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ABSTRACT

The purpose of this thesis was to investigate ‘the dynamic
properties, especially interaction properties, of control
structures synthesized using the Extensive Variable Comtroller
Synthesis (EVaCS) technique. The investigation was done using five
different multivariable analysis methods. These methods consisted
of angle calculations between various vectors that characterize the
dynamic properties of a control structure, a modal analysis, the
dynamic relative gain array analysis, the inverse Nyquist array
analysis, and the characteristic loci analysis. Two different

processes .were examined in the research.

The first process that was examined consisted of two stirred—
tank heaters in series connected by a recycle stream. This process
gave a simple approximation to a reactor system. Two different
designs were employed. The first design case had a low recycle
rate, while the second design case had a high recycle rate. In
both designs, the tank volumes were equal. In each of the design
cases, the two multivariable control structures synthesized by the
EVaCS technique were compared to the conventional structure that
might typically be wused in controlling this ‘process. This
conventional structure controlled the indiviual tank temperatures

using the respective energy inmputs to the tanks. In all of the

xii




o SRS 2 K

aforementioned analysis techniques and in both design cases, the
EVaCS structures proved themselves superior to the conventional
structure. Not only that, it was seen that the structures gave
good approximations to the process’ modal control structure. Also,
it was found that the indiviual loops in the structures could be

tuned independent of one another.

The second process ‘examined by this thesis was a two stage
distillation column. Here also, two different designs .were used.
The first design case was a low purity separation, while the second
design case was a high purity separation. In both designs, the
rectifying and stripping sections of the column had equal holdups.
For each design case, comparisons were made between the two EVaCS
structures and three conventional structures typically employed in
distillation control. These conventional structures were the
energy balance scheme and two material balance schemes. The first
material balance scheme used the distillate flow to control the
distillate's composition, while the other material balance scheme
used the bottoms flow to control the bpttoms"composifion. In each
of the anlysis techniques and in both designs, the EVaCS structures
proved themselves superior to the conventional structures. The
EVaCS structures gave a good approximation to the modal conmtrol

structure. for the column in the low purity separation, while in the

xiid




high purity ;eparatiou the s£¥nctnres_were the same as the modal
control structure. Also, it was seen that the loops in these
structures could be tuned independent of one another. ‘This was
confirmed by a dynamic simulation of the column in the high purity

separation.




Chapter 1

Preliminaries

1.1 Background

Feedback control has its origins in antiquity, some of ‘the

earliest applications being Ktesibios’ water clock and Philon's oil

lamp from the 3rd century B.C. [1]. Through time, as technology
advanced, the development of éﬁe control field advanced accordingly
as necessity dictated. James Watt’s steam engine (1788) gave us
the first governor for steam engines, and WW IT gave us radar=

controlled anti-aircraft guns. Naturally, the theoretical advances

From the late

in the field came with the advances in applications.

1800's to the 1930's, only scalar time response methods were

improved

available for use in analysis. With the need for
ampiifier designs came the scalar frequency response methods of
Bode and Nyquist in the 1930's. In 1956, the space program gave us
vector oriented time response methods, which are collectively known
today as state-space methods. These, in turn, gave rise to today's
state—of-the-art vector oriented frequency response methods, which

began to come about in the late 1960's [2].

It wasn't until the 1940’s when process control began to come

into existence with its introduction into chemical engineering

curricula. Both practitioners and teachers of the field were



mainly concerned with scalar frequency response methods up until
the late 1960's. Due to their lack of interest in modern methods,
8 gap began to. appear between applications in process control ‘and
theory in the control field. The growth of this gap was
accelerated with the advent of the state-space methods, and up
until recently it had continued to grow unabated. This was partly
due to a lack of suitable measurement instruments for use in
process control systems, but ‘the biggest reason was that the
chemical process industry (CPI) had no economic incentives to

invest in better controller designs [3].

Over the last decade, with ever increasing energy costs and
tighter govermment safety and enviromental regulations, industrial
processes have become highly integrated with respect to energy and
material flows, and are operating under tightly constrained high-
performance process specifications. This had led to more difficult
control_prpblems which require better control systems [4]. Even
though there exists a tremendous amount of theory in the literature
addressing control system design. most of it is not useful from a
process control practitioners point of view due to both a general
lack of understanding by the practitioner and a lack of relevant

information in the theory concerning process control systems

design.




Recently, Georgakis [5] aqghored a paper which introduced a
new intuitive approach to process control system design in which
extensive thermodynamic properties of the' process are used for the
synthesis of Extensive Variable Controller Structures (EVaCS).
This. method requires the pracfitioner to have steady-state
information and some basic knowledge of the dynamics .of the
process. It gives the control engineer a choice of control
structures, the best choice being dictated by the particular design
of the process to be controlled.. The most favorable attribute of
the EVaCS technique is that the structures it gives have zero
steady-state interaction and minimal dynamic interaction. The
implications of this are that the control loops can be tuned on
line without the use of a detailed dynamical model. ‘Furthermore,
this tuning can be done for one loop independent of the others in

the structure.

1.2 Introduction

A multivariable control system controls a-process that has two
or more outputs and two or more inputs. These processes .are termed
multiple-input, multiple-output (MIMO), as opposed to single-imput,
single-output (SISO). Due ‘to their complicated structure, MIMO
systems pose a difficulty in notation. There are two different

representations that are commonly used, the state-space and the

block diagram,
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The state-space representation employs & vector-matrix
differential 'state equation to model the dynamic behavior of the
system of interest. This model is a time-domain representation and

has the form,

1

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

where x is a nxl vector representing the state of the system at any
time t, y is a qxl vector Trepresenting the system -controlled
variables, u is a rxl vector representing the inputs to the
process, A is a nxn plant matrix, B is a nxr input matrix, and C is
a qxn output matrix. This representation, though powerful, bhas not
been fully exploited in process control applications due to the
necessity of having to describe the process as a system of first-
order, constant coefficient, ordinary differential equations. This
could prove to be quite a task if the process happens to be an
industrial-scale distillation column, for example. Also, this

representation cannot handle dead times in the system.

Figure 1 shows a generalized bloék.diagram of a multivariable

control system. This representation is in the Laplace domain. In

the figure, y is the gq-dimensional vector of the system controlled

variables, ys is the set-point vector of the controlled variables,

e is the vector of errors in the system, m is the vector of
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manipulated variables, u is the vector of system 1nppts, s
represents the system outputs, K is our nxn controller matrix, M
defines the relationships between our manipulated variables and our
system inputs, G is the matrix of transfer functions describing the
process, L is the matrix representing the relationships between our
system outputs and controlled variables, and F is a matrix
representing any measurement dynamics. The advantages of this
representation are that we can refer to transfer functions between
different inputs and outputs, with different compensators, and with

various loops open or closed [6].

Fig. 1 Generalized Block Diagram of a
Multivariable Control System

In the design of a multivariable control system, the control

engineer is faced with the task of designing controls to regulate




several variables that are outputs from the same process by
adjusting 8 set of inputs which indiviually affect more than one of
the outputs [7]. The task of designing such a system can be
separated into two phases. The first, and most important, is the
synthesis of the control system’s structure, while the second phase

consists of toning the controllers employed in the structure.

In establishing the structufé'of the control system, there are

five questions that need to be answered [8], as shown below.

1. What are the control objectives?
The designer must decide which of the system variables, be
they inputs or outputs, should be controlled at their desired
levels,

2. What outputs should be measured?
The outputs that are measured should give enough information
about the process such that the state of the system is
determinant. Note that today'’s technology is not sufficient
to allow for the measurement of all possible system outputs.

3. VWhat inputs- should be measured?
If an advanced structure such as feedforward, adaptive or
inferential control is to be implemented, the control
engineer must decide which of the system's inputs are most
apt to supply the mnecessary information for the given
structure. Note that not all system inputs are measureable,
either,

4. What inputs should be manipulated?
This selection entails -determining which inputs have
sufficiently strong, direct and fast effects on the system
outputs. '

5. What will be the configuration of the control loops?
This question deals with establishing linear combinations,
generally speaking, of system outputs to be wused as
controlled variables and linear combinations of system inputs




to serve as manipulated variables. Having established these,
the control engineer must then pair them in some appropriate
fashion. For a given controlled variable, the paired
manipulated variable should have the strongest ‘possible
effect on the given controlled variable relative to ‘the other
manipulated variables.

Having established the control system’'s structure, the

designer may now proceed to the tuning phase. In most applications

in the CPI, three term controllérs known as proportional-integral-

derivative controllers are used. These controllers act on the

error present in a given loop (i.e. the difference in the

controlled variable's desired value, as dictated by its set-point,

and its actual value) and adjust the appropriate manipulated

variable accordingly so as to eliminate the error. The tuning

procedure entails weighting the various terms and establishing the

controller’'s sensitivity to the error.

A well designed control system ‘should be non-interacting,

stable with high integrify, robust, and have good time-domain

performance.

In most cases of practical interest, it will not be

possible to fully realize all of these attributes. At this point,

it would be appropriate to see from what multivariable control

concepts these attributes derive from. We employed the concepts of

interaction, stability, integrity, robustness, and time domain

performance.




A block diagram of a simplified 2x2 interacting control system

is shown in figure 2.

In the figure, mj.fépresents-inpnt ir ¥y

represents. output'i.-yz'représents the set-point for output i, ey

represents the error in loop k, is the transfer function

relating output i to input j, and-bk represents the controller for

loop k. Now, assuming that g,; # O # g,;, -then this figure shows

that we cannot adjust m, without affecting both y, and y,. We can

say the same about adjusting m,, ‘also. This phenomenon is termed

interaction -and it can be very detrimental to the performance of

the control system if not addressed properly. The concept of

stability deals with that characteristic of the control system

which determines whether'qr not our outputs will remain bounded for

a given bounded

input in either the open-loop or closed-loop

system. If we want to assess the stability of the system with some

loops closed and others open, we are dealing with the integrity of

the system. A system with high integrity is stable for all

combinations of open/closed loops. The concept of robustness deals

with how the properties of our control system change as the process

characteristics change due to variations in the steady-state

operating point, etc. The greater this change can be before the

control engineer must adjust the tuning of the controllers, the

more robust the system. Finally, good time domain performance

entails responding quickly to set-point changes and rapidly
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Fig. 2 Block Diagram of a 2x2 Interacting Control System

dampening any disturbances that enter the system.

Rl TV

1.3 Modal Control and Extensive Variable Control Structures

In 1962, H. H. Rosenbrock [3] published a paper that attempted

to expose the reasons for the existence of the control

theory/process control applications gap as it existed then. In the

paper, he established the foundation for what is known today as

modal control. This foundation has since been built wupon by

several authors [9,10]. The essence of the technigue is that good

control, good be{ng defined as non-interacting with sstisfactory

closed-loop responses, can be achieved by the proper selection of

the control system's controlled variables. The theory of the




technique is based upon the state-space representation, and this
has been its major drawback in process control applicationms, as
described previously. Most applications of the technique have been

in the control of mechanical systems (airplanes, helicopters, etc.)

A simplified summary of the mathématics of modal control will
be shown below. The interested reader can find an extensive
treatment of the subject in [10]. We begin. with the state-space

description of our system.

Ax(t) + Bu(t) (1.1)

x(t)

Cx(t) (1.2)

y(t)

where the symbols have been defined previously. For simplicity, we
assume that all of our states are accessible such that y = x and
that A and B are nxn. Modal control entails selecting some q
linear combinations of measurements to 'serve as our vector of
controlled variables., The linear combinations dictated by this

technique correspond to the eigenrows (conjugate eigenvectors) \£}

of the plant matrix A, This choice of qutpup coordination vectors
will give a control system that affects only those modes associated
with the vy and as a result allows the control engineer to choose
the closed-loop time constant he desires through the proper
selection of that loop's controller gain. Let’'s make the following

transformation,

10
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(1.3)

z = Vx

where z is our controlled vector and V is a nxn matrix whose rows

are the eigenrows of the plant matrix. Substituting equation

(1.3) into equation (1.1), we have,

2(t) = 0z(t) + Pu(t) (1.4)

where O is a diagonal matrix of the plant matrix's eigenvalues and

P is known as the mode-controllability matrix, which is equal to

the product VB, Equation (1.4) shows that the internal dynamics of

the process have been decoupled. The implication of this is that

essentially non-interacting control is right around the corner.

Now, this is a helpful transformation, but in applications one

usually does not have the vi as an accurate state—space description

of a process is difficult to come by. Even if this description was

available, it is doubtful that the output coordination vectors

would be established using the v, alone since we cannot model a

chemical process perféctly, especially using a state-space

description, and the v, can be semsitive to any errors present in-

the model. The concepts employed in the EVaCS method allow for the

selection of output vectors (termed candidate physical modes) which

have intuitive physical appeal and which approximate the vy (termed

mathematical modes). What do we mean by intuitive physical appeal?

The candidate physical modes can be interpreted as representing



:
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some extensive thermodynamic quaéfity that is characteristic of the
system, Some example extensive qpantities are total energy
content, total material content, and ‘total reaction  rate. The-
method also allows for the selection of input coordination vectors
to be used in defining the relationships between the control
structure’s manipulated variables and the inputs to the process.
The appropriate paiiing of the resultant controlled and manipulated
variables is obvious when examined in light of the physical

interpretation of the chosen physical modes.

In general, the physical modes are found from steady-state
balances around the process to be controlled. Some basic knowledge
of the dynamics of the process is also required. Actual examples
will best serve the purpose of helping the interested reader to see
how these physical modes are obtained as understanding the comncepts

of the EVaCS technique is the key to successful applications,

1.4 Thesis ObjeCtives

The purpose of this ‘thesis is to demonstrate that the
extensive variable concepts used in the EVaCS method allow for the
design of multivariable control structures which have minimal
interaction characteristics. This is done by examining two
different simplified processes typically encountered in the CPI,

one being two stirred-tank heaters in series connected with recycle

12
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and the other being a two-stage distillation column. The

interaction characteristics of the conventional control systems for

these processes are compared to those for the. structures obtaimed

EVaCS technique. The comparisons are made using a

using the

variety of techniques which try to quantify the interaction in a

These interaction assessment

given multivariable control system.

techniques were drawn from both the state-space methods and the

vector oriented frequency response methods.
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Chapter 2

Methods of Analysis

As stated earlier, the EVaCS method is a conceptual design

technique. Using the concept of extensive variables, one can

synthesize a number of control structures for a given process, all

of which have zero steady-state interaction. This has been shown

to be true for a variety of simplified processes by Georgakis [5].

This thesis takes two of the processes examined by Georgakis and

assesses the interaction present in the control structures on a

dynamic basis.

How does one go about trying to quantify the interaction in a

control system? This has been an active area of research for the

last decade. Most of the tools that are popular today came from

work done by Rijnsdorp [11] and Bristol [12] in 1965 and 1966,

respectively, Other more mathematically involved techniques have

since been introduced by Tung and Edgar [13], Rosenbrock [14],

MacFarlane [15], and Gagnepain and Seborg [16].

This thesis looks at five different ways of assessing the

interaction in the control structures of interest to it. The first

method of evaluating the structures consists of -calculating the

angles between the vectors representing the mathematical modes and




those representing the output coordination vectors. These angles

are then interpreted in such a way that shows how close the giVen

control structure is to the modal control structure for the process
)

of interest and how well it decouples the process’ internal

dynamics. The second method used is a modal analysis as suggested
by Tung and Edgar [13]. This technique runs along the same lines
as the first in that it quantitatively determines how the various

outputs are aligned to the modes of the system. The third analysis

technique used is McAvoy's dynamic relative gain array [17]. This

technique is just the dynamic extemsion of Bristol’s steady-state

interaction analysis [12]. The fourth method used is the inverse

BT e O T

Nyquist array as proposed by Rosenbrock [14], and the final

il

technique used is MacFarlane's characteristic loci [15]. The next

few sections will be devoted to an in-depth discussion of each

method.

2.1 Angle Calculations

By using the state-space representation, one may determine the

necessary controlled and manipulated variables and the required
pairing ‘in order to have a non-interacting control structure.

Let's assume that an accurate state-space representation with no

modeling errors is available for the process of interest.

x(t) = Ax(t) + Bu(t)



For the sake of simplicity, we assume that .all of our states are

measurable, and that A and B are nxn. Now, the plant matrix and

the input matrix are matrices of constant real coefficients for a

given steady-state operating point, and they characterize the

dynamic properties of the process. In this equation, we see two

sources for interaction. The first source is the plant matrix, A.

This interaction is 'internal to the process. The second source is

the input matrix, B. This interaction arises when we close the

loops of our .control system and is due to the fact that a given

input usually affects more than one output. The modal control

structure transformation, as shown in equation (1.3) in the

previous

section, ‘eliminates the internal system’s interaction.

This is the most important of the two types of interaction, as was

shown by Ellis and White [9]. By making the modal transformation,

one gets the system shown below.

z(t) = 0z(t) + Pu(t)

where z is our vector of system controlled variables, u is our

vector of ‘system inputs, 0 is a diagonal matrix of the plant

matrix's eigenvalues, and P is known as the mode-controllability

matrix, Now, if we go one step further and make the following

transformation,

m(t) = Pu(t)




we get the system shown below.

(2.3)

z(t) = 0z(t) + m(t)

Equation (2,2) ‘defines our manipulated vector for us. EBach

manipulated variable is & linear combination of system inputs as

dictated by the rows of the mode-controllability matrix.

Equation

(2.3) tells us: how we would want to pair our controlled and

manipulated variables, i.,e. z; to m. ‘Note that mj would have no

effect on Zy (1 # §). As 0 is a diagonal matrix, this equation

shows that we have totally removed all interaction within the

system, Now, 1let’s close our loops using proportional-only

controllers,

m(t) = K(z% - z) (2.4)

Here K 'is a diagonal matrix of positive controller geins, and z% is

the vector of set-points. Substituting equation (2.4) into

equation (2.3) and rearranging, we get,

z2(t) = (@ - K)z(t) + Kz° (2.5)

Equation (2.5) shows. that we can haye closed-loop eigenvalues whose

values are at our discretion through the proper selection of our

controller gains, and that our closed-loop system is strictly non-

interacting since O and K are diagonal. Now, it must be noted that

the difficult processes to control ‘have singular P matrices, thus



one can only hope to eliminate the internal interaction in these

systems [3].

Using- this analysis, we can establish a framework that allows
us to see how well a given control structure approximates the modal
control structure for the process. Again, we begin with the state-
space representation as shown in equation (2.1). Let'’s make the

following transformations,

z = Ex (2.6)
= QVx
¥Q 'Rm = Bu (2.7)

Equation (2.6) gives us our controlled vector, while equation
(2.7) gives us our manipulated vector. The complexity of equation
(2.7) is necessary in order to make the forthcoming analysis
general enmough to handle the difficult processes where the P matrix
is singular. The P matrix, which is the product of VB, is singular
vhen the input matrix B is singular, as can be shown using a simple
application of the Binet-Cauchy theorem [18]. This theorem states
that the determinant of a matrix C which is the product of AB is
simply the product of the determinants of A and B. As V will be
non-singular if our model is well posed, P will be singular when B
is singular. The matrix V used in equation (2.6) has been

previously defined. The matrix W in equation (2.7) is a matrix

18




whose columns are the eigenvectors of the plant matrix., Matrices Q

and R are indicative of the control system’s design, and therefore

are at the designer's discretion. The best case analysis done

previously had @ = R = I, I begin the identity matrix.

Substituting equations (2.6) and .(2.7) ‘into our original state-

space equation, we get the following system.

2(t) = Q0Q " z(t) + Ra(t)

The rows of of E in equation (2.6) are the designer’s output

coordination vectors. By comparing equation (2.6) to the modal

transformation shown in equation (1.3), we see that in order fof
the system to approximate th; process’ modal control structure, our
output vectors must approximate the eigenrows of the plant matrix,
A. VWe can assess how well these output vectors approximate the

eigenrows by calculating the angles between thém. The closer these

angles are to zero, the better the given structure approximates the

modal control structure.

Now, as we stated earlier, the most important step in our

control system design is the elimination of the dinternal

interaction present in the system. We can see how well we have

done this by interpreting Q.-

Q = EW (2.9)



this produc
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Again, the rows of E are the designer’'s output vectors. Expanding

t, we have,

T

1"1. e o o -hl'n ‘

(2.10)

. n &

where h; represents output vector i and w, represents eigenvector
j. As we have already shown that the best case is for Q@ = I, we
want the h; perpindicular to the 'j'-i 4 j, so as to have zeroes

for the non-diagonal elements.

is arbitrarily defined,

to one. Only the weighting of the indiviual elements of the output

'j‘ The closer the hi are to their corresponding AT the better

the structure will approximate the process’ modal control

structure.

are closed as this is of secondary importance.

magnitude of the output vector is irrelevant as we have two degrees

of freedom here in order to make the diagonai elements of Q equdl

vector matter as this determines the direction of the vector.

Thus, our first method in analyzing the interaction in the

system consists of calculating the angles between the h, and Vi

As the h, become orthogonal to the various W i#j,
the internal dynamics will be increasingly decoupled.

is made here ‘to analyze  the interaction that arises when the: loops

J

.As the magnitude of an eigenvector

equation (2.10) also shows that the

No attempt



The angle between two vectors is found using the definition of

the dot product. Let's look at two vectors, say a and b, both of
which are assumed to be of dimension n. It is defined that the

angle Mab between a and b is found as follows.

Mab =

oTb =} b, (2.12)

i=1

and | | represents the Euclidean morm of the particular vector.

2.2 Modal Analysis

In 1981, Tung and Edgar published a theoretical approach ‘to

interaction analysis that was based wupon- a- state—space

representation [13]. Their analysis allows the control enmgineer to
calculate the various controller contributions to a given system

output for a step change in that output’'s set-point. If the

control system deésign is a good ome, then the principal

controller’s contribution will be dominant over the sum of ‘the

interacting controllers’ contributions.

The method begins with the state—space model of the process of

interest. For simplicity, we assume that all of our states are

measurable and that our plant matrix and input matrix are square

and of the same order.



2(t) = Ax(t) + Bu(t)

. , ; o
Let's consider a set-point change from 0 to some x . At our new
steady-state, assuming that our process description is not changed

due to non-linearities, we have the following.

0 = Ax

+ Bu (2.13)

Assuming that our system is open—-loop stable, and that we can
invert our input matrix, we can solve for the perturbation in our

inputs.

system

2’ = B (-A)x"

—-1.0

[(-A)"'B] x

Equation (2.14) allows us to effect a set-point change by making

the appropriate perturbations in our system inputs.

Now, let's assume that we are at steady-state and we input a

set-point change into our system as a step function. ¥e can

Laplace transform our state cqnation easiiy and after the

appropriate matrix manipulations wé will obtain the following

equation.
x(s) = (Is - A)_anols
Substituting equation (2.14) into equation (2.15), we have,

x(s) = (Is-A)"'B[(-A)'B1 'x"/s



Following Tung and Edgar [13], we can rewrite this to obtain,

(2.17)

x(s) = B(s)[B(0)] "'x /s

By carrying out the matrix multiplication, one will end up with a
matrix of transfer functions dij(s) that give the relationships

between the outputs and the set—points of the controllers. It is

interesting to note that for s = 0 (i.e. 'steady—state), this

resultant matrix is Bristol's [12] relative gain- array.

Having these transfer functions, we can invert all those
associated with a given output to obtain the contributions of the
various controllers to the time response of the respective output.

Assuming we want to see the response of output i to a change in its

set-point, we have,

x.(s) 3 (-
_ 3 (-1)
S - Y Biy(s)By; (0 /s (2.18)
i k=1

where the summation is carried over the n controllers

in the

structure. The kth term in the summation is the contribution given
by controller k. The best case would be for all terms other than
the ith term in the summation to be zero. Transforming this

equation into the time domain, we have,

n

x.(t) . . .
' L = E (a%'k+ ai'kexlt + .. .+ a;'keknt) (2.19)
3 X x=1

where the -lj are the eigenvalues of the plant matrix. Ve can




rearrange this equation to clearly see the contributions given by

the various controllers.

X (t) -1 n+'1 1
i = i} oaptehh (2.20)
X j=1 ntl
..+ (a%'n+ E a}'neljt)
=1

Again, the kth term in the above summation (each term consisting of
a summation itself) is the contribution given by controller k. Note

kis equal to one as they represent the

that the sum of the a,’
various XA;, in Bristol's steady-state array. This equation gives a

quantitative description of the interaction present within the

system for this situation, i.e. a change in set-point.

In those «cases where we have linear combinations of
states/system inputs in our control system, as in the analysis done
in the previous section (equations (2.6)-(2.8)), we can still use
this analysis. Rewriting our state equation by substituting

equations (2.6)-(2.7) into equation (2.1), we have,
2(t) = EAE™ z(t) + Rm(t) (2.21)

* .
We can simply define A- = EAE  and B* = R and repeat the analysis

given in equations (2.13)-(2.20) with the new matrices. As A and

A are similar matrices, the eigenvalues shown in equations

(2.19)-(2.20) will remain the same. Thus, the effect of these

substitutions is to alter the h}’k in the equationms.
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2.3 Relative Gain Array Anmalysis
In 1966, E. H. Bristol [12] published an intuitive method

known as the relative gain array that is based on a steady—state

analysis., This method gave insight- into the interaction within a
multivariable control system. As was said in the‘previons_section,
Tung and Edgar {13]) proved the method rigorously in 1981. After
its publication, the method ﬁenp.unnoticed for several years before

industry and academia alike began to make use of it. Since then,

several authors have begun to expand and develop the méthod, most

notably T. J. McAvoy [17,19,20]. McAvoy's most significant
contribution has been the dynamic extension of Bristolfs steady—

state approach.

The method proposed by Bristol assumes that the process is a
multivariable, time-invariant one described by a square gain matrix
between the manipulated and controlled variables of the control

system, This interaction measure attempts to answer the question

of how the measured transfer function between a given manipulated

variable and the corresponding controlled variable is affected by

the perfect control of all other controlled variables. Let’s have
the following description of the process of interest,

(2.22)

¢ = fm

Here ¢ is our vector of controlled variables, m is our vector of



manipulated variables, and the'Bij are the process steady-state

gains between cy and'mj at the steady-state operating point. The

moasure chosen by Bristol is the ratio of the open— loop gain to

the closed- loop gain when all other control loops are closed and

operating perfectly. Mathematically, this is defined as,

dc/om, | )
i'77] 'my =0,k#j
i 5°135‘“j|ck=o~.k#i B

The numerator in equation (2.23) is simply Bij' To get -the
denominator, one need simply invert B to get the relatiomship for m

in terms of ¢ and carry out the prescribed differentiation to show

(<1) -

that it is [Bji , that is, the reciprocal of element j,i of

the inverse of PB. The matrix of the xij is known as the relative

gain array.

If lxijl > 1, then the open-loop sensitivi{y of c; to D, is

greater than the corresponding -<closed-loop semsitivity. The

implication is that the m; tend to cancel the»effect of'mj on ¢, in

the closed-loop enviroment. This is undesirable and is termed

negative interaction. If Ia..l < 1, then the closed-loop

sensitivity of ¢

i to m, is greater than the corresponding open-loop

sensitivity., This implies that the my tend to enhance the effect

of mj on ci.in the closed-loop enviroment, and thus, it is .termed

positive interaction. Even though this is desirable, it is so only



up to a certain point. Too much of an enhanced sensitivity can
lead to stability problems. If xij ¢ 0, then the effect of m; on
c; is reversed in the closed-loop enviroment relative to the open-

loop enviroment. If A,. ( 0, then the control system will exhibit

inverse or unstable respomnse.

The relative gain array. itself has several interesting

properties as described by Bristol [12]) in his paper. One of the
most useful properties is that the elements of any row or column
must sum to one. Thus, when dealing with 2x2 systems, one need
only calculate the 1,1 element of the array to know the entire

array.

T. J. McAvoy [17] expanded Bristol's steady-state approach to
include. dynamics with his paper in 1977. Essentially, all he did
was to substituté transfer functionms where Bristol had steady-state
gains., He was able to show that the 1,1 element of the now dynamic

relative gain array for a 2x2 interacting system could be found as,

(2.24)

. 1
)\.(S) B T— G;Z(_S)GZI(S)
G;l(S)G;z(S)

For the sake of simplicity, the 1,1 subscripts have been dropped.
Here, Gij(s) represents the transfer function between output i and

input j (as seen previously in figure 2). The Bristol number, i.e.




the steady-state A for & 2x2 system, is simply found by -performing

the calculation shown in equation (2.24) for s = 0.

It was four more years before McAvoy [19] published a paper

giving insight into the significance of A. He based his work on a

foundation layed by Rijnsdorp in 1965 in which Rijnsdorp derived

the following equation for a 2x2 interacting control system.

—€4 1 + Qz )
P S R AR AN Q; = €6 (2.29)

. * .
Here e, is the error in loop 1, ¢ 1is a disturbance function, Ci-is
the conmtroller transfer function for loop i (with an- integral

term), and'Gii is the principal transfer function for loop i (as

opposed to -an interacting transfer function Gij' i # j). The

importance of this equation is that the denominator gives wus our

stability (and therefore design) equation for our multivariable:

system. Rewriting equation (2.25), we have,

“ey .
PRl S Y U (2.26)

(17a, ¥ 17

McAvoy analyzed two cases, both of which were amenable to an

analytic elucidation. The first case had Q, and Q, having widely

separated loop speeds, while the second case was for Q = Q,. The

frequency at which Qi crosses the negativé real axis in the complex




plane of its polar plot is an implicit indication of how quickly
the loop will respond to s step input. McAvoy used this natural
frequency as an indication of the loop's speed. If the controllers
have integral modes and the speed of Q, is much greater than Q,,

then we have the situation given in figure 3.

\
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Fig. 3 Nyquist plots for Q, and Q; with Integral -Modes

Here, w, is the natural frequency of loop 1 and w; is the natural

frequency of loop 2.

The importance of equation (2.26) now becomes apparent. In
assessing the interaction in the control system, we want to see how
a given transfer function is affected near its natural frequency.

¥hen loop 1 is pear its natural frequency, we bave [Q,] » 1. This
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allows us to rewrite equation (2.26) as,

ce (2.27)
1
T an

Thus, in designing the controller for loop 1 we have to modify our
transfer function by dividing by_l. In determining the effect of
the interaction on loop 2, we can change the subscripts in equation

(2.25) to get,

S 1
e A (2.28)
1T+,

Near the critical frequency for 100p'2, we have ]Q1| ~ 0. Thus,

equation (2.28) can be simplified to,

-e, 1
ET =T7uq; (2.29)

This shows that loop 2 is not affected by the interaction.

When Q, = Q,, we can factor the denominator in equation

(2.25) to get.

-g4

- 1
ET T Q)0+ Q,/r,)

(2.30)

where r; = A i.[l2 - A]I/z =.r,(+),r,(~). Each of the factors in
equation (2.30) resembles the traditional SISO design equation. If
Ia] ¢ 1, then ‘the term with r; will determine the stability limit..
If [al > 1, then the -term with r, will determine the stability

limit, Thus, these two cases give wus .limiting conditions to

consider in our designs as far as assessing the effect of the
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interaction is concerned.

Knowing our :loop speeds and having A, we can assess the effect

of the interaction on our system’s performance.

In. general, the
previous analysis allows us to calculate a modified principal

.. S
transfer funétion Gii from Gii.as'

T ) |
Gii= 10y (2.31)

where we have three different values for A(A) depending upon ‘the

particular case/loop.
1. Loop speeds widely separated.

a. slow loop - A(XA)
fast loop - A(X)

identical

both loops = A(A) = A + [kz - 111/2

where + sign is used if [Al ¢ 1
and — sign is used if Al D1

Writing equation (2.31) in polar form, we have,

. log,l

G..= i
11 Al

Here § is the argument of G;; and a is the argument of A. Equation

gi(b-a) (2.32)

(2.32) is in the form that we need in order to assess the ¢fféct of

the interaction on our system's performance. We can see that the




interaction will affect both our gain, and our natural frequency

through the effect on the argument of Gy

If [Al > 1, then our effective gain in the interacting
enviroment will be reduced. This implies that we should expect to
see more sluggish behavior for that particular loop when the other

loop in the system is closed. Whenever the |Al ¢ 1, our effective

gain is increased implying that we should expect to see a more

oscillatory response.

When a > 0, the modified principal transfer
function will reach its natural frequency faster than the principal

transfer function, Thus, as our natural frequency 1in the

interacting enviroment is smaller than in the SISO enviroment, our
. ] .
speed of response will decrease. For a < 0, G;; will take longer

to cross the negative real axis relativé to Gii' -The modified

natural frequency will therefore be higher than the wnatural
frequency of the loop in its SISO enviroment, which implies that
our speed of response will be increased.

From this, we can say

that our ideal case would be for |Al ~ 1 for all frequencies. This

being the case, then necessarily a ~ 0.

Now, it needs to be pointed out that when calculating A(X),

one must define a Riemann surface for A as A is a multivalued

function [21].

In the course of this research, two different cases




were encountered, Both are shown in figure ‘4 with their

corresponding Riemann surfaces.

CASE I

IN<1 v w

Fig. 4 Riemann Surfaces for A(R)

Both surfaces had branch points at (1,0), and the origin was
deleted. From a practical standpoint, deleting the origin
presented no problem because if A was ever 0, then you had no

control system, anyway. In the diagrams, a represents the argument

of A, while w represents the frequency for which the calculation

was made. As can be seen in the figure, the only difference

between the surfaces is their respective branch cut. The surface




for case I has its branch cut lying along the positive real axis
beginning at onme and extending to positive infinity. The surface
for case II has its branch cut lying along the real axis beginning

at one, also, but it extends to negative infinity, instead.

2.4 Inverse Nyquist Array Analysis

In the late 1960's, the available vector oriented frequency
response design techniques for multivariable control systems
suffered from a number of deficiencies. The most severe of these
were the difficulties encountered in trying to incorporate
engineering constraints and the tendency of the methods to produce
‘complicated controller structurés where simpler schemes would
suffice. In 1969, Rosenbrock [14] published a new design technique
known as the inverse Nyquist array. This method has been developed
by a number of authors and is currently one of the more popular
techniques of its kind for wuse in designing industrial
multivariable process control systems. A number of successful

applications have been reported in industry (e.g. Tyreus [22]).

In déscribing the method, reference is made to figure 1 during
the course of this discussion. For the sake of simplicity, we will
relabel G to be our effective plant matrix (which is simply the

product MGL from the figure). With this change in mind, we have

from figure 1,
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y = Gm = GKe B (2.33)

Denoting the product GK as Q ,which is called the open-loop

transfer function, we have (assuming F = I),
y = Qy® -y (2.34)

Rearranging this slightly, we obtain our closed-loop transfer

function H.

B=(I+a7'a f (2.35)

and

=1 -1 .
H =1+Q (2.36)

To avoid confusion later in the discussion, we denote gt as H and
Q_1 as 8. Now, if we have some loops closed and othérs open, this
can be represented mathematically by having a one on the diagonal
of F for those loops that are closed and a zero, otherwise. If
this was to be incorporated into: equation (2.36), matrix I would be
replaced by F. For the purposes of this discussion, we assume that

all loops are closed, therefore F = I.

What we want from the technique is the inverse Nyquist path
for the principal closed-loop transfer functionms, h,,. By

definition, we have,

by, (10) = 8 (o) /0G| (2.37)
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Here ﬁii is the cofactor of element i,i of the inverse of H.
Equation (2.37) gives us the Nyquist path for hy,. We obtain the

inverse Nyquist path by inverting b,
w7y = I8I/8, (2.38)
ii ii. .

We can expand equation (2.38) to obtainm,

hyj = by *

lfijﬂij/ﬂii . (2.39)

®

J

HINAR

Hereo Sij represents element i,j of H and ﬂij represents its
corresponding cofactor. The summation term in equation
(2.39) gives the modification that would have to be made to ﬂii in
order to have it represent the actual hii—l. which is what we want.
This modification is due to the interaction that is present within
the system. If our system was diagonal, i.e. there was no
interaction, then the summation term would be zero. Assuming that
the summation’s contribution is small, then we can approximate

-1

Now, from equation (2.36), we see that we can obtain the Eii

from aii simply by moving the origin from (0,0) to (-1,0). The:

power of this technique is that, assuming the summation term is

small, we can plot inverse Nyquist diagrams of  the aii and treat.

the corresponding designs of the controllers as if they were SISO.

We can tell if our assumption about the summation is correct by
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employing a theorem derived by Rosenbrock which gives the designer
an easy check. For each frequency w, define

n

a; = 135G (2.40)

j=1

Jti .
At that point lying on qii(iw) for the given w, center a circle of
radius di‘ This circle is known as the Gershgorin disc. The union
of all such circles that are generated as we change the frequency
defines a region within which the true path of the actual transfer
function in the interacting enviroment must lie. The greater the
interaction, the greater this region, and vice versa. -As long as
no disc encircles ‘the origin, then our previous assumption is

‘valid. Otherwise, we cannot use the method until we have designed

decouplers which are adequate in decreasing the interaction.

It should be noted that the summation in equation (2.40) is
over the rows of @.. Thus, the'cOrresponding'Gershgorin discs are
termed row Gershgorin discs. The summation could have been carried
over the columns of &, also. As might be expected, these discs are
called column Gerslgorin discs. The union of these discs is termed
the row(column) Gershgorin bands. If the row(column) Gershgorin
bands do not contain the origin, then @ is .termed row(column)
dominant. Either row dominance or column dominance implies
diagonal dominance, but the opposite is not always true. Strictly

speaking, @ is considered diagonally dominant as long as there
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exists no frequency for which d is not IOW Of column dominant. In
order for the method ‘to be applicable to the process of interest, @

must be diagonally dominant.

The Gershgorin discs gives the designer insight into the
magnitude of the interaction present within the system. They also
allow us to define regions of;.certain stability and uncertain
stability within our gain space. By assuming that the true path of
the transfer function lies along oné of ‘the boundaries set by the
Gershgorin bands, we can delineate a line segment for the ultimate
gein of the loop of interest. The intersection of these line
§egments for the various loops gives us our certainty and

uncertainty stability regions in our gain space.

2.5 Characteristic Loci Analysis

In 1970, MacFarlane [23] 1layed a foundation for the
application of linear operator theory to multivariable control
system analysis. This foundation was used in developing his
characteristic locus design method, which came about three years
later [15]. In establishing this technique, MacFarlane attempted
to exploit the properties of linear vector spaces to arrive at a
vector generalization of the Bode—Nyquist classical design
technique. Even though the technique is an important addition to

control theory, it has yet to be fully developed as far as a design.
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procedure is concerned. Experience. on part of the ‘user is

necessary, as seen by Schwanke [24], et al. in their attempt to use

the technique to design a control system for a pilot .scale

distillation column .

This thesis was not concerned with using the technique for

though. Instead, the theory was used primarily for an

design,

additional_method.of assessing interaction. Also, it was used as a
rigorous way of determining the actual stability limit in the gain
space for the control structures of interest. This last point is

one of the niceties of the theory developed by MacFarlane.

The technique makes extensive use of the dyadic ‘representation

of a matrix. As was shown previously in equation (2.35), our
closed-loop transfer function can be expressed in terms of our

open-loop transfer function as,
-1
H=(I +Q) Q

or, after some manipulations, we obtain,

n .
A (iw)
. _ il T
Bliv) = 21 F 1,00y "ivi (2.41)
1=

where n is the order of H, Ai is the ith eigenvalue of H, W, is the

corresponding eigenvector, and v, is the corresponding eigenrow.



This expression gives us some insight into interaction,
itself. Now, suppose that at some low frequency w;, ‘we have
|X(iw1)| »>» 1 for 1 = 1,2,....,n. Then, we can see that equation

(2.41) can be rewritten as
n
H= ) wvi=I (2.42)
i=1

This shows that at low frequencies, with this assumption intact,
our system is mon-interacting. ‘We can make our eigenvalues large
by having high gains. The gains are limited due to stability

requirements which invariably require that the |X(imh)| (¢ 1 for

some higher frequency w;. At this point, we have
< T

Equation (2.43) shows that high frequency interaction is not

affected by the action of feedback controllers. The only way to

avoid high frequency interaction is to have Q become¢ diagonal at

high frequencies. Referring back to equation (2.42), for most

systems of practical interest, we will have some llil >> 1, but
there will be others that will not be sufficiently large to arrive

at equation (2.42). Thus, in genmeral, we will expect low frequency

interaction,

Now, as we have stated before, we want our yi to affect v

alone. One possible way of doing this is to align the eigenvectors



of H with the various unit basiﬁ vectors, ©;- Here, °; is the jth

R R S T S

column of the nxn identity matrix. Let’s do the following, let
1 y* = e, (2.44)
3 If it were the case that w, = e., thenm by substituting equation

J J
(2.44) into equation (2.41) and recalling the ‘biorthogonality

principle, we would have,

A, (iw)

H(iw) = ysI*;QTTTTET | (2.45)

J

Equation (2.45) shows .that the reference input from equation

(2.44) would affect only output j, i.e. mo interaction would be in

the system.

This analysis gives a convenient measure of interaction, that

being the angles between the eigenvectors wj(iw) of H and the unit

basis vectors ej(iw) as a function of frequency w. This angle is

defined as,

_aw) (iw)e  (iv)

wj(iw) (2.46)

nl(iw) = cos
vwhere 'j is the eigenvector which produces the minimum angle n;
with o; at frequency w. If n; is small at high frequencies, then
interaction effects arising from the jth input will be small., Note
that only when all of the n; are 0, i.e. all of the 'j are in exact

alignment with the ey does this imply that @ is diagonal.




We also used MacFarlane's [15] theory to rigorously calculate

the stability limit in the gain space for the control structures of
interest to it. For an open-loop system which is asymptotically
stable, the theory states that no ‘singié. eigenvalue of Q@ can
encircle the (-1,0) point in the complex plane. This encirclement

theorem is very helpful in calculating our gain space. If we set,

Q(s) = Q'(s) = kK'(s)G(s) K' = diag(k;) (2.47)

we can say that the eigenvalues of Q'(s) will be the same as those

of Q(s) multiplied by k. We can solve for the eigenvalues of Q' and
determine the scaling constant k which brings us to our point of
instability. If the diagonal elements of K' are such that they
correspond to the components of a pormalized vector im our gain

space, then this scaling constant is the projection of the

normalized vector into the gain space to that point which defines

the stability limit in the space. By sweeping this normalized gain

vector throughout the space, and ‘performing the required

calculations for each of the vectors, we can map OUr gain space.
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Cﬁlptet 3

A Process of Tanks in Series with Recycle

3.1 Definition

The first process that was examined comsists of two stirred-

'g tank heaters in series connected by a recycle stream, and is shown
3 in Figure 5. This system was selected because it is a simple
}2 approximation to a reactor system. In this case, the recycle

stream would be used to increase the overall conversion.

(+0a  q)

Q

24 Fig. 5 Stirred-Tank Heaters Process with Recycle
} In Figure 5, q represents the throughput flow, (1+r)q the

recycle flow, Vi is the volume of tank i, Ti is the temperature of

tank i, and Q; represents the energy input to tank i.




et

In modeling the process, we-assume that the flows through the
system are perfectly controlled such that q remains constant.
Let's try and control the tank temperatures. If we write an energy
balance over each tank, assuming that the tank is well-mixed, we

have the following model.

Vi _dT‘i \ Q, :
?1— I = Tf - (1+4r)T, + T, + m (3.1)
V, dT; Qz
T (14r)T, - (141)T; + Fc'p—q

where p is the liquid density and Cp is the liquid heat capacity,
both of which are assumed to be constant. Dimensionalizing our

equations, we have,

a Ty= Tp = (1+0)T; + 1T, + O (3.2)

(1-a)T,= (1+1)T; - (1+0)T, + Q)

where a is the fraction of the total system volume occupied by tank

one [V,/(Vy+V;)], and time is now dimensionless with respect to the
) s

total system time constant [q/(V,+V,)]. Q; 1is the effective heat

i

input to tank i [Qi/pCpq].

Equation (3.2) represents the expanded form of our state-space
model. Writing the equations in the form of equation (1.1), we
have the tank temperatures as our state vector, the effective heat

inputs as our imput vector, and the following 'plant matrix and

input matrix,




T-a

As all of our states are accessible, i.e. we can measure both of

our tank temperatures, we need not worry -about defining an output
matrix. It should be stated that models for use in process control
system analyses are best written in terms of perturbations from the

steady—-state [25]. As this model is linear to begin with, we need

not go through any process linearization. Having our state-space

model we can easily obtain our plant'transfer function matrix as,

G(s) = (Is - A)™'B (3.4)

A plot of this system’s eigenvalues as a function of a is
shown'ip-Figure.6aifor the case where r = 0.5, a low recycle rate.

The corresponding plot for a high recycle rate, r = 2.0, is shown

in Figure- 6b. The speeds of the two ‘modes of this system are

dictated by their corresponding eigenvalues.. As can be seen 'in

these plots, the eigenvalues are the least separated when a = 0.5,

i.e. both tanks have the same volume. With this in mind, the

following two different design cases were used during the course of

the analyses to come.



Case I 0.5 0.5

(1

Case II a =.0.5. r=2.0

As seen by the value of a, both tanks are of equal size. The two
cases differ in their recycle rate, one case having a low recycle

and the other having a high recycle.

In establishing our controlled variables, we are looking for a

linear combination of states, described mathematically as follows.
(3.5)

where s, is our resulting controlled variable and h, is our output

coordination vector. The conventional control structure assessed

in this thesis controls the indiviual tank temperatures. This is

an intensive variable control structure and will be referred to as

the IVaCS structure for the remainder of this chapter. For the

IVaCS structure, we have the following output vectors,

L = (1,0) (3.6)

The EVaCS method gives the designer a choice of output vectors,

termed candidate physical modes. In order to -establish our

the

candidate physical modes for these structures, we employ

following extensive energy concepts.

1. energy balance of tank 1




Fig. 6 Eigenvalues of Tank's Process
as a Function of a




2, energy balance of tank 2

3. energy content of total system (tankl + tank 2)
If we wanted to control the emergy balance of tank 1, we could use
the linear combination of states present in the emergy balance, as

shown below,

sy = —(141)T, + T, (3.7).
h? = [-(1+r),r]

Notice that all ‘we did was use the steady-state part of the
balance. Likewise, to control the energy balance of tank 2, we

simply use the combination,

S4 <& (l+r)T1 - (l+r)Tz ~ T‘l- - Tz (3.8)
By = (1,-1)

Notice that scaling is not important. The important point in this
is the weighting of the states. Now, the total energy content of
the system will be influenced by the relative size of the tanks.
Since scaling is not important, we can use the following linear

combination to control the total -content,

Sg _-aT1 + (I—G)Tz (3.9)

nl

(a,1-a)

Table 1 summarizes the various output coordination vectors.

In establishing our manipulated variables, we are looking for
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a linear combination, generally speaking, of system inputs.

(3.10)

I

where u, is our manipulated variable and p; is the input
coordination vector describing that particular .combination of

process inputs. The conventional structure controls the various

tank temperatures with their respective heat inputs. Thus, we

have,
Pl = (1,0) (3.11)
p? = (0,1)

In searching for our input vectors to control the energy balances
of the tanks, ‘we would expect to find a linear combination of
system inputs in our emergy balances. These are the combinations
that we want to wuse in our structure. Thus, we have for

controlling the energy balance for tank 1,

T . (1,0) = pF (3.12)

T . (0,1) = pt (3.13)

Using the interpretation. of the total content, we have the

following input vector for use in defining its controlled variable,

oI = (1,1) (3.14)
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Table 1 Summary of Output Coordination Vectors for
Stirred-Tanks in Series

- [-(1+r),1]

= (a,1-a)

Intensive variable output
vec¢tor for controlling
tank 1 temperature

Intensive variable output
vector for controlling
tank 2 temperature

.Extensive variable output

vector for controlling
tank 1 energy balance

Extensive variable output
vector for controlling
tank 2 energy balance

‘Extensive variable output

vector for controlling
total energy content
of both tanks




2 Summary of Input Coordination Vectors for.
Stirred-Tanks in Series

Input vector for
controlling tank 1
temperature and tank 1
energy balance

Input vector for
controlling tank 2
temperature and tank 2
energy balance

Input vector for
controlling total energy
content of both tanks
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Table 2 summarizes the input coordination vectors.

3.2 Results and Discussion

Figure 7a,c show the angles as a function of a between the
output coordination vectors for the IVaCS structure, h; and h;,
with the slow eigenrow of the system for the two recycle rates
considered, while figure 7b,d show the angles with the fast
eigenrow of the system. The oni& time either of these two output
vectors approximate the slow mathematical mode is when one tank is
much smaller than the other. Neither output vector ever really
gives a good approximation to the fast mode of the system. ThUs,
the IVaCS structure does not approximate the modal control

structure, especially in our- two design cases.

It is a known fact -that if the loops in a multivariable
control structuré are of different speeds, then the interaction
within the structure will be less than if the loops were of the
same speeds. In establishing an EVaCS structure, we have at our
disposal any two of the three possible candidate physical modes
given to us by the previous extensive energy analysis. In
selecting” the two output vectors to be used in the structure, we
want to choose ome to approximate the slow mode of the system and
the other to approximate the fast mode of the system. This is so

because the speeds of the modes of the system are dictated by ‘the
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eigenvalues of the plant matrix, which are usually distinct and

separated for chemical process systems. As seen previously in
Figure 6, this process has the property of distinct and separated

eigenvalues.

Figure 8a,c show the angles as a function of a. in the low and
hi§h~ recycle designs- between our total energy content physical
mode, h,, and the eigenrow corresponding to the slow mathematical
mode of the system. The corresponding angles with the energy-
balance physical modes, h, and h,, are shown in Figure 8b,d for the
respective design cases. These plots show that the total energy

‘content physical mode gives a good approximation to the slow
mathematical mode, and this approximation improves as the recycle
rate increases, Figure 9a,c show the angles between h; and the
fast mathematical mode of the system, while the corresponding
angles with h; and h, are shown in Figure 9b,d. These plots show
that the energy ©balance physical modes give -reasonable
approximations to the fast mode of the system, and these
approximations improve considerably’ with an increasing recycle

rate.

Along with the IVaCS structure, the angle calculations suggest

two additional EVaCS structures for controlling this process in the




MR R TR i s

PRI}

CA (en) ~J
A o
L e s
T 1 T
\ / =
(o)
; —t
Cu M ~
3 O

ST 1is
hl
J +——t ; f——t—+ 0
.3 J 4 .C £ 1.9
o a
(a) (b)
%0 T 780
75+ 175

iS4 L Ti5
:
. 0 e it 0
: O 2 .4 L6 R 1.0
a a
(c) (d)

Fig. 7 Angle Calculations in Degrees for Tank’s Slow,Fast Modes
Eigenrow with IVaCS Output Vectors, h, and h,

a-with slow mode, low recycle b-with fast mode, low recycle

c-with slow mode, high recycle d-with fast mode, high recycle

54




g 20 T 729
154 115
ni0 Tt Ti0 n
» S+ + 3
1
)
:‘ O t t 4 O O —t T L4 t —+ G
3 2 4 € 8 1.0 J P 4 € R 1.0
: ’
‘ (a) (b)
20 T 7290 S0 + “(90
75+ +78
15+ Ti5 h
60 +ec
N0t 110 N a5+ e
3C T h T30
S+ t+ 5 4
St Tig
0 1 T t } 0 3 1 + T o
0 < 4 & R 1.0 o < 4 € g 1.0
a a
(c) (d)
Fig. 8 Angle Calculations in Degrees for Tank's Slow Mode's
Eigenrow with EVaCS Output Vectors, h;,h, and h;
a-with h;, low recycle b-with h,,h,, low recycle
; c-with hy, high recycle d-with h,,h,, high recyle
:
:

55




t
: 90 + T30
q 75+ 1753
; €0 T +£0
i 'n 45 q( ""ACJ n
: 30 + 130
1S T 1i5
'1 0 ——t— 0
0 .2 .4 6 .R 1.0
a a
(a) (b)
Q0 T T30 30 T 30
’ST 175 25 T 128
€C / +60 20 + +20
N 45+ 45 n s+t +i5
h, hy
30+ +30 10+ +i0
ST Ti5S 5t +3
: 0 t + t + 3 ) 1 1 t T —+ 0
0 .« .4 .6 .81.0 0 .2 .4 .6 .8 1.0
a a
(c) (d)

Fig. 9 Angle Calculations in Degrees for Tank'’s Fast Mode's
Eigenrow with EVaCS Output Vectors, h,,h, and h;
a-with hy, low recycle b-with h;,h,, low recycle
c-with hy, high recycle d-with h,,h,, high recycle

56




RN e RIS TR ST S e - 2

Lok

A e A >
R SRR AR P NN S

o ki

'4‘:

Rl Rt

design cases that we are assessing. All three structures are

summarized below.

Output Input
Coordination Coordination

Vectors Vectors

IVaCS h, P1
h, P2

EVaCS I h, P
hg . Ps

EVaCS II h, P2
hy Ps

As stated earlier, in assessing how well our given control
structure approximates the modal control structure for the process
we- want to see how well our output vectors approximate their
respective plant matrix’s eigenrows. The angles between these
vectors should be 'as close to zero as possible., Also, in order to
decouple the internal dynamics. we want the output vectors to be as
nearly orthogonal as possible to all other eigemvectors besides the
eigenvector corresponding to the eigenrow of interest. As seen
already, the IVaCS structure does not approximate the modal
structure as its output vectors are substantially different from
the system's eigenrows. This being the case, we would not expect
this intensive variable control structure to decouple the process’
internal dynamics. Our EVaCS structures seem to do a reasonable

job in approximating the modal control structure, but we cannot be
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certain of the degree of decoupling in the process’ internal
dynamics. We can see this, as shown earlier, by calCulating the

angles between the total contént physical mode, h5. and the

eigenvector corresponding to the fast mode, and by'calculating'the

angles between the indiviual tank content physical modes, h; and
h4, and the slow mode’s eigenvector. The best case would be for
all of these angles to be ninetz degrees. The total content/fast
eigenvector angles are shown in figure 10a,c while the indiviunal
tank contents/slow eigenvector angles are shown in figure 10b,d.
For our particular design of a = 0.5, these figures show that some
interdction will be present as the process dynamics have not been
" completely decoupled. Whether or not the interaction will be

significant remains to be seen,

Table 3 summarizes the plant transfer function matrices of the
various control structures for the low recycle'design case while
table 4 summarizes the plant transfer function matrices of the high
recycle design case. Appendix I contains a summary for both design
cases of the plant matrices and input matrices for use in their

respective state-space models.

The modal analysis of Tung and Edgar [13], as described

previously, was done using the plant transfer functions in tables
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Table 3 Plant Transfer Function Matrices for

IVACS

EVACS I

EVACS. II

Stirred-Tank Heaters in Series
Low Recycle Design Case

a=0.5 r = 0.5

Ay = -1.26795 - A, = -4.73205
d(S) = (_S - )\1)(8 - )\.3)

— —

2(s+3) 2

G(s) = 35y

(_ s+4 2 N

-5 4(s+1.5)_J

s+6 -2

G(s). = 3157

2s -4(s+1)

60




iy L

G £igh s

B R

Table 4 Plant Transfer Function Matrices for
Stirred-Tank Heaters in Series

High Recycle Design Case

a=0.5 r=2.0

Ay = -1.10102 A, = -10.89898

d(s) = (s = A0)(s = &;)

[ 2(5+6)
IVACS G(s) = qray

12

s+10

EVACS I G(s) = Ty

F- s+12

EVACS II 6(s) = groy

2s

61
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3 and 4. Briefly, the analysis consisted of looking at the time
domain response of xi/xis. This response could be broken down into
contributions from the various controllers in the structure. For

our 2x2 system, we had,

X

bt

]
ol 2]

Here Aij is the contribution given by controller j to the response
of output i. The calculation procedure that was required to obtain
the Aij involved the following,
1. calculate the change in the manipnlated.variables required to
effect a change in the set-point of a given controller. This
was shown earlier, equation (2.14), to. be,

-1 0

u = 6(0) 'z

o -
where x is the new set-point vector.
2. calculate the step change response in the Laplace domain as,

-1

x(s) = G(s)G(0) x /s

3. invert the various elements responsible for the time response

Note that this method is independent of the controllers’ tuning.
Thus, it gives us -information about the interaction that is

inherent to the control system's structure.

The time response for the IVaCS low recycle system was

calculated as,
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X, X,
;E = ;E = Ay, t A,

where
Ay(m) = 1.5 - 1.183¢ 131 _ ¢,317¢74-Tn (3.16)
As(n) = =0.5 + 0.683¢"1+31 _ ¢,183¢™4-7n
n=tlt Tt = total system time constant

The A; response is the primcipal controller’s contribution while
the A, response 1is the integééting controller's contribution.
These dimensionless responses are plotted in figure 1la, and they
indicate that the interaction is significant and unfavorable as the

controllers are fighting one another.

The time responses for the IVaCS high recycle system are shown

below and are plotted in figure 11b.

Ay(m) = 3.0 - 2.725¢ 110 _ 2751097 (3.17)

Ay(n). = 2.0 + 2.225¢ 7110 _ .925,710.97

It can be seen that the loop interaction has increased

significantly.

The time responses for the EVaCS I 1low recycle system were
calculated in the format shown in equation (3.15). These are shown

below and plotted in figures 12a and 12b.

loop 1 (slow) (3.18)
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Ayy(n) = 1.0 - 0.993¢” 131 g gg7¢74-n
sz(n) ;'O.Q

loop 2 (fast)
Baa(n) = 0.145¢71-3n _ 9145674 n

Azz_’(_'fl) =1.0 - 0,2115_1!3'1 - O_-7896_4'7n

There are some significant points that manifest themselves in this

analysis. The first is that the fast loop does not interact with

the slow loop at all since A;; = 0. The second point is that there

is no steady-state interaction of the slow loop with the fast loop
as A;, goes to 0 as n goes to ®, and the dynamic interaction that
is present is minimal. The third point is that the total response
of the slow loop is strictly associated with the slow mode of the
system, and the total response of the fast loop is strictly
associated with the fast mode of the system. These points are what

we set out for in the design.

The time responses for the EVaCS I high recycle system are

shown below and plotted in figures 12c¢ and 12d.

loop 1 (slow) |
Ail(n) = 1‘0 -— 0.9906—'1.1.“ - 050103—10.91]

A;z(ﬂ) = 0.0

loop 2 (fast)
Ayi(n) = 0.082¢71+1n —-0.0320‘10-9ﬂ

Ass(n) = 1.0 - 0.092¢71-10 _ ¢ g9gg=10.9n




These results show conclusively that the two loops have minimal

interaction, and that the loop 1 response is strictly due to the
slow mode of the system and the loop 2 respomse is strictly due to
the fast mode of the system. What we have here is a control
structure that is very close to the modal control structure, as
suggested by our previous angle calculations. Also, we see that
the lack of decOUpling in the internal dynamics of the process that

the angle calculations showed is not significant.

The time responses for the EVaCS II low recycle system were
also calculated in the format shown in equation (3.15). The_Aij

are shown below and are plotted in figures 13a and 13b.

loop 1 (slow) | -
Ara(n) = 1.0 - 1,077¢7131 4 0,077¢74-8n

Alz(n) = 0.0

loop 2 (fast)
Asy(n) = - 0.289¢ 130 4 0.289¢74+8n

A33(n) = 1.0 + 0-3666_1'3'1 _ -1.366e‘4"8n

Even though the interaction is slightly greater than the
interaction shown in the EVaCS I 1low recycle system, those

conclusions reached there are equally applicable here.

The time responses for the EVaCS II high recycle system are

shown below and are plotted in figures 13c and 13d.
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loop 1 (slow) T (3.20)
Aya(m) = 1.0 - 1.010e71+10 4 ¢, 010¢710+97

A;;(n) = 0.0

loop 2 (fast) | N
831(n) = - 0.102¢7 11 4 ¢, 10271097

Asa(n) = 1.0 + 0.112e71-11 _ 1 379,710:90

Again, these results show conclusively that the two loops have
minimal interaction and the total loop responmses are strictly due

to their respective modes.

What we have done in this analysis is to show that the use of
extensive energy concepts allow for the easy synthesis of two
control structures. Both structures havé zero -steady-state
interaction and minimal dynamic interaction. Also, both do a good

job of approximating the modal control structure for the process.

The next method used to evaluate the various control systems
was McAvoy's ([17] dynami¢ relative gain array. This analysis was
used to give a best case ,widely separated loop speeds, and a worst
case, that being when the loops are identical, assessment of the
interaction present in the given control structure. Note that the
analysis is not independent of the controllers' tuning as the
weighting of the integral (and possibly derivative) term of the

controller affects a loop's speed.
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Fig. 11 Dimensionless Set-Point Responses for IVaCS
in Tank's Low and High Recycle Designs
a-response for both loops, low recycle
b-response for both loops, high recycle
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Fig. 11 Dimensionless Set-Point Responses for EVaCS I
in Tank's Low and High Recycle Designs

a-slow loop, low recycle b-fast loop, low recycle

c-slow loop, high recycle d-fast loop, high recycle
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Fig. 12 Dimensionless Set-Point Responses for EVaCS Il
in Tank's Low and High Recycle Designs

b-fast loop, low recycle

d-fast loop, high recycle

a—-slow loop, low recycle
c-slow loop, high recycle
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The analysis of the IVaCS system began by calculating A(s) for
both design cases. These are shown in figures 14a and 14b.
Immediately, we notice the magnitude of A. This indicates that the
amount of interaction present within the system is quite
significant for both design cases, especiaily in the high recycle
case, whenever one loop is much faster than the other. As the
principal transfer functions of the system are identical, as seen
in tables 3 and 4, this situation would arise if ome loop had a
large amount of inteégral action and the other a 'small amount. The
slower loop, i.e. the one with the large amount of integral act?on;
would have a sluggish response due to its decreased gain. Its
phase angle would be decreased, as measured clockwise from the
positive real axis, which would increase its natural frequency.
These two effects are counteractive as far as the slow loop's
response is concerned. The decreased gain -indicates a decreased

sensitivity of the controlled variable to its manipulated variable

while the increased natural frequency indicates a faster speed of

response.. Both of these effects tend to stabalize the slow loop.
As discussed in Chapter 2, the fast loop would not be affected by

the interaction.

Figures 14c and 14d show the plot of A(A) for the case where

Ial » 1 and both loops are idenmtical. As our principal transfer
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functions are identical, this situation would correspond to both
loops having identical reset times. The A plots show that a
significant amount of unfavorable interaction would be present
within the system for this situation. The loop responses would be
highly oscillatory due to the increased gains, and the speed of
response would be decreased due to the decreased critical
frequency, which is caused by tkg increased phase angle. Both of

these effects tend to decrease loop stability.

The analysis of the EVaCS I system also begin by calculating
A(s) for both design cases. These are shown in figures 15a and
15b, for the respective design cases. The ‘interaction for this
situation, i.e. widely separated loop speeds, is minimal to begin
with and ﬁctually decreases as the recycle rate increases. This is
due ‘to ‘the structure becoming a better approximation to the modal
control structure for the process, as was discussed previously.
These plots of A show that the interaction in this situation is
essentially negligible, thus allowing the two controllers to be

tuned independent of one another.

Figures 15¢ and 15d show the plot of A(A) for the case where
InM] ¢ 1 and both loops are identical. This sitvation would

correspond to the fast loop having some smaller reset time than the

n
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slow loop.. The loop responses'iould be highly oscillatory due to
the increased gains, but the speed of response would remain

unchanged due to the negligible phase contribution from -the

interaction. In tuning the loops as such, it can be seen that they

were tuned contrary to the desired goal as the slow loop was made

fast and the fast loop was made slow.

The analysis“of'the EVaCS II structure proceeded in the same
fashion as the analyses done for the IVaCS and EVaCS I structures.
The plots of A(s) are shown in figures 16a and 16b for the
respective design cases. These show. that the interaction is
essentially negligible when one loop is much faster than the other,
and that the interaction_décrgases with increasing recycle rate (as

in EVaCS I).

Figures 16c and 164 show the plots of A(A) for the case where
Al > 1 and both loops are identical. Again, this would correspond
to the fast loop having some degree more of integral action than
the slow loop. The 1loop responses would be slightly more
oscillatory due to the interaction, while the speed -of response
could be slightly slower or slightly faster depending upon the
natural frequency of the loop in its SISO enviroment. This seems

to suggest that an optimum reset time could exist for the loops.
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This analysis confirms that the EVaCS structures have zero
% steady-state interaction as A(0) = 1 for all cases. This was found
to be true originally by Georgakis [5]. The loops in the
| structures have been shown to exhibit minimal dynamic interaction,
4 also. Insight. has been gained 1into the recommended tuning
procedure for the various loops, i.e. keep the -loop speeds as wide

as possible.

The fourth way of assessing the interaction in the structures
was Rosenbrock’s [14] inverse Nyquist array. The details of the
analysis were discussed in Chapter 2, but will be briefly reviewed.
The analysis entails plotting the diagonal elements of (6K)™" as a
function of frequency. Insight into the magnitude of the
% interaction within the system is gained by looking at the system's

Gershgorin discs. 'For this analysis, the controller matrix K was
;2 chosen to be K =-diag(ki), where k. was taken to be 1 or -1 so as

to make the product g ;k; > 0.

i

INA plots of the diagonal elements of the IVaCS system are
shown in figures 17a-b,c-d for the low and high recycle design
cases. Column Gershgorin discs are used. These piots show that
the system is not column dominant, neither was it row dominant,

thus implying that the interaction is significant. It is
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Fig. 14 Dynamic Relative Gain Array Analyses Plots for
IVaCS in Tank'’s Low and High Recycle Designs
a—Bode plot of A, low recycle b-Bode plot of A, high recycle
c-Bode plot of A, low recycle d-Bode plot of A, high recycle
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Fig. 15 Dynamic Relative Gain Array Analyses Plots for
EVaCS I in Tank’'s Low and High Recycle Designs
a-Bode plot of A, low recycle b-Bode plot of A, high recycle
c-Bode plot of A, low recycle d-Bode plot of A, high recycle
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Fig. 16 Dynamic Relative Gain Array Analyses Plot for
EVaCS II in Tank’'s Low and High Recycle Designs
a-Bode plot of A, low recycle b-Bode plot of A, high recycle
c-Bode plot of A, low recycle d-Bode plot of A, high recycle
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interesting to note that (GK(O))ii is the reciprocal of what is

considered the effective process gain for loop i. As the recycle
rate increases, this gain decreases for both loops, thus implying
that the sensitivity of the controlled variables to their
respective manipulated variables decreases. This is, without a

doubt, an undesirable phenomenon.

INA plots with column Gershgorin discs of the diagonal
elements of the EVaCS I system are shown in figures 18a-b,c-d.
These plots show that tﬁe system is very column dominant, thus
implying that the interaction is not too great. The sensitivity of
the slow loop (loop 1) remains unchanged with the recycle rate,
while the sensitivity of the fast loop (loop 2) actually increases

with the recycle rate,

The INA plots with column Gershgorin discs for the EVaCS II
structure are shown in figure 19a-b,c-d. These plots show that the
interaction is not too great here, either. The sensitivity of the
slow loop (loop 1) remains unchanged with the recycle rate, while

the sensitivity of the fast loop (loop 2) decreases with increasing

recycle.

final analysis method used here was MacFarlane's [15]
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Fig. 17 Inverse Nyquist Array Plots for Diagonal Elements

in IVaCS Structure in Tank's Low and High Recycle Designs
a-tank one’s loop, low recycle b-tank two's loop, low recycle
c-tank one'’s loop, high recycle d-tank two's loop, high recycle
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Fig. 18 Inverse Nyquist Array Plot for Diagonal Elements
in EVaCS I Structure in Tank’s Low and High Recycle Designs
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Fig. 19 Inverse Nyquist Array Plot for Diagonal Elements
in EVaCS II Structure in Tank’s Low and High Recycle Designs
a-slow loop, low recycle b-fast loop, low recycle
c-slow loop, high recycle d-fast loop, high recycle
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¥ interaction criteria. The details of this anelysis have been
g discussed previously in Chapter 2. Briefly, the analysis entails
?{ looking at the angles between the eigenvectors of Q(s) and the
conventional basis vectors, i.e. those vectors corresponding to the
columns of the apprqpriate identity matrix, Non-interacting
systems will have eigenvectors that are perfectly aligned with
these basis vectors. In thisignalysis, we took our controller
] matrix K to be diag(ki) where k; was chosen to be 1 or -1 such that

the product kigii > 0.

The plots of these angles for the IVaCS system are shown in-
figures 20a-b for the respective design cases. They both show that
the interaction within the system is significant and constant
independent of frequency. Plots of the interaction angles for the
EVaCS I -structure are shown in figures 2la-b for the respective
design cases. These plots show that the interaction at low
frequencies is one-way (technically speaking, this is not termed

interaction), and at high frequencies it reverses itself while

R R PR VNS

still remaining ome-way. Only. in the vicinity of a limited range

of frequencies do we have what would be termed interaction, and

this is small when compared to the IVaCS. The interaction angles

for the EVaCS II system are shown in figures 22a-b for the

sy R A

respective design cases. The discussion given for ‘the EVaCS I
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Fig. 20 Cbaracteristic Loci Interaction Angles in Degrees
for IVaCS in Column's Low and High Recycle Designs
a-low recycle b-high recycle
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Fig. 21 Characteristic Loci Interaction Angles in Degrees
for EVaCS I in Column’s Low and High Recycle Designs
a—-low recycle b-Ligh recycle




Fig. 22 Characteristic Loci Interaction Angles in -Degrees
for EVaCS II in Column’s Low and High Recycle Designs
a-low recycle b-high recycle




structure applies here equally well.

As they stand now, the control structures are not of
sufficiently high order to be unstable. Thus, as a point of
interest, it was decided to add coil and thermocouple dynamics to

the process so as to allow for the calculation of gain spaces.

Each plant transfer function matrix shown in tables 3 and 4 was

post—multiplied'by a .coil dynamics_mdtfix and pre-multiplied by a
thermocouple dynamics matrix, both of which are shown in table 5.
The time constant chosen for the coil dynamics was essentially the
same as that for the fast mode of the process in the low recycle
design., The time constant for the thermocouple dynam}és was chosen
to be 10% of the time constant for the fast mode in the low recycle
design. The gain spaces were calculated for all structures in both
the low and.high recycle design cases as outlined by MacFarlane
[15], and approximations to the gain spaces were calculated as
outlined by Rosenbrock [6]. It should be noted that since we are
multiplying the process matrices by diagonal matrices, the dynamic

relative gain array analysis does not change.

The actual gain space plots for the IVaCS system are shown in
figures 23a-b for the respective design cases. As can be seen in

figures 24a-b,c-d, this system is not -column dominant ,nor was it




; Table 5 Coil and Thermocouple Dynamics Matrices
for Stirred-Tanks in Series
1 i |
0.25s+1
Coil Gnls) =
1
f - 0 0.25s+1_
; ! 0 7]
' 0.02s+1
Thermocouple Gp(s) =
0 1
3 | 0.02s+1_]
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row dominant, thus no approximation to the gain space could be
found from the INA. The shape of the stability limit in these gain
spaces confirm what our previous analyses have shown, i.e. the
interaction is significant within this structure, especially for

the high recycle situation.

The gain spaces for the EY;CS I system are shown in figures
25a-b for the respective design cases. Also, the certain stability
(the inner rectangle) and uncertain stability (the outer rectangle)
limits which define the approximation -to the gain spaces are shown.
These limits were calculated from the INA plots shown in figures
26a-b,c-d for the respective design cases. The qertain stability
limit was calculated by assuming that: the given loop transfer
function lay onm the inner 1limit, i.e. closest to the origin,
defined by the Gershgorin bands. The loop is guarenteed to be
stable for all loop proportional gains that are less than the
ultimate gain calculated from this inner 1limit. The uncertain
stability limit was calculated by assuming that the loop transfer
function lay on the outer limit defined by the the Gershgorin
bands. One cannot be sure if the loop will be stable or not- if a
proportional gein is chosen that lies between the certain and

uncertain stability limits. The loop will definitely be unstable

if a gain is chosen that is greater than the uncertain limit. The
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INA plots shown in figure 26, and used to calculate the limits,
were made nsing_cdlumn'discs. The plots of the gain spaces show
that the interaction is negligible, as can be inferred from their
shape. The actual gain space is esSentidIly that part of the gain

space delineated by the SISO ultimate_gafns.

The gain spaces for the EVaCS II system are shown in figures

27a-b, while the INA plots with column discs used for the gain
space approximations are shown in figures 28a-b,c-d. Again, these

plots show that the interaction for this system is negligible.

These analyses have shown that extensive energy concepts have’
allowed for the synthesis of two controller structures for this
system that have zero steady-state interaction and minimal dynamic
interaction. These control structures were synthesized easily, and
have an intuitive physical appeal. As to which EVaCS structure is
better than the other, for our particular design they probably
would function equally well. This is founded in the results of the
angle calculations and the various other ‘analyses presented,

Definitely, either EVaCS structure is superior to the IVaCS

structure.




Fig. 23 Gain Space Plots for IVaCS
in Tank's Low and High Recycle Designs
a-low recycle b-high recycle
ky is top loop's proportional gain
k, is bottom loop’'s proportional gain
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Fig. 24 Inverse Nyquist Array Plots for IVaCS Gain Space
Approximations in Tank’'s Low and High Recycle Designs
a-top loop, low recycle b-bottom loop, low recycle
c-top loop, high recycle d-bottom loop, high recycle




Fig. 25 Gain Space Plots for EVaCS I
in Tank's Low and High Recycle Designs
a-low recycle b-high recycle
k, is top loop's proportional gain
k, is bottom loop's proportional gain
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Fig. 26 Inverse Nyquist Array Plots for EVaCS I Gain Space
Approximations in Tank's Low and High Recycle Designs
a-top loop, low recycle b-bottom loop, low recycle
c-top loop, high recycle d-bottom loop, high recycle




30 60
k,

(b)

Fig. 27 Gain Space Plots for EVaCS II
in Tank's Low and High Recycle Designs
a-low recycle b-high recycle
"k, is top loop's proportional gain
k, is bottom loop's proportional gain
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Fig. 28 Inverse Nyquist Array Plots for EVaCS II Gain Space
Approximations in Tank's Low and High Recycle Designs
a-top loop, low recycle b-bottom loop, low recycle
c-top loop, high recycle d-bottom loop, high recycle




Chaptér 4

‘A Two Stage Distillation Process

4.1 Definition
The second process examined 'by this thesis was a two-stage
binary distillation column. This system approximates an industrial

distillation column in that the rectifying and stripping sections

have been lumped into single, very effecient stages. A diagram of

the system is shown in Figure 29.

$B' 22

Fig. 29 Two Stage Distillation Process

In figure 29, F is the feed flow to the column, D is the
distillate flow, B is the bottoms flow, L is the column's reflux

stream, V is the vapor boil-up, z, is the distillate’s terminal
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composition, y, is the first stage vapor composition, x, is the
first stage liquid composition, y, is the second stage vapor
composition, x, is the second stage liquid composition, and z, is

the bottoms’ terminal composition.

In modeling the process, we assume that the feed is at its
bubble point, that the column‘f}ows are-equimolal, and that the
trays are 100% efficient. By assuming negligible accumulator
holdup and condenser dynamics, such that y, = z,, our first-stage

material balance over the light component is,

dx, (4.1
MR at— = L(Zl"'xl) - V(,ZI_YZ) (4.1)

By assuming negligible bottoms holdup and reboiler dynamics, such
that x, = ‘z,, our second-stage material balance over the light
component is,

dx
Mg g = Llxamzy) + Flzgmza) = Viya=2) (4.2)

We assume thermodynamic equilibrium relationships of the form,

y = H(x) x=H (y) (4.3)

Here, H is the relationship that gives the vapor’'s equilibfium
composition in terms of the liquid composition, and H_I is the
relationship that gives the liquid's equilibrium composition in
terms of the vapor composition. By dividing equations

(4.1)-(4.2) through with our steady-state feed rate F, and
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multiplying/dividing the capacifﬁnce terms by MR + Mg, we obtain

the following system of equations describing our process after

substituting the relationships from equation (4.3),

11y = ml(z;—H—l(zl)) - m,(z,-H(z,))

(1-y)xy = my (B (25)-23) + (xg-2,) - my(B(z5)-2,)

Here m, is the reflux to feed ratio, m, is the vapor boil-up to
feed ratio, and the feed rate F is assumed to be constant. Also, ¥y
is the fraction of total column holdup in the rectifying section
[MR/(MR+MS)], and time is dimensionless with respect to the column
time constant [F/(MR+MS)]. Linearizing the equations, and

expressing the derivatives .in terms of -z, and z,, we have,

Yf115;1 ~ ‘{g + myfy.182, + myf,;,082,

+ (z4=f4)6my = (z24~f5)0m,

(1’7)5;2 ~myfy482; - [§.+ m,f;,182,

+(f1"2‘3)’5m1 - (fg‘Zz)smz

where D/F = m; - my, B/F =-1 - D/F, f,; is the derivative of the
inverse relationship shown in equation (4.3) with respect to z,
evaluated at the steady-state z,, f,; is the derivative of the
assumed relationship H shown in equation (4.3) with respect to z,
evaluated at the steady-state z;, f; is the first stage light
component liquid composition and is equal to-H-I(zl), and f, is the

second stage light component -vapor composition which is equal to




Equations (4.5)-(4.6) represent the expanded form of our
state-space model. Writing these equations in the form of equation
(1.1), we have the terminal compositions as our state vector, our
input vector having m; and m, as its elements, and the following

plant matrix and input matrix,

D
=(F + myfyq) m,f,;
: vEi1 1E11

myfys ‘(% + myf,,)
T Ty -

L

—Z_-l“f1 —(Zl—fz‘)-
7211 i1

f1-13 "(fz__ZZ)

We can obtain our plant transfer function matrix as shown in

equation (3.4).

Two different designs were used in this research. In both
designs, it was sssumed that the two components in the system had a
constant relative volatility, a. The designs themselves were:
specified using a symmetry factor w, and a separation factor s,

both of which. are shown below.

1_ + zl _21(1-23)

- s 57
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The first design case was chosen to be an easy separation, i.e.
small flows within the column such that both terminal compositionms
were of a low purity. The second design case was chosen to be a
difficult separation, i.e. large flows within the column. ‘This
design gave high purity terminal compositions relative to the
previous design. The corresponding steady-state model parameters
are shown .in table 6. In both @gsigns. the column flows are such

that D/F = B/F.

Figure 30a shows a plot of the system eigenvalues as a
function of y in the low purity design case. As can be seen, the
eigenvalues are the least separated when y ~ 0.5. This corresponds
to the rectifying and stripping sections having approximately the
same holdups. Figure 30b shows the corresponding plot of the
eigenvalues in the high purity design case. As can be seen in the

plot, the eigenvalues are widely separated for all values of 7y.

Again, these eigenvalues are the least separated when y ~ 0.5.

With this in mind, y was choosen to be 0.5 in both design cases.
The various design specifications used are summarized below.

Case I Easy Separation, Low Purity

y =05 =xp= 0.5 w=10 a= 3.0 s=4.5

Case II Difficult separation, High Purity
y=05 x;,=05 =10 a= 10.0 s = 99.0%




Fig. 30 Eigenvalues of Distillation Process
as a8 Function of ¥y




Table 6 Linearized Model Parameters for
;Distillation Design Cases

‘Low Purity High Purity
Separation Separation

0.68
0.32

0.27
17

.50
.50

.41
0.59

.11
11

Low Purity Design Specifications
X¢ =0.5 w=10 a=3.0 s = 4.5

High Purity Design Specifications

xg =05 0=10 a=10.0 s= 99,01
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We will use three of the conventional control schemes typcially
ased in controlling distillation processes. One is known as an
energy balance scheme, and the other two are known as material
balance schemes. All three control the terminal compositions.
These structures are intensive variable in nature, and their output

coordination vectors are shown below.

by = (1,0)

hr = (0,1)

Our respective controlled variables s, can be found as shown in
equation (3.5). In order. to establish the candidate physical

modes, .or output vectors, for use in the EVaCS structures, we

employ the following extensive material concepts.

1. material balance of rectifying section
2. material balance of stripping section
3. material content of total column
If we want to control the rectifying balance, we simply measure

that combination of states shown in equation (4.5),

h? = (g + mxfgx:‘mzfzz) (4.10)

Again, what matters in this selection is the way the two states are
weighted in_the output vector. To control the stripping -balance,

we have,

(4.11)

h?.='(~m1f11,% +m,f;,)




The total content of the column will be proportiomal to,

(4.12)
TX1 + (I—Y)XZ;

Perturbing this equation and expressing it in terms of the terminal

compositions, we have,
y£11624 + (1-7)0z,
Thus, the physical mode for our total emergy content is,
Bl = (yf1,,1-7) (4.14)

Table 7 summarizes the various output coordination vectors for this

process.

The next step that we need to take is towards establishing our
manipulated variables. The energy balance scheme uses the reflux
rate to control the top composition, -while the boil-up rate is used

to control the bottom' composition. Thus, we have,

p’f, = (1,0)

Py = (0,1)

Our manipulated variables can be found as shown in equation

(3.10) using our system input vector. This structure will be known

as the L,V structure. One of the material balance structures,

which we will term the D,V structure, controls the top composition

by the distillate flow rate, while the bottoms composition is
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controlled with the boil-up rate. Thus, we have the following

input coordination vectors for this system,

(-1,1) (4.16)

P

¥ = (0,1) = pt

The other material balance scheme controls the top composition
using the reflux flow, while the bottoms flow rate is used to
control the bottoms compositiOn;"This structure is termed the L,B

structure, and its input vectors are defined as,
pl = (1,00 = p1 (4.17)
pr = (1,-1)
The input coordination vector. used to coritrol the rectifying
balance for the EVaCS structure is found from the steady-state part
of equation (4.5). Using the linear combination of system inputs
present in the equation, we have,

T _ . :

Ps = [Zl-flg-.(l'l"fz)] (4.18)
Likewise, the ‘input vector used to control the stripping balance is
defined as,

T _ P . .

pe = [f1-23, (f3-25)] (4.19)

In pairing @ manipulated variable with the total column content

controlled variable, we have at our disposal any of the four flows

in the column, i.e. D, B, L, or V. We arbitrarily choose the
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distillate flow rate to controi.the total content of the column.

Thus, we have,

(4.20)

Again, as stated previously, the most important part of the
synthesis procedure is the proper choice of controlled variables.

Table 8 summarizes the input coordination vectors.

4,2 Results and Discussion

Figunes 31a-d show the angles as a function of y between the
IVaCS output coordination vectors and the slow math mode and fast
math mode, respectively. These calculations show that only one of
these output vectors approximates the slow mathematical mode and
this only when one section of the column ‘is much smaller than the
other. Neither output vector ever approximates the fast mode of
the column. Thus, the three IVaCS structures do not approiimate
the modal control structure for the process in either of the two

design cases.

In establishing an EVaCS structure, we have at our disposal
any two combinations of the three possible candidate physical modes
shown in table 7. Figure 32a,c shows the angles as a function of v
between the total content physical mode, h;, and the system's slow

mathematical mode in the low and high purity cases, respectively.




Table 7 Summary of Output Coordination Vectors for
Distillation Column

= (0,1)

[% + myfyy,-myfs,]

['mxfxx;g + myf,,]

Intensive variable output
vector for controlling
distillate’'s composition

Intensive variable output
vector for controlling
bottom’s compostion

Extensive variable output
vector for controlling
rectifying section’s
material balance

Extensive variable output
vector for .controlling
stripping section's
material balance

Extensive variable output
vector for controlling
total material content




Table 8 Summary of Input Coordination Vectors for
Distillation Column

(1,-1)

[Zl_f-lp—('ll—fz) ]

pT = [fy-2,,=(f3-25)]

Input vector
representing the
reflux rate

Input vector
representing
boil-up rate

Input vector
representing the
distillate rate

Input vector
representing the
bottoms rate

Input vector for
controlling rectifying
section’s material
balance

Input vector for
controlling stripping
section’s material
balance




Figure 32b,d show the angles between the slow mode and the material

balance modes, h; and h,,; in both design cases. As can be seen,
the total content mode gives a good approximation- to the slow
mathematical mode in the low. purity design while it essentially is
the slow mode in the high purity design. The material balance
modes do not give approximations to the system’s slow mode. Figure
33a,c show the angles as a function of y between the total content
pbysical mode and the system’'s fast ‘mathematical mode in the
respective design cases. As can be seen, the total content does
not give an approximation to the fast mode. The angles between the
material balance contents and the fast mathematical mode are: shown
in Figure 33b,d. These physical modes approximate the fast
eigenrow reasonably well for the low purity separation, and they

essentially are the fast eigenrow in the high purity separation.

Considering these angle calculations, we arrive at two EVaCS
structures for this system, Along.with the IVaCS structures, they
are summarized below.

Output Input
Coordination Coordination

Vector Vector

Pa
P2

Ps
Pa




Fig. 31 Angle Calculations in Degrees for Column's Slow,Fast Modes’
Eigenrow with IVaCS Output Vectors, h, and h,
a-with slow mode, low purity b-with fast mode, low purity
c-with slow mode, high purity d-with fast mode, high purity




Fig. 32 Angle Calculations in Degrees for Column’s Slow Mode's
Eigenrow with EVaCS Output Vectors, h,,h, and h;
a-with hy, low purity b-with hy,h,, low purity
c-with h,, high purity d-with h,,h,, high purity




(c)

Fig. 33 Angle Calculations in Degrees for Column’s Fast Mode's
Eigenrow with EVaCS Output Vectors, h;,h, and hy
a-with h,, low purity b-with h,,h,, low purity
c-with h,, high purity d-with hy,h,, high purity




L,B
EVaCS I

EVaCS II

We have already shown that the various IVaCS structures, i.e.
the energy balance scheme and the two material balance schemes, do
not approximate the process’ modal control structure. Therefore,
we would not expect them to découple the column's internal
dynamics. The EVaCS structures seem to do a respectable job of

approximating the column’s modal control structure. A plot of the

angles as a function of 7y between the total content physical mode

and the fast ‘eigenvector is shown in Figure 34a,c for the
respective design cases, while a plot- of the
rectifying(stripping)/slow eigenvector angles is 'shown in Figure
34b,d. As all of the angles are essentially nimety degrees for our
particular designs, the EVaCS structures have decoupled the
internal dynamics of the process. The rectifying content physical
mode for the EVaCS I structure seems to be lacking somewhat in the
low purity separatiom, but the extent of this interaction remains

to be seen.

Table 9 summarizes the plant transfer function matrices for




Fig. 34 Angle Calculations for Slow, Fast Modes’ Eigenvectors
with EVaCS Ph'ys,ical Modes in Column’s Low, High Purity Separations
a-fast mode with hy,low  b-slow mode with h;,hy,1low
c-fast mode with h;,high d-slow mode with h,,h,,high




the various structures in the low purity separation design case.
Table 10 summarizes the same for the high purity separation case.
Appendix II contains a summary for both design cases of the various
plant matrices and input matrices for use in their respective
state—space models. Notice that these EVaCS structures were
derived using physical modes based on the light .component. The
same results would have been‘foqu:had material balances been made

over the heavy component.

The modal analysis of Tung and Edgar [13] has been described
previously. The forthcoming analyses of the various structures in
the low and high purity separations were done using the transfer
function matrices shown in tables 9-10. All time responses were

calculated as,

s = 441 * A

where Ai, is the contribution given by controller j to the response

of output i.

The ‘time response for the L,V structure’s low purity

separation design case was calculated as,

loop 1 (top)

Ayg(n) = 2.086 - 2.107¢799M + 0.021e3+2M

Aga(n) = -1.086 + 1.332¢70:90 = 0.246¢73+2M




Table 9 Plant Transfer Function Matrices for
Distillation Column
Low Purity Design Case

w=10 a= 3.0 s = 4.5

Ay = —0.92125 A, = —3.24688
d(s) = (s = X)) (s — &;)

AT6(s+3. 0.168(s+7.560) :

.188(s+2. .531(s+1.638)

AT6(s+3. .308(s+1)

.188(s+2. .343(s+0.897)

©359(s+3.168) 0.103

.308(s+1. .168(s+7.560).
.343(s+0. .531(s+1.638)

0.619s 3.168(s+0.944)

359 (s+3.271) -0.103

EVACS II L o
0.196s .271(s+0.914)




Table 10 Plant Transfer Function Matrices for
Distillation Column
High Purity Design Case

(1]

Ay = -0.49753
d(s) = (s -

|

0
0
0.
-0
-0

6(s) = 375

d(s)
N 1
G(s) = Iy

G(s) = F7sT -
0

G(s) = zr%y

[
|

1

G(s) =

0.

L.
[

1.0 a=10.0

A, = —661.14518
1,1) (S- - )\.3)

.272(s+991.0)
.815(s+328.9)
272(5+991.0)

815(s+328.9)

002(s+1.0)

.005(s+0.332)

.817(s+660.6)

405.8s

817(s+661.3).

133.9s

s = 99.01

-0.270(s+997.0)

|

-0.820(s+326.9)

0.002(s+1)

|
}
|

-0.005(s+0.332)

0.270(s+997.0)

0.820(s+326.9)

0.668

660.6(s+0.498)

-0.668

|

661.3(s+0.497)



loop 2 (bottom)

Ays(n) = -1.086 + 1.049670-9M + 0.037¢73+2"

Ay3(n) = 2.086 - 1.2_743’0-971 - 0'-8128'—3"2“-

The response for the high purity separation case was,

loop 1 (top) (4.22)

Ayo(n) = 81412.6

81433.0e0+51 4+ 20,4¢7661-1n

-81411.6 + 8143.2,23-'0‘571 - '20.66"‘661.11]

A5 (n)

loop 2 (bottom) - -
A, (n) = -81411.6 + 81349,7¢70-31 61.90°661.1n

+

,—661.1n

81412.6 - 81349.9¢ 03" - 62.7

Az (n)
These responses are plotted in Figures 35a-b,c—d, respecfively. In
the low purity separation, the interaction within this structure is
significant, and it becomes enormous in the high purity case. In

both design cases; the.controllers fight each other.

The time response for the D,V- structure’'s low purity

separation design case is shown below,

(4.23)

loop 1 (top) .
Aa(n) = 0.739 - 0.746¢70-9% + 0.007¢73+27

—chn 0.2326_3.27‘

Aza(n) = 0.261 - 0.029%

loop 2 (bottom) 0.9 3.2
Azz(n) = 0,261 - 0.252¢ """ - 0.009¢ n

Aya(n) = 0.739 + 0.027¢~0-9 - 0.766073-2"

The time response for the high purity case was,



loop 1'(top)

Ay, (n) = 0.502 - 0,502¢70-5N

Aya(n) = 0.498 - 0.251e_0'5“'— 0,2473*561f1n

loop 2 (bottom)

Ay, (n) = 0.498 —0.498¢70-5"

Apa(n) = 0.502 + 0,250e0-5m - 0,752¢7661-1n

These responses are plotted in Figures 36a-b,c~d, respectively.
The interaction 'in the low puriiy case 1is tolerable{:but in the
high purity case both controllers give esséntially the same steady—
state contributions to the system outputs. Thus, one would want to

decouple this system, if possible.

The low purity separation time response for the L,B structure
is plotted in Figures 37a-b, and is shown below,

Loop 1 (top) (4.25)

AyL(n) = 0.404 - 0.044e™9-91 — 0.360e73+27

Aga(n) = 0.596 - 0.7316-0:9M 4 0,135¢73+2N

loop 2 (bottom) 0.9 5o
Aya(n) = 0.596 + 0.022¢™ """ - 0.618¢ """
Aya(n) = 0.408 - 02477091 - 0.157¢73+21

The high purity separation time response is shown below, and is

plotted in Figures 37c-d.

loop 1 (top)

Ays(n) = 0.498 - 0.251e-0+50 _ 0,247¢7661.1n

Aya(n) = 0.502 - 0.502¢°0+50




As

loop 2 (bottom)
A, (n) = 0.502 + 0.250e~0+5M - 0.752¢

A5 (n) = 0.498 - 0.498e

-0.5q

can be seen, the interacting controller’s

-661.1n

contribution is

greater than the principle controller's contribution in all cases.

This is totally unacceptable.

The time response for the EVaCS I low purity separation case

is shown below.

These responses are

loop 1 (slow) _ s
Ay (n) = 1.0 - 0.990¢0-97 - 0,010e73-2"

Alz-('ﬂ_) =.0,0

loop. 2 (fast) .
Ara(n) = 0.024e~9+9M - 0.024¢73-27

Azi(ﬂ) =1.0 - 0.034e_o°9n - 0.9660—3'2n

high purity separation time response was,
o) 100 - 100704181

Ay,(q) = 0.0

loop 2 (fast)

A;,(n) = 0.0

Aas(n) = 1.0 - 1.0¢7861+1n

(4.27)

(4.28)

plotted in- Figures 38a-b,c-d, respectively.

This analysis shows us three significant points. The first is that
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there is no steady-state interaction in the structure for either
design case. Also, their is essentially no dynamic interaction in
the low purity separatibn, and none: at all in the high purity
separation. Finally, we see conclusively that the slow loop's
response. is strictly associated with the slow mode of the system,

while the fast loop's response is strictly associated with the fast

mode of the system.

The time response for the EVaCS II structure's low purity

separation case is shown below and plotted in Fignres'39a—b.

loop 1 (slow) (4.29)

Api(n) = 1.0 - 1.002¢70:M 4 0.002¢3+21

loop 2 (fast) :

A m) = - 0.007e700M 4 0.007¢~3+2M
3.2q

Aaa(n) =1.0 % 0.010¢"0-71 - 1.010e”

The time response for -the high purity separation is shown below and
plotted in Figures 39c-d.

loop 1 (slow) (4.30)

Ay, (q) = 1.0 - 1.0e"0-5n

Ass(n) = 0.0

loop 2 (top)

Az (n) = 0.0

Azaln) = 1.0 _ 1.0o-661.1n

120




The remarks made for -the EVaCS I system apply here, also. In
essence, we have shown that both of the EVaCS structures give us
our modal control structure for the process. ‘At this point, the

reader should recall how easily these structures were synthesized.

The dynamic relative gain array analysis as done by McAvoy
[17] has been described previoﬂsiy. The forthcoming analyses were
done by calculating A(iw) and the appropriate A(A). ‘The
interpretation of ‘A(iw) ‘gives us a measure of the interaction in.
the system when one loop has a natural frequency widely separated
from the other loop’s natural frequency. The interpretation of
A(A) gives a measure of the ‘interaction when both loops are

identical.

Bode plots of A(iw) from the L,V structure are shown in
Figures 40a-b for both design cases, respectively. The size of A
is quite-large. indicating that the interaction within the system
is quite significant when the loop speeds are widely separated.
This situation would arise when the two loops had reset times that
were of different orders of magnitude. ‘The response of the slow
loop, i.e. the loop with the small reset ‘time, would be very
sluggish due to the loop's decreased gain. This is especially true

in the high purity separation. Its phase angle, as measured
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Fig. 35 Dimensionless Set-Point Responses for L,V
in Column’s Low and High Purity Separations

a-top loop, low purity

b-bottom loop, low purity

c-top loop, high purity d-bottom loop, high purity
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Fig. 36 Dimensionless Set-Point Responses for D,V
in Column's Low and High Purity Separations
a-top loop, low purity b-bottom loop, low purity
c-top loop, high purity d-bottom loop, high purity
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Fig. 37 Dimensionless Set-Point Responses for L,B
in Column’'s Low and High Purity Separations
a-top loop, low purity b-bottom loop, low purity
b-top loop, high purity d-bottom loop, high purity
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Fig. 38 Dimensionless Set-Point Responses for EVaCS I
in Column’s Low and High Purity Separations
a-slow loop, low purity b-fast loop, low purity
c-slow loop, high purity d-fast loop, high purity
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Fig. 39 Dimensionless Set-Point Responses for EVaCS II
in Column’'s Low and High Purity Separations
a-slow loop, low purity b-fast loop, low purity
c-slow loop, high purity d-fast loop, high purity
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clockwise from the positive real axis, would be decreased due to

the interaction. These two effects would tend to stabalize the

slow loop.

Bode plots of A(A) for the case where the loops are identical

and |x] > 1 are shown in Figures 40c-d for the two design cases.

These plots show that our responses would be highly oscillatory due

to the increased loop gains. The speed of response of the loops

would not be affected very much. Thus, we would expect. to have to

decrease our controller gains from their SISO settings when both

loops are closed in this situation.

The A(iw) from the D,V structure are shown in Figures 41la-b

for the respective design cases. These plots show that when the

loops have widely separated natural frequencies, the slow loop in

the system will exhibit oscillatory behavior. In the low- purity

separation, the slow loop’s speed of response will not be affected.

In the high purity separation, the speed of response could be

increased or decreased by the interaction depending upon the slow

loop's tuning. This seéms to imply than an optimum reset time

could exist.

Figures 4lc-d show Bode plots of-A(k) for the situation where




both loops are identical in the D,V structure and [xl ¢ 1. These
plots show that both loops would exhibit oscillatory responses due
to the interaction. The loop speed of responses would not be
affected since the interaction phase contribution is negligible.
Thus, we would expect to have to decrease our controller gains in

the interacting enviroment.

Figures 42a~b show Bode plots of A(iw) from the L,B structure
for the respective design cases. These plots show that even in
this best case analysis where the loop speeds are widely separated,
the slow loop's response would be highly oscillatory. In the low
purity- separation, the slow loop's speed of response would be
decreased. In the high purity separation, the slow loop's speed of
response’ could be decreased or increased depending upon the
controller tuning. Preferably, the slow loop would have a low
reset time so that its natural frequency would be low enough to
fall in that region where the interactiom’s contribution to the
phase ‘angle would be favorable, i.e. inA that region where the

interactive phase -angle is negative. In saying this, we assume

that the sluggish response that the loop would exhibit in its SISO

enviroment would be improved enough due to the interaction in ‘the

MIMO enviroment so as to warrant tuning it as such.
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Bode plots of A(A) for the L;B structure where both loops are
identical and |Al ¢ 1 are shown in Fignres 42¢c-d for the respective
design caseés., The analysis doesn't change much from the analysis
given for this system in the situation where the loop speeds are
widely separated. Thus, we conclude that this control structure is

poor all the way around.

Bode plots of A(iw) are shown in Figures 43a-b for EVaCS I and
44a-b for EVaCS II for respective design cases. These plots show
conclusively that when the loops speeds are widely separated, one
may tune the loops in these structures independently ‘as the
interaction is negligible. This is a very desirable thing to be

able to do when dealing with multivariable control structures.

Figures 43c-d show the plots of A(A) for EVaCS I in the
situation where both loops are identical and Ikl {1, This
situation would arise when the fast loop was tuned such that it had
a large amount of integral action relative to the slow loop. As
mentioned earlier, onme definitely would not want to tune the system
in this manner. Assuming one did anyway, we would expect the loops
to exhibit oscillatory responses with the same speed of response as

in their SISO enviroments,
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Figures 44c—d show the plots of A(A) for EVaCS II in the
situation where both loops are identical and |L| > 1. This would
occur when the fast loop had a smaller reset time than the slow
loop. These plots show that we would essentially have no
interaction within this structure in either of the two design
cases. Considering the fact that this is our worst case analysis,

the EVaCS technique becomes_mdre;and more appealing.

The next method used to analyze the interaction in these
systems was the inverse Nyquist array, which has been described
previousiy. This forthcoming analysis plots the diagonal elements
of the inverse of our open-loop transfer function matrix and uses
the system's Gershgorin discs to gain insight into the magnitude of

the loop interaction.

INA plots with column Gershgorin discs are shown in Figures
45a—-d for the L,V structure in the two design cases. in'the low
purity separation, this system is column dominant, but there still
is a fair amount of interaction. This structure is not column
dominant, nor was it row dominant, in the high purity separationm.
Notice the reciprocal of the effective steady-state gain in the
high purity separation. As this number is quite large, the

effective loop process gains are quite small, Thus, we would
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Fig. 40 Dynamic Relative Gain Array Analyses Plots for
L,V in Column’s Low and High Purity Separations
a-Bode plot of A, low purity b-Bode plot of A, high purity
c-Bode plot of A, low purity d-Bode plot of A, high purity
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Fig. 41 Dynamic Relative Gain Array Analyses Plots for
D,V in Column’s Low and High Purity Separations
a-Bode plot of A, low purity b-Bode plot of A, high purity
c-Bode plot of A, low purity d-Bode plot of A, high purity
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a-Bode plot of A, low purity
c-Bode plot of A, low purity

Fig. 42 Dynamic Relative Gain Array Amalyses Plots for
L,B in Column’'s Low and High Purity Separations

b-Bode plot of A, high purity
d-Bode plot of A, high purity
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Fig. 43 Dynamic Relative Gain Array Analyses’ Plots for
EVaCS I in Column’'s Low and High Purity Separations
a-Bode plot of A, low purity b=Bode plot of A, high purity
c-Bode plot of A, low purity d-Bode plot of A, high purity
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expect control difficulties in tﬁis situation.

INA plots with column Gershgorin discs are shown in Figures
46a-d for .the D,V structure in the two design cases. This system
is not column dominant in either separation case due to the
excessive interaction of the bottom loop with the top loop. The
system was not row domipant for the same reason. Thus, this system
would pose control difficulties, especially in the high purity
separation, since the bottom loop's process gain is small. Also,
when one considers that perfect level control in the accumulator
was assumed in deriving the model, this structure becomes even less
desirable as the top loop's performance would be degraded in

reality.

INA plots with column Gershgorin discs are shown in'Figures
47a-d for the L,B structure in the two design cases. This system
is not column dominant due to the -excessive interaction of the top
loop with the bottom loop. Neither was the .system row dominant.

We would expect control difficulties in the high purity separation,

especially, due to the loop interaction and the small process gain

in the top loop. Also, when one considers that perfect level
control in ‘the sump was assumed in deriving the model, this

structure becomes even less desirable as the bottom loop's
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performance would be degraded inifeality.

Figures 48a-d show INA plots with column Gershgorin .discs for
the EVaCS I structure in the two design cases. This system is very
column dominant. Although there seems to be some rather
significant high frequency interference in the slow loop from -the
fast loop in the high purity sepgration; technically speaking this
is not termed .interaction as it is only one-way. Note the
effective process gains in the loops. These are not small in
either of the design cases. Thus, we would expect better control
from this structure than found in the energy balance scheme or

either of the material balance schemes.

Figures 49a-d shov INA plots with column Gershgorin discs for
the EVaCS II structure in the two design cases. This EVaCS
structure is very column dominant, also. There is even less
interaction in this structure than was present in the EVaCS I
structure. Notice how the sensitivity of the- slow loop's
controlled variable to its manipulated variable actually increases
as we go from the low purity separation to the high purity
separation, as was the case in -the EVaCS I structure. All in all,
we would expect good control from this structure when compared to

the energy balance scheme and the material balance schemes.
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Fig. 45 Inverse Nyquist Array Plots of Diagonal Elements
in L,V Structure in Column's Low and High Purity Separations
a-top loop, low purity b-bottom loop, low purity
c-top loop, high purity d-bottom loop, high purity
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Fig. 46 Inverse Nyquist Array Plots of Diagonal Elements
in D,V Structure in Column's Low and High Purity Separations
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Fig. 47 Inverse Nyquist Array Plots of Diagonal Elements
in L,B Structure in Column’s Low and High Purity Separations
a-top loop, low purity b-bottom loop, low purity
c-top loop, high purity d-bottom loop, high purity
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The final method used to anHlyze the interaction within these

This method

structures was MacFarlane's [15] characteristic loci.

By looking at the angles

has been described in detail previously.

standard basis vectors and the eigenvectors of the

between the

open—loop transfer function matrix, we gain insight 1into the

magnitude of the interactions. A diagomnal non—interacting system

would have eigenvectors that were perfectly aligned with the basis

vectors.

Plots of the interaction angles for the L,V structure in the

These plots show that

two design cases are shown in Figures 50a-b.

the interaction is significant in the low purity separation case,

especially at high frequemcies. Likewise, it is significant for

Figures 51a-b show

all frequencies in the high purity separation.

the interaction angles for the D,V structure in the two design

cases. These plots show that the interaction is significant and

becomes more so at high frequencies. The reason ome of these

angles is zero in the high purity separation is due to the fact

that the bottom loop is essentially not functioning because of its

small process gain. When one considers the fact that perfect level

control has been assumed in these calculations and that in reality
the top loop would be less functional than shown, this structure

becomes even less desirable. The interaction angles for the L,B
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structure in the two design cases are shown in Figures 52a-b. Here
also, the interaction is significant in both designs. The reason
why one of these angles is zero im the high purity separation is
again due to the fact that ome of the loops is essentially not
functioning. In this structure, i.e. the L,B -structure, the top

loop is the non—functioning loop.

Figures 53a-b- and 54a-b show the interaction angles for the
EVaCS I and EVaCS II structures in the different separation cases.
In all of these plots, one angle starts at zero and goes to some
non-zero value at high frequenéies, while the other angle starts at
some non-zero value and goes to zero at high frequencies. Only for
a limited frequency range are both angles significantly different
from zero. Even in this frequency range, the angles are reasonably
small which indicates that the interaction is small. Recall from a
previous discussion that small angles do not necessarily mean
minimal interaction. The reason that we can say that in this case
is that all of our previous analyses have confirmed that the
interaction is minimal., At the low and high frequencies where. one

angle is zero, we only have one-way interferemce, not interaction.

In order to allow the structures to exhibit unstable behavior,

it was decided to incorporate analyzer dead times into the various
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control systems. A dead time of-0.0S dimensionless time units was

used to represent the analyzer dynamics. This corresponded to

approximateiy 5% of the slowest time -constant in the low purity

separation case, and 2.5% of the same in the high purity separation

case. These analyzer times were analogous to five minutes for a
two hour column time constant in the low purity separationm, and 3

minutes for the same. column time constant in the high purity

separation. The analyzer dynamics were incorporated into the
systems simply by multiplying the various plant transfer function
~0.05$T

matrices by a matrix of diagle Using these matrices, gain

spaces were -calculated for the -various structures, as described

previously.

The gain spaces for the L,V structure are shown .in Figures

55a-b for the respective design cases, while the INA plots used for
the gain space approximations are shown. in Figures 56a-d. Column
Gershgorin discs are used in these plots. This system is dominant

only in the low purity separation. The shape -of the gain spaces

confirm that ‘the interaction in the -structure is significant,

especially in the high purity separation. The gain spaces for the
D,V structure are shown in Figures 57a-b, while the INA plots used
to approximate the gain spaces are shown in Figures 58a~d. Column

discs were used in these plots in the low purity separation, while



row discs were used in the high purity separation. This system is
not column dominant, nor was it row dominant. Note the shape of
the gain space in the high purity separation. This confirms the
previous assertion that the bottom loop in this system is

essentially non-functional. The gain spaces for the L,B structure

are shown in Figures 59a-b for the respective design cases. INA

plots used to approximate the gain spaces are shown in Figures 60a-

d. Column discs are used in the low purity separationm, while row

discs are used in the high purity separation. This system was

neither row nor column dominant, either. Again, note the shape of

the gain space in the high purity separation. This confirms that

the top loop in this structure ‘is essentially nbt.funqtioﬂing.

Gain space plots for the EVaCS I structure are shown in
Figures 6la-b. The INA plots with column discs that were used to
approximate the gain spaces are shown in Figpres 62a-d. This
structure is strongly column dominant, thus the area of uncertainty
in the gain space is sharply reduced. Gain space plots for the
EVaCS II structure are shown in Figures 63a-b, while the INA plots
used to approximate the gain spaces are shown in Figures 64a-d.
These INA plots were made using column discs, too. This structure
is even more strongly column dominant than the EVaCS I structure.

The gain spaces of both structures show once again that the
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Fig. 56 Inverse Nyquist Array Plots for L,V Gain Space
Approximations in Column’s Low and High Purity Separations
a-top loop, low purity b-bottom loop, low purity
c-top loop, high purity d-bottom loop, high purity
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Fig. 61 Gain Space Plots for EVaCS I
in Column's Low and High Purity -Separations
a—low purity b-high purity
k, is slow loop’s proportional gain,

k, is fast loop's proportional gain
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Fig. 62 Inverse Nyquist Array Plots for EVaCS I Gain Space
Approximations in Column's Low and High Purity Separations
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Fig. 63 Gain: Space Plots for EVaCS II
in Column's Low and High Purity Separations
a-low purity  b-high purity
k, is slow loop's proportional gain,

k, is fast loop’'s proportional gain
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Approximations in Column’s Low and High Purity Separations
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interaction is minimal.

These analyses have shown that using‘ extensive material
concepts one can synthesize two. control structures which have zero
steady-state interaction and minimal dynamic interaction for this
process. The reader should recall the ease with which these
structures were synthesized, ﬁsth structures clearly have more
favorable control characteristics than the conventional schemes.
As to which EVaCS structure is best suited for our particular
designs, the angle calculations suggest that the EVaCS II structure
is favorable -over the EVaCS 1 structure. This seems to be

confirmed by the various other analyses presented here.
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Chapter §

Tuning the EVaCS Structures

We have just completed a fairly exhaustive analysis of the
interaction in the control structures synthesized by the EVaCS
technique. In doing the analysis, we saw that we can tune the
principal loops independent of one another as long as we keep the
loop speeds separated to some extent. The forthcoming discussion

attempts to gain insight into the closed-loop behavior of the

indiviual ‘loops. Also, we attempt to determine whether or not we

and if so, the

need to include integral action in the controllers,

extent to which it must be incorporated.

we see that all of

Referring to tables -3-4 and tables 9-10,

the principal transfer functions of the various EVaCS -structures

have the following form,

K{s + z) (5.1)

G(s) = Ts + pg)(s + pg)

For the purposes of this_discussion, we label pg as the eigenvalue

of the fast mode of the system_and.p8 as the eigenvalue of the slow

mode of the system. The fast .loop in the structures has a zero

approximately equal to the slow eigenvalue, while the slow loop in

the structures has & zero approximately oqual to the fast

eigenvalue. Ve will label the zero of the fast loop zg and that of

the slow loop zg.
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Using a root locus analysfs. we should be able to gain some

insight into the performance of the indiviual loops. We will use
the form of the transfer function shown in equation (5.1). Notice
how in the EVaCS I structures both g and zf'ate bounded by P and
pg, 8s seen in tables 3-4 and 9-10. The EVaCS II structures’ zg
and zZg lie outside the bounds set by ps‘and Pg- This is a key

point in assessing the differences between the loops in the two

structures.

Figure 65 shows root loci plots of the resulting open—loop
transfer function for the loops in the EVaCS I structure when
proportional-only controllers are used. Immediately, we mnotice
that these controllers will not exhibit oscillatory responses.
Looking at the plot for the fast loop, it seems that it might not

be as fast as the slow loop when the loops are closed die to its

zero blocking the movement of the slow eigenvalue down the negative

real axis. This is a bit perplexing at first, but recall .that the

fast loop’s response is due to the fast mode which means we need
only look at the position of P Thus, neglecting interaction, we

can see that our fast loop gets faster as we increase our gain.

Likewise, we see that we can improve the speed of the slow loop as
its response is due to the position of the slow eigenvalue. The

speed of the slow mode approaches that of the fast mode in its open
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Fig. 65 Root Loci Plots for EVaCS I Loops ‘with P-Only .Controllers

loop enviroment as we increase our controller gain. In the

difficult control situations, such as a high recycle rate in a

‘reactor system or a difficult separation in & distillation column,

the eigenvalues are widely separated. Thus, the improvement in the

speed of the slow loop could be significant.

shown in figure 66 for the EVaCS II

Root 1loci plots are

principal loops using proportional-only controllers. The slow loop

can exhibit oscillatory behavior in this system. If there was any

interaction of the slovw loop with the fast, it might have 8

significant affect o1 the fast loop’s respomse ‘due to the

confluency of the eigenvalues. This analysis is really not capable
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Fig. 66 Root Loci Plots for EVaCS II Loops with P-Only Controllers

of telling us;vhat'wonld happen in this situation. Anyway, we have

shown that the interaction of the slow loop with the fast is
The fast loop im this situation just becomes that much

minimal.

faster without exhibiting oscillatory behavior.

controllers in

We could also employ proportional—integral

these structures. In this case, we have a total of four cases to

assess for each of the loops. Figures 67a-d show the various

generalized root loci plots in the order of increasing integral

action (decreasing reset time) for the 1loops in the EvVaCS 1

structure. We see that the integral action has added an additional

mode to the system. For the slow loop, only plots a,b and d are



worth analyzing as it is doubtfﬁl that onme would choose a reset
time that would cause the integral zero to lie within that segment
of the negative real. axis bounded by Ppg and,zs. Likewise, only
plots a,c and d are worth analyzing for the fast loop due to a
similar ratiomale. In these diagrams, we see that we can have a
slight amount of integral action in the slow loop and still have a
pon—oscillatory response. As wq'éncrease_our integral action, our

slow mode becomes confluent with the integral'mOde.and3oscillatory

behavior results. For the fast loop, we can have -a small amount of

integral action and still remain non-oscillatory. As we decrease
the reset time, our fast eigenvalue remains real, as opposed to
complex, soO we might not see too much oscillation in the loop since

it is the slow mode that becomes confluent with the integral mode .

If we ever have & tremendous amount of integral actionm, a&s the case

shown in plot d, then the speed of the fast loop will be severely

affected. Here, we would expect to see very poor performance due
to the aforementioned fact and, asSuming the slow loop does not
due to the subsequent

have a significant amount of integral.acfion,

increase in the -interaction.

¢ show the root loci plots in order of increasing

Figures 68a-

integral action that would be applicable to the slow loop in the

EVaCS 1I structure. Here, we see that the slow loop might exhibit




Fig. 67 Root Loci Plots for EVaCS I Loops with PI Controllers
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oscillatory responses when a controller with integral action is
used regardless of the reset time. For a slight amount of integral
action, we might expect to see a bit more interaction of the slow
loop with the fast loop as the two system eigenvalues become
confluent. In cases b and c, the slow mode becomes confluent with
the integral mode. Thus, in order to keep the slow loop in this
system from being oscillatory“‘ye would have to use 8 small
controller gain. Figures 69a-c show the root loci plots for the
fast loop in the EVaCS II structure. Here, we see that this loop
would not exhibit oscillatory behavior until a very small reset
time was employed in the controller. So, while the. slow loop in
this structure might have some difficulties depending upon the

tuning, the fast loop will have pretty respectable responses.

In determining ‘whether or not to wuse ,proportional or
proportional-integral gontrollers, one very big consideration is
the elimination of off-set. In general, fast loops tend to have
more off-set than slow loops, everything else being the same. On
page 54 of his book, Rosenbrock [6] describes a quantitative way of
determining the off-set that a loop would have via the inverse
Nyquist plot of that loop’s openeloop,t:ansfer function. Referring

to figure 70, the off-set is.‘the ratio of OA to CA, where C is the

value of the controller gain.
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68 Root Loci Plots for EVaCS II Slow Loop with PI Controller
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i Plots for EVaCS II Fast Loop with PI Controller

Fig. 69 Root Loc




Fig. 70 Determining Off-Set via the Inverse Nyquist Plot

Referring to the INA diagrams for the EVaCS structures in the

stirred-tanks in series process, we see that the various loops

would exhibit little off-set when using proportional controllers as
the plots start very-close to the origin. It"s interesting to note
that whenever a loop has integral action incorporated into it, .its
inverse Nyquist diagram begins at the origin. Referring to the INA
plots for the EVaCS structures in the distillation process, we see
that both loops would ‘have little off-set in the low purity
separation. In the high purity separation, the slow loop
essentially has Bo of f-set while the fast loop has a significant
amount of off-set. This is due to the fact that the fast loop is

really fast in this case. Recall from a previous discussion that



the faster a loop is, the more of f-set it tends to have. Thus, we
would want some amount of integral action in the fast loop. In
general, we would want ‘some limited amount of integral action in
both controllers as this would be necessary in order for the actunal
intensive variables that are being controlled to reach their set-

points after a disturbance had been injected into the system.

In order to see if we could tune the loops in ‘the EVaCS
structures independent of one anothet and still have a stable
system, it was decided to calculate Ziegler-Nichols [26] settings
for prbpdrtional-integral controllers to be used in -the various
structures we have assessed in ‘the distillation process’ high
purity design case. The ultimate gains and ultimate frequencies
required to calculate the various settings are shown in table 11,
while the actual settings employed in the various structures are
shown in table 12. Characteristic loci stability piots of the
resulting.'L;V structure's open—loop transfer function matrix’s
eigenvalues are shown in Figure 71a-b. As seen in the plots, this
structure is at the point of instability as the eigenvalue shown in
Figure 7la has 8 magnitude of one when its phase angle is —180
degrees. Characteristic loci stability plots of the resulting D,V
and L,B structures are shown: in ‘Figure 72a-b and T2¢~d,

respectively,  These plots indicate that both structures are
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anstable. The corresponding stability plots for the EVeCS 1
structure are shown in Figure 73a-b, while the plots for the EVaCS
II structure are shown in Figure 73c-d. These structures are
clearly stable. Note that by using the Z-N tuning method, the fast
loop in the EVaCS structures end up with an exorbitant amount of
integral action. This is contrary to the desired tuning procedure

for these structures as discussed previously.

In order to confirm these calculations, a time domaixn
simulation was performed. The simulation employed &n Euler
integration technique and was carried out to ‘ten column time
constants using a step size of 1/10,000 dimensionless time units.
The state of the system was printed from the program every 1000
iterations giving ‘a2 total of 101 points to be plotted. A feed
= 0.6 was injected into the

composition change from x; = 0.5 to x¢

system as a disturbance.

The time domain simulation for the L,V structure is shown in
Figure 14. This figure shows the ‘dynamic responses of both
terminal compositions'and both manipﬁlated variables. As seen in
the plots, this structure does not reject the disturbance as the
system reaches a point where the changes in the reflux rate and

boil-up rate begin negating -each other. Also, we can see that the




Table 11 Ultimate Gains and Ultimate Frequencies for
Strucutures used in High Purity Separatioun

51_ g_g loop
L,V 77.08 31.42 ‘distillate

80.43 32.73 bottoms

D,V 77.08 31.42 distillate
900,072 = 0.55 bottoms

L,B 402,437 67.18 distillate
80.43 32.73 bottoms

EVaCS I 38.85 31.73 slow
1.00 60.99 fast

EVaCS II 38.81 31.73 slow
1.00 60.99 fast
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Table 12 Ziegler-Nichols settings for Structures
used in High Purity Separation

kc El loop

L,V 35.04 0.17 distillate
36.56 0.16 bottoms

35.04 distillate
409,124 - - 9.52 bottoms

L,B 182,926 0.08 distillate
36.56 0.16 bottoms

17.66 . slow
0.45 0.09 fast

EVaCS II 17.64 0.16 slow
0.45 0.09 fast
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i Stability Bode Plots for

Fig. 71 Characterisitc Loc
1 Controllers

Energy Balance Scheme with Proportional-Integra
in Column's High Purity Separation



Fig. 72 Characteristic Loci Stability Bode Plots for
Material Balance Schemes with Proportional-Integral Controllers
in Column's High Purity Separation

a,b-D,V c,d-L,B




Fig. 73 Characteristic Loci Stability Bode Plots for
EVaCS Structures with Proportional-Integral Controllers
in Column's High Purity Separation
a,b-EVaCS I ¢,d-EvaCS II




controllers in this structure are mot very semnsitive to the errors

in the loops as tuned since the manipulated variables are changing
slowly. Figure 75 shows the time response for the D,V structure.

Notice that it gives a stable response, contrary to what was

predicted by the characteristic loci stability plots. As this
system is highly non-linear, one plausible explanation of this is
that the non-linearities within the process have a stabalizing
effect on the system. Now, in saying that a stable response was
given, attention must be drawn to the magnitude of the changes in
the boil-up rate. It is expected that this system would be limited
here since it is doubtful that the required boil-up could be given

in a realistic situmation. The time responses for the L,B structure

are shown in Figure 76. Notice that it too gives a stable response

while the characteristic loci predicted that the system is

unstable. It is expected that this structure would encounter the
same limitations as the D,V structure in a realistic situation as

it is doubtful that the decrease in the column flows seen in the

simulation could be attained.

The time response for the EVaCS I system is shown in Figure

11. These plots show the dynamic responses of the terminal

compositions and the column flows. Notice how quickly the terminal

Also, notice that the

compositions return to their set-points.



dynamics of the column flows gfe much less here than seen in the
material balance schemes. Fignte'78 shows plots of the actual
controlled .and Imanipulated variables used in this structure.
Notice how the response of the total material content of the

column, the slow loop, is faster than the response of the

rectifying balance, the fast loop. This is due to the exorbitant
amount of integrai action.given_;p the fast loop by the Z-N tuning
method. Figure 79 shows the ‘time responses of the terminal
compositions and column flows for the EVaCS II system, while the
responses of its total material content (slow loop) and stripping
balance (fast loop) are shown in Figure 80. This system rejects
the feed composition disturbance well by quickly bringing the
terminal compositions back to their set-points with minimal dynamic
variation in the column flows. As was the case with the EVaCS
structure, this structure's slow loop’'s response is faster than the
fast loop's response. Again, this is due to the exorbitant amount

of integral action in the fast loop.
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Fig. 75 Transient Response in Column's High Purity Separation
for D,V Structure'’'s Controlled and Manipulated Variables
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Chapter 6

‘Conclusions

yses have been completed here.

A fairly large number of anal

We examined two differemt processes and employed two designs in

each process. The first process was two stirred-tank heaters :in

series connected by a recycle stream. This system approximates a

reactor system, the recycle stream being used to increase the

overall conversion. The first process design employed here had a

low recycle rate while the second design had a high recycle rate.

In both designs, the tanks were of equal volume. The. second

process examined was & two stage distiliation column. Equimolal

overflow and a saturated feed were assumed in modeling the system.

The -two design cases employed here consisted of a low purity

‘separation. and the
¢

a high purity separation. In both designs,

rectifying and stripping sections of the column had equal holdups.

For each of these four process designs, the‘dynamic properties of

conventional multivariable control —structures that might be

typically employed in controlling the given process were compared

to those properties of the structures synthesize& by ‘the Extensive

Variable Controller Synthesis technique. The comparisons made in

this thesis were based upon five interaction assessment techniques.

These techniques consisted of angle calculations between the output

coordinating vectors and the state—space plant_matrix's eigenrows




a modal analysis, the

(conjugate eigenvectors) and eigenvectors,

dynamic relative gain array analysis, the inverse Nyquist array

analysis, and the characteristic loci analysis.

ional control structure used in the stirned—tanks

The convent

in series process controlled the indiviual tank temperatures with

their respective heat inputs. One of the EVaCS structures had omne

loop that controlled the energy balance of the first tank in the
series while the other loop controlled the total energy content of
both tanks. The other EVa(CS structure had the same loop that
controlled the total_enetgy'cOntent'ﬁhile.its other 100p_contr011ed
the energy balance of the second tank in the series. In both

designs and in all of the analyses, the two EVaCS structures proved

themselves superior to the conventional structure. The angle
calcnlations showed that the EVaCS structures approximate the
process’ modal control structure and do a good job of decoupling
the process’ internal dynamics. The fact that the total energy

content loop was aligned with the slow mathematical mode of the

process while the reSpective-energy_balance loops were aligned with
the fast mathematical mode was seen in the modal analysis. The

dynamic relative gain array analysis showed us that the indiviual

loops in the EvaCS structures could be tuned independent of one

another' as long as the natural frequencies of the loops were kept




clusion reached in both

The principal con

separated to some extent.

the inverse Nyquist array and characteristic loci analyses was that

thg'interaction within these gstructures is minimal.

structures were assessed in the

Three conventional control

distillation process. The first st:ucture.was ‘the energy balance

g two were material balance schemes. The

scheme and the remainin

first material balance scheme used the distillate flow rate to

control the distillate’s composition, while the second material

balance scheme used the'bottoms.flow‘ratq to control the bottoms'

composition. One of the EVaCS structures controlled both the

material balance of the rectifying section and the total material

content of the qoiumn. The other EVaCS structure that was

synthesized for this process controlled the total content of. the

column, also, along with the material balance of the stripping

section. Im both designs and in &1l of the analyses, the two EVaCS

structures proved themselves superior to all three of the

conventional structures. In the low'purffy separation, the'EVaCS

structures gave 'Very respectable ppproximations to the column's

modal control structure and greatly decoupled its internal

dynamics. In the high purity separation, the stroctures were

equivalent to the modal structure and both of them totally

deconpled the column's internal dynamics. In both désigns, it was




seen 'in the modal analysis that ‘the response of the total material
content loop in the structures was strictly associated with the

slow mathematical mode of the system while both of the respective

material balance loops had responses that were strictly associated

with the fast ‘mathematical mode of the system. The dynamic

relative gain array analysis showed that both of the EVaCS

structures in each of the design cases had virtually =no

interaction, thus allowing the two loops in these structures to be

tuned in their singlc—input, single—output enviroments. A dynamic

simulation for these structures in the high purity separation
design confirmed that we could tune the loops independent of one

another and still obtain stable closed—-loop responses that were

satisfactory. Both the inverse Nyquist array analysis and the

characteristic loci analysis qonfirmed.that the interaction within

the EVaCS structures was minimal.

The EVACS structures have proven themselves superior -in terms

of the interaction within the structure to the various conventional

structures in ali of the various process design cases that we have

assessed here. Not only do they minimize the iqteractionf but they

also have an inherent adaptive nature to them as they are designed:

to the specifications of a given process at a given steady-state.

This point is a plus in terms of the robustness of the system.




With today's computers becoming ever more important in process

control, the EVaCS technique is especially well suited to exploit

their power. Whenever the process -is being moved to .a new steady-

state, the control engineer can easily download some precalculated

coefficients for the various required linear combinations. to adapt

the structure to its new enviroment. In most situations, the

controllers in the structure can have minimal integrai action to

perform their job. As far as the indiviual loop responses are
concerned, this point is very desirable -as integral control tends

‘to degrade the performance of the loop.

th a discussion about the existing gap

We began the thesis wi

between control theory. and process cpntroi applications. The

current width of this gap is being sustained by a continued lack of

understanding of  the theory on the part of current day

practitioners. This lack of'understanding_is due to the complexity

of the 'required mathematics relative to the training of the

majority of process control engineers. The mathematics involved in

the EVaCS technique are simple and are founded in concepts which

the process control engineer can understand.

We conclude that the EVaCS technique seems to offer a hope for

the current

estabiishing a strong foundation for bridging




It is going to have to be fed and cared

theory/applications gap.

for before growing up to be strong and healthy. The technique does

warrant enough attention that -the proper pxecantions should be made

to make sure it doesn't get thrown out with the wash water.
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I. Plant Matrices and Input Matrices for Stirred-Tank Heaters in

Series

This appendix contains the plant matrices, A, and input
matrices, B, for the various state—space representations of the
control ‘structures of interest in the stirred-tank heaters ‘in
series process of Chapter 3. These matrices are given for both
design cases assessed in the chapter, those being the 10w'recYc1e

design and the high recycle design.

Low Recycle Design

IVaCS

-3.00000 '1.00000_1

| 3.00000 -3.00000

2.00000  0.00000 |

| 0.00000  2.00000

p—

~1.50000  0.50000
| 1.50000 -4.50000

1.00000  0.00000

- -1.00000 4.00000
L. -




~1.00000

:L-2.00000

e

1.00000

»L_ 2.00000

IvaCS

High Recycle Design

0.50000 |

-5.00000

0.00000

-4,00000

pu—_l

~6.00000 4.00000 |
A= ;
| 6.00000 -6.00000 |
| 2.00000 0.00000 |
5
| 0.00000  2.00000

— R
~1.20000 0.20000
A=
[_ 4.80000 -10.80000
1.00000 o.ooooo—?
=1
L_—4.ooooo 10.00000 |




et

-1.00000 O. 50000—1 _

L—Z ,00000 -11.00000

1 1.00000 0.000007

g 2.00000 -4.00000




II. Plant Matrices and Input Matrices for Two Stage Distillation

Column

This appendix contains the plant matrices, A, and input

matrices, B, for the various state—space re,pre‘senta‘tiohs of the

control structures of interest im the two stage distillation

process of Chapter 4. These matrices are given for both design

cases assessed in the chapter, those being the ‘low purity

separation and the high purity separation.

Low Purity Separation.

-1.44428 1.54692 |

-

‘L_ 0.60948 ~2.72386

—

0.47633 -0.16841_‘

| 0.18767 -0.53082 |

—

-1.44428

1.5469_2“T

| 0.60948 -2.72386

-0.47633 0.30792

| ~0.18767 ~0.34315 |



—

~1.44428

B 0.60948

—

0.30792

| L—0.34315

—

| -0.94415

L_ 1.62758

e

-0.35925

| 0.61929

-0.91452

L_ 0.50017

—

L_ 0.19648

~0.35925

1;54692-W2

-2.72386

0.16841-7

0.53082

0.03240—1

~-3.22398

0.0000;0—‘

3.16813 |

—_0.0313_8_T

-3.25361

0.00006_7

3.27078




/\Hi gh Purity Separationm
L,V

-164.13636 1:64.80443—1
A=
B 493.49365 —497.50635
0.27213 -_o._27o48_1_
B =
L 0.81487 -0.81985 |

-

—

' _164.13636 164.80443

_497.50635 |

L 493.49365

p—

-0.27213 .0.0016.5-T

L—0.81487 -0.00497

-164.13636 16_4.8044’3T

A= |
| 493.49365 -497.50635 |
0.00165 0.27048 |

B = .
| -0.00497 0.81985 |




; i EVaCS 1
! ~0.49791 0.00101
, A =
L_247.21561 -661.14480
1 -0.81736 0.00000_1
B =
| 405.82338 66064271
EVaCS II
-0,49741 —0.00101_T
A=
L_81.47751 —661.14530
-0.81736 .0.00000—W
B = :
L_133.88684_ 661.31078
N 204




|
4
i
@

ERRATA

Due to an overlooked programming error, the inverse Nyquist

analyses shown in Chaptgr5'3 and 4 have Gershgorin discs that are

not of the type stated. The two terms have been interchanged and

one should be the other.

As the reader may have noticed, the time domain pldts of the

dynamic responses of the strudtures-in the two stage column’s high

purity separation are shown out to six dimensionless'column time

cépstants, as opposed to ten column time constants (as stated. in
the text). These simulations were actually carried out to ten .time

constants, but mo significant changes occurred- after six time

constants.
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