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ABSTRACT 

Vapor-liquid equilibri mpositions of the ternary 

system: Tetrafluoromethane - Trifluorochloromethane - Trifluoro

methane were determined at -100°F and at total pressures of 50 

and 100 p.s.i.a., covering the full range of compositions.· 

Data for the binary system: Tetrafluoromethane - Tri

fluorochloromethane were also taken at -100°F. 

Liquid-phase activity coefficients were calculated, a 

wodified Redlich-Kwong equation of state being used to c.escribe 

the vapor phase. 

The experimental results can be satisfactorily correlated 

using data of the pure components and of the three binary .systems, 

The correlation developed also per~its the prediction of the phase 

equilibria of the ternary system at. -100°F and any iptermediate 

pressure between 25 and 220 p.s.i.a, 
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·-i. INTRODUCTION 

The importance of the halogenated hydrocarbons, commercial

ly called 11 Freons 11 ,as refrigerants, solvents, aerosol propellants, 

etc. is well kno~n. 

The proper design of the equipment where these substances 

are used or processed requires knowledge of ·tteir volumetric 

behavior, heat capacity, phase equilibria, etc. Therefore, these 

thermodynamic properties have been. investigated with some extension 

during the last rew years. 

As part of a continuing program directed toward these 

goals, the vapor-lic;,uid equilibria of binary systems of the lig:hter 

fluorocarbons Cf ( Freon-14) , CClf ( Freo'n-13 ) and CEF 
4 3 3 

( Freon-23 ) have been determined ( 10, 13, 14 ). 

Thus, it was decided to study the corresponding ternary 

system, under isothermal and isobaric conditions, and to find out 

whether these experimental values agreed with the ones predicted 

using pure and binary data o·nly. 

The temperature selected was -100°F, since two of the sets 

of binary data already available included this isotherm. Vapor

liquid equilibria of the other biµary ( CF - CClF ) had been 
4 3 

established at -120° and -60°F. Interpolation procedures used to 

generate data at -10·0°F. were not considered adequate, and therefore 

this binary syst_em was a1so included in the present work. 
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At the temperature selected, the vapor pres.sures of CF , 
4 

CClF and CHF are 223.8, 22.a and 23.7 p.s.~.a. respectively, 
3 3 

3 

Accordingly, pressure levels of-50,and 100 p.s.i.a. were chosen •. 
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2. EXPERIMENTAL APPARATUS 

Vapor-liquid equilibrium data were taken using an apparatus 

of the vapor-recirculation type, which has been described previous

ly ( 10 ) • 

Essentially, its operation is as fallows : .the equilibrium 

glass cell is placed in a constant-temperature bath, and once a 

liquid level is established, the vapor phase is removed and conti

nuously circu1ated, by means of a.gas pump, to the bottom of the 

cell, thereby promoting the intimate contact of both phases which 

is needed to attain equilibrium conditions. 

The equilibrium cell has an approximate volume of six cc. 

It is provided with a three-junction thermopile for temperature 

measurement, a liquid sampling probe, vapor dispersion devices and 

a liquid-entrainment suppressor. 

After removal from the top of the cell, the vapor passes 

successively through a sampling coil, a reciprocal pump which 1.s 

operated magnetically, a volume regulator, and a cooling coil 

~ placed in the constant-temperature bath, from which it is injected 

to the bottom of the cell. 

The volume regulator 1s used to keep a constant pressure 

1.n the system while liquid samples are withdrawn. 

The cons·tant-temperature bath consists of a three-liter 

flask filled with an appropiate liquid and provided with a stirrer 
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in order to have a vigorous agitation. 

Low temperatures are attained by circulating liquid nitro

gen inside a finned heat exchanger placed inside the thermostatic 

bath. A Bayley proportional temperature controller, which operates 

an electrical heater, is used to keep the bath temperature at a 

constant level. 

The liquid sa~pling probe and the vapor sampling coil are 

connected to corresponding manifolds, where samples are collected 

in small cylinders. 

A 165 cc cylinder was added to the inlet manifold, in order 

to facilitate the ch~rging of gases into the apparatus by recording 

the manifold pr~ssure before and after a given gas is admitted. 

The total volume of the apparatus is approximately 270 cc. 

A'schematic of the system in Fig. 1. 
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3. EXPERIMENTAL PROCEDURE 

3.1 Temperature measurement. 

The temperature was measured with a three-junction copper -

constantan thermopile placed inside the equilibrium cell. The 

reference junction was immersed in a water - ice bath, and the 

voltages generated were determined with a Leeds & No;rithrup type 

K-3 potentiometer. 

The thermopile had been previously calibrated against 

a platinum resistance thermometer, calibrated at ~he ~ational 

Bureau of Standards. The maximum possible error in the reported 

temperature is± 0.1°F. 

Temperatures were controlled to within± 0.02°F with the 

proportional controller. 

3.2 Pressure measurement. 

Heise precision Bourdon-tube gauges were employed, and 

depending on the system conditions, a 0-100 p.s.1.a. gauge with 

0.1 p.s.i.a. subdivisions, or a o~soo p.s.i,a. gauge with 0,5 

p.s.i.a. subdivisions, was selected. 

These gauges had been calibrated ~ith a dead-weight tester 

manufactured by Ruska Company. This calibration indicates that the 

accuracy of the gauges is as good as they can be read. 

Pressures could be read to within± 0~01 and± 0~1 p.s.i.a. 
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respectively, 

When ··working in the ternary system .under isobaric conditions, 

pressures were kept constant to within± 0~1 p,s,i.a, 

3.3 Operation. 

3.3-1 General. 

The whole apparatus wa.s evacuated to approximately 100 

microns of mercury, this vacuum being read with a McLeod gage. 

After purging twice with the first component to be added, the gas 

pump was started and liquid nitrogen was circulated to cool the 

bath liquid to a temperature slightly below -100°f. Then the 

temperature controller was connected and its set point adjusted 

until the desired millivoltage from the cell thermopile was read 

in the potentiometer. 

Liquid-nitrogen flow rate and the power output of the 

controller were manually adjusted so that the controller.meter 

could be stabilized near the middle of its range. An adjustable 

transformer was used to supply the heating element, and final 

manipulations were made in order to have the output of the trans

former at around 25% of the total output. This procedure a·11owed 

a low consumption of liquid nitrogen. 
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3.3-2 Binary System. 

The first component, either CF
4 

or CC1F
3

, was slowly ad

mitted to the apparatus through the gas-inlet manifold, which was 

connected to .the supply cylinders of the pure gases, until a liquid 

level could be seen inside the cell. After a short time, gas bubbles 

rose through the liquid. The amplitude and frequency cf the gas 

pump were then adjusted so as to have a steady stream of bubbles 

in the cell. 

The system was left to run until a constant pressure 

could be recorded, which corresponded to the vapor pressure of the 

first component, The pump was stopped and thi"s pressure was recorded. 

The gas pump was then started again, and the second compo

nent, which had been previously charged in the evacuated gas

inlet manifold, was slowly admitted to the apparatl).s until the 

liquid level reached approximately one half of the cell height. 

Pressure oscillations were observed which lasted· for about 

20 minutes. After the system pressure was ·at a steady-state value, 

at least 30 more min:u_tes were allowed to elapse, to be sure that 

equilibrium conditions had been attained. During this period the 

liquid sampling probe was flushed twice. 

The gas pump was then stopped and the pressure was recorded. 

A vapor sample was trapped in the vapor sampling coil, while simul

taneously ·•a liquid sample_ was obtained through the cell probe and 

sent to ,the evacuated sampling manifold, while the pressure was 
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kept unchanged by reducing the volume of the system with the volume 

regulator •. 

The vapor trapped in the sampling coil was sent to a 

sampling manifold, from where it was directed to a stainless

steel cylinde~, with a capacity of 75 cc, which had been evacuated 

to about 50 microns. A similar procedure· was followed with the 

liquid. 

Except for a few samples with high CClF content, most 
4 

samples were obtained at a total pressure of 30 p.s.i.g., which 

was found to provide enough materi~l for analysis. 

Since there remained some liquid in the cell after the 

sampling procedure, another run was possible by further addition 

of the second component. In this way, three or four runs were made 

during one day, 

After some practice, it was possible to get equilibrium 

pressures which covered more or less evenly the full range of 

compositions. 

1 
3.3-3 Ternary Systems. 

The experimental method differed somewhat in this case, 

for besides isothermal conditio,ns, the total_system pressure was 

also to be kept constant. 

At -100°F the binary CHF CClF encompasses a pressure 
3 J 

range of 22.3 to 31,3 p.s.i.a. ( 14 ), while the observed vapo~ 
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pressure of CF was 221.5 p.s.i.a. Therefor~~ the procedure adopted 
~ 

was the same as if the mentioned binary system was to be determined, 

i.e. getting equilibrium pressures necessary to cover the whole 

composition range, as described in Section 3.3-2. Once equilibrium 

conditions were reached, the light component CF was added very 
4 

carefully until the desired pressure was attained. Final adjust-

ments were made by slightly venting the apparatus if the pressure 

had been exceeded, or adding more CF , and by manipulating the 
4 

volume regulator, which provided a very convenient way to get the 

exact pressure desired. 

As in the case of the binary system, at least 30 minutes, 

and usually one hour of steady-state operation were allowed before 

beginning the sampling procedure, which was the same as in the 

binary case. 

Obviously, it was necessary to begin each ternary run 

with the apparatus completely evacuated, then add the two heavy 

components in succession, and finally admit the light component 

as already described. 

The total time required for a given ternary run was 

approximately 2,5 hours. 
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3.3-4 Remarks. 

a) Bath fluid 

12 

Trichlorofluoromethane ( Freon-11) was 

initially used in the cryostat. Bowever, it was observed that the 

moisture from the air which condensed over the cold liquid and 

melting frost that drained into it from other p~rts of the 

apparatus formed a suspension with the organic compound, thus 

limiting, and eventually forbidding, visual observation of the 

equilibrium cell. 

Ac~tone was then successfully used as a constant-tempera-

ture medium. Some sa:ety precautions were taken, such as blowing 

air over the liquid surface, to avoid acetone accummulation in 

the vapor space above the surface that would cause an explosion 

hazard in the electric motor of the stirrer. This precaution was 

required only during t~e start-up period, becau~e at -100°F the 

vapor ?ressure of acetone is so low as to make its evaporation 

negligible, 

b) Gas pum£: It was necessary to externally cool the 

pump with ice in order to have an adequate vapor flow in the 

apparatus. It w~s later verified that this procedure could be 

avoided by a proper choice of the pump piston diameter, since if 

the gap between the piston and the cylinder wall is very close, 

the heat generated by friction expands the piston tightly against 

the wall, and prevents the gas from being displaced inside the 

pump. 
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c) Low-pressure sampl~s : When the system pressure was 

low, on the order of 30 p.s.i.a., the samples collected were 

small enough to cause difficulties in the analytical procedure. 

In these cases the sample cylinders were externally chilled with 

ice, and in this way the mass that flowed into the cylinders was 

increased. 

3.4 Analytical technique. 

Samples were analized chromatographically, using a Beckman 

Instruments, Inc. model GC-2A gas chromatograph. The adsorbent 

column consisted of 18 feet of di-n-butyl maleate coated onto C-22 

firebrick. Helium was the carrier gas, and it was injected to the 

chromatograph at a pressure of 10 p.s.i.g., which proved to give 

a good separation of the three fluorocarbons. The operating 

temperature was 40°C and the fillament current of the thermal 

conductivity .detector was 100 rnA, Each run lasted appoximately 

15 minutes. 

Peak areas were measured automatically with an electronic 

integrator consisting. of a Hewlett-Packard model 8875A differen

tial amplifier, a Dymec model 2210 voltage-to-frequency converter 

and an Anadex model CF-200R digital counter. A strip-chart recorder 

was also used as a visual aid. 

Unknown compositions were determin.ed by comparison with 

peak areas of samples of known composition, both being fed to the 

chromatograph in succession. These peak areas were expressed as 
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counts per mm Hg of sample, .so as to consider.different sample 

pressures that were introduc·ed to the instrument. Sample inlet 

pressures were measured with· a Rusk~ Company model XR-38 pressure 

counter, consisting of a very precise Bourdon tube made of fused 

quartz, which had been calibrated by the manufacturer against a 

dead-weight tester~ Sample pressures ranged from 3 0 O to 7·0 0 mm Hg. 

All the runs with samples of known composition were du

plicated, and a maximum departure of 0.3% from the arithmetic 

average was permitted. The occassional sample that resulted in a 

greater departure was rejected. 

If the mole fraction of the minor component of an unknown 

sample was less than 0.10, this sample was run twice, allowing 

the 0.3% departure. Then this mole fraction was assumed true and 

was left unchanged, and .the other two mole fractions were then 

normalized to a total of 1.00. Otherwise, all three mole fractions 

were normalized.·. 

Most of the unknown samples analized gave an unnormalized 

total mole fraction ranging from 0.98 to 1.02. 

Reference samples, or high-pressure standards, had· been 

prepared several weeks prior to their use in a ·gas mixing appara

tus, at a total presstire o1 ~00 p.s.i.a .. Their composition had 

been,'in turn, determined chromatographically by comparison with 

low-pressure standards of approximately the.same composition. 

The compositions of· the low-pressure standards were 
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obtained by means of partial pressure measurements made with the 

pressure counter already mentioned, Since this is a very sensitive 

instrument, capable of reflecting even ambient temperature fluc

tuations, sufficient time was allowed before a pressure reading 

was made, while room temperature was continuosly monitored with 

a mercury thermometer. When a constant value of the pressure was 

reached, both this pressure and the room temperature were recorded, 

The second component of the mixture was then added and a similar 

procedure was fallowed. If the second tempe.rature was not the· same, 

one of .the pressure readings was corrected through the ideal gas 

law, 

Once the compositions of the binary standard were calcu

lated by means of the partial pressures recorded, they were 

corrected slightly for non-ideal behavior of the gas mixture, 

-
using the virial equation of state truncated after the second 

virial coefficient term, 

Second virial coefficients for· the pure components wer·e 

calculated from the Martin-Hou equation of state ( 9) : 

B 
A + B T + C .exp(~k.Tr.) 

2i 2i 2i i i + b ( 3.4-1) 
ii 

i 

RT 

Values of the individual coefficients and critical tempera

tures of CF4 and CC1F3 were taken respectively from ( 2 ) and ( 3. ) • 
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For CHF ,Martin-Hou constants were taken from ( 4) and the cri-
3 

tical temperature from ( 5 ). 

Second virial cro$S coefficients, B , were computed 
ij 

from the generalize~ Pitzer-Curl dorrelation ( 11 ), using the 

mixing rules proposed by Prausnitz et al, ( 12 ), 

Low:- and high-pressure standards consisted only of binary 

systems of CF - CHF and CClF - CHF , because it was verified 
4 3 ::l 3 

that peak areas for a given component were not affected by the 

presence of the other components nor by their identity. Therefore, 

each unknown composition was determined in the way described by 

corr,parison with standards· of approximately the same composition. 

Most of the time three standards were needed to analize one single 

unknown sample. 

The maximum possible error in the reported .lesser mole 

fraction is estimated to be ±. 0, 3%. 

3, 5 Materials. 

The three fluorocarbons used were made by E.I. du Pont 

de Nemours & Co. The manufacturer indicated the following purities: 

CF 
4 

CClF 
3 

99.96% 

CHF 99, 9 8% 
3 

Chromatographic analysis of CF and CHF confirmed these 
. 4 ~ 

figures, However, the CClF suppiied had a purity of 99,9% , 
3 

the· remaining 0 .• 1% ·being CF 1t, 
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4. EXPERIMENTAL RESULTS 

Exp·erimental equilibrium compositions and pressures for 

the binary system CF - CClF at -100°F are given in Table 1. 
4 3 

Equilibrium compositions for the ternary syst~m CF 
4 

CC1F
3 

- CHF
3 

at -100°F and 50 p.s.i,a., and at -100°F and 

100 p.s.i.a. are given in Tables 2 and 3, respectively, 

These experimental results are also shown in graphical 

form in Figures 2, 3 and 4. 

Discussion. 

The press.ure-composi tion diagram of the binary system, 

17 

Fig. 2, show~ that the liquid phase has a nearly ideal behavior~ 

the saturated liquid line going slightly above and below the 

straight line drawn between the pure-component vapor pressures. 

This fact is also reflected in the activity coefficients determined 

in the next section, where the values for CClF have a positive 
3 

and negative deviation from unity. 

The binary system CC1F
3 

- CHF
3 

·forms a maximum-pressure 

azeotrope at -100°F ( 14 ). No such behavior-was observed by the 

addition of a third and lighter component CF't , as would happen 

if the vapor and liquid envelopes on Figures 3 and 4 touched each 

other, 
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However, at the lower pressure of 50 p.s·.1,a., two "partial 

azeotropes 11 are formed in the ternary system, whereby the compo:-

si tion of one of the two heavy components is the same in the liquid 

and vapor phases, This occurs for a CClF mole fraction of about 
. 3 

0.15, and for a CHF
3 

mole fraction of.about 0.23, For mole fractions 

smaller than these values, the vapor phase is richer than the liquid 

in the corresponding heavy component. 

This peculiar behavior was not observed in the ternary 

system at 100 p.s.i,a. total pressure. In thi~ case all the tie

lines had a positive slope. 



Pressure 

( p.s.1.a. ) 

22.4 

29.2 

35.5 

50.0 

52.2 

77.2 

100.0 

123.1 

150.1 

174.5 

199.5 

221. 5 

TABLE 1. 

Experimental data for the binary system 

CF -CClF at -100°F. 
4 ;; 

Mole Fraction CF 
4 

Mole Fraction CC1F
3 

Liquid Liquid Vapor 

0 I 0 0. 0 1. 0 1. 0 

0.0277 0.2278 0.9723 0.7722 

0.0540 0.3805 0.9460 0.6195 

0 I 119 2 0.5811 0.8808 0.4189 

0.1248 0,6017 0.8752 0.3983 

0.2422 0.7534 0.7578 0.2466 

0.3617 0.8283 0,6383 0.1717 

0.4942 0. 8 772 0.5058 0.1228 

0.6489 0.9165 0.3511 0.0835 

0.7783 0.9479 0.2217 0.0521 

0.8949 0.97.37· 0.1051 0,0263 

1. 0 · LO a.a 0 •. o 

. - " 

19 
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· TABLE 2 

Experimental data for the ternary system: 

CF CClF - CHF at -100°F and 50 p.s.i.a, 
4 3 3 

Liquid Mole Fraction Vapor Mole Fraction 

CF 
4 

0.0445 

0.0446 

0.0452 

0.0466 

0.0490 

0.0486 

0.0510 

0.0525 

0,0556 

0.0608 

0.0634 

0.0668 

0.0691 

0.0740 

0.0754 

0.0814 

CClF . . 3 

0. 0 

0.0341 

0.0692 

0 .10.9 6 

0.1525 

0,1716 

0.2218 

0.2542 

0.3019 

0.4163 

0.4554 

0.5055 

0.5290 

0.6074 

0 .• 62 9 2 

0.6978 

CHF 
3 

0.9555 

0,9213 

0,8856 

0.8438 

0.7985 

0.7798 

0.7272 

0.6933 

0.6425 

0.5229 

0,4812 

0.4277 

0.4019 

0.3186 

·0,2954 

0.2208 

CF 
4 

0.5205 

0.4901 

0.4656 

0.4448 

0.4290 

0.4223 

0.4104 

0.4043 

0;4001 

0.3898 

0.3909 

0.3945 

0.3974 

0.4073 

0.4103 

0.42811: 

CClF 
3 

0. 0 

0.0450 

0,0843 

0.1211 

0.1490 

0.1666 

0.1952 

0.2114 

0.2293 

0.2743 

0.2859 

0.3004 

0.3061 

0.3272 

0.3311 

0.3495 

CHF 
3 

0.4795 

0.4649 

0.4501 

0.4341 

0,4220 

0.4111 

0,3944 

0.3843 

0.3706 

0.3359 

0. 3 2 32. 

0.3051 

0.2965 

0.2655 

0.258fr 

0 ,·2 2 21 

20 



i 

I 
I 
1 
l 
l 
r: 
L 
!,,' 
i 

·:·( 
. ' 

~ 
1. 

TABLE 2 ( cont. ) 

Liquid Mole Fraction Vapor Mole Fraction 

CF 
4 

0.0886 

0.1010 

0.1100 

0.1192 

CClF 
3 

0.7470 

0.8183 

0.8536 

0.8808 

CHF 
3 

0.1644 

0.0807 

0.0364 

0 I 0 

CF 
4 

0.4490 

0.4978 

0,5384 

0.5811 

CClF 
3 

0.3642 

0.3932 

0.4074 

0.4189 

0,1868 

0.1090 

· 0.0542 

o.o 
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TABLE 3 

Experimental data for the ternary system: 

CF CClF CHF at -100°f: and 100 p,s,i,a, 
1t 3 3 

Liquid Mole Fraction Vapor Mole Fraction 

CC1F 3 CF 
4 

0.1488 

0.1656 

0.1842 

0.2174 

0.2490 

0,2698 

0.2933 

0.3069 

0.3152 

0.3197 

0.3234 

0.3355 

0.3454 

0.3523 

0.3617 

o.o 

0.0428 

O.G871 

0.1.758 

0,2649 

0. 3.410 

0.4418 

0.4876 

0.5146 

0.5242 

0.5524 

0.5906 

0.6186 

0.6256 

0.6383 

CHF 
3 

0.8512 

0.7916 

G.7287 

0.6068 

0.4861 

0.3892 

0.2649 

0.2055 

0.1702 

0.1561 

0.1242 

0.0739 

0.0360 

0.0221 

0, 0 

0.7666 0. 0 0;2334 

0.7546 0.0264 0,2190 

0.7519 0, 041'5 0,2066 

0.7382. 0.0752 0.1866 

0.7373 0.0947 0,1680 

0.7371 0.1099 0.1530 

0.7405 0.1349 0,1246 

0,7484 0.1431 0.1085 

0,7556 0,1492 0,0952 

0.7598 0.1488 0,0914 

0,7688 0.1531 0,0781 

0.7874 0.1589 0.0537 

0.8087 0,1642 0.0271 

0.8143 0.1672 0.0185 

0,8283 0.1717 o.o 
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5. CORRELATION OF THE DATA 

5.1 General. 

The fundamental equilibrium equation is 

_v -1 
f = f 

i i 
( constant T,P) ( 5-1) 

This equation is more conveniently written as 

¢ y p = y X fOi ( 5-2 ) 
i i i i i 

If an equation of state is assumed to des·cribe the be

havior of the vapor phase, then the fugacity coefficient,¢ , 
. i 

can be calculated from the equation chosen by meins of exact 

thermodynamic relation ships <. 12 ) . 

23 

The liquid-phase standard state or reference fugacity, 

f 01 , can also be readily determined, since only data of the pure. 
i 

components is required. 

Therefore, experimental phase-equilibria compositions can 

be reduced to liquid-phase activity coefficients through the ap

plication of Eq. 5-2. 

Oncie the activity coefficients are calculated, they can 

be correlated in terms of the liquid mole fractions according to 

semi-empirical equations. 
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This completes the information needed to correlate and 

predict the equilibrium qonditions within the .. range experimentally 

investigated. 

5,2 Vapor-phase fugacity coefficients. 

A modified Redlich-Kwong equation of state ( 1) was used 

RT a 
p = ( 5-3 ) 

V - b 

The two constants of the ~quation ar~ given by 

a = 
p 

p 
C 

( 5-4 ) 

C 

( 5-.5 ) 

The modification introduced to the original equation 

consisted of the determination of the dimensionless parameters 

na and nb by fitting the equation to the volumetric data of the 

saturated vapor. 

Chueh and Prausnitz ( 1) have presented ~uch results for 

19 components. During the course of the present work it was veri

fied that those two parameters could be weil correlated with the 
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acentric factor, Accordingly, the parameters_ for the three fluoro

carbons were determined in this way, 

Numerical values of n and n , together with pure-
a o 

component conptants and ·physical pro'perties, are given in Table 4. 

In order to apply the equation of state to a mixture, some 

combining rules are needed to compute .constants for the mixture 

from the pure-component constants. Such rules have also been es

tablished in the reference mentioned. 

For any given binary system, only one interaction constant, 

k , is required. No ternary or higher interaction constants are 
ij 

needed to calculate the constants of the equation of state for a 

multicomponent system. The interaction term is usually-determined 

from volumetric data of the binary mixture. 

The following values of k were used 
ij 

CF
4 

- CHF 
3 

0.1055 ( 8 ) 

CC1F
3 

- CHF 
3 

0.0640 ( 14 ) 

CF -
4 

CClF 
3 

0. 0 

No volumetric data were available for the last binary. 

Since the interaction term can be, in some way, related to a 

different molecular size of the two species, and, since CF and 
't 

CC1F
3 

have a similar .size, it was assumed that k was zero for 
ij 

this system. 

Once the mixture constants are known, the fugacity coef

ficient is given by the expression ( 1) 
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N 

V b 2.l/.a .. V+b 
ln ~. = ln- + __i J= l. lJ ln-- + 

l. V-b V-b RT l I 
5b V 

( 5.6 ) 

·ab. V+b b PV 
l. ( ln -- ) - ln 

RTl, 5b2 V V+b RT 

where 

); N 
a = I I y.y. a .. 

i j l. J l.J 
( 5. 7 ) 

N 
b = I y. b. 

1 
l. l. 

( 5 • 8 ) 

The molar volume of the vapor was calculated from Eq. ( 5-3 ) 

using a Newton-Raphson iterative technique. 

The fugacity coefficients of the binary system CF -CHF 
4 3 

had been previously calculated ( 10 ) through the use of the 

Martin-Hou equation of state ( 9 ). For the. sake of consistenty, 

values of~- needed to get activity coefficients, which in turn 
l. 

were used in the correlation of ternary data, were recalculated 

with the modified Redlich-Kwong equation applied to the experimen

tal vapor compositions of this binary. 
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TABLE 4 

Constants of the pure ·components. 

CF CClF .CHF 
4 3 3 

T OR 409.5 543.6 538.3 
C 

p p. s .i .a .. 543.2 561. 3' 701.4 
C 

V ft 3 /lb mole 2,2531 
C 

2,8961 2 .., ~ 5,.. 
.... j C? 

:..., 0.1777 0.1703 0.2654 

~ 0.4408 0,4400 0.4532 
a 

i\ 0,0896 0,0894 0.0923 

.?s a-c -100°f p .. s .i .a. 223.8 22.28 23.72 

vt - .... -1QQOf ft 3 /lb mole 1.1200 1. 12 3 2 0.7958 
al. 
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5.3 Liquid-phase standard-state fugacity. 

At the temperature of -100°F, the three fluorocarbons are 

subcritical, that is to say, they can exist as a pure liquid. 

The standard-state fugacity can then be chosen as that of 

the pure liquid at the system.temperature and some specified 

pressure. This fugacity is more easily determined from the equi

librium equation applied to the pure component ( 12 ) : 

( constant T, P ) C 5-9 ) 

where, by definition of the fu~acity co~fficient, 

V s S 
f. = th. P. 

l. 'l'i l. 
( 5-10 ) 

The fugacity coefficient of the pure component in the 

vapor phase was calculated from the modified Redlich-Kwong equation 

OI state, as explained in the preceding section. 

For convenience, the reference pressure was selected as 

.zero p.s.i.a. Therefore, 

f.o. i s s ( ) = ~ . P. exp ( 
l. J:>.oQ l l. 

v9: 
f o _:_ dP ) 
P~RT 

l. 

( 5-11) 

In performing the integration,. it was assumed that the 

molar volume of the pure liquid was independent of the pressure. 
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This assumption is very nea-rly true if the system is remote f:rom 

its critical conditions, as in this case. 

Values of saturation pressures and liquid volumes fqr CF , 
4 

CClF and CHF were taken from ( 6) , ( 3 ) and ( 4) respectively. 
3 3 

5.4 Liquid-phase activity coefficients. 

Isothermal activity coefficients were correlated using 

integrated for~S of the Gibbs-Duhem equation · 

l X d ln y. = Q 
i l. 

( Constant T,?) ( 5-12 ) 

i 

However, the starting, fundamental equilibrium relation

ship, equa·tion ( 5-1 ) , considers the system pressure, whic_h for 

an isothermal binary system varies with the composition. This 

system pressure was also used in determining the fugacity coef

ficients~-, 
·l. 

Therefore, it was desired to calculate all activity 

coefficients at a constant reference pressure, namely zero p.s.i,a, 

For·the ·ternary system, the pressure was held constant, 

as required by the Gibbs-Duhem equation. In the correlating pro

cedure adopted, ternary activity coefficients are·expressed in 

terms of binary coefficients. Since a comparison is desirable 

between experimental and predicted (correlated) activity coef

ficients, the same pressure correction was applied to the ternary· 
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system 

-i pV. 
= ( f . ) p = O exp ( f i dP 

i ORT 
) ( 5-13) 

where 

( 5-14) 

Again, because all systems were remote rro~ ~heir critical 

conditions, it was assumed that the partial molar volumes could 

be replaced by the molar volunes of the pure liquids, and tha~ 

these were pressure-independent. 

The final expression for the activity coefficients is 

¢.y. p 
( y i ) P= 0 -. _______ i_i _____ _ 

x. ·A~ P~ exp! V. ( P-P~ ) /RT } 
1 ~J. J. l 1 1 

( 5-15 ) 

For the binary CF - CHF , Piacentini ( 10) did not use 
4 3 

the molar volume of pure CF., but rather the partial molar volume 
4 

at infinite dilution. At -100°F the two values differ by appro-

ximately 109,;. ( The difference was much greater at the higher 

temperatures also investigated by Piacentini ). 

Consequently, t11is slight -mo.dification was introduced to 

this binary by the use of the molar volume. 
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Calculated fugacity and activity coefficients for the 

binary systems CF 4 - CC1F 
3 

and CF 
4 

- CHF 
3 

ar_e given in Tables 5 

and 6, respectively. In the latter, a comparison with Piacentini's 

values is given,. The y 1 s· for both systems .are shown in Figures 5 

and 6, 

Similar results for the ternary system at 50 and 100 

p.s.i.a are given in Tables 7 and 8, respectively, 

5.5 Thermodynamic consistency.-

The Redlich-Kister area test was used to check the thermo

dynamic consistency of the binary data, This well known method 

requires that 

1 y 
f log ~dx = 0 
0 y 1 

2 

( 5-16 ) 

for a consistent set of binary equilibrium data. 

The experimental values of log ( y
1 

/ y
2 

) were f :i. tted with 

a third-order polynomial in _x
1 

and an analytic~l integration was 

performed. 
. . 

The results are shown in Table 9, where a comparison_ is 

again presented for the CF - CHF system between Piacentini 1s 
4 · 3 

values and the ones obtained in this work, 
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TABLE 5 

Calculated Fugacity and Activity Coefficients of the System 

CF, ( 1) - CC1F
3 

( 2) at -100°F. 

X 
l 

0.0277 

0.0540 

0.1192 

0.1248 

0.2422 

0.3617 

0.4942 

0.6489 

0.7783 

0.8949 

0.9759 

0.9694 

0.9552 

0.9531 

0.9295 

0.9083 

0.8869 

0.8621 

0.8396 

0.8166 

0.9433 

0,9316 

0,9056 

0.9017 

0,8581 

0.8192 

0.7803 

0.7355 

0.6957 

0.6553 

/ 

1. 3953 1.0245 

1.4411 1.0126 

1.3779 1.0026 

1.4186 0,9967 

1. 310 5 0.9957 

1. 2132 1.0111 

1.1228 1.0629 

1.0 5 0 6 1.1872 

1.0185 1.2810 

1,0045 1. 45 8 2 



TABLE 6 

Calculated Fugacity and Activity Coefficients of the System 

CF ( 1 ) - CHF ( 2 ) at -100°F. 
4 3 

<-~ ,;_: 

X <f> <f> y y 
1 1 2 1 2 

~ b a b a b a b 

0.0032 0.9878 0.9896 0.9582 0.9354 5.2012 5.2589 1.0075 0.9989 

0.0070 0,9842 0.9858 0,9545 0.9_294 4.5.865 4,6372 1.0080 0.9969 

0.0127 0.9805 0.9819 0.9510 0.9237 3,88:J.G 3.92L~O .0.9977 0.9843 

0.0203 0.9747 0.9759 0.941+2 0.9129 3.7130 3.7533 1.0242 1.0057 

0.0362 0.9640 0.9644 0.9329 0.8939 3.5419 3.5782 1.0318 1.0042 

' 
0.0557 0,9531 0.9527 0.9218 0.8756 3.3191 3.3511 1.0288 0,992S 

0.0924 0.9357 0.9341 0.9036 o .. 04·5 8 2.9909 3.0171 1,0397 0. 9.8 84 

0.1350 0.9171 0.9143 0. 8 8 411 0.8146 2.7728 2 .7945 1.0428 0, 9"7 5·5 

0.2424 0,8857 0.8810 0.8521 0.7631 2.1979 2.2120 1.0932 0.9945 

0.3956 0,8582 0.8514 0.8229 0.7164 1.6648 1.6723 1.3019 1.1511 

a This work 
' 

b Reference ( 10 ) 

w 
~ 



TABLE 6 C cont. ) 

X <j) <j) y y 
1 l 2 1. 2 

a b a b a b a b 

0,5103 0,8438 0. 8.362 0.8091 ·0,6948 1.4208 1.4261 1.4775 1.2887 

0.5721 0.8371 0.8291 0.8024 0.6844 1.3185 1.3230 1.6398 1.4206 

0.5794 0,?372 0,8292 ·0.8024 0,6845 1.3009 1.3053 1.6718 1. 448"5 

·0,7462 0,8215 0.8119 0.7897 0.6635 1.1123 1.1140 2.2454 1.9163 

0,8194 0.8132 0,8030 0.7837 0,6541 1.0633 1,0642 2.6609 2.2557 

0.9068 0.8041 0.7931 0.7796 0.6473 1.0193 1.0193 3,4036 2.870~ 

0,9190 0.8034 0,7924 0.7788 0.6461 1.0084 1.0084 3.9173 3.3009 

0.9484 0.7989 0.7875 0.7778 0.6443 1.0085 1.0080 4.0.232 3,3850 

a This work 
' 

b Reference ( 10 ) 



X 
1 

0.0446 

0,0452 

0.0466 

0.0490 

0.0486 

0.0510 

0.0525 

0.0556 

0.0608 

0.0634 

TABLE 7 

Calculated Fugacity and Activity Coefficients of the System 

CF ( 1) - CClF ( 2 ) - CHF~ ( 3) at -1b0°F and 50 p.s.1,a, 
~ . 3 ~ 

X X <l>l <I> 2 ·<I> yl y2 
2 3 3 

0.0341 0.9213 0.9603 0.9111 0.9298 3 ._1224 2.7988 

0.0692 0,8856 0,9602 0.9105 0,9301 2.9265 2.5819 

0.1096 0.8438 0.9600 0.9099 0.9303 :2. 7114 2.3403 
~ 

0.1525 o-. 7 9 8 5 0,9599 0,9095 0,9306 2.4867 2.0685 

0.1716 0.7798 0.9598 0.9091 0.9_308 2.4677. 2.0547 

0.2218 0. ·7 2 7 2 0.9596 0.9087 0,9312 2,2849 1,8616 

0.2542 0.6933 0.9595 0.9084 0.9315 2.1863 1.7586 

0.3019 0.6425 0.9593 0.9081 .o. 9 319 2.0426 1.6056 

0.4163 0.5229 0.9589 0,9074 0,932.8 1.8190 1.3918 

0.4554 0.4812 0.9587 0.9072 0.9333 1.-7 49 0 1.3258 

y3 

1,0217 

1.0292 

1.0421 

1.0708 

1.0685 

1.0997 

1 .1·242 

1.1703 

1.3048 

1. 3_648 

w 
c.n 



xl X X 
2 3 

o·. o 6 6 8 0~5055 0.4277 

0.0691 0.5290 0.4019 

0.0740 0.6074 0.3186 

0.0754 0. 62.92 0.2954 

0.0814 0.6.978 0.2208 

' Q.0886 0.7470 0.1644 

0.1010 0.8183 0.0807 

0.1100 0.8536 0.0364 

TABLE 7 ( cont. ) 

¢1 ¢2 ¢3 

0.9584 0.9069 0.9338 

0.9583 0.9068 0.9341 

0.9578 0.9064 0.9352 

0.9577 0.9063 0.9355 

0.9572 0.9059 0.9369 

0.9568 0~9057 0.9383 

0.9560 0.9054 0.9416 

0-. 9 5 5 5 0.9054 0.9442 

y 1 y 2 

1.6748 1.2545 

1.6307 1.2214 

1.5600 1.1366 

1.5421 1.:1102 

1.4906 .1. 0563 

1.4347 1.0279 

1.3941 1. 01_27 

1.3839 1.0059 

'y 3· 

1.4505 

1.5006 

1.6970 

1.7831 

2.0519 

2.3213 

2.7693 

3.0613 

w 
O'> 



X 
1 

0.1656 

0 .1842. 

0.2174 

0.2490 

0.2698. 

0.2933 

0.3069 

0.3152 

0 ,-319 7 

0.3234 

0,.3355 

0.3454 

0,3523 

TABLE 8 

Calculated Fugacity and Activity Coefficients of the System 

CF,.. ( 1) - CC1F
3 

( 2) - CHF;3 ( 3) at -100°F and 100 p.s.i.a. 

X X 4> 4> 4> y y 
.. 2 3 1 2 3 1 2 

0.0428 0.7916 0.9106 0.8215 0.8788 2.4202 2,3252 

0,0871 0.7287 0.9104 0.8211 0.8796 2.1675 ·1.7951 

0.1758 0.6068 0,9102 :o.8201 0.8807 1.8026 1.6097 

0.2649 0.4861 0.9099 0.8196 0.8821 1.5715 1.3444 

0.3410 0.3892 0. 9 0 9 7· 0. 8:1..9 2 0.8832 1.4496 1.2114 

0.4418 0.2649 0 .·909 4 0,8186 0.8855 1.3392 1.1469 

0,4876 0.2055 ·0.9092 0.8185 0.8869 1.2932 1.1022 

0.5146 0.1702 0,9090 0.8:1.8ll 0.8881 1.2710 1,0888 

0.5242 0.1561 0.9090 0. 8:1. 8 5 0.888S 1,2600 1~0661 

0.5524 0.1242 0.9088 0.8185 0.8898 1,2601 1~0409 

0,5906 0,0739 0,9086 0.8187 0.8922 1,2437 1,0107. 

0.6186 0.0360 0.9084 0.8189 0,89SO 1.2405 0.9974 

0. 62 5 6 0.0221 0.9083 0.8190 0.89S9 1.2246 1.0043 

y 
3 

1.0479 

1.0749 

1.1674 

1.3140 

1.4965 

1,7952 

2.0183 

2.1411 

2.2423 

2.4116 

2.7945 

2. 9 0 3.9 

3,2323 
w 

" 
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TABLE 9 

Thermodynamic Consistency of the Binary Data at -100°F. 

Positive Area Negative Area 

CF4 - CC1F 3 
0.0487 0,0474 

0.1420 6.1615 

0.1587 0.1425 

C 

ChF 3 - CC1F3 

a 

b 

C 

This work 

Reference ( 10 ) 

Reference ( 14 ). 

Pos.Area - Neg.Area 

Pos,Area + Neg.Area 

+0.014 

-0.064 

+0 .. 053 

+0.001 
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5.6 Correlation of activity coefficients. 

With activity coefficients already determined at constant 
.. 

temperature and reference pressure, it is necessary to express 

their dependence with liquid-phase composition. 

The molar excess Gibbs energy, GE, can be determined from 

N 

E l X. ln y. G = __ i ___ i ( 5-17 ) 
RT 

From this, the following expression can be derived 

1 a < 
ln Y. - . 

l. RT 

n G 
T 

an. 
l. 

E 
) 

( constant T,P,n. ) ( 5-18 ) 
J 

E If an analytical equation relating G to x is assumed, 
i 

then equation ( 5-18 ) can be used -to f·ind the compositio11: depen-

dence of the activity coefficients. 

These analytical expressions are of an empirical: or semi

empirical nature. They must also satisfy the Gibbs-Duhem equation, 

which is now written as 

'.:I' 

N 
I xi( d ln Yi )P~F~ = 0 ( constant T) ( 5-19 ) 

with boundary conditions, for subcritical components, 



~

:r· __ :·_ .. 
; 

"ii : 
~-

ll 
II.' 
'I I 

~( ' 
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Yi=· 1_.o ( x. = 1. 0 ) 
l. 

( 5-20 ) 

In this work the Wilson equation ( 15 ) was adopted 

- RT X ln ( 1 
]. 

/\. .. 
l.J 

X. ) 
J 

( 5-21 ) 

The application of equation ( 5-18) to equation ( 5-21) 

yields 

N N ~ /\.. 

) ln Y. = 1 - ln ( l X. /\. .. ) - l ]. k ( 5-22 ) 
]. 

j=l J l.J l<.=l N 

l x./1..k 
j=l J J 

where 

I\. = 1 ( 5-23 ) 
]. ]. 

Equation { 5-22 ) has the .convenient feature of reqµiring 

only binary parameters/\. .. in order to predict multicomponent 
l.J 

activity coefficients. But its main advantage over other equations 

is its ability to give a better p_rediction of vapor-liquid equi

libria at low and intermediate pr~ssures ( 7 , 12 ), 

The adjustable Wilson parameters were calculated by fitting 

equation ( 5-22 ) to experimental activity coefficients of the 

respective binary systems. 



The procedure used was as follows 

A series of values of A
12 

and A
21 

were assumed and the 

corresponding .yl and y
2 

were calculated from equation ( 5-22 ), 

This was done for all experimental points. 

The following terms were then calculated 

2 

.( Y. ) ( Y. ) 
i exper. i calc, ( i=1,2 ) ( 5-21+) 

Y. 
~ exper, J 

The pair of parameters giving the smallest s ur:u:iation o: 

all s~ch terms were selected as the optiffium. 

4-1 

The optiffium values of the Wilson parameters for the t~ree 

binaries are listed in Table 10, where the root-mean-square dif-
. . 

ferences resulting from ( 5-24-) is also given. 

Activity coefficients obtained from these Wilson parameters 

have been plotted together with the experimental values in Figures 

5 and 6 for the systems : CF
4 

- CC1F
3 

and CF
4 

~ CHF
3 

, respectively, 

Once the six binary Wilson- parameters were available, ter

nary activity coefficients were calculated from equation ( 5-22 ) 

in order to test the prediction ability of the Wilson equation~ 

For the ternary system at. 50 p .s ,i,a,, an average deviation 

of 2, 22% and a maximum deviation of 9, 05% were found, .For the ter

nary system at 100 p.s.1.a. the values found were 2,66% and 9.78%, 

respectively, 
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TABLE 10 

Optimum Parameters for the Wilson Equation, 

CF (1) - CClI (2) 
4 . 3 

Ci ( 1) - CHF .C 2) 
4 3 

a 
CHF (1) - CClF (2) 

3 3 

a 
Reference ( 14) 

A 
12 

0.995 

0.469' 

0.494 

A 
21 

0,6G9 

0.345 

0.504 

Root-mean square percentage 
difference from ( 5-24) 

1.78 

3. 5 7 

1. 40 

; 



5. 7 Correlation of the experimental data.·· 

Once the activity coefficients were expressed in terms 

of liquid composi tion·s · through the application of· the Wilson 

.equation, it was possible to develop the following final cor

relating schemes 

5,7-1 Binary system CF
4 

- CC1F
3

• 

The saturation dew- and bubble-point pressures were 

determined by an iterative method ( 12 ) , Two cor,ditions must 

be specified; they were the system temperature and the liq~id 

mole fraction. Vapor composition and e~uilibrium ?ress~re were 

then calculated. The modified R~dlich-Kwong e~uation of state 

was again used to compute vapor-phase fugacity coefficients ar:.d 

pure-component liquid reference fugacities, as explained in 

Sections 5,2 and 5,3, 

The results are shown in Figure 2. 

5.7-2 Ternary system CF 4 - CC1F 3 - Cnf ~· 

Only pure-component and binary data were used in the 

correlation. 

For a ternary· system, three conditions must be stated 

which correspond to the·input of the correlating method. These 

conditions. were chosen as the system temperature and pressure, 

and one of the liquid mole fractions. By a proced.ure sim;i.lar to 
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the one used in the binary system, the other two liquid mole 

fractions and the vapori composition were determined. 

Such results are presented in Figures 3 and 4. 

44 

It is believed that this correlating method can adequately 

predict the eq~ilibrium·conditions of the ternary system at a tem

perature of -100°F and any pressure within the range of the pure

component vapor pressures, 
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6, .CONCLUSIONS 

1. The experimental apparatus 1s well suited for the determir.ation 

of the vapor-liquid equilibria of a ternary system under isot~1ermal 

artd isobaric conditions.· 

2. Analysis of terr.ary sa.ra:?les car. z.e acco::-:-,:;:ilis·:-.e.c us::.ng o:::ly 

binary reference samples. 

3; ~o ternary azeotrope was founc at either 5C or :cc ?,s.::..a. 

and -100°F. However, at 50 ?,s.i.a., 

a) ?or CC1F3 .mole fractions srr.aller -c:-.an abo·...:.t G ,:;_5, t:-.e va?or 

?nase is richer in this r,eavy co;:qo::-.er.t tr',a::-. t·:,e :-..ic~"L:.ic. :?;.~se. 

'b) For Cnf 3 
mole fractions smaller -cha::-. about J. 2 3, the vapor 

pnase is richer in this heavy compo~ent than the li~uid pta.se. 

4. The experimental equilibrium cona1t1ons are ade~ua.-ce:y cor

related using only data of the pure substances and of the corres

ponding binary systems. 

5. It is believed that ·the correlating scheme can ·be used to 

predict the vapor-liquid equilibria of the ternary system ~t -100°F 

.and any pressure between the vapor pressures .of the pure components, 

that is to say, 25 and. 220 p .• s,i,a. approximately., 



~ .... , 
51 

NOMENCLATURE 

a - constant in the Redlich,,.Kwong equation o:f state 

A2, B2 , c2 - c6nstants !n the Martin"'."Hou e~uation of state 

b 

3 

.;. 

G 

k 

k .. 
1.J 

N 

R 

T 

V 
9., 

V 

X 

y 

- constant in the Martin-Hou or Redlict-Kwong equation 

of state 

second virial coefficient, cu.ft j?er lj,mole 

fugacity 1~ the- pure state, ?,S,i.a . 

~ugacity ~n a mixtu~e, ?,S.i.a. 

-.Gibbs free energy, Btu per , . . 1 
..L.) • r;,o ..... e 

constant in tje Martin-Hou equation o= state 

- interactio~ parameter 

moles, lb. :no le 

- numjer of components 

- pressure, p.s~i.a. 

- gas constant 

-· temperature, 0 R 

- molar volume of vaj?or phase, cu.ft. per lb.mole 

- molar volume of liquid phase, cu.ft. j?er lb.mole 

- liquid-phase mble fraction 

- vapor-phase mole· fraction 



y 

A 

w 

',_'-,V 

Subscripts 

C 

1, J ' k 

r 

T 

1, 2 ' 3 

52 

- liquid-phase activity coefficient 

- parameter in the Wilson equation 

- vapor-phase fugacity coefficient 

dimensionless constants in the Redlich-Kwong equation 

of state 

- acentric factor 

- critical 

- component 1, 

reduced 

- total 

'i ·k .J ., 

- component 11 2, 3 
.l. 

Superscripts 

E - excess 

£ - liquid phase 

r - reference 

s - saturation 

V - vapor phase 

0 stariqard state 
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