Lehigh University Lehigh Preserve

Theses and Dissertations

1976

A study of some aspects of conditioning coal flyash for electrostatic precipitation

Michael W. Neff *Lehigh University*

Follow this and additional works at: https://preserve.lehigh.edu/etd Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Neff, Michael W., "A study of some aspects of conditioning coal flyash for electrostatic precipitation" (1976). *Theses and Dissertations*. 5115. https://preserve.lehigh.edu/etd/5115

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

A Study of Some Aspects of Conditioning Coal Flyash for Electrostatic Precipitation

by

Michael W. Neff

A Research Report Presented to the Graduate Faculty of Lehigh University in Candidacy for the Degree of Master of Science in Chemical Engineering

> Lehigh University June 1976

> > i

Certificate of Approval

This research report is accepted and approved in partial fullfillment of the requirements for the degree of Master of Science in Chemical Engineering.

(date)

Dr. Robert W. Coughlin Professor in Charge

Dr. Leonard A. Wenzel Chairman of the Department of Chemical Engineering

ii

Acknowledgements

I am indebted to many individuals for their valuable help during the course of this undertaking. First and foremost, I would like to thank Dr. R. W. Coughlin for his patience and guidance. Many thanks go to Dr. J. I. Goldstein, D. Korastinsky, D. Bush and B. Smith for their help with the microscopy work. Thanks also go to J. Hojsak for his assistance in the construction of the sulfur oxide detector and other experimental apparatus.

I gratefully acknowledge the financial support of the Middle Atlantic Power Research Committee and the National Science Foundation.

To Nan, may her world always be as beautiful as she has made mine.

and To my parents for their love, patience and understanding.

Table of Contents

Abstract

Flyash Conditioning Experiments

Experimental

Results and Discussion

Microscopy of Flyash

Sample Preparation

Experimental

Results and Discussion

Sulfur Oxide Analysis: Flame Photometry

Construction of Apparatus

Operation of Photometer

Calibration

Electrical Resistivity of a Bed of Spherical Glass Beads

ν

Apparatus

Experimental

Results and Discussion

Appendix

A- Tables

B- Figures

C- Literature Cited

Nomenclature

К	total electrical conductivity of gla
К _V	electrical conductivity of dry glass
К _з	effective electrical conductivity of condensed liquid, _{n⁻¹cm⁻¹}
₽ ₀	saturated vapor pressure of capillar adsorbed compound,psi
P_k	vapor pressure of capillary condense compound,psi
k	length of contact between two partic
dp	particle diameter,m
	electrical resistivity,n-cm
۴s	effective resistivity of capillary cn-cm
\propto	contact angle

W. C. Start William Control of the

 $\rm C_v$ absolute volumetric concentration of $\rm H_2O$ in air or flue gas,%H_2O

ass beads, n^{-1} cm⁻¹

Capillary

- ry condensed or
- ed or adsorbed
- cles
- condensed liquid

Abstract

The effect of SO_3 in improving electrostatic precipitator efficiency of low sulfur coal flyash has been known for some time. The scanning electron microscope and electron microprobe have been used to try to determine the role SO3 plays in the precipitation process. Sulfur was found on the surface of flyash particles, but no sulfur could be detected in the inner portions of the particles.

Some materials that could be possible substitutes for SO_3 in the flyash conditioning process for electrostatic precipitation were investigated. NaCl, $CaCl_2$ and PbSO4 waste were found to have little or no effect on flyash resistivity. Sulfamic acid, wet scrubber underflow and weak ammonia liquor were found to affect the flyash resistivity significantly.

A sulfur oxide detector was built to monitor sulfur oxide concentrations. The instrument was based on flame photometry with ${\rm H_2}$ as the fuel. Light emitted from ${\rm S}_2$ in the 3100-3300 angstrom range was isolated and detected with a photomultiplier tube. The instrument had a detectability limit of 900ppm (by volume) and a resolution of about ±100 ppm. A possible improvement in detection capabilities has been suggested.

An attempt to verify the model recently proposed by

Ditl and Coughlin that explains the dependency of flyash resistivity with temperature and flue gas composition has been made. The resistivity of a bed of spherical glass beads was measured as a function of temperature and humidity. Theoretical curves of log resistivity versus temperature were generated using the proposed model. Comparison of the theoretical and experimental curves indicate that the model is at least partially successful in describing the process of electrical conduction in a layer of spherical particles.

Start Branks

Strange and the strange

2

We protected to a summarial fair is a set

Flyash Conditioning Experiments

and the second second second second second

While S03 is known to be a good conditioning agent for the electrostatic precipitation of flyash, it is toxic, corrosive, expensive and itself a pollutant. Because of these difficulties it was decided to investigate the conditioning effects of other materials. The materials tested were NaCl, CaCl2, sulfamic acid, a lead sulfate waste liquor from batteries, a wet scrubber underflow (calcium sulfate) and a weak ammonia waste liquor from the coke operations of Bethlehem Steel Corporation.

Experimental

All materials were tested in the apparatus diagrammed in Figure 1. Flue gas was produced by burning natural gas in a gas burner(1) and convected through the 2 inch diameter pipe by the gas blower(2). The conditioning agents were metered into the gas stream at a point just beyond the gas burner(4). Flyash obtained from the Front Street Station (Erie, PA) of the Pennsylvania Electric Company was packed into a layer about 4 mm. thick on the lower electrode shown in Figure 1. An upper electrode disk was then lowered onto the flyash surface and 4000 volts was applied to the upper electrode by a Spellman High-Voltage Power Supply Model 20 PN 30. Current flow through the flyash was measured with a Keithley Electrometer 610C. The flue gas

temperature near the gas burner and at the flyash bed was measured with thermocouples and recorded on a Honeywell recorder.

and the statement of the second of the secon

Information as to the various solutions fed into the flue gas is summarized in Table 1. The effect of adding these solutions to the flue gas on the resistivity of the flyash is shown in Figures 2, 3 and 4. Each curve of resistivity versus time is labelled as to the solution employed.

Results and Discussion

The resistivity versus time curves shown in Figure 2 for NaCl, CaCl₂ and in Figure 3 for PbSO₄ waste show that these materials have little effect on the resistivity of the flyash. In fact the only noticeable effect is a slight increase in resistivity upon the addition of each of these three materials. NaCl, CaCl₂ and PbSO₄ waste obviously are poor conditioning agents.

On the other hand, the results for the other three materials, weak ammonia liquor, wet scrubber underflow, and sulfamic acid are more promising. The resistivity versus time curve for weak ammomia liquor, shown in Figure 2, appears to be very similar to that for SO_3 , shown in Figure 5, in that there is a gradual drop in resistivity upon the addition of the conditioning agent

and the second second

and then a gradual rise in resistivity to the original level as soon as the conditioning agent is stopped. However , for the conditions under which the ammonia liquor was added , the overall decrease in resistivity is not nearly as extensive nor as rapid as that normally observed with SO₃.

and a contraction of the second second second second

5

By contrast both the wet scrubber underflow and sulfamic acid resistivity versus time curves , shown in Figures 3 and 4 respectively, exhibit characteristics markedly different from the SO_3 curve. Upon addition of the wet scrubber underflow, the flyash resistivity immediately dropped to a low level and then remained near that level. Subsequent addition of SO3 did not produce any major change in the flyash resistivity. The wet scrubber underflow acts differently from SO_3 in two ways. First the addition of the scrubber underflow causes an immediate , large drop in resistivity as compared to the gradual change in resistivity caused by SO3. The resistivity versus time curve for sulfamic acid shows the same gradual decrease in resistivity that is seen in the SO3 system. There is no rise in resistivity , however , when the sulfamic acid flow is cut off. In this way sulfamic acid is similar to the wet scrubber underflow. Again this behavior may suggest the possibility of a conditioning mechanism different from that exhibited by SO3.

Microscopy of Flyash

While it is known that a small amount of SO₃ in the flue gas reduces the electrical resistivity of flyash, the mechanism by which this phenomenom occurs has not been clearly established. One theory is that SO₃ is adsorbed on to the flyash surface and forms a conductive film. Another possibility is that the SO₃ actually diffuses into the flyash particles and contributes directly to the conduction process via ion migration. If this latter situation occurs, there should be a sulfur concentration gradient into particles that have been conditioned with SO₃ that could possibly be detected and measured with an electron microprobe. As a preliminary effort, a general characterization

As a preliminary effort, a general characterization of the flyash particles by scanning electron microscopy (SEM) and light microscopy was attempted. The study of flyash properties by microscopy is not new; a number of similar attempts have been made in the past to characterize these properties^{1,2}. Due to the complex heterogeneous nature of flyash, however, these previous attempts produced essentially only qualitative descriptions. Although most of the preliminary work reported here is also of a qualitative nature, quantitative results have also been obtained using a solid-state x-ray detector in conjunction with the scanning electron microscope to identify

elements present on the surface only in concentrations greater than 1% by mass.

Sample Preparation SEM

Mounting flyash samples for SEM work is a relatively simple task. In the procedure used, formvar (.05 wt. %) in diethylenechloride was spread evenly across the surface of an aluminum stub; then flyash was lightly sprinkled on the stub, with care taken to obtain a relatively large separation of particles. After drying the sample was coated with carbon. This carbon coating provides a conduction path for the electrons from the microscope electron beam. Without this conduction path, charge buildup would occur, producing a distorted image³.

Sample Preparation: Electron Microprobe Analysis

Flyash sample preparation for electron microprobe analysis (EMPA) is much more complicated than preparation for analysis by SEM. The critical requirement in EMPA is that the sample have a flat surface. If the sample surface is irregular, some x-rays will be absorbed by the irregularities of the surface, causing an error in the analysis³. The sample surface is made regular by polishing. Since the flyash particles are small, they must be mounted in a block of material in order to be able to perform the polishing

step.

Two types of mounting were used at various times throughout the investigation. The first type is a "cold mount" method involving the use of an epoxy resin. In this method a glass plate is covered with a silicon release agent. Then a bakelite ringform that has an outer diameter of one inch and is about three quarters of an inch high is placed upon the glass plate. The flyash is lightly sprinkled, with as much particle separation as possible, on the glass within the ring. Next, Buehler epoxide resin #20-8132 is mixed with Buehler epoxide hardener #20-8130 and this mixture is poured into the ringform to a height of about one half of an inch. A weight is placed on top of the ringform so that epoxy can not seep out from the bottom of the ring. The sample is then set aside to allow curing of the epoxy for about 8 hours.

In the "hot mount" procedure the mold consists of a hollow steel cylinder several inches long and 1 1/4 inches in diameter and two solid steel cylinders to serve as endpieces for the hollow cylinder. The flyash is lightly sprinkled on the inside face of the solid cylinder that will serve as the bottom of the mold. The hollow cylinder is placed around the bottom piece. The mounting material, Buehler Transoptic, is poured in until it fills about half of the mold. Then the top cylinder is put in place. A

heating jacket is placed around the mold and the mold is put in a press. The sample is then heated to a temperature of 300°C and 4200 psi of pressure is applied. After 25 minutes under these conditions the heat input is removed. When the sample cools to about 150°C, the applied pressure is removed and when the mold is cool enough to touch, the sample is removed. The "hot mount" method is easier, faster and seems to produce better samples than that of the "cold mount" method.

9

In the subsequent operation, that of polishing the sample, the initial step is to grind the sample with wetted silicon carbide grinding paper, 320-A grit, and then wash the sample with water. Then the sample is rotated 90 and ground again with a 400-A grit silicon carbide paper until all the marks left from the previous paper are removed. After washing the sample is again rotated 90 and ground with a 600 grit silicon carbide grinding paper until all the marks caused by the 400 grit paper are removed.

After the above steps and a rinse with water the sample is polished with diamond paste. A nylon polishing cloth is placed over a piece of plate glass and a small amount of 6 micron Buehler Metadi Diamond Compound is placed on the cloth and mixed with several drops of Buehler Metadi Fluid Extender to form a thick paste. The sample is then rubbed in a circular motion in the paste for

several minutes, after which the sample is washed thoroughly with water. This procedure isrepeated with a 1 micron metadi compound. After washing with water the degree of polish is checked with an optical microscope. If the polishing job is insufficient, the above procedure should be repeated (it is normally sufficient to repeat just the diamond paste polishing steps.)

Since there are many particles mounted into a single sample, the fianl preparation step involves photographing the sample so that a "map" of the particles may be developed. This map is then used along with the photographs to identify and locate particles of interest for the electron microprobe analysis. A Zeiss reflected light microscope and Polaroid camera were used to take the pictures. Figure 6 shows a typical sample of polished flyash.

Experimental

The scanning electron micrscopy was done on an ETEC Autoscan Model U1 at a voltage of 20 KV. A solid-state x-ray detector was used in conjunction with the scanning electron microscope. The solid-state x-ray detector could provide only qualitative information as to which elements were present on the particle surface in quantities greater than 1% by mass.

The electron microprobe analysis was done on an

Applied Research Labs EMX-SM. The microprobe was operated at a voltage of 15 KV and a current of .15 mA and the electron beam spot size was about 1 micron in diameter. The electron microprobe was equipped with crystal diffraction spectrometers (CDS) which are much more sensitive than the solid-state x-ray detectors. The CDS operate by the principles of Bragg's Law and the crystals can be tuned to the wavelength emitted by a specific element. X-ray pulses from a given sample can be monitired, counted and compared to the pulse count obtained from a standard of known concentration in the element of interest. The electron beam was traversed across a particle so that the analysis could be made every 4 microns. An additional sweep of the sample along a line perpendicular to the first sweep was also made. For this system and procedure it was calculated that the x-ray pulse count for a particular point must exceed the background count by 60 to insure that sulfur was present with 95% confidence.

Results and Discussion

Optical Microscopy

Polished flyash was examined with a reflected light microscope in an attempt to identify the minerals present. As a result the particles could be classified in four groups.

The first group consisted of particles that reflected light, i.e., those particles that appeared white. The second group consisted of gray spherical particles with some dark spots on them. A third group of particles consisted of small black chips. Irregularly shaped particles of various colors made up the fourth group. Particles of all four groups are shown in Figure 6. Unfortunately, only the first group of particles could be identified with reflected light microscopy. Under polarized light the white particles turned orange and ruby red, indicating that those particles consisted of the iron oxides hematite and magnatite. However the group I particles make up a small fraction of the total amount of flyash examined. Thus the bulk of the flyash remained unidentifiable by reflected light microscopy. Nevertheless, the particle classification system combined with the sample "maps" made the electron microprobe analysis more orderly.

SEM

The first sample examined was sieved dry to obtain a size fraction of 53 microns to 105 microns. Photographs taken on the scanning electron microscope of particles that are representative of this sample are shown in Figures 7, 8 and 9. Some Front Street flyash was also wet sieved (with H_2O) in an attempt to obtain a better separation of particle sizes. Figures 10 and 11 show wet sieved flyash from the

53 to 105 micron fraction while Figures 12 and 13 show flyash from the 44 to 53 micron fraction. All these photographs show that there are two types of particles present, small glassy spheres and larger porous particles. The large porous particles seem to consist of the smaller glassy spheres surrounded by a glassy shell. The energy dispersive x-ray analysis of these particles is shown in Table 2. The analysis shows that all particles, regardless of size, contain Al, Si, K, Ti and Fe in quantities greater than 1% by mass.

Another flyash sample was first exposed to SO_3 and then examined with the scanning electron microscope. Figures 14, 15 and 16 contain photomicrographs of this sample. The SO3 exposure apparently had no structural effect on the flyash, as there were no visual differences between the conditioned and unconditioned samples. However, the x-ray analysis showed that sulfur was present on the surface of the conditioned sample. This result indicates that SO3 had either reacted with or been adsorbed on to the flyash. Electron microprobe analysis was then employed in an attempt to learn how the deposited sulfur was spatially distributed within the particles.

Electron Microprobe Analysis

Both unconditioned and SO_3 conditioned flyash were

examined with the electron microprobe. However, the first samples examined showed no traces of sulfur in either the conditioned or unconditioned flyash. This result was surprising since all flyash should contain a certain amount of residual sulfur. Subsequently it was decided that the sulfur was being extracted by the water used in the polishing process. To prevent such extraction n-heptane was substituted for water in the polishing procedure and new samples were prepared.

Figures 17-21 show photographs of unconditioned Front Street Station flyash that has been prepared for electron microprobe analysis. Seven of the particles examined are marked on the photographs. Table 3 shows the x-ray pulse counts for the elements Fe, S and Na for these particular particles and background.

Photographs of SO₃ conditioned Front Street flyash that has been prepared for microprobe analysis are shown in Figures 22-25. Ten of the particles examined are marked on the photographs in these Figures. Table 4 contains the x-ray pulse count data for these particles and background for the elements Fe, S and Na.

The data in Table 4 shows that there are very few points in either the treated or untreated samples that show indications of the presence of sulfur. The few points

that were detected are most likely points containing some residual sulfur. While the SEM study showed that sulfur was on the surface of the conditioned flyash particles, the electron microprobe analysis indicates that there is little or no tendency for the sulfur to diffuse in to the bulk of the particles.

1.

Sulfur Oxide Analysis: Flame Photometry

One of the major problems encountered in a study involving a sulfur oxide-air mixture is the analytical determination of the sulfur oxide concentration, especially at low concentration levels. One common analytical technique recommended by the EPA involves a titration analysis. However, there are several difficulties encountered with this method. Samples have to be collected by drawing off a gas stream and bubbling it through several impingers with solvents to absorb the sulfur oxides. The efficiency of this collection system is questionable. The major problem howevere lies with the titration analysis itself. The titration end point is a yellow to orange color change that is very hard to see. When low concentrations are involved, the uncertainty of the end point can contribute to a large error in the final result. These problems make it desirable to find other analytical methods. One such method is flame photometry.

Substances that are burned in a very hot flame vaporize to the atomic state. Because of the high temperatures, many of these atoms are in an excited state. When an atom returns to the ground state, light of wavelength characteristic of that particular atom is emitted. Flame photometry is based upon the collection of this

emitted light. The light can be detected by a phototube or photomultiplier tube. Isolation of a particular wavelength is achieved by placing an interference filter or diffraction grating between the flame and the light detector⁴.

When sulfur oxides are burned in a hydrogen flame, the sulfur is reduced to ${\rm S}_2.~{\rm S}_2$ emitts light in the region of 2500 to 4000 angstroms. By isolating the 3100 to 3300 angstrom region, interferences from OH, CN, $\ensuremath{\texttt{C2}}$ and other impurities are excluded⁵.

Construction

A schematic of the instrument is shown in Figure 26. Holes were drilled in the metal enclosure box as needed to accomodate the electrical wiring.

A surgical needle was used as the burner tip. The needle was silver soldered ro a piece of 1/8 inch stainless steel tubing which was placed in a union tee. The hydrogen was supplied from a cylinder of Air Products zero grade hydrogen. The cylinder was connected through a flowmeter and needle valve to one side of the tee. The air-sulfur oxide mixture is drawn from the process by a Metal Bellows Co. blower through a needle valve and flowmeter to the other side of the tee. The surgical needle fits through a hole in the bottom of the enclosure and is held in place by a rubber stopper.

A 1 1/2 inch 0. D. pyrex tube about 2 feet long was used to shield the flame. A bunsen burner air regulator was attached to the bottom of the tube to allow some air convection so that the flame would burn properly. The tube fit through a hole in the top of the enclosure and snugly over the rubber stopper on the bottom of the enclosure. That part of the tube that extended out of the enclosure (about 1 foot) was wrapped with asbestos and teflon tape so that the enclosure could be maintained in a light tight state.

The optical system consisted of two lenses, an interference filter and a photomultiplier tube. One lens was placed about 5 inches from the flame to collimate the light before it passed through the interference filter. The interference filter was placed immediately after this lens and was followed by the second lens. The second lens focused the light on to the window of the photomultiplier tube.

The photomultiplier tube was powered by a Hewlett Packard 6515A DC Power Supply. The current from the photomultiplier tube anode passes to an operational amplifier that is in a current follower with gain configuration. A voltage that is proportional to the anode current is sent from the output of the operational amplifier to a voltmeter. A schematic of the electrical system is

shown in Figure 27.

Operation

To begin operation, hydrogen and air flows are started and the flame lit. The pyrex shield is placed over the flame and glass wool is placed around the opening where the shield sticks out of the enclosure in order to maintain a light tight environment in the enclosure. Tape is placed around the top edges of the box to prevent light from entering the enclosure. Once the enclosure is absolutely light tight the power supply for the photomultiplier tube can be turned on. The instrument should be allowed to warm up for at least one hour. Operation can take place at any combination of gas flows, as long as a flame is maintained, and photomultiplier tube voltage, although each given set of operating conditions requires its own calibration curve.

Calibration

Calibration of the sulfur oxide detector was done by metering a known amount of SO_2 through a flowmeter into a known amount of air. A hydrogen flow rate of about 800 ml/min (31 on a Gilmont flowmeter H554) and an air- SO_2 rate of 500 ml/min (32 on Gilmont flowmeter H438) seemed to provide the most sensitivity, so those flows were used for calibration. The photomultiplier tube was maintained at a

potential of 900 volts. The calibration data is shown in Table 5 and a calibration curve in Figure 28.

The calibration data show that the detector is not as sensitive or accurate as might be expected. The minimum concentration that could be detected was about 900 ppm and and a concentration could be resolved only to about ±100 ppm. The capabilities of the detector might be improved with some changes in the amplification system and voltmeter. One possibility is to use an anti-logarithmic amplifier to expand the scale of the output for a given input.

Electrical Resistivity of a Bed of Spherical Glass Beads

It has long been recognized that flyash electrical resistivity, and thus flyash electrostatic precipitation efficiency, varies widely with flue gas composition and constituent concentration. Recently Ditl and Coughlin developed a model based on "the capillary condensation of liquid at the contact points of ash particles" to explain this phenomenon⁶. The model accounts for the effects of temperature, flue gas moisture content, and the concentration of any conditioning agent present in the flue gas on the flyash resistivity. A simple experiment using spherical glass beads to test the validity of this model is reported here.

Apparatus

A schematic of the apparatus is shown in Figure 29. The heart of the apparatus was a point-plane electrode system. The plane was a disk 3.81 cm in diameter upon which the glass beads were packed to form a bed. The needle point sits about 1 1/4 inches above the plane and was connected to a Spellman High Voltage Power Supply. The electrode system was contained in a one quart juice can. Holes drilled in the side of the can allowed for the introduction of am air stream to the can. The humidity

of this air stream was controlled either by passing the air through a bed of Drierite (for dry air) or by bubbling the air through a flask of water of controlled temperature. This gas stream was heated by a bunsen burner before entering the can. The can was wrapped with heating tape to control the temperature of the glass bead bed. The temperature inside the can was measured with a thermometer. Current flowing through the glass bead bed was measured with a Keithley Electrometer Model 610C.

Experimental

Glass beads of a given mean diameter were packed into a bed on the lower electrode. Dry air, made by passing laboratory air through an impinger filled with Drierite, at room temperature was passed through the can for about one hour so that the system could equilibrate. Then the temperature in the can was raised in small steps. At each temperature the system was allowed to equilibrate before the current being passed through the bed was measured. In each case the applied voltage was 10 KV. This procedure was followed until a maximum temperature of 160 C was attained. At this point the system was allowed to cool back to room temperature. After the system was cool, leaving the bed of glass beads undisturbed, air of the

desired humidity was introduced to the container. After allowing some time for equilibration, the same procedure of raising the temperature and measuring the current was followed. The entire procedure was repeated for beds of varying bead size.

Results and Discussion

 $K = K_v + K_s \cdot \emptyset$

The data obtained is presented in Table 6. Graphs of log resistivity versus temperature for various mean bead diameters are shown in Figures 30-33. According to the proposed model, the electrical conductivity is given by

where $\beta = \ln(\frac{\ln(p/p_0)\min}{\ln(p_k/p_0)})$ and $K_s = k/(d_p \cdot \rho_s \cdot \tan \omega)$. Theoretical curves were generated by the method shown in Figure 34. The theoretical curve for each mean bead diameter is included in the graphs shown in Figures 30-33. Clearly the theoretical and experimental curves are very different.

One major problem in this analysis is the determination of the dry bead resistivity line. The curve of log resistivity versus temperature for dry glass beads should be linear. The curves for dry beads in Figures 30-33 are clearly nonlinear, although in some cases the curve could be approximated by two straight lines. The nonlinearity of the experimental dry bead curves, however, causes some

problems in the use of the model. Not only is it difficult to determine the exact intersection point of the dry and humid curves, but the true values of the dry curve are impossible to determine accurately.

An attempt was made to extrapolate dry curves from the data for the humid curves. The data generated using this extrapolation is shown in Table 7. Figures 35-38 show the new theoretical curves and experimental curves for the humid air. Agreement between the predicted and experimental curves appears to be better for the case using the extrapolated dry bead resistivity curve than for the case using the experimental dry bead data. Of special note is the fact that the dependence of resistivity maxima on mean bead size is predicted by the model for the smallest three bead sizes, even though the exact location of the maxima are not. These results suggest that the model does describe, at least to some extent, the mechanism involved in the electrical conduction process in layers of spherical particles.

Appendix

.

Appendix A

· . .

ble 1: Experimental Conditions of Alternative Flyash Conditioning Agent Study

Solution	Solution Feed Rate ml/min	Gas Rate ft ³ /min	Temperature at Solution Injection °C			
0 <u>M</u> NaCl	4.1	45	600			
5 <u>M</u> CaCl ₂	4.1	43	605			
ak Ammonia Liquor	16	44	645			
$^{\rm SO_4}$ Waste	18	51	555			
t Scrubber Underflow	26.5	49	525			
0 M lfamic Acid	60	50	540			

Tem	pera	ature
F	lyas	Sh

185	
190	
195	
178	
185	

195

ble 2:	Peaks	Ob	served with	Energ	JY	Dispersive
	Used i	n	Conjunction	with	a	SEM

Peak (ev)	Corresponding
1.475	Al
1.750	Si
3.325	К _К
3.625	К _К
4.525	Ti _K
4.930	Ti _K
6.400	Fe _K
7.060	Fe _K
2.300	S *

*Observed only on SO3 treated samples.

.

e X-Ray Detector

ing Element

		,	Man, 499, 200 Add (1997) - 10					h	 -			•			
•			•					·	:		Table 1:	Experimental Conditioning	Condition Agent Stu	s of Alternat: dy	ive Flyash
										· · · ·	Solution	Solution Feed Rate ml/min	Gas Rate ft ³ /min	Temperature at Solution Injection °C	Temperature Flyash 'C
											.50 <u>M</u> NaCl	4.1	45	600	185
											.25 <u>M</u> CaCl ₂	4.1	43	605	190
											Weak Ammonia Liquor	16	44	645	195
											PbSO ₄ Waste	18	51	555	178
											Wet Scrubber Underflow	26.5	49	525	185
											.50 <u>M</u> Sulfamic Aci	d 60	50	540	195
					·										
							·								
													· · · ·		. ".
	.1	<u></u>		.	 	,	 	n. New <u>and the second sectors</u>	 and the second					•	
Peaks Observed with Energy Dispersive X-Ray Detector Used in Conjunction with a SEM Table 2:

Peak	(ev)
1.47	75
1.75	50
3.32	25
3.62	25
4.52	25
4.93	30
6.40	00
7.06	50
2.30	00

*Observed only on SO_3 treated samples.

Corresponding	Element
Al	
Si	
ĸ _K	
ĸĸ	
TiK	
TiK	
Fe _K	
Fe _K	

s*

					-					
, N						• •		'		
,				. ·				Table 3:	Electron Flyash	Microprobe
								Fe	S	Na
		,							Backgrou	nd
								719 708	349 386	399 375
								740	379	421
								D-	which 1	
									rticle I A	ACTOSS
								345 617	56 61	291 1035
								1718 28737	87 147	636
								282	49	252
								150 57	39 36	137 124
			, ,							
								Pa	rticle 2 A	Cross
								58866	171	245
								56762 55331	168 151	309 385
								59079 57794	141	240
								57233	123	254
								52484	145	384
		· .						Pai	cticle 3 A	cross
								1073	109	626
								1293 149	95 73	$\begin{array}{c}1000\\174\end{array}$
								1372 2645	86 45	689 530
								988	113	804
				ч.				861 854	104 133	776 1109
								701	121	1370
•									<u>.</u>	
	M				• •	•				•
						•	Sant in the second		•	•
					. ·					
				Alef my Moory to a current sector		ning (n. 1. 1) man (n. 195 an				

be X-Ray Counts for Unconditioned

Fe	<u>S</u>	Na
	Standard	
19404 19715 19373 19132 19560	$\begin{array}{r} 46482 \\ 46481 \\ 46266 \\ 46028 \\ 46504 \end{array}$	253 244 215 223 234
	Particle 1 [Down
6119 4204 4410 575 1522 21630 1841 268	136 70 91 85 54 183 86 60	558 373 509 347 265 829 551 411
	Particle 2 D	own
58947 57198 55481 54285 57821 56106 58072	143 157 132 145 185 244 159	225 235 224 254 314 370 317
	Particle 3 D	own
2770 1712 114C 951 1478 1466 427	105 242 87 120 89 98 43	846 1747 761 1403 708 937 226

-		{	· · · · · · ·						- <u> </u>	
							1	т -		
				• •		•		Table 3:	Continued	
								Fe	<u>S</u>	Na
					r.			Part	icle 4 Acro	SS
							·	651 156 313 256 601 219	60 66 110 83 102 100	436 287 558 517 734 406
								Part	icle 5 Acros	55
								2881 1250 2195 4903 5244	135 165 128 154 118	791 619 1019 748 562
								Part	icle 6 Acros	SS
								231 197 1780 557	287 100 354 11062	969 360 1029 442
								Part	icle 7 Acros	s
				·			· · · · · · · · · · · · · · · · · · ·	1273 1575 1873 1306 1548 767 1924 1553 664 1193 1952 1220 1989 1249	81 93 78 77 73 104 107 82 57 63 73 77 77 65	684 680 737 874 1214 1087 1120 710 241 98 886 493 753 599
	- -								05	
			•				• • •			• •
		ی در این این این میکند. میکند این میکند میکند و وران این ا								

and the second sec

•

Fe	S	Na
	Particle 4	Down
529 335 195 383 237	74 89 101 112 95	464 491 337 484 440
	Particle 5	Down
389 4254 1432 2363 2092 2033	79 84 254 98 106 95	286 959 1740 561 814 921

Particle 6 Down

2052	1325	686
475	16235	693
594	1991	550
341	216	674

	Table 4:	Electron Flyash	Microprob
	<u>Fe</u>	<u>S</u>	Na
		Background	1
	719 708 740	349 386 379	399 375 421
	Par	ticle l Acr	OSS
	$ \begin{array}{r} 13162 \\ 4494 \\ 3020 \\ 11879 \\ 15665 \\ 16456 \\ 17721 \\ 16687 \\ 15932 \\ 15806 \\ 15095 \\ 14583 \\ 14643 \\ 15327 \\ 12588 \\ 14598 \\ \end{array} $	91 59 53 142 100 104 135 111 126 81 85 96 107 98 84 82	152 15 106 157 172 169 185 208 321 223 195 188 182 140 158 146
	Part	icle 2 Acro	DSS
·	445 357 434 366 328 502 419 394	87 76 62 68 58 77 78 87	334 320 275 356 325 367 419 336

Fe	<u>s</u>	Na
	Standard	
19464 19715 19373 19132 19560	46482 46481 46266 46028 46504	253 244 215 223 234
	Particle 1 Down	
14733 16097 16037 17112 17797	91 96 94 81 119	186 154 143 159 192

11/00	71	100
16097	96	154
16037	94	143
17112	81	159
17797	119	192
26551	193	239
42269	268	201
17572	130	369
16852	124	240
14380	109	95
16361	104	203
15599	92	252
15227	89	318
14628	106	282
14341	81	218

Particle 2 Down

370	60	417
400	61	249
367	84	325
455	82	342
422	64	299
373	97	228

	. •	·		Table 4:	Continue	d
·				Fe	<u>S</u>	Na
				Part	cicle 3 Act	ross
				819 594 458 481 407	95 81 74 49 71	266 474 410 199 347
			·	Part	icle 4 Acı	coss
				2541 3241 3558 2828 1100 4438 2364	65 80 73 77 178 106 71	326 752 470 313 172 428 556
				Part	icle 5 Acr	oss
				956 1689 1581 . 382 1277 1223 1005 856 401 1444	83 76 103 102 74 121 75 114 79 88	500 666 675 431 458 554 518 477 275 593
· · · · ·						
				•		

[]

<u>Fe</u>	<u>S</u>	<u>Na</u>
681 617 436 514 342 515	Particle 3 Dow 64 76 71 69 78 84	n 238 293 221 381 329 503
	Particle 4 Dow	n
1513 1337 946 2164 2015 2473 3405 801 1474 857 3916	79 66 69 82 77 1325 58 69 91 78 83	482 521 276 618 470 438 297 388 487 443 504
,	Particle 5 Down	<u>1</u>
1082 1281 1187 891 1195 1046	73 94 77 97 69 79	329 389 280 366 380 443

· · · · · · · · · · · · · · · · · · ·		• .
		*
Table 4.	Continue	4
TADIE 4:	COntinued	1
Fo	c	No
<u>re</u>	5	<u>Na</u>
Par	ticle 6 Ac	COSS
1360	101	366
1533	85	342
1231 1440	76 71	451
912	83	413
Par	ticle 7 Dov	vn
125	0.2	110
529	92	137
1608	88	866
1166	85	722
1906	70 72	518 589
736	64	635
2065	86	753
Par	ticle 8 Acr	OSS
705	0.0	
1443	98 102	380 472
737	59	378
925	40	83
11/4	103	434
Par	ticle 9 Acr	OSS
53	40	70
59	33	60
60	43	90
2108	75	59 639
959	249	252
2255	749	465
1801	412	374
a '		
	• • •	

<u>Fe</u>	<u>S</u>		<u>Na</u>
	Particle	6 Down	<u> </u>
1125 2275 1643 1405 1529 777 1714	73 86 81 79 66 89 67		546 477 544 699 442 646 638

Part	ticle	8	Down
·			

672	86	470
509	57	386
1043	119	419
717	81	518
1002	69	419

Particle 9 Down

1602	70	426
437	84	163
1729	170	376
1339	104	554
42889	131	286
543	139	387
2150	93	417
872	73	356
860	218	195
262	104	106

.

. **`**

.

•

				k l			
					;		
· · · · · · · · · · · · · · · · · · ·				; 1	M-1-1 - 4	0	
					Table 4:	Continued	
· .							
					Fe	<u>S</u>	Na
					Part	ticle 10 Ac	ross
· ·					328	68	132
					370	131	485
					465	251 65	496 323
					1999	199	375
				ż			
							,
						·	5
		L		· ·		•	
 A second sec second second sec							•

STORE SIGN LOVE

F	е

<u>S</u>

<u>Na</u>

Particle 10 Down

686	116	708
398	178	589
453	141	455
670	83	608
701	96	686
3127	390	707
1562	137	432

Table	5	:	Ca.	li	bra	at	ion	Da	ta	f

SO ₂ Fl (ml/mi	ow Air Flow n) (ml/min)
0	39500
36.1	39500
49.3	39500
59.2	39500
68.5	39500
. 79.0	39500
87.3	39500
94.2	39500
104.8	39500
116.0	39500
116.0	38500
116.0	35200
116.0	31200
116.0	27400
116.0	22900
116.0	18800
116.0	14800
116.0	11750

* H₂ flow- flowmeter reading of 31 on Gilmont flowmeter H554 Air-SO₂ flow- flowmeter reading of 32 on Gilmont flowmeter H438 Photomultiplier tube voltage- 900V

for Sulfur Oxide Detector

ppm SO ₂ in Gas Mixture	Readout * Voltage (V)
0	0.875
910	0.880
1250	0.892
1500	0.899
1730	0.905
2000	0.911
2200	0.919
2380	0.925
2650	0.933
2930	0.941
2980	0.945
3280	0.950
3730	0.960
4260	0.980
5040	1.00
6130	1.03
7380	1.07
10670	1.15

<u>3</u>3

	a Bed of Gla	crons 1=0.1	i(Amps) (x10	6.0	8.9	14.0	27.0	95.5	300.0	440.0	Hur	165.0	230.0	250.0	255.0	265.0	249.0	270.0	195.0	160.0	78.0	63.5	62.0		м.	
	Table 6:	d _{pav} =387 m	<u>T(°C)</u>	26	32	48	76	111	158	186		30	33	35	36	42	46	52	60	64	72	83	90			•
		•																								1
une de la																								25	•	-
2																										
•																										
, () () () () () () () () () () () () ()		·																								
																						·		·		
· · · · · · · · · · · · · · · ·																										•
· · · ·																					с. С					
																										-
																										• •
																								•		
an the Ara																									* .	

as a Function of Temperature for ass Beads

.4 cm
$$d_{bed}=3.81$$
 cm
Dry
 0^{7}) $P(a-cm)(x10^{-9})$
475.0
320.0
204.0
106.0
29.8
9.5
6.5
umidified $C_v=4.5\%$
17.3
12.4
11.4
11.2
10.7
11.4
10.5
14.6
17.8
36.5
44.9
46.0

• .

.

.

.

		······							
									•
	· · · · ·							Table 6:	Continued
•								<u>T(°C)</u>	<u>i(Amps) (x1(</u>
								94	67.5
								108	75.0
								115	90.0
								133	125.0
								156	225.0
								d _p =460 r av	nicrons l=
								29	14.8
								31	15.2
								37	18.0
								44	23.5
								52	33.5
								66	53.5
			·					76	73.0
								89	101.0
								98	100.0
								111	114.0
								125	136.0
								135	187.0
								146	242.0
									Hum
								33	285.0
								35	290.0
· · · · · · · · · · · · · · · · · · ·	•	•.				•			
		•		•	3 •				

.0⁷) <u>P(n-cm)(x10⁻⁹)</u> 42.2 38.0 31.7 22.8 12.7

=0.4 cm

d_{bed}=3.81 cm

Dry

192.0 188.0 158.0 121.0 85.1 53.3 39.0 28.2 28.5 25.0 21.0 15.2 11.8 midified C_v=4.05% 10.0 9.8

Teble 6: Continued $\frac{T(-2)}{36}$ (Amps) (36 294, 40 299, 47 300, 53 252, 60 188, 67 115, 75 88, 85 87, 91 91, 101 107, 107 116, 121 190, 131 188, 137 220, 134 318, $d_{p_{N}}$ -595 microns 1 26 17, 34 21, 38 27, 48 37, 48 37, 48 37, 48 37, 59 62,					
Table 6: Continued T(*c) i(damsel) (36 294. 40 209. 47 300. 53 252. 60 188. 67 115. 75 88. 85 87. 91 91. 101 107. 107 116. 121 159. 131 198. 137 220. 154 318. 157 28. 168 17. 38 27 38 27 36 27 38 27 38 27 36 27 36 27 37 59 62.1 17 38 27 39 26 48 37 59 62.1			· · ·		
Table 6: Continued 1(1°) 1(Ampe) (36 294, 40 299, 47 300, 53 282, 60 108, 67 115, 75 80, 85 97, 91 91, 101 107, 1101 107, 121 150, 131 188, 137 220, 154 318, 137 220, 159 318, 132 138, 133 28, 134 28, 135 31, 138, 137 138, 137 138, 137 138, 137 138, 27, 38 27, 48 37, 59 62,					
$\frac{T(5)}{36} \frac{i(Ampa)}{299}$ 40 299. 47 300. 53 252. 60 188. 67 115. 73 88. 85 87. 91 91. 101 107. 107 116. 121 150. 133 188. 137 220. 154 316. $\frac{1}{9}w^{2}545 \text{ microns} 1.$ $\frac{1}{9}w^{2}545 \text{ microns} 1.$ $\frac{26}{7}w^{2}545 \text{ microns} 1.$ $\frac{26}{7}w^{2}55 \text{ microns} 1.$				Table 6	: Continued
36 294. 40 299. 47 300. 53 252. 60 188. 67 115. 75 88. 85 87. 91 91. 101 107. 101 107. 102 116. 121 150. 131 198. 137 220. 154 318. 26 17. 34 21. 38 27. 48 39. 59 62.4				<u>T(°C)</u>	i(Amps) (x10
40 299. 47 300. 53 252. 60 1188. 67 1115. 75 88. 85 87. 91 91. 101 107. 107 1116. 121 159. 131 188. 132 220. 154 318. 137 220. 154 318. 26 17. 34 21. 38 27. 48 327. 59 62.0				36	294.0
47 900. 53 252. 60 188. 67 115. 75 88. 85 87. 91 91. 101 107. 107 116. 121 150. 131 188. 137 220. 154 318.				40	299.0
53 292. 60 188. 67 115. 75 88. 85 87. 91 91. 101 107. 107 116. 121 150. 131 188. 137 220. 154 318. 7 26 17. 38 27. 48 37. 59 62.4				47	300.0
60 188. 67 115. 75 88. 85 87. 91 91. 101 107. 107 116. 121 150. 131 188. 137 220. 154 318. 137 220. 154 318. 137 220. 154 318. 137 220. 154 318. 137 220. 138 27. 38 27. 48 37. 59 62.				53	252.0
67 115, 75 88, 85 87, 91 91, 101 107, 107 116, 121 150, 131 188, 137 220, 154 318, 137 220, 154 318, 138 27, 38 27, 48 37, 59 62,6				60	188.0
75 88. 85 87. 91 91. 101 107. 107 116. 121 150. 131 188. 137 220. 154 318. 26 17. 34 21. 38 27. 48 37. 59 62.0				. 67	115.0
в в в п. 91 91. 101 107. 107 116. 121 150. 131 188. 137 220. 154 318. 26 17. 34 21. 38 22. 48 37. 59 62.0				. 75	88.5
91 91. 101 107. 107 116. 121 150. 131 188. 137 220. 154 318. 26 17. 34 21. 38 27. 48 37. 59 62.				85	87.5
101 107. 107 116. 121 150. 131 188. 137 220. 154 318.				91	91.0
T 107 116. 121 131 188. 137 220. 154 318. 137 26 17. 34 21. 38 27. 48 37. 59 62.0				101	107.0
121 150. 131 188. 137 220. 154 318.				107	116.0
131 188. 137 220. 154 318. d _{Pav} =545 microns 1= 26 17. 34 21. 38 27. 48 37. 59 62.0				121	150.0
137 220. 154 318. ap _{av} =545 microns 12 26 17. 34 21. 38 27. 48 37. 59 62.0				131	188.0
154 318. d _{pav} =545 microns 1: 26 17. 34 21. 38 27. 48 37. 59 62. T				137	220.0
d _{pav} =545 microns 1: 26 17.0 34 21.0 38 27.1 48 37.0 59 62.0				154	318.0
26 17.0 34 21.0 38 27.1 48 37.0 59 62.0				d _{pav} =54	5 microns 1=0.
T	•			26	17.0
T				20	17.0
ло 27. 48 37. 59 62.0		<i></i>		34	21.0
40 37.1 59 62.0				30	27.5
т				40	37.0
T				. 59	62.0
		. Т			
					•

 $P(n-cm)(x10^{-9})$ 9.7 9.5 9.5 11.3 15.2 24.8 32.2 32.6 31.3 26.6 24.6 19.0 15.2 13.0 8.96

.4 cm d_{bed} =3.81 cm

Dry

150.0 136.0 104.0 77.0 46.0

Y

	· ·	· · ·	
	Table 6:	Continued	
	<u>T(°C)</u>	<u>i(Amps) (x10⁷)</u>	$P(n-cm) (x10^{-9})$
	65	78.5	36.3
	72	107.0	26.0
	83	125.0	22.8
	89	130.0	21.9
	96	130.0	21.9
	102	133.0	21.4
·	112	155.0	18.1
	124	180.0	16.0
	132	195.0	14.5
	144	235.0	12.1
	140	290.0	10,1
	160	350.0	8.4
		Humid	ified C.=4.0%
	32	280.0	10.2
	33	300.0	9.5
	37	302.0	9.4
	41	310.0	9.2
	47	309.0	9.2
	54	239.0	11.9
	62	122.0	23.4
	68	106.0	26.9
	72	108.0	26.4
	79	110.0	25.9
		· · · · · · · · · · · · · · · · · · ·	
	•		• •

	, ,		10 100 a Mari		· · · · ·	
		· ,		Total Sector Sector	•	·
					Table 6:	Continued
					<u>T(°C)</u>	i(Amps) (x10
					87	120.0
					98	140.0
					104	150.0
					114	162.0
					123	179.0
					130	192.0
					140	231.0
					155	285.0
					d _{pav} =650	microns l=0.4
					26	11.7
					28	12.2
					33	14.7
					38	17.6
					47	27.7
					54	39.8
			۴		57	48.8
					65	66.5
					72	79.5
					80	92.0
					89	120.0
					104 ,	102.0
		\sim .		•		
		بر المراجع			ł	• • • •
			на 1919 — Простория 1919 — Простория 19			• • • • • • • • • • • • • • • • • • • •

110 151-

$$\frac{P(p-cm)(x10^{-9})}{23.8}$$
20.4
19.0
17.6
15.9
14.8
12.3

10.0

$$4 \text{ cm}$$
 $d_{bed}=3.81 \text{ cm}$

Dry

244.0 234.0 194.0 162.0 103.0 71.6 58.4 42.8 35.8 31.0 23.7 27.9

• •

								· · · · · · · · · · · · · · · · · · ·		
				•				Table 6:	Continued	
								<u>T(°C)</u>	<u>i(Amps) (x10⁷)</u>	$P(n-cm) (x10^{-9})$
								110	113.0	25.2
								123	139.0	20.5
								135	200.0	. 14.2
								144	269.0	10.6
	*							148	295.0	9.7
	v								Humi	dified C _v =4.0%
								28	340.0	8.4
								30	349.0	8.2
								36	332.0	8.6
								42	329.0	8.7
								49	332.0	8.6
								53	320.0	8.9
								58	224.0	12.7
								62	178.0	16.0
								64	132.0	21.6
								72	108.0	26.4
								76	102.0	27.9
								80	101.0	28.2
								82	103.0	27.7
								86	109.0	26.1
								88	114.0	25.0
							• .	94	124.0	23.0
								106	160.0	17.8
						·		124	215.0	13.2
								. •		.
								•		
		•								
	Letter and the second second		n de la companya de Na companya de la comp		· · · · · · · · · · · · · · · · · · ·		an a			

														40
	• •							Tab	le 7: F U	Resistivj Jsing the	ty Versus ' Model of 1	Femperature Ditl and Cou	Data Genera Ighlin	ited
					·			т С°С) (psi)	ø	$K_{s} \neq (1/n-cm)$ $(x10^{12})$	Kv (1/n-cm) (x10 ¹²)	(1/n-cm) (x10 ¹¹)	Р (л-ст) (х10-10)
								dpa.	v=387 mic	rons T _i	nt=116C	Ø=1.33 K _s =	4.40x10-12	
								55	2.284	2.93	12.9	6.8	1.97	5.08
								60	2.889	2.46	10.8	7.7	1.85	5 LO
								65	3.628	2.14	9.4	8.7	1.81	J. 40 5 53
								68	4.143	1.98	8.7	9.3	1 81	رر • ر ۲ ح
								70	4.520	1.89	8.3	9.8	1 81	ייעיע ביי
								75	5.592	1.70	7.5	11 1	1 86)•)~ r 27
								80	6.869	1.56	6.8	12.6	1.00)•)/ r 1r
											010	12.0	1.74	5.15
					.a			d _{pav}	=460 mic:	rons T _i	nt ^{=117C} Ø=	1.54 K _s =6	.6x10 ⁻¹²	
								40	1.070	6.42	42.3	8.2	5.05	1,98
								45	1.390	4.44	29.2	9.3	3.85	2.60
								50	1.789	3.42	22.5	10.4	3.29	3.04
								55	2.284	2.80	18.4	11.6	3.00	3.33
								60	2,889	2.38	15.7	13.0	2.87	3.49
								63	3.315	2.19	14.4	13.9	2.83	3, 53
								65	3.628	2.08	13.7	14.5	2.82	3.54
								68	4.143	1.94	12.8	15.6	2.84	3.52
								70	4.520	1.85	12.2	16.4	2.86	J•J≈ 3.50
								75	5.592	1.68	11.0	18.3	2.94	3.40
								80	6.869	1.54	10.1	20.6	3.07	3.25
								dpav	=545 micr	ons ^T in	_{it} =90℃ Ø=	=1.43 K _s =2	$.5 \times 10^{-12}$	
								40	1.070	4.78	12.0	22.7	3.47	2.88
								45	1.390	3.32	8.3	24.1	3.24	3.09
	,							50	1.789	2.57	6.4	25.8	3.22	3.11
								55	2.284	2.10	5.3	27.4	3.27	3.06
								60	2.889	1.79	4.5	29.2	3.37	2.96
							- 1		-		-	· - · -		~.,0
				-							•	•		
	•											•		•
							. • .		• •		• •	•		
4. Marca	• •	•	· ·			a		•					•••	
ana ay san		a sa wata a tao a sa s	an a			· · · · · · · · · · · · · · · · · · ·		19 Marco Marca 2 - 44 (1964) - 42 - 11 - 1 - 1 - 1 - 1 - 1						•

Table 7: Continued T ø p_o d_{pav}=650 microns T_{int} 40 1.070 4.53 45 1.390 3.14 50 1.789 2.43 55 2.284 1.99 60 2.889 1.69

K _s ø	K_v	K	<u>^</u>
t=86 °C	Ø=1.12	K _s =1.96x10 ⁻¹²	
8.8	15.6	2.45	4.08
6.2	17.2	2.34	4.27
4.8	18.9	2.36	4.23
3.9	20.8	2.47	4.09
3.3	22.9	2.96	3.38

(Appendix B

Figure Captions Figure 1: flyash conditioning agents. Figure 2: agents. Figure 3: conditioning agents. Figure 4: Figure 5: as the conditioning agent. Figure 6: Magnification 160X. Figure 7: 1600X. Figure 8: 1600X. Figure 9: 1600X. Figure 10: 840X. Figure 11: 880X. Figure 12: 900X.

Schematic diagram of apparatus for testing

Plot of flyash resistivity versus time with NaCl, CaCl₂ and ammonia liquor as conditioning

Plot of flyash resistivity versus time with PbSO_L waste and wet scrubber underflow as

Plot of flyash resistivity versus time with sulfamic acid as the conditioning agent.

Plot of flyash resistivity versus time with SO3

Flyash polished for electron microprobe analysis.

SEM photograph of dry sieved flyash. Size fraction 53 to 105 microns. Magnification

SEM photograph of dry sieved flyash. Size fraction 53 to 105 microns. Magnification

SEM photograph of dry sieved flyash. Size fraction 53 to 105 microns. Magnification

SEM photograph of wet sieved flyash. Size fraction 53 to 105 microns. Magnification

SEM photograph of wet sieved flyash. Particle sizes of 53 to 105 microns. Magnification

SEM photograph of wet sieved flyash of size fraction 44 to 53 microns. Magnification

	 an an a		and and a second se			
F-4						
					Figure 1	3: SEM pho fractio 400X.
					Figure 14-1	5: SEM pho Size fi tion 25
					Figure 10	6: SEM pho Size fi tion 80
					Figure 17-23	l: Photogr been po Size fi cation
					Figure 22-2	5: Photogr has bee analysi Magnifi
					Figure 26	5: Schemat
					Figure 27	7: Schemat of the
					Figure 28	3: Calibra photome
					Figure 29): Schemat determi bed of
					Figure 30-33	: Graphs for bed
					Figure 34	: Sample glass b Coughli
					Figure 35-38	: Graphs for bed
		•			• •	ury bea
						•
,						
		•				
	•					
	· · · · ·				• •	
		 		and the second se	in a subscription of the s	a an an an an air an an air an air

otograph of wet sieved flyash of size on 44 to 53 microns. Magnification

otographs of flyash treated with SO₃. raction 53 to 105 microns. Magnifica-500X.

otograph of flyash treated with SO₃. raction 53 to 105 microns. Magnifica-OOX.

raphs of unconditioned flyash that has olished for electron microprobe analysis. raction 53 to 105 microns. Magnifi-280X.

raphs of SO₃ conditioned flyash that en polished for electron microprobe is. Size fraction 53 to 105 microns. ication 280X.

tic diagram of a flame photometer.

tic diagram of the electrical system sulfur oxide flame photometer.

ation curve for sulfur oxide flame eter.

tic diagram of the apparatus used to ine the electrical resistivity of a spherical glass beads.

of log resistivity versus temperature ds of glass beads of varying size.

calculation of the resistivity of a pead bed using the model of Ditl and in.

of log resistivity versus temperature ls of glass beads using an extrapolated ad resistivity line. ~~~~

• . • • . •

•

- B Conditioning agent flow off

- 4 Wet Scrubber Underflow
- 5 Lead Sulfate Waste
- A Conditioning agent flow begins
- B Conditioning agent flow off
- S SO₃ Flow begins

49

56

 \sim

)

and the second second

Temperature	°C			
80	100	120	140	160

 \subset

dry air

▲ theoretical

Temperature °C

80	

▲ theoretical

Temperature °C

\$

Figure 34

d_{pav}=387 microns

From the experimental

Maximum in humid Intersection pois

Evaluate p₀:

At T=90°C At T=123°C

Evaluate \emptyset :

 $\emptyset = \ln\left(\frac{\ln(p/p_0)\min}{\ln(p_k/p_0)}\right)$

Evaluate K_s from $K=K_v+K_s\cdot \emptyset$:

 $K_{\rm S} = \frac{K - K_{\rm V}}{\cancel{0}} = \frac{1}{\cancel{4.6 \times 10^{10}} - \frac{1}{7.0 \times 10^{10}}} = 5.22 \times 10^{-12}$ For each T find p_0 and calculate \emptyset by:

 $\emptyset = \ln(\frac{-3.912}{\ln(.655/p_0)})$

Calculate $K_s \cdot \emptyset$:

 $K_{s} \cdot \phi = \phi \cdot 5.22 \times 10^{-12}$

Find value of K_v from graph:

Evaluate K:

 $K = K_v + K_s \cdot \emptyset$ Take reciprocal of K:

=1/K

$$p_k$$
=.655 psi (T_{H20}=31.2°C)

p₀=10.168 psi p₀=32.760 psi

$$=\ln(\frac{\ln(.655/32.760)}{\ln(.655/10.168)}) = 1.427$$

d = 387 microns $C_v = 4.5\%$

• humid air

theoretical

Temperature °C

 $d_{p_{av}} = 460 \text{ microns}$ $C_{v} = 4.05\%$

• humid air

theoretical

 $d_{p_{av}} = 545 \text{ microns}$ $C_{v} = 4.0\%$

• humid air

theoretical

Temp	erature	°C.			
80	100		120	140	160

- humid air
- theoretical

Appendix C

 \prec

Literature Cited

 Minnick, L.J., Proc. Amer. Test. Mater. 1954, <u>54</u>, 1129.
Watt, J.D. and Thorne, D.J., J. Applied Chemistry, 15(12), 585-594, (1965).

3. Goldstein, J.I., et. al., "Practical Scanning Electron Microscopy and Electron and Ion Microprobe Analysis." Chapter 11, Plenum Press, New York (1975).

4. Peters, D.G., et. al., "Chemical Separations and Measurements." Chapter 20, W. B. Saunders Co, Philadelphia (1974).

5. Private communication with Dr. B. Meyer, University of

6. Ditl, P. and Coughlin, R.W., "Improving Efficiency of Electrostatic Precipitation by Physicochemical Modification of the Electrical Resistivity of Flyash". To be published in the AIChE Journal. In press.