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ABSTRACT 

The purpose of this thesis was to investigate the dynamic 

properties, especially interaction pr ope rt i.e s, of control 

structures synthesiz~d using the Extensive Variable .Controller 

Synthesis (EVaCS) technique. The investigation was done using five 

different mul tivar.iable analysis methods. These methods cons.isted 

of angle calculations between virious vectors that charact~rize the 

dynamic ·properties of a control structure, a modal analysis, the 

dynamic relative gain array analys_is, the inverse Nyquist array 

analysis, and the characteristic loci analysis. 

processes .w&re exaciined in the research. 

Two different 

The first process that was examined consisted of two stirred-· 

tank heaters in series connected by a recycle stream. This process 

gave a simple approximation to a reactor system. Two different 

designs were employed. The first design ca·se had a low recycle 

rate, while the second design c.ase had a high recycle rate. In 

both designs, the tank volumes· were equal. In each of the design 

cases, the two mµl t ivariable control structures synthesized by the 

EVaCS technique were c·ompared to the conventional structure that 

might typically be used i'n controlling this process. This 

conventional structure control led the indi vi ual tank temperatures 

using the respective energy inputs to the tanks. In all of the 

xii 



aforementioned analysis techniques and in both design cases, the 

EV a CS structures proved themse 1 ve s superior to the conventional 

structure. Not only that, it was seen that the structures gave 

good approximations to the process' modal .control structure. Also, 

it was found that the indiviual loops in the structures could be 

tuned independent of one another. 

The second process examined by this thesis was a two stage 

distillation column. Here also, two different designs .were used. 

The first design case was a low purity separation, while the second 

desi_gn case was a high purity separation. I_n both designs, the 

rectifying and stripping sections of the column had equal holdups. 

For each design case, comparisons were made between the two EVaCS 

structures and three conventional structures typic.ally employed in 

distillation control. These conventional structures were the 

ener·gy balanc~ scheme and two material balance schemes. The fir-st 

material balance scheme used the distillate flow to control the 

distillate's composition, while the other material bahnce scheme 

used the bottoms ·flow to control the bottoms' coinposi tion. In each 

of the anlysis techniques and in both designs, the EVaCS structures 

proved themselves superior to the conventional structures. The 

EVaCS structures gave a goo4 approximation to the modal control 

structure. for the column in the low purity separ~tion, while in the 

·xiii 



high pu.rity separation the structures were the same as the mo.dal 

control structure. Also, it was seen that the loops in these 

str.uctures could be tuned independent of one another. This was 

confirmed by a dynamic simulation of the column in the high purity 

separation. 
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1.1 Back.gro'tllld 

Chapter 1 

Preliminaries 

Feedback control has its OJ;"igins in antiquity, some of :the 

earliest applications being Ktesibios' water clock and Philon'~ oil 

lamp frorri the 3rd century B.C. [1]. Through, ti~e, as technology 

advanced, the development of the control field advanced accordingly 

as necessity dictated. James Watt's ste·am engine (1788) gave us 

the firs·t governor for steam en~ine s, and WW II gave us radar-'­

controlled anti-aircraft guns. Naturallyi the theoretical advances 

in the field came wi.th the advances in lipplic~tions. From the late 

1800is to the 1930's, only scalar time response methods were 

available for use in analysis. With the ne~d for improved 

amplifier designs came the scalar frequency respon.se methods of 

Bode and Nyquist in the 1930's. In 1956, the spa(?e program gave us 

vector oriented time response methods, which are collectively known 

today as state-space methods. These, in turn, gave rise to today's 

state-of-the-art vector oriented frequency response methods, which 

began to come about in the late 1960;s [2]. 

It wasn't until the 1940's when process control began to come 

into exis.tence with its introduction into chemical engineerin·g 

curricula. Both practitioners and teacher·s of the field were 
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mainly concerned with scalar f_r_equency response methods up until 

the l~t~ 1960's. Due to their lack of interest in mo~ern methods, 

a gap began to appear between applications in prdcess control and 

theory in the control field. The growth of .this gap was 

accelerated with the advent of the state-space methods, and up 

until recently it had continued to grow unabated. This was partly 

due to a lack of suitable measurement instruments for use in 

process control systems, but ·the biggest re.ason was that the 

chemical pro·cess industry (CPI) had no economic incentives to 

inve•t in better cdntroller designs [3]. 

Over the last decade, with ever increasing energy costs and 

tighter go·vernment safety and enviromental regulations, industrial 

processes have become highly integrated with respect to energy and 

material flows, and are operating under ti_ghtly constrained high­

performance process specifications. This had led to more difficult 

control pr_oblems which require better control systems [_4]. Even 

though there exists a tremendous amount of theory in the literature 

addressing control syste~ design, most of it is not useful from a 

process control practitioners point of view due to both a general 

lack of und~rstand~ng by the practitioner and a lack of releva_nt 

info.rmation, in the thedry concerning process control systems 

design. 
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Recently, Georgakis [5] authored a paper which introduced a 

new intuitive approach to process control system design in which 

extensive thermodynamic properties of the· process are used for the 

synthesis of Extensive Variable Controller Structures (EVaCS). 

This. method requires the practitioner to have steady-state 

information and some basic knowledge of the dynamics .of the 

process. It gives the control engineer a choice of control 

structuresi the best choice bein~ dictated by the particular design 

of the process to be controlled. The most favorable attribute of 

the EVaCS technique is that the structures it gives have zero 

steady-state interactfon and minimal dynamic il,lteraction. The 

impli~ations of this are that the control loops can be tuned on 

1 ine without the use of a detailed dynamical model. ·Furthermor.e, 

this tuning can be done for one loo~ independent of the others in 

the structure. 

1.2 Introduction 

A multivariabie control system controls a-proces~ that has two 

or niore outputs and two or more inputs. These processes -are termed 

multiple-input, mulfiple-:--output (MIMO), as opposed to single-i~put, 

single-output (SISO). Due to their complicate~ structure, MIMO 

systems pose a difficulty in: notation. There are two different 

representations that are commonly used, the state-space and the 

block diagram. 

3 



,, 
,r, 

The state-space representation employs a vector-matrix 

differential state equation to model the dynamic behavior of the 

system -of interest. This model is a tiine-domain representation and 

has the form, 

. 
x(t) = Ax(t) + Bu(t) 

y(t) = ~x(t) 

where x is a nxl vector r.epre·senting ·the state of the system at any 

time t, y is a q:x:1 vec·tor representing the system con'trolled 

variables, u is a rxl vector representing the inputs to the 

process, A is a nxn plant matrix, B- is a nxr input matrix, and C is 

a qxn output matrix. This representatio·n, though powerful, has not 

been fully exploited in proces_s control applications due to the 

necessity -0t having to desc~ibe the process as a system of first­

order, constant coefficient,. ordinary differential equa tio·ns. This 

could prove to be quite a task if the process ·happens to be .an 

industrial-scale distillation column, for example. 

repre~entation cannot handle dead times in the sy~tem~ 

Also, this 

Figur~ 1 ~hows a generalized block diagram of a multivariable 

control system. This representation is in the Laplace domain. In 

the figure, y is the q-dimensional vedtor-~f the system.controlled 

variables, ys is the set-poirit vector of the controlled variables~ 

e is the vector of erro'rs in the system, m is the vector of 
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manipulated variables, u is the vector of syste~ inputs, I 

represents the system outputs, I is our nxn controller matrix, M 

defines the relationships between our manfpulated variables and· our 

system inputs, G is the matrix of transfer functions describing the 

process, L. is the matrix representing the rela~ionships behreen our 

system outputs and controlled variables, and F is a matrix 

representing any measurement dy_namics. The advantages of thi.s 

representation are that we can refer to transfer functi9ns between 

different inputs and outputs, with different compensators,. and with 

various loops open or c[bsed [6]. 

+ e m u s -K - M C L ·-.. 
-

. 

F . 

Fig. 1 Generalized Block Diagram of a 
Multi~ariable Control Syst~m 

-

In the design of a multivariable control system, the control 

engineer is faced with the task of designihg controls t~ regulate 

s 
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several variables that are outputs from the same process by 

adjusting a set of input~ which indiviually affect more than one of 

the outputs [7-]. The task of design:ing such a system can be 

separated into two phases. The _first, and most important, is the 

synthesis of the control system's structure, while the second phase 

consists ~f tuning the conttollers employed in the structure. 

In establishing the structure of the control system, there are 

five questions that need to be answered [8], as shown b~low. 

1. What are the ~ontrol objectives? 

The designer must decide which of the system variables, be 

they inputs or outputi, should be corttrolled at their desired 

levels. 

2. What outputs should be m,asured? 

The outputs that are measured should give enough information 

about the process such that the ~tate. of the system is 

determinant. Note that today's technology is not sufficient 

to allow for the measurement of all possible system outputs. 

3. What inputs· should be measured? 

If an advanced structure such as feedforward, adaptive or 

inferential control is to be implemented, the control 

engineer must decide which of the system's inputs are most 

apt to supply the necessary information for the given 

structure. Note that not all system inputs are measureable, 

either. 

4. What inputs shoild be manipulated? 

This selection entails :determining which inputs have 

sufficiently strong_:. direct and fast effects on the system 

outputs. 

5. What will be the configuration of the contr·ol loops? 

This quesUon deals with establishing linear 

generally speaking, of system outputs to 

controlled variables and li~ear combinations of 

6 

combinatie>ns, 
be used as 
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to serve as manipulated variables. Having established these, 
the control engineer must then pair them in some appropriate 
fash.ion. For a given controlled variable, the paired 
~a~ipulated variable should have the strongest ·possible 
effect on the given coi;itrolled va"riable relative to the other 
manipulated· varia~les. 

Having established the control system's structure, the 

designer may now proceed to the tuning phase. In most app~ications 

in the CPI, three term controllers known as proportional-integral-

derivative controllers are used. Th~se controllers act on the 

error present iri a given loop (i.e. the difference in the 

controlled v~riable's desired value, ~s dictated by its set-point, 

and its acttial valtie) and aajust the appropriate manipulated 

variable accordingly so as to eliminate the error. The tuning 

procedure entails weighting the various terms and establishing the 

controller's sensitivity ~o the error~ 

A well designed control system should be non-inte.racting, 

stable with high integrity, robust, and have good ti~e-domain 

performance. In most cases of practical inte.re st, it will not be 

possible to fully realize all of these attributes. At this point, 

it would be appropriate to see from what mul tivariable. control 

concepts these attributes derive from. We employed the concepts of 

interaction, stability, integrity, robustness, and time domain 

performance. 
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A block diagram of a simplified _2x2 interacting control system 

is shown in figure 2. In the figure, mj represents input j, Yi 

represents output i, Yi represents the set-point for output i, ek 

represents the error in loop k, g ij is the tr_ansfer function 

relating output i to input j, and bk repr~sents the controller for 

loop k. Now, assuming that g1:1, -I= 0 I- g:u, -then this figure· shows 

that we cannot adjust m1 without affecting both y 1 and Yi• We can 

say the same about adjusting mi, also. This phenomenon is termed 

interaction an~ it can be very detrimental to the performance of 

the control system if not addressed properly. The concept of 

stability deals with that characteristic of the control system 

which determines whether or not our outputs will remain bounded for 

a given bounded input in either the open-loop or closed:-loop 

system. If we warit to assess the stability of the system with some 

loops closed and others open, we are .dealing with the integrity of 

the system. A Jystem with high Integrity is, stable for all 

combinations of open/closed loops. The concept of robustness deals 

with how the properties of our -control system change as the process 

characteristics change due to variations in the steady-state 

operating point, etc. The greater this change can be before the 

control engineer must adjust the tuning of the controllers, the 

more robust the system. Finally,. good time domll'in performance 

entails respond_ing quickly to set-point changes and rapidly 
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Fig. 2 Block Diagram of a 2x2 Interacting Control System 

dampening any disturbances that enter the system. 

1.3 Modal Control and Extensi:ve Variable Control Structure, 

In 1962, B. B. Rosenbroci. [3] published a paper that attempted 

to expose the reasons for the existence of the control 

theory/process control applications tap as it existed then. In the 

paper, he established the foundation for what is known today as 

modal control. .This foundation has since been built upon by 

several authors [9,10]. The essence of the technique is that good 

control, good being defined as non-interac·ting with satisfactory 

closed-loop responses, can be achieved by the proper selection of 

the control system's controlled variables. The theory of the 
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technique is based upon the state-space representation, and this 

has been its major drawback in process control applications, as 

de scribed previously. ·Most applications of the technique have been 

in the control of mechanical systems (airplanes, helfcopters, etc.) 

A simplified summary of th~ mathematics of modal control will 

be shown b~low. The interested r.eader can find an extensive 

treatr;nent of the subject in [10]. We begin w"ith the state-space 

description of our system. 

~(t),;, Ax(t) + Bu(t) (1.1.) 

y(t) = Cx(t) (1.2) 

where the symbols have been defined previously. For simplicity, we 

assume that all of our states are accessible such that y = x and 

that A and B are nxn. Modal control entails selecting so~e q 

linear combinations of measurements to serve as our vector of 

controlled variables. The linear combinations dictated by this 

technique correspond to the eigenrows ( conjugate eige·nvecto-rs) vi 

of the plant matrix A. This choice of output coordination vectors 

will give a control system that affects only those mode~ associated 

with the vi a.nd as a result allows the control engineer to choose 

the clo~ed~loop time constant he desires through the proper 

selection of that loop's controller gain. Let's make the following 

transforma don, 

10 



z • Vx (1. 3) 

where z is our controlled vector and V h a nxn matrix whose rows 

are the eigenrows of the plant matrix. 

(1.3) into equation (1.1), ,re have,· 

;(t) = Oz(t) + Pu(t) 

Subs ti tu ting equation 

( 1. 4) 

where O is a diagonal matrix of the plant matrix's eigenvalues and 

P is known as the mode,...controllability matrix, which is equal to 

the product VB. Equat"ion (1.4) shows that the internal dynamics of 

the process have been decoupled. The implication of this is that 

essentially non-intetacting control is right around the corner. 

Now, this is a helpful fransformation, but in applications one 

usually does not have the v. as an accarate state-space desc~ipt1on 
1 

of a process is difficuit to come by. Even if this description was 

avail able, it is doubtful that the output coordination. vectors 

would be established using the vi alone since .we cannot model a 

chemical .process perfectly, especially using a state-space 

descriptfon, .and the vi can be sensitive to any errors present in 

the model. The concepts employed in the EVaCS method allow for the 

selection of output vectois (termed candidate physical modes) which 

have intuitive physical appeal and which approximate the vi (termed 

mathematical modes). What do we mea·n by intuitive physical appeal? 

The candidate physical modes can be interpreted as representing 

11 



some extensive thermodynamic quantity that is characteristic Qf the 

system. Some example extensive quantities are total en~rgy 

content, total materi.al content, and total reactiion rate. The 

method also allows for the selection of input co6rdination vectors 

to be ustd in defining the relationships between the control 

structure's manipulated variables and the inputs to the process. 

The appropriate pairing of the resultant controlled and manipulated 

variables is obvious when examined in light of the physica.1 

interpretation of the chosen physical mo~es. 

In general, the physical modes are. found from steady-state 

balances around the process to be controlled. Some basic knowledge 

of the dynamics of the process is also required. Actµal examples 

will best serve t~e purpose of helping the interested re•der to see 

how these physical modes are obtained ~s understanding the concepts 

of the EVaCS tech·niqrie is the key to successful applications. 

1.4 Thesis Objectives 

The purpose of this thesis is to demonstrate th!lt the 

extensive variable concepts used in- the EVaCS method allow for the 

design of multivariable contra) structures which have mitiimal 

interaction ciharacteristics. This is done by examining two 

different simplified processes typically encountered in the .CPI, 

one being two stirred-tank heat§rs in series connected with recycle 

12 
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and the other being a two'.""stage distillation column. The 

interaction characteristics of the conventional control systems for 

these processes are compared to those for the. structures obtained 

using the EVaCS technique. The com·parisons are made using a 

variety of techniques which try to quantify the interaction in a 

given multivariable control system. These interaction asse.ssment 

techniques were drawn fi:om both the state-space methods and tl;te 

vector oriented frequency response methods. 
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Chapter 2 

Methods of Analyai~ 

As stated earlier, the EVaCS method is a c~nceptual design 

technique. Using the concept of extensive variables, one can 

synthesize a number of control structures for a given process, all 

of whi.ch have zero steady-state interaction. This has been. shown 

to be true for a variety of simplified processes by Georgakis [5]. 

This thesis takes two of the processes examined by Georgakis and 

assesses the interaction present in the control structures on a 

dynamic basis. 

Bow does one go about trying to qua.ntify the interaction in a 

control system? This has been a.11 active area of research for the 

last decade. Mos·t of the too.ls that are popular today came from 

work done by Rijnsdorp (11] and Bristol (12] in 1965 and 1966, 

respectively. Other more mathematically involved techniques have 

since been introduced by Tung and Edgar (13], Rosenbrock (14], 

Macfarlane [15], and Gagnepain a~d Seborg (16]. 

This thesis looks at five different ways of as:sess1ng the 

interaction in the control structures of interest to it. The first . . 

method of evaluating the structures consists Qf calculating the 

angles between the vectors representing the mathematical modes and 
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those representing the output coordination vectors. These angles 

are then interpreted in such a way that shows how close the given 

control structure is to the modal c;__~-~trol structure fo-r the process 

of interest and how well it decouples the process' internal 

dynamics. The se.cond method used is a modal analysis as suggested 

by Tung and Edgar [13]. This technique runs along the same lines 

as the first in that it ~uantitatively determines how· the various 

outputs are aligned to the modes of Jhe system. ·The third analysis 

technique used is McAvoy's dynamic relative gain array [17). This 

technique is Just the dynamic extension of Bristol's s teady-s ta te 

interaction analysis [i2]. The fourth method used is the inverse 

Nyquist array as proposed by ·Rosenbrock [14], and the final 

technique used is MacFarlane's characteristic loci [15]. The next 

few sections will be dev.oted fo an i.n-depth discussion of each 

method. 

2.1 Angle Calculations 

By using the state-space representation, one may determine the 

necessary controlled and !llanipulated variables and the required 

pairing ·in order to have a non-interactin~ control structure. 

Let's assume that an accurate state-space representation with no 

modeling errors is available for the process of interest • 

. 
x(t) = Ax(t) + Bu(t) (2.1) 
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For the sake of simplicity, we assume that :all of our states are 

measurable, and that A and B are nxn. Now, the plant matrix and 

the input matrix are matrices of constant real coefficients f6r a 

given steady-state operating point, and they characterize the 

dynamic ·properties of the process. In this equation, we see two 

sources for interaction. The first source is the plant matrix, A. 

This interaction is internal to the process. The second· source is 

the input matrix, B. This interaction arises when we close the 

loops of our .control system and is due to the fact that a given 

input usually affects more than one output. The modal control 

structure transformation, as shown in equation (1.3)· in the 

previous section, eliminates the internal sy.stem' s interaction. 

This is the most iil!portant of the two types 6f interaction, as was 

shown by Ellis and White [9]. By making the modal transformation, 

one gets the system shown below • 

. 
z ( t r = Oz ( t ) + Pu ( t J 

where z is our vector of system controlled variables, u is our 

vector of ·system inputs, 0 is a diagonal matrix of the plant 

matrix's eigenvalues, and P is known as the mode-controllability 

matrix. No!f, if we go one step further and make the following 

transformation, 

m(t) = Pu(t) (2.2) 
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we get the sfstem shown b~low. 

(2.3) 
;(t) • Oi(t) + m(t) 

Equation (2.2) defines our manip~lated vector for us~ Each 

manipulated variable is a -linear combination of system inputs as 

dictated by the tows of the mode-control_lability matrix. Equation 

(2. 3) tells us how we would want to pair our controlled and 

manipulated variables, Le. zi to m1• Note that mj would have no 

effect on z1 (i ; j). As O is a diagonal matrix, this equation 

shows that we have totally removed all interaction within the· 

system. Now, let's close oui loops using proportional~only 

controllers. 

m(t) = K(zs - z) ( 2 .4:J 

Here K ·is~ diagonal matrix of positive controller gains, and zs is 

the vector of set-points. Supstltuting equation (2.4) into 

equation (2.3) and ~earranging, we get, 

;(t) = (0 - K)z(t) + Kz 8 (2. 5) 

Equation (2.5) sh·ows. that we can have closed-loop eigenvalues whos_e 

values are at our dis·cretion through ~he J>roper selection of our 

controller gains, and that our closed-loop system is strictly non­

interacting since O and K ate diagonal. Now, it must be noted that 

the difficult processes to control ·have singular P matrices, thus 



one can only hope to eliminate the internal interaction in these 

systems (3]. 

Using this analysis, ·we can establish a framework that allows 

us to see how well a· given control structure approximates the modal 

control structure for th~ process. ~gain, we begin with the state­

space representation as shown in. equation (2.1). Let'.s make the 

following transformations, 

z = Ex . (2. 6) 
= QVx 

WQ- 1Rm = Bu (2.7) 

Equation (2.6) gives us our contrblled vector~ while equation 

(2. 7) gives us our manipulated vector. The complexity of equation 

(2.7) is necessary in order to make the forthcoming analysis 

general enough to handle the difficult processes where the P matrix 

is singular. The P matrix, which is the product of VB, is singular 

when the input matrix Bis singular, as can be shown using a simple 

application of the Binet-Cauchy theorem (18]. Th.is theorem sta.tes 

that the determinant of a matrix C which is the product of Aa is 

simply the product of the determinants of. A and B. As V will be 

non-singular if our model is well posed, P will be singular when B 

is singular. The matrix V used in equation (2.6) has been 

previously defined. The matrix W in equation (2.7) is a matrix 



whose columns are the eigenvectors of the plant matrix. Matrices Q 

and R are indicative of the control system's design, and therefore 

are at the designer's discretion. The best case analysis done 

previously had Q = R = I, I begin the identity matrix. 

Substituting equa.tion.s (2.6) and .(2.7·) into our original state­

space equation, we get the following system. 

• -1 
z ( t ) = QOQ z ( t ) + Rm ( t ) (2.8) 

The rows of of E in equation (2 •. 6) are the designer's output 

coordination vectors. By comparin-g equation (2. 6) to the modal 

transformation shown in equation (1.3), we see that in order fo:i: 

I 

the system to approximate th~ processJ modal control stru-0ture, out 

output vectors must approximate the eigenrows of the plant matrix, 

A. We can assess how well these output vectors approximate the 

eigenrows by calculating the angles between them. The closer these 

angles are to zerd, the beiter the given structur~ approximates the 

modal control structure. 

Now, as we stated earlier, the most important step in our 

control system design is the elimination of the internal 

interaction p_resent in the system. We can see how well we have 

done this by interpreting Q •. 

Q = EW (2. 9) 
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Again, the rows of E are the designer's output vectors. Expanding 

this product~ we have, 

(2.10) 

Q = . . . . . ., 

where hi represents outp.ut vector i and wj represents eigenvector 

j. As we have already shown thit the best case is for Q = I, we 

want the hi perpindicular to the wj' i i j,. so.· as t.o .have zeroes 

for the non-diagonal elements. As the magnitude of an eigenvector 

is arbitrarily defined, equation (2.10) also shows that the 

magnitude of the output vector ·is irrelevant as we have two degrees 

of freedom here in order to make the di~gonal elements of Q equal 

to one. Only the weighting of the indiviual elemerits of the output 

vector matter ~s this determines the direction of the vector. 

Thus, our first method in analyzing the interaction in tl).e 

system consists of calculating the angl_.es between the hi and v
1

, 

wj" The closer the hi are to their corresponding vi' the better 

the structure will appro;dmate the process·' modal control 

structure. As the hi become orthogonal to the various wj, i -/: j, 

the internal dynapdcs will be increasingly decoupled. No attempt 

is made here to analyze· th~ intera~tion that arises when the loops 

are closed as this is of secondary. importance. 
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The angle between two vectors is found using the definition of 

the dot product. Let's look at two vectors, say· a and b, both of 

which are assumed to be of dimension n. It is defined that the 

angle llab between a and b is found as. follows. 

a Tb 
llab 

-1 
= cos 

la I lb I 

where 

n 

.rb = l aibi 
i=l 

(2.11) 

(2.12) 

and I I represents the Euclidean ·norm of the particular vector. 

2. 2 Modal Analysis 

In 1981,. Tung. and Edgar published a theoretical approach to 

interaction analysis that was based upon a· state-space 

representation [13]. °Their analysis allows the control engineer to 

calculate the various controller contributions to a give~ system 

output for a step change in that output's set-point. If the 

control system design is a good one, then the princi:pal 

controller's contribution will be dominant over the sum of the 

interacting controllers' contributions. 

The method begins with the stat_e-space model of the process of 

interest. For simplicity, we assume that all of our states are 

measurable and that our plant matrix and input matrix are square 

and of the same order. 



. 
x(t) • Ax(t) + Bu(t) 

0 
Let's con.sider a set-point change from O to some x • At our new 

steady-state, asswnin·g that our process description ii not changed 

due to non-linearities, we have the following. 

0 0 
0 • AJ.: +· Bu (2.13) 

Assuming that our system is open-loop stable; and that we can 

invert our input matrix, we can solve for the perturbatio~ in our 

system inputs. 

0 . -1 0 
u = B (-A)x (2.14) 

.. [ (-A)- 18]-\i° 

Equation (2.14) allows us to effect a set-point change by making 

the appropriate perturbations i~ our system inprits. 

Now, Jet-' s assume that we ar~ at steady-stat~ and we input a 

set-point. change into our system as a step function. We can 

Laplace transform our state equation easily and after the 

appropriate matrix manipulations we will obtain the following 

equation. 

( ) -1 0/ x s = (Is - A) Bu s (2.15) 

Substituting equation (2.14) into equation (2.15), we havei 

(2 .16) 
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Following Tung and Edgar [13], we can rewrite this to obtain, 

(2.17) 

x(s) 
-1 0 

= p(s)[p(O)] x ls 

By carrying out the matrix. multiplication, one will end up with a 

matrix of transfer functions aij(s) that give the relationships 

be tween the outputs and ·the set-points of the controllers. It is 

interesting to note tl;lat for s = 0 (i.e. steady-state), this 

resultant matrix is Bristol'~ [12] relative gain array. 

Having these tranifer function~. we can invert all those 

associated with a given output to obtain the contributions of the 

various controllers to the ti~e response of the respective output. 

Assuming we w.ant to see the response of output i to a change in its 

set-point, we have, 

n 
= l. Pit(s)Pii

1
)(0)(s 

k=l 

(2 .18) 

where the summation is carri.ed over the il controllers in the 

structure. The tth term in the summation is the contribution given 

by controller k. The best case would be for all terms other than 

the i th term in the summation to be zero. Transformin,g this 

equation irito the time domain, we have, 

X, (t) ~ ' k ' k ~ t 
~ = l (a!' + a~' e11. 1 + • (2.19) 

xi k=l 

where the ,.j are ·the eigenvalues of the plant matrix. We can 
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rearrange this equation to clearly see the contributions given by 

the various controllers. 

xi~t) = (a!•1+ 

xi 

n+l 

l 
j=l 

(2.20) 
n+l 

• • .+ l 
j=l 

Again, the k:th term in the above summation. (each term consisting of 

a summation it.self) is the contribution given by controller k. Note 

f h ik. . . 1 h h 
that the sum o t e a 0 ' 1s equa to one as t ey represent t e 

various >-n in Bristol's steady-state array. This equation gives a 

quantitative description of the interaction present within the 

system for this situation, i.e. a change in ~et-point". 

In those cases where we have linear combinations of 

states/system inputs in our control system, as in the analysis done 

in the previous section (equations (2.6)--(2.8)), we can still use 

this analysis. Rewriting our state equation by· substituting 

equations (2.6)-(2. 7) into equation (2.1), we have, 

• -1 . 
z(t) = EAE z(t) + Rm(t) (2.21) 

We can simply define A~ = EAE-
1 

and B* = R and repeat the analysis 

given in equations (2.13)-(2.20) with the new matrices. As A and 

A* are similar matrices, the eigenvalues shown in equations 

(2.19)-(2.20) will remain the same. Thus, the effect of these 

substitutions is to alter the at~k in the equ~tions. 
J 



2.3 Relative Gain Array Analysis 

In 1966, E. H. Bristol [12] J?Ublished an intuitive method 

known as the rela.tive gain array that is based on a steady-state 

analysis. Thi~ method gave insight· into the interaction within a 

multi variable c.ontrol system. As was said in the previou.s section, 

Tung and Edgar [13] proved the method rigorously in 1981. After 

its publication, the method went unnoticed for several years before 

industry and academia alike began to make use of it. Since then, 

several authors h·ave begun to expand and develop the method, most 

notably T. J. McAvoy [17,19,20]. McAvoy's most significant 

contribution has been the dynamic extension of Bristol's steady­

state approach. 

The method proposed by Bristol assumes that the process is_ a 

multivariable, time-invariant one described by a square gain matrix 

between the manipulated and controlled variables of tlle contro_l 

system. This interaction measure attempts to answer the question 

of how the measured transfer function between a given manipulated 

variable and the corr~sponding controlled variable is affected by 

the perfect control of all other controlled variables. Let'1 have 

the following description of the prbcess of inteiest, 

C = ~m (2.22) 

Here c is our vector of cont~olled variables, mis our vector of 
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manipulated variables, and the ~ij are the process steady-state 

gains between c1 and mj at the steady-state operating point. The 

measure chosen by Brist(?l is the ratio of the open- loop gain to 

the closed- loop gain when all other control loops ate closed and 

operating perfectly. Mathematically, this is d~fined as, 

(2.23) 

The numerator in equation (2.23) is simply ~ij· To get the 

denominator, one need simply invert J 'to get the relationship form 

in terms of C· and carry out the prescribed differentiation to show 

· (-1) -1 . 
that it is [~ji ] , that is, the reciprocal of element j,i of 

the inverse of ~- The matrix of the ).ij is known as the relative 

gain array. 

If hij I ) 1, then the open-loop sensitivity of ci to mj is 

greater than the correspond~ng closed-loop sensitivity. The 

implication is that the m1 tend to cancel the effect of mj on c
1 

in 

the closed-loop enviroment. This is undesirable and is termed 

negative interaction. If < 1, then the closed-loop 

sensitivity of ci to mj is greater than the corresponding open-loop 

sensitivity. This implies that the m1 tend to enhance the effect 

of mj on c1 in the closed-loop enviroment, and thus, .it is .termed 

positive {nteraction. Even though this is desirable, it is so only 
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up to a certain point. Too much of an enhanced sensit.ivity can 

lead to stability probl~ms. If l,. ( 0, then the effect of m. on 
lJ J 

ci is reversed in the closed-loop ~nviroment relative to the open-

loop env iroment. If l.. < 0, then the control system will exhibit 
. 11 

inverse or unstable response. 

The relative gain arr.ay .. itself has several intere_sting 

properties as described by Bristol [12]. in his paper. One of the 

most useful properties is that the elements of any row or column 

must sum to one. Thus, when dealing with 2x2 systems, one need 

only calculate the· 1,1 element of the array to know the entire 

array. 

T. J. McAvoy [17] expanded Bristol's steady-state approach to 

include- dynamics with his paper in 1977. Essentially, all he did 

was to substitute transfer functions where Bristol h11d s~eady-st'a_te 

gains. Hew~- able to show that the 1,1 ele~ent of the now dynamic 

relative gain: array for a 2x2 interacting system could be found as, 

). (sf 1 
= 1 - G13 (s)G 21 (s) 

G11 {s)G 33 {s) 

(2.24) 

For the sake of si~plicity, the 1,1 subsqipts have been. dropped. 

Here, G .. (s) re.presents the transfer function between output i and 
1~ 

input j (as seen previous~y in .figure 2). The Bristol number, i.e. 
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the steady-state A. for a 2i:2 system, is simply found by performing 

the calculation shown in equation (2.24) for s ~ 0. 

It was four more years ·before McAvoy [19] published a paper 

giving insight into the significance of ')... He based his work on a 

foundation layod by Rijnsdorp in 1965 in which R'ijnsdorp derived 

the following equatio.n for a :h2 interacting control system. 

-e 1 1 + 0 2 

? = 1 + 01 + 02 + 01 02 Ii.. (2.25) 

Ilere e1 is the error in loop 1, c• is a di•turbance futictibn, Ci is 

the controller transfer function for loop i (with an- integral 

term), and G .• is the principal transfer .function for loop· i (as 
11 

opposed to -an interacting transfer function Gij, i # j). The 

importance of this equation is that the denominator gi:ves us our 

stability (and therefore desig"n) equa tioii for our mul tivarfable 

system. Rewriting equation (2.25), we have, 

-e1 1 
? = 1 + 01 ( 1!02 + 1/).) 

(1/Q2 + I ) 

(2.26) 

McAvoy analyzed two cases, both of which were amenable to an 

analytic elucidat.ion. The first case had 0 1 and 0 2 having widely 

separated loop speeds, while the second case was for 0 1 = Op The 

frequency at which Qi crosses the negative real axis in the complex 
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plane of its polar plot h an implicit indication of how quickly 

the loop will respond to a step input. McAvoy used this natural 

frequency II an indication of the loop's speed. If the controllers 

have integral modes and the sp-eed of 0 2 is much greater than 0 1 , 

then we have the situation given in figure 3. 

IM IM 

T 

Fig. 3 Nyquist plots for 0 1 and Q1 wi"th Integral Modes 

Here, w1 h the natural frequency of" loop 1 and 111 2 is the natural 

frequency of loop 2. 

The importance of equation (2.26) now becomes apparent. In 

assessing the interaction in the control system, we want to see how 

a given transfer function is affected near its natural frequency-. 

lhen loop 1 is near its natural frequency, we have 102 I » 1. This 
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allows us to rewrite equation (2.26) as, 

(2.27) 

Thus, in designing the controller for loop 1 we have to modify otir 

transfer function by dividing by L In determining the effect of 

the interaction on loop 2, we can change the subscripts in equation 

(2.25) to get, 

-ei . 1 ? = 1 + Ql{l + 010.)_ 
(1 +. 01) 

Near the critical frequency for loop 2, we have fo 1 I - 0. 

equation (2.28) can be simplified to, 

-ei 1 f = 1 + Ql 

This shows that loop 2 is not affected by the interact ion. 

(2. 28) 

Thus,. 

(2.29) 

When 01 = 0 2 ,· we can factor the denominator in equation 

(2.25) to get, 

-e1 1 f = (1 + Q1fr1)(l + Q1fr2) 
(2.30) 

Each of the factors in 

equation (2.30) resembfes the traditional SISO design equation. If 

I l I < 1, then the tertr) with r 1 will de.termine the stability limit. 

If Ill ) 1, then the -term with r 2 will determine the stability 

limit. Thus, these two cases give us -limiting conditions to 

consider in our designs as far as assessing the effect of the 
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interaction is concerned. 

Knowing our loop speeds and having),,, we can assess the effect 

of the interaction on our system's performance. In: general, the 

previous analysis allows us to calculite a modified ptincipal 

• transfer function G .. 
11 

• Gi. 
G .1 
ii= nu 

from G •. as, 
11 

(2.31) 

where we have three different values for AO .. ) depending upon the 

particular case/loop. 

1. Loop speeds wtdely separatea 

a. slow loop - A(l) = A 

b. fast loop - A(X) = 1 

2. Loops identical 

where+ sign is used if .Ill ( 1 
and - sign is used if Ill ) ·1 

Writing equation (2.31) in polar form, we have, 

• IG .. 1 . c It ) 

G - 11 e 1 u-a (2 32) 
iCW •. 

Here 6 is the argument of G .. and a is the argument of A.. Equation 
11 

(2.32) is in the fo~m that we need in order t6 as•ess the effect of 

the interaction on our system's performance. We can see that the 
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interaction will affect both our gain, and our natural frequency 

through the effect on the argument of Gii. 

If lal ) l, then our. effective gain in the interacting 

enviroment will be reduced, This implies that we should expect to 

see more sluggish behavior for that particular loop when the other 

loop in the system is cl'osed. Whenever the lal <: 1, our effective 

gain is increased ~mplying that we should expect to see a more 

oscillato.ry response. When a.) 0, the ~odified principal transfer 

function will reach its natural frequency _faster than the principal 

transfer function, Thus, as our natural frequency in the 

interacting enviroment is smaller. than in the SISO enviroment, our 

speed of responle will decrease. • For a ( 0, G .. will take longe% 
11 

to cross the negative real axis relative to Gii. The modified 

natural frequency will therefore be higher than the natural 

frequency of the loop in its SISO enviroment, wMch implies that 

our speed of response will be increased. From this,· we can say 

that our ideal case would be for lal - 1 for all frequencies, This 

being th!' case, then.necessarily a - O. 

Now, it needs to be pointed out that when calculating AO.), 

one must define a Riemann surface for ). as A is a multivalued 

function [21). In the course of this research, two different cases 
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were encountered. Both are shown in figure 4 with their 

corresponding Riemann surfaces. 

Fig. 4· Riemann Surf aces for 40 .. ) 

CASE 1 

O~a <21T 

IAl~I "JW 

CASE 1I 

-1T< Q<1T ... 
l A I ~ I .'r/ w 

Both surfaces had branch points at (1,0), and the origin _was 

deleted. From a practical standpoint, deleting the origin 

presented no problem because if ). was ever O. then you had no 

control system, anyway. In the diagrams, a represents the argument 

of )., while w represents the frequency for which the calculation 

was made. As can be seen in the figure, the only difference 

between the surfaces is their respective branch cut. The surface 
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for case I has its branch cut lying along the positive real ads. 

beginning at on·e and extending to positive infinity. The surface 

for case II h~s its branch cut lyirig along the real axis beginning 

at one, also, but it extends to negative infinity, instead. 

2.4 InTerse Nyquist Array Analysis 

In the late 1960' s, the available vector oriented frequency 

response design techniques for multivaria.ble control systems 

suffered from a number of deficiencies. The most severe of these 

were the difficulties encountered in trying to incorporate 

engineering constraints and the tenden~y of the methods to produce 

·complicated controller structur~s where simpler schemes would 

suffice. In 1969, Rosenbrock [14] published a new desi~n technique 

known as the inverse Nyquist array. This method has been developed 

by a number of autho:i:s and is currently· on~ of the more popular 

techniques of its kind for use in designing industrial 

multivariable process control systems. A number of successful 

applica ti oils have been reportel in industry (e.g. Tyreus [22]). 

In describing the method, reference iJ made to fijure 1 during 

the course of this discussion. For the sake of simpiicity, we will 

relabel G to be our effective plant matrix (which is simply the 

product MGL from the figure). With this change in mind, we have 

from figure 1, 
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y =Gm= GKe (2.33) 

Denoting the product GK as Q ,which is called the open~loop 

transfer function, we have (assuming F = I), 

y ... Q(ys - y) (2.34) 

Rearranging this slightly, we obtain our closed-'-loop transfer 

function B. 

-1 
B = (I + Q) Q (2.35) 

and 

-1 -1 
H ., I + Q. (2.36) 

-1 9f 

To avoid confusion later in the discussion, ~e deriote H as n and 

Q-1 "' as \(. Now, if we have some loops closed and oth~rs open, this 

can be represented mathematically by having a one on the diagonal 

of F for those loops that are closed, a·nd· a zero, otherwise. If 

this was to be incotporated into equation (2.36), matrix I would be 

replaced by F. For the purposes of this c;liscussion, we assume that 

all loops are clos~d, thetefore F = I. 

What we want. from the technique is the inverse Nyquist pa th· 

for the principal clos~d-loop transfer functions, 

definition, we have, 
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Here ilii is the .cofactor of element i, i of the inverse of H. 

Equation (2.37) gives us the Nyquist path for hi .• We obtain the 
. 1 

inverse Nyquist path by inverting hii, 

(2.38) 

We can expand equation (2.38) to obtain, 

n 

ii'. .. + \fii.il../9 .. 
11 f. · J lJ · 11 

j=l 

(2.39) 

Here iiij represents element i,j of ii and ilij repres.ents its 

corresponding cofacto~. The summation term i-n equation 

(2.39) gives the mo·dification that would have to be made to ii .. in 
11 

·. -1 

order tC? have it repr·esent the actual hii , which is what we wan~. 

This modification is due to the interaction that is present within 

the system. If our system was diagon~l, i.e. there was no 

interact"ion, then the summation term would be zero. Assuming that 

the SWJl.!Dation' s contribution is small, then we can approximate 

by ii ..• 
11 

Now, from equation (2.36), we se, that we can obtain the iiii 

-from qii simply by moving the origin from (0,0) to (-1,0). The 

power of this technique is that, assuming the summation term is 

small, we can plot inverse Nyquist diagrams of. the qii and treat 

the corresponding designs of th~ controllers as if they were SISO. 

We can tell if our assumption about the summation is correct by 



I ' 

employing a theorem derived by ifosenbrock which gives the designer 

an easy check. For each frequency w, define 

n 

di= ~ liJiCiw>I c2.4o> 
j=l 
jFi 

At that point lying on iii(iw) for the giv~n w, center a circle of 

radius di. This circle is known· as the Gershgorin 4isc. The union 

of all such circles that are generated as we change the frequency 

defines a region within which th~ t~ue path -0f the ac~ual transfer 

function in the interacting enviroment must lie. The greater the 

interaction, the greater this region, and vice vers11. As long as 

no disc encircles the origin, then our previous assumption is 

valid. Otherwise·, we cannot use the method until we have designed 

decouplers which are adequate in decreasing the interaction. 

It should be noted that the summation in equation (2.40) is 

over the rows of <l.. Thus, the ·corresponding Gershgorin discs are 

termed row Gershgorin discs. The summation could have been carried 

over the columns of ct also. As might be expected, these discs are 

called column Gershgorin discs. The union of these discs is termed 

the row( column) Gershgorin bands. If the row(column) Gershgorin 

bands do not contain the origin, then <l is .termed row( col.umn) 

dominant .• Either r.ow dominance or column dominance implies 

diagonal dominance, but the opp~site i~ not always true. Strictly 

speaking, <l is considered· diagonally dominant as long as there 
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exists no frequency for which Q is not row .Q!. column dominant. In 

order for the method to be applicable to the process of inter~st, ~· 

must be diagonally dominant. 

The Gershgorin discs gives the designer insight into the 

magnitude of the interaction present within the system. ·They also 

allow us to define regions of certain stability and uncertain. 

stability within our gain space. By auuming that the true path of 

the transfer function lie.s alorig one of ·the boundaries set by the 

Gershgodn bands, we can delineate a line. segment for the ultimate 

gain of. the loop of interest. The intersection of these line 

segme~ts for the vatious loops gives bs our tertai~iy and 

uncertainty stability regions in our gain spa·ce. 

2.5 Characteristic Loci Analysis 

In 1970, MacFarlane [23] layed a foundation for the 

appl ic·a tion of linear operator theory to multi variable control 

system analysis. This foundation was used in develop.ing his 

characteristic locus· design method, which came about three years 

later [15]. In. establishing this technique, MacFarlane attempted 

to exploit the properties of linear vector spaces to arrive at a 

vector generalization of the Bode-'Nyquist classical design 

technique. Even though the· technique is an im1>ortant addition to 

control theory, it has yet to be fully developed as far as a design 



procedure is concerned. Experience on part of the user is 

necessary, as seen by Schwanke [24L et al. in their attempt to use 

the techniqu~ to ~esign a control sy~tem for a pilot scale 

distillation column • 

This thesis was not conce.rned with using the technique for 

design, though. Instead, the. theory was used prim.arily for an 

additional method of assessin~ interaction. Al~o, it was used •s a 

rigorous way ~f determining the actu•l stability limit in the gain 

space for the control structures of interest. This last point is 

one of. the niceties of the theory developed by MacFarlane. 

The technique makes extensive use of the dyadic ·representation 

of a matrix. As was shown previously in equation (2.35), our 

closed-loop transfer function can be expressed in terms of our 

open-loop transfer function as, 

-1 
H = (I + Q) Q 

or, after som·e manipulations, we obtain:. 

n ).i ( iw) 
H( iw) l T (2.41) 

= 1 + ). . ( iw} wivi 
i=l 

1· 

where n is the order of H, ).i is the i th eigenvalue of H, w i is the 

corresponding eigenvector, and vi is the corresponding eigenr9w. 



This expressio_n gives us some insight into interaction, 

itself. Now, su~pose that at some low frequency ei,
1

, we have 

l>.(iw1H >>· 1 for i = 1,2, •••• ,n. Then, we can see that equation 

(2.41) can be rewritten as 

n 

H = l wivi = I 
i=l 

(2.42) 

This shows that it low frequencies_, with this assumption intact, 

our system h ·non-interacting. ·we can make. our eigenvalues large 

by having high gains~ The gains are limited due to stability 

requirements which invariably require that the fa(iwh) I « 1 for 

some higher frequency "'h· At this point, we have 

n 

H = ~ )..w.v! = Q (2.43) 
L 1 1 1 

i=l 

Equation (2.43) shows that high frequency interaction is not 

affected by the acUon of feedback controllers. The only way to 

avoid high frequency interaction is to have Q become diagonal at 

high frequencies. Referring back to equation (2.42), for most 

systems of practical interest, we will have some lil,i I >·>. 1, but 

there will be others that will not be sufficiently large to artive 

at equation (2.42). Th.us, in general, we will e_xpect low frequency 

interaction. 

Now, as we have stated before, we want our y: to affect yi 

alone. One possible way of· doing this is to align the eigenvectors 



of H. wit.h the various unit basis vectors~ ej° Here, ej is the jth 

column of the nxn identity matri:i. Let's do the following, let 

If it we re the case that w j :;:: e j, then by substituting equation 

(2.44) into equation (2.41) and recalling the ~iorthogonality 

principle, we would have, 

H(l'w)· _ s lj(iw) 
- Y I + X. <iw) 

J 

(2.45) 

Equation (2.45) shows .that the reference input from equation 

(2.44) would affect only output j, i.e. no interaction would be in 

the system. 

This analysis gives a convenient measure of interaction, t~at 

being the angles between the eigenvectors wj(iw) of Hand the unit 

basis vectors ej (illi) as a function of frequency w. This angle is 

defined as, 

11Ciw) 
= _1 wT(iw)ej(iw) 

cos wj(iw} 
(2.46) 

where wj is the eigenvector whi~h produces the minimum angle llj 

with ej at frequency w. If 11j is small at high frequencies, then 

interaction effects ari~ing from the jth input will be small. Note 

that only when all of the 11j are 0, i.e. all of the wj are in exact 

alignment with the ej' does this imply that Q is diagonal. 
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We al so used MacFarl ane' s [15] theory to rigorously calculate 

the stability limit in the gain space fot the contrql structure~ of 

interest to it. For an open-loop system which is asymptotically 

stable, the theory states that no single eigenvalue of Q can 

encircle the (-1,0) point in the complex plane. This encirclement 

theorem is very helpful in calculating our gain space. If we set, 

Q ( s ) = Q I ( s ) = kX I ( s )G ( s ) (2.47) 

we can say that the eigenvalues of Q' (s) will be the same as those 

of Q(s) multiplied by k. We can solve for the eigenvalues of Q' and 

determine the scaling constant k which brings us to our point of 

instability. If the diagonal elements of K' are such that they 

correspo_nd to the components of a normalized vector .in our gain 

space, then this scaling constant is the projection of the 

normalized vector i_nto the gain space to that point which defines 

the stability limit in the space. By sweepirig this normaliz,d gain 

vector throughout the space, and performing the required 

calculations fo~ each of the vectors, ye can m~~ our gain space. 
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Chapter 3 

A Process of Tanks in Series with Recycle 

3.1 Definition 

The first process that was examined consists of two stirred-

tank heaters in series connected by a recycle stream, and i's showri 

in Figure 5. This system was selected because it is a simple 

approximation to a reactor system. In this case, the recycle 

stream would be used to increase the overall conversion. 

rq 

..__ ___ ......... ~- q 
(ltr)q 

Fig. 5 Stirred-Tank Heaters Process with Recycle 

In Figure 5, q represents the throughput flow, ·c1+r)q the 

recycle flow, Vi is the volume of tank i, Ti is the temperature of 

tank i, and Qi represents the energy input to tank i, 



... ,,. 
In modeling the process, we assume that the flows through the 

system are perfectly controlled such that q iemains constant. 

Let's try and control the tank. tempe·ratures. If we write an energy 

balance over each tank, assuming that the tank is well.;..mixed, we 

have the following model. 

(3 .1) 

where p is the liquid density and CP is the liquid heat capacity, 

both of which are assumed to be cons·tant. Dimensionalizing our 

equations; we have, 

(3.2) 

where a is the fraction of the total system volume occupied by tank 

one [V 1 /{V 1 +V 1 ).], and tiine is now· dimensionless with respect to tb,e 

total system t_ime constant Jq/{V1 +y 1 )]. 
• Q. is the effective heat 

1 

Equation {3.2) represents the e~panded form of our state~space 

model. Writing the equations in the form of equation (1.1), we 

have the tank temperatures as our state vector, the effective heat 

inputs as our input vector, and the following plant matrix and 

input matrix, 
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A = [(1:r) 
l+r 
1-a 

[
1 o J 

B = : l~a 

(3.3) 

As all of our states are accessible, i.e. we can measure both of 

our tank temp~rature~, we need not worry ·about defining ari 6utput 

matrix. It should b~ stated that models for use in process control 

system analyses are best written iri terms of perturbations from the 

steady-state [25]. As this model is linear to begin with, we need 

not go through any process linearization. Having our state-space 

model we can easily obtain our plant transfer function .matrix as, 

-1 
G(s) = (Is - A) B (3.4) 

A plot of this system's eigenvalues as a function of a is 

shown ip Figure 6a for the case where r = 0.5, a lo~ recycle rate. 

The corresponding plot for a high recycle rate, r = 2.0, is shown 

in Figure 6b. The speeds of the two ·modes of this system are 

dictated by their corresponding eigenvalues. As can be seen in 

these plots, the eigenvalues are the least separated when a =· 0.5, 

i.e. both tanks have the same volume. With this in mind, the 

following two different design cases were used 9uring the course of 

the analyses to come. 
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Case I a= 0.5 r = 0.5 

Case II a = 0:. 5. r = 2. 0 

As seen by the value of a, both tanks are of equal size. The two 

cases d°iffer in their recycle r~te, one case having a low recycle 

and the other having a high recycle. 

In esta~lishing our controlled variables, we are loo~ing for a 

linear co~bination of states, described mathematicaJly as follows. 

T 
S, = h.x 

1 1 
( 3. 5) 

where si is our resulting control led variable and hi is our output 

.coordina·tion vector. The conventional control structure assessed 

in this thesis controls the indiviual tank tempera~ures:. This is 

an intensive v~riable control structure and will be referred to as 

the IVaCS structure for the remainder of this chapter. 

IVaCS structure, .we have the following output vectors, 

hi = (1,q) 

hi = (0, 1) 

For the 

(3.6) 

The EVaCS method gives the designer a choice of output vectors, 

termed candidate physical modes. In order to ·establish our· 

candidate physical modes for these structures, we employ the 

following extensive energy concepts. 

1. energy bal~ncd of tank 1 
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2. energy balance of tank 2 

3. energy c6ntent of total system (tank!+ tank 2) 

If we wanted to control the energy balance of tank 1, we could use 

the linear combination of states present in the energy balance, as 

shown below, 

s 1 = -(l+r)T1 + r~2 

hi = [-(l+r) ,r] 

( 3. 7) 

Notice that all ·we did was use the steady-state part of the 

balance. Likewise, to control the energy balance of tank 2, we 

simply use the co~bination, 

s 4 = (l+r)T1 - (l+r)T 2 - T1 - T2 
(3.8) 

T h4 = .(1,-1) 

Notice tha:t sealing is not important. The important point in this 

is the weighting of the states. Now, the total energy content of 

the system will be inf_luenced by the relative size of the t~nk.s. 

Since scaling is not important, we can use the following linear 

combination to control the total content, 

Ss = aT1 + (1-a)T 2 

h; = (a,l'"""a) 

Table 1 summarizes the various output coordination vectors. 

(3.9) 

In e~tablishing our ~anipulated variables, we are looking for 



a linear combination, generally speaking, of 1ystem inputs. 

(3.10) 

where ui is our manipulated variable and pi is the input 

coordina~ion vector describing that particular ~ombination of 

process inputs. The conventional structure controls the various 

tank temperatures with their respective heat inputs. Thus, we 

have, 

T P1 = (1,0) (3.11) 

T P2 = {0",1) 

In searching for our input vectors to control the energy balances 

of the tanks, we would expect to find a linear combination of 

system inputs in our en_ergy balan~es. These are the combinations 

that we want to use in our structure. 

controlling the energy balance for tank 1, 

PT = (1,0) - T 
P1 

Likewise, for tan~ 2, 

PT= (0,1) = PI 

Thus, we have for 

(3.12) 

(3.13) 

Using the interpretation of the toial content, Ye have the 

following input vector for use in defining its controlled variable, 

T 
Ps = (1,1) {3.14) 
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Table 1 Summary of Output Coordination Vectors for 
Stirred-Tanks in Series 

hi = ( 1, 0) Intensive variable output 
vector for controlling 
tank 1 temperature 

hi = (0,1) Intensive variabl~ output 
vector for controlling 
tank 2 temperature 

·T [--(i+r) ,:r] Extensive variable h3 = output 
vector for controlling 
tank 1 energy balarice 

h; = (l,-1) Ext~nsive variable output 
vector for controlling 
tank 2 energy balan-0~ 

T h, = (a,1-a) Extensive variable output 
vector for controlling 
total . energy content 
of both tanks 
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Table 2 Summary of Input Coordination Vectors for 
Stirred-Tanks in Series 

.T p1 = (1,0) 

t P2 = (0,1) 

T 
PJ = (1,1) 

Input vector for 
controlling tank 1 
temperature and tank 1 
energy balance 

Input vector for 
controlling tank 2 
temperature and tank 2 
energy balance 

Input vector for 
controlling total energy 
content of both tanks 
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Table 2 summarizes the input coordination vectors. 

3.2 Results and Discussi~n 

Figure 7a,c show the angles as a function of a between the 

output coordination vectors for the IVaCS structure, h1 and h 3
, 

with the slow eigenrow of the· system for the two recycle rates 

considered, while figure 7b,d show the angles with the fast 

eigenrow of the system. The only time either of these two output 

vectors approximate the ~low mathematical mode is when one tank is 

much smaller than the other. Neither output vector ever really 

gives a good approximation to the fast mode of the system. Thtis, 

the IVaCS structure does not approximate the modal control 

structure, especially in our- two design cases • 

It is a known fact that if the lo.ops in a multivariable 

control structur¢ are of different speeds, then the interaction 

within the structure will be less than if the loops were of the 

same speeds. In establishing an EVaCS structure, we have at our 

disposal any two of the three possible· candidate physical modes 

given to us by the previous extensive energy analys_is. In 

selecting· the two output vectors to be used in the s·tructure, we 

want to choose one to approx1mate the· slow mode of the system and 

the other to approximate the. fast mode of the system. This is so 

because the speeds of the modes of the system are dictated by the 
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eigenvalues of the plant matrix, which are usually distinct and 

separated for chemical process systems. As seen previously in 

Figure 6, this process has the property of distinct and separated 

eigenvalues. 

Figure 8a,c show the angles as a function of a. in the lo~ and 

high recycle designs between ?ur total energy content physical 

mode, .hs, and the e_igenrow corresponding to the slow mathematical 

mode of the system. The corresponding angles with the energy-

balance physical modes, h 3 and h-4, are. shown in Figure 8b,d for the 

respective design cases. These plots show that the total energy 

content physical mode gives a good appro~imation to the slow 

mathematical mode, and this approximation improves as the recycle 

rate .increases, Figure 9a, c show the angles between h 5 and the 

fast mathematical mode of the system, while the corresponding 

angles with h 3 and h-4 are shown in Figure 9b,d. These plots show 

that the energy balance physical modes give ~easonable 

approximations to the fast mode of the system, and these 

approximations improve considerably with an increasing recycle 

rate. 

Along -wit_h the IVaCS structure, the angle calculations suggest 

two additionlll .EVaCS structures .for controlling this ptoc.ess in the 
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design cases that we are assessing. 

summarized b~low. 

IVaCS 

EVaCS I 

EVaCS U 

Output 
Coordination . . 

Vectors 

All three structures are 

Input 
Coordination 

Vectors 

P2 
PJ 

As stated earlier, in assessing how well our given control 

structure approximates the modal control structure for the process 

we~ want to see how well our output vectors approximat_e their 

respective plant· matrix's eigenrows. The angles between these 

vectors should be ·as close to zero as possible. Also, in order to 

decouple the internal dynamics, we want the output vectors to be as 

nearly ortho·gonal as possible to a:11 other eigenvectors besides the 

eigenvector corresponding to the eigenrow of interest. As seen 

alrea:dy, the IVaCS structure does not appr<:>ximate the modal 

structure as its output vectors are substantially different from 

the system's eigenrows. This being the case, we would not expect 

this intensive variable control structure to d~couple the process' 

internal dynamics. Ou,:- EVaCS structures seem to do a reasonable 

job in approximating the modal control structure, but we cannot be 
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certain of the degree of decoupling in the process' internal 

dynamics. We can see this, as shown earlier, by calculating the 

angles between the total cont~nt physical m6de, h5 , and the 

eigenvector corresponding to the fast ~ode, and by calculating th~ 

angles between the indivi-g.~l t.a~k content physical mo~es, h3 and 

h4 , and the slow mode's eigenvector. The best case would he for 

al.1 of these angles to be ninety degrees. The total content/fast 

eigenvector angles are shown in figure lOa,c while the indiviual 

tank contents/slow eigenvector angles are. shown in figure lOb,d. 

For our particular design of a:= 0.5, these figures show that some 

interaction will be present as the process dynamics have not been 

compl~tely decoup!ed. Whether or not the interaction will be 

significant remains to b·e. seen. 

Table 3 summarizes the plant transfer function matrices of the 

various control structures for the low recycle· design case while 

table 4 summarizes the plant transfer function matrices of the high 

recycle de sign case. Append~x I contains a summary for both design 

cases of the plant matrices and input matrices for use in their 

respective state-space models. 

The modal analysis of Tung and Edgar [13], as described 

previously, was done using the plant tiansfer functions in tables 
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Table 3 Plant transfer Function Matrices for 
Stirred-Tank Heaters in Series 

IVACS 

EVACS "I 

EVACS II 

Low Recycle Design Case 

a= 0.5 r = 0.5 

A.1 = -1.26795 · - ).:& = -4. 73205 
d(s) = (s - l 1 )(s - l:i) 

G(s) l 
= dTsT 

G(s)· - l - dTsT 

1 G(s). = dTsT 

60 

2 ( s+3) 2 

6 2 ( s+3) 

s+4 2 

-s 4(s+l.5) 

s+6 -2 

2s -4(s+l) 



Table 4 Plant Transfer Function Matrices for 
Stirred-Tank Heaters in Series 

IVACS 

EVACS I 

EVACS II 

High Recycle Desisn Case 

a= 0.5 r = 2.0 

1 1 = -1.10102 1 3 = -10.89898 
d(s) = (s :·1;)(s - 13 ) 

G(s) = -arlr 

G(s) = -arlr 

- 1 G(s) ..., dTsT 

·. 2(s+6) 8 

12 2(s+6) 

s+lO 2 

-4 s 10 ( s + 1. 2 ) 

s+12 -2 

2s -4(s+l) 



3 and 4. Briefly, the analysis· consisted of looking at the time 

domain response of xi/xi 5
• This response could.be broken down into 

contributions from the various controllers in the structure. for 

our 2x2 system, we had, 

~= 
s 

xi 
(3 .15) 

Here b. .. is the contribution given by controller j to the ·response 
lJ 

of output i. The calculation procedure that wa~ required to obtain 

the b.ij involved the followin&, 

1. calculate the change in the manipulated variables required to 

effect a change in the set-point of a given controller. This 

was shown earlier, equation (2.14), to. be, 

0 
where x is the new set-point vector. 

2. calculate the step change response in the Laplace do-ain as, 

x{s) 
· -1 ·o 

= G(s)G(O) x -/s 

3. invert the various elements responsible for the time response 

to get the b.ij • 

Note that this method is independent of the controllers' tuning. 

Thus, it gives us information about the interaction that is 

inherent to the control system's structure. 

The time response for the IVaCS low recycle system was 

calculated as, 
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= - = 

where 

(3.16) 

Ai(~) = ...:o.s + 0.683e-1 •3Tl - -0.183e-4 ·7Tt 

Tl = t/r; ~=total system time constant 

The A1 response is the principal controller's contribution while 

the Ai response is the interacting controllet's contribution~ 

These dimensionless responses are plotted in figure lla, and they 

indi_cate that the interaction is significant and unfavorable as the 

controllers are fighting one another. 

The time responses for the IVaCS high recycle system are shown 

below and are plotted in figure llb. 

A1 (Tl) = 3.0 - 2. 725e-1.lq 0.275e'"'"10 •9Tl ( 3 .17) 

Ai(Tt). = ...:2.0 + 2 .225e -:1. lq 0.225e-:10 •9Tl 

It can be seen that the loop interaction has increased 

significantly, 

The time responses for the EVaCS I low recycle system ~ere 

calculated in the format shown in equation (3.15). These are shown 

below and plotted in figures 12a and 12b. 

loop 1 ( slow) (3.18) 
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A 11 { 11) = 1. 0 - 0 • 9 9 3 e -l. 311 -- ·o • 0 6 7 e - 4 • 711 

loop 2 {fast) 
A2 1<11) - 0.145e-1•311 - 0.145e-4•711 

A22111) = 1.0 - o.211e-1~311 - 0.789e-4·7n 

There. are some significant points that manifest th:e~selves in this 

analysis. The first is that the fast loop does not. interact with 

the slow loop at all since A12 = O. The second point is that there 

is no ~teady..,.state interaction of the slow lo·op with the fast loop 

as A11 goes to O as 11 goes to OJ, and the dynamic interaction that 

is present is minim!ll, The third point is that the total response 

of the slow loop is strictly associated with the slow mode of the 

system., 11nd the total resp.onse of the fast loop is strictly 

associated with the fast mode of the system, These p_oints are what 

we set out for in the design. 

The time responses for the _EVaCS l high recycle system are 

shown ·below and plotted· in figures 12c and 12d. 

loop 1 {slow) 
A11<11) - 1.0 - 0.990e-l,l11..,. O.OlOe-l0. 911 

(3.19) 

Au (11) = 0.0 

loop 2 {fast) 
A21 (11) = 0.082e-1.-111 0.082e-1o. 911 

A22 (11) = 1.0 - 0.092e-1•1ll - 0.908e-10.911 
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These results show conclusively that the two loops have minimal 

interaction, and that the loop 1 res~onse is strictly due to the 

slow mode of the system and the loop 2 respo·nse is strictly due to 

the fast mode of the system. What we have here is a control 

structure that is very close to the modal control structure, as 

suggested by our previous angle calculations. Also, we see that 

the lack of decoupling in the internal dynamics of the ptocess that 

the angle calculations showed is not significant. 

The time responses for the EVaCS II low recycle system were 

also calcul_llted in the format shown i_n equation (3.15). 

are shown below and are plotted in figures 13a and 13b. 

loop 1 (slow) 
/:J.11(~) = 1.0 - 1.077e-1 •3~ + 0.077e~4 •8~ 

loop 2 (fast) 
AJ1(~) = 0.289e-1 •3~ + 0.289e-4 •8~ 

/:J.JJ(~) = 1.0 + 0.366~-1 •3~ 1.366e-4 ~8~ 

The /:J. .. lJ 

Even though the interaction is slightly greater than the 

interaction shown in the EVaCS I low recycle system, those 

conclusions reached there are equally applicable here~ 

The time responses for the EVacs· II high recycle system are 

shown below and are plotted in figures 13c and. 13d. 
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loop 1 (slow) (3.20) 
~11<11) = 1.0 - 1.0lOe-1 •111 + O.OlOe~lo. 9~ 

~lJ (11) = o.o 

loop 2 (fast) 
0.102e-l.l11 O.l02e-l0 .• 911 ~u(11) = + 

~u<-11) = 1.0 + 0.112e-l.l11 1.112e -10.911 

Again, these results show conclusively that the two loops have 

minimal interaction and the total loop responses are strictly due 

to their respective modes. 

What we have done in this analysis is to show that the use of 

extensive energy: concepts allow for the easy synthesis of two 

control structures. Both structures have zero ~teady-~tate 

interaction and minimal dynamic interaction. Also, both do a good 

job of approximating the m·odal control structure for the process. 

The next method used to evaluate the various control systems 

was McAvoy's [17] dynamic relative gain array. This analysis was 

used to give a best- case ,widely separated loop speeds, and~ worst 

case, that being when the loops are identical, assessment of th~ 

interaction present in the given control structure. Note that the 

analysis is not independent of the controllers' tuning as the 

weighting of the integral (and possibly derivative) term of the 

controller affects a loop'~ ~peed. 
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The analysis of the IVaCS s·ystem began by calculating >..(s) for 

both design cases. These are shown in figures 14a and 14b. 

Immediately, we notice the magnitude of L This indicates that the 

amount of interaction present within the system is quite 

significant -for both design cases, especially in the high recycle 

case, whenev.er one loop is much faster than the other. As the 

principa_l transfer functions of the system are identi_cal, as seen 

in tables 3 and 4, this situation would arise if one loop had a 

large amount_ of integral action and the other a small amount. The 

slower loop, i.e. the one with the lar-ge amount of integral action, 

would have a sluggish response due to its decreased gain. Its 

phase angle would be decreased, as measured clockwise from the 

positive real axis, wh_ich would increase its natural frequency. 

These two effects are counteractive .as far as the slow loop's 

response is concerned. The decreased gain indic~tes a decreased 

sensitivity of the controlled variable to its manipulated variable 

while the increased natural frequency indicates a faster speed of 

response. Both of these effects tend to stabalize the slow loop. 

As discussed· in Chapter 2, the fast loop would not be affected by 

the interaction. 

Figures 14c and 14d show the plot of A(l) fot the. case where 

l>..1 ) 1 and both loops are identical. As our principal transfer 
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functions are identical, this situation would correspond to both 

loops having identical reset times. The /::.. plots show that .a 

significant amount of unfavorable interaction would be present 

within the system for this situation. The loop responses would be 

highly oscillatory due to the increased gains, and the speed of 

response would be decreased due to the decreased critical 

frequency, which is cau_sed by the increased phase angle. Both of 

these effects tend to de.crease loop stability. 

The analysis of the EVac'S I system also begin by calculating 

).(s) for both design cases. These are shown in figures 15a and 

15b, for the respective design cases. The interaction for this 

situation, i.e. widely separated loop speeds, is minimal to begin 

with and actually decrea'ses as the recyde rate increases. This is 

due to the structure becoming a better approximation to the modal 

control" structure for the process, as was discussed previously • 

These plots of ). show that the interaction in this situation is 

essentially negligible, thus allowing the two controllers to be 

tuned independent of one another. 

Figui;es 15c and 15d show the plot of /::..().) for the ca-se where 

l>.I < l and both loops .are identical. This situation would 

correspond to the fast loop having some smaller reset time than the 
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slow loop.. The loop responses would be highly oscillatory due to 

the increased gains, but the speed of response would remain 

unchanged due to the negligible phase contribution from the 

interaction. In tuning the loops as such, it can be seen that they 

were tuned contrary to the de ~ired goal as the slow loop was made 

fast and the fast loop was made slow. 

The analysis· of the EVaCS II structure proceeded in the same 

fashion as the analyses done for the IVaCS and EVaCS I structures. 

The plots of ) .. (s) are shown in figures 16a and 16b for the 

respective design cases. These show that the interaction is 

essentially negligible when one loop is much faster than the other, 

and that the interaction d~creases with increasing recycle rate (as 

in EVaCS I). 

Figure·s l~c and 16d show the plots of .6.0 .. ) for the case where 

Ill ) 1 and both loop~ are identical. Again, this would co~respond 

to the fast loop having some degree more of integral action than 

the slow loop. The loop responses would be slightly more 

oscillatory due to the interactio~, while th.e speed of response 

could be slightly slo'l'l'.er or slightly faster depending upon the 

natural frequency of the loop in its SISO enviroment. This seems 

to suggest that- an optimum reset time could exist for the loops. 
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This analysis confirms that th.e EVaCS structures have zero 

steady-state interaction as )..(0) = 1 for .all cases. This was found 

to be true originally by Georgikis [5]. The loops in the 

structures .have be en shown to exhibit m·inimal dynamic interaction, 

al so. Insight- has been gained into the re commended tuning 

procedure for the various loops, Le. keep the loop speeds as wide 

as possible. 

The fourth way of a:ssessing the interaction in the structures 

was Rosenbrock' s [14] inverse Nyquist array. The details of the 

analysis were discussed in Chapter 2, but will be bri~fly reviewed. 

' -1 
The analysis entails plotting the diagonal elements of (GK) as a 

function of· freqtiency. Insight int6 the ~agnitude of the 

interaction within the system is gained by looking at the system's 

Gershgorin discs. ·For this analysis, the controller matrix K was 

chosen to be K = diag(ki), where ki was taken to be 1 or -1 so as 

to make the product giiki > 0. 

INA plots of the diagonal elements of the IVaCS system are 

shown in figures 17a-b,c-d for the low and high recycle des·ign 

cases. Column· Gershgorin discs are used. These plots show that 

the system is not column dominant, neither was it row dominant, 

thus implying that the interaction is significant. It is 
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EVaCS I in Tank's Low and High Recycle Designs 
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-1 
interesting to note that (GK(O))ii is the reciprocal of what is 

considered the effective process gain for loop i. As the recycle 

rate increases, this gain decreases for both loops, thus implying 

that the sensitivity of the controlled variables to their 

respective manipulated variables decreases. This is, without a 

doubt, an undesirable phenomenon. 

INA plots with column Gershgorin discs of the diagonal 

elements of the EVaCS I system are shown in figures 18a-b, c-d. 

These plots show that the system is very column dominant, thus 

implying that the interaction is not too great. The sensitivity of 

the slow loop (loop 1) remains unchanged with the recycle rate, 

while the sensitivity of the fast loop (loop 2) actually increases 

with the recycle rate. 

The INA plots with column Gershgorin discs for the EVaCS II 

structure are shown in figure 19a-b,c-d. These plots show that the 

interaction is not too great here, either. The sensitivity of the 

slow loop (loop 1) remains unchanged with the recycle rate, while 

the sensitivity of the fast loop (loop 2) decreases with increasing 

recycle. 

The final analysis method used here was MacFarlane's [15) 
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interaction criteria. The details of this analysis have been 

discussed previously fn Chapter 2. Briefly, the analysis en~ail s 

looking at the angles between the eigenvectors of Q(s) and the 

conventional basis vectors, i.e. those vectors corresponding to the 

columns of the appropriate identity matrix. Non-interacting 

systems will have eigenvectors that are perfectly aligned with 

these basis vectors. In this analysis, we took our controller 

matrix K to be diag(ki) wh~re ki •as chosen to be 1 or -1 such that 

the product kigii) O. 

The plots of these angles for the IVaCS system are shown in 

figures 20a-b for th·e respective design cases. They both show that 

the interaction within the system is significant and constant 

independent of frequency. Plots of the interaction angl~s for the 

EVaCS I structure are shown in figures 21a-b for the respective 

design cases. These plots show that the interaction at low 

frequencies is one-way (technic~lly speaking, this is not termed 

interaction), and at high frequencies it reverses itself while 

still remaining one-way. Only in the vicinity of. a limited range 

of frequencies do we have what wo.uld ·be termed interaction, and 

this is small .when compared to the IVaCS.. The interaction angles 

for the EVaCS II system are shown in figures 22a-b for the 

respective design cases. The discussion given for the EVaCS I 
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structure applies here equally w~ll. 

As they starid now; the control structures are not of 

sufficiently high order to be unstable. Thus, as a point of 

interes(, it was decided to add coil and ~-hermocouple dynamics to 

the process so as to allow for the calculatiop. of gain spaces. 

Each p"lant transfer function matrix shown in tables 3 and 4 was 

post-multiplied by a .coil dynamics matrix and pre-multiplied by a 

thermocouple dynamics matrix, both of which a.re shown in table 5, 

The time constant chosen for the coil dynamics was essentially the 

same as that for the fast mode of the process in the low recycle 

design.. The time constant for the thermocouple dynamh:s was chosen 

to be 10% of the time constant for the fast. mode in the low recycle· 

design. The gain spaces were calculated for all structures in both 

the low and high recycle design cases as o~tlined by MacFarlane 

[15], and approximations to the gain spaces were calculated as 

outlined by Rosenbrock [6], It should be noted that since we are 

multiplying the process matrices by diagonal ~atrices~ the dynamic 

relative gain array analysis does not change. 

The actual gain space plot~ for the IVaCS system are shown in 

figures 23a-b for the respective design cases. As can be se·en in 

figures 24a-b, c-d, this system is not -column dominant ,nor was it 
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Coil 

Table 5 Coil and Thermocouple Dynamics Matrices 
for Stirred-Tanks in Series 

1 (j 
0.25s+l 

Gc{s) = 

0 1 
0.25s+l 

1 0 0.02s+l 

Thermocouple 

0 1 
0.02s+l 
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row dominant, thus no approximation to the gain space could be 

found from the INA. The shape of the stab11ity limit in these gain 

spaces confirm what our previous analyses have shown, i.e. the 

interaction: is significant within this structure, especially for 

the high recycle situation. 

The gain spaces for the EVaCS I system are shown in figures 

25a-b for the respective deJign casJs. Also, the cert~in stability 

(the inner rectangle) and uncertain stability (the outer rectangle) 

limits which define the approximation ·to the ga_in spaces are shown. 

These limits were calculated from the INA plots shown in figures 

26a-b, c-d for the respective design cases. The c_ertain stability 

limit was calculated by assuming that: the given loop transfer 

function lay on the inner limit, Le. closes.t to the ori_gin, 

defined. by the Gershgorin bands. The loop is guarenteed to be 

stable for all loop proportional gains that. are less than the 

ultimate gain calculated from this inner limit. The uncertain 

stability limit was calculated by assuming that the loop transfer 

function lay on the outer limit defined -by the the Gershgorin 

bands. One cannot be sure if the loop will be stable or not· if a 

proportional gain is chosen that lies between the certain and 

uncertain stability limits. The loop will definitely be unstable 

if a gain is chosen that is greater than the uncertain limit. The 
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INA plots shown in figure 26, and used to calculate the Bmits, 

were made using column dis.cs. The plots of the gain spac.e s show 

that the interaction is negligible, as can be inferred from their 

shape. The actual gain space is essentially that part of the gain 

space delineated by the SISO ultimate gains. 

The gain spaces for the EVaCS II syst~m are shown in figures 

27a-b, while the INA. plots with column discs used for the gain 

space approximations are shown in figures 28a-b,c-d. Again, these 

plots show that the interaction for this system is negligible. 

These analyse·s have shown that ·extensive energy concepts have 

allowed for the synthesis of two controller structures for this 

system· that have zero steady.,...state interaction and minimal dyn9:mic 

interaction. These control str-q.ctures were synthesized easily, and 

have an intuitive physical appeal. As to which EVaCS structure is 

better than the other, for our parUcular de sign they probably 

would function equally well. This is founded in the results of the 

angle calculations and the various other ·analyses presented. 

Definitely, either EVaCS structure is superior to the IVaCS 

structure. 
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Chapter ,4 

A Two Stage Distillation Process 

4.1 Definition 

The second process examined ·by this thesis was a two-stage 

binary distillaHon coluu:in. This system approximates an industrial 

distillation column in that the rectifying and stripping sections 

have been lumped into single, very effecie~t stages. A diagram of 

the system is shOYn in Figure 29. 

Y1 
, --,, x, D, 21 

V ~ 
F 

Xt L 
~ ~ 

Y2 V 

x2 

-

Fig. 29 Two Stage Distillation Process 

In figure 29, F is the feed flow to. the column, D is the 

distillate flow, B is the botto.ms flow, L is the column's reflux 

stream, V i.s the vapor boil-up, z1 is the distillate's terminal 
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composition, y 1 is the first stage vapor composition, x1 is t_he 

first stage liquid composition, y 2 is the second stage vapor 

composition, x2 is the second sta·ge liquid composition, and z 2 is 

the bottoms' terminal composition. 

In modeling the process, we assume that. the feed is a~ its 

bubble point, that the ·column flows are equimolal, and that the 

trays are 100% efficient. By assuming ne glig1 bl e· .a.ccumula tor 

holdup and condenser dynamics, such that y1 

material balance over the light component is, 

z1 , our fit.st-stage 

(4.1) 

By assuming negligible bottoms h~ldup a:nd reboiler dynamics, such 

that x 2 = z 2 , our second-stage material balance over the li_ght 

component is, 

(4.2) 

We ass~e thermodynamic equilibrium relationships of the form, 

y = H(x) 
-1 

x = H (y) (4.3)' 

Here, His the relationship that gives the v.apor's equilibrium 

composition in terms of the liquid composition,. and H-
1 

is the 

relationship that gives the liquid's equilibrium composition in 

terms of the vapor composition. By dividing equations 

(4.1)-(4.-2) through with our steady-state feed rate F, and 
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multiplying/dividing the capacitance terms by MR + Ms, we obtain 

the following system of equations descr~bing our proc~s·s after 

substituting the relationships from equation (4.3), 

(4.4) 

Here m1 is the reflux to feed ratio, m2 is the vapor boil-up to 

feed ratio, and the feed rate Fis assumed to be constant. Also, r 

is the fraction of total column holdup in the rectifying section 

[MR/ (MR+Ms)], and time is dimensionless with respect to the column 

time constant- [F /(MR+Ms)]. Linearizing the eq·uations, and 

expressing the derivatives ,in terms of z1 and z 2 , we have, 

(4~5) 

(4.6) 

+(f1-z2)6m1 

where D/F = m2 - m1, B/F = 1 - D/F, f 11 is the derivative of the 

inverse relationship shown in equation (4.3) with respect to z1 

evaluated at the steady-state z1, f 22 is th·e derivative of the 

assumed relationship H shown in equation (4.3) with ~espect to z 2 

evaluated at the steady-state z 2 , f 1 is the first stag~ light 

1 
component liquid composition and is equal to·H- (z1), and f 2 is the 

second stage light component ·vapor composition which is equal to 
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Equations (4~5)-(4.6) represent the expanded form of our 

state-space model. Writing these equations in the fotm of equation 

(1.1), we have the terminal compositiol!,s as our state vector, our 

input vector having m1 and m2. as its elements, and the following 

plant matrix and i_nput matrix, 
D 

-CF+ m1f 11)" m2.fn 
(4.7) 

rf u ~ 

A = 

m1f11 
B 

-(F + m2.fn) 
T-y"" 1-y 

.1-f 1 -(zi-f 2.) 

rf u rf u 

B - . 

f 1-zi -(f2,-:Z2,) 

1-y 1-y -

We can obtain our plant transfer function matrix as shown in 

equation (3 •. 4). 

Two different designs were used in this research. In both 

designs, it was assumed that the two components in the system had a 

constant relative volatility, a. The de signs thems·el ves were 

specified using a symmetry factor (a), and a separation factor s, 

both of which.are shown below. 

(4.8) 
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The first design case was chosen to be an easy separation, i.e. 

small flows within the column such that both terminal compositions 

were of a low purity. The second de sign case was chosen to be a 

difficult separation, i.e. large flows within the column. -This 

design gave high purity terminal compositions relative to the 

previous design. The corresponding steady-:sta~e model parameters 

are shown in table 6. In both de signs, the column flows are such 

that D/F = B/F. 

Figure 30a shows a plot of the system eige·nvalues as a 

function of r in the low purity design case. As can be seen, the 

eigenvalues are the least separated when r .... 0.5. This corresponds 

to the rectifying and stripping sections having approximately the 

same holdups. Figure 30b shows the corresponding plot of the 

eigenvalu_es in the high purity design case. As can be seen in the 

plot, the eigenvalues are widely separated for all val:ues of y. 

Again, these eigenvalues are the least separated when r - 0.5. 

With this in mind, r was choosen to be 0.5 in both design cases. 

The vadous design specification·s used are summarized below. 

Case I 
r = o.5 

Case II 
r = o.5 

Easy· Separation, Low Purity 
xf = 0.5 w = 1.0 a= 3;0 s ~ 4.5 

Difficult separation, Hi1h Purity 
xf = 0.5 w = 1.0 a= 10.-0 s = 99.01 
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Z1 
Zi 

m1 
mi 

D 
F 
B 
·F 

f1 
f2 

f11 
fu 

r = 

r = 

Table 6 Linearized Model Paramete+s for 
~»istilla~ion Design C~ses 

Low Purity High Pu.ri ty 
Separation Separation 

0.68 0.91 
0.32 0.09 

0.27 81. 89 
o. 77 82. 39 

0.50 0.50 

0.50 0.50 

0.41 0.499 
0.59 0.501 

1.11 3.01 
1.11 3.01 

Low Purity Design Specifications 
0.5 xf = 0.5 w - 1.0 a = 3.0 s = 4.5 . -

High Purity Design Specificat'ions 
0.5 xf = o.s w = 1.0 a = 10.0 s = 99.01 
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We will use three of the conventional control schemes typcially 

used in controlling distillation processes. One is known as an 

energy balance scheme, and the other two are k.now11 as material 

balance schemes. AU three control the terminal compositions. 

These structures are intensive variable in nature, and their output 

coordination vectors are shown below. 

hI = <1.0) 

hi = (0·,1) 

(4.9) 

Our respective controlled variables si can be found as shown in 

equation (3.5). In order- to esta"blish the candidate physical 

modes.- or output vectors, for use in the EVaCS structures, we 

employ the following extensive material concepts. 

1. material balance of rectifying section 

2. material b~lance ~f stripping s~c~ion 

3. material content of total column 

If we want to control the rectifying b_alance., we simply measure 

that cOmbination of states shown in equation (4.5.), 

(4.10) 

Again, what matters 1n this selection is the way the two states are 

weighted in the output vector, To control the stripping ·ba:l ailce, 

we have, 

(4.11) 
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The total content of the column will be proportion,al to, 

(4.12) 

Perturbing this equation and expressing it in terms of the terminal 

compositions, we have, 

Thus, the physical mode for our total energy content is, 

Table 7 summarizes the various. output coordination vectors for this 

process. 

The next step that we need to take is towards establishing our 

manipulated variables. The energy bala.nce scheme uses the reflux 

rate to control the top composition, -while the· .boil-up rate is used 

to control the bottom: composition. Thus, we. have, 

T p
1 

= (1,0) (4.15) 

T Pi= (0,1) 

Our manipulated· variables can be found as shown in. equation 

(3.10) using our system input vector. This structure will be known 

as the L, V structure. One of the materiai balance structures, 

which we will term the J?,V structure, controls the top composition 

by the distiilate flow rate, while the bottoms compositio.n is 
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controlled with the boil-up rate. Thus, we have the following 

input coordination ve~tors for this system, 

T p 1 = (-1,l) (4.16) 

PT= (0,1) = Pi 

The other material balance sch·eme controls the top composition 

using the reflux flow, while the bottoms flow rate is used to 

control the bottoms composition. This structure is term·ed the L,B 

structure, and its input vectors are defined as, 

PT= (1,0) = Pi 

T p4 = (1,-1) 

(4.17) 

The input coordination vector used to control the rectj.fying 

balance for the EVaCS structure is found .from the steady"'.'"state part 

of equation (4.5). Using the linear combination of system inputs 

present iri the equation, we have, 

(4.18) 

Likewise, the ·input vector used to control the stripping bala·nce is 

defined as, 

(4.19) 

In pairing a m~nipulated variable with the total column content 

controlled variable, we have at our disposal any of the four flows 

in the col mnn, i.e. D., B, L, or V. We arbitrarily choose the 
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distillate flow rate to control the total content of the column. 

Thus, we have, 

PT= (-1,1) T 
= PJ (4. 20) 

Again, as stated previously, the most important part of the 

synthesis proc~dure is the proper choice of controlled variables. 

Table 8 summarizes the input coordination vectors. 

4.2 Results and Disoussion 

Figures 31a-d show the angles as a function of r between the 

IVaCS output coordination vectors and the slow math mode and fast 

math mode, respectively. These calculations show that only one of 

these o:utput vectors approximates the slow mathematical mode and 

this only when one section of the column is much smaller than the 

other. Neither output vector ever approximates the fast mode of 

the column. Thus, the three IVaCS structures do not approximate 

the modal control structure for the process in either of the two 

design cases. 

In establishing an EVaCS structure, we have at our disposal 

any two combinations of the three possible candidat:e physical modes 

shown in table 7. Figure 32a,c shows the angl_es as a function of r 

between the total content physical mode, h 51 and the system's slow 

mathematical mode in the low and high purity cases, respectively. 
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Table 7 Summary of Output Coordination Vectors for 
Distillation Column 

hi = (1,0) 

hi= (0,1) 

h;::; (y,1-y) 

1Q6 

Intensive variable ~utput 
vector for controlling 
distillate's composition 

Intens~ve variable output 
vector for controlling 
bottom's comp6stion 

Extensive variable output 
vector for controlling 
rectifying aection's 
material balance 

Extensive variable output 
vector for-controlling 
stripping settion's 
material balance 

Exten~ive variable output 
vector for controllirig 
total m~terial content 



Table 8 Summary of Input Coordination Vector.a for 
Distillation Column 

Pi "' (1,0) 

T . 
Pa == (0,1) 

Pi = (-1,l) 

T-P• = (1,-1) 

107 

Input vector 
representing the 
reflux rate 

Input vector 
representing the 
boil-up rate 

Input vector 
representing the 
distillate rate 

Input vector 
representing the 
bottoms rate 

Input vector for 
controlling rectifying 
section's material 
balance 

Input vector for 
c~ntr6lling ~tripping 
section's material 
balance 
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Figure 32b,d show the angles between the slow·mode and the material 

balance modes, h 1 and h4 ; in both design cases. As can be seen, 

the total content mode gives a good approximation to the slow 

mathematical mode in the low purity design while it essentially is 

the slow mode in the high purity design. The material balance 

modes do not give approximations to the system's sl.ow mode. Figure 

33a,c show the angles as a function of y between the total content 

physical mode and the system's fast mathematical mode in the 

respective design cases. As can be seen, th.e total content does 

not give an approximation to the fast mode. The angles between the 

material balance contents and the fast mathematical mode are shown 

in Figu~e 33b,d. These physical modes approximate the fast 

eigenrow reasonably well for the low purity separation,. and they 

essentially are the fast eigenrow in the high purity separation. 

Considering these angle calculations, we arrive at two EVaCS 

structures for this system. Alon~ with the ·IVaCS structures~ they 

are summadzed below. 

Output Input 

Coordination Coordination 
Vector Vector 

L,V h1 P1 
ha Pa 

D,V h1 P, 
hs Pa 
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L,B h1 P1 
hi p4 

EVaCS I h, Ps 
hs P, 

EVaCS II h4 ~' 
h.s P, 

We have already shown that the various IVaCS structures, i.e. 

the energy balance scheme and the two material balance schemes, do 

not approximate the process' modal contr9l structure. Therefore, 

we would not expect them to decouple the column's internal 

dynamics. The EVaCS structures seem to do a respectable job of 

approximating the colum~' s modal control structure. A plot of the 

angles as a function of r between the total content physical mode 

and the fast eigenvector is shown in Figure 34a, c for the 

respective de sign cases, while a plot· of the 

rectifying(stripping)/slow eigenvector angle.s i.s shown in Figure 

34b, d. As all of the angles are essential_ly ninety degrees for our 

particul_ar designs, the EVaCS structures have decoupled the 

internal dynamics of the process. The rectifying content physical 

mode for the EVaCS I structure seems to be lacking somewhat in the 

low purity separation, but the extent of this interaction remains 

to be seen. 

Table 9 summarizes the plant transfer function ma.trices for 
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Fig. 34 Angle Calculations for Slow, Fast Modes' Eigenvectors 
with EVaCS Physical Modes i_n Column's Low, High Purity Separations 

a-fast ~ode with h.,low b-slow mode with h11 h4 ,low 
c-fast mode with h5 ,high d-slow mode with h,,h4 ,high 
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the various structures in the low purity separation design case. 

Table 10 summarizes the same for the high purity separation case. 

Appendix II contains a summary for both design cases of the various 

plant matrices and input matrices for use in their respective 

state-space models. Notice that these EVaCS structures were 

derived using physical modes based on the light .component. The 

same results would have been. found had material balances been made 

over the heavy component. 

The modal analysis of Tung and Edgar [13) has been described 

previously. The forthcoming analyses of the various structures fo 

the low and: high purity separations were. done using the transfer 

function matrices shown in tables 9-10. All time responses were 

calculated as, 

x . 
.....!. = 
x~ 

1 

where Aij is the contribution given ·by controller j to the r~sponse 

of output i. 

The· time response for the L,V structure's low· purity 

separation design case was calculated as, 

loop 1 (top) 
A11Cq) = l.086 - 2.107e-o. 9q + 0.021e-3•2q 

(4.21) 

A12 (q) = -1.086 + 1.332e-o.9q - 0.246e-3•2q 
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L,V 

D,V 

L,B 

Table 9 Plant Transfer Function Matrices for 
Distillation Column 

Low Purity Design Case 

r ~ 0.5 xf = 0.5 w = 1.0 a= 3.0 s = 4.5 

11 = -0.92125 li = ~3.246i8 
d(s) = (s - l 1 )(s - li} 

·[0.476(s+.3.333} . 1 
G(s} = ciTsT 

0.188(s+2.991} 

.· 
1 

b0.476·(s+3.333} 
G(s} = ciTsT . . 

-0.188(s+2.991} 

- 1 G(s} - dITT 
[

0.308(s+l.0} 

0.343(s+0.897) 

-:0.168(s+7 .560)]· 

-0 • 5 31 ( s + 1 . 6 3 8 } 

0.308(-s+l} J 
-0.343(s+0.897) 

0.168(s+7 .560):J 

0.531(s+l.638} 

EVACS I G(s) = <ftsT 
Fo. 359( s.+3 .168) 

L o.~19s 

0.103 J 
3.168(s+0.944} 

EVACS .II 
1 

G(s} = dTs}'" 

j-o .J59 ( s+3. 271} 

L 0.196s 
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Table 10 Plant Transf~r Function Matrices for 
Distillation Column 

High Purity Design Case 

y = 0.5 xf = 0.5 w = 1.0 a= 10.0 s = 99.01 

L,V 

D,V 

L,B 

EVACS I 

EVACS II 

A.1 = -,-0~49753 .A.J = -661.14518 
d(s) = (s - ).. 1 ) (s .- Ai) 

· [0.272(.s+99. 1.0) 
G(s) = d ( ! ) . 

0.815(s+328",9) 

b
0.272(s+991.0) 

. 1 
G(s) = dCsT . 

0.815(s+328.9) 

[

0.002( s+l. 0) 1 . . 
G( s) = . s . 

d[sT O.OO~(s+0.332) 

G(s) = ~ 
Fo.817(s+660.6) 

L 405.Ss 

L
0.817(s+661.3) 

G(s) = .~· 
133 .9 s 
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-0.270(s+997 .O)J 

..,.o • 8 2 0 ( s + 3 2 6 • 9 ) 

J 
0. 002-( s+l) 

-0.005(s+0.33°2.) 

0 • 2 7 0 ( s + 9 .9 7 • 0) J 
0.820(s+326.9) 

0.668 J 
660.6(s+0.498) 

-0.668 J 

661.3(s+0.497) · 



loop 2 (bottom) 
421 {11) = -1.086 + 1.049e-0•911 + 0.037e-3•211 

4u(11) = 2.086 - 1.274e-0•911 - 0.812e-3•211 

The response for the hig~ purity separation case was, 

loop 1 (top) 
41~(11) = ~1412.6 - 81433·.0e~o. 511 + 20.4e-661.111 

4u(11) = -81411.6 + 81432.2e""'0•511 20.6e-661.111 

loop 2 (bottom) 
fi:u(11) = ~81411.6 + 8.1349. 7e-0•511 + 61.9e-·661.111 

!122(11) = 81412.6 - 81349.9e-0•511 - 62.7e-661 •
1

11 

(4.22) 

These responses are plotted in Figures 35a-b,c-d, respec.tively. In 

the low purity separation, the interaction within this structure i.s 

significant, and it becomes enormous in the high purity case. In 

both design cases~ the controllers fight each other. 

The time response for the D, V structure's low purity 

separation design case is shown below, 

loop 1 (top) 
411<11) • 0.739 - 0.746e~o. 911 + 0.007e-3•211 

412<11) = 0.261 - 0.029e-0•911 - 0.232e-3•
2

11 

loop 2 (bottom) 
421<11) ~ 0.261 - 0.252e-0•911 - 0.009e-3~211 

422<11~ = 0.739 + 0.027e-0•911 - 0.766e-3•
2

11 

The time response for the h_igh purity case was, 
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loop 1 (top) 
A11Cq) = 0.502 - 0.502e-o. 5q 

(4.24) 

A12~q) = 0.498 ~ 0.25le-0•5~ - 0.247e~66l~lq 

loop 2 (bottom) 
A21Cq) = 0.498 -·0.498e-o. 5q 

A22(q) = 0.502 + 0.250e~o. 5q - 0.752e-661.lq 

These responses are plotted in Figures 36a-b,c:-d, respectively. 

The interaction ·in the low purity cas·e is tolerable, but in the 

high purity case both controllers give ess~ntially the same steady­

state contributions to the system ·outputs. Thus, one would want to 

decouple t.his system, if possible. 

The low purity separ11tion time response for the L,B structure 

is plotted in Figures 37a-b, and is shown below, 

1 oop 1 ( top·) 
A11(q) = 0.404 - 0.044e-o. 9q - 0.360e~3· 2q 

(4.25) 

A
12

(q} = 0.596 - 0.73le-o. 9q + 0.135e-3.211 

loop 2 (bottom) 
A21Cg) ~ 0.596 + 0.022e-o. 9q - 0.6J8e-3.2q 

A22Cq) = 0.404 - 0.247e-0. 9q - 0.157e-3~2q 

The high purity separ.ation time response is shown below, and is 

plotted in Figures 37c-d. 

loop 1 (top) . 
A11 (q) = 0.498 - 0.25le-0. 5q - 0.247e-661 •1q 

(4.26) 

A12 (q) = 0.502 - 0.502e 
-0.Sq 
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loop 2 (bottom) 
Au(11) = 0.502 + 0.250e-0· 51\ - 0.752e""'661.l11 

A,,(11) = 0.498 - 0.498e-O.S11 

As can be seen, the intetacting controller's contribution is 

greater than the principle c_ontroller' s contrib.uti-on in all cases. 

This is totally unacceptable. 

The time respons.e for the EVaCS l low purity separation case 

is shown below. 

loop 1 (slow) 
A11<11) = 1.6 - 0.990e~o. 911 - O.OlOe-3•2

1\ 

Au(11) = 0.0 

loop. 2 (fast) 
A,1<11) = 0.024e-0•91\ - 0.024e-3

•
2

1\ 

A,1(11) = 1.0 - 0.034e-0•91\ ~ 0.966e-3
•
2

~ 

The high purity separation time response was, 

loop 2 (fas.t) 
A2.1(11) = 0.0 

(4.27) 

(4. 28) 

These responses are plotted in Figures 38a-b,c-d, respectively. 

This analysis shows us three significant points. The first is that 
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there is no steady-state interaction in the structure for either 

design case. Also, their is essentially no dynamic interaction in 

the low purity separation, and none at all in the high purity 

separation. Finally, we see conclusively that the slow loop's 

response. is strictly associated with the slow mode .of ~he system, 

while the fast loop's ·response is strict~y associated with the fast 

mode of the system. 

The time response for the EVaCS II structure's low purity 

separation case is shown below and plotted in Figures 39a-b. 

loop 1 (slow) 
411{q) = 1.0 - 1.002e-o. 9q + 0.002e-

3
•
2

q 

(4.29) 

loop 2" (fast) 
4J1{q) = - 0.007e-0· 9~ + 0.007e-

3
•
2

q 

4Jl(q) = 1.0 + O.OlOe-0. 9q ~ 1.010e-
3

•
2

q 

The time response for the high purity separation is shown below and 

plotted in Figures 39c-d. 

loo.p 1 ( slow) 
411 (q) = 1~0 - 1.0e-O.Sq 

loop 2 (top) 
4u(q) = 0.0 

433 (q) = 1.0 

(4. 30) 

_ 1.0e-661.lq 
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The remarks made for the EVaCS I system apply here, al so. In 

essence, we have shown that both of the EVaCS str1,1ctures g_ive us 

our modal control structure for the process. At this point·, the 

reader should recall how easily these structures were ~ynthesited. 

The dynamic relative gain array analysis as done by McAvoy 

[17] has been described previou's.ly. The forthcoming analyses were 

done by calculating ).(iw) and the appropriate A(i.). The 

interpretation of ).( iw) gives us a measure of the interaction in. 

the system when one loop has a natural fre~uency widely sepBrated 

from the other loop's natural frequency. The interpretation of 

A(i.) gives a measure of the interaction when both loopJ are 

identical. 

Bode plots of i.( iw) from the L, V structur·e are shown in 

Figures· 40a-b fo_r both de sign cases, respectively. The size of ). 

is quite large, indicating that the interaction within the system 

is quite significant when the loop speeds are widely separated. 

This situation would arise when the two loops had reset times that 

were of different orders of magnitude. The respon·se of the slow 

loop, i.e. the loop wi:th the small reset time., would be very 

sluggish due to the loop's de·creased gain. This is especially true 

in the high purity separation. Its phase angle, as measured 
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,'.,J 
'\' .,,. clockwise from the positive real axis, would be decreased due to 

the interacdon. These two effects would tend to stabalize the 

slow loop. 

Bode plots of A(X) (or the case ~here the lbops are identical 

and lxl ) 1 are shown in Figures 40c-d for the two design cases. 

These plots show that our responses would be highly oscillatory due 

to the increased loop gains. The speed of response of the loops 

would not be affected very much. Thus, we would expect to have to 

decrease our controller gains from the·ir SISO settings when both 

loops are clo~ed in this sittiation. 

The X( iw) froni the -D, V structure are shown in Figures 41a-b 

for the respective design cases. These plots show that when the 

loops have widely sepa_rated natural frequencies, the slow loop in 

the system will exhibit oscillatory behavior. In the low .purity 

separation, the slow .l(!op' s speed of response will not be affected~ 

In the high purity separation, the speed of response could be 

increased or decreased by the interaction depending upon the slow 

loop's tuning. 

could exist. 

This seems to imply than an optimum reset time 

Figures 41c-d show Bode plots 9f A(X) for the situation where 

127 



both loops are identical in the D, V structure and Ill < 1. These 

plots show that both loops would exhibit oscillatory responses due 

to the int_eraction. The loop speed of responses would not be 

affected since the interaction phase contribution is negligible. 

Thus, we would expect to have to decrease our controller gains in 

the interacting- enviroment. 

Figures 42a-b show Bode plots of )..( iw) from the L,·B structure 

for the respective design cases. These plots show that even in 

this be•t case analysis where the loop speeds are widely separated, 

the slow loop's response would be highly oscillatory. In the low 

purity- separation, the slow loop's speed. of response would be 

decreased. In the high purity separation, the slow loop's speed of 

response could be decreased or in~reased depending upon the 

controller tuning. Preferably, the slow loop would have a: low 

reset time so that its natural frequency would be low enough to 

fall in that region· where the interaction's contribution to the 

phase angle wou~d- be favorable, i.e. in that regi_on where the 

interactive phase ·angle is negative. In saying th;is, we assume 

that the sluggish response that the loop would exhibit in its SISO· 

envirom(lnt° would be improved enough due to the interaction in: the 

MIMO enviroment so as to warrant tuning it as such. 
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Bode plots o.f AO..) for the ·i;, B structure where both loops are 

identical and IAI < 1 are shown in Figures 42c-d fo.r the respective 

design cases. The analysis doesn't change much from the analysis 

given for this system in the situation where the loop speeds are 

widely separated. Thus, we conclude that this· control structure is 

poor all the way around. 

Bode plots of ).(iw) are shown in Figures 43a-b for EVaCS I and 

44a-b for EVaCS II for respective design cases. These plots ~how 

conclusiv~ly that ~hen the loops ~peeds are widely separated, one 

may tune the loops in these structures independently as the 

interaction is negligibl_e. This is a very desirable thing to be 

able to do when dealing with multivariable control structures. 

Figures 43c-d show the plots of A().) for EVaCS I in the 

situation where both loops are identical and ll I < 1. This 

situatiori would arise whert the fast loop was tune~ such that it had 

a large amount of integral action relative to the slow loop. As 

mentioned earlier, one definitely would not want to tune the system 

in this manner. Assmning one did anyway, we would expect the loops 

to exhibit oscillatory responses with the same speed of ·response as 

in their SISO enviroments. 
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Figures 44c-d show the plots of a(A.) for EVaCS II in the 

situation where both loops are identical and I l I > 1. This would 

occur when the fast loop had a smal_ler reset time tha.n the slow 

loop. These plots show that we would essentially have no 

interaction within this structure in either of the two design 

cases. Considering the fact that this is our worst case analysis, 

the EVacs· techniqti:e becomes more and more appealing. 

The next method used to ana~yze the interaction in these 

systems was the inverse Nyquist array, which has been described 

previously. This forthcoming analysis plots the diagonal elements 

of the inverse of our open-loop transfer function mat~ii: and uses 

the system's Eershgorin discs to gain in$ight into the magnitude of 

the loov interaction. 

INA plpts with column Gershgorin discs are shown in Figures 

45a-d for the L, V structure in the two de sign cases. In· the low 

purity separation, this system is column dominant, but there sti.11 

is a fair amount of interaction. This structure is not column 

dominant, nor was it :tow dominant, in the high purity separation. 

Notice the reciprocal of the e.ffective steady-state gain in the 

high purity separation. As this number is quite large, the 

effective loop process gains are quite small. Thus, we would 
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expect control difficul ti_es in this situation. 

INA plots with column Gershgorin discs are shown in Figures 

46a-d for the D, V structure in .the two design cases. This system 

is not column dominant in either separa~ion case due to the 

excessive interaction of the bottom loop with the top loop. The 

system was not row domina~t for the same reason. Thus, this system 

would pose control difficulties, especially in the high purity 

separation, since t_he bottom loop's prqcess gain is small. Also, 

when one considers that perfect level control in tlie ac.cumulator 

was assumed in deriv.ing the model, this structure becomes even 1.ess 

desirable as the top loop's performance would be degraded in 

reality·. 

INA plots with column. Gershgorin discs are shown in Figures 

47a-d ·ror the L,B structure in the two design cases. This system 

is not column dominant due to the excessive interaction of the top 

loop with the bottom loop. Neither was the system row dominant. 

We would expect control difficulties in the high p_urity separa~ion, 

_especially, due to the loop interaction _and the small process gain 

in the top loop. Also, when one considers that perfect level 

control in the sump was assumed in deriving the model, this 

structure becomes even less desirable as the bottom loop's 
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performance would be degraded in reality. 

Figures 48a-d show INA plots with column Gershgorin discs for 

the EVaCS I structure in the two design cases. This system is very 

column dominant. Although there seems to be some rather 

significant high frequency interference in the slow loop from -the 

fast loot in the hig~ purity se~aration, technically speaking this 

is not ter~ed interactlon as lt is only one-way. Note the 

effective process gains in the loops. These are :not small in 

either· of the design cases. Thus, we would expect better controi 

from this structure than found in the energy balance scheme or 

either of the material balance schemes. 

Figures 49a-d sho~ INA plots with column Gershgorin discs for 

the EVaCS II structure in the two design cases. This EVaCS 

structure is very column dominant, also. There is even less 

interaction in this structure than was present in the EVaCS I 

structure. Notice how the sensitivity of the- slow loop's 

controlled variable to its manipulated variable actually increases 

as we go from the low purity separation tb the high purity 

separation, as was the case in -the EVaCS I structure. All ·in all, 

we would expect good control from this structure when compared to 

the energy balance scheme and the material bala_nce schemes. 
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The final method used to analyze the interaction within these 

structures was MacFarlane's [15] characteristic loci. This method 

has been described in detail previously. By looking at the angles 

between the standard basis vectors and the eigenvectors of the 

open-loop transfer function matrix, we gain insight into the 

magnitude of the interactions. A diagonal non-interacting system 

would have eigenvectors that were perfectly aligned with the basis 

vectors. 

Plots of the interaction angles for the L,V structure in the 

two design cases are shown in Figures 50a-b. These plots show that 

the interaction is significant in the low purity separation case, 

especially at high frequencies. Likewise, it is significant for 

all frequencies in the high purity separation. Figures Sla-b show 

the interaction angles for the D, V structure in the two de sign 

cases. These plots show that the interaction is significant and 

becomes more so at high frequencies. The reason one of these 

angles is zero in the high purity separation is due to the fact 

that the bottom loop is essentially not functioning because of its 

small process gain. When one considers the fact that perfect level 

control has been assumed in these calculations and that in reality 

the top loop would be less functional than shown, this structure 

becomes even less desirable. The interaction angles for the L,B 
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structure in the two design cases are shown in Figures 52a-b. Here 

also, the interaction is significant in both designs. The reason 

why one of these angles is zero in the high purity separati~n is 

again due tp the fact that one of the loops is essentially not 

functioning. In this structure, i.e. the L,B ·structure, the 'top 

loop is the non-functioning loop. 

Figures 53a-b· and 54a,-b show the in.teraction angles for the 

EVaCS I and EVaCS II structures in the different separation cases. 

In all of these plots, one angle starts at zero and goes to some 

non~zero value at high frequencies, while the other angle starts at 

some non-zero value and goes to zero at high frequencies. Only for 

a limited frequency range are both angles significantly different 

from zero. Even in this frequency range, the angles are reasonably 

small which indi.cat.es that the interaction is small. Recall from a 

previous discussion th11t small angles do not necessarily mean 

minimal inter;i.ction. The reason that. we can say that in this case 

is that all of our previous analyses have confirmed that the 

interaction is minimal. At the low and high frequeri~ies where one 

angle is zero, we only have one-way interference, not interaction. 

In order to allow the structures to exhibit unstable behavior, 

it was decided to incorporate analyzer dead times into the various 
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control systems. A dead time of 0.05 dimensionless time units was 

used to represent the analyzer dynamics. This corresponded to 

approximateiy 5% of the slQwest time ·constant in the low purity 

separation case, and 2.5% of the same in the high purity separation 

case. The·se analyzer times were analogous to five minutes for a 

two hour column time constant in the low purity separation, and 3 

minutes for the same column time constant in the high pu~ity 

separation. The analyzer dynamics were incorporated into the 

systems simply by mul tiply_ing the various plant transfer function 

matrices by a matrix of. diag[e'-0,05sl. Using these matrices, gain 

spaces were calculated for the various structures, as de scribed 

previously. 

The gain spaces for the L,V structure are showri -in Figures 

55a-b for the respective design cases, while the INA plots used for 

the gain space approximations are ·shown- in Figures 56a,-d. Column 

Gershgorin discs are used in these plots. This system is dominant 

only in the low purity separation. The shape -of the gain spaces 

confirm that the interaction in the structure is significint, 

especially bi the high purity separation. The gain spaces for the 

D,V structure are shown in Figures 57a-b, while the INA plots us~d 

to approximate the gain spaces are shown in Figures 58a.,...d. Column 

discs were used in these plots. in the low purity separation, -while 
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row discs were used in, the high ·purity separation. This system is 

not column dominant, nor was it row dominant. Note the shape of 

the gain space in the high purity separation. This confirms the 

previous assertion that th~ bottom loop in this system is 

essentially non-functional. The gain spaces for the L,B s~ructure 

are shown in Figures 59a-b for the respective pesign cases. INA 

plots used to approximate the gain spaces are shown in Figures 60a­

d. Column discs are used in th,e low purity separation, while row 

discs are used in the high purity separation. This system was 

neither row nor column. dominant, either. Again, note the shape of 

the gain space in the high purity sepal'."a tion. This confirms that 

the top loop in this structure is essentia.lly not functioning. 

Gain space plots for the EVaCS I structure are shown in 

Figures 61a-b. The INA plots with column discs that. were used to 

approximate the ga-j.n spaces are shown in Figures 62a...,.d. This 

structure is strongly column dominant, thus the ·area of uncertainty 

in the gain spa.ce is sharply reduced. Gain space plots for t~e 

EVaCS II structure are shown in Figures 63a-b, while the INA plots 

used to approximate the gain spaces are shown in Figures 64a-d. 

These INA plots were made us·ing column discs, too. This structure 

is even more strongly column dominant than the EVaCS I structure. 

The gain spaces of both structures show once again that the 
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interaction is minimal. 

1'.he~e analyses have shown that using. extensive material 

concepts one can synthesize two control structures which have zero 

steady-state interaction and minimal dynamic interaction for this 

process. The reader should recall the ease with which t~ese 

structures were synthesized .• Both structures clearly have more 

favorable control characteristics than the conventional schemes. 

As to which EVaCS structure is best s_uite"d for our particular 

designs, the angle calculations suggest that the EVaCS II structure 

is hvorable ·over the EVaCS I structure. This seems to be 

confirmed by the various other analyses presen,ted here·. 
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Chapter 5 

Tuning the EVaCS Structures 

We have Just completed a fairly exhaustive analys.is of the 

interaction in the control structures synthesized by the EVaCS 

technique. In doing the analysis, we saw that. we can tune the 

principal loops independent of one another as long as we keep the 

loop sp~eds separated to some extent. The forthcoming discussion 

attempts to gain insight into the closed-loop behavior of the 

indiviual ·loops. Also, we attempt to determine whether or not we 

need to include integral ~ction in the controller~. and if so, the 

extent to which it must be incorporated. 

Referdng to tabies .3-4 and tables 9-10, we see that all of 

the principal transfer functions of the various EVaCS ·structures 

have the fol lowing form, 

G( s) 
K(s + z) (5.1) 

For the purposes of this discussion, we label Pf as the eigenvalue 

of the fast. mode .of the system and p
8 

as the ·eigenvalue of the slow 

mode of the system. 'nie fast .loop in the structures has a zero 

appro:dm~tely equal to the slow eige.nval ue, w:µile the slow loop in 

the structures has a zero approximately equal to the fast 

eigenvalue. We will label the zero of the fast loop zf and that of 

the slow loop z 8 • 
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Using a root loc-qs analysis, we should be able to gain some 

insight into the performance of the indiviual loops. We will use 

the form of the transfer function shown in equation (5.1). Notice 

how in the EYaCS I structures both zs and zf are bounded by Ps and 

Pf• as seen in tables 3-4 and 9-10. The EVaCS II structures' ZS 

and zf lie outside the bounds s·et by Ps. and Pf• This is a key 

point in assessing the differences between the loops in the two 

structures. 

Figure 65 shows root loci plots of the resulting open-loop 

transfer function for the loops in the EVaCS I structure when 

proportional-only controllers are used. Immediately, we notice 

that these controllers will not exhibit oscillatory responses. 

Looking at the plot for the fast loop, it seems that it might not 

be as fast as the slow loop when the loops .are qlosed due to its 

zero blocking the -movement of the slow eigenvalue down the negative 

real axis. This is a bit ·perplexing at first, but recall .that the 

fast loop's response is due to the fast mode which means we need 

only look a.t the position of Pf• Thus, neglecting interaction, we 

can see that our fast loop gets· faster as we increase our gain. 

Likewise, we see that we can improve the speed of the ilow l~op as 

its response is due to the position of the :slow eigenvalue. The 

speed of the slow mode approaches that of the fast mode in its open 
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S\_OW LOOP 

FAST LOOP 

Fig. 65 Root Loci Plots for EVaCS I Loop~ ·with P-'Only .Controllers 

loop enviroment as we increase our controller gain. In the 

diff i!:ult control situations, such as a high recycle rate in i 

reactor system or a difficult separation in a distillation column, 

the eigenvalues are widely separated. Thus, the improvement in the 

speed of the slow loop could be significant. 

Root loci plots are shown in figure 66 for the EVa.CS II 

principal loops using proportional-only controllers. The slow loop 

can exhibit os.cillatory behavior in this system. If there was any 

interaction of the 

1igni(icant affect 

slow loop with the fast, lt might have a 

on the fast. loop's response due to the 

confluency of the eigenvalues. This analysis is really not capable 
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SLOW LOOP 

FAST LOOP 

Fig. 66 Root Loci Plots for EVaCS II Loops with P-Only Controllers 

of telling us. what would happen in this situation. Anyway, we have 

shown that the interaction of the slow loop with the fa~t is 

minimal. The fast loop in this situation just becomes that much 

faster without exhibiting oscillatory behavior. 

We could also employ proportional-integral controllers in 

these structures. In this case, we have a total of four cas~s to 

assess for each of the loops. Figures 67a-d show the v~tious 

generalized root loci plots in the order of increasing integral 

action (decreasing reset time) for the loops in the EVaCS I 

structure. We see that the integrl1 action has_ added an additional 

aode to the system. For the. slow loop, only plots a,b and d are 
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worth analyzing as it is doubtful that one would choose a reset 

time that would cause the integrd zero to lie within that segment 

of the negative real axis bounded by Pf and Z·s· Likewise, only 

plots a, c and d are worth analyzing for the fast loop due to a 

simila~ rationale. In these diagrams, we see that we can have a 

slight amount of intejral attion in the slow loop and still have a 

non-oscillatory response... As we increase our integral action, our 

slow mode becomes confluent with the integral mode and oscillatory 

behavior results. For the fast loop, we can have a small amount of 

integral action a.nd still remain non-oscillatory. As we decrease 

the reset time, our fast eigenvalue remains real, as opposed to 

complex, so we might not see too much c;,sdllation in the loop since 

it is the slow mode that becomes confluent with the integral mode. 

If we ever have a tremendous amount of int~gral action, as the case 

shOlin in plot d, then the speed of the fast loop will be severely 

affected. Here, we would expect to see very poor performance ·due 

to the aforementioned 'fact and, assuming the slow loop does not 

have a significan·t amount of integral action, due to the subsequent 

increase in the interaction. 

Figures 68a-c show the root loci plots in order of incteasing 

integral action that would be applicable to t·he slow loop in the 

EVaCS II str.uctu.re. Here, we see that the slow loop. might exhibit 
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oscillatory responses when a controller with integral action is 

used regardless .of the reset time. For a •light amount of integral 

action, we might expect to see a bit more interaction of. the slow 

loop with the fast loop as the two syste"m eigenvalues become 

confluent. In cases b and c, the slow mode becomes confluent with 

the integral mode. Thus, in ord.er to keep the slow loop ·in this 

system from being oscillatory· we would have to use a ~mall 

controller gain. _Figures 69a-c show the root loc.i plots for the 

fast loop in the EVaCS II structu.re. Here, we see that this loop 

would not exhibit oscill~tory behavior until a very small reset 

time was employed in the controller. So, wh.ile the slow loop in 

this structure might have some difficulties depending upon the 

tuning, the fast loop will have pretty respectable responses. 

In determining whether or not to use proportional or 

proportional-j.ntegral controllers, one. very big consideration is 

the eliminaUon of off-set. In general, fast loops tend to have 

more off-set than slow loops, everything else be in~ the same. On 

page 54 of his book, Rosenbrock [6] describes a quantitative way of 

determining the off-set that a loop would have via the inverse 

Nyquist plot of that loop's open-loop transfer function. Referring 

to fi-ure 70, the off-set is. the ratio of OA to CA, where C is the 

value ot the controller gain. 
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Fig. 70 Determining Off-Set via the Inverse Nyquist Plot 

Referring to the INA diagrams for the EVaCS structures in the 

stirred-tanks in series proces.s, we see that the various loops 

would exhibit little off-set when using proportional controllers as 

the plots statt very close to the origin. It's interesting to note 

that whenever a loop· has il).tegral action incorporated into it, .its 

invers.e Nyquist diagram begins at the origin. Referring to the INA 

plots for the EVaCS structures in the clistillation process, we see 

that both loops would ·have little off-set in the low purity 

separa tioµ. In the high purity .separation, the slow loop 

essentially has no off-set while the fast loop has a significant 

amount of of.f-se·t. This is due to the fact that the fast l.oop is 

really fast in, this case. Recall from a previous discussion that 
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the faster a loop is, the more off-set it tends to have. Thus, we 

would want some amount of integral action in the fast loop. In 

general, we would want some limited amount of integral act ion in 

both controllers as this would be necessary in order for the actual 

intensive variables that are being controlled to reach their set­

points After a disturbanc~ had been injected into the system. 

In order to see if we could tune the loops in the EVaCS 

structures independent of one another and stiU have a stable 

system, it was decided to calculate Ziegler-Nichols [26] settings 

for proportional-integral controllers to be used in the various 

structures we have assessed in the distillation process' ;high 

purity design case. The ultimate gains and ultimate frequencies 

required to calcul'ate the various settings are shown in table 11, 

while the actual settings employed in the various structures are 

shown in tabh 12. Characteristic loci stability plots of the 

resulting L, V structure's open.,..1oop transfer function matrix's 

eigenvalues are shown in Figure 71a-b. As .seen in th·e plots, this 

structure is at the point of instability as the e.igenvaltie shown in 

Figure 7-la has a magnitude of one when its phase angle is -180 

degree~. Characteristic loci stability plots of the resulting D,V 

and L,B st~uctures are shown in ·Figure 72a-b and 72c-d, 

respectively. These plots indicate that both str.uctures ate 
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unstable. The corresponding 1tabil ity plots tor the EVa.CS l 

structure are shown in Figure 73a~b~ wiile the plots for the EVaC5 

II structure are shown in Figure 73c-d. The11e $tru.cturu ue 

clearly stable. Note that by using the Z-N tuning method, the fut 

loop Jn the EVaCS structures end up with an exorbitant &mOl!Dt of 

integral actio.n. This is contrary to the desired tuning proce.oure 

for these st~uctures as discussed pteviously. 

In order to confirm these calculations, a time domain 

simul•tion was performed. The simulation employed. an Euler. 

integration technique and was carried out to ·ten colwnn time 

constants using a step size of 1/10,000 dimensionless time units. 

The stJlte of the system. was printed from the program every .1000 

iterations giving a total of 101 points to be plotted. A feed 

composition change from. xf = 0.5 to xf = O.~ was injected into the 

system as a disturbance. 

The time domain simulation for the L,V structure is shown in 

Figure 74. This figure shows the dynamic responses of both 

terminal compositions and both manipulated variables. As· seen in 

the .plots, this structure does not re.ject the distur·bance as the 

system reaches a point :where the changes in the refl-ux rate and 

boil-up rate begin negating -each other. Also, we can see that the 
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Table 11 Ultimate Gains and Ultimate Frequ.eucie, for 

Strucutures uaed in High Purity Separation 

ku ~ ~ 

L,V 77.08 31.42 distillate 

80.43 32.73 bottoms 

D,V 77 .08 31.42 distillat~ 

900,072 .. 0.55 bottom a 

L,B 402,437 67.18 dist ill ate 

80.43 32.73 bottoms 

EVaCS I 38.85 31. 73 al OY 

1.00 60.99 fast 

EVaCS II 38.81 31.73 sl OY. 

1.00 60.99 fast 
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Table 12 Ziegler-Nichofi settings for Structures 

used in High Purity Separation 

kc 't'r loop 

L,V 35.04 0.17 distillate 

36 .56 0.16 bottoms 

D,V 35.04 0.17 dist ill ate 

409,124 9.52 bottoms 

L,B 182,926 0.08 distillate 

36.56 0.16 bottoms 

EVaCS I 17.66 0.17 slow 
0.45 0.09 fast 

EVaCS II 17.64 0.16 slow 

0.45 0.09 fast 
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controllers in this structure are not very sensitive to the errors 

in the loops as tuned since the manipulated variables are changing 

slowly. Figure 75 shows the time response for the D, V structure. 

Notice that it gives a stable response, contrary to what was 

predicted by the characteristic loci stability plots. As this 

system is highly non-linear, one plausible explanation of this is 

that the non-linearities within the process have a stabalizing 

effect on the system. Now, in saying that a stable response was 

given, attention must be drawn to the magnitude of the changes in 

the boil-up rate. It is expected that this system would be limited 

here since it is doubtful that the required boil-up could be given 

in a realistic situation. The time responses for the L,B structure 

are shown in Figure 76. Notice that it too gives a stable response 

while the characteristic loci predicted that the system is 

unstable. It is expected that this structure would encounter the 

same limitations as the D,V structure in a realistic situation as 

it is doubtful that the decrease in the column flows seen in the 

simulation could be attained. 

The time response for the EVaCS I system is shown in Figure 

77. These plots show the dynamic responses of the terminal 

compositions and the column flows. Notice how quickly the terminal 

compositions return to their set-points. Also, notice that the 
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dynamics of the column flows are much less here than seen in the 

material balance schemes. Figure 78 shows plots of the actual 

controlled .and manipulated variables used in this structure. 

Notice how the response of the total mat,rial content of the 

column, the slow loop, is faster than the response of the 

rectifying ba~ance, the fast loop. .This is due to the exorbitant 

amount of integral action given to the fast loop by the Z-N· tuning 

method. Figure 79 shows the time responses of the terminal 

compositions and column flows "for the EVaCS II syst~m. while the 

responses of its total material content (slow loop) and stripping 

balance (fast loop) are shown i_n Figure 80.. This system rejects 

the feed composition disturbance well by quickly tiririgin~ the 

terminal compositions back to their set-points with minimal dynamic 

variatiori- in the column flows. As was the case wi,th the EVaCS I 

structure, this struQture's slow loop's response is faster than the 

fast loop's response. Again, this is due to the exorbitant amount 

of integral action in the fast loop. 
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Chapter 6 

Conclusions 

A fairly large number of analyses have been completed here. 

We examined two different processes and employed two (lesigns in 

each process. The fir~t process was two stirred~tank heaters in 

s~ries connected by a recycle stream. Thi~ system approximates a 

reactor system, the recycle stream being used to increase the 

overall conversion. The first process design employed here had a 

low recycle rate while the second design had a high recycle rate. 

In both designs, the tanks were of equal volume. The second 

process examined was a two stage distillation column. Equimolal 

overflow and a saturated fee.d were assumed in modeling the system. 

The ·two design cases employed here consisted of a low purity 

separation and a high purity separation. In both de signs, the 

rectifying and stripping sections of the column had equal ~oldups. 

For each of these four vrocess designs~ the dynamic properties of 

conventional mul tivariable control. structures that might be 

typically employed in controlling the given process were compared 

to those properties of the structures synthesized by the Extensive 

Variable Controller Synth~isis technique. The comparisons made in 

this th~sis were based upon five interaction assessment techniques. 

These techniques consisted of angle calculations between the output 

coordinating vectors and the state-s~ace plant matrix's eigenrows 
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(conjugate eigenvectors) and eigenvectors, a modal analysis, the 

dynamic relative gain array analysis, the. inverse Nyquist array 

analysis, and the characteristic loci analysis. 

The conventional control structure used in the stirr.ed-tanks 

in series process controlled the indiviual tank temperatures with 

their resp~ctive heat inputs. Q1,1e of the EVaCS structures· had one 

loop that controlled the energy balanc_e of the first tank in the 

series while the other loop controlled the total energy content of 

both tanks. The other_ EVaCS structure had the same loop that 

contioll~d the total energy content while its other loo~ controlled 

the energy balance of the second tank in the series. In both 

designs and in all o.f the analyses, the two EVaCS structures proved 

themselves superior to the conventional structure. The angle 

calculations shQwed that the EVaCS structures approximate the 

process' modal control structure and do a good job of decoupling 
. . 

the process' internal ~ynami"cs .• The fact that the total enetgy 

content loop was aligned with the slow mathematical mode of the 

process while the re·spective ener-gy balance loops were aligned with 

the fast mathematical mode was seen in the modal analysis. The 

dynamic relative gain ~rray analysis showed us that th.e indiviual 

loops in the EVaCS structures could be tuned independent of one 

another· as long as the n~tural frequencies of the loops were kept 
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separat~d to some extent. The principal conclusion reached in both 

the inverse Nyquist array and characteri,tic loci analyses wu that 

the interaction within these structures is minimal. 

Three conventional control structures were assessed in the 

dist ill a tion proce. ss. The first structure was the energy balance 

scheme and the remaining two were material balance schemes. The 

first material balance scheme used the distillate flow rate to 

control the distillate's composition, while. the second material 

balance scheme used the bottoms flow- .rate to control the bottoms' 

composition. One of the EVaCS structures controlled both the 

material balance of the i;ect ifying section and the total material 

content of the column. The other EV a CS· structure th,a t was 

synthesized for this process controlled the total content of. the 

column, also, along with the material balance of the stripping 

section. In both designs an.d in all of the analyses, the two EVaCS 

structures proved themselves superior to all three of the 

conventfonal structures. In the low purity separation, the EVaCS 
. . 

structures gave very respectable approximations to the coltlllln's 

modal control structure and greatly decoupled i.ts internal 

dynamics. 
In the high purity separati_on, the structures were 

equivalent to the modal structure and both of them totally 

decoupled the cotumn's internal dynamics. In both designs, it was 
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seen in the modal analysis that ·the response of the total material 

content loop in the structures was strictly associated with the 

slow mathematical mode of the system while both of the respectiye 

material balance loops had re~ponses that were strictly'associated 

with the fast math,ematical mode of the system. The dynamic 

relative gain array analysis showed that both of the EVaCS 

structures in each of "t:~1e design cases had virtually no 

interaction, thus allowing the two loops in the~e structures to be 

tuned in their single-input, single-output enviroments. A dynamic 

simulation for these structures in the high purity separation 

design confirmed that we could tune the loops independent of. one 

another and still obtain stable closed-,foop responses that were 

satisfactory. Both the inverse Nyquist array analysis and the 

charact·eristic loci analysis ~onfirmed that the int·eraction within 

the EVaCS structures was minimal. 

The EVACS structures have proven themselves superior in terms 

of the interaction within the structur.e to the various conventional 

structures in all of the various process desig~ cases that we have 

assessed here. Not only do they minimize the i~teraction~ but they 

also have an inherent adaptive nature to them as they. are designed­

to the specifications of a given process at a given steady-state. 

This point is a plus in terms of the robustness of the system. 
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With today's computers becomin,g· ever more important in process 

control, the EVaCS technique is especially well suited to exploit 

their power. Whenever the process -is being moved to .a new steady­

state, the control engineer can easily .download some precalculat_ed 

coefficients for the various required linear combinations to adapt 

the· structure to its new enviroment. In most situations, the 

controllers in the structure can have minimal integral action to 

perform their job. As far as the indiviual loop responses are 

concei::ned, this point is very desirable as integral control ·tends 

to de grade the performance of the loop. 

We began the thesis with a discussion about the existing gap 

between control theory and process c.ontrol ap~lications. The 

current width of this gap is being sustained by a continued lack of 

understanding of the theocy on the part of current day 

practitioners. This lack of understanding is due to the complexity 

of the required mathematics relative to the training of the 

majority of process control engineers. The mathematics involved in 

the EVaCS techniq,ue are simple and are founded in concepts which 

the process control engineer can understand. 

We conclude that the EVaCS technique seems to offer a hope for 

establishing a strong foundation for bridging the current 

193 



.. 

theory/applications gap. It is going to have to be fed and cared 

for before growing up to be strong and healthy. The techni~ue does 

warrant enough attention that ·the proper precautions should be made 

to make sure it doesn't get thrown out with the wash water. 
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I. Plant Matrices and Input Matrices for Stirred-Tank Heat~rs in 

Series 

This app_endix contains the phnt matrices, A, and input 

matrices, B, for the various state-space representations of the 

control structures of interest in the stirred-tank heaters in 

series process of Chapter 3. These matrices are given for both 

design cas~s assessed in the chapter, those being the low recycle 

design and the high recycle design. 

Low Recycle Design 

IVaCS 

[-3.00000 1.00000] 
A = 

3.00000 -3.00000. 

[ 2.00000 0.00000] 
B = 

0.00000 2.00000 

EVaCS I 

[-1.50000 0.50000 

A= 
1. 50000 -4.50000 

B = 
[ 1.00000 0.00000] 

"""1,00000 4.00000 
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EVaCS II 

·A = [. -1.00000 

:;.2.00000 

0.50.000] 

-5.00000 

B = .[ 1.00000 0.00000] 

2.00000 -4.00000 

High Recycle Design 

IVaCS 

[

-6.00000 

A= 
6.00000 

[ 

2.00000. 

B = 
0 •. 00000 

4.00000]· 

-6.00000 

0.00000] 

2.00000 

EVaCS I 

[

-1.2000.0 0.20000] 

A= 
4.80000 -10.80000 

[ 

1.00000 0.00000] 

B = -4.00000 10.00000. 
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EVaCS II 

[

-1.00000 0.50000] 
A= 

-2~00000 -11.00000 

B = ·[ 1. 00000 0. 00000] 

· 2.00000 -4.00000 
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(•'. 

'l·. 

II, Plant Matrices and ln,put Matrices for Two Stage Distillation 

Colu.an 

This appendix contains the plant matricea, A, an.d input 

matrices, B, for the va·rioua state-space repre1entation1 of the 

control structures of interest in the two atage distillation 

process of Chapter 4. These matrices are given for both de1ign 

cases assessed in the chapter, those being the "low purity 

separation and the high purity separation. 

Low. Purity Separation 

L,V 

[-1.44428 1.54692 J 
A= 

0.60948 -2.72386 

[ 0.47633 -0.16841] 
B = 

0.18767 -0.53082 

D,V 

A= 
[-1.44428 1.54692 J 

0.60948 -2.72386 

[-·o.47633 0,30792 J 
B = 

-'0.18767 -0.34315 
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L,B 

[-1.44428 1.54692] 
A = 

0.60948 -2.72386 

[ 0.30792 0.16841] 
B - . -· 

-0.34315 0.53082 

EVaCS I 

[-0.94415 0.03240] 

A= 
1.627-5 8 -3.n398 

[-0.35925 0.00000] 

B = 
. 0.61929 3.16813 

EVacs· II 

[-0.91452 -0.03138 J 
A= 

0.50017 -3. 2·53 61 

B = [-0.35925 

0.19648 

0.00000] 

3 .27078 
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~igh Purity Separation 

L,V 

D,V 

L,B 

[

-164.13636 164.80443] 
A= 

493.49365 -497.50635 

-0.27048] 

-0 .81985' . ·. [

. 0.27213 

B = 
0.81487 

A = [-164.13636 164.8.0443]. 

493.49365 -497.50635 

[

-0.2.7213 
B = 

-0,81487 

0.0016SJ 

-0.00497 

A= [-~64.13636 164.80443]· 

493.49365 -4~7.50635 . 

B ·= [ 0.00165 

-0.00497 

0.27048]. 

0.81985 
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EVaCS I 

[ J -0.49191 0.00101 

A~ 247.21561 -661.14480. 

·[-0.81736 
B -

. 405.82338 

EVaCS II 

[

-0.49741 
A = 

81.47751 

[

-0.81736 
B -

133.88684 

0.00000] 

660.64271 

-0.00101] 

-661.14530 

0.00000] 

661.31078 
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ERRATA 

Due to an overlooked programming error, the inverse Nyquist 

ana1yses shown in Chapte.rs 3 and 4 have Gershgorin discs that are 

not of the type stated. Tlie two terms have been interchanged and 

one should be the other. 

As the reader may have noticed, the time domain plots of the 

dynamic responses of the structures in the two stage column's high 

purity separation are shown out tq six dimensioi;tless column time 

constants, as opposed to ten column time constants (as stated in 

the text). These simulations were actually carried out to ten .time 

constants, but no significarit changes occurred. aft~r sii time 

constants. 


	Lehigh University
	Lehigh Preserve
	1984

	On the dynamic properties of extensive variable control structures
	Louis Caston
	Recommended Citation


	tmp.1551471130.pdf.16i32

