Lehigh University Lehigh Preserve

Theses and Dissertations

1973

Absorption in Jet-Venturi scrubbers

Mark Richman Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Richman, Mark, "Absorption in Jet-Venturi scrubbers" (1973). *Theses and Dissertations*. 5105. https://preserve.lehigh.edu/etd/5105

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

ABSORPTION IN JET-VENTURI SCRUBBERS

BY

MARK RICHMAN

A RESEARCH REPORT PRESENTED TO THE GRADUATE FACULTY OF LEHIGH UNIVERSITY IN CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE

IN

CHEMICAL ENGINEERING

LEHIGH UNIVERSITY BETHLEHEM, PA. OCTOBER 1973

i

CERTIFICATE OF APPROVAL

This research report is accepted and approved in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering.

ii

11/10/73 (Date)

1

Dr. Gary W. Poehlein Professor in Charge

Dr. Leonard A. Wenzel Chairman, Dept. of Chemical Engineering

ACKNOWLEDGEMENT

The author wishes to express his appreciation for significant contributions made to this study to Dr. Gary W. Poehlein, for his guidance and leadership; to Drs. Clump and Foust for their assistance in finding reference material; and to Brent Jones and David Fleming for their assistance in setting up and operating the experimental apparatus.

iii

TABLE OF CONTENTS

Title Page	
	i
Certificate of Approval	ii
Acknowledgements	iii
Table of Contents	iv
List of Tables	v
List of Figures	vi
Abstract	1
The Jet-Venturi Scrubber	3
Mass Transfer Theory	8
The Oxygen-Sulfite Phase of the Experiments	19
The HCl Phase of the Experiments	31
Results and Conclusions	41
Recommendations	51
Bibliography	53
Appendix I - Sulfite Phase Data	54
Appendix II - HCl Phase Data	59
Appendix III - Operating Parameters	67
Vita	79

PAGE

iv

LIST OF TABLES

6

Residence Times	16	
Interfacial Areas	29	
HCl Run Operating Conditions	36	
HCl Concentrations in the Gas & the Liquid	37	1 (a)
HC1 Mass Balance	38	
Gas Cleaning Efficiencies	39	
Gas Driving Force	42	
Liquid Driving Force	44	
Mass Transfer Coefficients	45	
Experimental Contact Times &		
Contact Times Ratios	46	

v

PAGE

LIST OF FIGURES

71

R

3

Mass Transfer Driving Forces	9
The Film Theory Model	12
The Penetration Theory Model	13
Scrubber Apparatus	20
Mixing Duct	20
Graphical Determination of Interfacial Areas - Run 1 & Run 2	21
Graphical Determination of Interfacial Areas - Run 3 & Run 4	26
Graphical Determination of Interfacial Areas - Run 5 & Run 6	27
Graphical Determination of Interfacial Areas - Run 7 & Run 8	28
Water Flow vs. Interfacial Area	30
Gas Sampling Apparatus	33
Gas Cleaning Efficiencies vs Liquid Flow	40
Gas Phase Based Contact Time Ratio vs Liquid Rate	47
Gas Phase Based Contact Time Ratio vs Gas Cleaning Efficiency	48
Liquid Phase Based Contact Time Ratio vs Liquid Rate	49
Liquid Phase Based Contact Time Ratio vs Gas Cleaning Efficiency	50

PAGE

vi

ABSTRACT

Increasing public demand for pollution control, coupled with the strict standards set by the government, has made the use of emission control devices such as the venturi scrubber and the jet-venturi scrubber commonplace in industry. Venturi scrubbers are being used for a wide variety of jobs. The steel industry uses venturi scrubbers to remove hydrogen chloride (HCl) gas from stack emissions. Electrical utility companies use venturi scrubbers to remove sulfur dioxide and particulate emissions from flue gases.

In industrial use, efficiencies of operation for these venturi and jet-venturi scrubbers are determined either from past experience with identical or nearly identical situations or with experimental data from pilot plant studies. This is due to the fact that there are, at present, no satisfactory correlations for mass transfer or particulate removal in venturi scrubbers. Pilot plant projects are expensive, so the development of correlations would certainly be a money saver, as well as a time saver.

This study involves an examination of mass transfer to see if a suitable theory can be found for venturi and jet-venturi scrubbers. Experimental data from an 8 inch jet-venturi scrubber system, in which HCl was scrubbed from air with water, is used to confirm or reject the theories examined.

Several mass transfer theories were examined, and the penetration theory was selected as the theory to be studied. The relationship between the liquid-gas contact time and the residence time in the scrubber throat was selected as the parameter to be examined. The results indicate that there is a

-1-

definite relationship between the contact time to residence time ratio and both the liquid flow rate through the scrubber and the gas cleaning efficiency. The results also indicate, however, that the penetration theory, applied in this manner, does not adequately describe mass transfer for the system studied. Further examination of the problem is clearly indicated.

-2-

THE JET-VENTURI SCRUBBER

The engineer, when dealing with objectional fumes discharged from industrial processes, has four major types of emission control equipment to choose from: filters, inertial systems such as cyclones, electrostatic precipitators, and wet scrubbers. Of these four types, wet scrubbers are the most veratile, and probably the closest to a universal answer to emision control problems.

Wet scrubbers, including venturi and jet-venturi scrubbers, s well as wet cyclones, spray towers and packed towers, all operte according to the same principles. Their scrubbing action is roduced by passing the gas stream past the liquid stream, or vice ersa, and spreading the liquid out so that it has sufficient surace area to contact all parts of the gas and insure rapid mass transfer.

Venturi scrubbers utilize a high velocity section (at the wena contracta or venturi) for bringing the gas and liquid into ntimate contact with each other. They fall into two groups: (1) The standard venturi scrubber uses a mechanical blower to create a high velocity gas stream that passes by a slower moving liquid surface. The faster moving gas hits and disperses the lower moving liquid. (2) The ejector or jet-venturi scrubber studied in this work uses a mechanical pump to impart a high velcity to the liquid stream. The high velocity energy of the liquid stream acts to break up and distribute the liquid into a multitude small drops, giving a large surface area for the liquid. The high velocity liquid stream also acts to pump the gas stream through he scrubbing system and the connecting duct work.

Venturi scrubbers have many advantages over the other types wet scrubbers, as well as the other types of emission control vices. Versatility is a prime attribute of venturi scrubbers, that they can handle solid particulates, liquid particulates

-3-

or aerosols, and soluble gases, all with high efficiencies. The venturi scrubber is also convenient in terms of size. It occubies the smallest area for comparable jobs of any of the wet scrubbers, and is smaller than most other emission control systems. Despite the small area it occupies, the venturi scrubber can handle great volumes of effluent gases with top efficiencies. I final advantage of the venturi scrubber is that it can be used to collect many highly corrosive materials that other systems annot handle; it has no moving parts.

Along with these advantages, there are several disadvantages hat must be considered before a venturi scrubber can be selected o handle a particular problem. Only one of these, however, is nherent to the venturi scrubber, while the other disadvantages re common to all wet scrubbers. The problems common to all wet crubbers stem from the use of a liquid stream, usually water, to o the scrubbing. The first and most important problem with the se of water as a scrubbing medium is that the water must then be leaned, and clarification costs can run very high. Climatic contraints must also be considered, and freezing water lines can be problem. Vapor plumes, caused when small amounts of the scrubing liquid exit the stack with the effluent gas stream, arouse public concern, and therefore are also a disadvantage of wet crubber use. Power costs are a problem for the venturi scrubber, ut not for the other wet scrubbers. Because of the pumping reuirements for both the standard and jet-venturi scrubbers, power osts can run three or four times the costs for other wet scrubbers.

Should an engineer select the venturi scrubber, he must then ecide which type of venturi scrubber to use, the standard or the et. Each has its own particular advantages. In the standard enturi scrubber, a much smaller quantity of liquid (scrubbing edium) is required, because of the greater gas stream velocities roduced by the gas pump or fan. The smaller quantity of liquid,

-4-

ften from five to eight times less than with the jet-venturi unit, equires less expenditure for clarification and treatment. With he lower liquid stream flow rates, a smaller pump is needed to ove the liquid through the unit. Also, due to the use of the as fan, the standard venturi can handle greater gas flow rates han the jet-venturi scrubber can.

The jet-venturi scrubber, however, has many advantages as ell. The high velocity liquid stream eliminates the need for a nump to move the gas stream. With no gas pump, there are no moving parts in contact with the gas. This makes the jet-venturi unit superior for dealing with highly corrosive materials. The high velocity energy of the liquid stream is also advantageous in that it is a much more efficient atomizer of the liquid stream than the lower velocity energy in the standard venturi scrubber. The better the atomization of the liquid stream, the greater the number of liquid droplets passing through the scrubber throat, and the greater the surface area with which to contact and scrub the g s stream. There are other advantages in using the jet-venturi scrubber that are related to the high velocity action of the Iquid and the lack of a gas pump. First, there is a much lower overall pressure drop in the jet-venturi scrubber, making it more useful for systems requiring scrubbing between other process steps, and, hence, the smallest pressure drop possible. Also, the overal power expended in operation of the jet-venturi scrubber is upually less than in operation of the standard venturi scrubber.

Modifications can be made on venturi scrubbers to improve eir efficiencies. A simple modification on the scrubber system to change the scrubbing medium being used from water to some her medium. Caustic is a very popular alternative. Examples the efficiencies attainable using caustic in jet-venturi scrubrs as reported by L. S. Harris¹ are: 98% for SO₂ removal, 99% r Cl₂, and 99.9% for I₂ removal (maximum efficiencies).

-- L. S. Harris - "Fume Scrubbing with the Ejector Venturi System" Chemical Engineering Progress, April 1966, page 55.

A second modification of the venturi scrubber system involves the use of scrubbers in series. The electrical operating costs at the higher scrubbing efficiencies can be reduced considerably at the expense of higher equipment costs. Harris reports that for a given HCl fume, similar to the gas stream studied in this report, at a rate of 1000 cubic feet per minute, and with a collection efficiency of 98%, the switch from a one stage jetventuri unit to a two stage unit would result in the decrease of theoretical horsepower from 9 hp to 2 hp. This may be sufficient to justify the increased equipment costs required by the second stage.

Another modification of the venturi scrubber system is the flooded-disc wet scrubber². The disc is positioned in a tapering duct section. The shearing action of the gas at the edge of this disc acts to atomize the liquid scrubbing medium very effectively. Optimum pressure drop at different gas flow rates can be maintained easily with the flooded-disc. This is done by raising or lowering the disc as required. This acts to increase or decrease the annular area through which the gas must pass, and increases the range of gas flow rates over which the scrubber can operate at peak efficiencies.

The jet-venturi scrubber is generally used in series with some type of separation device. The job of the separator is to remove the scrubbing medium from the exhaust gas stream. An efficient separator can remove the contacting liquid from the gas to within a value in the range of 5×10^{-7} to 5×10^{-8} gallons of liquid per cubic foot of gas. Various types of separators are used, including gravity separating chambers, inertia impact separators and cyclonic mist eliminators.

2 -- Bulletin R-C 1000, Research-Cottrell, Inc.

-6-

From the discussion of venturi scrubbers, and the jetventuri scrubber in particular, it is clear that these scrubbers combine efficiency, versatility, capacity and cost factors in a unique combination that makes them very useful for many different emission control problems. At the present time, however, there is no way available to predict the performance of these scrubbers without actual experimentation with the effluent to be scrubbed. In the following sections of this report, we will examine several theories attempting to predict the performance of a jet-venturi scrubber, and compare these theories with experimentally collected data for the removal of HCl from air in an 8 inch jet-venturi scrubber.

-7-

MASS TRANSFER THEORY

Many of the basic equations describing mass transfer can be derived from similar equations involving heat transfer. One of the most important equations for which this is true is of the following form:

Flux = Coefficient X Driving Force

where the driving force is generally some concentration difference. For the heat transfer case, this equation takes this form:

$$g = h \times [T_2 - T_1]$$

where "h" is the heat transfer coefficient. For the case of mass transfer, the equation is as follows:

 $N_{A} = k \times [\Delta C_{driving force}]$

where N_{A} = the rate of mass transfer, as a mass flux, in units of the mass of the transferred component "A" that is transferred per unit time per unit area over which the mass is being transferred

> $\Delta C_{driving force}$ = the mass transfer driving force defined as the difference of concentrations of the transferred component between the phases which provide the mass transfer; this can be expressed as ΔC , Δp , Δx , etc.

The following diagrams show the system used and point out the driving forces for mass transfer.

-8-

GAS PHASE CG, in -C_{G1,in} °Li,in GAS PHASE CG, out CGi,out ,out * f (C_{Li,out})

The driving force for mass transfer calculation should be an average, (specifically the log-mean average), between the "inlet" and "outlet" driving forces. Therefore, the driving forces for mass transfer are:

GAS PHASE:
$$\frac{(C_{G}, \text{ in-f}^{-1}(C_{L}, \text{ in})) - (C_{G}, \text{out-f}^{-1}(C_{L}, \text{out}))}{\log_{e} \frac{C_{G}, \text{in-f}^{-1}(C_{L}, \text{in})}{C_{G}, \text{out-f}^{-1}(C_{L}, \text{out})}} = \Delta C_{driving force, G}$$

LIQUID

PHASE:
$$\frac{(f(C_{G}, in) - C_{L}, in) - (f(C_{G}, out) - C_{L}, out)}{\log_{e} \frac{f(C_{G}, in) - C_{L}, in}{f(C_{G}, out) - C_{L}, out}} = \Delta C_{driving}$$
force, I

The equation for mass flux, " N_A ", can also be written as: $N_A = (dm/dt)/A$

where dm/dt = the rate of transfer of mass, as mass transferred per unit time; and A = the interfacial area over which the mass is transferred.

The two equations for N_A are combined to produce a single equation for the mass transfer coefficient:

 $k_e = (dm/dt)/A(\Delta C_{driving force})$

The equation refers to the mass transfer coefficient as k_e since the equation provides a means for calculating the mass transfer coefficient from experimental measurements.

The uses of experimentally determined mass transfer coefficients are somewhat limited with respect to circumstances and situations, as well as to the range of fluid properties.

-10-

Therefore it is important that we be able to extend their applicability to the situations not covered experimentally.

To accomplish this, there are several theories which try to relate the behavior of mass transfor coefficients to fundamental system parameters. These include the film theory, the penetration theory, the surface-renewal theory and others. All of these are speculations, attempting to simulate and deal with situations that are not completely understood, and are continuously being revised. Each has its own merits, and each approximates certain cases of mass transfer better than others. Therefore, we should examine each of the mass transfer theories, and select the one that best fits the mass transfer mechanism that occurs inside the jet-venturi scrubber.

After choosing a mass transfer theory to apply to the jet-venturi scrubber, the theory will be used to calculate a k_t (theoretical mass transfer coefficient) to compare with the k_e (experimental mass transfer coefficient). A good correlation between the experimental and theoretical values would indicate that the theory is a good approximation for the mass transfer mechanism in the jet-venturi scrubber. A poor correlation would suggest that we either modify the theory used further, or try another theory altogether.

The three major theories to be considered are the film theory, the penetration theory, and the surface-renewal theory. The first theory we will consider is the film theory. This is the oldest and simplest picture of mass transfer coefficients. The theory states that when a fluid moving in turbulent flow passes a solid surface, the fluid velocity at the surface itself being zero, a viscous layer or "film" must be formed. The film theory assumes that the entire concentration difference, C_2-C_1 , is described by molecular diffusion, and that an effective film thickness, 'z', can be defined such that the

-11-

resistance to molecular diffusion in the film of thickness 'z' is equal to the actual resistance to mass transfer in the true system, comprised of the true viscous or laminar layer, the buffer region and the turbulent core. Using this theory the following equation for the mass transfer coefficient can be derived:

$$k = D_{ab}/z_{f}$$

where D is the diffusivity of the transferred component in the medium in which the transfer takes place and z_f is the effective film thickness as specified by the film theory.

The second theory to be considered is the penetration theory. This theory was proposed by Higble as an alternative to the film theory because there are many situations in mass transfer where the time of exposure of a fluid to mass transfer is short, so that the concentration gradient of the film theory, which is characteristic of steady state operation, would not have sufficient time to develop. Higble, therefore, developed a theory to describe short contact systems, and, in particular, the case where a gas bubble rises through a liquid which absorbs the gas.

A particle of the liquid, initially at the top of the bubble, is in contact with the bubble for a time, ' θ ', which is equal to the time for the bubble to rise a distance equal to its diameter while the liquid particle slips along its surface. In this theory, the time of exposure or contact is taken to be constant for all such particles, or eddies for the case of turbulent flow.

Initially the concentration of the dissolved gas in the liquid is C_0 . At the surface between the liquid and the gas, the concentration of the dissolved gas is C_i . During the unsteady state diffusion process, the following equation can be applied:

$$\frac{\partial C}{\partial \theta} = D_{ab} \frac{\partial^2 C}{\partial z^2}$$

The following boundary equations are then applied:

1) $C = C_0$ at $\theta = 0$ for all z 2) $C = C_0$ at z = 0 for all θ 3) $C = C_i$ at z = 0 for θ greater than 0

Using these boundary conditions, the following equation can be derived for the mass transfer coefficient:

$$c = 2 \sqrt{D_{ab}}/\Pi \theta$$

-13-

GAS

LIQUID

The final theory that we shall look at is the surface-renewal theory, which is a modification of the penetration theory. Dankwertz, who developed the theory, pointed out that the assumption that all of the eddies were exposed for the same length of time at the surface is, at best, a special case of what may be a much more realistic picture, where the eddies are exposed for varying lengths of time. His equation for the mass transfer coefficient was:

$$k = \sqrt{D_{ab}s}$$

where s is defined as the rate of production of fresh surface and is assumed to be constant Dankwertz then attempted to solve for this term mathematically, and found:

where ϕ is defined in terms of ϕ dt being the area of surface elements having residence times between t and t + dt and θ is the average residence time of an eddy at the surface.

The penetration and surface renewal theories are probably the best approximations to the mechanism of mass transfer occurring in the jet-venturi unit. First, they are most applicable to cases in which there is turbulent flow, as in the scrubber. Also, they were designed for short contact time systems, and the jet-venturi scrubber can certainly be classified as a short contact time unit since the residence times in the scrubber of both the liquid and gas phases are always very small (less than one second for our experimental range). The penetration theory is the simplest of all of the theories based on the short contact time approach, and therefore, the easiest to apply to experimental systems.

Having selected the penetration theory, two major factors must be known for the determination of the theoretical mass transfer coefficients, the contact time ' θ ', and the diffusivity 'D_{ab}'. The diffusivity can be found in many data sources as a function of temperature. The contact time cannot be found in any reference, nor can it be calculated directly to use in the prediction of mass transfer rates. We can, however, calculate the residence time inside the scrubber throat, and use this as an initial approximation for the contact time. Residence times for all runs and all phases are shown on Page 16. (Residence times are calculated by dividing the length of the scrubber throat by the velocity through the throat.) Studies on mass transfer in venturi scrubbers³ reveal that virtually all of the mass transfer takes place in the first foot of throat length or less.

Because of this, the ability of the theory to predict mass transfer rates using residence times instead of contact times is suspect. Clearly, the relationship between these residence times and contact times is an important one. An equation relating them would be as follows:

 $\theta = t/n$

t is the residence time (seconds) n is the contact time ratio, or number of contacts during a single pass

where θ is the contact time (seconds) The value for 'n' can be calculated for each set of experimental conditions. The way that 'n' varies with liquid flow rate and gas flow rate through the scrubber, therefore, can be letermined from experimental data. This term, therefore, will be the focus of our experiments and calculations. If 'n' can be shown to be a function of either gas flow rate, liquid flow ate, or scrubber throat size, it can then be used to predict mass ransfer rates for other systems in the jet-venturi scrubber.

-- Atomization and Cloud Behavior in Venturi Scrubbing -Howard E. Hesketh, Journal of APCA, July, 1973

-15-

RESIDENCE TIMES

UN IN TERMS OF LINE PRESSURE	LIQUID RESIDENCE TIME IN SCRUBBER
P in psig	t_L in seconds
14	0.217
16	0.211
18	0.206
20	0.202
23	0.195
25	0.190
28	0.183
30	0.179

ſ

-16-

GAS RESIDENCE TIME IN SCRUBBER

- $t_{G}^{}$ in seconds
 - 0.220
 - 0.196
 - 0.183
 - 0.161
 - 0.161
 - 0.155
 - 0.148

0.144

Calculation of flow conditions, interfacial areas, and contact time ratios (calculated from the first two parameters) for a given system in a given scrubber, should then be sufficient to predict mass transfer rates.

The particular system chosen to study is important because the system chosen may have its primary resistance to ass transfer in either the gas phase or the liquid phase. tudies of the HCl system being used in this report are unclear bout mass transfer resistances. The location of the mass transer resistance must be known to properly apply the penetration heory to venturi scrubber systems. Diffusivities, residence imes, and concentrations used in the calculations are different or liquid phase and gas phase based systems. Because of the ncertainty about the HCl system, both cases (gas and liquid hase resistances to mass transfer) will be examined in the calulations and a determination will be made.

For the gas phase case: $k_{e_{G}} = \frac{dm/dt}{A(\Delta C_{driving force'}^{G})}$

nd the theoretically determined mass transfer coefficient:

 $k_{\rm G} = 2 \sqrt{\frac{D_{\rm HC1-AIR}}{\Pi \theta_{\rm C}}}$

hen the diffusivity used is the diffusivity of the transferred \mathbf{P} mponent in the gas phase, and ' θ ', the contact time, = $\theta_{G'}$ he gas phase contact time, where $\theta_{G} = t_{G}^{/n}$, and t_{G} is the resince time of the gas stream in the scrubber throat.

For the liquid phase case: $k_{e_{L}} = \frac{dm/dt}{A(\Delta C_{driving force,L})}$ d the theoretically determined mass transfer coefficient:

-17-

 $k_{L} = 2 \left| \frac{D_{HC1-H_20}}{\Pi \theta_{L}} \right|$

Using $D_{HC1-Air} = 1.63 \times 10^{-4} \text{ ft}^2/\text{sec}^*$ and $D_{HC1-HOH} =$ 1.78 x 10^{-8} ft²/sec, ** the values at 70°F, the following equations are found for liquid and gas phase based contact time ratios:

$$n_{L} = \left[\frac{dm/dt}{.544xAx(\Delta C_{driving force,L})}\right]^{2} t_{L}$$

$$n_{G} = \left[\frac{dm/dt}{51.9xAx(\Delta C_{driving force,G})}\right]^{2} t_{G}$$

where dm/dt is the mass transferred, measured experimentally, --in units of lbs HCl/hour,

A is interfacial area in units of ft, also experimentally determined,

 ${\tt t}_{\rm L}$ and ${\tt t}_{\rm G}$ are residence times in units of seconds, Concentrations are in units of lbs HCl/ft, (where the driving forces have been defined earlier) and $\mathbf{n}_{\mathrm{L}}^{}$ and $\mathbf{n}_{\mathrm{G}}^{}$ are dimensionless

The methods for obtaining the data to use in the above equations are outlined in the following sections. The results of the experiments, including contact time ratios, are presented following the experimental sections.

4 -- Progress in International Research in Thermodynamics and Transport Properties - ASME, Academic Press, 1962

-18-

5 -- Gas--Liquid Reactions - P. V. Dankwertz McGraw-Hill, 1970

THE OXYGEN-SULFITE PHASE OF THE EXPERIMENTS

Before we can try to predict the outlet concentration of an effluent in air for a given inlet concentration, using the jet-venturi scrubber as the emission controller, certain things must be known about the system being studied. These include: the effluent being studied; the scrubbing medium being used; the particular scrubber (dimensions and flow rate ranges) being used to clean the air stream; the operational flow rates of the liquid and gas streams; the interfacial areas for mass transfer as a function of flow conditions; and the mass transfer theory being used to calculate outlet effluent concentrations.

Hydrogen chloride (HCl) has been chosen as the effluent to be studied. Water will be the scrubbing medium. The scrubber being used for the experimentation is an 8" jet venturi fume scrubber provided by Croll-Reynolds Co., Inc of Westfield, New Jersey. A diagram of the experimental apparatus is shown on the next page. Liquid flow data has been collected up to 45 psig liquid line pressure, defining the range under which we may operate. The penetration theory has been selected as the mass transfer theory to be used, and the reasons for this choice have been discussed in the previous section.

The only parameter, therefore, that has not been specified is the interfacial area for mass transfer. Therefore, before we can apply the penetration theory to the HCl system, we must determine interfacial areas, which are a function of liquid flow rate through the scrubber. To do this, we must make a separate set of experimental runs, using a system other than HCl in air, and measure the interfacial areas, or calculate them, since they cannot be measured directly.

The system that has been chosen is one that uses sodium sulfite in water as the scrubbing medium to absorb oxygen out

FIGURE 5 MIXING DUCT

of air. Oxygen reacts with solutions of sodium sulfite in the presence of catalysts such as cobalt ions, to produce sulfate:

$$\operatorname{SO}_{3}^{-2} + \frac{1}{2} \operatorname{O}_{2} \xrightarrow{\operatorname{C}_{0}^{+2}} \operatorname{SO}_{4}^{-2}$$

This system has been chosen to determine interfacial areas for two reasons. First, it is a system in which the resistance to mass transfer is well defined. Liquid phase resistance dominates with gas phase resistance being negligible. Second, much study has been done on the system, and a reliable method has been developed to calculate interfacial areas for mass transfer.

The reaction was studied by Reith, ⁷ who ran his experiments using a .8 molar solution of sodium sulfite. A cobalt chloride catalyst was used because the reaction is normally very slow. Cobalt chloride concentrations used ranged from 3 x 10^{-5} to 5 x 10^{-3} gm-moles/liter. Using the data collected, rate constants for the reaction were calculated as a function of solution pH, cobalt chloride concentration and temperature. The rate expression obtained from these calculations was as follows:

$$R = (A^*)^{1.5} ((2/3)k_2 D_a)^{0.5}$$

where D_a is the diffusivity of oxygen in the reacting solution, and k_2 is a reaction rate constant. A* is the saturated concentration of oxygen in the solution, and is given by Dankwertz⁶ as a function of temperature. Combining this equation and the data collected by Reith, the reaction rate 'R' can be calculated in units: gm-moles/ft²sec. After calculating 'R', we experimentally determined (RA)avg., the product of 'R' and 'A', the interfacial area. We, then, divide (RA) avg by 'R' to get the value for the interfacial area at the particular operating conditions.

6 -- Gas-Liquid Reactions - P. V. Dankwertz, McGraw-Hill, 1970

-- T. Reith - Physical Aspects of Bubble Dispersions in Liquids, Thesis, Delft Technical University; Delstsche Uitgevers Maatschappij, N.V., 1968

(RA) avg is determined in the following manner. The scrubber is run with a recycling sulfite solution and liquid samples are taken at specific time intervals (a detailed description of the experimental procedure follows). The initial rate of decrease in the concentration of sulfite ions in the solution is determined graphically by plotting sulfite concentration versus time, and the resulting slope, having units of gm-moles/ liter sec, or gm-moles/sec, is (RA)avg. In other words, although we cannot measure 'A' directly, we can measure it indirectly.

Eight runs were made, each one at a different liquid flow rate. The range of line pressures for liquid flow that were used varied from 14 psig to 30 psig. The lower limit was chosen because we cannot expect the scrubber to be effective to any degree much below this flow rate. The upper limit was chosen because great difficulty was experienced in attempting to run the sulfite solution through the scrubber at rates higher than at 30 psig. For each run, liquid samples were taken every 5 minutes over a 1 hour period. The sulfite concentration used for each run was .8 molar, and the cobalt chloride concentration used was 10⁻³ molar. The procedure for operation was as follows:

- 1) Prepare the necessary analytical solutions:
 - (a) 0.21 M KIO3
 - (b) 0.60 M HCl
 - (c) saturated starch indicator solution
- 2) Dissolve 45 lbs. of sodium sulfite (Na_2SO_3) into buckets of water and pour into the separator tank;
- 3) Add water to the separator tank until the level is at the mark. This will give 196 liters of solution, and a sulfite concentration of 0.8 M;
- 4) Fill the draft manometer to the zero level
- 5) Turn on the pump and open the ball valve until the line pressure gauge is at the desired setting
- 6) Adjust the butterfly valve to the desired draft

-23-

- After several minutes to allow the solution to 7) mix itself thoroughly, add 25 grams of cobalt chloride to the solution in the tank. This is the amount for a concentration of 10^{-3} M
- Take liquid samples every 5 minutes, starting at 8) l minute after the addition of the catalyst
- Titrate the samples with the KIO_3 solution, after 9) adding 15 ml of the HCl solution and 7.5 ml of the starch solution to 15 ml samples
- 10) After 1 hour of samples have been taken, turn off the pump
- 11) Empty the separator tank immediately and flush the system to prevent the build-up of sodium sulfite crystals inside the unit
- 12) Wash the equipment thoroughly

The data obtained from the eight runs is presented in Appendix I. The graphs used in the determination of (RA)avg and interfacial areas are on the following pages, followed by a chart showing the determined values of (RA)avg and 'A' using the Dankwertz⁸ data of

 $R = 5.42 \times 10^{-9} \text{ gm-moles/cm}^2 \text{sec}$

-- Gas-Liquid Reactions - P. V. Dankwertz, McGraw-Hill, 1970

					· · · · · · · ·	IGURI	6	
		GF	APHICA	L DET	ERMIN	TION	OF I	TERFA
•				RUN	1 &	RUN	2	
		•940		• • • • • • • •	•••••		·	
		· · • • ==== · • • •		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · ·
		030		••••				
						• •• •• •	• • • • • • •	
	· - · · · · ·		• • • • •			* * * · · · · · · ·		••••••••
		920		A C	RUN	12	• •	TNTDT
	:					:		2 67
						•		2.01
		.910		•••••		· ···· · ·		
once	ntra	tion			; 			INITI.
f SO	3			:	•	ľ		2.13x
		900		\mathbf{N}				
ζ ∭≁⊒ (DTOB	/11t)				· • ··· •	ų	· .
	· · ·	890				- 1		
	•		RL	JN 1				••• 🎁
	•••••		• • •	•••••	· · · · ·		• •	
••••		880		•		· · · · · · · · · · · · · · · · · · ·		•
			• •	•				:
					· · · · · · · · ·	:		\
		870	· · · · · · · ·				:	· · · ·
•••	• •							
		• • • • • •	5	10	15	20	25	30
			•••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••		Time	(min	utes)
••••	····	•••••	•••••	• • • • •				
					1		i	

						FIGUE	2 B
	<i>م</i>			HAPHICA	L DETE	RMINATION.	OF INTERFACI
					RUN	5 & RUN	6
• • • • • • • • • • • • • • • • • • •				920			
				000			INITIAL S
			•		RUN	5	4.42×10^{-5}
				···· ·· · · ·		· · · · · · · · · · · · · · · · · · ·	
				880		·· _ · · .	INITIAL S
		14.44 (A)		•			4.61x10 ⁻⁵
				R	UN 6		
			•	860	•		:
			oncentratio	on	: :		X
·			f 50 -2		• • •		
				340		• • • • •	
			gm-mols/lit	;)	· · · · · · · · · · · · · · · · · · ·		
				20			* •
			÷		1		· · · · · · · · · · · ·
				00			
						·····	
			•78	30			
} ,							
				0 5	10	15 20	25 30
						. Tin	e (minutes)
				·····	•	-27-	
				1	· · · · · ·		• • • • • • • • • • • • • • • • • • •
	and a strategy of the second	and the second secon					

					F	IGURE	9			
		GRA	PHICAI	DET	ERMIN	TION	OF	IN	TERF	40
	· · · ·			RUN	7 &	RUN	8		•••	
	· · · ·	•920								
	••••••••••••••••••••••••••••••••••••••			· ·	• • • • •				•••	
	•		N :	: !			• •	INI	ΙΤΙΑ	T.
••••••••••••••••••••••••••••••••••••••		•900	RI	JN 7	•••••		••••			
		- · · · · · · · · · · · · · · · · · · ·	N				. <u>.</u>	5.5	0x1	.0
					· ·			T 1 1 7		-
	· · ·	.880			·· · ·	· •		1111	TIA.	,L
•	· · · · ·							5.9	2x1	0
					$\sum_{i=1}^{n}$					
	•••••••	.860	RUN	8	$\sim \sqrt{2}$	•		· •		
once	ntrat	ion	:	à						
f SO.	-2 3			•••••	$\sum_{i=1}^{n}$		· .			• • •
		-840	· · · · · · ·	•				•	•	
3 m-m (ols/1	it)	. :	1		:				
			·•··· •··	•••••••			• • •		••••	
		-820	· · · · · · · · · · · · · · · · · · ·	•••••			• • • •		;	
				1						1-:
	•	-			:	••••	¥		•••••	
·····	•••••••••••••••••••••••••••••••••••••••	800		• • • • •		• • • • • • •		• •	•	
•	•		• • •	:	•					
	·····	••••			• • • • • • • •				- :	
•••	••••	780	·••••••						-	
			•			•			:	
		- L	5	10	15	20	2		30	
		·····		· · · · · · · · · · · · · · · · · · ·		Time		i nr	مر معان	, ,
									43	1
•	•••••••••••••••••••••••••••••••••••••••	ه ۱۰۰ مه میک ۱۰۰ ۲	····			· · ·				
•					•	-28-				
		-	•		·					

١

ç

INTERFACIAL AREAS

<u>LINE P</u> psig	(RA) avg gm-moles second
14	4.17x10 ⁻³
16	5.23x10 ⁻³
18	6.41x10 ⁻³
20	6.70x10 ⁻³
23	8.65x10 ⁻³
25	9.04×10^{-3}
28	1.08x10 ⁻²
30	1.16x10 ⁻²

INTERFACIAL AREA

feet squared
						1		1					
			EAW:	ER	FLOW	88	line	pres	sur	VS.	I	TERI	Å
						-		p 81g			ft		
			2400										:
												· · · · · · · · · · · · · · · · · · ·	
			-2300									· · · · · · · · · · · · · · · · · · ·	
										· · · · · · · · · · · · · · · · · · ·			
	-		2200				· · · · ·						. -
		1.1	2100	•				•				•••	1
			2100	·····				· · · · · · · · · · · · · · · · · · ·					
		·	2000	•••••				· · · · · · · · ·	• • • • •			· · · · ·	¦. ⊮
			1900				i 	• • • • • • • •	:. 				
				••••					:			1	
Inte	rfa	CIP	1800	•				· · · · · · · · · ·	• • • • • • •			X	••
Irea			1700	•					•	K	7	KX	
t ²			• 700	 		- 			• • •	Æ	7		•
			1600										•
				• • •						••••••••••••••••••••••••••••••••••••••	 ;	·· * 	
			1500	• !·					/		••••		
				•••••••••••••••••••••••••••••••••••••••	• : ····								
			1400			-+				•	- İ		• •
			200	•				/	1				
					•	· · ·	X		.				
		1	200	•		;			•••••		• •		
							1		•••••••••••••••••••••••••••••••••••••••	+			• • •
		1	100						· · · · · · · · · · · · · · · · · · ·				•
				• • • •	5			•	:				. •
			000		4	N			1		-		
			000							• • • :			
					1	· ·	•••••			• • • • • • •	•		
			300	Ð	H					·		-	
				14	• 1(5	18	20	22	2	4	26	
		 		•		: 	Line	Pre	saur	8	· · · · · ·	, ,	
								psig	5			1	
		r i		1			1	1	i		í		

THE HC1 PHASE OF THE EXPERIMENTS

After having calculated the interfacial areas for mass ansfer over the appropriate range of flow rates, we should be le to calculate the theoretical mass transfer coefficient for e HCl system, and then run experiments with the jet-venturi srubber and the HCl system to determine an experimental mass ansfer coefficient with which to compare the theoretical value, and thus, examine the validity of the theory. However, because \mathbf{o} the difficulties in measuring the contact time, ' θ ', we will use the experimental data to calculate contact times, and relate them to the residence times inside the scrubber throat as described the section on mass transfer theory.

Eight runs were made using water to scrub HCl gas out of ar. The runs took 45 minutes each, and were limited to this time to minimize the use of HCl. Inlet and outlet gas samples were taken, and liquid samples were taken every 15 minutes. The gas simples were taken to determine inlet and outlet concentrations, and to determine the gas cleaning efficiency of the scrubber at each set of operating conditions. The liquid samples were taken make a mass balance to compare HCl into the scrubber with the Heaving the scrubber. Because the liquid samples are easier take, and more accurate than the gas samples, this should be a good check on the accuracy of the gas samples.

The following is the experimental procedure used in making e HCl runs:

- 1) Prepare the following solutions: .02 M NaOH, .05 M NaOH, .10 M NaOH, .01 M NaOH, .10 M HCl, .01 M HCl, and .05 M HCl
- 2) Fill the separator tank to the mark, at which point there will be 196 liters of water in the tank
- 3) Fill (2) 500 milliliter erlenmeyer flasks with 400 milliliters each of the .01 M NaOH; Fill (1) 500

-31-

milliliter erlenmeyer flask with 250 milliliters of the .01 M NaOH; these will be the vessels used to take the gas samples with, the first two for the inlet gas sample, and the third for the outlet sample (a diagram of the gas sampling apparatus is shown on the next page) 4) Fill the draft manometer to the zero level, and check the level on the carbon tetrachloride manometer used to measure the flow rate of the HCl gas

- 5) Turn on the pump and adjust the ball valve until the desired liquid line pressure is achieved
- 6) Adjust the butterfly valve until the desired draft is achieved
- 7) Open the HCl cylinder and adjust the regulator until the carbon tetrachloride manometer gives the desired reading
- 8) Check the time this is the start of the run
- 9) Turn on the vacuum pump to evacuate the pressure vessel used to take the gas samples
- 10) Set up the outlet gas sample apparatus
- 11) Fifteen minutes after the start of the run, take the first liquid sample (three samples will be taken to protect against any errors in liquid sampling)
- 12) Collect the gas sample from the outlet: This is done by drawing 1 ft³ of gas through a 250 ml solution of .01 M NaOH
- 13) Evacuate the pressure vessel to prepare for the inlet gas sampling
- 14) Thirty minutes after the start of the run, take the second liquid sample
- 15) When the pressure vessel is evacuated, collect the inlet gas sample from the pitot tube: This is done by drawing 1 ft³ of gas through (2) 400 milliliter solutions of .01 M NaOH
- 16) Take the final liquid sample 45 minutes after the start of the run

- 17) Turn off the HCl cylinder and close the Hoffman clamp that is between the regulator and the carbon tetrachloride manometer to prevent damaging the regulator
- 18) After allowing the system to clear (wait about 5 minutes) turn off the pump and empty the separator tank
- 19) Carry out the titrations on the various samples
 - (a) titrate the liquid samples with either .02 M NaOH, .05 M NaOH or .10 M NaOH depending on the expected outlet concentration of HCl; .02 M NaOH was used for runs 1 and 2, .05 M NaOH was used for runs 3 through 6, and .10 M NaOH was used for runs 7 and 8; phenolphthalein was used as an indicator, with a sharp endpoint shown as the pH of the titrated solution crossed 7.0
 - (b) For the inlet gas sample bottles: titrate the first bottle from each sample (the erlenmeyer through which the gas being sampled passed first, where the majority of the HCl entering reacts) with .01 M HCl; titrate the second flask using .10 M HCl; phenolphthalein is again used as an indicator
 - (c) titrate the outlet gas samples with either .01 M HCl or .05 M HCl; the first two runs (l and 2) were titrated with .01 M HCl, and the remaining runs were titrated with the .05 M HCl

An explanation of the titrations should help explain the routs obtained. The liquid samples contained HCl and water, and were titrated with NaOH. When the number of moles of NaOH in the trated solution was equal to the number of moles of HCl in the mple, the endpoint was achieved. Hence, the milliliters of NaOH trated defined the moles of NaOH titrated, which equaled the les of HCl in the sample (all liquid samples were 15 milliliter mples), which defined the number of pounds of HCl in the 196 ter separator tank.

The HCl in the gas samples was absorbed in flasks containing NaOH. As the HCl passed through these flasks it reacted with the NaOH to neutralize it. The titrations were carried on using HCl to determine how much HCl was needed to complete the neutralization of the NaOH in these flasks. Hence, the following equation can be written to express the results of these titrations:

moles of HCl titrated + moles of HCl from gas = moles of NaOH in sampling flask Therefore, from these titrations, we can determine the number of moles, or the number of pounds of HCl in 1 ft³ of inlet or outlet gas.

The data accumulated from these titrations and samples appears in Appendix II. The data, including graphical material, used in the selection and determination of operating parameters including inlet concentration for the HCl runs is presented in Appendix III.

The following pages are the results obtained from the data collected during the HCl runs. Such data will include: inlet and outlet concentrations of HCl in the air streams, concentrations of HCl accumulated in the scrubbing medium, the gas cleaning efficiencies of the jet-venturi scrubber under each set of operating conditions, and the mass balance of HCl for each run which strongly verify the accuracy of these experiments.

HC1 RUN OPERATING CONDITIONS

IQU PRE	ID LINE SSURE	INLET AIR DRAFT	INLET AIR RATE
P	sig	inches H ₂ 0	lb/hr
1	4	0.363	1340
1	6	0.437	1510
18	3 .	0.500	1610
20)	0.575	1700
23	3	0.667	1840
25	i	0.735	1900
. 28		0.825	1990
30		0.903	2050
F - 4			

-36-

	101
	пст
RATI	3

lb HCl/_{hr}

4.68

5.14

5.53

5.93

6.28

6.61

6.94

6.94

AIR

		HC1 CONCENTRATIONS	IN THE GAS AND TH
	UN P	INLET GAS CONCENTRATION	OUTLET GAS CONCENTRATIO
	si g	<u>lb HCl</u> ft ³ gas	$\frac{1b HCl}{ft^3 gas}$
	14	2.60×10^{-4}	1.53x10 ⁻⁴
·	16	2.54×10^{-4}	1.07x10 ⁻⁴
	18	2.56×10^{-4}	7.62x10 ⁻⁵
: .)	20	2.60x10 ⁻⁴	5.10x10 ⁻⁵
	23	2.55x10 ⁻⁴	3.14×10^{-5}
	25	2.59x10 ⁻⁴	1.85×10^{-5}
	28	2.60×10 ⁻⁴	9.00×10^{-6}
	30	2.52×10^{-4}	7.20x10 ⁻⁶
· • •			
I			
! 			
			-37-

E LIQUID

FINAL LIQUID CONCENTRATION N

gm-moles HCl liter

0.095 0.146 0.194 0.234 0.269 0.291 0.316 0.316

11

HC1 MASS BALANCE

and the second sec		HC1 I	MASS BALANO
U D SURE	HC1 OUT in GAS	HC1 OUT in LIQUID	HCl OUT TOTAL
s1 g	lb HCl	lb HCl	lb HCl
14	2.07	1.50	3.57
16	1.62	2.30	3.92
18	1.26	3.06	4.32
20	0.87	3.70	4.57
23	0.58	4.24	4.82
25	0.35	4.59	4.94
28	0.19	5.00	5.19
30	0.15	5.00	5.15

.)

San S el Sen de

n Alto .

The accuracy of the mass balance, which combines liquid sample data with gas sample data, indicates that the titrations were not a significant source of error.

-38-

HCL IN TOTAL	<pre>% DIFFERENCE HCl OUT RELATIVE TO HCl IN</pre>
lb HCl	१
3.51	+1.68%
3.85	+1.79%
4.25	+1.62%
4.44	+2.95%
4.71	+2.28%
4.96	-0.45%
5.21	-0.39%
5.21	-1.17%
1 . 1 .	

GAS CLEANING EFFICIENCIES

LIQUID LINE PRESSURE	GAS FLOW
psig	SCFM
14	300
16	337
18	360
20	380
23	410
25	425
28	445
30	480
NOTE: Gas cleaning e Gas Cleaning Efficie	efficiency is defined as ency = <u>lb HCl in Gas IN -</u> lb HCl in

-39-

GAS CLEANING EFFICIENCY

% EFFICIENCY

41.0%

58.0%

70.3%

80.4%

87.7%

92.9%

96.5%

97.1%

follows:

lb HCl in Gas OUT Gas IN x 100%

GAS	EANING EFFICIENCIES
100	
95	
90	
85	
GAS	
CLEANING	
TENCY 70	
65	
60 F	<i>H</i>
	d e e e e e e e e e e
55	
50	· · · · · · · · · · · · · · · · · · ·
	······································
40 40	10 20 20
	$\frac{10}{10} \frac{20}{20} \frac{22}{24} \frac{26}{26} \frac{26}{26}$
	-40-

Ð ••••• **.** · . а : i · 8 30 1 ••••

RESULTS AND CONCLUSIONS

From the inlet and outlet gas samples taken during the HCl phase of the experiments, liquid and gas phase driving forces can be determined using the equations previously presented. Over the experimental range used, certain simplifications in the equations can be made:

$$C_{G}, \text{ in-f}^{-1}(C_{L}, \text{in}) \simeq C_{G}, \text{ in}$$

$$C_{G}, \text{out-f}^{-1}(C_{L}, \text{out}) \simeq C_{G}, \text{ out}$$

$$f(C_{G}, \text{in}) - C_{L}, \text{ in} \simeq f(C_{G}, \text{ in})$$

$$f(C_{G}, \text{out}) - C_{L}, \text{ out} \simeq f(C_{G}, \text{ out})$$

Using the above simplifications, the following equations result for the driving forces:

$$\Delta C_{\text{driving force,G}} = \frac{C_{\text{G}}^{\text{in-}C_{\text{G}}^{\text{out}}}}{\log_{\text{e}} \frac{C_{\text{G}}^{\text{in-}C_{\text{G}}^{\text{out}}}}{C_{\text{G}}^{\text{out}}}}$$

$$\Delta C_{\text{driving force,L}} = \frac{f(C_{\text{G}}, \text{in}) - f(C_{\text{G}}, \text{in})}{\log_{e} \frac{f(C_{\text{G}}, \text{in})}{f(C_{\text{G}}, \text{o})}}$$

priving force values are presented on the following pages.

Using these values for the driving forces, experimental iquid and gas phase mass transfers coefficients were calculated. These values have been presented on page 44. All of the experimental mass transfer coefficients appear to be valid with the exception of two determinations: the liquid phase calculations for the 20 psig and 30 psig runs. The driving force calcuations were a major cause of this inaccuracy, since the equilibium data used, although the best available, may be lacking n accuracy. In addition, the gas sampling procedures were a probable source of error.

-41-

ut

(C_G,out) .n)

GAS DRIVING FORCE

LINE P	C _G , in	C _G ,out
psig	lb HCl/ _{ft} 3	lb HCl/ _{ft} 3
14	2.60	1.53
16	2.54	1.07
18	2.56	.762
20	2.60	.510
23	2.55	.314
25	2.59	.185
28	2.60	.0900
30	2.52	.0720
strain de la facture de la	x10 ⁻⁴	×10 ⁻⁴
and the second		

1

-42-

^{∆C}driving force,G

lb HCl/_{ft}3

2.02

1.66

1.49

1.28

1.07

0.910

0.746

0.690

×10⁻⁴

LIQUID DRIVING FORCE

||

. 4

	LINE P	f(C _G ,in)	f(C _G ,out)
a de la companya de La companya de la comp	psig	lb HCl ft ³	$\frac{1b \text{ HCl}}{\text{ft}^3}$
ng sanan ang pangangan pig	14	1.37	1.28
ing in the special second	16	1.36	1.23
an an ann a mar anns an anns an anns an anns an anns an anns an anns anns anns anns anns anns anns anns anns an	18	1.36	1.18
and the second se	20	1.37	1.14
n internet i demonstra p	23	1.36	1.06
and a second	25	1.37	0.995
to A and a second second second	28	1.37	0.900
a and a second a second and a second	30	1.36	0.864
		x10 ⁻²	x10 ⁻²
			-13-

43

 $\Delta C_{driving force,L}$

 $\frac{1b \text{ HCl}}{\text{ft}^3}$ 1.30 1.28 1.27 1.24 1.20 1.17 1.12 1.09

x10⁻²

MASS TRANSFER COEFFICIENTS

	LINE P	k _G
	psig	ft/hr
n hann is mar i the state and the state of t	14	8.96
	16	13.3
	18	16.2
	20	19.4
, and a second secon	23	22.4
	25	26.2
ومجود مرجديات المعال المرداد	28	31.4
	30	31.6
ليحمل والمعالية ومحالهم والمحاط والمحمد		
سميا المستعمية مستعمال والمسترك		
and the second second		
State of the second second		
市場にないたい		
and the second second		

-44-

k_L

ft/hr

- .139
- .173
- .190
- .200*
- .200
- .204
- .209
- .200*

Using the calculated driving forces, contact times and contact time ratios were also determined. The results, shown on page 46, again indicate that the calculations for the liquid phase for the 20 psig and 30 psig runs were inaccurate. The gas phase contact time ratios range from 0.00619 to 0.0534, and the liquid phase contact time ratios range from 0.0142 to 0.0274. In all cases, the contact time ratios are less than 1.0. Theoretically, mass transfer coefficients are meaningless where the contact time ratios are less than one. Therefore, either the experimental data is not accurate, or there is a flaw in the mass transfer theory being used. The graph of line pressure versus gas cleaning efficiency closely approximated predicted results, indicating that the flaw lies in the theory, rather than in the experimental data. Despite this, several important relationships develop when the theory is combined with the experimental data. The following pages show contact time ratios plotted versus liquid line pressure and gas cleaning efficiency. The results, particularly for the gas phase case, indicate definite relationships between the parameters in guestion. Gas phase contact time ratios, for example, vary linearly with liquid rate and parabolically with gas cleaning efficiency. If relationships such as these could be developed accurately, this would be an important step towards the prediction of mass transfer rates. One would merely have to select the gas cleaning efficiency desired, this would specify the contact time ratio to be used, which would in turn specify to liquid line pressure at which the scrubber would be operated to give the desired efficiency.

-45-

			<u>E</u>	XPERIMENTAL C	CONTACT TIMES	AND CONTACT
			Р —	θ 	θ _L	n _G
			p sig	sec.	sec.	
			14	33.4	15.3	.00619
			16	15.1	9.90	.0130
			18	10.3	8.26	.0177
			20	7.20	7.40*	.0242
			23	5.35	7.40	.0301
			25	3.91	7.10	.0397
			28	2.73	6.80	.0542
			30	2.70	7.40*	.0534
			and the second secon			
1 	·	· · · · · · · · · · · · · · · · · · ·			-46-	
					· .	

4

1

1

. 1

1.1

11.

11

n_L

.0142

.0213

đ

- .0250
- .0274*
- .0266
- .0267
- .0270

.0243*

			n_ ve	Li art - 1		
		30	<u></u>	HTANTA I	<u>Nara (85</u>	1108
		29				
		-28	-			
		27				
↓ :		- /				
		26		· · · · · · · · · · · · · · · · · · ·		
		- 24	••••••••••	· · · · · · · · · · · · · · · · · · ·		
		-23				
		Liquid Rate	· · · · · · · · · · · · · · · · · · ·			
		8921			· · · · · · · · · · · · · · · · · · ·	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Line Pressure				
					X	
		19				
		19		K		
				4	f	
		17				
		16				
		15	/			· · · · · · · · · · · · · · · · · · ·
аналарияна на селото br>На селото на			7			
			5 1	1 5	2 2 E	
			•		£ £,7	, , , , , , , , , , , , , , , , , , ,
			GA	S BASED	CONTACT	TIME
			<u></u>		47-	
	and the second barrow of the second				<u>ana an chida</u> nn	

pressure) X -----X ·::. . . . · • • • • ____ ::**;**• ------.. • : ·· · · -- · · . . . NC. 1 : :. . ÷., · • • • • • · · · · . . . • · · · · · · · : -----------• • • • • • • • 1 ::. . • • •-• • • • • - - -• . . ¦.. • • 3.5 4 4.5 5 RATIO $(n_{\rm G}) \times 10^{-2}$:

X 35 4 4-5

X 肉 . • • • • • 宻 1.11X X X 24 2.6 . 28 ÷

				n vi	s. GAS	CLEA	NING	EFFIC	LEWCY			T
			-97									
			90		-							
		•••	85									
	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·									•
			80	· · · · · ·		· · · · · · · · · · · · · · · · · · ·						
						• • • • • • • • • • • • • • • • • • •			-	•••••		•
	•		75							· · · · · · · · · · · · · · · · · · ·		
			70			· · · · · · · · · · · · · · · · · · ·	· · · ·					•
CA F	IS C	LEAN	ING							-		
	(%	5)	65				· · · · · · · · · · · · · · · · · · ·			•••••	/	/
			<i></i>	· · · · · · ·	•	••••	••••			/		
			60	• • • • • • • • • • •		· · · ·			1521			-
			55					, , , , , , , , , , , , , , , , , , ,				
					• • • • • •	· · · · · · · · · · · · · · · · · · ·				· · · · · · · ·		•••
			50	••••						•••••		
	···· ,,' - -							· · · · · · · · · · · · · · · · · · ·			•	
			45									
			40 P	3								
			1.	4 1.TOII	1.6 ID PH	1.	B	2.0 CONTA	2,2 CT TTN		2,1	4
	••••	**!	· · · · · · · · · · · · · · · · · · ·	4740	44 <u>به م</u> ويد ا			AATI TY	AT 170	E KA	T TO	

团 X : : 1 111 ..! . . • • ----.... ::**:**: X -----. · 1 . | -- . • | 11 • K ÷.! ------11 1 i • • • • • • • ••• 4 2.6 $(n_{\rm L}) \times 10^{-2}$ 28 •

RECOMMENDATIONS

The following are recommendations for future study, as ell as for optimization of the experimental procedures used this study.

1) More data should be taken using the HCl system to study the relationships between n_{T_i} or n_{G_i} and liquid rate, gas rate and gas cleaning efficiency.

a) Additional runs should be made on the same system at the liquid rates previously used with different gas rates, and at the gas rates used with different liquid rates.

b) Less dilute inlet HCl concentrations should be tested.

The experimental procedures should be optimized. 2)

a) The gas sampling procedure is difficult to accomplish and is a certain cause of some experimental error.

b) Considerable liquid escapes out of the gas outlet causing the liquid sample calculations to be of uncertain reliability.

c) An HCl rotometer should be used to measure flow rates as the manometer employed was inconsistent.

3) Other systems should be studied, some with known mass ansfer resistances primarily in the gas phase, and some with own liquid phase resistances, to fully evaluate the applicaon of the penetration theory to mass transfer in jet-venturi rubbers.

4) Pressure drop across the scrubber throat should be ecked in future experiments, and should be considered as a jor mass transfer parameter.

-51-

5) The effective length of scrubber throat for mass transfer should be examined as a mass transfer parameter.

6) Theories based on the high degree of atomization attained in jet-venturi scrubbers should be tested. One way of doing this would be to study the transfer of mass from a gas between two liquid drops to the drops, and to calculate the distance between the drops that gives a mass transfer rate equal to the rate found in experimental study. This distance could then be examined as a mass transfer parameter. The equations used would be the following:

$$\frac{dp_{A}}{dt} = D_{G,AB} \frac{d^{2}p_{A}}{dZ^{2}}$$

with boundary conditions: 1) $p_A = p_A, o^{0t=0}$ for all Z

2)
$$\frac{dp_A}{dZ} = 0 \ \emptyset \ Z = 0$$

$$\frac{dp_A}{dZ} = \frac{D_L}{D_G} \frac{dC_A}{dZ} \in$$

-52-

where A is the transferred component, B is the gas from which A is transferred (usually air), and δ is 1/2 the distance between drops.

for all t

 $Q Z = \delta$ for all t

BIBLIOGRAPHY

1) L. S. Harris "Fume Scrubbing with the
System"; Chemical Engg. Progress; Ap
2) A. B. Walker "Operating Principles of
Control Equipment"; Air Conditioning
ating; Feb. 1969
3) L. S. Harris "Energy & Efficiency Ch
Venturi Scrubber"; APCA Symposium; 3
4) L. S. Harris & R. Hartenbaum "Perfor
for Ejector Venturi Scrubber"; APCA
5) R. L. Webb - "The Draft Producing-Ventu
ceedings of APCA Semi-Annual Meeting
6) Edward B. Hanf "A Guide to Scrubber
mental Science and Technology; Febru
(7) Croll-Reynolds Jet-Venturi Fume Scrubbe
8) Mendelsohn & Morgan "Study of a Vent
Lehigh University Senior Lab Project
9) Thomas Hersh & Gary Munn "Absorption
Scrubber"; Project Report, Lehigh Un
10) R. D. Ross "Air Pollution & Industry
Company; New York, 1972
(11) G. Astarita "Mass Transfer with Chem
Elsevier Publishing Company; Amsterd
(12) Robert E. Treybal "Mass-Transfer Ope
Book Company; New York, 1968
13) Lynn, Straatemeier, & Kramers "Absorp
Light of the Penetration Theory"; Che
4) Charts II & III)
(1) Sharma & Dankwertz "Chemical Methods
Iacial Area & Mass Transfer Coefficie
5) Columnt & Wayness "D
The second secon
6) Howard E. Hogheth
Venturi Corubbing": Tournel - C ::
vencuri Scrubbing; Journal of the AP

-53-

he Ejector Venturi pril, 1966 of Air Pollution g, Heating & Ventilharacteristics of the June, 1964 rmance Test Techniques Journal; May, 1962 uri Scrubber"; Pro-; Dec.,1966 Selection"; Environuary, 1970 ers Bulletin curi Type Fume Scrubber"; ; May, 1969 in a Jet-Venturi niversity; June, 1972 "; Van Nostrand Reinhold ical Reaction"; lam, 1967 rations"; Mc-Graw-Hill ption Studies in the emical Engg. Progress of Measuring Interents in Two Fluid 1970 nables Estimation of ; February 1963 loud Behavior in PCA; July, 1973

APPENDIX I

OXYGEN-SULFITE SYSTEM DATA

Liquid samples were taken for each of the eight experimental runs. With each succeeding sample, the concentration of sulfite ions in the solution decreases, as more and more of the sulfite reacts with the oxygen absorbed from the air passing through the scrubber to form sulfate. The concentration of sulfite ions in the solution for a given sample is directly proportional to the milliliters of KIO3 used in the titration described in the experimental section, where

ml KI0₃ x .0158 = Concentration of SO_3^{-2} in $\frac{qm-moles}{liter}$

Graphing the concentration change versus time determines the interfacial areas for mass transfer, as shown in the experimental section.

<u>RUN 1</u>			
	Time (min)	ml KIO3	Conc
P = 14 psig	0	58.0	0.9
Draft = .363 in. H_2^0	5	57.4	0.9
Air Rate = 5.000 cfs	10	56.9	0.8
1	15	56.5	0° . 8
	20	56.1	0.8
:	25	55.8	0.8
	30	55.5	0.8
• •	35	55.4	0.8
•	40	55.4	0.8
	45	55.3	0.8
RUN 2			
RUN 2	Time (min)	ml KI0 ₃	Conc.
$\frac{\text{RUN 2}}{\text{P} = 16 \text{ psig}}$	<u>Time (min)</u> O	ml KI0 ₃ 59.5	Conc.
<u>RUN 2</u> P = 16 psig Draft = .437 in. H_2^0	<u>Time (min)</u> 0 5	ml KI0 ₃ 59.5 58.8	Conc. 0.93 0.92
<u>RUN 2</u> P = 16 psig Draft = .437 in. H_2^0 Air Rate = 5.610 cfs	<u>Time (min)</u> 0 5 10	ml KI0 ₃ 59.5 58.8 58.2	Conc. 0.93 0.92 0.91
$\frac{\text{RUN 2}}{\text{P} = 16 \text{ psig}}$ Draft = .437 in. H ₂ 0 Air Rate = 5.610 cfs	<u>Time (min)</u> 0 5 10 15	ml KI0 ₃ 59.5 58.8 58.2 57.7	Conc. 0.93 0.92 0.91 0.90
$\frac{\text{RUN 2}}{\text{P} = 16 \text{ psig}}$ Draft = .437 in. H ₂ 0 Air Rate = 5.610 cfs	<u>Time (min)</u> 0 5 10 15 20	ml KI0 ₃ 59.5 58.8 58.2 57.7 57.2	Conc. 0.93 0.92 0.91 0.90 0.90
<u>RUN 2</u> P = 16 psig $Draft = .437 \text{ in. H}_20$ Air Rate = 5.610 cfs	<u>Time (min)</u> 0 5 10 15 20 25	ml KI0 ₃ 59.5 58.8 58.2 57.7 57.2 56.8	Conc. 0.93 0.92 0.91 0.90 0.90 0.89
<u>RUN 2</u> P = 16 psig Draft = .437 in. H_2^0 Air Rate = 5.610 cfs	<u>Time (min)</u> 0 5 10 15 20 25 30	ml KI0 ₃ 59.5 58.8 58.2 57.7 57.2 56.8 56.5	Conc. 0.93 0.92 0.91 0.90 0.90 0.89 0.89
<u>RUN 2</u> P = 16 psig Draft = .437 in. H_2^0 Air Rate = 5.610 cfs	<u>Time (min)</u> 0 5 10 15 20 25 30 35	ml KIO ₃ 59.5 58.8 58.2 57.7 57.2 56.8 56.5 56.3	Conc. 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.88
<u>RUN 2</u> P = 16 psig $Draft = .437 \text{ in. H}_20$ Air Rate = 5.610 cfs	<u>Time (min)</u> 0 5 10 15 20 25 30 35 40	ml KI0 ₃ 59.5 58.8 58.2 57.7 57.2 56.8 56.5 56.3 56.2	Conc. 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.88 0.88

-55-

APPENDIX I -- OXYGEN-SULFITE SYSTEM DATA

RUN 3

= 18 psig	Time (min)	ml KIO ₃	Conc. SO3
$raft = .475 in. H_0$	0	52.5	0.827
Air Rate = 6.00 cfs	5	51.6	0.813
	10	51.0	0.803
	15	50.3	0.792
- - -	20	49.7	0.783
	25	49.1	0.773
	30	48.6	0.765
	35	48.3	0.761
	40	48.1	0.758
	45	48.1	0.758

RUN 4

	Time (min)	ml
= 20 psig	0	48
raft = .575 in. H ₂ 0	5	47
ir Rate = 6.33 cfs	10	46
	15	46
	20	45
	25	44
	30	44
	35	43
	40	43
	45	43

Conc. SO3 KI03 8.7 0.767 7.5 0.748 5.8 0.737 5.2 0.727 5.5 0.717 4.5 0.701 4.0 0.693 3.8 0.690 3.6 0.687 8.5 0.686

APPENDIX I -- OXYGEN-SULFITE SYSTEM DATA

RUN 5

	<u>Time (</u>	min)
p = 23 psig Draft = .670 in. H ₂ 0	0	
Air Rate = 6.83 cfs	10	
	15 20	
	25	
	30	
·	35	
	40	
	45	

RUN 6

	Time	(min)
= 25 psig $aft = .725 in. H_20$ ir Rate = 7.08 cfs	Time 0 5 10 15 20 25 30 35	(min)
	40	
	45	

ml KIO3	Conc. SO3			
57.8	0.913			
56.7	0.893			
56.0	0.882			
55.0	0.886			
54.0	0.851			
53.4	0.841			
53.0	0.835			
52.2	0.822			
51.8	0.817			
51.8	0.817			

ml KIO ₃	Conc. S03
57.8	0.910
56.5	0.890
55.5	0.874
54.5	0.858
53.9	0.849
53.0	0.835
52.2	0.822
51.4	0.810
51.2	0.806
51.2	0.806

			·		
		APPENDIX	I OXYGEN-SULFIT	E SYSTEM DATA	<u>.</u>
		7	Time (min)	ml KIO ₃	Conc. S0
i		28 psig	0	58.0	0 914
		$ft = .825 \text{ in. } H_2^0$	5	56.6	0.891
1		Rate = 7.41 cfs	10	55.4	0.873
			15	54.3	0.855
			20	53.4	0.841
		- - -	25	52.6	0.828
I	Υ.		30	51.8	0.816
			35	51.2	0.806
			40	51.0	0.803
			45	51.0	0.803
			Time (min)	ml KIO ₃	Conc. S03
	· ·	30 psig	0	57.0	0.898
		$H_{1} = .8/8 \text{ in. } H_{2}^{0}$	5	55.5	0.874
		Rate = 7.64 cts	10	54.2	0.854
4 			15	53.1	0.836
			20	52.1	0.821
			25	51.3	0.808
			30	50.4	0.794
			35	49.7	0.78 3
			40	49.6	0.781
			45	49.5	0.780
			-58-		

	APPENDIX II HC1 PHASE OF THE EXPE
	RUN 1H
	Line Pressure - 14 p
or he of a strong we	Draft = 0.363 in. H ₂
	پ بر ب
	LIQUID SAMPLES (all 15 ml)
	titrant used was 0.02 M NaOH
	Time (min) ML Titrant
	15 22.4
	30 47.7
	45 71.3
and the second	
	GAS SAMPLES
	INLET:
	First Flask - 400 ml of .01 M NaOH
	titrant used - 96.5 ml of .01
data da da	Second Flask - 400 ml of .01 M NaOH
	titrant used - 38.0 ml of .10
	NaOH neutralized by HCl in titrant -
	NaOH neutralized by HCl in sample -
	Concentration of HCl in sample - 3.2
	OUTLET:
	Collection Flask - 250 ml of .01 M Na
	titrant used - 59.0 ml of .01 M
	Naon neutralized by titrant - 59.0 m
おいたの	Concentration of UCL in sample -]
	concentration of HCI in sample - 1.9

psig H₂0

l M HCl H O M HCl - 476 ml - 324 ml .24x10⁻³ gm-moles/ft³

NaOH M HCl ml - 191.0 ml 91x10⁻³ gm-moles/ft³

	API	PENDIX	TT	- HC1	DUNCE	∩ ₽ መਧ	ה היא
				<u> </u>	I IIADE	Or in	E EAP
				RUN	2H		
				Lin	e Pres	sure	- 16
ار ا				Dra	ft - 0	.437	in. H
LIQUID	SAMPLES	all (all	15 m]	L)			
tit	rant us	ed was	5 0.02	2 M Na(ЭН		
Т	ime (mi	.n)		ML Ti	trant		
	15			34	.5		
	30			71	.5		
¥1	45			109	. 5		
GAS SAM	PLES						
INLI	ET:						
	First	Flask	- 40	0 ml c	of .01	M Na(ЭН
		titra	nt us	ed - 9	91.0 ml	. of	.01 M
	Secon	d Flas	k - 4	00 ml	of .01	M Na	AOH
		titra	nt us	ed - 3	89.3 ml	. of .	10 M
	NaOH	neutra	lized	by HC	l in t	itrar	nt - 4
	NaOH	neutra	lized	by HC	l in s	ample	2 - 3
	Conce	ntrati	on of	HCl i	n samp	le -	3.16>
OU'I'I	ET:						
	Colle	ction	Flask	- 250	ml of	.01	M NaC
	NaOlt	titra	nt us	ea - 1	1/.0 m	l of	.01 M
	NaOH I	neutra	11zea	by HC	l in t	itran	1t - 1
	Conce	ntrati	n of		I IN S	ampie lo	· - 1
	CONCER	iciaci	on or	nci i	n samp	re -	1.33X

-60-

EXPERIMENTS

l6 psig • ^H2^O

M HCl M HCl - 484 ml - 316 ml 16x10⁻³ gm-moles/ft³

NaOH 1 M HC1 - 117.0 m1 - 133.0 m1 33x10⁻³ gm-moles/ft³

APPENDIX II -- HC1 PHASE OF THE EXPERIMENTS

RUN 3H Line Pressure - 18 psig Draft - 0.500 in. H₂0

LIQUID SAMPLES (all 15 ml)

-	titrant used	was	0.05 M	NaOH
	Time (min)		ML	Titrant
	15		1	9.0
	30		3	9.5
	45		5	8.0

GAS SAMPLES

--- INLET:

First Flask - 400 ml of .01 M NaOH titrant used - 91.0 ml of .01 M HCl Second Flask - 400 ml of .01 M NaOH titrant used - 39.0 ml of .10 M HCl NaOH neutralized by HCl in titrant - 481 ml NaOH neutralized by HCl in sample - 319 ml Concentration of HCl in sample - 3.19×10^{-3} gm-moles/ft³

--- OUTLET:

Collection Flask - 250 ml of .01 M NaOH titrant used - 31.0 ml of .05 M HCl NaOH neutralized by HCl in titrant - 155.0 ml NaOH neutralized by HCl in sample - 95.0 ml Concentration of HCl in sample - 9.50×10^{-4} gm-moles/ft³

	APPENDI	<u>X II</u>	HC1 P	HASE	OF TH	E E
				4		
			RUN	4H		
			Line	e Prese	sure	- 2
			Drai	.τ - Ο	. 5 / 5	ın.
LIQUID S	SAMPLES (al	1 15 m]	١			
titr	ant used wa	as 0.05	/ MNaO	н		
Ti	lme (min)	1	ML Tit	rant		
	15		22.	5		
	30		46.	8		
	45		70.	3		
GAS SAMP	LES					
INLE	T:					
	First Flas	sk - 400	0 ml o	f .01	M Na	OH
	titr	ant use	ed - 9	1.0 m]	l of	.01
)) 1	Second Fla	isk - 40	00 ml	of .01	LMN	aOH
	titr	ant use	ed - 3	8.5 ml	lof	.10
	NaOH neutr	alized	by HC	l in t	itra	nt ·
	NaOH neutr	alized	by HC	l in s	ampl	e ·
	Concentrat	ion of	HCl i	n samp	ole -	3.3
OUTT	ድጥ•					
	Collection	1 Flask	- 250	ml of	· .01	M
	titr	ant use	ed - 3	7.3 ml	of	.05
	NaOH neutr	alized	by HC	l in t	itra	nt ·
	NaOH neutr	alized	by HC	l in s	ample	е -
	Concentrat	ion of	HCl in	n samp	ole -	6.3
				۰.		

-62-

EXPERIMENTS

20 psig • ^H2⁰

l M HCl H O M HCl - 476 ml - 324 ml .24x10⁻³ gm-moles/ft³

NaOH 5 M HCl - 186.5 ml - 63.5 ml .35x10⁻⁴ gm-moles/ft³

	APPENDIX	<u>II</u>	HC1 PHA	SE OF	THE	EXP
			RUN 5H	I		
			Line F	ressur	ce -	23
			Draft	- 0.66	57 in	I. H
LIQUID S	AMPLES (all	15 ml)			
titr	ant used wa	s 0.05	M NaOH			
Ti	me (min)		ML Titr	ant		
	15		26.5			
	30		53.5			
	45		80.5			
AS SAMP	LES T: First Flas titr Second Fla titr NaOH neutra NaOH neutra Concentrat	k - 40 ant use ant use alized alized ion of	0 ml of ed - 93 00 ml o ed - 39 by HCl by HCl HCl in	.01 M .0 ml f .01 .0 ml in ti in sa sampl	NaO of . M NaO of . tran mple e - :	H 01)H 10 t - 3.1
OUTLI	ST:					
	Collection	Flask	- 250 r	nl of	.01	MI
	titra	ant use	ed - 42	.3 ml (of .()5 1
	NaOH neutra	111zed	by tit	cant -	211	ml
	Concontration	allzed	by HCI	in sar	nple	39.
				sambre	= - 3	, . 73

-63-

XPERIMENTS

3 psig H₂0

l M HCl H O M HCl - 483 ml - 317 ml .17x10⁻³ gm-moles/ft³

4 NaOH 5 M HCl nl 39.0 ml .9x10⁻⁴ gm-moles/ft³

APPENDIX II -- HC1 PHASE OF THE EXPERIMENTS

RUN 6H Line Pressure - 25 psig Draft - 0.735 in. H_2^0

LIQUID SAMPLES (all 15 ml)

-	titrant used was	0.05 M NaOH
	Time (min)	ML Titrant
	15	28.5
	30	59.8
	45	87.3

GAS SAMPLES

--- INLET:

First Flask - 400 ml of .01 M NaOH titrant used - 95.0 ml of .01 M HCl Second Flask - 400 ml of .01 M NaOH titrant used - 38.3 ml of .10 M HCl NaOH neutralized by HCl in titrant - 478 ml NaOH neutralized by HCl in sample - 322 ml Concentration of HCl in sample - 3.22×10^{-3} gm-moles/ft³

-- OUTLET:

Collection Flask - 250 ml of .01 M NaOH titrant used - 45.5 ml of .05 M HCl NaOH neutralized by HCl in titrant - 227.0 ml NaOH neutralized by HCl in sample - 23.0 ml Concentration of HCl in sample - 2.30×10^{-4} gm-moles/ft³

APPENDIX II -- HCl PHASE OF THE EXPERIMENTS

RUN 7H Line Pressure - 28 psig

LIQUID SAMPLES (all 15 ml)

titrant used	was	0.10 M NaOH
Time (min)		ML Titrant
15		15.5
30		31.5
45		47.5

GAS SAMPLES

-- INLET:

First Flask - 400 ml of .01 M NaOH titrant used - 91.0 ml of .01 M HC1 Second Flask - 400 ml of .01 M NaOH titrant used - 38.5 ml of .10 M HCl NaOH neutralized by HCl in titrant - 476 ml NaOH neutralized by HCl in sample - 324 ml Concentration of HCl in sample - 3.24×10^{-3} gm-moles/ft³

- OUTLET:

Collection Flask - 250 ml of .01 M NaOH titrant used - 47.8 ml of .05 M HCl NaOH neutralized by HCl in titrant - 238.8 ml NaOH neutralized by HCl in sample - 11.2 ml Concentration of HCl in sample - 1.12×10^{-4} gm-moles/ft³

· -65-

Draft - 0.825 in. H_20
APPENDIX	II	 HC1	PHASE	OF	THE	

RUN 8H Line Pressure - 30 psig Draft - 0.903 in. H₂O

LIQUID SAMPLES (all 15 ml)

-	titrant	used was	0.10 M	NaOH
	Time	(min)	ML	Titrant
	15	5		16.0
	30)		31.8
	4 5	5		47.5

GAS SAMPLES

--- INLET:

First Flask - 400 ml of .01 M NaOH titrant used - 97.0 ml of .01 M HCl Second Flask - 400 ml of .01 M NaOH titrant used - 39.0 ml of .10 M HCl NaOH neutralized by HCl in titrant - 487 ml NaOH neutralized by HCl in sample - 313 ml Concentration of HCl in sample - 3.13×10^{-3} gm-moles/ft³

OUTLET: ---

> Collection Flask - 250 ml of .01 M NaOH titrant used - 48.3 ml of .05 M HCl NaOH neutralized by HCl in titrant - 241.0 ml NaOH neutralized by HCl in sample - 9.0 ml Concentration of HCl in sample - 9.00 x 10^{-5} gm/moles/ft³

EXPERIMENTS

DETERMINATION AND SELECTION OF OPERATING PARAMETERS

AIR FLOW RATES

ine Pressure	Volumetric Flow Rate
psig	SCF/hr Air
14	18,000
16	20,200
18	21,600
20	22,800
23	24,600
25	25,500
28	26,700
30	27,500

-67-

Mass Flow Rate

lb/hr Air

1340

1510

1610

1700

1840

1900

1990

2050

侶

╶╴╴╴╴┣		- <u> ; ; ; ;</u>		
/			i ei i ei eien e i i e sien	╴┠╴╞╱╉╼⋛╶┢╶┫ ╴┃╴╽╴┝╌┞╶╇╼┩
		· • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , ,	
			· · · · · ·	
¥				
	L			
· , ·				
· i · ·				
• • • •				
;				4 1 4 1
• • • •				
				<u> </u> , , i
		• •		
• • • •				
· · · · ·	+ + + + + + + + + + + + + + + + + + + +	+		
• • • • •	· · · ·	1		
•				
			+	+
• • • •				
• •	1			
				+
• • •				4
· • •				• • •
• • • • • • • • • • • • • • • • • • •	+	+		
• •				
				-
•		· ·	1	
			1	
· ·				
	; •	 + -•		· · · ·
	• •	1		
• •	1	<u> </u>		
·	· · · · · · · · · · · · · · · · · · ·	• • · · • • •	-i	
• • • •	· · · ·			
• • • •				
•	• •	<u></u> <u> </u>	+	
	· · ·			
			·+· • • · · · · · · · · · · · · · ·	
	· · · ·		1 · · ·	
			1	
		· ·	4 4	
. 1	• · · ·	• • •		
			i .	
	~		<u> </u>	
30)		! .	
ĺ			i	· · ·
	1			, , ,
		• •		
··· ••••• •• ••	 ł		أستعاد لأحتجا الما	

NOZZLE (LINE) PRESSURE VS. DRAFT

LINE PRESSURE	C OPERAI
psig	inches
14	
16	
18	
20	
23	
25	
28	. •
. 30	•

đ

11

1

-69-

TING DRAFT of water .363 .437 500 .575 667 .735 825 903

,

·

	CALIBRATION	OF	CARBON	TETRACHLORI
	Manometer Read	lin	*	
	inches CCl ₄	TUČ	}	HC
	0.04			
	0.16			
	0.35			
	0.63			
	0.99			
	1.19			
	1.33			
- - - - - - - - - - - - - - - - - - -	1.42			
	1.51			
	1.67			
	1.83			
	1.93			
	2.22			
NOTE:	Calibration cal	cula	ated fro	om following
	inches $CCl_4 = \frac{1}{2}$	12 2 (($\frac{(q)^2(1)}{(q)^2(Y)^2}$	- B ⁴)(densit (A _{throat}) ² (g
	q = HCl rate in	ft	³ /sec	

B = orifice to line diameter ratio

 A throat = orifice throat area in ft²

g = gravity constant

-71-

IDE MANOMETER

Cl Gas Flow Rate ft³HCl/hr

- 10
- 20
- 30
- 40
- 50
- 55
- 58
- 60
- 62
- 65
- 68
- 70
- 75

g equation:

ty of HCl)

g)(density of CCl₄)

C = coefficient of discharge (dimensionless) = 0.61 Y = expansion factor (dimensionless) = 1.00

SELECTED OPERATING VALUES FOR HC1 FLOW

ne Pressure	Manometer Reading	Volumetric HCl Rate	Mass HCl Rate
psig	inches CC14	SCF/hr HCl	lb/hr HCl
14	1.0	50.3	4.68
16	1.2	55.3	5.14
18	1.4	59.5	5.53
20	1.6	63.8	5.93
23	1.8	67.5	6.28
25	2.0	71.1	6.61
28	2.2	74.6	6.94
30	2.2	74.6	6.94
9			•

-73-

APPENDIX III OPERATING INLET CONCENTRATIONS OF HC1 Line Pressure psig 14 0.280

16

18

20

23

25

28

30

-74-

% HCl in INLET GAS

- % by volume

 - 0.274
 - 0.276
 - 0.280
 - 0.274
- 0.279
- 0.280

0.271

WATER FLOW RATES THROUGH SCRUBBER

11

ĥ

Line Pressure	Water Rate
psig	gallons/minute
14	35.7
16	36.7
18	37.7
20	38.7
22	39.7
24	40.7
26	41.6
20	
28	42.6
30	43.6
32	44.6
34	45.5

-75-

- Water Rate
- ft³/second
- 0.0800
- 0.0820
- 0.0840
- 0.0861
- 0.0883
- 0.0905
- 0.0925
- 0.0947
- 0.0969
- 0.0991
- 0.1013

.

REV	8.	AW	TER	F	LOW	R/	TE								T	
	.::			•		••		••••		••••						
	¦	<u>.</u>		••••• •••••••		•••••	:	· · • •								;;;
		:		: 		:			• • •				• •	· · · · · · · · · · · · · · · · · · ·	1	
		!. : • • • • •											 	• • • • • • • • • • •		
														• • • • • • • • • • • • • • • • • • •		
•						••••							: • • ₋ •		111]-	
· · · · · · • • •			+							••••		···•				
		•		• • •	· ·				. :		1		i. I. [.] .			
					: 1 ;				:		1 • •	/				
	1											/				
		• • • • • •	-	· · · ·		• ••				• ••				 .		
		•					•				ζ.		, : . 		·	
	:		. 				, 			/.			; 1 • • • • •			
			1 • •			-		i	./			• • • •		•		
1	t		1					1					i t		i	
	· • • • • •							1					· • · · · ·	• • •		
		•					•							·		
· • • · · · ·	 i	• •		• • • •		•	./		- · · ·		·· •·	· • • • •	 I	••••		
				1								• •		• •		
•					• • •		• • • •				. :					·
,	•							ļ								
			! ·	. :		•						,		•••		•
••••				1	. .			• •			· •	, I			· · -•	
			• •	/ :		•		-		1						i i
				1		••••		!				·				
						. 1				1		•				
														1		
:				1		:		;								i
						:				1				,		
					• • •					· • • •	••••		· • · •			:
	:- :			1	•				•							:•
					-·· .		<u> </u>	•••						·- {		
				;		1				!						;
1	:					ļ								:		1
								:				••••		••••	• • • •	
ļ	• •	:		1		:		· .		•				1		i
		· · •	•••	; ;		•		÷	• •			• •		•	· •••	
				•		;				,		1				. !
	••••				••••								•	; ,		
				1								1			•	i
		:		. :					-			;				1
		+	• • •		••••	;		;	•••			• •	•••			1
		 -10)			 ר	 (י	çi	 ثان	<u></u>))	- <u></u> +	 :	-
ζU	,	i	2	4,	"	4	Э.	Å	G	JC	ن. 	رب د	د	3	I	
T.TNI	n D	নিব	ככזו	ਸ਼ਿ	(P	ςτ <i>ι</i>	2)									
1111																

SELECTION OF LIQUID SAMPLE TITRANT CONCENTRATIONS

Separator Tank has 196 liters liquid = 433 lb H_2O HCl has a molecular weight of 36.45 gm/gm-mole

Possible HCl concentrations in separator tank:

LB HCl in Tank	Gm-Moles HCl , in Tank
1.0	12.4
2.0	24.8
3.0	37.2
4.0	49.6
5.0	62.0
6.0	74.4
7.0	86.8
8.0	99.2

Sample size will be 15 ml Want titrant used to be in range of 30 to 120 ml, preferrably in range of 50 to 90 ml

Therefore use:

a) .10 M NaOH for 5 to 8 lbs HCl expected b) .05 M NaOH for 3 to 5 lbs HCl expected c) .02 M NaOH for 0 to 3 lbs HCl expected

Conc. of HCl in Tank 0.0633 0.127 0.190 0.253 0.317 0.380 0.443 0.507

VITA

NAME:	Mark Richman
DATE OF BIRTH:	February 7, 1952
PLACE OF BIRTH:	Queens, New York
PARENTS NAMES:	Donald and Beatrice Rick
MARITAL STATUS:	Single
EDUCATION:	
Elementary:	Rufus King Public Schoo
	George J. Ryan Junior H Queens, Ne
High School:	Francis Lewis High Scho
University:	Polytechnic Institute o
DEGREE:	Bachelor of Science in June, 1972
PROFESSIONAL EXPERIENCE:	Presently employed as a with

-79-

Cottrell Environmental Sciences, a division of Research-Cottrell, Inc.

chman

ol, Queens, New York High School ew York ool, Queens, New York of Brooklyn

Chemical Engineering 2

a Development Engineer