces the rate of olefin hydrogenation and chain termination. Hence, sulfur-poisoned iron catalysts produce more olefins and higher molecular weight products per mole synthesis gas converted than fully active catalysts (Bartholomew et al., 1982). Stenger (1984) observed a decrease in methane production and enhanced olefin selectivity in his poisoning studies.

There is a need to improve the selectivity of iron catalysts for the Fischer-Tropsch reaction. If better understood, selective poisoning by sulfur might provide a route to this objective.

بعفا بالالعار والأباب فتفتد بردا المار كستيطيقون

I.C. Activity and Chemical State of Catalyst

During the activation of reduced iron Fischer-Tropsch catalysts, it has been shown that the activity of the catalyst rises almost linearly with the extent of carbide formation in the bulk (Raupp and Delgass, 1979). Models which attempt to explain this observation consider the role of diffusion of carbon into the bulk of the catalyst (Niemantsverdriet and Van Der Kraan, 1982). The present work proceeded with the hypothesis that the concentration of sulfur at the surface influences the rate of carbide formation in the bulk of an iron

the rate of carbid catalyst.

I.D. Objective and Experimental Approach

The objective of this research is to better understand the effect of sulfur on the performance and chemical state of a fused iron Fischer-Tropsch catalyst. All reaction experiments were carried out using the same microreactor. After reduction to iron metal, some catalyst samples were poisoned with hydrogren sulfide for various periods of time. Poisoned and unpoisoned samples were used to catalyze a mixture of carbon monoxide and hydrogen for the Fischer-Tropsch synthesis. During the synthesis reaction, gas chromatography was employed to determine preadsorbed sulfur's effect on the activity and

selectivity of the catalyst. After catalyzing the synthesis reaction for various periods of time, poisoned and unpoisoned samples were removed from the reactor and analyzed using Mossbauer spectroscopy. After analyzing the Mossbauer spectra with the aid of the SIRIUS Spectrum Evaluating Sysytem, the effect of preadsorbed sulfur on the chemical state of the catalyst was determined.

-5-II. Experimental II.A. Operation of Reactor System II.A.1. Reactor System A single reactor system was used to carry out catalyst reduction, poisoning, and Fischer-Tropsch reactions (Figure 1). The system can be broken down into four the upstream section (a-g), the microreactor sections: module (h-1), the downstream section (m-n), and temperature control equipment (o-v). All connecting tubing was 1/4-in stainless steel. In the upstream section, reactant flowrate was regulated using a Linde Model FM 4441-1 rotameter. It was equipped with a metering valve and two spherical floats. The glass float was useful for nitrogen flow of 5-50 ml/min. The 316 stainless steel float was useful for nitrogen flow of 15-150 ml/min. The system pressure was measured using a A 10 psig pressure relief valve (f, pressure gauge. Swagelok No. SS-4C-10) was installed in the event that high molecular weight waxes plugged the reactor, causing the reactor pressure to rise. During operation, valve d was open and valve e closed. Since reliable information on the chemical

state of the catalyst was desired, it was necessary to prevent oxidation of the catalyst as it was transferred from







## Upstream Section:

- a reactant or inert gas cylinder
- b regulator valve
- c rotameter and valve
- d valve

a

-

- e valve
- f pressure relief valve Downstream Section:
- g pressure gauge

Microreactor Module:

- h upstream Quick-connect
- i upstream reactor valve
- j reactor
- 1 downstream Quick-connect

k - downstream reactor valve

°C

m - GC sampling port n - soap bubble meter

p - temperature controller q - microreactor furnace r - heating tape thermocouple

- s power regulator
  - t heating tape (- - -)

Temperature Control Section:

o - microreactor thermocouple

- u thermocouple selector switch
- v digital temperature display

Figure 1: Reactor System

<u>б</u>1

the microreactor to the Mossbauer sample holder. The microreactor module could quickly and conveniently be removed from the system using the upstream and downstream Quick-connects (h and 1). Upstream and downstream reactor valves (i and k) were closed prior to module removal. Once the module was in the inert chamber, the reactor could be opened to recover the unoxidized catalyst. The microreactor (j) consists of a Swagelok

union flanked on both sides by a porous stainless steel frit which serves to contain the catalyst in the reactor. The dimensions of the reactor are 10.4 mm x 5.6 mm (diameter x length, volume =  $0.48 \text{ cm}^3$ . Thermocouple "o" extends through the wall of the union and is embedded in the catalyst during experiments.

In the downstream section, a sampling port from which gas chromatography samples were withdrawn was fashioned from a 1/4-in stainless steel "T" fitting. A 9 mm Supelco Thermogreen LB-2 septum was held in place by a nut at the bottom of the "T". The temperature control equipment served two

purposes. The microreactor thermocouple (o) and the temperature controller (p) regulated the power supplied to the furnace (p) to maintain the temperature inside the microreactor at 400  $^{\circ}$ C during reduction and at 250  $^{\circ}$ C during poisoning and synthesis runs. During experimental runs, temperatures differed from these desired values by no more than 1 °C. The Lindberg tubular furnace (Type 55035-A)

heated the microreactor and 6 inches of tubing on either side of the reactor. Heating tape (t) was wrapped around the downstream section valve, Quick-connect, and sampling port to prevent condensation of heavy waxes in these fittings. Thermocouple "r" was positioned beneath the heating tape adjacent to the outside of the downstream valve. The heating tape was plugged into a Variac (s) used to maintain the temperature of the valve at approximately 70  $^{\rm O}$ C. The thermocouple selector switch (u) was positioned to accept a signal from either thermocouple. "o" or "r" and divert it to an Analog Devices Model AD 2050 J digital readout (v).

All catalyst samples were reduced at 1 atm under flowing hydrogen at 400 °C for 60 hours prior to any subsequent poisoning or Fischer-Tropsch reaction. The desired flowrate was 40 ml/min yielding a gas hourly space velocity (GHSV) of 5000 (ml gas at STP/hr/ml empty reactor). Following reduction, hydrogen flow to the catalyst was stopped and the temperature was reduced to 250  $^{\circ}$ C.

II.A.3. Poisoning

Catalysts that were sulfided were done so under flowing 2% hydrogen sulfide in hydrogen at 250 °C

II.A.2. Catalyst Reduction

prior to Fischer-Tropsch reaction. The desired flowrate was 10 ml/min yielding a GHSV of 1250. After 5 minutes or 7 hours of poisoning, flow to the catalyst was interrupted by closing valves adjacent to the reactor.

II.A.4. Synthesis

For synthesis, catalyst samples were exposed to synthesis gas (50 vol.% carbon monoxide in hydrogen) flowing at 5 ml/min at 250 °C. Heating tape wrapped around the downstream valve, downstream Quick-connect, and GC sampling port prevented high molecular weight waxes from condensing in these fittings and plugging the apparatus. With the aid of a thermocouple positioned between the heating tape and the downstream valve, a Variac was used to maintain the temperature in these fittings above 70  $^{\circ}$ C. Periodically, 1 ml gas samples were withdrawn from the flow system through the septum of the downstream sampling port using a Hamilton Gas-Tight 1001 1 cm<sup>3</sup> syringe. These gas samples were then analyzed using gas chromatography.

After 0.5, 12, or 98 hours of Fischer-Tropsch reaction, flow was switched from synthesis gas to argon flowing at 40 ml/min in order to flush the catalyst of reactants. At the same time, the furnace was turned off and opened to quickly cool the reactor. Once the temperature inside the reactor reached about 100 °C, the flow of argon was turned off and the reactor sealed shut by closing both the upstream and

downstream valves, V3 and V4, respectively. Once the reactor was cool enough to handle, it was removed from the apparatus using the Quick-connect fittings and clamped securely in the vise within the inert chamber.

II.B. Catalyst and Reactants

The catalyst used in this work was a fused iron ammonia synthesis catalyst purchased from United Catalyst, Inc. and designated C-73-1-101. Its analysis as determined by Galbraith Laboratories of Knoxville, TN was 64.4% Fe, 0.76% Al, 0.31% K, and 0.74% Ca on a weight basis, with oxygen and trace elements making up the balance. The catalyst was sieved to a particle size of 150 - 300 microns (48 to 100 mesh).

from Union Carbide Gases were obtained Corporation. For reduction, Extra Dry Grade hydrogen was Uncertified Grade 2% (v/v) hydrogen sulfide in used. hydrogen and 50% (v/v) carbon monoxide in hydrogen were used in poisoning and synthesis experiments, respectively.

II.C. Product Analysis by Gas Chromatography

The product analysis system consisted of a Hewlett-Packard 5750 gas chromatograph, a Supelco SP-1700

II.C.1. Instrumentation and Materials

Perkin Elmer 690 strip chart recorder.

The HP 5750 gas chromatograph consisted of an oven, a thermal conductivity (TC) detector, a strip chart recorder, and associated modules for control of the TC detector and oven temperature control. All samples were analyzed using temperature programmed separations. The injection port temperature was the same as the oven temperature. Following a four minute post injection interval at room temperature, the oven temperature was programmed to rise 4  $^{\circ}$ C per min to the upper limit of 90  $^{\circ}$ C. At this time the oven lid automatically opened and the column cooled at a rate of 40  $^{\circ}$ C per min. The thermal conductivity temperature was 120 <sup>o</sup>C. High Purity Grade helium obtained from Union Carbide Corporation was used as the carrier gas at a flowrate of approximately 25 ml/min. Supelco Thermogreen LB-2 12.5 mm injection port septa were replaced as needed.

indicates that, in general, the column elutes paraffins before olefins in order of increasing carbon number.

A pre-conditioned and pre-packed 30' x 1/8" stainless steel column was obtained from Supelco, Inc. The column packing consisted of 23% SP-1700 on 80/100 Chromosorb and was designed for separation of light hydrocarbons. Information supplied by the manufacturer (Figure 2)

The HP 3370A integrator was used to integrate the area under GC peaks as components were detected by the

-11-

Ethene
Propene
Propene
Propylene
Isobutane
n-Butane
1-Butane
ca-2-Butane
Isopersane
I.3-Butademi
I.-Pentane

.

23% SP-1700 on 80/100 Chromosorb P AW, 30  $\times$  1.8" OD SS, Col. Temp. 70°C, Inj. Temp. 100°C, Det Temp. 150°C, Row Rate: 25m/mm., He, Det. FID, Sens. 32  $\times$  10<sup>-10</sup>, Sample. 0.6 $\mu$ i ASTM Section L Blend No. 6, plus. C5s.



Figure 2: Separation Characteristics of Supelco SP-1700 GC Column

minute. alongside the area data.

mm/min.

II.C.2. Operation

In general, throughout the period of this research that GC samples were being analyzed, the instrument was in a ready mode with carrier gas flowing constantly. Therefore, most instrument settings did not require adjustment, with the notable exception of periodically

TC detector. The integrator operated in the automatic mode with equal up and down slope sensitivities of 0.03 micro volt/min. That is, integration of a peak began when the electrical signal from the TC detector increased by 0.13 17 per minute. Similarly, integration of that peak ended as

soon as the signal decreased by less than 1.13 if per Periodically, the integrator recalculated the baseline to account for septum "bleed". The baseline reset delay was set at 0.3 min. Figure 3 shows a sample chromatogram and its corresponding peak area data as it is presented by the integrator. The lower number of each pair is the retention time of the peak in units of seconds (5). The upper number is the area of that peak in units of micro volts per second. Powers of ten appear in the right column

The Perkin-Elmer 690 Strip Chart Recorder created the chromatogram based on electrical signals from the integrator. The recorder advanced paper at a rate of 5

-13-





|   |       | Γ.    | _  | Γ        | _          |     |    |     |            | Γ. |    | Γ   |     | 1   |               |
|---|-------|-------|----|----------|------------|-----|----|-----|------------|----|----|-----|-----|-----|---------------|
|   |       |       |    | {        |            | Ľ   |    |     |            | Ŀ  |    |     |     | ł.  |               |
|   |       | F     |    | ۱.       |            | Į.  |    | -   | ۰.         | -  |    | Ł   |     | ۱.  | _             |
|   |       | :     |    | 1        |            |     |    | -   |            | ļ  |    |     |     | ŗ   | -             |
| - | -     | -     | -  | <u> </u> |            | -   | -  |     |            | -  |    | -   |     | -   |               |
| • | ·     |       |    | 1        | 1          | ŀ   |    |     |            |    |    |     |     | ;   | •             |
|   |       |       |    |          |            |     | -  |     |            |    |    | ł   |     | r   |               |
|   | ĺ     |       |    |          | į          |     |    |     | -          | i  |    | i   |     |     |               |
|   | 1     |       | -  | •        |            |     |    |     | ĺ          | İ  |    |     |     | •   |               |
|   |       |       |    |          |            |     |    |     |            | -  | -  |     |     | ŗ   |               |
|   |       |       |    |          | į          |     | Į  | ^   | 1          |    |    |     | _   | ł.  |               |
|   | ĺ     |       |    |          | 1          |     |    |     | _          |    | _  |     |     |     |               |
|   |       |       | .  |          | J.         |     |    |     |            |    |    |     |     |     |               |
|   | +     |       | -  |          | _          |     | 4  | _   | -          |    | _  |     | _   |     | -             |
|   | ł     |       | 2  | -        | - <u>}</u> |     |    |     |            |    |    |     |     | ĺ   |               |
|   | I     | •     |    |          | - i        |     |    | •   | ·¦         |    | 4  |     |     |     | 1             |
|   | -     |       |    |          | i          | -   | 1  | -   |            |    | ł  | -   | -   |     |               |
|   | Ì     |       |    | ;        | í          |     | -  | -   | - 4        | •  | -  |     |     |     |               |
|   | ï     |       | 1  |          | ł          |     | 1  |     | 1          |    | ·  |     | . 1 | -   | 7             |
|   | ľ     |       |    |          | 1          | Ċ.  | 1  | -   | 1          |    | 1  |     | ,   | •   |               |
|   | I     |       | 1  |          |            |     | 1  | _   |            |    |    |     | ł   |     | ĺ             |
|   | ļ     |       |    |          | Ĩ          |     |    | -   | ļ          |    |    |     | í   |     |               |
| _ | ļ     |       | _  |          | -          |     | 4  |     |            |    | +  |     | -   | _   | 4             |
|   | l     |       |    |          | Ę          |     | Ì  |     | į          |    |    |     | 1   |     | ł             |
|   |       |       | ł  |          |            | •   | I  |     | 1          |    |    |     | ļ   |     |               |
|   | 1     |       | ·  | ·        | ľ          |     | ł  |     | ł          |    |    |     |     |     |               |
|   | ŀ     | ÷ .   |    | کنی ا    |            | •   | ł  | • • |            |    | ł  |     | ì   | •   | 1             |
|   | Ĩ     |       | Ť  |          | 1          |     | T  |     | 1          |    | 1  |     | 1   |     |               |
|   |       |       |    | ·        | ľ          |     | F  |     |            | -  |    |     |     |     | 1             |
|   | L     |       |    |          | ļ          |     |    |     | 1          |    | 1  |     |     |     |               |
|   | 1     |       |    |          |            |     | ł  |     |            |    |    |     |     | ÷   |               |
| _ | ┞     |       | ╇  |          | -  -       |     | ÷  |     | +          |    | ╉  |     | ÷   |     | -ł            |
|   | ŀ     |       |    |          |            |     | ŀ  |     | ÷          | ·  | 1  |     |     |     | ł             |
| - |       | -     | ŀ  |          | 1.         |     | L  |     |            | -  |    |     | i   | -   |               |
| 1 | t     | -     | ľ  |          |            | -   | Ĺ  |     | i.         |    | ł  |     | :   |     | 1             |
|   |       |       |    |          | F          | •   | ľ  |     |            |    |    |     | Ĵ,  |     | 1             |
|   |       |       | I  |          | Τ          | •   | Γ  |     | Ι          | ·  | T. |     | Ι   |     | T             |
|   | -     |       |    |          | 1.         | _   | 1. |     | L          |    |    |     | 1   | • - | ŀ             |
|   | ļ.    |       | ľ  |          | 1.         |     | Į. |     | Į.         |    |    | ••• | -   |     |               |
|   |       | •     | ŀ  |          | -          |     | -  |     | ŀ          |    |    |     | -   | -   |               |
|   | -     |       | ┢  |          | ╉          |     | ┢  |     | ┢          |    | ┢  |     | ÷   |     | t             |
| ł | -     | -     |    |          | ł          | • • | 1- |     |            |    | ŀ  | 7   | i.  |     | t             |
| 1 | ÷     | -     | ŀ  |          | f          |     | t  |     | t          |    | r  |     | r   |     | 1             |
|   |       |       | Ľ  |          | Γ          | _   | Ľ  |     | 1          | -  | Γ  | _   | 1   |     | L             |
| l | _     | _     | L  |          | 1          |     | L  |     | L          | _  | Ļ  |     | -   | _   | Ļ             |
|   |       |       | 1- |          | +-         | _   | -  |     | -          |    | ١. |     | +   |     | -             |
| ł | -     |       | ŀ  |          | ╂-         |     | -  |     | ŧ.         |    | ┡  |     | +   |     | ŀ             |
| ł | -     | - · · | ŀ  |          | ŀ          |     | -  | -   | ŀ          |    | Ł  |     | +   | -0  | ŀ             |
| ł |       |       | t- |          | i          |     | -  |     | †-         | -  | ŀ  |     | 1-  |     | t             |
| t |       |       | t  | -        | 1          |     | -  |     | t          | -  | t  |     | t   |     | t             |
| Ì |       |       | Ľ  |          | Γ          |     | _  | 2   | Γ          | _  | Ľ  | _   | Γ   | _   | T             |
| L |       |       | L  |          | [          |     |    |     |            |    | -  |     | L   |     | I             |
|   | -     | ,     |    |          |            |     |    |     | <b> </b> - |    | ┡  |     | ļ.  |     | F.            |
| ┞ |       |       | L  |          | ┝          | _   | _  | -   | -          |    | +- | -,- | +-  |     | ┢             |
|   | -     | -     |    |          |            | _ ! | -  | -   |            | -  | -  |     |     |     | È.            |
| ŀ | _     |       |    | • ••     | } -        | - 1 |    |     |            |    |    |     |     |     |               |
|   |       | -     |    | •        |            | -   | -  |     | -          | -  |    |     | -   |     | 1             |
|   |       | -     |    |          |            |     |    |     | -          | _  |    |     | -   | -   |               |
|   | -<br> | -     |    |          |            |     |    |     |            | _  |    |     |     | _   |               |
|   |       | -     |    |          |            |     |    |     |            | -  |    |     |     |     | -             |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     | 1 - 1 - 1 - 1 |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |
|   |       |       |    |          |            |     |    |     |            |    |    |     |     |     |               |

# Integrator Data

| 2611 | 0 |
|------|---|
| 0791 | S |
| 1630 | 0 |
| 0504 | S |
| 1185 | 0 |
| 0433 | S |
| 4497 | 0 |
| 0340 | S |
| 4766 | 0 |
| 0298 | S |
| 6688 | 2 |
| 0225 | S |

Figure 3: Sample HP-5750 Chromatogram

checking and adjusting the helium carrier gas flowrate to 25 ml/min. The Coarse Zero and Fine Zero controls of the HP 5750 Conductivity Module were often adjusted to align the pen of the strip chart recorder on a convenient baseline. Prior to GC sample injection, the integrator and strip chart recorder were turned on. Most of these instruments' settings did not require adjustment throughout this

research.

After inserting the syringe needle through the injection port septum, the 1 ml gas sample was injected into the injection port by depressing the syringe plunger rapidly but steadily. Immediately following sample injection, the GC "Inject Start" and integrator "Start Analysis" buttons were depressed. After the temperature programmed cycle was complete, the GC automatically shut off and the integrator "Stop Analysis" switch was manually depressed.

The following calculations are based on the GC peak area data provided by the HP 3370A integrator. An arbitrary molar area unit (herein referred to simply as "molar area", and abbreviated "M") is defined as:

M.

II.C.3. Data Reduction

$$x = \frac{(A_{I})(F_{I})}{(W_{I})}$$

where:

 ${}^{A}_{F_{I}}$ Ϋ́I

Response factors for GC analyses of hydrocarbons are available in the literature (Dietz, 1967). The values for the compounds of interest in this work are: ethane, 0.59; ethylene, 0.585; propane, 0.68; and propylene, 0.652.

Since the activity of the catalyst was not measured directly, the activity of poisoned samples was reported relative to that of unpoisoned samples. The total molar area of C2 and C3 compounds formed by a poisoned catalyst sample at time  $t_0$  during the synthesis reaction was determined. This value was then compared to the C2+C3 molar area formed by an unpoisoned catalyst at the same time. That is,

relative act

| = | area of peak I                  |
|---|---------------------------------|
| = | thermal conductivity            |
|   | detector response factor for    |
|   | component I                     |
| = | molecular weight of component I |
| = | 1,2,3, or 4 which denote        |
|   | ethane, ethylene, propane,      |
|   | or propylene, respectively.     |
|   |                                 |

# a. Relative Activity Calculation

tivity = 
$$\frac{\sum_{1}^{4} M_{I} \text{ (poisoned, } t_{0})}{\sum_{1}^{4} M_{I} \text{ (unpoisoned, } t_{0})}$$
.

unpoisoned catalyst.

Selectivity to a reaction product species I,  $S_{I}$ , is defined as:

Note that selectivity is defined as the molar area percent of ethane, ethylene, propane, or propylene relative to the total of these four reaction products only.

II.D. Catalyst Analysis by Mossbauer Spectroscopy

Mossbauer spectroscopy is an analytical technique useful in determining the chemical state of Mossbauer effect absorbers such as iron. The Mossbauer spectrometer "sees" only the recoil-free fraction of  $^{57}$ Fe nuclei in the catalyst, not the entire catalyst. Assuming that the recoil-free fraction is the same for different iron-bearing compounds in the sample, percent spectral area is proportional to molar percent of the iron present. For example, if  $X-Fe_5C_2$  accounts for 20% of the spectral area of

Poisoned catalyst activity is therefore always an experimentally determined percentage of the activity of the

```
b. Selectivity Calculation
```

$$S_{I} = -\frac{M_{I}}{\sum_{1}^{4} M_{I}}$$

a mole basis.

1977).

A detailed explanation of the Mossbauer effect is outside the scope of this thesis. There are a number of well-written books on this subject (May, 1971 and Wertheim, 1964). There is also at least one excellent review of Mossbauer spectroscopy and its applications to research in heterogeneous catalysis (Dumesic and Topsoe,

Mossbauer analysis of a catalyst sample involves preparing the sample, operating the spectrometer, reducing the raw data, and fitting the spectrum. The chemical state and composition of the iron in a catalyst sample can be determined after comparing the fitted Mossbauer parameters with accepted values in the literature.

a. Mossbauer Sample Holder Fabrication

The Mossbauer sample holder (Figure 4) consisted of a front panel, a back panel, and a central "well" piece. Using a band saw, two identical 1.5-inch x 1.5-inch panels were cut from 1/16-inch thick sheet Plexiglas (Rohm and Haas Co.). The well piece was a 2-inch x 3-inch piece cut from 1/4-inch thick sheet Plexiglas with a l-inch diameter hole drilled through it. With the back

a catalyst that is 50% iron, the catalyst is 10% X-Fe<sub>5</sub>C<sub>2</sub> on

II.D.1. Preparation of Mossbauer Sample



SIDE VIEW



Figure 4: Mossbauer Sample Holder

1

FRONT VIEW

# CATALYST IN WELL

panel centered securely over the hole, methylene chloride solvent was applied along the perimeter of the back panel in order to securely join the two pieces and form a well.

In order to prevent the oxidation of the catalyst, the reactor was opened and the catalyst placed in the Mossbauer sample holder under an inert (argon) environment. Figure 5 shows the inert chamber. With the reactor clamped firmly in the vise, the following materials were placed inside the inert chamber: Playtex gloves, 13/16in and 7/8-in open end wrenches, Mossbauer sample holder and front panel, one 4-ml glass vial and plastic screw top, dual-chamber epoxy dispenser, and a plastic stirrer. After collapsing the glove bag (Instruments for Research and Industry, Model X-27-27) to remove as much air as possible, the chamber was sealed shut using Handy-Lok  $^{ extsf{TM}}$  closures (see Figure 5 inset) supplied by the glove bag manufacturer. The chamber was inflated with argon passing into the chamber through a 1/4-in Tygon tube. The chamber was then purged by breaking the recloseable seal slightly and forcing the remaining air and argon out of the chamber. This procedure of purging and inflating the chamber with argon was repeated two or three times to reduce the oxygen concentration within the chamber to a very low level. The reactor was opened under flowing argon.

b. Inert Chamber Preparation





Figure 5: Inert Chamber

.

c. Opening the Reactor

After donning a pair of absorbent gloves to ward against sweaty palms, the experimenter inserted his hands and arms into the glove portion of the glove bag. To reduce the risk of puncturing the bag on sharp objects within the bag, Playtex gloves were worn inside the glove Using the wrenches, the reactor was opened by bag. loosening the upstream 7/8-in nut. The reactor was tilted to deposit the catalyst into the well of the Mossbauer sample holder. Just enough epoxy was added to the catalyst as to fill the "well" portion of the sample holder. The plastic stirrer was used to throughly mix the epoxy resin, hardener, and catalyst. After mixing, the sample holder front panel was centered over the well. The epoxy served not only to seal the catalyst in an airtight environment, but also to firmly attach the front panel to the rest of the holder. Once the epoxy had hardened, the argon flow was shut off, the glove bag opened, and the sample labeled.

The "experiment" taking place in Mossbauer spectroscopy requires a radioactive source, a velocity drive, the absorber (iron-containing catalyst sample), a detector, and associated instrumentation (see Figure 6).

II.D.2 Spectrometer System and Materials





**T** 

-

The  ${}^{57}$ Co source (New England Nuclear, NER-072) emits energetic gamma radiation as a result of the 14.4 keV nuclear transition. The purpose of the velocity drive (Ranger Electronics, VT-700) is to accelerate the source over a specified range of positive and negative velocities. Acceleration of the source Doppler shifts the energy of the emitted gamma radiation over a range of energies. A Kr/CO<sub>2</sub>filled proportional counter (Ranger Electronics, PA-700) placed behind the absorber detects gamma radiation passing through the sample.

The electrical impulses from the proportional counter are amplified in the single channel analyzer (AMP/SCA, Ranger Electronics, DA-600). The analog-todigital converter of the multichannel analyzer (MCA, Tracor Northern, NS-720A) converts the AMP/SCA signals to radiation "counts". At regular time intervals corresponding to different source velocities and radiation energies, the count data are stored in 1024 channels of the MCA. The spectrometer (Ranger Electronics, MS-

The spectrometer (Ranger Electronics, MS-700MR) sets the velocity range of the velocity drive (Ranger Electronics, VT-700). Samples were typically analyzed using the -10 to +10 or -15 to +15 mm/sec range. The velocity drive oscillates the source along a rectilinear path. In Figure 7, the letters refer to source position relative to the absorber. The channel number containing transmission data (counts) corresponding to that source position is in parentheses. The arrows indicate the direction of motion of

# $B(256) \longrightarrow C(512) \longrightarrow D(768)$ Ť

-25-

VELOCITY

SOURCE





Velocity Correspondence

the source. Motion toward the absorber is the positive velocity direction (B -> C -> D). Gamma radiation emitted during this phase of motion are more energetic than those emitted while the source is at rest. Motion away from the absorber is the negative velocity direction (E < - A < - D>. Radiation emitted during this phase is less energetic that that emitted at rest. The source is accelerating from channel 1 to

512 and at rest at about channel 256. From channel 513 to 1024, the source is decelerating and at rest at about channel 769. Figure 8 is a plot of counts versus channel number. Since the same velocity range is covered twice across the 1024 channels, there are two sextets in the spectrum. Corresponding peaks are numbered accordingly. The peak positions are reversed since the velocity scale is reflection-symmetric about channel 512. Continuous change in the solid angle between the source and detector is responsible for the sinusoidal curve of the spectral baseline. This experimental artifact may distort the shape and line width of peaks. By "folding" the raw spectrum (see section II.D.6.d, JOBFOLD), these distortions are minimized. After the raw spectroscopic data is reduced, corrected, and folded as described below, the "true" Mossbauer spectrum appears as it does in Figure 9. Once the correct correspondence between

Once the correct correspondence between channel number and source velocity has been determined (see Section II.D.6, Velocity Calibration), the SIRIUS Spectrum




















































































































































































V

Evaluating System is used to curve-fit the Mossieler spectra. SIRIUS fits the spectra to a series of Lorentzian lines by varying five spectral parameters until a convergence criterion is satisfied. The parameters are the line amplitude, width at half-height, isomer shift (15). quadrupole splitting (QS), and hyperfine field (HF). The last three parameters are the Mossbauer parameters used to identify the absorber. Accepted values for these parameters are available in the literature (Muir, Ando, and Cougar, 1966 and Le Caer, et al., 1982). These three parameters have units of velocity (mm/sec). The isomer shift is the displacement of the center of the spectrum from zerovelocity. The quadrupole splitting is a measure of the asymmetry of the positioning of peaks within a sextet. It is also the width of a doublet. The hyperfine field is the width of a sextet.

the velocity scale.

The catalyst absorber contained within the air-tight Mossbauer sample holder was centered and secured in place over the proportional counter window. The source and velocity drive were positioned approximately 1.5 inch

Iron metal was chosen as the arbitrary zero in defining the velocity scale. That is, the center of the iron metal spectrum locates the zero-velocity position of

## II.D.3. Operation of Spectrometer

from the absorber along an adjustable length track. Leas sheets were positioned around the source and counter to shield researchers nearby from exposure to excessive radiation.

The desired memory group was selected by positioning the Memory Group dial of the bultichannel analyzer (MCA) to either 1/4, 2/4, 3/4, or - -. Each tetter group contains 1024 channels. The spectral data contained therein were erased by first setting the Real Mode to "CRTx4", depressing the Start Readout button, and then simultaneously depressing the two red Erase butters. The range of the velocity drive was set at 11 or 15 mm/sec by adjusting dials on the Ranger Electronics

MS-700MR Mossbauer Spectrometer. All analyses employed the constant acceleration mode.

Mossbauer analysis began after simultaneously depressing the Mossbauer Spectrometer "Power" switch and the MCA "Start Analysis" switch. By adjusting the Intensity, Focus, Horizontal, Vertical, and Display Scale settings on the MCA, the spectrum of an absorber being analyzed could be observed while the spectrometer was operating. Samples wree on the spectrometer for a period from several hours to over two weeks until the spectral signal to noise ratio reached an acceptable level. Analysis was stopped by simultaneously depressing the Mossbauer Spectrometer "Power" and MCA "Stop" switches.

Data stored in the MCA was transferred to a computer data file. The procedure required two transfers, one from the MCA to a cassette tape and another from the Details of this procedure are tape to a data file. described in Appendix I.

Copies of the files described below are listed in Appendix II. Each of the jobs is run using the GET and SUBMIT commands.

a. JOBRED

JOBRED is the job that runs the program REDUCE in batch mode. The purpose of REDUCE is to reduce the number of data from 1024 to 512. REDUCE does this by reading every other raw data point from the file RAWDAT and writing them into the file WDRIFT ("With DRIFT"). The raw data is reduced by issuing the

following commands:

If there are any unacceptable data in the file RAWDAT (e.g., letters instead of numbers), JOBRED automatically runs a post mortum dump to locate the error in the data field. If

II.D.4. Data Reduction

/GET, JOBRED /SUBMIT, JOBRED, TO

this occurs, the file RAWDAT must be edited. Once JOBRED runs successfully, the file WDRIFT will consist of 52 lines of data. It is helpful and necessary to add a label line at the beginning of the file in order to identify the sample to which the data belongs. This label line will later be used by the job JOBDRFT. At this point in the procedure, the file WDRIFT should appear as it does in Appendix II.

b. JOBDRFT

1

 $\sim$ 

JOBDRFT (sic) is the job that runs the program DRIFT in batch mode. The purpose of the program DRIFT is to correct the data in the file WDRIFT for drift in the spectral baseline. The file NDRIFT ("No DRIFT") is created and contains the data corrected for baseline drift.

a. General

The SIRIUS Spectrum Evaluating System is designed for storing, handling, evaluating, and plotting Mossbauer spectra collected by multichannel analyzers. A complete explanation of the structure, use, and application of the system is available elsewhere (Nagy and Weir).

II.D.5. SIRIUS Spectrum Evaluating System

SIRIUS consists of three principle components: the program, spectrum library volume 1, and

spectrum library volume 2. SIRIUS is stored on three magnetic tapes located in the Lehigh University Computing Center Tape Library. When SIRIUS is to be used, the program tape and the two spectrum library tapes are loaded off tape and onto disk. Any changes to the program or the spectrum library are done to the disk copy. The tapes are updated by writing the disk versions onto tape. Volume 1 of the spectrum library

contains the spectra that have been reduced from 1024 to 512 data points and corrected for baseline drift. Volume 2 spectra are volume 1 spectra that have been "folded". The SIRIUS curvefitting macro SEXT fits spectra from volume 2 since these are true Mossbauer spectra, not mirror-image spectra.

Appendix III.

b. MORN

MORN is the batch job that loads the program, volume 1, and volume 2 tapes onto disk. It creates the indirect access files PR, V1, V2, and ST (STorage file).

c. JOBTAPE

The files described below are created by the user and are not a part of SIRIUS, per se. They activate SIRIUS and instruct it to perform specified functions in a batch mode. Copies of these files appear in

JOBTAPE is the batch job that activates SIRIUS and calls the file TAPLST. TAPLST prints a list of the spectrum numbers and labels from volumes 1 and 2 of the spectrum library. This information is necessary when telling SIRIUS which spectrum to fit and when new spectra are added to the library.

d. JOBFOLD

JOBFOLD is the batch job that activates SIRIUS and calls the file FOLD. FOLD reads the 512 data corrected for baseline drift into volume 1 of the spectrum library, "folds" this mirror-image spectrum, and reads the 256 folded data into volume 2 of the spectrum library. The spectra in volume 2 are true Mossbauer spectra, being the end result of all the data collection, reduction, correction, and folding.

e. JOBFIT

JOBFIT is the batch job that activates SIRIUS and calls one of several SEXTet files. The SEXTet file specifies the number of sextets and doublets (components) SIRIUS should use in fitting a particular spectrum in the library. It is possible to have SIRIUS fit a spectrum by varying the five spectral parameters of any

number of components. The user may constrain any of the five parameters while SIRIUS varies the others. Once the convergence criterion is met,

Once the convergence criterion is met, SIRIUS lists the values and tolerances of the five spectral parameters for each component specified by the user. The "goodness of fit" can be determined from the calculated relative chi-square value. SIRIUS also calculates the area each component contributed to the total area. Assuming the same recoil-free fraction for each component percent composition and percent area are equivalent.

f. EVE

EVE is the batch job that writes the disk version of SIRIUS back onto tape.

II.D.6. Velocity Calibration

The SIRIUS curvefitting routine requires information concerning the correspondence between velocity and MCA channel numbers. The CALIbration command specifies the velocity calibration in units of mm/sec/channel and the channel number corresponding to zero velocity. This information must be determined iteratively by assuming calibration values, fitting the spectrum of a calibration standard, and comparing the "fitted" parameters with the accepted Mossbauer parameters of the standard material. The

value.

A National Bureau of Standards foil of reduced iron enriched in <sup>57</sup>Fe was analyzed using Mossbauer spectroscopy. The velocity drive was set to 15 mm/sec or 10 mm/sec to cover the velocity range -15 mm/sec to 15 mm/sec or -10 mm/sec to 10 mm/sec, respectively. The data was transferred from the MCA, reduced, corrected for drift, folded, and added to volume 2 of the spectrum library, as described above.

For purposes of illustration, the procedure used to calibrate the 15 mm/sec scale is outlined below. The spectrum was fit using the UNIVersal macro. The code of the fitting file SPEC62 is listed in Appendix IV. Table 1 lists the seed and intermediate values of the velocity and the resulting calibration, zero-velocity channel, fitted Mossbauer parameters.

Table 1: Calibration of 15 mm/sec Velocity Scale

|     |                              | HF<br>(mm/sec) | IS<br>(mm/sec) |
|-----|------------------------------|----------------|----------------|
| Run | Accepted Value:              | 10.657         | 0.00           |
| 1   | CALI(0.08,125)               | 10.5436725     | -0.0517380     |
| 2   | CALI(0.08085987,124.3532750) | 10.6569903     | -0.0000007     |
| 3   | CALI(0.08085994,124.3532749) | 10.6569995     | -0.0000007     |





















assumed calibration values are then adjusted to the correct

The seed values for the CALI command in Run 1 were good guesses. However, the assumed value of 0.08 mm/sec/channel resulted in SIRIUS underestimating the hyperfine field (width) of the iron sextet. Therefore, the velocity calibration value was increased by a factor of 1.01074839 (10.657/10.5436725).

By setting the zero velocity position at channel 125, SIRIUS calculated a negative isomer shift value for reduced iron. Since reduced iron is the zero reference, its isomer shift is defined to be zero. Therefore, the zero-velocity channel was shifted to the left (in the negative energy direction) by 0.6467250 channels ((0.0517380 mm/sec)/(0.08 mm/sec/channel)) to 124.3532750.

The process was repeated to fine-tune the velocity calibration, although Run 3 was not absolutely necessary. Most Mossbauer parameters are accurate to only two significant figures. Figure 10 is a plot of the velocity-calibrated and fit spectrum.







































Figure 10: Fit spectrum of NBS calibation standard, <sup>57</sup>Fe-enriched alpha-iron.

III. Results

III.A. Extent of Reduction

The Mossbauer spectra of two catalyst samples appear in Figure 11. One sample (a) was not reduced, poisoned, or carbided. The other sample (b) was reduced for 10 hours. Three sextets were used to fit each spectrum. The fitted Mossbauer parameters appear in Table 2.

| - Area                                                                                           |
|--------------------------------------------------------------------------------------------------|
| f. (%)                                                                                           |
|                                                                                                  |
| 91.8 <sup>91.8</sup>                                                                             |
| 8.2                                                                                              |
|                                                                                                  |
| 51.6                                                                                             |
| 48.4                                                                                             |
| -<br>t<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |

1 - (Muir, Ando, and Coogan, 1966)

Table 2: Mossbauer Parameters of Untreated and Partially Reduced Catalyst





well with those of magnetite,  $Fe_3O_4$ , and iron metal, Fe. Ten hours of reduction decreased the area of the iron oxide sextets from 91.8% to 51.6% of the total spectral area. That is, after ten hours, 48.4% of the iron was reduced.

-41-

# III.B. Identification of GC Peaks

A mixture of light hydrocarbons prepared by Air Products and Chemicals, Inc. was analyzed on the packed column and gas chromatograph used throughout this study. The mixture contained CO, CO<sub>2</sub>, methane, ethane, ethylene, propane, propylene, and n-butane. The chromatogram of the mixture appearing in Figure 12 has six numbered peaks. According to information supplied by the column manufacturer (see Section II.C.1.), light hydrocarbon components elute in order of increasing carbon number and degree of saturation. Therefore, the following assignments were made:

| Component(s)                                                                                    | Peak                       |
|-------------------------------------------------------------------------------------------------|----------------------------|
| CO, CO <sub>2</sub> , CH <sub>4</sub><br>ethane<br>ethylene<br>propane<br>propylene<br>n-butane | 1<br>2<br>3<br>4<br>5<br>6 |
|                                                                                                 |                            |

III.C. Relative Activity of Poisoned Catalyst



Figure 12: Chromatogram of a mixture of light hydrocarbons.

Column: SP-1700

|      |       | The   | effe  | ct.   |
|------|-------|-------|-------|-------|
| of   | the   | cata  | lyst  | f     |
| inve | estig | ated. | Sai   | m p ] |
| hou  | rs.   | The a | ctivi | ty    |
| in I | Figur | e 13. | The   | a     |
| for  | 5 m   | inute | s was | . 7   |
| The  | aver  | age a | ctivi | ity   |
| was  | 4.3%  | that  | of t  | hẹ    |
|      |       |       |       |       |

|                 |                                  | Total Mo             | olar Area            | Relative             | Average                |  |
|-----------------|----------------------------------|----------------------|----------------------|----------------------|------------------------|--|
| Sulfide<br>time | Synthesis<br>time<br>(hr)        | reduced<br>catalyst  | sulfided<br>catalyst | activity<br>(%)      | relative<br>activity,% |  |
| 5 min           | 2.7- 4.9<br>4.9- 8.4<br>8.4-11.5 | 3477<br>3103<br>2685 | 2611<br>2756<br>1716 | 75.1<br>88.8<br>63.9 | 75.9                   |  |
| 7 hr            | 0.25<br>0.50                     | 1388<br>1764         | 55<br>82             | 4.0<br>4.6           | 4.3                    |  |

III.D. Unpoisoned 98 hour Synthesis Run

III.D.1 Selectivity

An unpoisoned catalyst sample was used to catalyze the synthesis reaction for 98 hours. The gas chromatography data of the C2 and C3 peaks are reported in Table 4. The selectivity of the catalyst to ethane, ethylene, propane, and propylene are reported in Table 5.

of preadsorbed sulfur on the activity for the Fischer-Tropsch reaction was les were poisoned for 5 minutes or 7 data are listed in Table 3 and plotted iverage activity of the catalyst sulfided 75.9% that of the unpoisoned catalyst. y of the catalyst sulfided for 7 hours unpoisoned catalyst.

Table 3: Effect of Sulfiding on Catalyst Activity



RELATIVE ACTIVITY, percent



Figure 13: Relative Activity of

Poisoned Catalysts

| Table | 4: | Integrat | :0 |
|-------|----|----------|----|
|       |    | Freshly  | R  |

ľ

Ų

IJ

.

| Time                                                                                                                  | Peak                                                                                                       | Area (u                                                                                                                     | V-sec)                                                                                      | (*)                                                                                                             | Мо                                                                                 | lar Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ea (                                                                    | *)                                                                             | Total<br>Molar                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (hr)                                                                                                                  | A 1                                                                                                        | A 2                                                                                                                         | A 3                                                                                         | A4                                                                                                              | M1                                                                                 | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M3                                                                      | M4                                                                             | Area                                                                                                                                                                                                    |
| 1.50<br>2.45<br>4.70<br>6.27<br>9.83<br>13.53<br>24.87<br>32.03<br>33.50<br>49.65<br>54.78<br>60.52<br>81.20<br>82.90 | 1988<br>2378<br>5157<br>5256<br>6237<br>2423<br>3638<br>2547<br>3019<br>709<br>470<br>2376<br>1927<br>2322 | 70510<br>80280<br>131400<br>124500<br>129300<br>49450<br>52590<br>33360<br>39030<br>7710<br>5360<br>24540<br>21420<br>20810 | 475<br>542<br>1013<br>861<br>1033<br>171<br>113<br>91<br>200<br>10<br>1<br>321<br>36<br>389 | $1606 \\ 2106 \\ 4557 \\ 4568 \\ 5296 \\ 2202 \\ 2758 \\ 1856 \\ 2122 \\ 373 \\ 251 \\ 1296 \\ 1134 \\ 1590 \\$ | 39<br>47<br>101<br>103<br>123<br>48<br>72<br>50<br>59<br>14<br>9<br>47<br>38<br>46 | $1473 \\ 1677 \\ 2745 \\ 2601 \\ 2701 \\ 1033 \\ 1099 \\ 697 \\ 815 \\ 161 \\ 112 \\ 513 \\ 448 \\ 435 \\ 167 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$ | 7<br>8<br>16<br>13<br>16<br>3<br>2<br>1<br>3<br><1<br><1<br>5<br>1<br>6 | 25<br>33<br>71<br>71<br>82<br>34<br>43<br>29<br>33<br>6<br>4<br>20<br>18<br>25 | $   \begin{array}{r}     1545 \\     1765 \\     2933 \\     2789 \\     2922 \\     1118 \\     1215 \\     777 \\     911 \\     181 \\     125 \\     585 \\     504 \\     511 \\     \end{array} $ |
| 97.52                                                                                                                 | 1626                                                                                                       | 16980                                                                                                                       | 37                                                                                          | 905                                                                                                             | 32                                                                                 | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ţ                                                                       | 14                                                                             | 401                                                                                                                                                                                                     |

(\*) 1 [=] Ethane 2 [=] Ethylene 3 [=] Propane 4 [=] Propylene

or Data for 98 hr Synthesis Run, Reduced Catalyst

.

| Time           |        | Selecti      | vity (%) |           | Mola   | r Ratios | (*) |
|----------------|--------|--------------|----------|-----------|--------|----------|-----|
| (hr)           | Ethane | Ethylene     | Propane  | Propylene | C2-0/P | C3-0/P   | C2/ |
| 1 50           | 9 5    | 0.5 /        | 0.5.     | 1.6       | 37.7   | 3.4      | 46  |
| 1.50           | 2.5    | 95.4         | 0.5      | 1.9       | 35.9   | 3.9      | 42  |
| 2.45           | 2.0    | 03.6         | 0.5      | 2.4       | 27.1   | 4.5      | 32  |
| 4.70           | 3.7    | 03 3         | 0.5      | 2.5       | 25.2   | 5.3      | 32  |
| 0.27           | 5.7    | 02 /         | 0.5      | 2.8       | 22.0   | 5.1      | 28  |
| 9.00           | 4.2    | 92.4<br>02 / | 0.2      | 3.1       | 21.7   | 12.9     | 29  |
| 13.33          | 4.5    | 92.4<br>00 / | 0.1      | 3.5       | 15.4   | -        | 26  |
| 24.01          | 5.9    | 80.7         | 0.2      | 3.7       | 13.9   | 20.5     | 24  |
| 32.03          | 65     | 89 5         | 0.3      | 3.6       | 13.7   | 10.7     | 24  |
| 23.JU<br>40.65 | 77     | 89.0         | 0.1      | 3.2       | 11.6   | -        | 29  |
| 49.0J<br>5/ 78 | 7 4    | 89.5         | 0.1      | 3.1       | 12.1   | <u> </u> | 31  |
| 54.70<br>60 52 | 8 0    | 87 7         | 0.8      | 3.4       | 11.0   | 4.1      | 22  |
| 00.52          | 7 5    | 88 9         | 0.1      | 3.5       | 11.8   | -        | 26  |
| 82 00          | 8 0    | 85 1         | 1.2      | 4.8       | 9.5    | 4.1      | 15  |
| 02.90          | 8.0    | 88 4         | 0.1      | 3.5       | 11.1   | -        | 26  |

propane, and C2s to C3s are also reported.

Ethylene was the major product, accounting for over 88% of the products throughout the run. Ethane and propylene were the second and third most concentrated products, respectively. Propane was a minor product, seldom accounting for more than 1% of the product mix. After the first 10 hours, the concentration of propane was at or below the limits of detectability. The ethylene to ethane mole ratio is plotted

with respect to time on stream up to 98 hours in Figure 14. The ratio initially decreases rapidly then levels off after about 50 hours on stream. At steady state, about 11 moles of ethylene are synthesized for every mole of ethane. The ethylene to ethane, propylene to propane,

and C2s to C3s mole ratios of the first 12 hours of the 98 hours synthesis run are plotted in Figure 15. Far more moles of olefins are produced than moles of paraffins. During this period, however, there is a shift in selectivity toward the paraffins and the C2 species.

The Mossbauer spectrum of the unpoisoned catalyst from the 98 hour synthesis run appears in Figure 16. Six sextets and one doublet were used to fit the

The molar ratios of ethylene to ethane, propylene to

III.D.2. Chemical State of Catalyst







unpoisoned catalyst, 98 hr run



Figure 15: Selectivity of unpoisoned catalyst, 98 hr run



Figure 16: Mossbauer spectrum of unpoisoned, 98 hr run catalyst.

|                                                     |                                | 98 NT F1                                   | scher-Tro                              | psch Ca                                | talyst                   |                                |                  |
|-----------------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------|--------------------------|--------------------------------|------------------|
|                                                     | This                           | Study                                      | Litera                                 | ture Da                                | ta                       | Distrib                        | ution,           |
| -                                                   | IS<br>(mm/s)                   | HF<br>(k0e)                                | IS<br>(mm/s)                           | HF<br>(k0e)                            | Ref.                     | Total<br>Area                  | Carbi<br>Are     |
| FexC (*)                                            | 0.15                           | 239                                        | 0.18                                   | 241                                    | 1                        | 0.1                            | 0.               |
| X-Fe5C2 I<br>II<br>III                              | 0.23<br>0.24<br>0.12           | 198<br>216<br>110                          | 0.22<br>0.26<br>0.17                   | 183<br>219<br>106                      | 1                        | 69.7                           | 78.              |
| e'-Fe2.2C                                           | 0.23                           | 182                                        | 0.24                                   | 171                                    | 1                        | 19.3                           | 21.              |
| Total Carbide                                       | è :                            |                                            |                                        |                                        |                          | 89.1                           | 100.             |
| Fe                                                  | -0.06                          | 330                                        | 0.00                                   | 330                                    | .1                       | 3.4                            |                  |
|                                                     |                                | QS<br>(mm/s)                               |                                        | QS<br>(mm/s)                           |                          |                                |                  |
| Doublet (*)                                         | 0.15                           | 0.41                                       | 0.25                                   | 0.8                                    | 2                        | 7.5                            |                  |
| Total Area:                                         |                                |                                            |                                        |                                        |                          | 100.0                          |                  |
| 1 - (Tau, et<br>2 - (Raupp an<br>agree w<br>Fe C. X | al., 19<br>nd Delga<br>ith the | 084)<br>ss, 1979)<br>ose of in<br>and e'-F | *<br>ron metal<br>Fe <sub>2 2</sub> C. | - See<br>and t<br>Fe <sub>v</sub> C is | Discus<br>hree<br>s an u | ssion<br>iron can<br>unknown d | rbides<br>carbid |
| observer                                            | 5-2,<br>a by Ta                | n. et. a                                   | 2.2<br>1 (1984                         | . Th                                   | eir no                   | menclatu                       | re fo            |
| this co                                             | rhide                          | has heen                                   | used th                                | roughou                                | t thi:                   | s study.                       | The              |
| LIIIS LA                                            | ie that                        | 10ht to he                                 | that of                                | superpa                                | aramagi                  | netic ir (                     | on.              |
| doubter                                             | 15 0100                        | IBUC CO DC                                 |                                        |                                        |                          |                                |                  |

 $Fe_{2,2}C$  (21.7%) account for nearly all the carbide area. Fe C accounts for only 0.1% of the carbide. Reduced iron accounts for 3.4% of the total spectral area. The doublet accounts for 7.5% of the total area.

III.E.l. Selectivity

An unpoisoned catalyst and one poisoned for 5 minutes were used to catalyze the synthesis reaction for 12 hours. The gas chromatography data of the C2 and C3 peaks for both catalysts are reported in Table 7. The selectivity of each catalyst to ethane, ethylene, propane, and propylene is reported in Table 8. The molar ratios of ethylene to ethane, propylene to propane, and C2s to C3s are also reported.

The molar ratios of the unpoisoned and poisoned 12 hour synthesis samples are plotted versus time on stream in Figure 17. The poisoned catalyst data are not significantly different from the unpoisoned catalyst data. The 12 hour synthesis data are very similar to the data of the first 12 hours of the 98 hour synthesis run (Figure 15). That is, the ethylene to ethane and propylene to propane ratios decrease while the C2s to C3s ratio increases with time on stream.

III.E. Unpoisoned and poisoned 12 hour Synthesis Run



and 5 minute poisoned catalysts,

| Time                                                                            | Peak                                                                                                                      | Area (uV                                                                                                                      | -sec)                                                                                | (*)                                                                                 | Mo                                                                                              | lar Ar                                                                                                                       | ea (                         | *)                                                                             | Total<br>Molar                                                       |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|
| (hr)                                                                            | A1                                                                                                                        | A 2                                                                                                                           | A 3                                                                                  | A4                                                                                  | M1                                                                                              | M2                                                                                                                           | M.3                          | M4                                                                             | Area                                                                 |
| npoison                                                                         | ned:                                                                                                                      |                                                                                                                               |                                                                                      |                                                                                     |                                                                                                 |                                                                                                                              |                              |                                                                                |                                                                      |
| 1.37                                                                            | 1401                                                                                                                      | 52010                                                                                                                         | 600                                                                                  | 1108                                                                                | 28                                                                                              | 1087<br>3249                                                                                                                 | 9<br>15                      | 17<br>76                                                                       | 1141<br>3445                                                         |
| 2.67                                                                            | 5340                                                                                                                      | 155500                                                                                                                        | 950                                                                                  | 4907                                                                                | 105                                                                                             | 3249                                                                                                                         | 13                           | -91                                                                            | 3509                                                                 |
| 4.87                                                                            | 5504                                                                                                                      | 119800                                                                                                                        | 567                                                                                  | 4880                                                                                | 108                                                                                             | 2503                                                                                                                         | 9                            | 76                                                                             | 2696                                                                 |
| 1.53                                                                            | 6035                                                                                                                      | 118100                                                                                                                        | 572                                                                                  | 5083                                                                                | 119                                                                                             | 2467                                                                                                                         | 9                            | 79                                                                             | 2674                                                                 |
| oisone                                                                          | d 5 min.                                                                                                                  |                                                                                                                               |                                                                                      |                                                                                     |                                                                                                 |                                                                                                                              |                              |                                                                                |                                                                      |
| 3.00                                                                            | <br>4108                                                                                                                  | 38340                                                                                                                         | 752                                                                                  | 3549                                                                                | 81                                                                                              | 2463                                                                                                                         | 12                           | 55<br>72                                                                       | 261                                                                  |
| 6 00                                                                            | 5267                                                                                                                      | 117900                                                                                                                        | 723                                                                                  | 4621                                                                                | 104                                                                                             | 2570                                                                                                                         | 11                           | 12                                                                             | 215                                                                  |
| 9.00<br>(*) 1<br>2                                                              | 3578<br>[=] Eth<br>[=] Eth<br>Ta                                                                                          | 123000<br>ane<br>ylene<br>ble 8: So<br>Po                                                                                     | 248<br>electi<br>oisone                                                              | 3100<br>3<br>4<br>vity of<br>d 12 hr                                                | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe                                                      | 1594<br>opane<br>opylen<br>soned a<br>sis Ru                                                                                 | e<br>ind                     | 48                                                                             | 1716                                                                 |
| 9.00<br>(*) 1<br>2                                                              | 3578<br>[=] Eth<br>[=] Eth<br>Ta                                                                                          | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti                                                                          | 248<br>electi<br>oisone<br>vity (                                                    | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)                                          | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe                                                      | opane<br>opylen<br>soned a<br>sis Ru<br>Mc                                                                                   | e<br>ind<br>n                | 48<br>Ratio                                                                    | 171(<br>s (*)                                                        |
| 9.00<br>(*) 1<br>2<br>Time<br>(hr)                                              | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>                                                                                      | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti<br>Ethylene                                                              | 248<br>electi<br>oisone<br>vity (<br>Propa                                           | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br>ne Prop                               | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene                                             | opane<br>opylen<br>soned a<br>sis Ru<br>Mc<br>                                                                               | e<br>ind<br>lar<br>P (       | 48<br>Ratio                                                                    | 171(<br>s (*)<br>C2/                                                 |
| 9.00<br>(*) 1<br>2<br>Time<br>(hr)<br>Jnpoiso                                   | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>                                                                                      | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti<br>Ethylene                                                              | 248<br>electi<br>oisone<br>vity (<br>Propa                                           | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br><br>ne Prop                           | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene                                             | opane<br>opylen<br>soned a<br>sis Ru<br>Mc<br>                                                                               | e<br>ind<br>lar<br>P         | 48<br>Ratio<br>C3-0/P                                                          | 1716<br>s (*)<br>C2/5                                                |
| 9.00<br>(*) 1<br>2<br>Time<br>(hr)<br>Jnpoiso                                   | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>Ta<br>Ethane<br>ned:<br>2.4                                                           | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti<br>Ethylene<br>95.3                                                      | 248<br>electi<br>oisone<br>vity (<br>Propa<br>0.8                                    | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br>ne Prop                               | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene                                             | opane<br>opylen<br>soned a<br>sis Ru<br>Mc<br>C2-0/<br>39.4                                                                  | e<br>ind<br>lar<br>P (       | 48<br>Ratio<br>C3-0/P                                                          | 1716<br>s (*)<br>C2/4<br>42                                          |
| <pre>(*) 1</pre>                                                                | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>Ethane<br>ned:<br>                                                                    | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti<br>Ethylene<br>95.3<br>94.3                                              | 248<br>electi<br>oisone<br>vity (<br>Propa<br>0.8<br>0.4                             | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br>ne Prop<br>1.<br>2.                   | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene                                             | opane<br>opylen<br>soned a<br>sis Ru<br>Mc<br>C2-0/<br>39.4<br>30.9                                                          | e<br>ind<br>lar<br>/P        | 48<br>Ratio<br>C3-0/P                                                          | 1710<br>s (*)<br><br>C2/<br>42<br>36<br>32                           |
| (*) 1<br>(*) 2<br>Time<br>(hr)<br>Jnpoiso<br>1.37<br>2.67<br>4.87               | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>Ethane<br>ned:<br>                                                                    | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti<br>Ethylene<br>95.3<br>94.3<br>93.5                                      | 248<br>electi<br>oisone<br>vity (<br>Propa<br>0.8<br>0.4<br>0.4                      | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br>ne Prop<br>1.<br>2.<br>2.             | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene                                             | 1594<br>opane<br>opylen<br>soned a<br>sis Ru<br>Mc<br><br>C2-0/<br>39.4<br>30.9<br>26.1<br>23.1                              | e<br>ind<br>lar<br>/P        | 48<br>Ratio<br>C3-0/P                                                          | 1710<br>s (*)<br>C2/<br>42<br>36<br>32<br>30                         |
| (*) 1<br>(*) 1<br>2<br>(hr)<br>Jnpoiso<br>1.37<br>2.67<br>4.87<br>8.40<br>11.53 | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>Ta<br>Ethane<br>ned:<br><br>3.0<br>3.6<br>4.0<br>4.4                                  | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti<br>Ethylene<br>95.3<br>94.3<br>93.5<br>92.8<br>92.3                      | 248<br>electi<br>oisone<br>vity (<br>Propa<br>0.8<br>0.4<br>0.4<br>0.3<br>0.3        | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br>ne Prop<br>1.<br>2.<br>2.<br>3.       | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene<br>5<br>2<br>6<br>8<br>0                    | 1594<br>opane<br>opylen<br>soned a<br>sis Ru<br>Mc<br><br>C2-0/<br>39.4<br>30.9<br>26.1<br>23.1<br>20.8                      | e<br>and<br>an<br>Jar<br>/P  | 48<br>Ratio<br>C3-0/P<br>1.9<br>5.2<br>7.2<br>8.6<br>8.9                       | 1710<br>s (*)<br>C2/<br>42<br>36<br>32<br>30<br>29                   |
| <pre>(*) 1</pre>                                                                | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>Ta<br>Ethane<br>ned:<br><br>2.4<br>3.0<br>3.6<br>4.0<br>4.4<br>d 5 min.               | 123000<br>ane<br>ylene<br>ble 8: So<br>Po<br>Selecti<br>Ethylene<br>95.3<br>94.3<br>93.5<br>92.8<br>92.3                      | 248<br>electi<br>oisone<br>vity (<br>Propa<br>0.8<br>0.4<br>0.4<br>0.3<br>0.3        | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>7<br>7<br>ne Prop<br>1.<br>2.<br>2.<br>3.   | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene<br>5<br>2<br>6<br>8<br>0                    | 1594<br>opane<br>opylen<br>soned a<br>esis Ru<br>Mc<br><br>C2-0/<br>39.4<br>30.9<br>26.1<br>23.1<br>20.8                     | e<br>ind<br>lar<br>/P (      | 48<br>Ratio<br>C3-0/P<br>1.9<br>5.2<br>7.2<br>8.6<br>8.9                       | 1710<br>s (*)<br>C2/<br>42<br>36<br>32<br>30<br>29                   |
| <pre>(*) 1</pre>                                                                | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>Ethane<br>ned:<br>                                                                    | 123000<br>ane<br>ylene<br>ble 8: Se<br>Pa<br>Selecti<br>Ethylene<br>95.3<br>94.3<br>93.5<br>92.8<br>92.3<br>:<br>94.4         | 248<br>electi<br>pisone<br>vity (<br>Propa<br>0.8<br>0.4<br>0.4<br>0.3<br>0.3<br>0.3 | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br>ne Prop<br>1.<br>2.<br>3.<br>2.<br>3. | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br>ylene<br>5<br>2<br>6<br>8<br>0                    | 1594<br>opane<br>opylen<br>soned a<br>sis Ru<br>Mc<br><br>C2-0/<br>39.4<br>30.9<br>26.1<br>23.1<br>20.8<br>30.5              | e<br>ind<br>in<br>lar<br>P ( | 48<br>Ratio<br>C3-0/P<br>1.9<br>5.2<br>7.2<br>8.6<br>8.9<br>4.7<br>6 4         | 1710<br>s (*)<br>C2/<br>42<br>36<br>32<br>30<br>29<br>38<br>32       |
| <pre>(*) 1</pre>                                                                | 3578<br>[=] Eth<br>[=] Eth<br>Ta<br>Ta<br>Ethane<br>ned:<br><br>2.4<br>3.0<br>3.6<br>4.0<br>4.4<br>d 5 min.<br>3.1<br>3.8 | 123000<br>ane<br>ylene<br>ble 8: Se<br>Po<br>Selecti<br>Ethylene<br>95.3<br>94.3<br>93.5<br>92.8<br>92.3<br>:<br>94.4<br>93.2 | 248<br>electi<br>oisone<br>vity (<br>Propa<br>0.8<br>0.4<br>0.4<br>0.3<br>0.3<br>0.3 | 3100<br>3<br>4<br>vity of<br>d 12 hr<br>%)<br>ne Prop<br>1.<br>2.<br>2.<br>3.       | 70<br>[=] Pr<br>[=] Pr<br>Unpois<br>Synthe<br><br>ylene<br>5<br>2<br>6<br>8<br>0<br>1<br>6<br>8 | 1594<br>opane<br>opylen<br>soned a<br>esis Ru<br>Mc<br>C2-0/<br>39.4<br>30.9<br>26.1<br>23.1<br>20.8<br>30.5<br>24.8<br>22.7 | 4<br>e<br>ind<br>1ar<br>/P ( | 48<br>Ratio<br>C3-0/P<br>1.9<br>5.2<br>7.2<br>8.6<br>8.9<br>4.7<br>6.4<br>12.6 | 1710<br>s (*)<br>C2/<br>42<br>36<br>32<br>30<br>29<br>38<br>32<br>32 |

The Mossbauer spectra of the unpoisoned catalyst (a) and the catalyst poisoned for 5 minutes (b) from the 12 hour synthesis run appear in Figure 18. The two spectra were fit using six sextets and one doublet. The results of the curve-fitting procedure are reported in Table 9. The fitting parameters of the sextets agree with those of iron metal and three iron carbides,  $Fe_xC$ , X-Fe<sub>5</sub>C<sub>2</sub>, and The doublet is thought to be that of e'-Fe<sub>2.2</sub>C. superparamagnetic iron. Carbides accounted for a slightly smaller

proportion of the total spectral area in the 5 minute poisoned catalyst (81.4%) than in the unpoisoned catalyst (85.6%). X-Fe<sub>5</sub>C<sub>2</sub> accounted for a slightly larger proportion of the carbides in the poisoned catalyst (83.8%) than in the unpoisoned catalyst (82.5%). e'-Fe<sub>2.2</sub>C accounted for a slightly smaller proportion of the carbides in the poisoned catalyst (14.6%) than in the unpoisoned catalyst (15.5%).  $Fe_{\chi}C$  accounted for no more than 2% of the carbides in either the 5 minute poisoned or unpoisoned catalyst. Reduced iron accounted for a slightly larger

proportion of the total spectral area in the 5 minute poisoned catalyst (17.0%) than in the unpoisoned catalyst (11.4%). The doublet accounted for a slightly smaller proportion of the total area in the poisoned catalyst (1.6%) than in the unpoisoned catalyst (3.0%).

III.E.2 Chemical State of Catalyst







Figure 18: Mossbauer spectra of unpoisoned (a) and 5 min poisoned (b) 12 hour synthesis run catalysts.

| Table 9: Mo<br>Po                                                 | 1                      |
|-------------------------------------------------------------------|------------------------|
| This Stu                                                          |                        |
| IS<br>(mm/s) (k                                                   | -                      |
| :                                                                 | Unpoisoned (a)         |
| 0.18 2                                                            | FexC (*)               |
| 0.18 1<br>0.24 2<br>0.15 1                                        | X-Fe5C2 I<br>II<br>III |
| 0.24 1                                                            | e'-Fe2.2C              |
| e:                                                                | Total Carbide          |
| -0.05 3                                                           | Fe                     |
| ( m                                                               |                        |
| 0.14 0                                                            | Doublet (*)            |
|                                                                   | Total Area:            |
| min (b):                                                          | Poisoned for 5         |
| 0.10 2                                                            | FexC (*)               |
| $\begin{array}{ccc} 0.20 & 1 \\ 0.22 & 2 \\ 0.02 & 1 \end{array}$ | X-Fe5C2 I<br>II<br>III |
| 0.19 1                                                            | e'-Fe2.2C              |
| e:                                                                | Total Carbide          |
| 0.00 3                                                            | Fe                     |
| ( m                                                               |                        |
| 0.21 0                                                            | Doublet (*)            |
|                                                                   | Total Area:            |

Ξ.

| Study             | Litera               | ture Da           | ta   | Distrib             | ution, 🖁          |
|-------------------|----------------------|-------------------|------|---------------------|-------------------|
| HF<br>(kOe)       | IS<br>(mm/s)         | HF<br>(k0e)       | Ref. | Total<br>Area       | Carbide<br>Area   |
| 252               | 0.18                 | 241               | 1    | 1.7                 | 2.0               |
| 194<br>215<br>106 | 0.22<br>0.26<br>0.17 | 183<br>219<br>106 | 1    | 70.6                | 82.5              |
| 182               | 0.24                 | 171               | 1    | 13.3<br><br>85.6    | 15.5<br><br>100.0 |
| 331               | 0.00                 | 330               | 1    | 11.4                |                   |
| QS<br>(mm/s)      |                      | QS<br>(mm/s)      |      |                     |                   |
| 0.40              | 0.25                 | 0.8               | 2    | 3.0<br><br>100.0    |                   |
| :                 |                      |                   |      |                     |                   |
| 239               | 0.18                 | 241               | 1    | 1.3                 | 1.6               |
| 194<br>215<br>102 | 0.22<br>0.26<br>0.17 | 183<br>219<br>106 | 1    | 68.2                | 83.8              |
| 177               | 0.24                 | 171               | 1    | 11.9<br><br>81.4    | 14.6              |
| 331               | 0.00                 | 330               | 1    | 17.0                |                   |
| QS<br>(mm/s)      |                      | QS<br>(mm/s)      |      |                     |                   |
| 0.33              | 0.25                 | 0.8               | 2    | $\frac{1.6}{100.0}$ |                   |

Mossbauer Parameters of Unpoisoned and Poisoned 12 hr Fischer-Tropsch Catalyst

984) ass, 1979)

\* - See Discussion

-57-

III.F.1. Selectivity

An unpoisoned catalyst and a catalyst poisoned for 7 hours were used to catalyze the synthesis reaction for 0.5 hours. The gas chromatography data of the C2 and C3 peaks for both catalysts are reported in Table 10. The selectivity of each catalyst to ethane, ethylene, propane, and propylene is reported in Table 11. The molar ratios of ethylene to ethane, propylene to propane, and C2s to C3s are also reported. The major product of the No other product unpoisoned catalyst was ethylene. accounted for more than 2% of the product mix. The major products of the poisoned catalyst were ethylene and No paraffins were detected by the gas propylene. chromatograph.

The molar ratios of the unpoisoned and poisoned 0.5 hour synthesis samples are plotted versus time on stream in Figure 19. The poisoned catalyst data are significantly different from the unpoisoned catalyst data. During the 0.5 hr period of synthesis, the ethylene to ethane ratio of the poisoned catalyst was one and one-half orders of magnitude higher than that of the unpoisoned catalyst. As the synthesis run proceeded, the poisoned catalyst shifted the selectivity toward propylene at the

III.F. Unpoisoned and poisoned 0.5 hr Synthesis Run





ľ

| Time                                                                                              | Peak                                                                                                                       | Area (u                                                                                      | V-sec)                                                                                                                      | (*)                                                       | Calcul                            | lated M                                                        | oles                                       | (*)                               | Tota                               |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|----------------------------------------------------------------|--------------------------------------------|-----------------------------------|------------------------------------|
| (hr)                                                                                              | A1                                                                                                                         | A 2                                                                                          | A 3                                                                                                                         | A4                                                        | M1                                | M2                                                             | M3                                         | M4                                | Moles                              |
| Unpoisor                                                                                          | ied:                                                                                                                       |                                                                                              |                                                                                                                             |                                                           |                                   |                                                                |                                            |                                   |                                    |
| 0.25                                                                                              | 684<br>1486                                                                                                                | 65430<br>82010                                                                               | <1<br>47                                                                                                                    | 476<br>1308                                               | 13<br>29                          | 1367<br>1713                                                   | <1<br>1                                    | 7<br>20                           | 1388<br>1764                       |
| Poisoned                                                                                          | for 7 l                                                                                                                    | nr:                                                                                          |                                                                                                                             |                                                           |                                   |                                                                |                                            |                                   |                                    |
|                                                                                                   | <ll><li><li><li><li><li><li><li><li><li></li></li></li></li></li></li></li></li></li></ll>                                 | 2553                                                                                         | <1                                                                                                                          | 121                                                       | <1                                | 53                                                             | <1                                         | 2                                 | 5.5                                |
| 0.25<br>0.50<br>(*) 1<br>2<br>3<br>4                                                              | <1<br>[=] Etha<br>[=] Ethy<br>[=] Prop<br>[=] Prop<br>Tabl                                                                 | 2528<br>ane<br>ylene<br>bylene<br>e 11: S<br>P                                               | <1<br>electiv<br>oisoned                                                                                                    | 1901<br>vity of<br>1 0.5 hr                               | <1<br>Unpois<br>Synth             | 53<br>oned a<br>esis R                                         | <1<br>nd<br>un                             | 30                                | 82                                 |
| 0.25<br>0.50<br>(*) 1<br>2<br>3<br>4<br>Time                                                      | <1<br>[=] Etha<br>[=] Ethy<br>[=] Prop<br>[=] Prop<br>Tabl                                                                 | 2528<br>ane<br>ylene<br>bylene<br>e 11: S<br>P<br>Selecti                                    | <lpre>&lt;1 electiv oisoned vity (%)</lpre>                                                                                 | 1901<br>vity of<br>1 0.5 hr                               | <1<br>Unpois<br>Synth             | 53<br>oned a<br>esis R<br>Mo                                   | <1<br>                                     | 30<br>atio                        | 82<br>s ( <b>*</b> )               |
| 0.25<br>0.50<br>(*) 1<br>2<br>3<br>4<br>4                                                         | <1<br>[=] Etha<br>[=] Ethy<br>[=] Prop<br>[=] Prop<br>Tabl                                                                 | 2528<br>ane<br>ylene<br>bylene<br>e 11: S<br>P<br>Selecti<br>thylene                         | <le>&lt;1 <li>electivoisoneo</li> <li>vity (%</li> <li>Propan</li> </le>                                                    | 1901<br>ity of<br>0.5 hr<br>)<br>ie Propy                 | <1<br>Unpois<br>Synth<br><br>lene | 53<br>oned a<br>esis R<br>Mo<br>C2-0/                          | <1<br>un<br>Lar R<br>P C3                  | 30<br>atio:<br>-0/P               | 82<br>s (*)<br>C2/C                |
| 0.25<br>0.50<br>(*) 1<br>2<br>3<br>4<br>4<br>Time<br>(hr)<br>Unpoison                             | <1<br>[=] Etha<br>[=] Ethy<br>[=] Prop<br>[=] Prop<br>Tabl<br>Tabl<br>Ethane F<br>ed:                                      | 2528<br>ane<br>ylene<br>oylene<br>e 11: S<br>P<br>Selecti<br>thylene                         | <le>cl</le>                                                                                                                 | 1901<br>ity of<br>0.5 hr<br>)<br>ie Propy                 | <1<br>Unpois<br>Synth<br>Lene     | oned a<br>esis R<br>Mo<br>C2-0/                                | <1<br>un<br>Lar R<br>P C3                  | 30<br>atios<br>-0/P               | 82<br>5 (*)<br>C2/C                |
| 0.25<br>0.50<br>(*) 1<br>2<br>3<br>4<br>4<br>Time<br>(hr)<br>Unpoison<br>0.25<br>0.50             | <1<br>[=] Etha<br>[=] Etha<br>[=] Prop<br>[=] Prop<br>Tabl<br>Ethane E<br>ed:<br>                                          | 2528<br>ane<br>ylene<br>oylene<br>e 11: S<br>P<br>Selecti<br>thylene<br>98.5<br>97.2         | <le>&lt;1 <li>electivoisoned</li> <li>vity (%</li> <li>Propan</li> <li>&lt;0.1</li> <li>&lt;0.1</li> <li>&lt;0.1</li> </le> | 1901<br>ity of<br>0.5 hr<br>0.5<br>ne Propy<br>0.5<br>1.2 | <1<br>Unpois<br>Synth<br><br>lene | 53<br>oned a<br>esis R<br><u>Mo</u><br>C2-0/1<br>101.6<br>58.6 | <1<br>nd<br>un<br>lar R<br>P C3<br>47<br>2 | 30<br>atios<br>-0/P<br>8.1<br>8.0 | 82<br>s (*)<br>C2/C<br>186.<br>82. |
| 0.25<br>0.50<br>(*) 1<br>2<br>3<br>4<br>4<br>Time<br>(hr)<br>Unpoison<br>0.25<br>0.50<br>Poisoned | <1<br>[=] Etha<br>[=] Etha<br>[=] Prop<br>[=] Prop<br>[=] Prop<br>Tabl<br>Tabl<br>Ethane F<br>ed:<br>1.0<br>1.7<br>for 7 h | 2528<br>ane<br>ylene<br>oylene<br>e 11: S<br>P<br>Selecti<br>Sthylene<br>98.5<br>97.2<br>ar: | <li><li>electivoisoned<br/>vity (%<br/>Propan<br/>&lt;0.1<br/>&lt;0.1</li></li>                                             | 1901<br>ity of<br>0.5 hr<br>)<br>ne Propy<br>0.5<br>1.2   | <1<br>Unpois<br>Synth<br>lene     | 53<br>oned a<br>esis R<br><u>Mo</u><br>C2-0/1<br>101.6<br>58.6 | <1<br>nd<br>un<br>lar R<br>P C3<br>47<br>2 | 30<br>atios<br>-0/P<br>8.1<br>8.0 | 82<br>5 (*)<br>C2/C<br>186.<br>82. |

products and enhanced C3 production.

\_\_\_\_\_B

unpoisoned catalyst.

Two sextets and one doublet were used to fit the Mossbauer spectrum of the unpoisoned catalyst from the The results of the fitting 0.5 hour synthesis run. procedure are reported in Table 12. In Figure 20, the doublet component of the spectrum appears as a broad singlet

|            | This St        | tudy         | Litera      | Area     |             |
|------------|----------------|--------------|-------------|----------|-------------|
|            | IS (mm/sec)    | HF (kOe)     | IS (mm/sec) | HF (kOe) | Ref. $(\%)$ |
| Fe         | 0.05           | 335          | 0.00        | 330      | 1 60.0      |
| Sextet     | 0.64           | 297          | -           | -        | 31.4        |
|            |                | QS<br>(mm/s) |             |          |             |
| Doublet    | 0.36           | 0.10         | -           | -        | 8.6         |
| Total Area |                |              |             |          | 100.0       |
| 1 - (Mui   | r. Ando. and ( | Coogan, 196  | 6)          |          |             |

expense of propane. Poisoning reduced the selectivity to C2

Figure 19 also plots the relative activity of the poisoned catalyst as the run proceeded. The activity of the poisoned sample was less than 5% the activity of the

III.F.2. Chemical State of Catalyst

Table 12: Mossbauer Parameters of Unpoisoned 0.5 hr Fischer-Tropsch Catalyst, Peak 2 Included



.

Figure 20: Mossbauer spectrum of 7 hour poisoned, 0.5 hour synthesis run catalyst. Fit with two sextets and one doublet.

since the value of the quadrupole interaction (0.10 mm/s)was small. The Mossbauer parameters of one sextet agree within experimental error with those of iron metal, Fe. The other sextet has not been identified. The doublet is thought to be that of superparamagnetic iron. The area of the unknown sextet accounts for

the area.

Another attempt was made to fit the spectrum of the unpoisoned catalyst from the 0.5 hour synthesis run. Peak number 2 of the unpoisoned catalyst spectrum (Figure 20) was ignored in the fitting procedure. The results of this fit are reported below. The Mossbauer spectra of the unpoisoned

catalyst (a) and the catalyst poisoned for 7 hours (b) from the 0.5 hour synthesis run appear in Figure 21. The two spectra were fit using six sextets and one doublet. The results of the curve-fitting procedure are reported in Table 13. The fitting parameters of the sextets agree with those of iron metal and three iron carbides,  $Fe_xC$ ,  $X-Fe_5C_2$ , and e'-Fe<sub>2.2</sub>C. The doublet is thought to be that of superparamagnetic iron. Carbides accounted for a smaller proportion

of the total spectral area in the 7 hour poisoned catalyst (7.0%) than in the unpoisoned catalyst (29.2%).  $X-Fe_5C_2$ accounted for a larger proportion of the carbides in the

31.4% of the total spectral area. Reduced iron accounts for 60.0% of the total area. The doublet accounts for 8.6% of




|                        | This                  | Study             | Litera               | ture Da           | ta   | Distrib       | ution, 🎾        |
|------------------------|-----------------------|-------------------|----------------------|-------------------|------|---------------|-----------------|
|                        | IS<br>(mm/s)          | HF<br>(k0e)       | IS<br>(mm/s)         | HF<br>(k0e)       | Ref. | Total<br>Area | Carbide<br>Area |
| Inpoisoned (a)         | :                     |                   |                      |                   |      |               |                 |
| FexC (*)               | 0.13                  | 233               | 0.18                 | 241               | 1    | 7.4           | 25.3            |
| X-Fe5C2 I<br>II<br>III | -0.01<br>0.16<br>0.10 | 194<br>211<br>107 | 0.22<br>0.26<br>0.17 | 183<br>219<br>106 | 1    | 20.7          | 70.9            |
| e'-Fe2.2C              | 0.15                  | 173               | 0.24                 | 171               | 1    | 1.1           | 3.8             |
| Total Carbid           | e:                    |                   |                      |                   |      | 29.2          | 100.0           |
| Fe                     | -0.01                 | 331               | 0.00                 | 330               | 1    | 62.6          |                 |
|                        |                       | QS<br>(mm/s)      |                      | QS<br>(mm/s)      |      |               |                 |
| Doublet (*)            | 0.25                  | 0.35              | 0.25                 | 0.8               | 2    | 8.1           |                 |
| Total Area:            |                       |                   |                      |                   |      | 99.9          | (#)             |
| oisoned for 7          | hr (b):               |                   |                      |                   |      |               |                 |
| FexC (*)               | 0.13                  | 234               | 0.18                 | 241               | 1    | 0.4           | 5.7             |
| X-Fe5C2 I<br>II<br>III | -0.03<br>0.00<br>0.01 | 195<br>211<br>110 | 0.22<br>0.26<br>0.17 | 183<br>219<br>106 | 1    | 6.3           | 90.0            |
| e'-Fe2.2C              | 0.19                  | 177               | 0.24                 | 171               | 1    | 0.3           | 4.3             |
| Total Carbid           | e :                   |                   |                      |                   |      | 7.0           | 100.0           |
| Fe                     | 0.00                  | 330               | 0.00                 | 330               | 1    | 91.0          |                 |
|                        |                       | QS<br>(mm/s)      |                      | QS<br>(mm/s)      |      |               |                 |
| Doublet (*)            | 0.26                  | 0.33              | 0.25                 | 0.8               | 2    | 2.0           |                 |
| Total Area:            |                       |                   |                      |                   |      | 100.0         |                 |

2 - (Raupp and Delgass, 1979)

100

ters of Unnoisoned and D

# - Round-off error

-66poisoned catalyst (90.0%) than in the unpoisoned catalyst (70.9%). Fe<sub> $\chi$ </sub>C accounted for a smaller proportion of the carbides in the poisoned catalyst (5.7%) than in the unpoisoned catalyst (25.3%).  $e'-Fe_{2.2}C$  accounted for a slightly larger proportion of the carbides in the poisoned catalyst (4.3%) than in the unpoisoned catalyst (3.8%). Reduced iron accounted for a larger proportion of the total spectral area in the 7 hour poisoned catalyst (91.0%) than in the unpoisoned catalyst (62.6%). The doublet accounted for a smaller proportion of the total area in the poisoned catalyst (2.0%) than in the unpoisoned catalyst (8.0%).

IV. Discussion

IV.A. Extent of Reduction

The porosity and surface area of fused magnetite catalysts are improved by reducing the magnetite, Fe<sub>3</sub>O<sub>4</sub>, to iron metal, Fe, prior to synthesis reaction (Anderson, 1956). The extent of reduction after the full 60 hour period was estimated using the data from the 10 hour reduction reported in section III.A. The reduction rate was assumed to be first-order

The reduction rate was assumed to be first-order in the iron oxide concentration. Calculations indicate that after 60 hours, the catalyst was 98.4% iron metal (see calculation in Appendix V). It was sufficiently reduced to actively catalyze the synthesis reaction.

IV.B. Activity of the Unpoisoned Catalyst

The gas chromatograph and packed column did not resolve the CO,  $CO_2$ ,  $H_2$ , and  $CH_4$  peaks. Therefore the conversion of  $CO+H_2$  could not be measured experimentally. The activity of the unpoisoned catalyst for the synthesis reaction was estimated using the steady state Langmuir-Hinshelwood rate model derived by Huff (1982). In his Fischer-Tropsch studies, Huff (1982) used the same catalyst reduced at the same conditions that was used in this work. The rate expression he obtained was:

-R<sub>H2</sub>

Where:

-R<sub>H2</sub>

reduces to:

In order to apply Huff's model, it was necessary to determine the period of time required for this system to reach steady state. Huff (1982) observed that the ethyleneto-ethane ratio stabilized shortly after activity had reached its steady value. The ethylene-to-ethane molar ratio of the 98 hour synthesis run shown in Figure 14. Steady state was reached after about 50 hours on stream. Steady state conversion was estimated using a plug flow reactor model and Huff's kinetic constant data. At the reaction conditions used in this work, the conversion of hydrogen and carbon monoxide to Fischer-Tropsch products was

+C0 = 
$$\frac{k K P_{C0} (P_{H2})^2}{P_{H20} + K P_{C0} P_{H2}}$$

According to Huff, at conversion less than about 70%, the formation of water is low, so the rate expression

 $-R_{H2+CO} = k P_{H2}$ .

calculated to be 33% (see calculation in Appendix V). The average activity of the unpoisoned catalyst on a reactor basis was 53.4 umole  $H_2+CO$  converted per gram unreduced catalyst-min.

The total molar area of the C2 and C3 GC peaks is plotted versus time on stream in Figure 22. The data are from the 0.5, 12 and 98 hour unpoisoned synthesis runs reported in Tables 4,7, and 10, respectively. The syringe sampling technique was probably a source of experimental error and may explain the scatter in the data. In general, only one syringe sample was taken for each datum. The percent iron as iron carbide of the catalysts from the 0.5, 12, and 98 hour synthesis runs is also plotted in Figure 22. During the first 12 hours, the amount of C2 and C3 products increased, reached a maximum, and decreased as the catalyst carbided. By the end of the 98 hour run, the steady state amount of C2 and C3 products had decreased to about 16% its level at 12 hours. During this period, the iron carbide concentration in the catalyst increased

slightly.

Raupp and Delgass (1979) showed that the extent of iron carbide formation tracts the increase in activity of a supported iron Fischer-Tropsch catalyst. Furthermore, the catalyst becomes more selective to higher hydrocarbons as

IV.C. Selectivity of Unpoisoned Catalyst



۲





the iron carbides. Assuming that methane formation did not increase, the decrease in C2 and C3 production during the 98 hour synthesis run is consistent with the selectivity findings of Raupp and Delgass (1979). Since production of C2 and C3 products is not a measure of activity, these data cannot support or challenge the activity and carbide formation finding.

As described in section II.C.3.a., relative activity of the poisoned catalyst was determined by comparing the GC molar area data of the poisoned catalyst with that of the unpoisoned catalyst. This method of calculating relative activities assumes that there is a linear relationship between unsteady-state conversion and the total molar area of C2 and C3 products. Steady-state data from Huff (1982) plotted in Figure 23 show a non-linear relationship between conversion and total molar area of C2 and C3 products. The problem can best be described by example. Suppose sulfur had no effect on the activity of the catalyst, but shifted the selectivity toward higher molecular weight hydrocarbons. The molar area of the C2 and C3 peaks would decrease in proportion to the reduction in their respective products' concentration. A calculation of relative activity would suggest that the catalyst had been poisoned. In fact, the C2 and C3 concentration had simply

IV.D. Relative Activity of Poisoned Catalysts





# C2+C3 OLEFIN+PARAFFIN MOLAR AREA

Figure 23: Conversion as a function of C2+C3 olefins and paraffins molar area (Data from Huff, 1982)

decreased and not the overall conversion. On the basis of these arguments, the relative activity as defined above reflects changes in both the activity and selectivity to C2 and C3 products.

In section III.C., the effect of poisoning on the relative activity of the catalyst was discussed. Calculations were made to determine the amount of sulfur fed to the catalyst in both poisoning experiments (see calculation in Appendix V). Poisoning for 5 minutes introduced 1.6 mg S/g Fe

Poisoning for 5 minutes introduced 1.6 mg S/g Fe to the catalyst. The relative activity decreased 24.1%. This result is consistent with other findings. Shultz et al. (1962) observed a 25% loss of activity after poisoning a reduced catalyst with 1.2 mg S/g Fe as  $H_2S$  dissolved in heptane. The work of Karn et al. (1963) and Shultz et al. (1962) showed that the activity loss of a reduced catalyst and a used (i.e., carbided) catalyst are similar. Stenger (1984) poisoned a used catalyst with 3.8 mg S/g Fe as  $H_2S$ and observed a 50% loss of activity. Poisoning for 7 hours introduced 134 mg S/g Fe to

Poisoning for 7 hours introduced 134 mg S/g Fe to the catalyst. The relative activity decreased 95.7% to 0.043. This result is consistant with other findings. Anderson Karn, and Shultz (1965) observed that the activity of reduced iron oxide and reduced steel turnings decreased linearly to 0.60 after 0.2-0.3 mg S/g Fe had been introduced in situ. The activity of the turnings decreased steadily to zero after 1-2 mg S/g Fe was introduced. However, the

activity of the fused iron oxide catalyst approached a constant value of 0.05-0.10 after 2-4 mg S/g Fe had been introduced. Despite prolonged exposure to sulfur, the catalyst in this study maintained a low but detectable activity.

was discussed. The relative activity was 50%.

# IV.E. Selectivity of Poisoned Catalyst

In section III.E., the effect of prepoisoning for 5 minutes on the unsteady-state selectivity of the catalyst Figure 17 clearly shows that the selectivity of the catalyst poisoned with 1.6 mg S/g Fe was nearly identical to that of the unpoisoned catalyst.

Karn et al. (1964) found that in situ poisoning had little influence on the selectivity of a fused catalyst until the relative activity decreased to 20%. Stenger (1984) observed slight changes in the selectivity of a used fused iron catalyst poisoned in situ with 3.8 mg S/g Fe.

In section III.F., the effect of poisoning for 7 hours on the selectivity of the catalyst was discussed. Poisoning the catalyst with 134 mg S/g Fe improved the selectivity of the catalyst dramatically. The olefinic content of the C2 fraction increased one and one-half orders of magnitude. The olefinic content of the C3 fraction also improved, but this result may be due to uncertainty in the

propane and propylene molar area data. There was also a shift in selectivity to C3 formation. The improved selectivity to olefins is the result of electronic effects of sulfur poisoning and not conversion effects. At lower conversion, one would expect to find a higher concentration of paraffins in the product stream due to the higher hydrogen partial pressure. Stenger (1984) also observed a significant improvement in the selectivity of the same reduced iron catalyst after prepoisoning with an organic sulfide, dibenzothiophene. The prepoisoned catalyst formed more olefins and less methane.

The results of the Mossbauer analysis are summarized in Figures 24-26. Figure 24 shows the change in composition of iron as iron carbide. It appears that the iron phases progress as carbidization proceeds (from left to right):

Tau et al. (1984) made a similar observation using a supported iron catalyst. Perhaps it is not surprising that the progression should tend toward the phases higher in carbon content. However, the stability of these carbides

IV.F. Chemical State of Unpoisoned Catalyst

 $Fe^0 \rightarrow Fe_x C \rightarrow X - Fe_5 C_2 \rightarrow e' - Fe_{2.2} C.$ 



TIME ON STREAM, HR

Figure 24: Carbide distribution of unpoisoned catalyst as carbidization progresses.

1982):

The carbides formed during the Fischer-Tropsch reaction will result from competing effects between the tendency to have a high carbon content (i.e., the relative rates of surface reaction and diffusion of free carbon) and a decreasing stability as the carbon content increases (Le Caer, et al., 1982). Since we observe a progression in the order of decreasing stability, the conclusion is that surface reaction and diffusion of free carbon is very fast. The doublet observed in the Mossbauer spectra

of the carbided samples indicated the presence of superparamagnetic iron. Superparamagnetisn is observed in absorbers with very small particles (Dumesic and Topsoe, Raupp and Delgass (1979) also observed the 1977). appearance of a superparamagnetic component as their iron Fischer-Tropsch catalyst carbided. When calculated on a doublet-free basis, the percent iron as iron carbide data were very similar to the results reported in section III.

increases as the carbon content decreases (Le Caer et al.,

 $Fe_2C < e'-Fe_{2.2}C < X-Fe_5C_2 < Fe_XC < \theta-Fe_3C$ 

IV.G. Effect of Sulfur on the Catalyst Chemical State

In this study, the role of sulfur as a selective poison of the Fischer-Tropsch synthesis reaction has been demonstrated. As a poison, sulfur reduced the activity of a catalyst sample to 5% of its unpoisoned activity. Sulfur is a selective poison since the loss in activity was accompanied by a significant improvement in the olefinic content and a shift toward higher molecular weight products. We turn our attention now to a discussion of sulfur's effect on the chemical state of the synthesis catalyst hoping to explain these activity and selectivity effects.

Figures 25 and 26 summarize the effect of sulfur poisoning on the extent of carbide formation and the carbide composition, respectively. After 12 hours of carbidization, the extent of carbide formation was 95% that of the unpoisoned catalyst. Hence, the prepoisoning did not alter the rate of carbide formation significantly. In Figure 26, it is clear that poisoning for 5 minutes had no significant effect on the relative rates of formation of individual carbide phases. The composition of the carbides was essentially that of the unpoisoned catalyst. Seven hours of prepoisoning had a significant

effect on the rate of carbide formation. After 0.5 hours of carbidization, the amount of iron as iron carbide in the 7 hour poisoned catalyst was 24% that of the unpoisoned catalyst. There was also a significant change in the iron carbide distribution. Much less  $Fe_{\chi}C$  was formed in the



Figure 25: Effect of sulfur on the rate of carbidization.



Figure 26: Effect of sulfur on carbide distribution

.

prepoisoned catalyst than in the unpoisoned catalyst. The proportion as  $X-Fe_5C_2$  increased considerably.

At least two models have been proposed to explain the behavior of iron in the Fischer-Tropsch They are the "carbide model "and the synthesis. These models will be described "competition model". briefly.

In an elegant in situ Mossbauer experiment, Raupp and Delgass (1979) showed that the activity of a Fischer-Tropsch catalyst increased almost linearly with the extent of iron carbide formation in the bulk. They developed what has come to be known as the "carbide model". The carbide model suggests that the relationship is causal in that the bulk iron controls the concentration of active surface sites.

The competition model (Niemantsverdriet and Van Der Kraan, 1982) views iron atoms at the surface as the active sites. Following adsorption and dissociation of CO, the surface carbidic species,  $C^*$ , has three possible fates. It may react to form Fischer-Tropsch products, diffuse into the bulk of the catalyst and form iron carbide, or it may polymerize and form inactive carbon on the surface. This model can also explain the results of Raupp and Delgass (1979). Initially, the catalyst is reduced iron. In the early stages of synthesis, carbon diffuses into the bulk

IV.H. Models of Iron's Catalytic Behavior

carbidization.

There are several possible mechanisms by which sulfur can decrease the rate of iron carbide formation. One possibliity is that sulfur on the surface has an electronic effect which hinders the chemisorption and dissociation of CO and/or  $H_2$ . Or it may be a geometric effect having the same effect on chemisorption and dissociation. Another possibility is that a layer of sulfur at the catalyst surface restricts the diffusion of carbon into the bulk. The results of this study do not indicate which effect is responsible for the lower rates of But a carbidization in sulfur poisoned catalysts. combination of both effects is probably responsible.

where it forms iron carbide. As the bulk becomes more and more carbided, more surface species are available for hydrocarbon synthesis or deactivation. The three reactions compete provided CO dissociation is slower than

-82-

### V. Conclusions

Several concluthis investigation:

- Sulfur on the surface of a reduced fused iron catalyst lowers the rate of carbidization of the catalyst. Moreover, poisoned catalysts that carbided slowly were far less active than unpoisoned catalysts.

- It is not clear what effect the relative amounts of different iron carbides in the bulk of the catalyst have on the product selectivity. The carbide distribution may determine the selectivity, or it may be a consequence of other effects.

- Prepoisoning with 1.6 mg S/g Fe reduced the activity of the iron catalyst 25%. The rate of carbidization decreased slightly. The selectivity did not change significantly, nor did the chemical state of the catalyst.

- Prepoisoning with 134 mg S/g Fe reduced the activity of the catalyst 95%. The rate of carbidization decreased significantly. The selectivity was shifted toward production of olefins and higher molecular weight products.

Several conclusions can be drawn from the results of

сŘ

The carbide distr significantly.

.

Ъ.

The mechanism by which sulfur decreases the rate of carbidization is not known. Sulfur may reduce the rate of dissociation of the reactants. Sulfur may also reduce the rate of carbon diffusion in the catalyst bulk. An experiment to determine the effect of preadsorbed sulfur on the rates of carbidization and decarbidization would indicate which mechanism is more likely.

The carbide distribution of the catalyst was changed

| VI  | . I         | lef                   | e              | c e           | nc                  | es                   | 6                   |             |                     |       |
|-----|-------------|-----------------------|----------------|---------------|---------------------|----------------------|---------------------|-------------|---------------------|-------|
| Ano | leı         | sc<br>Rl              | n<br>iei       | ,<br>L n      | R.<br>ho            | E<br>1d              | 3.,<br>L,           | N           | in<br>ew            | 1     |
| An  | leı         | so<br><u>Ca</u>       | n,<br>ata      | 1             | R.<br>ys            | Ē                    | },<br><u>5.</u> ,   | Ļ           | Ka                  | 1     |
| Bai | rtŀ         | 10]<br><u>A</u> c     | .on<br>Iva     | ie<br>in      | w,<br>ce            | s                    | ).<br>              | H           | .,<br>Са            | 1     |
| Die | etź         | ζ,                    | ₩.             | ,             | A:.                 | · ,                  | Jo                  | ou          | ŕn                  | 1     |
| Dur | nes         | sic<br>26             | ,<br>),        | J<br>A        | ca                  | Á.<br>de             | ,<br>emi            | a<br>ic     | n d<br>P            |       |
| Hui | Ēf,         | C<br>Sc<br>Ap         | D<br>pri       | A<br>T<br>1   | ,,<br>he            | <u>F</u><br>si<br>19 | is<br>82            | <u>50</u>   | <u>he</u><br>Ma     | :<br> |
| Kai | cn,         | F<br>Pr               | od             | S<br>lu       | .,<br>ct            | e<br>R               | t<br>les            | a<br>se     | l.<br>ar            |       |
| Kai | ċn,         | F<br>Pr               | od             | S<br>I u      | ,<br>ct             | e<br>R               | t<br>es             | a<br>se     | l.<br>ar            |       |
| Le  | Ca          | er<br>19              | , 82           | G<br>C        | ۰,                  | e                    | t                   | a           | 1.                  |       |
| May | ,           | L.<br>Pl              | ,<br>en        | e             | d.<br>m.,           | ,<br>N               | "A<br>ev            | n<br>1      | I<br>Yo             | )     |
| Mui | Ŀr.,        | A<br>Ef<br>19         | fe<br>66       | H<br>C        | .,<br>t             | J<br>Da              | r.<br>ta            | · ,         | A<br>In             | 0     |
| Nag | <u>g</u> y, | S<br>Ev<br>fr<br>Un   | al<br>om<br>iv | I<br>u<br>e   | ,<br>at<br>Dr<br>rs | a<br>in<br>it        | nd<br>g<br>Ga<br>y, | S           | We<br>ys<br>y<br>Be |       |
| Nie | ema         | nt<br>of              | s v<br>C       | e<br>a        | rd<br>ta            | ri<br>1y             | et<br>si            | ,<br>.s     | ,<br>,              | •     |
| Rau | ıpp         | <b>5</b> 8            | G.             | ]<br>19       | B.<br>97            | ,<br>9.              | an                  | d           | Ď                   | 4     |
| Shu | lt          | z,<br>66              | .J             | 19            | F<br>96             | .,<br>2.             | e                   | t           | a                   |       |
| Ste | ing         | er<br><u>Sy</u><br>Ma | ,<br>nt<br>ss  | H<br>he<br>ac | es:<br>ch           | G.<br>is<br>us       | ,<br>et             | J<br>n<br>t | r.<br>_a<br>s       |       |
|     |             |                       |                |               |                     |                      |                     |             |                     |       |

Catalysis, vol. 4 (P. H. Emmett, ed.,), York, 1956. arn, F. S., and Shultz, J. F., Journal of vol. 4, 1965. Agrawal, P. K., and Katzer, J. R., talysis, vol. 31, Academic Press, 1982. al of Gas Chromatography, Feb., 1967. Topsoe., H., Advances in Catalysis, vol. ress, 1977. er Tropsch Synthesis in a Slurry Reactor, ssachusetts Institute of Technology, , Industrial and Engineering Chemistry ch and Development, vol. 2, 1963. , Industrial and Engineering Chemistry ch and Development, vol. 3, 1964. , Journal of Physical Chemistry, vol. 86, ntroduction to Mossbauer Spectroscopy." ork, 1971. ndo, K. J., and Coogan, H. M., "Mossbauer dex 1958-1965." Interscience, New York, eir, T. W., "The SIRIUS Spectrum stem." (unpublished) Copies available Simmons, Department of Chemistry, Lehigh thlehem, PA 18015 . W., and Van Der Kraan, A. M., Journal vol. 72, 1981. elgass, W. N., Journal of Catalysis, vol. 1., Journal of Physical Chemistry, vol. , Studies of the Fischer-Tropsch Slurry Reactor, ScD Thesis, Institute of Technology, February, 1984.

ŕ

Tau, et. al., Journal of Catalysis, vol. 87, 1984.

Wertheim, G. K., "Mossbauer Effect, Principles, and Applications." Academic Press, New York, 1964.

.

## VII. Appendices

- Binary to "Off".
- from the terminal.
- Return and Line Feed.

- Readout".
- Stop Mode.
- 817 unit.
- "Term/Modem".
- rewinds the tape.
- off.

VII.A. Appendix I - Mossbauer Data Transfers

### Transfer from MCA to Computer Data File.

1. Turn on the modem and computer terminal.

2. Insert cassette into the Techtran 817 data cassette deck. Turn power on. Set the Line Mode to "Off" and

3. Dial the Interface selector switch to "Term/Modem" in order to control the Techtran 817 data cassette

4. At the terminal, depress CTRL Z (by depressing CTRL and Z simultaneously) to rewind the tape. CTRL R puts the cassette deck in the Write mode. The Write light should now be on. Type in at the terminal any desired spectrum label followed by

5. At the Techtran 817, switch Binary to "on-line".

6. Dial the Interface selector switch to "MCA". This action links the MCA to the Techtran 817.

7. Set the MCA Read Mode to "Type". Set the Memory Group selector switch to the position (1/4, 2/4,3/4, or 4/4) corresponding to the group from which the data is to be transfered. Depress "Start

8. The tape will advance intermittently as data is transfered from the MCA. Transfer to the tape is complete when the MCA automatically resets to the

9. Change the Binary switch to "Off" on the Techtran

10. Position the Interface selector switch to

11. At the terminal, depress CTRL T to terminate the Write mode. The Write light will turn off. CTRL Z

12. Turn the Techtran 817, computer terminal, and modem

### Data Transfer from Tape to Computer Data File

- RAWDAT:
  - /SENATOR

  - \*INPUT
- it is read into RAWDAT.
- RAWDAT.
- - A = 1

1. Turn on the modem, Techtran 8410 datacassette deck, and terminal/printer in Room 315 of Sinclair Lab. Logon to the CYBER via telephone lines.

2. Issue the following commands to create the datafile

\*NEW, RAWDAT

3. Insert the cassette into the Techtran 8410. Depress the Read button. Data is printed at the terminal as

4. Once all 1024 data have been properly read into RAWDAT, turn the Techtran off momentarily to discontinue reading from tape. Enter ";" and hit RETURN. Re-enter ";" and hit "RETURN" again. Once back in SENATOR, enter "REPLACE" to save the file

5. Transmission errors may result in the appearance of letters where there should be numbers. Hence, the file RAWDAT may need to be edited. The numerical equivalents of some letters are listed below.

> B=2 C=3 D=4 E=5

F, G, I, Q, and U also appear occassionally

The SENATOR commands "FIND" and "CHANGE" are helpful in editing these transmission errors.

VII.B. Appendix II - Data Reduction Jobs JOBRED -/JOB JOB,T20. /USER GET, REDUCE. GET, RAWDAT. REWIND,\*. REWIND, PMDUMP. SAVE, WDRIFT. REDUCE -INTEGER Y, A C READ DATA DO 50 I=1,205 10 FORMAT(5X, 4(16, 1X)16) 50 CONTINUE J=Ø DO 205 I=1,205 DO 5 K=1,5 J=J+1Y(J) = A(I,K)5 CONTINUE 205 CONTINUE I=0 DO 20 K=1,1023,2 I = I + 120 CONTINUE C PUNCH DATA 100 FORMAT(10(I6,1X)) END 26 LINES COPIED.

```
FTN, I = REDUCE, L = 0, GO, PMD.
      COPYSBF, PMDUMP, OUTPUT.
      PROGRAM REDUCE (RAWDAT, WDRIFT, TAPE5=RAWDAT, TAPE6=WDRIFT)
      DIMENSION A (205, 5), Y (1025), X (256)
      READ(5,10)(A(I,K),K=1,5)
C CHANGE TWO DIMENSIONAL ARRAY TO A ONE DIMENSIONAL ARRAY
C REDUCE THE NUMBER OF DATA POINTS
      Y(I) = (Y(K) + Y(K+1))/2
      WRITE(6, 100)(Y(J), J=1, 512)
```

| RAWDAT | -      |        |         |        |        |
|--------|--------|--------|---------|--------|--------|
|        |        |        |         |        |        |
|        |        |        |         |        |        |
| 3072   | 914021 | 376000 | 376000  | 376571 | 371334 |
| 3077   | 361100 | 362078 | 359606  | 356315 | 365520 |
| 3082   | 363045 | 345828 | 351862  | 347811 | 357086 |
| 3087   | 343562 | 335657 | 339803  | 346505 | 336873 |
| 3092   | 336058 | 335046 | 320678  | 330851 | 321879 |
| 3097   | 315553 | 311272 | 309300  | 312677 | 312724 |
| 3102   | 295438 | 297652 | 299793  | 286752 | 288284 |
| 3107   | 285153 | 274903 | 271053  | 264553 | 256222 |
| 3112   | 251142 | 238017 | 227290  | 210573 | 210780 |
| 3117   | 219188 | 216277 | 212329  | 243393 | 229706 |
| 3122   | 237933 | 237909 | 238603  | 229687 | 242299 |
| 3127   | 251202 | 254188 | 244848  | 240883 | 249059 |
| 3132   | 229540 | 223161 | 231349  | 226248 | 214255 |
| 3137   | 225770 | 223691 | 214713  | 235023 | 201746 |
| 3142   | 200279 | 201420 | 190735  | 198174 | 188843 |
| 3147   | 182428 | 168364 | 174565  | 172520 | 177874 |
| 3152   | 165774 | 165303 | 163099  | 161681 | 168506 |
| 3157   | 166392 | 175777 | 162547  | 164852 | 164906 |
| 3162   | 173195 | 162238 | 177376  | 166197 | 163206 |
| 3167   | 158323 | 161025 | 15/463  | 162662 | 143416 |
| 3172   | 146626 | 161950 | 150114  | 150404 | 147720 |
| 3177   | 143046 | 144301 | 154097  | 140087 |        |
| 3182   | 135446 | 134969 | 130600  | 129422 | 130240 |
|        |        |        |         |        |        |
| 3187   | 131320 | 142870 | 126935  | 118236 | 116678 |
| 3192   | 106087 | 103732 | 097128  | 099141 | 081446 |
| 3197   | 080934 | 077865 | 079438  | 078063 | 098044 |
| 3202   | 096319 | 097854 | 097830  | 104151 | 099718 |
| 3207   | 095083 | 104784 | 104362  | 112320 | 104126 |
| 3212   | 099610 | 114156 | 104996  | 103397 | 101256 |
| 3217   | 108608 | 114861 | 097117  | 096688 | 092096 |
| 3222   | 083635 | 088150 | 086197  | 098176 | 092435 |
| 3227   | 090546 | 090806 | 087912  | 083023 | 0/1139 |
| 3232   | 089001 | 082427 | 086759  | 069775 | 073423 |
| 3237   | 058462 | 048739 | 054158  | 068394 | 055014 |
| 3242   | 060576 | 071663 | 071958  | 067546 | 066333 |
| 3247   | 068495 | 070250 | 076609  | 06/113 | 071657 |
| 3252   | 066001 | 068378 | 0/2031  | 0/0804 | 064414 |
| 3257   | 059885 | 066767 | 063340  | 063303 | 001204 |
| 3262   | 061636 | 002302 | 000300  | 057407 | 056610 |
| 3267   | 0643/3 | 055040 | 057000  | 047814 | 043336 |
| 3272   | 024980 | 070077 | 0020200 | 010014 | 024262 |
| 3211   | 041961 | 0202/3 | 030172  | 030133 | 031920 |
| 3282   | 041150 | 02004/ | 052510  | 040961 | 042419 |
| 2001   | 072225 | 046017 | 053199  | 042288 | 042690 |
| 3297   | 031114 | 044138 | 037962  | 041763 | 043000 |
|        |        |        |         |        |        |

79

¢

------

بې بېدې و . . . بې بې

....

| RAWDAT       | (conti                   | nued) -              |         |        |                   |
|--------------|--------------------------|----------------------|---------|--------|-------------------|
|              |                          |                      |         |        |                   |
|              |                          |                      |         |        |                   |
| 3300         |                          |                      |         |        | ÷                 |
| 3300         | ( 10378410<br>( 10010404 | 032513               | 030895  | 033525 | 029954            |
| 330/         |                          | 040028               | 021433  |        | 029642            |
| 2010         | 0000/21                  | 028317               | 063637  | 024237 | 032300            |
| 7700         | 020431<br>07/007         | 02/243<br>077000     | 021300  | 023733 | 001707            |
| 3366         | . 034223<br>1 024225     | 000/363<br>0700/0    | 001067  | 037555 | 022000            |
| 3367         | 024233                   | 1 03004C<br>: 075960 | 0200000 | 033717 | 02500/            |
| 2000         | 070576                   | 0000000<br>0004775   | 0070755 | 027044 | 000000            |
| 22/2         | 0000160                  | 024333<br>010050     | 01/210  | 023010 | 027022            |
| 3346         | 02014J                   | 000000               | 014310  | 075576 |                   |
| 2241         |                          | 047677               | 0/1070  | 0500/1 | 05/052            |
| 2005         | 04/1705                  | 040557               | 070707  | 0,0041 | 050000            |
| 2201         | 041303                   | 04700/7              | 047500  | 043433 | 056000            |
| 2302         | 037470                   | 042047               | 05/700  | 051177 | 051177            |
| 1967         | 077505                   | 042010               | 041401  | 001110 | 001177<br>072000/ |
| 33/C<br>7777 | 05/055                   | 047010               | 050507  | 042000 | 047724            |
| 2011         | 072076                   | 047700               | 010107  | 07/657 | 001200            |
| 3300         | 012010                   | 056574               | 065332  |        | 077116            |
| 2001         | 076600                   |                      | 000317  | 073773 | 0//110            |
| 2020         | 0074400                  | 0/2010               | 000402  | 072050 | 072213            |
| 2/02         | 00004C                   | 07000/               | 07310   | 012030 | 0072213           |
| 3402         | 013201<br>095050         | 0/3204               | 003071  | 0000/7 | 005700            |
| 24107        | 070057                   | 034700               | 077000  | 07-003 | 005051            |
| 3410         | 010031                   | 001335               | 007030  | 000000 | 070100            |
|              |                          |                      |         |        |                   |
| 3417         | 087298                   | 088971               | agenee  | 085034 | Ø94650            |
| 7422         | 075033                   | 080947               | 071263  | 058175 | 056067            |
| 3427         | 057153                   | 062475               | 075640  | 080770 | 079924            |
| 3432         | Ø96377                   | 095608               | 104101  | 106485 | 103792            |
| 3437         | 103518                   | 102654               | 109639  | 119438 | 111836            |
| 3442         | 107862                   | 107512               | 110659  | 112170 | 109879            |
| 3447         | 115461                   | 108879               | 104619  | 121532 | 119887            |
| 3452         | 135435                   | 133856               | 133287  | 140570 | 126507            |
| 3457         | 141395                   | 141900               | 144885  | 146715 | 153289            |
| 3462         | 153883                   | 159784               | 159177  | 154058 | 157280            |
| 3467         | 147111                   | 163755               | 166597  | 170872 | 162164            |
| 3472         | 169232                   | 176926               | 176161  | 176930 | 178918            |
| 3477         | 179497                   | 172275               | 178740  | 186444 | 195436            |
| 3482         | 188580                   | 179500               | 170083  | 181295 | 181169            |
| 3487         | 191821                   | 190656               | 187512  | 198271 | 195560            |
| 3492         | 197841                   | 180988               | 193256  | 193945 | 204851            |
| 3497         | 198119                   | 195298               | 213627  | 204718 | 214271            |
| 3502         | 200635                   | 210808               | 211320  | 216359 | 208814            |
| 3507         | 204198                   | 184756               | 203346  | 194833 | 192519            |
| 3512         | 177881                   | 190677               | 181246  | 195863 | 204661            |
| 3517         | 215812                   | 215998               | 219318  | 224429 | 226988            |
| 3522         | 229248                   | 229209               | 237099  | 233185 | 236876            |
| 3527         | 249431                   | 248998               | 251716  | 258064 | 263774            |

44

. ``\_\_\_

# RAWDAT (continued) -

| 3532  | 261036 | 273053  | 293118 | 287518 | 290398 |
|-------|--------|---------|--------|--------|--------|
| 3537  | 288566 | 295306  | 306882 | 308645 | 314385 |
| 3542  | 313016 | 308520  | 310408 | 323834 | 319685 |
| 3547  | 325282 | 328235  | 341326 | 337541 | 336022 |
| 3552  | 343277 | 344345  | 330252 | 338645 | 343310 |
| 3557  | 359367 | 358399  | 343450 | 359918 | 356326 |
| 3562  | 359810 | 371769  | 367093 | 370631 | 370030 |
| 3567  | 375733 | 375784  | 381719 | 386886 | 395443 |
| 3572  | 382985 | 394465  | 386577 | 394202 | 400798 |
| 3577  | 403239 | 416371  | 415242 | 427314 | 416377 |
| 3582  | 425255 | 426353  | 428678 | 418761 | 426502 |
| 3587  | 436732 | 426430  | 434052 | 437319 | 433222 |
| 3592  | 447626 | 442114  | 453232 | 459482 | 470198 |
| 3597  | 471514 | 467760  | 464748 | 469264 | 458421 |
| 36.02 | 479759 | 470268  | 478350 | 487309 | 477499 |
| 3607  | 494781 | 505717  | 487612 | 508579 | 491665 |
| 3612  | 514193 | 504041  | 515367 | 509531 | 517085 |
| 36.17 | 507829 | 524048  | 522516 | 516085 | 528546 |
| 3622  | 521429 | 523559  | 523633 | 530377 | 528563 |
| 3627  | 531606 | 529038  | 523614 | 533620 | 524701 |
| 3027  | 534887 | 531008  | 518708 | 535216 | 514088 |
| 3637  | 522234 | 530708  | 536471 | 526448 | 535288 |
| 3642  | 531606 | 535943  | 539126 | 526206 | 535978 |
|       | 001000 | 0000 10 | 000120 |        |        |
| 3647  | 528436 | 532295  | 520932 | 531204 | 518144 |
| 3652  | 540011 | 556488  | 561378 | 570431 | 559656 |
| 3657  | 579712 | 577945  | 588442 | 595713 | 585599 |
| 3662  | 591076 | 594032  | 602368 | 597211 | 597557 |
| 3667  | 604821 | 589504  | 609274 | 608420 | 618323 |
| 3672  | 616560 | 625644  | 618259 | 632281 | 626489 |
| 3677  | 629048 | 629374  | 633718 | 644791 | 645981 |
| 3682  | 646489 | 644394  | 647615 | 638908 | 638333 |
| 3687  | 645424 | 641299  | 647685 | 655462 | 652900 |
| 3692  | 649085 | 658869  | 655339 | 651070 | 649952 |
| 3697  | 677990 | 663328  | 666044 | 666573 | 664985 |
| 3702  | 666428 | 671264  | 667442 | 667255 | 662131 |
| 3707  | 656831 | 667187  | 674828 | 661150 | 666028 |
| 3712  | 669150 | 666448  | 668077 | 668580 | 677146 |
| 3717  | 678372 | 681589  | 691420 | 692036 | 687606 |
| 3722  | 694097 | 686708  | 688019 | 689533 | 689141 |
| 3727  | 684518 | 683913  | 667701 | 661784 | 666519 |
| 3732  | 667635 | 660965  | 661205 | 666403 | 692463 |
| 3737  | 704278 | 698906  | 710256 | 717283 | 705731 |
| 3742  | 717511 | 724504  | 713528 | 718239 | 714282 |
| 3747  | 717571 | 716933  | 726714 | 723510 | 733542 |
| 3752  | 739386 | 737170  | 730021 | 729723 | 742176 |
| 3757  | 731943 | 741724  | 725158 | 734569 | 752409 |
|       |        |         |        |        |        |

١

.

4

•

| RAWDAT | (continu |
|--------|----------|
|--------|----------|

|      | ·      |         |        |        | ·      |
|------|--------|---------|--------|--------|--------|
| 3762 | 750062 | 737108  | 729361 | 737874 | 737813 |
| 3767 | 735243 | 738826  | 738311 | 744870 | 735734 |
| 3772 | 736680 | 751248  | 736480 | 741506 | 737131 |
| 3777 | 746926 | 734805  | 744942 | 738736 | 749493 |
| 3782 | 737990 | 736655  | 745048 | 735067 | 740766 |
| 3787 | 734016 | 736638  | 746803 | 750277 | 737705 |
| 3792 | 750260 | 748788  | 754431 | 745033 | 750623 |
|      | 750200 | 7/0711  | 750905 | 752710 | 752848 |
| 2000 |        |         | 750040 | 7/0//7 | 702040 |
| 3002 | 753663 | 747031  |        | 743447 |        |
| 380/ | /5/619 | 740300  | 745201 | 749264 | 760669 |
| 3812 | 743065 | 738381  | /3/139 | 746851 | 728430 |
| 3817 | 728790 | 727370  | 734947 | 744146 | 742840 |
| 3822 | 744791 | 739189  | 754498 | 766152 | 752532 |
| 3827 | 745664 | 751596  | 747539 | 739622 | 732817 |
| 3832 | 750145 | 746794  | 741715 | 744316 | 756732 |
| 3837 | 745571 | 755567  | 747016 | 746759 | 741234 |
| 3842 | 749760 | 748712  | 749441 | 746381 | 748522 |
| 3847 | 732189 | 742128  | 755276 | 734491 | 747077 |
| 7050 | 760144 | 750031  | 756573 | 749787 | 760711 |
| 2052 | 760144 | 756651  | 7/01/0 | 750004 | 741720 |
| 3037 | 743263 | 736665  | 743140 | 730004 | 741760 |
| 3862 | 126013 | 751251  | 753487 | 742000 | 743342 |
| 3867 | 751744 | /42463  | /51502 | 749388 | 749946 |
| 3872 | 751203 | 745613  | 742291 | 741943 | 743222 |
|      |        |         |        | 1      |        |
|      |        |         |        |        |        |
| 3877 | 732931 | 727662  | 728523 | 723372 | 730939 |
| 3882 | 724245 | 724202  | 727803 | 723888 | 738716 |
| 3887 | 729968 | 742469  | 744548 | 746047 | 740260 |
| 3892 | 743040 | 744298  | 727632 | 732348 | 744278 |
| 3897 | 737602 | 744544  | 735639 | 727464 | 751336 |
| 2902 | 733427 | 730858  | 744602 | 730501 | 734924 |
| 7007 | 728104 | 726021  | 737337 | 719102 | 735769 |
| 370/ | 720107 | 712100  | 71/0/0 | 727476 | 728500 |
| 3912 | 721452 | 713105  | 701041 | 69797/ | 702190 |
| 3917 | 721152 | 700012  | 701241 |        | 205050 |
| 3922 | 692120 | 690490  | 686233 | 680394 | 893039 |
| 3927 | 699211 | 105938  | 698004 | 633/82 | 701116 |
| 3932 | 708530 | 696310  | /0886/ | 633321 | 103/02 |
| 3937 | 700983 | 698691  | 697564 | 695950 | 695195 |
| 3942 | 691473 | 687015  | 687104 | 704082 | 683823 |
| 3947 | 683378 | 688639  | 682248 | 673890 | 677406 |
| 3952 | 684324 | 679253  | 683490 | 666370 | 673970 |
| 3957 | 664310 | 651783  | 648509 | 661848 | 646005 |
| 3962 | 643745 | 639286  | 623822 | 621583 | 623331 |
| 3967 | 607683 | 619563  | 619669 | 623848 | 623098 |
| 3972 | 630271 | 630555  | 631485 | 625328 | 633127 |
| 2077 | 635671 | 638239  | 639825 | 629176 | 630959 |
| 3311 | 677917 | 6222204 | 627625 | 620065 | 631363 |
| 3302 | 60061/ | 633364  |        | 619770 | 616267 |
| 398/ | 066333 | 024323  | 260500 | 012002 | 010207 |

ued) -

| 3992 | 618969 | 617780 | 609537 | 613297 | 605497 |
|------|--------|--------|--------|--------|--------|
| 3997 | 607698 | 611143 | 602833 | 591903 | 599729 |
| 4002 | 599964 | 595707 | 598792 | 587812 | 580697 |
| 4007 | 582344 | 573810 | 573192 | 569189 | 568316 |
| 4012 | 560631 | 554036 | 547913 | 545961 | 544254 |
| 4017 | 549293 | 541109 | 555242 | 537422 | 553222 |
| 4022 | 547736 | 551893 | 548546 | 536378 | 553877 |
| 4027 | 548115 | 542517 | 547065 | 548250 | 543387 |
| 4032 | 526561 | 544374 | 536002 | 528577 | 531532 |
| 4037 | 528262 | 520416 | 528857 | 526276 | 509035 |
| 4042 | 514731 | 510560 | 505836 | 497275 | 502781 |
| 4047 | 477822 | 484117 | 476681 | 474755 | 460073 |
| 4052 | 441920 | 440759 | 444921 | 442792 | 446452 |
| 4057 | 450316 | 442552 | 445780 | 446633 | 455803 |
| 4062 | 461985 | 465189 | 448405 | 459488 | 456355 |
| 4067 | 465343 | 458618 | 460260 | 454894 | 446191 |
| 4072 | 455694 | 446283 | 452358 | 434844 | 424937 |
| 4077 | 440215 | 426829 | 427087 | 426944 | 424341 |
| 4082 | 415164 | 410079 | 422544 | 403930 | 413115 |
| 4087 | 406661 | 409352 | 400126 | 400999 | 396625 |
| 4092 | 390703 | 394279 | 383223 | 391942 |        |

-x-

| W | D | R | I | F | Ţ | • |
|---|---|---|---|---|---|---|
|   |   | _ | _ |   |   |   |

1

|   | СТВØЗ  | Ø       |             |                     |                    |                     |                                            |                       |                    |                      |
|---|--------|---------|-------------|---------------------|--------------------|---------------------|--------------------------------------------|-----------------------|--------------------|----------------------|
|   | 64501  | 0 37628 | 5 36621     | 7 36084             | 2 36091            | 7 35443             | E 74997                                    | 6 75070               | בדרכר א            |                      |
|   | 33555  | 2 32576 | 4 31871     | 6 31028             | E 31270            | 7 33443<br>0 29654  | 5 29727                                    | 0 300321<br>0 906711  | 4 33773<br>D 97907 | 0 341685<br>0 360303 |
|   | 24457  | 9 21893 | 1 21498     | 4 21430             | 3 23654            | 9 23792             | 1 27414                                    | 5 246750              |                    | 8 26038/             |
|   | 22635  | 0 22879 | 8 22001     | 2 21920             | 2 21838            | 5 23752<br>4 20084  | 9 19445                                    | 0 64070<br>4 105679   | 0 24901<br>5 17176 | 8 2449/1<br>4 175107 |
|   | 16553  | 8 16239 | 0 16744     | 9 169162            | - 16.490.          | 4 16771             | 2 IJ-+                                     | - 10000<br>- 160700   | J 17146<br>D 15004 | 4 175197             |
|   | 15428  | 8 15025 | 9 14538     | 5 149190            | - 16450<br>- 16812 | - 10771<br>6 17520  | 0 1/1/00<br>7 170020                       | ם 100/01 כ<br>מדלקו ח | 9 10924<br>N 1000  | 4 154039             |
|   | 10490  | 9 9813  | 4 8119      | 0 78651             | 1 8801C            | 2 9700              | 7 130030<br>6 100000                       | D 133/84              | 0 13490            | 2 11/45/             |
|   | 10688. | 3 10419 | 6 10493     | 2 105989            | 9479               | 5 0500<br>5 0500    | 0 100101<br>0 101010                       | 0 97400               | 10457              | 3 108223             |
|   | 85714  | 4 7826  | 7 6594      | 2 10000.<br>2 51448 | 5 51700            | - 0.J05<br>6 6611)  | C 7C180                                    | 5 91490<br>5 77/1/    | 1 8332             | 9 //081              |
|   | 67183  | ∋ 7141  | 7 6214      | 9 65056             | 6275               | 7 61961             | 30770<br>000000000000000000000000000000000 | 1 57414<br>CEDO4      | ) /3423<br>//3423  | 9 69385              |
|   | 55070  | 0 4855  | 1 37872     | 5 34310             | 2155               | סכנט כ<br>גמם ארד 7 | 2 00/20<br>/ 70170                         | ) DOZDI<br>N DCEDC    | 6403               | 0 57047              |
|   | 42426  | 5 4774  | 3 36902     | 2 410150            | 1 423A1            | 1 75170             | - 30130<br>- 79910                         | : 30035<br>N 30066    | 9 4104,<br>N 7000  | 41690                |
|   | 27306  | 5 2709  | <br>7 3070% | 9 27314             | 28848              |                     |                                            | ) 23063<br>) 271/7    | 1 301984<br>3543   | 0 28052              |
|   | 33311  | 3227    | 5 37270     | 26845               | 6 25420            | אנשטט כ<br>אודים א  | 0 077005                                   | 0 CU14/<br>5 m/mam    | 20430              | 28885                |
|   | 45404  | 45959   | 9 48051     | 43977               | 51162              | > 1010.<br>> 5767:  | I I/EW.<br>D 5500/                         | ) 24703<br>ECECT      | 24333<br>2075      | 3 36704              |
|   | 41702  | 4215    | 0 52389     |                     | 59362              | - 55710             | - JJE04<br>D 70100                         | F JGJ61<br>5 CEDAR    | 48765              | 511/5                |
|   | 73548  | 72796   | - 8255e     | 5 73000             | 72171              | 70505               | - /CIUC<br>- 0/07-                         | . 60823<br>. 00445    | 66/93              | 0 /544/              |
|   | 82804  | 8826.   | 3 91715     | 5 90496             | A9843              | ) 77000             | ) 040/C                                    | : 92413<br>) Eccia    | 60355              | 1 82277              |
|   | 95992  | 105293  | 3 103655    | 5 106146            | 115634             | . 107607            | 7 111/1/                                   | 9100L 1<br>010070     | 10007/0            | 80347                |
|   | 134645 | 136928  | 3 133951    | 143392              | 150004             | 156077              | / 111414<br>7 156617                       | 112070                | 106745             | 120703               |
|   | 173079 | 176545  | 5 179207    | 175507              | 190940             | 184040<br>184040    | ) 175601/<br>) 175600                      | 100/05                | 1001/6             |                      |
|   | 189414 | 193600  | 201485      | 204462              | 209494             | 205721              | 217000                                     | 10047J<br>206506      | 10/051             | 199919               |
|   |        |         |             |                     | 205 (51            | 200721              | . 610000                                   |                       | 124031             | 173676               |
|   | 184279 | 188554  | 210236      | 217658              | 225708             | 220220              | 0751-A0                                    | 040165                | 050057             | 563040               |
|   | 267044 | 290318  | 289482      | 301094              | 211515             | 210760              | ) 200142<br>  717101                       | 243133                | 200307             | 560313               |
|   | 343811 | 334448  | 351338      | 350924              | 358122             | 765700              | 760060                                     | 770001                | 224/80             | 336781               |
|   | 388725 | 390389  | 402018      | 415806              | 421845             | 425804              | 30000C                                     | 471617                | 4700041            | 391164               |
|   | 444870 | 456357  | 470856      | 466254              | 463842             | 475013              | 40719                                      | 401017                | 430641             | 433270               |
|   | 509117 | 512449  | 512457      | 523282              | 522315             | 522494              | 527005                                     | 400140<br>570004      | 470004             | 500122               |
|   | 532947 | 526962  | 518161      | 533589              | 530868             | 533774              | 570666                                     | 570004                | 506617             | JE-150               |
|   | 548249 | 565904  | 569684      | 583193              | 590656             | 592554              | 500700                                     | 601100                | 500200             | 524674               |
|   | 621102 | 625270  | 62776A      | 631546              | 645386             | 645441              | 647961                                     | 641070                | 544400             | 613371               |
|   | 653977 | 653204  | 663971      | 664686              | 665779             | 668846              | 667348                                     | 659481                | 671007             | 634181               |
|   | 667799 | 668328  | 677759      | 686504              | 689821             | 690402              | 688776                                     | 686829                | 675007             | 663363               |
|   | 664300 | 663804  | 698370      | 704581              | 711507             | 721007              | 715883                                     | 715926                | 721027             | 724526               |
|   | 738278 | 729872  | 737059      | 733441              | 743489             | 743585              | 733617                                     | 736528                | 738568             | 760360               |
|   | 743964 | 738993  | 742028      | 739873              | 744114             | 737322              | 740057                                     | 737391                | 741720             | 742991               |
|   | 749524 | 749732  | 750475      | 754108              | 752579             | 751747              | 754698                                     | 759669                | 742753             | 754966               |
|   | 740723 | 741995  | 728610      | 731158              | 743493             | 741990              | 760325                                     | 749098                | 749567             | 736219               |
|   | 748469 | 743015  | 751151      | 751291              | 743996             | 749236              | 747911                                     | 740355                | 748702             | 740784               |
|   | 755087 | 753180  | 752990      | 753008              | 745862             | 753665              | 748186                                     | 747643                | 746982             | 749667               |
|   | 748408 | 742117  | 738076      | 728092              | 727155             | 724223              | 725845                                     | 734342                | 743508             | 743153               |
| ø | 743669 | 729990  | 740940      | 740091              | 739400             | 732142              | 737551                                     | 731514                | 731679             | 727435               |
|   | 717570 | 719192  | 724876      | 703376              | 700007             | 691307              | 685913                                     | 697135                | 700471             | 700450               |
|   | 702420 | 704412  | 702342      | 698127              | 694057             | 689244              | 695593                                     | 683600                | 685443             | 675648               |
|   | 681788 | 674930  | 669140      | 650146              | 653926             | 641515              | 622702                                     | 615507                | 619616             | 623473               |
|   |        |         |             |                     |                    |                     |                                            |                       |                    | ··- · · -            |

# WDRIFT (continued) -

630413 628406 634399 6390 618374 611417 606597 6065 557333 546937 546773 5481 535467 532289 529897 5246 441339 443856 448384 444 450988 443601 432576 426958 425642 412621 413237 409888 404739 392491 387582 53 LINES COPIED.

# JOBDRFT -

\*

/JOB JOB,T20. /USER GET,DRIFT. GET,WDRIFT. REWIND,\*. REWIND, PMDUMP.

| a 7 0 | C 200C 7 | 6 7 7 7 7 7 7 |        | C       | 617000  | C      |
|-------|----------|---------------|--------|---------|---------|--------|
| 032   | 630067   | 63327Ø        | 623843 | 62/1/8  | 61/008  | 61/803 |
| 988   | 595816   | 597835        | 593302 | 581520  | 573501  | 568752 |
| 175   | 545322   | 549814        | 542462 | 550996  | 544791  | 545818 |
| 636   | 517655   | 512645        | 501555 | 490301  | 480399  | 467414 |
| 166   | 451218   | 463587        | 453946 | 460849  | 459439  | 450542 |
| 958   | 425642   | 412621        | 413237 | 4039888 | 4014739 | 398812 |

FTN,I=DRIFT,L=0,G0,PMD. COPYSBF, PMDUMP, OUTPUT.

.

#

|   | <u>DRIFT</u> -                                                                                                                                               |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | PROGRAM DRIFT(WDRIFT<br>DIMENSION X(52,10),Y<br>INTEGER X,Y,A,H,B L,                                                                                         |
|   | READ LABEL<br>READ(5,10)LABEL<br>10 FORMAT(A10)                                                                                                              |
| C | READ SLOPING DATA<br>DO 30 I=1,52<br>READ(5,20)(X(I,K),K=<br>20 FORMAT(10(I6,1X))<br>30 CONTINUE                                                             |
| C | CHANGE TWO DIMENSIONAL A<br>J=0<br>DO 50 I=1,52<br>DO 40 K=1,10                                                                                              |
| С | J=J+1<br>Y(J)=X(I,K)<br>40 CONTINUE<br>50 CONTINUE                                                                                                           |
| С | CALCULATE SLOPE<br>A=Y(2)+Y(3)<br>H=((Y(255)+Y(256)+Y(2<br>B=Y(511)+Y(512)<br>L=((A+B)/4)<br>S=((H-L)/256)<br>WRITE(6,55)A,H,B,L,S<br>55 FORMAT(4(17,1X),16) |
| C | CORRECT DATA FOR SLOPE<br>DD 60 J=1,256<br>Y(J)=Y(J)-(S*J)<br>60 CONTINUE<br>DD 70 J=257,512<br>Y(J)=Y(J)-(S*(513-J))<br>70 CONTINUE                         |
| C | STORE CORRECTED DATA IN F<br>WRITE(6,80)S<br>80 FORMAT("DATA CORRECTE<br>WRITE(6,90)LABEL<br>90 FORMAT(A10)<br>WRITE(6,100)(Y(J),J=1                         |
|   | 100 FORMAT(9(I6,1X),I6)<br>STOP<br>END<br>49 LINES COPIED.                                                                                                   |

f

,

1

), J=1, 512)

IN FILE NDRIFT RECTED FOR A SLOPE OF", I4, "COUNTS PER CHANNEL")

6

3-J))

)+Y(257)+Y(258))/4)

AL ARRAY INTO A ONE DIMENSIONAL ARRAY

K),K=1,10)

DRIFT, NDRIFT, OUTPUT, TAPES=WDRIFT, TAPE6=NDRIFT) 10),Y(512) ,B L,S

### <u>NDRIFT</u> -

| 100            | 644              | 834:         | 375          | 5933         | ; 36        | 568  | 9;3         |
|----------------|------------------|--------------|--------------|--------------|-------------|------|-------------|
| 110            | 333              | 616:         | 32           | 3652         | ;31         | 642  | 8:          |
| 120            | 240              | 883:         | 215          | 5053         | :21         | 093  | 6:2         |
| 1.30           | 220              | 894:         | 223          | 3166         | :21         | 420  | 4;á         |
| 140            | 158              | 322:         | 154          | i<br>998     | ;15         | 988  | 1:1         |
| 150            | 145              | 312:         | 141          | 107          | :13         | 605  | 7:1         |
| 16.0           | :94              | 173:         | :87          | 7222         | ::7         | 010  | 2:          |
| 170            | 94               | 387:         | ::91         | 524          | ::9         | 208  | 4:          |
| 1 80           | .71              | 458          | F.           | 2835         | ::5         | 133  | 4           |
| 1 (20)         | .51              | 173.         | ,            | 1225         | 4           | 578  |             |
| 01:00<br>01:00 | • 37             | 294.         |              |              |             | 974  | 4           |
| 200            | .00              | , דע<br>מרטמ |              | 171          | •••1        | 7011 | 4 -         |
| 000            | • • E            | ດ1ທີ•        |              | 56.25        | • • •       | ANE  | 1 : :       |
| 270)<br>270)   | • 1 171          | 255.         |              | 3020         | · • • 1     | ZAF  | 3.          |
| 200<br>200     | , 10<br>. Cibi   | 500,         |              | 1967         | •••>        | 288  | 3.          |
| <br>           | ,15              | 126,         | ; 9 L T      | , 707        | ,, <b>-</b> | 546  | .1 : :      |
| പാലരം          | ,10              | 110,<br>212. | • • 4 4      | 294          |             | ZAE  | А.          |
| 200<br>070     | ;4J<br>.50       | ,<br>701.0.  | .57          |              |             | 126  | 7.          |
| 2740<br>       | ; JE             | 176.         | .77          | 2261         | ,,0         | 1.77 | 7.          |
| 200            | - 1011<br>- 1011 | 100,<br>NOQ. | 107          | 21 26        | 111         |      | · • •       |
| ະ 70<br>ຄິດຕະ  | 177              | 707.         | 140          | 1002         | • 1 4       | 747  | '9•1        |
| 210            | 152              | 703;<br>270. | 156          | 200          | • 16        | 299  | 7.1         |
|                |                  | - /0.        |              |              | • • • •     | درن  |             |
| 320            | 145.             | 383;         | 145          | 482          | ;17         | 098  | 8;1         |
| 330            | 556              | 388;         | 249          | 486          | ;24         | 847  | 4;3         |
| 340            | 301.             | 395;         | 291          | 856          | ;30         | 857  | 0;3         |
| 350            | 3445             | 549;         | 346          | 037          | ;35         | 749  | 0;3         |
| 360            | 4005             | 518;         | 412          | 181          | ;42         | 685  | 6;4         |
| 370            | 4665             | 525;         | 470          | 033          | ;47         | 021  | 7;4         |
| 380            | 4921             | 15;          | 486          | 306          | ;47         | 768  | 1;4         |
| 390            | 5091             | .77;         | 527          | 008          | ;53         | 096  | 4;5         |
| 400            | 5837             | '90;         | 588          | 134          | ;59         | 280  | 8;5         |
| 410            | 6184             | 125;         | 617          | 828          | ;620        | 377  | 1;6         |
| 420            | 6340             | 107;         | 634          | 712          | ;644        | 431  | 9.;6        |
| 430            | 6326             | :68;         | 631          | 948          | ;666        | 569  | 2;6         |
| 440            | 7080             | 106;         | 699          | 776          | ;70         | 7139 | <b>9;</b> 7 |
| 450            | /154             | 52;          | 710          | 657          | ,71.        | 3868 | 3;7         |
| 450            | 1221             | 72;          | 123          | 156          | ,724        | +07: | 5;7         |
| 4/0            | 7157             | 31;          | 717          | 179          | ,703        | 3970 | 0;7         |
| 480            | 1202             | 37;          | 719          | 323          | 128         | 3271 | L; /i       |
| 430            | 7335             | 13;          | /310         | 884          | 731         | 87   | o;7.        |
|                | 1200             | 36;          | 122          | 581;         | 718         | 3/16 | , /I        |
| 510            | 125/             | 1/;          | /12/         | 214;         | 723         | 5344 | <b>;</b> 7  |
| 520            | 7013             | 78;          | 103          | 176;         | 105         | 1036 | ;6          |
| 230            | 68/9             | 88;6         | 590          | 156;         | 688         | 1262 | 2;60        |
| 340            | 6691             | 16;6         | <b>562</b> 4 | +34 <b>;</b> | 656         | 820  | 1,6.        |
| 550            | 6195             | 01;6         | 5176         | 570;         | 623         | 839  | );68        |
| 560            | 6092             | 22;6         | 5024         | 441;         | 597         | 797  | ;5          |
| 570            | 5499             | 41;5         | 5397         | 721;         | 539         | 733  | 3;54        |
| 580            | 5298             | 35;5         | 5268         | 333;         | 524         | 617  | ;5          |
| 590            | 4374             | 67;4         | 401          | 160;         | 444         | 864  | ; 44        |
| 600            | 4488             | 76;4         | 416          | 65;          | 430         | 816  | ;42         |
| 610            | 3921             | 39;3         | 8874         | i06;         |             |      |             |

360138;360037;353380;348604;348916;336146;339929 307822;310060;293729;290280;283550;269634;256867 210079;232149;233345;229393;241822;244414;239691 213218;212224;194513;187942;178947;164600;168157 161418;156984;159620;163514;152341;150620;145239 139695;138446;125351;120006;123572;124518;106897 ;67387;;76613;;85470;;89198;;85432;;92429;;95903 ;92965;;81192;;72516;;78634;;77762;;75455;;63001 ;36664;;46744;;50983;;54440;;51926;;57765;;53545 ;48512;;45633;;45073;;46656;;48043;;46606;;39447 ;16015;;;3077;;16148;;11300;;17531;;22363;;22330 ;20986;;22141;;14760;;11618;;;8301;;10036:;:6932 ;;5490;;;6848;;13900;;12146;;;;619;;;2728;;;6005 ;;3261;;;1660;;'5835;;'6907;;;;421;;;9869;;12064 ;18633;;25642;;27976;;29412;;30513;;22544;;24775 ;26102;;32082;;38256;;44470;;38015;;38811;;47287 ;44136;;43091;;50379;;55480;;62847;;56106;;52357 ;59872;;59042;;47014;;33567;;25282;;37553;;48667 ;73762;;83074;;74951;;78502;;79582;;73485;:87269 .09248;115682;122337;121945;117347;130152;131318 39603;154860;147784;139257;149887;152300;159955 66798;171654;167705;175647;168138;155507;154956

78234;186108;189452;195190;203025;210053;220439 259910;270155;269232;275409;280595;292716;294541 307980;315002;322493;325390;329233;334927;347164 371102;376965;380748;378663;386737;385537;390742 **+22430;420194;431541;439533;443020;453720;45**7354 +81218;480427;480782;485469;488724;485142;488152 **;93285;490740;493822;492890;492607;487189;48**5426 544649;552288;554362;561773;563349;561725;575883 594762;608778;609009;607005;605798;608588;618453 5**29662;630931;634174;632852;625161;636863;629621** 5**3240;656733;657490;656040;654269;643423;63194**3 73077;680179;689855;684907;685126;691199;698078 03697;713921;714193;704401;707488;709704;711614 11889;716306;709690;712601;710111;714616;717063 27884;726531;725875;729002;734149;717409;729798 06694;719205;717878;736389;725338;725983;712811 28587;721468;726884;725735;718355;726878;719136 32064;725094;733073;727770;727403;726918;729779 08908;708147;705391;707189;715862;725204;725025 22667;722152;715070;720655;714794;715135;711067 87712;684519;675995;670777;682175;685687;685842 84223;680329;675692;682217;670400;672419;662800 38002;641958;629723;611086;604067;608352;612385

28648;619859;623238;613989;617498;607504;608475 98364;587368;589563;585206;573600;565757;561184 41311;538634;543302;536126;544836;538807;540010 19532;512727;507893;496979;485901;476175;463366 40822;448050;460595;451130;458209;456975;448254 25374;424234;411389;412181;409008;404035;398284

|           | VII  | .C. Appendix I                                                                                           |
|-----------|------|----------------------------------------------------------------------------------------------------------|
| 1         | MOR  | <u>N</u> –                                                                                               |
|           |      | /JOB<br>JOB,T2O.<br>/USER<br>BEGIN,MORN.                                                                 |
| ]         |      | (See PROCFIL                                                                                             |
|           | JOB  | TAPE -                                                                                                   |
|           |      | /JOB<br>JOB,T20.<br>/USER<br>PAGES,N,100.<br>PLOTS,20000.<br>BEGIN,NOON,,<br>REWIND,*.<br>ROUTE,PLOT,DO  |
| 1         |      | (See PROCFIL                                                                                             |
| I         | TAPL | <u>.ST</u> –                                                                                             |
|           |      | =LIBR<br>IVOL(*DATA-2*<br>TLIS(50=70)<br>BACK<br>=STOP                                                   |
| I         | JOBF | OLD -                                                                                                    |
| <br> <br> |      | /JOB<br>JOB,T20.<br>/USER<br>PAGES,N,100.<br>PLOTS,20000.<br>BEGIN,NOON,,F<br>REWIND,*.<br>ROUTE,PLOT,DC |
|           |      | (See PROCFIL                                                                                             |

•

¢

1

· 👔 🛶 5

- ,m

III - SIRIUS Jobs

for MORN code)

, TAPLST. DC=PT. for NOON code)

(\*)

FOLD. C=PT. for NOON code)

.

Y
| FC | )LD | - |
|----|-----|---|
| _  |     |   |

| 100 =SAVE<br>110 DVDL (*DATA-1*)<br>120 NEWS (<br>130 * 6630 CTB030: RED,<br>140 644834;375933;365683<br>150 333616;323652;316428<br>160 240883;215059;210938<br>170 220894;223166;214204<br>180 158322;154998;159881<br>190 145312;141107;136057<br>200 ;94173;87222;70108<br>210 ;94387;91524;92084<br>220 ;71458;63835;51334<br>230 ;51173;55225;45781<br>240 ;37294;30599;19744<br>250 ;22890;28031;17014                                                                                                                                                                                                                                                  | 335 + 172 + 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 260 ;;6010;;;5625;;9061<br>270 ;10255;;9044;;13862<br>280 ;20588;;20967;;22883<br>290 ;15126;;15398;;25461<br>300 ;45212;;44284;;53868<br>310 ;52708;;57991;;61267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| 320 ;64136;;73261;;71447;<br>330 101029;103136;;99983;<br>340 137703;140993;143479;<br>350 152278;156288;163997;<br>360 145383;149482;170988;<br>370 226388;249486;248474;<br>380 301395;291856;308570;<br>390 344549;346037;357490;<br>400 400518;412181;426856;<br>410 466525;470033;470217;<br>420 492115;486306;477681;<br>430 509177;527008;530964;<br>440 583790;588134;590808;<br>450 618425;617828;628771;<br>460 634007;634712;644319;<br>470 632268;631948;6666690;<br>480 708006;699776;707139;<br>490 715452;710657;713868;<br>500 722772;723156;724075;<br>510 715731;717179;703970;7<br>520 725237;719959;728271;7<br>530 733615;731884;731870;7 |               |

;73762;;83074;;74951;;78502;;79582;;73485;;87269 109248;115682;122337;121945;117347;130152;131316 139603;154860;147784;139257;149887;152300;159955 166798;171654;167705;175647;168138;155507;15495e 178234;186108;189452;195190;203025;210053;220439 259910;270155;269232;275409;280595;292716;294541 307980;315002;322493;325390;329233;334927;347164 371102;376965;380748;378663;386737;385537;390742 422430;420194;431541;439533;443020;453720;457354 481218;480427;480782;485469;488724;485142;488152 493285;490740;493822;492890;492607;487189;485426 544649;552288;554362;561773;563349;561725;575883 594762;608778;609009;607005;605798;608588;618453 629662;630931;634174;632852;625161;636863;629621 553240;656733;657490;656040;654269;643423;631943 573077;680179;689855;684907;685126;691199;698078 **03697;713921;714193;704401;707488;709704;711614** 11889;716306;709690;712601;710111;714616;717063 27884;726531;725875;729002;734149;717409;729798 06694;719205;717878;736389;725338;725983;712811 28587;721468;726884;725735;718355;726878;719136 32064;725094;733073;727770;727403;726918;729779 540 728696;722581;718716;708908;708147;705391;707189;715862;725204;725025

7 HR H2S, FT 0.5 HR\* ;360138;360037;353380;348604;348916;336146;33992 ;307822;310060;293729;290280;283550;269634;25686 ;210079;232149;233345;229393;241822;244414;23969 ;213218;212224;194513;187942;178947;164600;16815 ;161418;156984;159620;163514;152341;150620;14523 **;139695;138446;125351;120006;123572;124518;1068**9 ;;67387;;76613;;85470;;89198;;85432;;92429;;9590 ;;92965;;81192;;72516;;78634;;77762;;75455;;6300 ;;36664;;46744;;50983;;54440;;51926;;57765;;53545 ;;48512;;45633;;45073;;46656;;48043;;46606;;3944 ;;16015;;;3077;;16148;;11300;;17531;;22363;;2233 ;;20986;;22141;;14760;;11618;;;8301;;10036;;;6933 ;;;5490;;;6848;;13900;;12146;;;;619;;;2728;;;6005 ;;;3261;;;1660;;'5835;;'6907;;;;421;;;9869;;12064 ;;18633;;25642;;27976;;29412;;30513;;22544;;24775 ;26102;;32082;;38256;;44470;;38015;;38811;;4728 ;44136;;43091;;50379;;55480;;62847;;56106;;52357 ;59872;;59042;;47014;;33567;;25282;;37553;;48667

|      | FOLD -           |        |
|------|------------------|--------|
| 100  | =SAVE            |        |
| 110  | OVOL (*DATA-1*)  |        |
| 120  | NEWS (           |        |
| 130  | * 6630 CTB030: F | RED.   |
| 140  | 644834:375933:36 | 5689   |
| 150  | 333616;323652;31 | 6428   |
| 160. | 240883;215059;21 | 0936   |
| 170  | 220894;223166;21 | 4204   |
| 180  | 158322;154998:15 | 9881   |
| 190  | 145312;141107;13 | 6057   |
| 200  | ;94173;;87222;;7 | 0102   |
| 210  | ;94387;;91524;;9 | 2084   |
| 220  | ;71458;;63835;;5 | 1334   |
| 230  | ;51173;;55225;;4 | 5781:  |
| 240  | ;37294;;30599;;1 | 9744   |
| 250  | ;22890;;28031;;1 | 7014   |
| 260  | ;;6010;;;5625;;; | 9061;  |
| 270  | ;10255;;;9044;;1 | 3862:  |
| 280  | ;20588;;20967;;2 | 2883;  |
| 290  | ;15126;;15398;;2 | 5461;  |
| 300  | ;45212;;44284;;5 | 3868 : |
| 310  | ;52708;;57991;;6 | 1267;  |
|      |                  |        |

| 320 | ;64136;;73261;;71447;          |
|-----|--------------------------------|
| 330 | 101029;103136;;99983;:         |
| 340 | 137703;140993;143479;1         |
| 350 | 152278;156288;163997;1         |
| 360 | 145383;149482;170988;1         |
| 370 | 226388;249486;248474;2         |
| 380 | 301395;291856;308570;3         |
| 390 | 344549;346037;357490;3         |
| 400 | 400518;412181;426856;4         |
| 410 | 466525;470033;470217;4         |
| 420 | 492115;486306;477681;4         |
| 430 | 509177;527008;530964;5         |
| 440 | 583790;588134;590808;5         |
| 450 | 618425;617828;628771;6         |
| 460 | 634007;634712;644319;6         |
| 470 | 632268;631948;666690;6         |
| 480 | 708006;699776;707139;7         |
| 490 | 715452;710657;713868;7         |
| 500 | 722772;723156;724075;7         |
| 510 | 715731;717179;703970;7         |
| 520 | 725237;719959;728271;7         |
| 530 | 733615;731884;734870;7         |
| ミムの | 7000000 - 700004 - 710710 - 71 |

;73762;;83074;;74951;;78502;;79582;;73485;;87269 109248;115682;122337;121945;117347;130152;131318 139603;154860;147784;139257;149887;152300;159955 166798;171654;167705;175647;168138;155507;154956 178234;186108;189452;195190;203025;210053;220439 259910;270155;269232;275409;280595;292716;294541 307980;315002;322493;325390;3292\$3;334927;347164 371102;376965;380748;378663;386737;385537;390742 422430;420194;431541;439533;443020;453720;457354 481218;480427;480782;485469;488724;485142;488152 i93285;490740;493822;492890;492607;487189;485426 544649;552288;554362;561773;563349;561725;575883 594762;608778;609009;607005;605798;608588;618453 29662;630931;634174;632852;625161;636863;629621 53240;656733;657490;656040;654269;643423;631943 73077;680179;689855;684907;685126;691199;698078 03697;713921;714193;704401;707488;709704;711614 11889;716306;709690;712601;710111;714616;717063 27884;726531;725875;729002;734149;717409;729798 06694;719205;717878;736389;725338;725983;712811 **28587;721468;726884;725735;718355;726878;719136** 32064;725094;733073;727770;727403;726918;729779 540 728696;722581;718716;708908;708147;705391;707189;715862;725204;725025

7 HR H2S, FT 0.5 HR\* ;360138;360037;353380;348604;348916;336146;33992 ;307822;310060;293729;290280;283550;269634;25686 ;210079;232149;233345;229393;241822;244414;23969 ;213218;212224;194513;187942;178947;164600;16815 ;161418;156984;159620;163514;152341;150620;14523 ;139695;138446;125351;120006;123572;124518;10689 ;67387;;76613;;85470;;89198;;85432;;92429;;9590 ;92965;;81192;;72516;;78634;;77762;;75455;;6300 ;36664;;46744;;50983;;54440;;51926;;57765;;53545 ;48512;;45633;;45073;;46656;;48043;;46606;;3944 ;16015;;;3077;;16148;;11300;;17531;;22363;;2233 ;20986;;22141;;14760;;11618;;;8301;;10036;;;693 ;;5490;;;6848;;13900;;12146;;;;619;;;2728;;;600 ;;3261;;;1660;;'5835;;'6907;;;;421;;;9869;;12064 ;18633;;25642;;27976;;29412;;30513;;22544;;24775 ;26102;;32082;;38256;;44470;;38015;;38811;;4728; ;44136;;43091;;50379;;55480;;62847;;56106;;52357 ;59872;;59042;;47014;;33567;;25282;;37553;;48667

## FOLD (continued) -

650 392139;387406; 660 @ 670) 680 BACK 690 =LIBR 700 IVOL (\*DATA-1\*) 710 OVOL (\*DATA-2\*) 720 FOLD (256, 257, 66) 730 BACK 740 =DISP 750 SIZE(,,,,1) 760 IVOL (\*DATA-1\*) 770 MEAS(66) 780 IVOL (\*DATA-2\*) 790 MEAS(66) 800 BACK

810 =STOP

550 725717;712214;723340;722667;722152;715070;720655;714794;715135;711067
560 701378;703176;709036;687712;684519;675995;670777;682175;685687;685842
570 687988;690156;688262;684223;680329;675692;682217;670400;672419;662800
580 669116;662434;656820;638002;641958;629723;611086;604067:608352;612385
590 619501;617670;623839;628648;619859;623238;613989;617498;607504;608475
600 609222;602441;597797;598364;587368;589563;585206;573600;565757;561184
610 549941;539721;539733;541311;538634;543302;536126;544836;538807;540010
620 529835;526833;524617;519532;512727;507893;496979;485901;476175;463366
630 437467;440160;444864;440822;448050;460595;451130;458209;456975;448254
640 448876;441665;430816;425374;424234;411389;412181;409008;404035;398284

à.

JOBFIT -

. .

/JOB JOB,T100. /USER PAGES,50. PLOTS,20000. BEGIN,NOON,,SEXT55. REWIND,\*.

<u>EVE</u> –

/JOB JOB,T20. /USER BEGIN,DUSK.

(See PROCFIL for NOON code)

(See PROCFIL for DUSK code)

| P | R | 0 | CF | ΊL | - |
|---|---|---|----|----|---|
|   |   |   |    |    |   |

-

,

Q

,

. -

## DAWN -

| 100<br>110<br>120<br>130<br>140<br>150<br>160<br>170                                                 | DEFIN<br>DEFIN<br>DEFIN<br>DEFIN<br>DEFIN<br>LABEL<br>REWIN<br>COPYE                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 190<br>200<br>210<br>230<br>230<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>25 | <ul> <li>LABEL</li> <li>REWIN</li> <li>COPYE</li> <li>UNLOF</li> <li>LABEL</li> <li>COPYE</li> <li>LABEL</li> <li>COPYE</li> <li>REVEF</li> <li>*EOR</li> <li>PROC</li> <li>ATTAC</li> <li>ATTAC</li> <li>ATTAC</li> </ul> |
| DUSK                                                                                                 | -                                                                                                                                                                                                                          |
| 500<br>510<br>520<br>530<br>530<br>550<br>550<br>550<br>590<br>600<br>610<br>620                     | ATTA<br>ATTA<br>ATTA<br>LABE<br>LABE<br>COPY<br>UNLO<br>UNLO<br>LABE<br>REWI<br>COPY<br>RETU<br>RETU<br>PURG                                                                                                               |

```
C, DAWN.
          NE, PR.
          NE, V1.
          NE, V2.
          NE,ST.
          L, TAPE, VSN=CTB004, L=CTB004, R, FO=R.
          ND,*.
          EI, TAPE, PR.
AD, TAPE.
          L, MT1, L=$SPEC. LIB. V$, VSN=CTB002, R, PO=R.
          ND,*.
          EI, MT1, V1.
          AD, MT1.
          L, MT2, L=$SPEC. LIB. V$, VSN=CTB003, R, PO=R.
          EI, MT2, V2.
          RT, NOLIST.
          C, NOON, DIRECS.
          CH, PR.
          CH, V1.
          CH, V2.
          CH, ST.
          C, DUSK.
          CH, V1.
          CH, V2.
          L, MT1, W, L=$SPEC. LIB. V$, VSN=CTB002, PO=W.
          ND, *.
          EI,V1,MT1.
          AD, MT1.
          L, MT2, W, L=$SPEC.LIB.V$, VSN=CTB003, PO=W.
          ND, *.
          EI,V2,MT2.
          RN, MT2.
          E, V1.
          E, V2.
640 PURGE, ST.
650 REVERT, NOLIST.
```

## PROCFIL (continued) -

.

NOON -

| 480        | REVE          |
|------------|---------------|
| 460<br>470 | CHAN          |
| 440<br>450 | CHAN          |
| 430        | PURG          |
| 410<br>420 | PR, V<br>PURG |
| 400        | REWI          |
| 380        | COPY          |
| 360<br>370 | DEF I<br>COPY |
| 350        | DEFI          |
| 330<br>740 | REWI          |
| 310<br>320 | GET,          |
| 300        | ATTA          |
| 290        | АТТА          |
| 480        | REVE          |
| 460        | CHAN          |
| 440<br>450 | PURC          |
| 420        | PUR           |
| 410        | PR,V          |
| 390<br>400 | COPY          |
| 370<br>380 | COPY          |
| 360        | DEF           |
| 340<br>750 | DEF           |
| 320<br>330 | GET,<br>REWI  |
| 310        | ATT           |
| 290        |               |
| 270<br>280 | PR            |
|            |               |

```
OC, NOON, DIRECS.
ACH, PR.
ACH,V1.
ACH, V2.
ACH, ST.
, DIRECS.
IND,*.
INE, VINEW.
INE, V2NEW.
INE, STNEW.
YBF, V1, V1NEW.
YBF, V2, V2NEW.
YBF, ST, STNEW.
IND,*.
VINEW, VENEW, STNEW, DIRECS.
GE,V1.
GE, V2.
GE,ST.
NGE, V1=V1NEW.
NGE, V2=V2NEW.
NGE, ST=STNEW.
ERT, NOLIST.
ACH, V1.
ACH, V2.
ACH, ST.
DIRECS.
IND,*.
NE, VINEW.
NE, V2NEW.
INE, STNEW.
BF, V1, V1NEW.
BF, V2, V2NEW.
BF, ST, STNEW.
ND, *.
INEW, VENEW, STNEW, DIRECS.
ΞE, V1.
GE, V2.
GE, ST.
GE, V1=V1NEW.
GE, V2=V2NEW.
IGE, ST=STNEW.
RT, NOLIST.
```

| VII.D. Appendix |
|-----------------|
| <u>SEXT55</u> - |
| 100 =SEXT       |
| 110 ITER(1.30)  |
| 120 SETA (3.2.1 |
| 130 SETW(1.1.1  |
| 140 CALI(0.053  |
| 150 NEGL(1)     |
| 160 BASE (58600 |
| 170 SEXT (38330 |
| 180 SEXT (38281 |
| 190 SEXT (10538 |
| 200 SEXT (2000/ |
| 210 SEXT (6209/ |
| 220 IVOL (*DATA |
| 230 EVAL (55)   |
| 240 BACK        |
| 250 =DISP       |
| 260 SIZE ( 1)   |
| 270 FITT(11)    |
| 280 BACK        |
| 290 =STOP       |
|                 |

. -

-

;

## -xxi-

VII.D. Appendix IV - Sample SEXT File

0) ,1) ,1) 53223,122.20866) 000/1,0/0,0/0)

30/1,190/1,.15/1,0/1,0.5/1) 81/1,214/1,.23/1,0/1,0.5/1) 32/1,110/1,0.2/1,0/1,0.15/1) 0/1,330/1,0/1,0/1,0.2/1) 9/1,0/0,0.25/1,0.47/1,0.5/1) (#-2\*)

1)

ί,

.

.

|   | VII.E. Appendix                   |
|---|-----------------------------------|
|   | Extent of 1                       |
|   | [Fe <sub>3</sub> 02               |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   | [Fe <sub>3</sub> 0 <sub>4</sub> ] |
|   | [Fe <sub>3</sub> 0 <sub>4</sub> ] |
|   | Therefore                         |
| 4 | <u>Conversion</u> :               |
|   | Data f                            |
|   | а                                 |
|   |                                   |
|   | Plug F                            |
|   |                                   |
|   |                                   |

• "

, 4

V - Calculations Reduction:  $[2_4]_t = [Fe_30_4]_0 \exp(-kt)$  $k = -\frac{1}{t} \frac{[Fe_{3}0_{4}]_{10}}{[Fe_{3}0_{4}]_{0}}$ 1 0.516k = ----- 1n -----10 hr 0.918  $k = -0.0576 \text{ hr}^{-1}$  $]_{60} = 0.516 \exp \left[ (-0.0576 \ hr^{-1})(60 \ hr) \right]$  $]_{60} = 1.6\%$ .` e, 98.4% of iron reduced after 60 hours from Huff (1982): at  $T = 250 \, {}^{\circ}C$ , umoles  $H_2$ +C0 converted k = 130 ----g unreduced cat.-min-atm low Reactor Model: x = 1 - exp (- ------) 2F

.

.....

where x =fractional conversion  $V = reactor volume 0.48 cm^3$ d = catalyst density =  $2.9 \text{ g/cm}^3$ k = kinetic constant, umoles H<sub>2</sub>+CO converted g unreduced cat.-min-atm F = molar flowrate = 223 umole/min Substituting: (0.48)(130)(2.9)x = 1 - exp(------)(2)(223) x = 0.33Activity (Reactor Basis): r = xFumole  $H_2+C0$  converted r = 74.4 -----min umole  $H_2$ +C0 converted r = 53.4 -----g cat.-min Sulfur Loading: Seven hour Poisoning Run: 10 cm<sup>3</sup>  $\frac{10 \text{ cm}^3 \quad 60 \text{ min} \quad 0.02 \text{ mole H2S} \quad 32.06 \text{ g S}}{\text{hr}(-----)(-----)(-----)(-------)(------)} \text{ mole H}_2\text{S}}$  $= 0.1202 \text{ g S/0.48 cm}^3$ 

 $= (-\frac{120.2 \text{ mg S}}{0.48 \text{ cm}^3 \text{ cat}})(-\frac{3}{2.9 \text{ g cat}})(-\frac{3}{0.644 \text{ g Fe}})$ 

n , =

= 134 mg S/g Fe

= 1.6 mg S/g Fe

Five minute Poisoning Run:

5 min l hr = (134 mg s/g Fe)(-----)(-----) 7 hr 60 min