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ABSTRACT 

An Experimental Definition Study, designed to investigate the 

feasability of carrying out a photoinitiated emulsion polymerizat~op 

to a s.ignificant conversion in a SPAR (Space Processing Applications 

Rocket) prototype polymerization vessel within the five minutes approx­

imating the free-fall, microgravity time, has been accomplished. This 

·is the first ~tep in a proposed sequence of events leading to the pro­

duction of large-particle-size monodisperse latexes (2-40µm) aboard 

Space Lab in the early 1980's. 

In order to provide specifications for the construction of the 

cylindrical SPAR vessel by the General Electric Space Sciences Lab, a 

flat cell, designated the LU (Lehigh University) cell, was designed 

and assembled. Preliminary polymerization recipes, consisting of sty­

rene monomer, sodium lauryl sulphate (SLS) emulsifier, a co-emulsifier, 

and a,a-diethoxyacetophenone (DEAP) photoinitiator, were investigated 

using this vessel. Subsequently, specification of the ultraviolet 

light source and vessel dimensions were provided to GE. 

Polymerization kinetics were determined by dilatometry, a uniform 

diameter glass capillary being used to monitor the changing volume. The 

final conversions were obtained by both dilatometric and gravimetric 

means. The latter determination was uncertain, in that only limits 

could be given without knowledge of the amount of initiator incorpor­

ated into the particles. 

Ori the basis of the emulsion and product stability, and high 

polymerization rate and conversion, a micellized styrene system (1:1 

1 
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mole ratio styrene to SLS) was chosen for an optimization study in the 

GE vessel. Rate of polymerization, conversion, particle size, and 

molecular weight were determined as a function of the concentration of 

the photoinitiator. The polymerization rate was found to increase up 

to a maximum, then decrease with inc-reasing initiator concentration. 

The maximum occurs around 23% DEAP (based on the styrene monomer 

phase), which corresponds to a conversion of about 70%, as measured 

by dilatometry. Both the average particle size and the weight-

~verage molecular weight were found to decrease with increasing initia­

tor. 

Photoinitiation, as a means of producing a relatively high 

conversion in a five minute free-fall experiment, appears to be a 

satisfactory method for conducting-an emulsion polymerization in a. 

SPAR experiment. 

2 
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PART I INTRODUCTION 

Latexes which are used industrially in large quantities generally 

have a relatively broad particle size distribution (PSD). This is not 

usually of much concern in the manufacture of such products as latex 

paints, paper coatings, carpet backing, and others, in that there is 

no need for a specific narrow ~SD. A typical example might be a 

latex system with a particle size of 0.02µm with a standard deviation 

of O.OSµm or 25%. 

Monodisperse latexes, however, are used in much smaller quanti­

ties, primarily for scientific purposes. By definition, a monodisperse 

latex must have a very narrow PSD, such as 0.20µm with a standard 

deviation of 0.003µm or 1.5%. The first monodisperse latex was pre­

pared nonintentionally in 1947 in a Dow Chemical Company pilot plant, 

the monodispersity being discovered later by accident
1 

This was the 

famous 580G LOT 3584 polystyrene latex. The narrow PSD was thought of 

as an anomaly since other batches using the same recipe had not pro­

duced similar results. Subsequently in 1951, a study deliberately 

aimed at preparing the same monodisperse latexe was. successful. A 

series of monodisperse latexes were then prepared, ranging in size from 

0.088µm to l.172µm. These consisted of both polystyrene and polyvinyl­

toluene latexes2' 3• Conventional emulsion polymerization was used to 

produce the smaller sizes, while the concept of "seeding" 
4 

was suc­

cessfully employed to produce the larger sizes. The latter involves 

the addition of monomer to a latex "seed" and polymerizing without 

the generation of a new crop of particles. Through this seeding 

3 



approach the PSD can be narrowed by polymerization under controlled 

conditions. 

When ten of these monodisperse latexes were made available in 

3 
1955 many possible uses soon became apparent. They were used for 

calibration of scientific measuring instruments, such as electron 

microscopes, light scattering instruments, and ultracentrifuges, for 

counting virus particles, and determination of pore sizes. Also they 

found use in medical serological tests, such as for rheumatoid arthri­

tis, human pregnancy, and trichinosis, and studies of the reticulo­

endothelial system
8

. Requests for these latexes, which at first were 

offered without charge, soon became so great that Dow came to impose 

a sales price, initiating what has become a profitable business. By 

the early 1970's the annual sales of monodisperse latex diagnostic kits 

were $30,000,000. 

Currently, monodisperse latexes are available in size ranges 

0.05 - 2.0µm and greater than about 40µm. The latter is about the 

smallest size that can be separated by elutriation or sieving. Mono­

disperse latexes with particle sizes between these ranges are not 

presently available, while the need for them is obvious. For instance, 

in most hospitals blood cells are counted using an electronic particle 

counter such as a Coulter Counter, but these counters are calibrated 

with standards that do not closely approximate the size of red blood 

cells, 7µm. 

The reason for the gap in available sizes of monodisperse latexes 

lies in the difficulty of preparation. The production of monodisperse 

4 
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polystyrene latex by emulsion polymerization for further use as a 

seed involves mixing styrene monomer, water, emulsifier, initiator, 

9 
and buffer, and heating to the polymerization temperature Monodis-

persity is achieved by having a short particle nucleation stage relative 

to the particle growth stage .. Using the seeding technique, particles 

can be grown from, say O.lµm to 2.0µm in a sequence of polymerizations, 

h h 
. . d d . l . 2,3,6,7 eac aving an increase see partic e size 

The limit of approximately 2µm diameter is reached due to the 

sensitivity of latexes to emulsifier concentration and mechanical 

shear. The emulsifier level must be high enough to maintain particle 

stability and yet must not exceed the amount needed to generate a new 

crop of particles. The latter occurs when the critical micelle con­

centration (c.m.c.) is reached in the aqueous phase, resulting in a 

bimodal Psn6' 7• For small-particle-size latexes the amount of emulsi­

fier can be anywhere in a relatively broad concentration range, such 

as from 1.00 to 2.57% for a seed latex of 0.257µm diameter
6

'
7 

As the 

seed size increases, however, this range narrows, until at sizes above 

lµm, the polymerization becomes a "knife-edge" operation, for which 

polymerization with the same ingredients might yield partial floccula­

tion of the latex or a stable latex with new particles. 

Flocculation caused by mechanical shear also becomes a problem 

with increasing particle size. As the particles become larger the 

intensity of Brownian motion decreases thus enhancing the effect of the 

density difference between the particles and the aque~us phase. Cream­

ing of polystyrene particles (density, l.OSgm/cc) swollen with styrene 



monomer (density, 0.905gm/cc) occurs when a critical size, somewhere 

between 0.5 and 0.8µm, is reached with a 2:1 ratio monomer to polymer. 

Settling of polystyrene particles also begins to occur in this size 

range. Thus, at low conversions the particles tend to cream and at 

high conversions they settle out and since the polystyrene particles 

are soft until very high conversion (approaching 100%), either of these 

could result in sticking and coalescence of the particles. Therefore, 

increased agitation is used to offset these effects but often with the 

result of creating coagulum through the mechanical shearing action. 

In attempts to improve this situation, polyvinyltoluene (density, 

l.027gm/cc) and vinyltoluene-tert-butylstyrene copolymer particles 

(density, l.OOgm/cc) have been prepared but are limited to 2.0µm again 

because of creaming at low conversion. Other attempts to alter the 

density of the aqueous phase have ended in coagulation due to destabil­

ization of the latex particles. 

Eliminating this gravity effect can be accomplished if the poly­

merization could be carried out in the microgravity environment of 

space. In this case, the emulsifier concentration could be kept at a 

level low enough to ensure that no new particles are generated while 

maintaining the stability of the latex. The density effects of cream­

ing and settling during polymerization would be eliminated and agita­

tion could be reduced to a level which minimizes flocculation due to 

the shearing and yet ensure good heat transfer. 

To this end, technical proposals were submitted to the National 

Aeronautics and Space Administration (NASA) entitled: l."Hetero-

6 
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genious Chemical Reactions: Preparation of Monodisperse Latexes", in 

response to an announcement of opportunity (A.O.) for SPAR experiments; 

2."Heterogenious Chemical Reactions: Preparation of L~rge-Particle­

Size Monodisperse Latexes", in response to an A.O. for the Orbital 

Flight Test (OFT) missions of the Space Shuttle; and 3."Production of 

Large-Particle-Size Monodisperse Latexes", in response to an A.O., 

"Space Processing Investigations for STS (Space Transportation System) 

Missions". 

These proposals suggest a sequential program as follows: 

1. determination of the kinetics of small-particle S·ize latexes 

in the approximately five minutes of microgravity available 

in the SPAR experiments for comparison to the same experiments 

on earth; 

2. determination of the kinetics of seeded emulsion polymerization 

of large-particle-size monodisperse latexes on early tests of 

the Space Shuttle in order to supply data for the design and 

operation of a large scale production process on Space Lab; 

3. developement of a production facility for operation in micro­

gravity that will produce 1soo~2ooocc quantities of 30% solids 

large-particle-size monodisperse latexes; 

4. transfer of responsibility for the manufacture and marketing 

to an interested company. 

Subsequently, a four month Experimental Definition Study was 

funded by NASA in order to determine the feasability of obtaining the 

kinetics of fast polymerizing small-particle-size latexes during a SPAR 
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flight, as mentioned in 1. above. The work reported here was begun 

under this contract and continued somewhat beyond the initial design. 

The immediate objective was to further define and develope the scien­

tific base, flight hardware requirements, and experimental operating 

conditions for the proposed SPAR experiments • 
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PART II - THEORETICAL BACKGROUND 

Much has been written on the subject of emulsion polymerization, 

its ·theories and practices, and no attempt will be made here to review 

this area. A brief description of the process in relation to its 

intended use in this Experimental Definition Study will be made, how-

ever. 

The essential components of an emulsion polymerization system 

are the monomer(s), dispersing medium, emulsifying agent(s), and initi­

ator. Under consideration for this study are combinations of styrene 

monomer,·water, sodium lauryl sulphate (SLS) with or without a co­

emulsifier, and a,a-diethoxyacetophenone (DEAP) photoinitiator. This 

syst'em does not fit the strict definition of emulsion polymerization 

in that the initiator is oil (styrene) soluble rather than water sol­

uble. Oil soluble initiators are generally used in suspension poly­

merizations which produce particles only as small as l-3µm. Particle 

sizes resulting from emulsion polymerization are generally on the order 

of 0.05-0.2µm. 

The most frequently cited theoretical mechanism of emulsion poly­

merization has been advanced by Harkins10 
This three stage approach 

will be briefly described here. 

The first stage is referred to as the initiation stage. When an 

emulsifier, such as SLS, is added to water in a concentration above 

its critical micelle concentration (c.m.c.), micelles are formed. 

A micelle is often depicted as a cluster of 50-100 of these soap 

molecules with their hydrophobic ends (hydrocarbon chain) pointed to­

wards the center of the micelle. When a relatively water insoluble 

9 
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monomer, such as styrene, is added to this solution, it can be found 

in the form of large droplets (1 - 10 µmin diameter) stabilized by 

emulsifier molecules and also solublized inside of these micelles. 

The ratio of the amount of monomer in the form of droplets to the 

amount in the form of swollen micelles will vary depending on the 

' I 

concentrations of each component. An extreme would be the case where 

no droplets exist, all of the monomer being absorbed into the micelles, 

termed a micellized or solublized system. For a typical emulsion poly-

merization using a water soluble initiator, such as potassium persul­

phate, free radicals are generated in the aqueous phase and enter the 

monomer swollen micelles initiating polymerization. However, due to 

the fact that the photoinitiator, DEAP, is relatively water insoluble 

and styrene soluble, free radicals will be generated in the oil phase, 

that is, in the monomer swollen micelles and monomer droplets. This 

occurs when initiator molecules are activated by photons of a particu-

lar wavelength (in the range 200-400nm) and energy, polymerization 

beginning as given by the the following equation for DEAP11 , 

. 
OH OCHCH3 I I 

hv C - CH (1) 

0
/' I 

OCH2CH3 

DEAP 

This biradical intermediate is a good attacking group for the vinyl 

double bond of styrene, 

OH OCHCH
3 I I 

C-CH + 

0 /• I 

OCH2CH3 

CH"*CH 
I 2 

O· 10 

~H--0 
~2 

OH OCHCH3 I I 

O
,,~-yH 

OCH2CH
3 

(2) 
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In the absence of a reactive site this biradical will undergo internal 

coupling and disproportionation11 yielding, 

. 
OH OCHCH

3 I I 

0
,.9-9a 

OCH
2

CH
3 

O 6ca2
ctt

3 II I 

o,C-CH2 . + 

(a-ethoxyacetophenone) 

O=CH-CH 
. 3 

(acetaldehyde) 

(3) 

Stage two, termed propagation and growth, involves the continued 

addition of monomer units to the radical species, 

o':C-OH 
I 

o-cfi-o 
I . I . 

CH2 CH-CH2
-CH 

I I I 

CH3 CH3 0 
I.& 

+ -CH=CH 
I 2 

0 0 ":C-OH 
I • 

0-CH-0-CH -CH-CH -CH 
I I 2 I 2 I 

yH2 ~H2 0 0 
CH CH I .& I .0 

3 3 

(4) 

Radical chain polymerization continues in this manner with the addition 

of monomer units. The initiation stage is separated from the growth 

stage when new particles are no longer generated. During this stage 

the monomer concentration in the polymer particles is considered to be 

constant, the monomer being supplied to the growing particles from 

the drqplets which act as monomer resevoirs. 

In stage three, these resevoirs have disappeared resulting in a 

continually decreasing monomer concentration in the particles until 

the end of the polymerization. There is no particle growth in this 

stage, only shrinkage due to the density change from monomer to pqlymer~ 

11 
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The rate of polymerization in an emulsion system is determined by 

a number of factors. A comprehensive treatment of the kinetics and 

mechanisms has been given recently in a review paper by Ugelstad and. 

12 
Hansen • The kinetics for each stage are described in terms of the 

Smith-Ewart theory, with some modifications, and also some more recent 

theories. 

The polymerization rate is, first of all, dependant on the number 

of particles formed. With more particles, there is an increased number 

of sites for polymerization. The number of particles is determined by 

the rate of initiation and the emulsifier concentration in the micellar 

form. Smith and Ewart derived this relationship as 

N 
p 

where k 

µ 

a 
s 

= 

= 

= 

constant 

0.6 
(a [S]) 

s 

between 0.37 and 0.53 

rate of increase of the volume 

particle 

of a polymer 

inter facial area occupied by an emulsifier 

molecule 

[S] = concentration of micellar emulsifier 

(5) 

For a photoinitiated system the rate of initiation is given by11 

for a vessel of thickness b or 

= 2$e:I 
0 

[I] 

(6) 

(7) 
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when the incident light intensity does not vary significantly through 

the thickness of the cell, 

where ~ = quantum yield for radical production 

£ = molar absorptivity of the initiator for the 

particular wavelength of radiation absorbed 
"-

(extinction coefficient) 

I = 
0 

light intensity incident on the initiator 

(moles of light quanta per liter-second) 

[I] = concentration of the initiator (moles/liter) 

For the case of an oil soluble initiator [I) would be the concentration 

in the monomer/polymer phase. This also assumes that both radical sites 

of the biradical of DEAP are equally accessible for reaction with sty-

rene monomer. 

The rate of polymerization is also dependent on the propagation 

rate constant, k, the concentration of monomer in the particles, [M ], 
p p 

and the average number of radicals per particle, n, 

R 
p 

= (8) 

n is dependent on the rate of free radical termination in the particle, 

and the rates of radical adsorption and desorption. 

From the standpoint of developing a system for photoinitiated 

polymerization, the variables that would affect rates and conversions 

would be the amount of monomer, the types and concentrations of emul­

sifiers and photoinitiator, the thickness of the reaction vessel and 

the intensity of the incident UV radiation. 

13 
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PART III - EXPERIMENTAL 

A. Polymerization Vessels 

Two different reaction vessels were used during the course of 

this investigation, each serving a specific function. The first, re­

ferred to as the LU (Lehigh University) cell, was designed in order: 

1. to establish the critical dimensions of the second, the General 

Electric laboratory prototype polymerization vessel, this being a mod­

ification of the vessel shown in Figure 3.1; 2. to evaluate preliminary 

polymerization recipes consisting of styrene monomer, sodium lauryl 

sulphate (SLS) emulsi!~ co-emulsifier, and a,a-diethoxyacetophe­

none (DEAP) photoinitiator, in order to determine which would be 

studied in more detail using the GE prototype vessel; 3. to determine 

the problems associated with this experiment, such as obtaining the 

kinetics of polymerization and the percent conversion of styrene to 

polystyrene by dilatometric and gravimetric techniques. The latter 

two objectives will be discussed in Part IV. 

The LU cell was designed to meet a number of qualifications. 

First, the UV radiation pathlength through the reaction fluid and also 

the distance between the lamp and the Quartz cell window was necessar­

ily adjustable. Second, in order to determine percent conversion and 

reaction kinetics by dilatometry, a capillary in contact with the fluid 

system and open to the atmosphere was incorporated. Implicit in this 

condition is/the constraint that no leakage from the cell would be 

acceptable. Third, the temperature within the cell required monitor­

ing in order that any thermal expansion of the fluid due to temperature 

. rise could be accounted for. Fourth, a provision was needed for meas-

14 
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Figure 3.1 
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Cross-sectional view of the cylindrical vessel proposed 

for photoinitiated emulsion polymerizations in SPAR 

experiments. Vl, V2, and VJ are valves, RTD is a 

·resistance temperature detector, PD, a photodiode light 

. sensor, and D, a flexible diaphragm sensor for volume 

change measurement_ (General Electric). 
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uring the intensity of the UV radiation after it has passed through 

the fluid. Fifth, the components of the cell i1 contact with the fluid 

were necessarily inert with respect to all compents of the polymeriza-

tion recipe, and sixth, the cell had to be simple enough to be designed 

and built in a relatively short period of time. These conditions were, 

for the most part, met by the cell illustrated in Figure 3.2. It con­

sists of three machined, \eflon blocks which hold two circular quartz 

windows a fixed distance apart. This distance ~ould be varied by re­

placement of the middle block with another machined to the desired 

dimension. This interchangable component would allow for a varying 

UV pathlength through the fluid and, in effect, would also change the 

cell volume. The quartz window on the far side from the UV source 

could be replaced by a Plexiglas window having three thermistors im­

bedded in the top, center, and bottom for monitoring temperatures of 

the fluid during polymerization. Aluminum blocks were used in order 

that sufficient pressure could be applied to prevent leakage. An ex­

ploded diagram is shown in Figure 3.3 and the entire appartus is de­

picted in Figure 3.4. A cathetometer was used to measure the change 

in the fluid level ft.n the capillary tube. The latter was calibrated 
/ 

by measuring the weight and length of varying amounts of mercury 

drawn into the capillary at a known room temperature. The ultraviolet 

light source used for.activation of the photoinitiator was a low­

pressure mercury vapor lamp (Model C-15-61, Oriel Corp.), 5cm. long, 

having a power of 4.6 watts. The parallel distance between the lamp 

and the cell could be varied to a minimum of 3.7cm. from the quartz 

16. 
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initial photoinitiated emulsion polymerization experiments. Front 
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conducting kinetic studies of photoinitiated emulsion 

polymerizations. 
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window. A multimeter was used to measure resistances of the three 

thermistors, previously calibrated, to obtain temperatures. 

The completed LU cell, used for the preliminary experiments, had 

a cell thickness of 0.091cm and a volume of 2.45cc. Reasonable poly­

merization results were obtained with this configuration, the lamp 

having been positioned at its minimum distance. It should be noted 

that experiments were conducted with the lamp positioned diagonally 

closer to the cell with no significant improvements in the results. 

The final dimensions for the GE laboratory prototype were chosen as 

illustrated in Figure 3.5. The annular fluid space had a width of 

0.1cm and the radius measured from the center to the fluid was 2.7cm. 

These dimensions do not follow exactly from those of the LU cell but 

were felt to be a sound choice in light of the preliminary polymeriza­

tion results. These will be discussed in Part IV. The volume of the 

GE vessel was 9.15cc, being slightly greater than what is calculated 

using these dimensions (8.6cc) due primarily to the non-uniformity 

of the quartz glass cylinder. 

B. Polymerization Procedure 

The polymerization recipes were all prepared in a similar 

manner. The sodium lauryl sulphate (SLS) emulsifier plus co-emulsifier, 

if used, were mixed with distilled de-ionized water which had previously 

been boiled and subsequently cooled under a nitrogen atmosphere to remove 

any dissolved oxygen. This mixture was sonified using the Sonifier 

Cell Disruptor (Model W-350, Branson Sonic Power Co.) for approximately 

one-half minute, then the styrene monomer together with UV initiator 

was added and again sonified for several minutes. The styrene had 

20 
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previously been washed with sodium hydroxide and distilled. The emul­

sion was then cooled under aspirator vacuum or nitrogen prior to being 

charged into the cell. In the experiments conducted with the GE cell, 

the sonifier was not needed due to the high levels of SLS, instead the 

mixture was stirred via a magnetic bar and loaded directly into the cell. 

Each cell was charged with the emulsion by means of a syringe and 

the fluid was continuously forced out of the capillary tube until air 

bubbles were no longer observed. The cells were tilted during this 

procedure in order that all the air would rise to the capillary and be 

expelled. Removal of all air bubbles from the vessels was imperative 

if accurate dilatometric data was to be obtained. The capillary fluid 

height was then monitored for change due to equilibration in the 

cell. When the fluid had reached a constant level the experiment 

was begun by simultaneously switching on the UV lamp and a timer, 

first having recorded the capillary height read .from the cathetometer, 

the room temperature, and the thermistor readings from the cell. 

Note that the LU cell thermistors were located within the reaction 

fluid while the thermistor location in the GE cell was approximately 

0.15cm removed from the fluid within the stainless steel body of 

the vessel. This can be seen in Figure 3.5. Capillary fluid 

height and thermistor resistances were recorded at half minute inter­

vals. The experiments were either 20 or 7 minutes in duration, with 

data being taken for an additional 5 minutes after the lamp was shut 

off. The latex product was removed from the cell via a syringe and 

22 
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stored in a labelled container. Samples were taken from these in order 

to obtain percent conversion of styrene to polystyrene gravimetrically 

and also some samples were chosen from which were obtained particle 

size and molecular weights of the products. 

C. Analysis of Polymerized Samples 

Percent conversion, obtained dilatometrically and gravimetrically 

was determined for each sample, and the particle size and the polymer 

molecular weight were determined for various selected samples. 

1. Conversion 

(a) Dilatometry - The percent conversion of styrene to polystyrene 

was determined by dilatometry by knowing the following: 1) the densi­

ties of styrene (p) and polystyrene (p ), 2) the weight fraction of 
s ps 

styrene monomer in the polymerzation recipe, W, 3) the inner diameter 
s 

of the capillary tube, d, 4) the volume of the reaction vessel, V, S) 

the change in the fluid height in the capillary tube, 6h. 

chief 

The conversion was calculated via the following equation, 

100 1r d
2 

% conversion=~~~~~~~~~- 6h (9) 
4 W V (1/p - 1/p) 

s ps s 

In using this equation it was assumed that since water was the 

ingredient (I\J9~%) the fluid weight and volume are approximately 

the\same and V could be substituted for the total weight of the fluid 

in the cell. The values for the constants used in this equation are 

p 
8 

= 1.05 gm/cc 

pps - 0.905 gm/cc 

23 
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VLU = 2.45cc 

VGE = 9.15cc 

d 
. -2 

= 4.84 x 10 cm 

(b) Gravimetrically - In determining the percent conversion by 

this means, a small sample was weighed in a syringe and then deposited 

in a tared drying tin and either short stopped with a 0.3% hydroquin­

one - isopropyl alcohol solution or flocculated with an excess amount 

of methanol and then dried to a const~nt weight at 70°c. From the 

net fluid weight (S), the weight of the dried residue .(R) and the 

corrections for the non-volatile and non-polymeric solids (N), the 

percent conversion could be determined from the following equation, 

% conversion = ( RT/S ) - N (10) 

where Tis the total parts of all ingredients charged, based on 100 

parts monomer. The corrections amount, N, was determined from the 

amount of SLS added in the polymerization recipe and by the amount of 

the photoinitiator added, a,a-diethoxyacetophenone (DEAP). DEAP being 

a liquid, it was not known how much of it was incorporated into the 

polymer, the limits being used, by which a conversion range was com­

puted. The value of the upper limit assumes that all of the initiator 

was evaporated while the lower limit assumes that all of it is present 

with the polymer and SLS in the drying tin. 

2. Particle Size 

The determination of particle size was attempted using three 

methods, hydrodynamic chromatography, electron microscopy, and light. 

scattering. Each of these presented some limitations. 

24 
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(a) Hydrodynamic Chromatography (HDC) using Packed Porous Silica­

In order to use this chromatographic separation method, a calibration 

curve of particle size versus the difference in elution volume between 

the particles and a marker species was constructed using Dow monodis­

perse latex samples of 880i, 1090R, 1760i, and 2340i diameters. The 

marker species was sodium dichromate, Nacr
2
o

7
• The concentration of 

the latex samples was approximately 0.1 weight percent solids, these 

being dilutions of the original latexes with distilled deionized water. 

A calibration curve is presented in Figure 3.6. Note that the curve 

has been extrapolated into the smaller particle region. This is 

necessary due to the small size of the latex particles obtained in this 

study. Because extrapolation is necessary, the accuracy of the method 

is doubtful, even though the precision is good. These results can 

only be considered in light of the electron microscopy results. This 

method is good ,however, for obtaining relative sizes and trends. A 

more complete description of this method can be found in the litera-

15 
ture 

(b) Electron Microscopy - Selected latex samples were prepared 

for these studies by two methods. The first of these simply involved 

the dilution of a drop of sample about 40x and placing a drop of this 

on a grid prepared for use in an electron microscope. This method did 

not prove to be highly definitive in that the high emulsifier levels 

in the latex did not allow for good definition of the latex particles. 

Supsequently, samples were prepared in which the SLS level was reduced 

using the serum replacement technique
16 

This method allows for the 

25 
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replacement of the latex serum without loss of particles by use of a 

filtration arrangement. In this case a 0.02wt.% Aerosol MA solution 

was used to replace the SLS solution in the latexes. These samples 

were then used 1n preparing grids for examination by TEM (Transmission 

Electron Microscope). 

(c) Light Scattering - Several latex samples were chosen to be 

studied by this technique of particle size determination. The specific 

method of light scattering chosen, known as the transmission or tur­

bidity method, makes use of measurements of transmitted monochromatic 

light through suspensions of known concentration. This method is a 

complicated function of particle size and refractive index. The samples 

used in these experiments were also ones in which the SLS serum had been 

replaced by a 0.02 wt.% Aerosol MA (AMA) solution. This was necessary 

because SLS absorbs light in the wavelength region to be used in these 

measurements and therefore, would interfere and result in false part­

icle size determinations. 

Experimentally, a series of measurements of transmittancewas.made 

on samples of 0.02 and 0.01 weight percents polymer solids.· At each 

concentration, the transmittance was measured at four wavelengths, 

320nm, 340nm, 360nm, and 380nm. The device used to measure this was 

a variable wavelength photometer (Laboratory Data Control - Spectro­

Monitor II). The instrument was zeroed by filling the detection cell 

with deionized water. The cell was then filled with the latex sample 

.and measurements were made at each successive wavelength. 

The data recorded was then used to calculate the average particle. 
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diameter. A sample calculation using the data from one of these exper­

iments can be found in Appendix A. 

3. Molecular Weight 

Gel permeation Chromatography (GPC) was the method used in the 

determination of the weight average molecular weights of the polymer 

produced as a result of these photoinitiated emulsion polymerizations. 

As in the case of HDC, a calibration curve was required for the deter­

mination. Seven standard polystyrene samples were used, having molec­

ular weights ranging from 3600 to 2,700,000 with very low dispersity 

indices. Toluene was used as the polymer solvent and eluting fluid. 

Samples were prepared by first drying a known amount of latex, dissolv­

ing in toluene drawn from the GPC system, and filtration to remove 

any gelled material or insoluble particles. The final polymer concen­

tration in the samples ranged from 0.1% to 0.6%. It was found that to 

ensure a reasonable reliability, the calibration curve had to be recon­

structed each time the samples were run. Several calibration curves 

are presented in Figure 3.7, to illustrate how these curves can shift 

from one run to another 

From the chromatographic data, number, weight, and z average 

molecular weights could be determined. A sample calculation cart be 

found in Appendix B. 
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PART IV - RESULTS AND DISCUSSION 

A. LU Cell 

The primary variable in the photoinitiated emulsion polymeriza­

tion of styrene to polystyrene was necessarily the polymerization 

recipe, once the reaction vessel was constructed and the laboratory 

setup completed. The cell dimensions and the path-length of the UV 

source to the vessel were fixed after preliminary studies were made 

to determine the critical dimensions of the GE prototype polymerization 

vessel. These dimensions have been reported in the previous Experi­

mental section (PART III). The emulsion recipe consisted of water, 

styrene monomer, sodium lauryl sulphate (SLS) emulsifier, a co-emulsi­

fier, either hexadecane or decanol, and a photoinitiator. These were 

the variables investigated with the object of obtaining a high degree 

of conversion in a given time limit. 

As a result of the initial experiments two variables were elim­

inated somewhat arbitrarily. First, the amount of styrene in the 

emulsion formulation was fixed at 3 wt.% based on the entire recipe. 

This decision was based on the results of several experiments in which 

the amount of styrene was reduced from approximately 6% to 3% with an 

increase in the percent conversion from 3% to 7%, all other variables 

being fixed. Note that the percent photoinitiator was based on the 

amount of monomer and not the entire recipe, that is, here the percent 

photoinitiator used, based on styrene, was constant while it did vary 

based on the entire recipe. Second, the photoinitiator species was· 

chosen to remain. the same throughout the study, only vaying in concen-
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tration, this being a,a-diethoxyacetophenone, abbreviated DEAP (Union 

Carbide). The structure of this compound has previously been given in 

PART II. This decision was based on the results of experiments com­

paring this species with another (VICURE 30 - Union Carbide), in which 

the recipes were the same except in the structure of the initiator. It 

was found that the use of DEAP resulted in more than three times the 

conversion than that found for VICURE 30, at the same concentration. 

Also,· .. the absorption of UV radiation by DEAP was shown to be favorable, 

as is illustrated in Figures 4.la and 4.lb. The absorption with in­

creasing wavelength was measured in a differential spectrophotometer 

(Laboratory Data Control Spectro Monitor II - 1202), dilute DEAP/SLS 

solution being injected into the sample cell, with the same SLS solu­

tion being in the reference cell (ie. without DEAP). The strongest 

absorption is at approximately 252nm. The bar graph of Figure 4.lb 

the typical irradiance of the light source used in these experiments 

(Ultra Violet Products, Inc. - Pen Ray Model SCT 1). Note that the 

high intensity at 253.7nm is quite close to the 252nm peak absorption 

of the DEAP. This appears to make the lamp/photoinitiator combination 

quite suitable for this work. 

· All of the polymerization experiments in the LU cell were carried 

out for 20 minutes, that is, the emulsions were exposed to the UV 

radiation for these 20 minutes. Data was recorded over this period 

and an additional 5 minutes after exposure was terminated. 

1. Variation in the Recipe for Photoinitiated Emulsion Polymerization 

Table I shows the results for a series of experiments conducted 
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Figure 4.la (top) Relative absorbance of the photoinitiator, DEAP, 

showing a peak at 252nm. 

Figure 4.lb Typical irradiance of a UV lamp, similar to that used 

for photoinitiated polymerizations. 
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TABLE I 

Photoin1tiated Emulsion Polymerization of Styrene as a Function of Recipe Parameters 

(3% styrene monomer) 

Percent Sodium 
Sample Laury! Sulphate 

10 3.0 

12 3.0 

13 3.0 

13-2 3.0 

14 3.0 

14-2 3.0 

17 3.0 

15 3.0 

16 1.5 

18 3.0 

19 3.0 

20 3.0 

21-. 3.0 

21-2 3.0 

22 3.0 

24 1.5 

25 0.75 

Percent 
Co-emulsifier 

0.0 

0.0 

0.0 

0.0 

o.o 
0 • .o 
o.os 

Percent 
Photoinitiator 

1 

4 

10 

10 

15 

15 

0.05 

0.05 

1.50 

hexadecane 

0 

10 

10 

10 

10 

15 

20 

20 

30 

20 

20. 

1.50 

1.50 

1.50 

1.50 decanol 

1.50 

3.00 

1.50 

Percent Conversion 
20 minutes 

minimum maximum 

31 32 

30 34 

so 60 

54 64 

27 42 

51 66 

5 5 

55 65 

42 52 

13 23 

58 68 

60 75 

75 95 

49 69 

40 70 

2 22 

0 20 

\ 



using the LU cell. Within the table are two series in which the only 

variable is the photoinitiator concentration, DEAP, 10-14 and 18-22. 

In the first series, the emulsion recipe consists of 3%· styrene mono­

mer, 3% SLS, and no co-emulsifier. The photoinitiator concentration 

varies from 1% to 15% based on the 3% styrene in the system. The rate 

of fluid fall in the capillary dilatometer versus time for this series 

is given in Figure 4.2.and the fluid height in the capillary versus 

time is shown in Figure 4.3. Several observations can be made about 

these. First, as might be expected, the rate increases with increasing 

initiator concentration and the peak rate shifts from approximately 

4.5 to 2.5 minutes in the sequence 0£ initiator concentrations from 

1% to 15%. Qualitatively, these trends are expected. However, as 

can be noted in Figure 4.3, the capillary fall is not a reliable 

guage of the percent conversion (right hand scale) in the reaction. 

Samples 13 and 14-2 had recorded capillary drops which were greater 

than that possible for a volume change due to the reaction alone. Run 

12 is the only experiment in this sequence in which the dilatometric 

conversion correlates well with the conversion determined gravimetri­

cally. The prime reason for this lack of consistency is attributed 

to the difficulty in obtaining a leak proof seal in the LU cell. Any 

minute leak would readily become apparent in the capillary fluid 

height. If it could be assumed that the leakage rate was constant, 

a means of compensation is possible by the following. Assuming that 

the conversion is approaching a limit near the end of the experiment, 

a line drawn tangerit to the capillary height - time curve in this 
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region would give a constant rate of capillary fall which, if assumed 

to be constant throughout the experiment, could be used to correct the 

given data. This method was attempted in Figure 4.3 (solid data points) 

and only proved successful for the case of sample 10, meaning that the 

rate o_f leakage was not always constant in the experiments but some­

times decreased. This is a problem which continued throughout the 

use of the LU cell, as exemplified by the reproducibHity studies of 

Figures 4.4 and 4.5, in which samples 13 and 14 are rerun. Notice 

that in the first of these the reproducibility is quite good, despite 

obtaining false dilatometric conversion data. Here, the leakage was 

also reproducible. The latter case shows this same inability to obtain 

good dilatometric agreement with gravimetric conversion but also be­

hind this is the reason for which this series was discontinued, insta-

bility. This series (10,14-2) showed evidence of separation while the 

emulsion was in the cell for only a short period of time. Also, 

separation was evident in sample 14 prior to loading into the cell. 

This sample was shaken just before loading _and rerun (14-2). The 

difference between the two reactions is obvious in Figure 4.5, where 

the shaken sample shows a higher rate and apparent conversion, this 

being due to the higher concentration of reactants which had been 

redispersed. This sequence of polymerizations was characterized by a 

change in the appearance of the emulsion from a milky white to a 

transluscent latex, this product being quite stable. 

To increase the stability of.the emulsion, a co-emulsifier was 

included in the recipe. Figure 4.6 gives capillary rate-time data for 
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two concentrations of qexadecane. For comparison, a zero co-emulsifier 

concentration curve is also given. In the case of this system, stabil­

ity was increased slightly with the addition of the co-emulsifier but 

not to a degree sufficient for the needs of the experiment. Also, as 

a result, the rates and conversions were decreased substantially with 

the increased addition of the co-emulsifier (Table I, compare percent 

conversion for samples 15 and 18). It is interesting to note that there 

seems to be some correspondence between the emulsion stability and rate 

of conversion for this photoinitiated free radical polymerization. This 

phenomenon will.be seen again when the effect of SLS concentration is 

presented. 

For increased stability a second co-emulsifier was also tried, 

decanol. Recipes including this alcohol are represented in Table I by 

samples 19-25. The first of these (19-22) recipes contained SLS and 

decanol in a weight ratio of 2:1. Rate-time and conversion-time curves 

for increasing photoinitiator, DEAP. are presented in Figures 4.7 and 

4.8. Note that the extrapolation technique, described earlier for the 

correction of the conversion-time curves, works for one and not for 

the other curve outside the predicted region. These data indicate 

that the reaction rate increases with increasing photoinitiator con­

centration (10%+20%) and then decreases (30%). This trend is also 

reflected in the values reported for the final conversion. Possible 

reasons for this phenomenon will be discussed further on in the report. 

recipes exhibited a much improved stability over all the pre­

ones. This was tested by loading the cell and observing the 

contents over a period of two days. Only slight separation was 
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noted at the end of this period. This fac~ plus the high reaction 

rates with the maxima being at ~3.5 minutes into the reaction,made 

this system a good candidate for future experiments in the GE proto-

type polymerization vessel. As noted in some previous experiments, 

the polymerizations involving this system were characterized by a 

change in the appearance of the fluid in the cell, from a milky white 

\t · emulsion to a transluscent latex. This phenomenon can be attributed 

)j 
. '-:i!i'. 

to the disappearance of monomer droplets, 1-lOµm in diameter, and 
1{ 

· :{ the growth of the much smaller polymer particles ( <O. 05µm) . In order 

. /' to quantify this visual opacity change in the course of the reaction, 
. ::~:· 

the intensity of the UV radiation passing through the cell was 

measured by means of a UV detector (IL 745 UV Curing Radiometer -

·.'.'" International Light Inc.). The results are given by Figures 4. 9 and 

. , . 4 .10 in which the rate of change in the intensity of the UV radiation 
_:;/. 

and the intensity itself are compared to the rate of capillary fluid 
·,~·{ 
. ;·,~; 

. J,.: height change and fluid height respectively. Note that the rate curves 

:·!i;, 
•. r~ ·~ 

-1: follow each other initially as the rates increase, then the rate of 
.. :~i'. 

I ~· . ·,r 
t intensity change falls to near zero in six minutes while the rate of 

.. p: 
\/~ 
'1& 
·,~ reaction falls only gradually. These observations seem .to indicate 

that the rates of monomer drop-size decrease and intensity and reac­

tion rate increase are closely related, being directly proportional 

to each other. Also, it indicates that when the droplet size reaches 

.a certain minimum, it no longer effects the intensity of the tran­

This seems to indicate that the monomer droplets 

do not disappear when the intensity reaches a constant, since the 
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curves do not follow each other after the first three minutes. Monomer 

droplet disappearance may therefore occur after five minutes has 

elapsed. This fits in well with what is known about the emulsion 

polymerization of styrene, since it is reported that the monomer drop-

14 
lets disappear at conversions from 25% to 35% for this monomer • The 

corrected curve.in Figure 4.10 shows a conversion of approximately 

30% at the five minute mark. 

It might be conjectured that the time required for the lamp inten-

. ,,"~ 

.. :) sity to increase to its normal operating level, may be influencing 
t 

: : ~ ~ 

'~), 
.. :'/ 

the initial shape of the reaction rate curves. This, however, has 

. ,•; 

proven to be of little importance as the lamp quickly reaches full in-

·;. tensity as shown in Figure 4.ll. 
·.·:·~-

This curve was produced in the same 
.. ~ ·,, 
-~{; way as that in Figure 4 .10, with the exception that water was used in 

the cell in place of the emulsion. Two points from Figure 4.10 are 
,., 

.·,. 

also included to show the relative values of intensity and the arrow 

'}f represents the final intensity measured during the experiment. This 

.,} indicates that most of the radiation is being absorbed in passing 

Ji through the fluid sample, even when it appears to be transluscent to 
}i 

the eye. 

Other experiments using the same emulsifier combination proved 

less successful as give by samples 24 and 25 in Table I. In these 

the ratio of SLS to decanol was reversed (1:2), this ratio being 

17 
to give very stable emulsions The system was indeed quite 

stable but gave little or no conversion over the twenty minutes of 

The rate aoo: capillary height curves are given in 
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Figure 4.12, again illustrating the problem of obtaining accurate and 

reproducible dilatometric data in the LU cell. Originally it had been 

considered that if these curves represented the conditions of no con-

version they could be used to correct other data obtained from the LU 

)1~ cell. However, it was subsequently found that no consistant correla-

·", 
. -~ 'j - , tion could be made. 

In order to observe the effect of incre~sed SLS emulsifier in a 
,·.' 

given system, the rate curves for samples 15 and 16 are presented in 
··> 

Figure 4.13. This is a system which employs a co-emulsifier and a 

10% DEAP concentration based on styrene. From these curves it is 

apparent that sample 15, having the highest emulsifier concentration, 

is the better of the two from the point of view that its rate is great­

er and peaks earlier (3 vs. 6 minutes) than sample 16. This seems a 

· logical outcome in that in the former system there are more micelles 

,:present and therefore more sites for particle nucleation. One obser­

- vation that cannot be made from this Figure is that sample 16 proved 

'to be the more stable of the two systems. Again there seems to be 

.\some correlation between the stability and the success of the polymer-

~ization within a given system . 
.JS.'/ 
\,'!, 
•\, 

);. Having noted the increase in polymerization rate due to an in-
t~:: 
'}N 

~ rease in the SLS concentration, a system was prepared in which there 

concentrations of styrene and SLS, that is, for every 

tyrene molecule there was one SLS molecule. No co-emulsifier was 

This system may be better classified as a micellized system 

than an emulsion, since monomer droplets, at least in the range 
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1-lOµm, do not exist in such a system. This system appears translu­

scent and not the typical milky white of an emulsion, this being 

verification of the abscence of large monomer droplets. This system, 

including 20% DEAP, sample 28, was run in the LU cell, giving dilato­

metric data as shown in Figure 4.14. The correction method, described 
' :; . 

t·~r~ previously, was applied to this data with reasonable results. The open :~1 ·1,·zy, 
.. }}j, 
. ,,~, points ( D, 0) represent the original data while the solid ones ( •, •) 

' ~ )j 
,,;;; represent the corrected data. The maximum final conversion, determined 

::::: 
;r; 

:r . ,) gravimetrically, was 70% as compared to 78% taken from the corrected 
·:.~ 

.·.<t 
·} curve. The rate curves can be compared to those in Figure 4.13, noting 

again the increased rate maximum and the shorter time in reaching this 

peak (~1.5 minutes) with increasing SLS concentration. The shelf-

: stability of this equimolar styrene/SLS system did not follow the trend 

toward less stability, as was the case for samples 15 and 16. The pre-

sence of a co-emulsifier in the latter systems makes the comparison 

less relavent however. With this increased stability and improved poly-
.. ~:.; 
· :·t, merization characteristics, this system became a good candidate for the 

:,\; more detailed work planned for the GE SPAR prototype vessel. 
:_i.~'l 

At this 
_:;f)t \j point in the investigation this vessel became available. 
,i:·' 

;;-~ B. Transition of Experimentation to the GE Laboratory Prototype 

1. Scale-up 

With the arrival of the GE vessel, came an end to the work being 

on optimizing a recipe formulation with regards to the emulsifier 

evel and combinations with co-emulsifiers. Initial experiments were 
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carried out in the GE vessel in order to determine what changes in the 

polymerization would occur with the change in the cell configuration. 

The same micellized recipe prepared for sample 28 was run in the GE 

cell. It should be noted, however, that the sample was then four days 
. ,•,~·. 

old, having been stored in a dark place between uses. As with all of 

~iii~ 
':,,: 

the experiments in the LU cell, the exposure of the fluid to the UV 

radiation was set at twenty minutes. The dilatometric data is given 

in Figure 4.15 (sample 32). First, notice that the same correction 

method, as applied to previous data obtained with the LU cell, is used 

here. The need for this correction was attributed to a constant rate 

of fluid leakage from the vessel, this resulting from the lack of famil-

arity with the proper assemblage of the vessel. The correction was used 

·"·' only 
. ':}: 

for the first two experiments, those following not having this 

problem. The limits for conversion, set by gravimetric determination, 

were 49 - 69%. The uncorrected dilatometric conversion was outside of 

'.'!l . ,;; this range, while the corrected data resulted in a conversion of 63%, 
t~ 

)J, well within the gravimetric limits. 111, 

::1~; 
This fact represents further justi-

: ··t 

:~~ fication for the correction. 
·.·.~i' 

The similarity of these results with those for sample 28 are quite 

The final conversion in the LU cell is essentially the same 

70%). In order to more closely compare the data obtained for 

recipe in each vessel, Figure 4.16 was prepared. Since the 

were of differing configuration, having different volumes and 

exposure to the UV radiation, they could not be compared 

Therefore, the rates were converted to rates per unit volume 
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3 2 
and per unit area ( cm/min/cm and cm/min/cm .). Both of these were 

included with the hope of determining which was more critical, volume 

or area,in scaling from the LU cell up to the GE vessel. The solid 

squares represent data from the LU cell (28) which determined the scale 

on both the left and right axis. The open figures are data from the 

GE vessel (0- volume basis, A - area basis). In the early minutes 

of the reaction the comparison indicates that the rate is closer to 

being area dependant rather than volume dependant. This behavior is 

expected since the amount of free radicals produced is dependant on the 

number of initiator molecules activated by the UV radiation, which in 

turn is dependant on the surface area of exposure. This influences 

the rate of polymerization by determining the number of particles 

formed. As the polymerization proceeds past the rate maximum, particle 

formation has been completed and the rate becomes a weaker function of 

the initiation rate. During this stage the rate of polymerization be­

comes more dependant on the monomer concentration in the polymer part­

icles. Therefore, it is obvious that scaling up to the GE vessel pre­

sented no problems as a result of the change in vessel configuration. 

2. Time Restriction Check 

In the proposed SPAR experiments, it became apparent that there 

would be a significant time delay between the loading of the experi­

mental package and the actual microgravity experiments. Indications 

were that up to a 48 hour delay period was possible. Therefore, an 

experiment was carried out in which the GE vessel was loaded 48 hours 

prior to running the 20 minute polymerization. The results can be 
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found in Table II. The final conversion, as given by the gravimetric 

and dilatometric data, show a signfficant increase over the sample 

run just after loading. Note, however, that gravimetrically the in­

crease is approximately 24% while dilatometrically the increase is only 

about 11%. This is a good indication that some polymerization had 

taken place in the sample prior to exposure to the UV radiation. Also 

note that sample 32-2 had been in dark storage a net nine days longer 

than 32. It is reasonable to expect some polymerization even under 

these storage conditions, due to exposure to ambient light during 

preparation and some thermal decomposition of the initiator species at 

room temperature. The amount of polymerization during 48 hours of 

storage could, in the limit, be as high as 10%. This could be a pro­

blem, in that an inhibitor would have to be found and incorporated 

into the polymerization recipe. This would ·.have to be done without 

consequences to the five minute polymerization in the SPAR experiment. 

In order to more closely approximate the time restriction invol­

ved in the free fall period of the experiment, a seven minute period 

for sample exposure to UV radiation was chosen. This time was chosen 

somewhat arbtrarily, in that the extra two minutes were added to allow 

for lamp warmup_and possible extra seconds of microgravity that might 

occur in·the experiment. The last point might be considered a rather 

optimist~c point of view. This seven minute restriction was one of 

the limitations considered when a re~ipe was chosen for a more complete 

investigation using the GE vessel. 
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TABLE II 

Photoinitiated Emulsion Polymerization of Styrene as a Function of Conditions and Recipe Parameters 

(3% styrene monomer) 

Percent Conversion 

Percent Sodium Percent Percent 20 minutes 

Sample Lauryl Sulphate Co-emulsifier Photoinitiator minimum maximum 

.28t 8.31 

322 8.3 

32-2 
3 

8.3 

32-3 8.3 

32-4 8.3 

32-5 
3 

8.3 

22T 3.0 

33 3.0 

33-2 4 
3.0 

t polymerization in 

1 1.:1. mole ratio of 

2 4 days old sample 

3 vessel charged 48 

4 2 days old sample 

o.o 20 

o.o 20 

o.o 20 

o.o 20 

0.0 18 

0.0 18 

1.5 20 

1. 5 20 

1.5 20 

the LU cell, all others in the GE 

styrene to sodium lauryl sulphate 

hours prior to experiment 

50 

49 

73 

75 

vessel 

75 

61 

39 

70 

69 

93 

95 

95 

81 

59 

Percent Conversion 
20 minutes 

Dilatometry 

72 

63 

74 

84 

69 

94 

75 



3. Choice of Recipe for Further Investigations 

In chosing a polymerization recipe for more detailed studies in­

volving the GE vessel, the following criteria were used. The emulsion 

was required to have a high degree of stability prior to the polymer­

ization and likewise the resulting latex. High polymerization rates 

and conversions were needed and these had to be insured for a seven 

minute polymerization as described previously. Also, no significant 

polymerization could be allowed for in the ti~e period prior to the 

actual free fall experiments. 

Two recipes have previously been indicated as good candidates for 

this further study. These are represented by the formulations of sam-. 

ples 28 and 22 as given in Table II. These recipes were run in both 

the LU cell and the GE vessel. For comparison, the kinetics of the 

experiments in the GE vessel are presented in Figure 4.17 (samples 32, 

33). First, notice the difference in the rate curves. The system con­

sisting of the one-to-one mole ratio of styrene to SLS with no co-emul­

sifier ([]) peaks at a much higher rate than the co-emulsifier system 

( O) . This peak is reached in approximately two minutes for the former 

system while the latter peaks at around five minutes. The conversion­

time curves show that the conversion reached at the end of the twenty 

minute period is greater for the co-emulsifier system by about 13%. 

This becomes unimportant, however, when the time rest~iction of the 

free fall experiment is considered, in that, if the polymerization is 

conducted for the 5 to 7 minutes .. allowed, the degree of conversion 

-will be ~uch greater for the 1:1, styrene/SLS combination. The stabil-
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ity of these two systems before and after polymerization were comparable, 

being quite good for extended periods of time. Therefore, this was not 

a factor in c~osing between these systems·. 

The choice was made to go with the one-to-one mole ratio of sty­

rene to SLS in view of the facts given above. This system was then used 

for a more ordered and detailed study of photoinitiated polymerizations 

in the GE laboratory prototype vessel. 

4, Investigation of the One-to-one Mole Ratio of Styrene to SLS 

All experiments conducted in the GE vessel using variations of 

this system were carried out for seven minutes of UV exposure, with 

dilatometric data being recorded for twelve minutes, an additional five 

minutes beyond the exposure period, It was determined that the dilato­

metric data could be used directly for obtaining rate of reaction and 

conversion-time curves without need for corrections involving cell vol­

ume and fluid volume changes with increasing temperature,as a result 

of lamp irradiation. This was verified by running a blank in the GE 

vessel. The emulsion was replaced by water and data was collected 

during twelve minutes of UV exposure,as given in Figure 4.18. Presented 

here is the capillary·height as a function of time and temperature. 

Note that there is little significant change.at the seven minute mark, 

at which the experiments were terminated with·respect to UV exposure. 

Significant deviations occured only after approximately ten minutes 

of exposure. 

4a. Rate of Polymerization and Degree of Conversion 

In an attempt to optimize this one-to-one styrene/SLS micel­

lized system, a series of polymerizations were performed in which the 
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only variable was the amount of photoinitiator, DEAP, added to the 

recipe. The amount, based ·on the three percent styrene, ranged from 

0% to 60%. The gravimetric and dilatometric conversion results are 

tabulated in Table III and graphed in Figure 4.19. Again minimum and 

maximum conversions are presented for the gravimetric determination, 

not knowing the amount of the photoinitiator that has been incorporated 

into the polymer particles. The bars represent the actual limits of 

the gravimetric determination of conversion, and the circles are the 

computed conversions from the dilatometric data. A smooth curve has 

been drawn in an attempt to fit the latter data. Note that this fits 

the data fairly well with the exception of points representing 12.1% 

and 15.0% DEAP. One could imagine that an oscillating curve might 

better fit this data, but studies have shown that the reproducibility 

is not high due to variations in environmental conditions and experi­

mental techniques. (Examples are given in Appendix CJ These include 

factors such as the time between sample preparation and the actual 

experiment, the amount of exposure to ambient light, and the tempera­

ture of the solution prior to and during the experiment. This con­

version versus initiator curve, as drawn, indicates a maximum in the 

the region between 20% and 25% DEAP. It is possible, however, that the 

curve levels out at a constant conversion between 50% and 70%. For pur­

poses of 9~timization, the highest conversion with the least amount of 

initiator is desirable, as long as the time restrictions are fulfilled. 

In order to locate this optimum with more assurance, a better 

comparison would be the polymerization rate curves at various initial 
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TABLE III 

Photoinitiated Emulsion Polymerization of Styrene as a Function of Initiator Concentration 

(3% styrene monomer) 

Sample 

42 

52 

43 

37 

44 

45 

34 

48 

40 

35 

51 

50 

41 

39 

38 

36 

56 

Percent Sodium 
Lauryl Sulphate 

8.36 

8.36 

8.36 

8.33 

8.35 

8.34 

8.19 

8.34 

8.33 

8.16 

8.33 

8.32 

8.32 

8.31 

8.30 

8.30 

8.30 

Percent 
Photoinitiator 

0.0 

1.1 

2.1 

4.6 

6.5 

8.1 

9.7 

10.4 

12.1 

15.0 

15.5 

17.6 

17.6 

20.5 

25.2 

30.0 

40.0 

Percent Conversion 
minimum maximum 

27.1 

36.8 

40.3 

51.0 

49.0 

60.3 

53.4 

41.7 

38.5 

49.7 

55.9 

48.0 

39.1 

46.5 

39.2 

29.6 

2.3 

32.5 

50.0 

45.6 

60.9 

59.1 

71.4 

63.8 

54.9 

59.0 

65.2 

73.5 

71.4 

67.3 

72.6 

70.3 

71.6 

Percent Conversion 
Dilatometry 

1.78 

29.14 

43.37 

42.31 

60.14 

65.51 

60.57 

59.90 

51.42 

46.64 

61.62 

62.53 

65.04 

54.36 

70.50 

63.52 

53.25 
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initiator concentrations. A series of these are given in Figures 4.20 

and 4.22. Note in the first of these that as the amount of DEAP is 

increased, the curve maxima shift to shorter times (6.5 min.-1.1% DEAP, 

4.5 min.-2.1%, 2.5 min.-8.1%) 
-4 

and also to higher rates (2.6xl0 , 

-4 -4 4.2x10 , 8.8x10 moles/liter•sec.). The dilatometric conversion-

time curves are given in Figure 4.21. This shift to shorter times be­

comes less noticable after 1\,15% DEAP, while the rates continue to in­

crease up to 25% DEAP and then decreases for 30% DEAP (Figure 4.22). 

In order to more clearly illustrate the effect increasing initiator 

has on the polymerization rate, R, a graph has been constructed 
p \ 

relating this R at 1. 5 minutes into the polymerization, to the amount 
p 

of DEAP. This is presented in Figure 4.23. The time of 1.5 minutes 

was chosen because it .represents the first reliable rate-time data point 

available with data recorded in minute intervals. The peak rate may 

seem more suitable, however, extrapolation to a maximum lacks accuracy. 

The rates given were determined over the 1 - 2 minute interval during 

polymerization. Note again that a maximum is observed between 20% and 

25% DEAP (~23%) except that in this case it is much more distinct, with 

less scatter in the data. 

How can these various results and observations be explained based 

on what is known about emulsion polymerization? First of all, this 

system is ~ot conventional. The level of emulsifier, 8.3% with 3% sty-

rene (1:1 mole ratio), is extremely high compared with typical systems. 

Th~~ can be termed a micellized or solublized system, in that only 

swollen micelles apparently exist, the styrene and initiator being sol-
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ublized inside these micelles. This implies that there are no monomer 

drops present. This is born out by the visual observation of near 

transparency of the prepared recipe prior to the polymerization. Also 

with this being the case, stage two of Harkins' conceptualization of 

emulsion polymerization would not exist for this system with the ab­

sence of monomer droplet resevoirs. The lack of an observable constant 

rate period in the kinetic curces does not conflict with this line of 

reasoning. 

The shape of the initial rate versus initiator concentration 

curve can be understood by using the following reasoning. The increase 

in the initial rates with initiator can be due to the formation of 

increasing numbers of particles, as previously indicated by equations 

(5) , (6), and (7) in Part II. The rate of polymerization increases 

with the number of particles formed. The reason behind the subsequent 

decrease in the rates is less clear. The amounts of initiator used 

are much greater than what is commonly employed in conventional emul­

sion polymerization. At this high level, the effect of the oil soluble 

initiator as a diluent, reducing the monomer concentration, may out­

weigh that of increasing particle number. Also the number of particles 

generated may become less a function of initiator concentration at such 

extremely high concentrations. Therefore, as the initiator concentra­

tion increases the monomer concentration decreases and thus, the rate 

of polymerization. Another factor which may come into play is the 

shielding ability of the photoinitiator, that is, a cell thickness 

effect. To illustrate this, the intensity of transmitted UV radiation 
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at 350nm wavelength, was measured as a function of increasing DEAP 

concentration in the same micellized SLS system, no monomer being pre­

sent. Figure 4.24 shows a decreasing intensity with increasing initia­

tor. It is not known, however, if this influences the rate of polymer­

ization via reduction in the rate of radical production or particle 

number. As will be shown,particle size, which is a function of number, 

is not a very sensitive function of the initiator level. 

Another question raised concerns the limiting conversion reached 

.in the polymerization. Note that the conversion-time curves begin 

leveling out even prior to the seven minute shut off time, revealing 

no perceptable discontinuity due to the termination of the UV radiation. 

Significant increases in the conversion would not be likely with in­

creased exposure. No attempt was made to determine the actual amounts 

of initiator consumed in polymerization. It is assumed that the ex­

treme levels used, rules it out as a limiting reactant, at least after 

the 23% for the maximum conversion of 70%. One possible reason may 

lie in the ability of the continuing forming polystyrene to shield the 

initiator from the UV radiation. With increasing conversion would come 

increased shielding. This assumes that the initiator species does not 

prefer to be near the surface of the particles but rather inside. 

Another explanation given for limiting conversions, is the re­

duction in the termination rate constant due to the gel effect
14

• This 

occurs with the approach to the glass transition (T) of the monomer/ 
. . g 

poiymer. The T for polystyrene is 85°C1~.This decreases with the 
g 

introduction of monomer, acting as a plasticizer. In this case, the 
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oil soluble initiator would also play a role in reducing the T • For 
g 

this effect to be valid for this system,.the particle composition at 

the limiting conversion would have a T around room temperature (20 -
g 

25°C). This seems unlikely in view of data indicating that at 20°C, 

the T for polystyrene/styrene would have a composition in the neigh­
g 

borhood of 90%/10%, which is far from the 70% conversion limit obtained 

experimentally. The effect of the initiator on the T of the polymer 
g 

is not known, however. Another point opposing this argument, is that 

there is no evidence of an acceleration in the polymerization as the T 
g 

is approached (gel-effect), which has been shown to be the case for 

14 
polystyrene , 

4b. Particle Size and Molecular Weight 

The average particle diameter and the weight average molecular 

weight have also been determined as a function of the amount of photo­

initiator present in the 1:1 mole ratio system of styrene and SLS. The 

first of these is shown in Figure 4.25. The data represented by the 

circles and .bars were obtained by use of the chromatographic system 

desct·ibed in Experimental (Part III). The squares were determined 

from the light scattering experiments, a sample calculation being given 

in Appendix A. The difference in the results of the two methods can 

be attributed to the uncertainty of obtaining accurate sizes from HDC, 

the calibration curve not being well defined in this particle size 

region (see Figure 3 •. 6) • The sizes are correct. relative to each other, 

but"·the ·curve should be shifted to smaller particle sizes. In any case, 

the particle size·does not appear to be a strong function of the initi-
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ator concentration, with the possible exception of levels under 5%. 

This may be deceptive, however, in that the particles could contain 

an ever increasing amount of initiator, which would tend to make the 

particles appear increasingly larger. The solubility of the initiator 

in water was not determined quantitatively, and therefor~ the amount in 

the particles is unknown for the diluted samples used in these measure­

ments. 

Particle size determination by electron microscopy proved diffi­

cult with such small particles. ·Even though the serum replacement tech­

nique was used in order to "clean" the latex system from excessive emul­

sifier, particle definition was poor. This can be seen in Figures 4.26, 

a and b, for particles produced using 1% DEAP based on styrene •. The 

particle size distribution represented in these micrographs would be 

rather broad, averaging near 0.03µm (300A). A particle count was not 

attempted. This sample is the same as that used in the light scattering 

measurements which resulted in a computed size of 0.0425µm (425A), this 

being somewhat larger than those represented in the micrographs. 

These particle size results do indicate a decrease in particle 

size with increasing initiator which lends support to the concept of 

increasing particle number. The maximum in t·he rate curve of Figure 

4.23 would not be expected for an ever increasing number of particles. 

This, however, does contribute support to the argument of reduced rate 

of polymerization based on monomer dilution. 

The average molecular weights of selected samples were determined 

from GPC data, such as given in Figure 4.27. From these were calcu-
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Figure 4.26 a,b Electron micrographs of the latex particles produced 
in the system consisting of 3% styrene, 8.3% SLS, 
and 1.1% DEAP based on styrene (sample 52). 
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lated the number and weight average molecular weights. Figure 4.28 

illustrates the decreasing M with increased photoinitiator concentra-
w 

tion. The data represented by the blackened circles are an average 

of three measurements, the bars indicating the limits. The open 

circles represent only one measurement. This curve was drawn showing 

M becoming less sensitive to increasing amounts of initiator, DEAP. 
w 

In actuality it may continue to decrease. This would be expected in 

view of the increased number of free radicals generated with increasing 

amounts of initiator, terminating growing chains more often, thereby 

resulting in lower molecular weights. The calculated values for the 

number average molecular weight, M, are also plotted on the same Fig-
n 

ure, the squares having the same meaning as given above for the circles. 

The relationship is similar, but shows ~ven a lesser sensitivity to 

the initiator level. 

S. Other Kinetic Considerations 

Sa. Temperature Effect 

In order to determine whether the variation in the ambient temp­

erature conditions contributed significantly to the scatter in the con­

version and rate versus percent initiator data, several experiments 

were conducted using three sample of the same emulsion, polymerized at 

different temperatures. These temperatures were reached by placing 

the entire GE vessel in a constant temperature bath with only the 

capillary tube above the water level, so that the kinetic measurements 

could be made via the cathetometer. The experiments were begun once 
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the capillary fluid height reached a constant level, equilibration 

being assumed. 

The rate-time and conversion-time curves are given by Figures 

4.29 and 4.30. As expected qualitatively, the higher temperatures give 

greater rates and conversions. These results are illustrated in another 

way by Figure 4.31. Despite these effects, it appears doubtful that 

ambient temperature variations could have caused the scatter alone since 

the experimental temperature varied only between 20°C and 25°C. The 

final conversion changes by only about 3% in this range which is small 

when compared to the wide scatter in Figure 4.19. Procedural and prep­

arative effects are more likely to contribute to this scatter and lack 

of consistant reprodicibility. Some examples of reproducibility 

variations are given in Appendix C. 

As an aside, one can check the Arrhenius dependance of the rate 

on the temperature from this data by using the following arguments and 

simplifying assumptions. The rate of polymerization, R, for an emul­
p 

sion polymerization has previously been given by equation (8). 

R = k [M] n N p p p p 
(8) 

The average number of radicals per particle, n, can vary from being 

much smaller than unity to much greater. In either case, it is found 

to be propo.rtional to (1/N )(R /k )
0·5. This assumes that temination 

p I tp 

in the aqueous phase, and desorption of free radicals is negligible in 

the case of this system. Substituting this into (8),the proportionality 

is obtained, 
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. R a: _k-1P--
p k 0.5 

tp 

[M ) (R )0.5 
p I 

(9) 

For a photoinitiated polymerization, the polymerization rate depends on 

the ratio, k /k 0•5• The temperature dependance of this ratio can be 
p tp 

obtained by combining the two Arrhenius equations into one, 

= 

Combining (9) and (10), 

.ln [ Ap J -
A 0.5 

tp 

_!a__ 
RT 

(10) 

(11) 

from which ER can be obtained from the slope of a plot of ln(Rp) versus 

1/T as given in Figure 4.32. From the graph ER is computed to be 

6.6 kcal/mole. The literature values of E and E for styrene are p tp 
11 

7.3 kcal/mole and 1.9 kcal/mole respectively , giving ER= 6.45 kcal/ 

mole, which is remarkably close to the experimental value obtained here, 

considering the assumptions made to reach it. 

Sb. Dependancy of the Rate on Monomer and Initiator Concentrations 

The rate of polymerization is proportional to the first power of 

the monomer concentration in the particles and to the one-half power 

of the rate of initiation or initiator concentration. This latter point 

is true only if the intensity of the UV radiation within the fluid does 

not vary appreciably with the thickness. Relatively good agreement is 
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squares fit of the data. 
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found with experiment, as given in Figures 4.33 and 4.34. Note that 

the rate versus conversion (or monomer concentration) follows a linear 

relationship only after the peak in the rate curve has been reached, 

that is, after all particles have been formed. This would imply that 

after this point the monomer concentration continues to decrease in 

the particles. The fit in Figure 3.34 seems reasonable for this rela­

tionship, in the least,not disputing the predictions. 
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PART V - SUMMARY AND CONCLUSIONS 

The work described in this report has evolved from a feasability 

study designed to investigate the possibility of producing small-part-
• 

icle-size latexes in a GE laboratory prototype vessel of similar con­

figuration to that proposed for the SPAR experiments. This has gone 

somewhat beyond the original six-month definition study, leading to 

the following statements concerning the results. 

1. The LU cell has proven effective in enabling the establishment 

of the critical dimensions of the SPAR prototype reactor and also in 

the developement of a recipe for detailed investigation using the GE 

built vessel. 

2. The most effective polymerization formulation with regards to 

emulsion and product stability, polymerization rate and conversion in 

seven minutes, was found to be a micellized styrene and SLS system 

(3 wt% styrene, 8.3 wt% SLS) with a,a-diethoxyacetophenone as the 

photoinitiator (23 wt% based on the styrene). A conversion of 70% can 

be obtained with this system. 

3. This recipe was finalized with the use of the GE prototype, 

which proved comparable to the LU cell in several polymerization 

kinetic comparisons. The GE vessel, in contrast, has proven reliable 

for obtaining kinetic information, through capillary dilatometry • 

. Expansion of fluid and vessel due to the UV source and heat of reaction 

are negligible during the short duration experiments. 

4. Conversions determined gravimetrically are not decisive, in 

that the amount of DEAP incorporated. into the polymer is unknown. 
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S. In the micellized styrene/SLS system, the molecular weight 

and particle size were found to decrease with increasing amounts of 

photoinitiator, but with decreasing sensitivity. 

6. The polymerization kinetics correlate well with known emulsion 

polymerization rate expressions. 
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......... , .. , 

PART VI - POSTSCRIPT 

As a result of this work, NASA has accepted the two phase pro­

posal entitled "Production of Large-Particl~-Size Monodisperse Latexes", 

bypassing the SPAR experiments in favor of the longer duration Space 

Shuttle experiments. This jump in the proposed sequence has virtually 

eliminated the need for the short duration photoinitiated polymeriza­

tions. More ·.conventional thermal initiators will hence be used instead, 

in a seeded polymeriz~tion sequence to produce large-particle-size 

monodisper se la t_exes. 
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APPENDIX A 

Determination of Average Particle Size from Light Scattering 

In light scattering the turbidity or optical density of a dis­

persion is measured to determine the particle size of the dispersed 

particles, in this case, polystyrene. 

Turbidity is defined by 

T = 1n-Jo. = N R x I ext 
(A-1) 

where I = intensity of light through reference medium 
0 

I = intensity of light through sample 

N = number of particles per unit volume (cm-J) 

x = pathlength of the light (cm) 

R = extinction cross-section (cm
2
/particle) 

ext 

and the optical density is given by 

O.D. 

Therefore, 

O.D. 

I =log~­
I 

= N Rext._!_ 
2.303 

The number of particles per unit volume is given by 

(A-2) 

(A-3) 

N = 
weight percent polystyrene 

(volume of a particle)(density of a particle) 

100 w 
= (A-4) 
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As a first approximation, it is assumed that the radius of the 

particles is at least 20x smaller than the wavelength of the source 

in the medium. R tis then calculated by the Rayleigh formula for 
ex 

the scattering of light, 

_2_4_'11'_
3
_( 4_1r_R_.p_

3
_f 3_)_n_m_

4
_ [ (np/nm) 

2 
- 1 j 2 

A 4 (n /n )
2 + 2 

o p m 

(A-5) 

where A = wavelength of the source in vacuo 
0 

n = refractive index of the particles 
p 

n. = refractive index of the medium 
m 

R = particle radius 
p 

For polystyrene the refractive index is given as a function of 

wavelength by, 

and for water, 

-3 
= 1. 5663 + 7. 85xl0 

A 2 
0 

+ 
-4 3.34x10 

A 4 
0 

(A-6) 

-3 0.5 

(1.7650 - 1.3413xl0-2A 2 + 6•543BxlO j 
0 A 

2 - 0.115
2 

Therefore R is calculated from, 
p 

0 

(A-7) 

R p 

= [ (O.D.) (2.303) (pp) (100).00 

4
) [-(_n.._/_nm_)_

2 
_+_2_, ·]. 

113 

(w)(n 4)(241r3)(41r/3) (n /n )
2 

- 1 
m p m 

(A-8) 
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For sample 52 (1% DEAP based on styrene) with 0.00239 wt% solids, 

measured at a wavelength of 320nm, the O.D. was found to be 0.00957. 

The density of polystyrene is 1.05gm/cc. With n = 1.675 and n = 
p m 

1.374, the diameter was computed to be 335 A. Note that this does 

approximate the assumption of the wavelength being at least 20x larger 

than the particle radius. 



APPENDIX B 

Determination of M and M by Gel Permeation Chromatography (GPC) 
n w 

The data taken from a GPC chromatogram are the recorder chart 

readings, heighth and retention volume, V. The latter is used to r 

obtain the molecular weight from the calibration curve. The chart 

height readingsrepresent the total concentration of the polymer 

at a particular retention volume and are proportional to the quantity 

NiM
1

, which appears in the calculations of the average molecular 

weights, 

number average, M 
1: NiMi 

= n 1: Ni 
(B-1) 

2 

weight average, M 
1: NiMi 

= w 1: NiMi 
(B-2) 

Therefore, the curve height, in chart units, is set equal to 

NiMi. The retention volume for that point on the curve gives the 

corresponding Mi, from which Ni is calculated. Knowing these, com-

2 putations can be made for NiMi. Making the sununation at intervals of 

the retention volume of 0.05ml, M and M are computed using equations n w 

B-1 and B-2. 

Example 

V, ml r 

15.0 
15.5 
16.0 
16.5 
17.0 
17:5 

Sample 52, 1% DEAP based on styrene 

Height, divisions 

0.05 
0.16 
0.49 
0.92 
1.32 
1.65 
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V , ml 
r 

18.0 
18.5 
19.0 
19.5 
20.0 
20.S 
21.0 
21.S 
22.0 
22.S 
23.0 
23.S 
24.0 
24.5 
25.0 
25.S 
26.0 
26.S 
27.0 
27.S 
28.0 
28.5 
29.0 
29.5 
30.0 

Height, divisions 

1.91 
2.02 
2.07 
2.00 
1.84 
1.66 
1.45 
1.24 
1.05 
0.87 
0.73 
0.61 
0.49 
0.40 
0.33 
0.27 
0.22 
0.18 
0.15 
0.13 
0.12 
0.10 
0.08 
0.06 
0.04 

' 101 

E Height= E NiMi = 24.61 

-4 
E Ni = 1.9166x10 

2 7 
E NiMi = 3.287xl0 

- 5 M = l.285xl0 
n 

- 6 M = l.334x10 
w 



APPENDIX C 

Reproducibility Studies 

The following pages contain graphs demonstrating the lack of 

consistency in obtaining reproducible kinetic results for the micel­

lized system containing 3% styrene and 8.3% SLS with varying amounts 

of photoinitiator, DEAP. Some of these are quite close while others 

are off by large margins. Each recipe was prepared twice,once for 

each experiment. It has been noted that the reproducibility on a once 

prepared sample is quite good and does not show this unreliability. 
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