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ABSTRACT

There is no theoretical information available for
molecular weight distribution in emulsion polymerisation.
The only experimental data available (23) is physically
unrealisable.

An attempt is made in this paper to formulate
mathematiocal models to predict the distribution for some
simplified ideal and semi-ideal systems. The theory for
emulsion polymerisation is considered as a stochastioc
process and a probabilistic approach is nadg towarde the
problen. — -

The distribution predicted for ideal emulsion systems
both batch and continous is exponential. A reasonable
ocamparision of number and weight average molecular weights
with De Graff's (22) experimental work (unpublished) in
continous emulsion polymerisation is not possible since
the data obtained by Gel Permeation Chromatograph technique
needs to be corrected by the calibration constant of the
chromatograph for the solvent used. Yet, it is felt that
the theoretically predicted values are twice as high as the
experimental values.

""" The semi-1deal theory for batch process is compared
with Schulz et. al's (23) experimental data. The theoretical
number average molecular weight is twige the experimental

though the theoretical weight average molecular weight is

0.72 times less than the value obtained experimentally,

-

e N -y
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5 | - The principles of Birth and Death Stochastic proocess
| have been applied to continous emulsion polymerisation

1 systems and the probability of the population of free

| radicals in a latex particle as a function of time have
been predicted. Further, the above principles are expanded
i to predict the molecular weight distribution.




INTRODUCTION

Emulsion polymerisation is one of the four major
dndustrial processes for free radical polymerisation
and co-polymerisation. The four basioc ingredients are,

( monomer; water, which is the continous medium; initiator
3 and emulsifier to form locii of reaction and also stabilise
the emulsion.

Emulsion polymerisation offers the advantaéea of high
reaction rates, easy heat dissipation, high molecular
weight products, low viscosity and directly processable
final products. The colloidal behaviour, however makes the

T hse

process rather complex.

Molecular weight is a fundamental property in the
classification of polymers and is related to its mechanical,
structural and chemical properties. This makes the control
and study of molecular weight distribution important.

The purpose of this work was to develop mathematical

e T

models to predict the molecular weight distribution of
polymer manufactured in both batch and continous emulsion

polymerisation systems.
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Herkins (7) and his collaborators were the first to
suggest a qualitative mechanism for emulsion polymerisation.
| Their work during World War II is now generally accepted.

! Bmulsifier when added to water above the ' oritical
micelle concentration! forms clusters of soap molecules
called 'Micelles'. Generally the amount of emulsifier
dissolved in water is about 0.015 gms/ml. Thus the greatest
portion of the emulsifier exists as micelles. The shape of
these micelles is still uncertain, but for simpliocity they
4 are considered spherical of radius about 25 A .

The hydrocarbon end ( hydrophobic ) of the emulsifier
molecules constitutes the interior of the micelle and the
surface is formed of the ionic groups (hydrophilic).

The hydrophobic interior of the micelle accounts for
the apperent increase in the solubility when a water
insoluble or partially soluble monomer is added to the |
emulsifier-water mixture. Styrene -has a solubility of
0.00368 gmoles/litre in water at 50°C, but in a 0.093 M

T TR T e T Sy

potassium.palmitate solution the spperent solubility rises
to 0.139 gmoles/litre. The micelle solubilizes the monomer

due to osmotic forces. The unabsorbed monomer is dispersed
in the continous phase in small droplets of sbout 10~Cm.

diameter.

An initiator like potESsium-pprsulphate decamposes




into radical ions sou'.' ,
- -
K805 semmemeese X+ 280

The sulphate radicael ion possesses an unpaired eleotron
and therefore exihibits extreme reactivity characterstic

of free radicals. It reacts with the monomer forming organic
sulphate radical molecules.

-0

soh'.' + M cecccccaar TO——8—0—HN,

[ & TN

The product is a surface active radical ion which soon
diffuses into a micelle, because of the dynamic equilibrium
between micellar and molecularly dissolved emulsifier. The
micelle thus stung by a free radical is called a 'Latex
Particle!, and it is stabilised with emulsifier.
Polymerisation proceeds very rapidly in these locii
and termination ocours when another free radical enters
the latex particle. The monomer required for the rapid
growth comes into the latex particle by diffusion from the
monomer drops. This rate of diffusion is much faster than
its consumption during polymerisation. With the growth of

the particle, its surface area increases and more emulsifier

is absorbed. The micelles provide the needed emulsifier.

Smith end Bwart (10,11) divided the whole single charge

isothermal emulsion polymerisation process into three
intervals.ﬂmﬁ&EAdivisibnwwhs-further\expapaeﬂ”by Gardon (2)
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and is:
Interval I ¢
1. All latex particles are formed in 1. '

terval II :

1. Number of particles is constant and they are saturated

with monomer.
2. Monomer droplets are also present in the continous phase

of the emulsion. -
3. There are no micelles.

Interval III :
1, Number of particles is constant and they are no longer

saturated with monomer.
2. No monomer droplets exist.

Harkins assumed that as long as monamer droplets were
present a constant monomer concentration existed in the
latex particle. Morton, et. al. (9) and recently a review
by Gardon (6) confirmed the constant monomer concentration
and attributed its existence to the equilibrium swelling ;
of the polymer particles. They, as did Flory (21), also ﬁ
established that the rate of diffusion of monomer molecules. 4
from the droplets to the particles is sufficiently fast |
and does not interfere with ‘the rate of polymerisation in

the partiocle.
The three 1@tervals'oufiinedfabove do not exist in

continous emulsion polymerisation. Once the process reaches
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steady - state the total number of particles is constant
and they are saturated with monomer. Thus the system always
exists in the so called interval II. The above fact can be
used advantageously by nucleating all the particles in the
first C.S.T.R. w;th a low residence time and low conversion,
further conversion taking place in the remaining C.S.T.R.'s,
in a reactor train with a high residence time.
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QUANTITATIVE DESORIPTION

OF EMULSION POLYMERISATION KINETICS

The steady state free radical kinetics of emulsion

polymerisation involve the following three basioc
mechanisms ¢
INITIATION :

Decomposition of initiator into free
radicals :

K
I, —— (4.1)
2y (I,) = Concentration of Initiator

(I*) = Concentration of Free Radical

ky = Decomposition rate constant !
.* Initiation of reaction : ;
k _ : ]
I+ ¥ —3i. (4.2)
(M) = Monomer concentration
! by = Initiation rate constant fi
Rate of Initiation = R, = %y £4(1,) (4.3) 3,
: i
fq = TFraction of free radicals which i}
. g
are effective in initiation of !
polymerisation.
PROPAGATION
_ _ .
, . P
" .

oM M — () |




(M) = Total free radical conocentration
(M) = Monomer oonoontrat_i_on
My = Long chain free radicals ocontaining

'r! monomer units.

kp =  Propagation rate constant

Rate of Propagstion = R = %(M) (M) (4.5)

The rate of propagation in a latex particle of volume

'v! and ocontaining 'q' free radicals is,

R, = k(e (1.6)
N. =  Avogadro's number
TERMINATION :

Various mechanisms can cause termination

of a growing chain.

A.

C.

Combination :

k
Mo o+ M e (4.7)

T+8

ktc = Termination rate constant for

Combination.
Disproportionation :
_ ktd _

¥td = Termination rate constant for

Disproport ionation

.Chain Trangrerl :

k | |
Mg oem oy (h.9)

4
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N, = Terminated polymer molecule of ochain

length 'rt,
ktra' Termination rate constant for chain
transfer.

The rate of ‘termination by ohain transfer 1is,

Ry, = k. (M )(M) (4.10)
R, = E. Ren (4.11)

The transfer reaction results in a terminated chain
and a molecule ocapable of continuing polymerisation. Transfer
can also take place with solvent, transfer agents, etc.
The rate of termination for the case of combination
and disproportionation mechanism is,

2
R Zktc(M°)

t

2k, . (a/Nv)((q-1)/N V) (4.12)
The factor (q-1) is necessary since the terminating
free radical cannot react with itself. Also 'q' is small
and thus 'q' and 'q-1' can be considerably different.
Smith and Ewart (11) derived a relation for the average

number of free radicals in a particle when free radicals

are generated outside the particle. They assumed pseudo
steady state, where the number of particlgs containing tq!

free radicals is constant and obeys the following recursion

relationship @
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i

l!q( kio@(a-1)/v + ko A/v ¢ R/N) m (4.13)

(Re/MN g+ kouphld WWIN (ko (ae2) (@a2)/9)F 5

. Nq.Nq_l,Nq’l,Nq"z = Number of particle with q, q-1,
q+l, g+2 free radicals

respectively.

¥out = Rate constant for transfer out ]

of a particle.

A = Transfer area of the particle

|
i
Rate of generation of free i
f radicals per unit volume of 1
‘ total emulsion per unit time. |
N = Number of particles per unit |
volume of emulsion. |
y The three terms on the left hand side of equation
Y ‘ (4.13) express the rate of loss of particles containing
| 1q' free radicals by termination, transfer out.and arrival
of a free radical respectively. Terms on the right give the
rate of formation of particles containing 'q' free radicals,
by arrival,trensfer out and termination respectively.
Expression (4.13) was solved by Stockmayer (12) to
give, p

= o/l . (I (0 /1 (C)) m&l (L4.14)

(]|

| | - ) . for m>l (4.15) o




-12-
® = 8v/(k,T) ,
o om kg Mk |
Q@ =  Average number of free radicals in the ‘
particle. i
3 I-m’Il-mfjh—l' Bessel Punctions.
; 1,. = N/R1 = Average time between free radical entries.
When m=0 , ie. no free radical desorption out of the ‘
partiole, 1
j {
T = O (I,(0/1(0) (.26) |
‘
|
|
é
!
- m=0
" q m =1/3
| m = 005
\ Bulk Polymerisation
] mnas1.,0 X
] ;
- Tk i
| . \ | ¢ = (8v/k, ) , \
i - o . - Fig..l. Average Mumber of Free Radicals as a function of 'C!




The rate of polymerisation becomes,
R, & Kk (M)(c/h).(15(0)/1,(0)) (.27)

The faotor IO(C)/II(C) is called the "Sub-Division
Faotor = 2", Fig. 2 shows the plot of Z-fastor for various
values of 'C' and shows the regions of emulsion, suspension

and bulk polymerisation.
On expanding the Bessel function and letting C —» 0

we get,

This region is called "Ideal Emulsion Polymerisation'ls
Real systems under certain physical conditions come close

to 1deal emulsion polymerisation.

5 -




~ Emulsion

100
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Suspension:

|10
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| 10
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| FMg. 2. Subdivision Fhofor 12! as a function of !'C!




MOLEOULAR WEIGHT DISTRIBUTION
IN BULX POLYMERISATION

The probability of the formation of a polymer molecule
of a given molecular weight is given by the relative
probabilities of propagation and termination. If the
probability of propagation is given by 'p', the probability
of termination is 'l-p'. If it is assumed that the basic
unit of polymerisation is the active monomer moleoule Ml
and that the termination step involves only deactivation
( 1e. disproportionation ) of a polymer chaln, then the
probability of the formation of a polymer chain contal;iﬁg”

'n!' monomer units 1is,

p"1(1-p) : (5.1)
and ip”‘lu-p) =1 (5.2)
The rumber and weight average degrees of polymerisation
are :
R, = inpn'l(l-p) = 1/0-p) (5.3)
R = 5270 en) ()

$ np™t(1-p)
)

1+p -- - (5.5
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1
For the formation of high polymers, pe1l
A, = 2 |
‘ i The probability of propagation is,
p = Rate of propagation/(Rate of propagation + Rate of
| Termination )
= kp(M)(Q/Nav)/( l&,(}l)(q/Nav) + a(tc(q/Nav)(q-l/Nav) ) ‘
= (/0 (0 + (Z /e N )(a-1/v) ) (5.7)
With reference to emulsion polymerisation the following ‘
oritical factors make the above aspproach to molecular weight
distribution rather complex, 3‘
1. p = f(q,v) |
!
2. q = q(t) g
3. v = v(t) H
: 1t is impossible to predict the number of free radicals
: | | i
i | as a function of time in the particle of volume 'v' ; only i
1q' can be estimated.
1
‘al
: 1
. |
i g‘;‘f
i i
i |

i PR
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MOLECULAR WEIGHT DISTRIBUTION IN
IDEAL EMULSION POLYMERISATION

Ideal emulsion polymerisation mathematically means
q = 0.5, ie. a particle containing one growing free radical ;
terminates instantly when stung by another free radical. 4
Fig. 3 1llustrates an ideal emulsion system.

Chsc ey

3 PR I A i G U B

o~ r— P i)

Hg'o 3 )

Tme 't!

Consider a single particle and let tl ’ t2 ’ t_3 ) secees

EPETRTI WRTERE be the times at which the free radicals

enter the particle. The number of free radicals arriving
at the latex particle is a random phoenomenon obeying
‘?' " Poisson's Probability Law " b.e‘cause it satisfies the
following axioms (16) : :
1. Since the counting of events ( le. arrival of free

radicals ) begin-at time '0', we define N(O) =0 .

N(t) = Total number of free radicals that have o
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arrived between time '0' and 't!.
20 Forany t >0
0 < P(N(t)>0) <1 1le., in any interval
however small there is a positive probability that an event

will occur, but it is not certain that an event will ocour,

ie. P(N(t)>0) #= 1.

3. For any t 2 0

im P(N(t+h) - NE)D2 )
b~ 0 p( N(t+h) - N(t)=1 )

In sufficiently small intervals, at most one evend - _
can ocour; ie. it is not possible for events to happen
simultaneously.

Poisson's probability law can be expreésed by the
following equation, «

Pylt) = Probability that in time '0' to 't', exactly

IN' free radicals will arrive.

= oM )l (6.1)

N !

Average rate of arrival of free radicals.

Ir Atl= tZ-tl ) At2= t3‘t2 [ S0 000 s 000000000000

‘Stn ='th,1'tn ceeses and if the stochastic process

obeys poisson's probability law, then the ' Inter - Arrival

Tme ! between succesive arrivals of free radicalS‘ie.

- e g
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Atl' Ata .AtB. C 0008000 Atn [ N N J 1’ m
i{ndependent ' Exponentially ' distributed random variable

following the exponential distribution (15,16) ,

Noﬁ)ﬂpfﬂﬁi 0<A%<w (6.2)

Ideal emulsion polymerisation thus is based on the
assumption that a free radical that arrives at time tl can
grow only till time t2 when the second free radical comes.
Therefore growth time of the first polymer chain is ,

Atl = t2 - tl

In general growth time of ith chain is
Bty by, -t
and follows the distribution given by (6.2)'.
The kinetic chain length 'n' of the polymer molecule
at termination is,
n =@ aty (6.3)
g = Rate of propagation (addition of a

monomer) per chain per second.

kp(I-I) (6.1)

av o

fin/(s) = pme
£(n) = ;(?e'f“n/@) | (6.5)

- TG




Expression (6.5) is the distribution of kinetic chain
lengths 'n' and is developed further depending whether the
prooess 1s batch or continous.

In emulsion polymerisation the rate of free radical
arrival 'pm ! varies with the size of the latex particle

and thus is a function of time.

a - 005
1.0 <
005-‘———-———-1———-4—---——,4 —————— - - -
bt B3 % 3

Time 't!

Fg. I Schematic representation of Ideal Emulsion
Polymerisation showing 'Inter-Arrival Time'

between Free Radical entries.

oz

- ot

—e T - e
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BATCH POLYMERISATION

The rate of free radical arrival Wl is constant and
is not dependent on particle size for ideal batch emulsion
polymerisation, since the rate of initiation 'Ri' and the

number of particles 'N' are constant after interval I.
M= Ri/N (6.6)

The molecular weight of a polymer molecule of chain

length 'n' is given by,
I% = Mon (6.7)

Substituting (6.6) , (6.7) into (6.5) and simplifying,

the molecular weight distribution is given by,
f(I{n) = (Ri/kp(l-'l)m{o). exp(-RiI’h/kp(IrI)NMo) (6.8)

Mh = Molecular weight of polymer of chain length

'nt.
I-'Io = Molecular weight of monomer

o0
,/’ f(Mn)dﬁh = 1.0 (6.9)
o
The molecular weight distribution given by equation

(6.8) yields the following expressions for number and weight

average molecular welghts,

0

.Fg] = [ Iffnf(Mn)dI%

kp(M)NMO/Ri N (6.10)

L ;o ., .
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= agmy/a (6.11)
NA, = 2 (6.12)

FMg. 5 shows the molecular weight distribution for
ideal batch emulsion polymerisation. The physical constants

ugsed are :

R 0.87*101u Number of initiator molecules/cm3.sec.

i=
N = 2.5*1015 Humber of latex particles/cmB'.

6

k= 0.125#10 cm3/gmole.sec.

p
(M) = 0.55-:.‘10-2 gmoles/cmB.

The predicted number and weight average molecular

welghts are,

En = 1. 9*106

6

Hw = 3.8:%10

|

P A
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CONTINOUS POLYMERISATION

The steady state particle size distribution in
continous emulsion polymerisation is broad and has a
definite effect on the molecular weight distribution.

The rate of free radical arrival at a particle is no

longer constant but is a function of the radius 'r' of the

particle.
plr) = Ryr/(NF) (6.13)

r = Radius of the particle

Average radius of particles at

"1
u

steady state particle size
distribution.

The derivation of equation (6.13) is given by De Graff

(22) and is listed in appendix 1.
Consider a latex particle of radius 'r' at time 't'.

In the interval 't' and 't +dt' the rate of free radical
arrival./*(r) is constant and so the distribution of chain
lengths in the time interval t and t +dt 1s given by
equation :

r(n) _ Ax) empl-p(rin/@)  (6.14)
e

The distribution of chain lengths in a particle which

gréws from tr ! to 'r! in time =0 to t =t becomes,




-25-
) o
8,(n) _ "m 4o, (m)er (6.18)

WM - 20)

Ty = Radius of the micelle

r

rm 3/‘(r)r2°-/‘(r)n/P dr (6,16)
(;57; r;j)

8,(n) =

Substituting (6.13) in (6.16) and integrating gives,

= 3
o

5. (n) _ A (B 13 oywP 4 br -
SAET~ sve S G e~ i ~

nBr ( rm3 - 3rm2 + 6I'm__ -

nB n% z n383

bl I .
o~
——r s s

A = 3R1/N'ka(M)

B = -Ri/N’fkp(M) (6.17)

‘Expression (6.17) gives the chain length distribution
in a particle of radius 'r'. To obtain the distribution of

the whole sys_t'em it has to be weighted with the steady state

' perticle size distribution.
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/ 8, (n)f (r)dr

S.n) o ™m

J r

g ‘ S,(n) = Distribution of number of

“i i molecules in continous emulsion
polymerisation.

f (r) = Steady state particle size
distribution in continous ideal

emulsion polymerisation.

A continous emulsion polymerisation experiment of

styrene monomer was conducted by De Graff (22). The recipe

was,

32.4 wt. %

Monomer =
| / Water = 67.6 wt. %
Initiator = 1.5 wt. % of water

(1{28208)

Emulsifier = 2.79 wt. % of water
(Na-Lauryl
Sulphate)

The physical conditions and constants vere,

e = 3600 secs.

,1.29-:'«1018 No. of micelles/cmB.

=1
l

.87%101’* Initiator molecules/ \

b
0

_om°.s6c. é

= .125-:%106 cm3/gmole.s‘ec. |

D iriTan sk VN b S i W
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The partiole size distribution odtained is listed in

table 1.
Table 1.
Particle Radius (A ) Fraction

84.5 _ 0.038
169.5 0.149
255.0 0.243
338.5 0.211
423.5 0.196
505.0 0.100
595.0 0.048
675.0 0.008
760.0 0.007

The average radius T = 335 A°. The above particle size
distribution was- curve fitted and expressed as,

fr(r) = ~ 85.0 .ex_p'E H( r '33!|‘622222 ;
133.865.(217)% ( (133.8655)° |

werreeeenn(6.19)

Mg. 6., shows the aboVs curve Iit and the experimental

points. ‘
Expressioﬁs (6.17),(6.18) end (6.19) were numerically . I:”
solved on the computer and the molecular waight'distribution ﬂ?i

obtained is shown in Fig.7. The number and weight average
: : T T S SRR (o G "f’"v-{; B

molecular weights prediétgdwqgéx,_-ﬁh
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% -] o70h3*106

R, = 2.5505x10°
R, /R =1.49

The number and weight averages obtained experimentally
by 'Gel Permeation Chromatograph' techniques without the

correction factor are,

}% = 1.11251;*105
N, = 9.28689*105

&/}%=8.32

The reason for these high discrepencies are, — -

1. The experimental numbers have to be corrected by the
calibration constants for En and Ew of the gel permeation

chromatograph.
2. The conditions assumed to lead to a continous ideal

emulsion system are far from ideal.. Fig. 8, gives the

probability of existence of 'q' free radicals as a function
df time. For an average resldence time of 3600 secé. ve see
that there is a finite probability of existence of q=2,3.
The exact numbers on these probabilities for 6 = 3520 secs.
are ¢
- P,(0) = 0.419058.

Pl_(’O) = 0.49511

PZ(O) = 0.08079
0.004887

P3(0)

i
ki




-31‘ !
Pq(t) w Probability of finding 'q' frooc radicals in L
a particle at time 't!'. — |
The mathematical oxpressions for dotormining theso~ :
| g ~ probabilities are formulated in chapter 8 - 'BEmulsion |
] ]
{ Pol'merisation as a Birth and Death stochastic process'.
[ |
’ 4
a | .
B -'“ "1’ ‘
| o
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Absolute Probability of States for
conditions of De Graff's continous ideal
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MOLBOULAR WEIGHT DISTRIBUTION IN SEMI-IDEAL
EMULSION POLYMERISATION

Semi - Ideal emulsion polymerisation is a simple
extension of ideal emulsion polymerisation. q 1s no
longer 0.5 but- q > 0.5 , ie. there is a definite
possibility of qa2 for finite times, Pz(t) > 0. The
assumption that Pq(t) =0 for q=3,4, .... otoc, 1s
still invoked.

A typical q vs. time plot for semi-ideal polymerisation

looks like,

Ay 2341 Biep

!
|
|
1
|
!
|
|

iy b1a1 0 Pao P B

Time !t!

For the above system,

1. The inter-arrival times between free radicals le.
T, = by,1 = by etc. are exponentially distributed (as
stated in chapter 6) and are given- by the distributibn

!

- -
Gt T T L

T
- T

o
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?t
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funotion,
£, (T) = A OSP(',“T) (7.1)

2
2. P_(¢t = 1.0 (7.2)
) (7.2

le. Po.(t) + Pl(t) + Pa(t) = 1.0

3. The average number of free radicals is given by
T = Bylt) + 2,(8) (7.3)

4. The arrival of even free radicals oauses instantaneous
termination for ideal emulsion polymerisation. The seoond
free radical in semi-ideal polymerisation 1ives for a while

before it terminates. Its 1ife time Ai ’ A1¢1 g oo
etc. ( Pig. 9 ) are parts of the time in which 'q' would

have been zero if instant termination had indeed occured.

The 1ife time of q=1 1s qot altered in semi-ideal

polymerisation. Thus we can say that

Pl(t) = 0.5 (7-’4-)
From (7.2) , (7.3) , and (7.4) we obtain

P (t) + Pz(t) = 0.5 (7.5)

P (t) = %(-0.5) (7.6)

>

For further analysis we assume ,
1, The system is at steady state ie. the probabilities
P, (t), Pl(t),..... otc. are not functions of time.

2. The process is a batch process ie.

AT e

T
o

-

e v
i e B TRy TR PNTWY L - e




: . =35
"ﬂ M = R/E
? 3. Termination occurs by coupling only. o _
) The chain length 'x' of the polymer molecule formed is
S " given by ,
x. = (T +24)p (7.7)
b T = Life time for gq=1 , given by the
*5 aistribution (7.1).
o6 = Life time spans for q=2 .
Te distribution of molecular sizes of the polymer
chains oé.n be caloulated if the distribution of 84 is
kmown , since all the other quantities in (7.7) are known.
The frequency of appearance of periods of q=2 18,
;- M/2  periods/ unit time (7.8)
' and P, = MB/2 (7.9)
X = Average life span of the second free
L radical - average time/ period.
' = 2 'P'z/ M (7.10)
The distribution of kinetic chain lengths 'y! which
propagates by adding one monomer molecule at a time obeys
the " Geometric Probability Law " , le. , \
n(y) = p’(1 - p) (7.11)

| p = Probability that the free radicals
S | | | in the particle when gq=2 will

g/ . propagate in the next reaction.
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(1 = p) = Probability that they will ber-
minate in the next reaction. ]

h(y) = Probability distribution funotion

- of chain length 'y'.

T = Mumber of monomer additions for
each free radical during time
interval 'Aa' when Qq=2.

Equation (7.11) can be rewritten as a distribution for
'A' by noting that ,
JaN =7y/¢ (7.12)
Fram (7.11) and (7.12) ,

p(a) =P -p) (7.13)
A is given by

Ba) = B =34 p8)
aps0
| o - op
B apeo

= p/(1 - p)p (7.14) ; ;
and P = (5 A/l +_(}Z ) (7.15) ‘ \4
Equation (7.10) and (7.15) enable us to calculate'p!'. } é

Equation (7.7) gives the expression of chain length

-fonmed ile. ,
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x = TP + 200 (7.26)

T@ obeys the continous exponential distribution
(7.1) le. ,

£.(n') = (4/p). exp(-pn/@) (7.17)

n = Chain length

2 A@ obeys the discrete distribution given by ,

hZAP(Y)-':’ (1 - p) P(y-Z)/a ’ y=2,4,6,8.....

v = 24p  Chain length (7.18)

To make (7.18) continous we write it as ,

fong
where ® = Dirac Delta Function

In order to obtain an expression for the distribution
of 'n' in (7.16), in which the distribution of TP and 24¢

is kmown and given by '(7.17) and (7.19) respectively, we
use. the theory of characterstic functions and laplace
transforms. Details are given by Parzen (15) and Wylie

(24). The laplace tramnsform of (7.17) is,

Tols) o _(M/6) (7.20)

s +(M/8)

~ and the transform of (7.19) is ,

Tond®) = / {L2) /2 § (3/2) o Vay
. 0

fOI' y= O,Z.u’6’ 00000‘

(3= (1 -p) p'T =26 (y72)  (7.19)
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- {1-p) (1+po'2'+ yz bs ... )
P

o [-p).___ 3 (7.2)
P (1 - po-%)

The distribution of (8.16) in laplace domaip is ,

T () o (M/0) 1 -p) 1 1 (7.22)
P (1-pe™®) (w/p +s)

On laplace inverting (7.22) we get the distribution
of chain lengths 'n' in time domain. The inversion was done

by the theory of residues and 1s ,

o )
px) _ A Qep)((e”MWEy X2 ) (7.23)
) P lapedTh) (e ) |

Chain length 'x! of polymer molecule

X

fx_(_x) Distribution of chain length 'x' in time

domain,

'fx(s) = Digtribution of chain length 'x! in
laplace domain.

The distribution of chain lengths 'x' and given by
expression (7.23) is plotted in Fig. 10. , for various

values of 'q'.
The number and welght average molecular weights are

given by ,

i
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| -40-.
K, = (o +B)/(C - D) (7.24)
5 R, = (BE-P/(A+B) (7.25)
A = 1(p/p)20 - pe2t7?)
B = 1/(% logp) (/@ + %ln p)
| ¢ = 1/(p/p) 1 - pe2//P )

D = 1/(}% log p) (/@ + %ln p)

B = 2/(prp30 - /P

F = 2/0s log p)(M/p+uln p) —

Table 2. gives values of Hn , & and their ratio for
various values of 'q', obtained anatiocally.
Table 2.
- b -6
L 9 K, #10 B, #10 R, /K
0.500 1.903000 3.806000 -é.o
; 0.501 1.922934 3.8076366 1.98011
0.502 1.939130 3.808919 1.96383
i 0.503 1.957078 3.808919 1.94622
.= 0.50l 1.97520l; 3.810021 1.92892
0.510 2.087956 3.822985 1.83090
0.520 2.293977 3.867208 1.68580

i ' Molecular weight distribution obtained by Schulz et.
.’al. , (23) is compared in Fig. 11. with the proposed theory
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for semi-ideal emulsion polymerisation for the following
recipe and physiocal constants ,

Styrene/Mater = 1 : 2.6

Buulsifier = 0.205 wt. % of water
Ini tiator a 1.31#10"2 gnol/l.

R,.. - 2.6881078
N - 14810 particles/cm’*

gmols/l.seos.

The number and weight averages are,

R, K, R, /K,
Experimental 0.58 '.3'#1()_6 2.0114*106 ' 3.45

Theoretical 1 .007*106‘ 1. 355*106 1.35 .

—— -

Physiocally it is hard to accept the hump in Schulz et.
al.'s (23) experimental curve. He postulate’s that it is
due to the ! Tomsdroff Gel Effect '.
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EMULSION POLYMERISATION AS A BIRTH
AND DRATH STOCHASTIO PROOESS-

[ttt A e e

Rmulsion polymerisation can be considered as a birth
and death stochastio process. If we oonsider one latex
partiocle as the system then the continous random arrival
of free radical molecules to this particle is a birth
process. When the free radical arrives the population of
free radicals inside the particle increases. Inside the
latex particle itself two phoenomenon take place. The free
radicals either propagate by reacting with the monomer
present in the latex particle or they react among
themselves and terminate either by disproportionation or
coupling mechanism. This assumes no termination by chain
transfer reactions. Termination by disproportionation
yields two dead polymer chains and termination. by coupling
gives one polymer chain. In either case two free radicals
die. This process of termination is a death stochastic
process, It is to be noted that on one death event the
population of free radicals in the particle decreases by
two , since two free radicals are involved in one
termination.

A mathematical description of the birth and death
stochastic process requires a knowledge of birth and death

rates,
In oOntinous'emulsion polymerisation the birth rate is

]
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given by ,
,u(r) = Rr/(¥ T) (6.1)

Refer to appendix 1. for the derivation of (8.1).
The expression for death rate is ,

04(r) = kygale-1)/ (N, v(z) ) (8.2)

1e. death rate is a funotion of 'q', the population of free
radicals in a particle and 'r'.

eq(r) = Rate of termination of free radical
-8 in a particle of radius 'r! and
containing 'q' free radicals (free
radical molecules terminated per

second)

v(r) = Volume of a latex particle of radius
- 'pr! and assumed to be spherical.
Refer to appendix 2. for details of equation (8.2)
A latex particle will be the system of our analysis.
The random variable X(t) defines the state of the system,
ie.
X(t) = q ; means that the system (1e. particle) has
1q! free radicals in it at_time 't'. 'q' can take only

discrete Values [ q = :_0’1,2’3, teveceesoe
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> Agsumptions for Birth and Death Process !

1. If at time 't' the system is in state 'q! (q-O,l,Z...)
the probability of the transition q—»q~+1l in the interval

(t,t +at) 18
M(rlat + o(at)

2, If at time 't! the system is in state 'q' (q=0,1,2..),
the probability of the transition q —= q=2 in the interval

(t,t +at) is
eq(r)At + 0(At)

3. The probability of no change in the interval (t,t+at)

is
1-(p(r) + o (r))at +0(at)

The above assumptions lead to the following relation ,
| Pq(t-'t-At) = /J(r)Pq_,l(t)'A't + Oq-._a'(r-)'l’_q_.__,.At +
(1 - (pM(r) + Gq(r))At)_Pg(t) (8.3)
; P'q(tv) ,_Pq_l(t) ... oto, are the probability of the

sﬁ%em_ being in state q, g=1, etec. respectively.
[ _
‘ Expression (8.3) states that the only ways, in view

3 ' : ' of the above assumption, the gsystem can be in state !q'

at time 't +At! ere @

e e vay m e o
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1, The system at time 't' was in state Q' and did not
ohange in the interval (t,t+at).

2. 'The system was in state 'q-1' at time 't' and a free
radiocal arrived in the interval (t,t +at),

3, The system was in state 'q+2' and a death (1e. termina
-tion) ocoured in the interval (t,t +at).

Te first term on the right hand side of expression
(8.3) arises because of the first assumption, the second
term beoause of the second and the third term because of
the third assumption.

Transposing the term Pq(t) on the right hand side to

the left hand side , dividing by At and taking the limit
At —» 0, we get the differential difference equation ,

T AR (8) + 8y o(r)P 5(t)

dt:

- (palr) + 8 (%) IPy(t) (8.4)

/u-(r) and eq(r")_ are both functions of the radius -of the

particle, which itself is a function of time. Thus we can

write /u(t_) and e_,q(t) instead of s (r) and eq(r)
respectively. Equation (9.4 becories ,

@ () . |
Za g0 w8 p(01Rg ,5(H)

dt |
- (p(8) + 8g(t) IR (t) (8.5)

RV N WL
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e equation for q=0 reduces to,

B @ (t) |
O L (p(t) + 0, (8) IR (8) + 8,(t),(t) (B.6)
o (\] 2 2

: = dt
The initisl conditions are,
.
| P,(0) = 1.0
Pq(O) = 0.0 for q-1’2’3' eec o

’. A relation between 'r! and 't' for a latex particle was

i‘ obtained by De Graff (22) by the solution of the equation,

:

_ 2 _
= G Io(0y7%) (8.7)

&le

lll(clré)

c = (10.67#3.14 R / (k, N T ) )%

o
i

ke, (M)M, G, /16000.%3. 14 NP (8.8)

5410™3 gmoles/om’

A T T TR T - -
o o B T X i o o 7 et
Q

(M) =
. ‘Mo = 106.0
'( : 14 = 1.06 'gm_s/cm3
,_, , j | The solution thus obtained was curve fitted by the :
L equation , : :
r = A+ Bt +Ct% (8.9) ;l.f g‘
R | _ : '
| | A | For t ¢ 1017.5 secs. ;-

B = 0.32815

)
A = 55.53702 . ? 1
N B . 0 = 0000l |
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For t > 1017.5
A = 2004799
B = 0.04325
¢C = 0.0

Fig. 12. shows the ourve 'r!' vs, 't!.

An analytical solution of equation (8.5) coupled
with (8.6),(8.1),(8.2) and (8.9) is physically imposaible,
instead a numeriocal solution was obtained for the following
physiocal constants :
ke = 0.1#0° cm37gmole.seo. at 50°C,

c = 0,82wt. %

Ry/C; = 5.8a0"3

N = 2,340 particles/om.
= }53.56 A°

Two techniques were used, ( Ref. appendix l. )

e

1. Fnite first order difference approximation of the

derivative ie.

qu.(t_) Pq(tmt)_ - P‘q(-t)

(8.10)

dt At

The equation (8.5) and (8.6) were solved for q=0,

1’2’3”"" o—— o
2, Equation (8.5) was written as a system of simultaneous

first order coupled linear ordinary differential equations
and was solved using ' Lehigh University Analog Simulation

(LEANS) ' version of digital computation,

q
i

T T T
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The solution obtained by both methods are listed in
eppendix 3.

Integration intervals of the order of 1074 to 20> seos.
had to be used otherwise both the above mumerical techniques
exploded. This was a very good indication that the derivative

in equation (8.5) was very small and tending to zero ie.
the differential equation (8.5) was at steady state. The
steady state and unsteady state solutions are also listed
in appendix 3.

From tables A,B.and C of appendix 3. we note,

1. Unsteady state solution of equation (8.5) obtained
by both finite difference numerical integration and LEANS
are in very good agreement.

2. ‘e system is unsteady only for about 100 seconds,
after that the steady state and unsteady state results are
in fairly good agreement.

The steady state solution is shown in Flg. 13.

Smith and Ewart's theory and Stockmayer's solution
of the recursion relation (l.13) will only allow the
prediction of q under steady state conditions for various
values of particle radius. Expression (8.5) now enables us
to predict with a certain degree of certainity (ie. the
absloute probability) the value of 1q' and thus 'q' as a

function of time,
Inside the latex particle two phoenomenon take place ,

1. The free-radicals‘propagate by reacting with the
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monomer molecules present in the particle. This process is :
& ' Growth Process !, — o
2. Aotive free radicals react among themselves and

H terminate either by disproportionation or coupling, this

i
was termed the ' Death Process !'.

Rurther analysis will be based on termination by

' Disproportionation ' only, ie., when two active growing
free radical polymer molecules come together they exchange

an electron and are deactivated. Under these assumptions

a‘:
we can write the chemical reactions which one active free
radical polymer molecule of chain length 'n' can undergo

| inside the latex partiocle,

¢ #
A. En* + M __kPi__ Eﬁ*l# (Propogation) ,

1}' B. Eh* —Y—-t‘——- En (Termination)

’l 'En*, E. i* = Active free radical polymer chain

3 of length n and 'n+1' respectively ‘

; (1e. growing) ]
| 1 E = Deactivated (or Dead) free radical ’
'» % fl po‘lymer'chain of length 'n'. |
3 i kpt* and Yt will be defined later. '
1 Consider an individual polymer chain in a latex particl | ‘
& -e., The state of this polymer chain can be completely ' {

it

. determined if ,
B ' ) . .
: ‘ , 1. The chain length 'n' is specified.
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2. The polymer molecule oan be classified as a aotive

(1e. growing) or inactive (ie. dead) chain.
With reference to the individual chain we have chosen

in the latex partiocle , kpt* nndYt are defined such that,
l. The probabi}ity that a randomly selected active ohain
undergoes reaction A in the time interval (t,t +dt) is,
oy at 0(at?) (8.11)
2. The probability that a randomly selected active ohain
undergoes reaction B in interval (t,t rdt) is ,
Yt + 0(dt?) (8.12)

kpt* end Y, are assumed to be funotions of time but
are independent of the chain length 'n' of the polymer
molecules. Thus the expressions for kpt* and \(t in the

case of continous emulsion polymerisation are ,

Ky = )

Rate of monomer addition/free radical/

second. (8.13)

ko (a-1)/ Nv(t)

=<
ot
i

‘Rate of termination / free radical /
(8.14)

gseconds ™ ~

Y’t is thus, also a function of number of free radicals

1q! present in the latex particle.
Now consider one.latek_pgrtiq;e containing'IQf free

radicais at a certain thine 151, The absolute ﬁrbﬁgbility"

\
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| of their existence as a function of time 't! is imovn. We
8 define the following quantities , —_

3? Fq:n(t) = Fraotion of aotive polymer chains of |
: i length 'n' monomer molecules at time
i | . '%! in a particle containing 'q' active

free radical molecules,

F. _(t) = Fraction of inactive polymer chains of

\ length 'n' monomer molecules at time

b
4 1t' in a particle containing 'q' active
EE free radical molecules.
i Q‘l n(t:) = Total fraction of n-mer chains irr-
,n

espective of activity at time 't!

in a particle o_ontaining 1q! free

radicals.

With the above definition , the fraction of active
and inactive polymer chains present in a latex particle
containing 'q' free radicals at time 't' is given by the

following differential difference equations : :
) # (41 f}
aF " (t “
- gn'” g * # ]

‘ ' dt /
| oy Fp ¥ | o
| + It R (9 n>l  (8.15)

# ppy
- dFgiy(t)

— =

lf I L O K A L P, U U S ‘ o -(kpt* + Yt)qul(t) ;n‘ 1 (8.16) E ]




A R

P () n>1 (8.17)

The initial oconditions are :

i
i
{ Fon(® = 1 nel |
{ = 0 a1l (8.18) |
g' %mw) = 0 n>1 (8.19) |
\ { The initial conditions signify that at t=0 , the
! fg only permissible species in the system is elther the
i. i initiator El“L or the monomer.
k ‘ Bquation (8.15) 1ike equation (8.3) means that the only
},{ ways in whioh we will have a certain fraction of active
s'% polymer molecules of chain length 'n' in a particle

oontaining 'q' free radicals at time 't +dt' is ir ,
1. The fraction of polymer of chain length 'n-1' at time

r—
E R TN

1t' propagated and added one monomer and were still active.

2. e active fraction of polymer of chain length 'n!

did not change in time interval (t,t-+dt), ie. it

Sl e

g‘” ‘:‘: | neither propagated nor terminated. :
Equation (8.17) shows that the rate of change of o

BE inactive fraction of chain length 'n' is equal to the rate
' at which active fraction of chain length 'n! terminates. ]

To obtain a anelytic solution for (8.15) ,(8.16),(8.17),

T | - (8.18) and (8.19) we define ,

'
Y
'
ﬁ”
4
"
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t
v = | Y,
a
t - |
| LAV (8.20) |
; at '
i
* !
oo - [Mate +
0
ae,
M (8.21)
; at "
The solution for (8.15),(8.16) and (8.17) are :
3 n-l |
| 8 exp(-(¥_+6.)) | ;
2 F¥ (t) _ Lt (8.22)
| ?1 q,n
B (n-1) !
gy i * ' _
B Fo,n(®) Fqatt) Y, at (8.23)
’ § Thus from the definition oI"Qq n(t), we get 1{
L ’ p
i
' # | !
A  Qq’n(t) = .F'q,n(t)- + F'q’n(.t) (8.24)
4 | -
i Fq*n(t) being the fractionmof-mctive n-mer chains, b
’ : L
it has significance only at instantaneous time 't'. Thus P
- . s’
_k if Fq*n(t) 1s weighted with P, (t) , the probability of ;
x "" : : ] ) o §
7 . | : | \ firiding 'q' free radicals at time 't!, we will obtain the ’
: | | o most probable medsure of the fdction of dotive n-mer ’

\

1
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. chains at time '&' , ie
i MY = BRAB L) (8.25) |
1l '
b - Notioing expression (8.23) it is reasonable to say 3
i that to obtain a true weighted measure of Fq'n(t) ie,
Pn(t) we must integrate Fn*(t) over time ie., i
F(t) = f qun(t).rq(t).Yt dt (8.26)
0
q can take values 0,1,2,3, see..... @and Po(t)_‘, Pl(t),
P,(t), ..... eto. are all different funotions.
Thus we obtain the total fraction of n-mer molecules
g, at time 't! from equation (8.25) and (8.26) as ,
Qal®) = E) + Fy(®) (8.27)
j‘ On summing expression (8.27) over all values of 'q'
we will get the total fraction of n-mer molecules in a
particle which grows from time 0 to 't!, ie. ;
.. oo (
i ._ Q8 = X 94t (8.28)
& o ' ]
Equation (8.28) gives the distribution of chain lengths '!"-
. | ' ' in a latex particle which grows from radius 'r ' to 'r! ; .
in time 10' to 't'. ‘ o
Once the distribution of chain lengths is known in a ‘
latex particle of size 'r' , the distribution of chain

lengths of the entire system can be obtained by weighting ‘ -
|
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it with the particle sisze distribution fi(r) le.,

r
L dr
% = J, b (8.29)
[ e e
0

As was stated earlier, only the analytio method is
outlined above to obtain the molecular weight distribution
in ocontinous emulsion polymerisation. No numbers were
ontained to show what the distribution looks like or

what the number and weight average molecular weights are.
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APPENDIX1

DERIVATION OF "AM" . RATE OF FREE RADICAL
ARRIVAL AS A FUNCTION OF RADIUS

Stoclmayer's equation for 'q! (4.16) derived 'g' as a
function of VEP", average time between successive free
radical arrivals.

The continous emulsion polymerisation model considers
free radical diffusion into a latex particle as a function
of particle radius, particle size distribution and rate of
free radical initiation. Therefore the average time between

free radical arrivala,1§,, is also a function of these

variables.

If R

“4in
n® reastor and p_(r) s the particle size distribution

is the rate of free radical generation in the

then the following is true.

'tya(r) Number of particles of radius 'r!

Number of free radicals entering
1p! gize particles.

The number .of particles of radius '»r! is :

. r+dr
[ % pyte) ar (1)
r
N, =  Nmber of particles in the ‘n*™

reactor.

TR TR YT, et e

A T AT e
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P

If the diffusion of free radicals is proportional to

/ |
i
the radius then the fraotion of radicals entering 'r! sise j
particles is : rodp ;
;’ r h*3‘m D cw r pn(r) dr
—
,, N, / 3.1 D c,r pn(r) dr
] 0
D = Diffusion Constant
' g Cw = Concentration of free radicals.
iﬁ Therefore the number of free radicals entering 'r!
E I
i ?’ size particles per unit volume per second is :
' Rp [ T pylr) ar
T , (3)
| 5
§ Therefore :
4. T plr) = N¥ /R T (L)
i ad  pr) = YTplr) = Ry r/NF (5)
: "__ ,f
)
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APPENDIX 2

DERIVATION OF 6 (r) - RATE OF TERMINATION

OF FREE RADICALS AS A FUNCTION OF THE
NUMBER OF FREE RADICALS AND RADIUS

The rate or'tomination of free radicals in a particle
of radius 'r' and containing 'q' free radicals is (4.12) ,

R k. (9/N v(r))((a-1)/N v(r)) (1)

't —
The units of Rt are :

gmoles of free radicals terminated/

om3. sec,

Therefore,

eq(r) = R, N, v(r) | (2)
= Number of free radical molecules
terminated per sec.
= ki, Q(q-l)/Na v(r) ) (3)

* & ® &
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APPENDIX 3

A, The unsteady - state solution of equation (8.5)
obtained by ' Finite Difference Approximation !.

Integration Interval = 5.0*16'5 geos.

TIME ABSOLUTE PROBABILITY OF STATES
(secs)
£ P, (t) P, (t) P,(t)#107 1>3(t)»1o12
0.1  .99752089  .002478979 1.3050 2.3234
1.0  .97569187  .024306790 13.3296 24.4025
2.0  .95243265  .0L4T7964678 26,7304 50.1118
5.0 . 88857456 111418727 67.14491 134.9425
7.0  .85057863  .149411940 . 2h2h 198,1976
10.0  .79977825  .200208236 135.0502 303.7201
12.0  .76967643  .230307327 162.3439 381.5220
15.0  .72959298 . 270386670 203.3900 510.0586
50.0 5181862l 481555615 2560.9194  L46126.2609
100.0  .49995479  .4997772680 2678.6880  47874.2349
150.0  .49973469  .499997260  2679.868L  17895.3337
200.0  .49973200  .499999910  2679.8826  L7895.5918
300.0  .49973200  .499999949 ___2679.8828  47895.5949
A4B743006 499892868  12569.4828  1.0712%10%

~ 650.0




B. Unsteady -~ State solution of equation (8.5) obtained

by ' Lehigh University Analog Similation ' (LEANS)
technique.

Integration Interval = 3.91#10'5 8608.

Degree of Accuracy

= 5 ,0#10™>  gecs.

TIME(secs. ) ABSOLUTE PROBABILITY OF STATES
t P, (t) P, (t) P,(t) Py(t)#
9107 102
0.1 99752 .002482 1.3053 ' 2.32
1.0 .97566 ~024342 13.331 2l4.37
2.0 95237 047631 26.733 50.05
5.0 88613 111860 67.148 13476
7.0 .85040 " .149590 9. 234 197.92
10.0 .79955 . 200030 135.03  303.27
12,0 . 76663 .230370 162,18  380.63
15.0 72672 .270270 203.04,  508.51
18.0 6922l 304740 21,01 651.34




C. Steady - State solution of equation (8.5) by

considering it as a system of algebraic equations whose
coofficients vary with time.

TIME. . ABSOLUTE PROBABILITY OF STATES

t By(t) P, (8) P,(t) Py(t)

100 0.499839 0.5 1.61235«10"‘ 1.7335«10'8
200 0.499497 0.5 5.02783%10°4 1.6864#10"7
300 0.498875  0.49999  1.12481%1073 8.473s207"
600  0.49534l 0.49998 1656464103 1.1545810™5
1000  0.49024  0.49993  9.75559%107> 6.4285410™°
10000  0.258441 0.444350 2.34117#10™% 5.5880#10~2
20000  3.511510%107° 1.43722#107 0.255380  0.263287
30000 1.64275%1073 0.00129583 0.0466775  0.10717)
50000 1.ozuzzmo'6 2.1;6992*10"5 1.8019_'9*10'-“ 1.3884#10"3

Beyond t=50,000 secs. , states q=14,5,6,7,8,9, «.c..

have an appreciable probability of existence, as can be seen

from Fig. 13,
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solution of equation (8.5) by ' Finite Difference
Approximation ' is :

Define Constants
1. Termination Rate Constant
2. Average Radius of the Particle
3. Rate of Initiation

. Particle Number

Al. The blook diagram for the unsteady state digital

Read In
1. Iteration Integration Time Interval
2. Total Number of States ie q 1,2,3,4,5
3. Print Interval
li. Total Integration Time

Calculate

r, v(r), (r), Oq(r)

Calculate
Absolute Probability of States, q 0,1,2,3,4,5

by Finite Difference Formula (Explicit Solution)

Print

| & » w2), (), §(r),
| B (£),P; (£),Po(8),Po(E)eeee.

R N o et

T
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LISTING OF TIE PROGRAMVE

DIMENSION P(20), Q(20)
IKC = 0.10E+09
PAI = 3.1%15927
AVO = 6,023E+23
AVGRAD = h 3.6
CONIN = 0,82
RICI 583+13
PINO = 2,344E+1}4
ALP = (h /3. )*PAI
(RICI*CONIN)/PTNO
RYU = Z/AVGRAD
BETA = (TKC/AVO)* (1,0E+24)
PRINT 421, TKC, 2, AVGRAD, RMU, BETA
FORMAT(1H1 sx, * TERhINATION BATS CONSTANT = .,
E20.3, // sx,* INITIATION RATE / PARTICLE NUMBER *,
E20 5 * AVERAGE RADIUS = *, E20 4,7/,
ﬁ/(N*A&G RADIUS) = * E20.5
KTC / AVOGADROS NO = %/n
READ DELT, N1, PTINT TOTIME
mmummz '15, 2F10.2}
N=N +1
DO 101 J = N,20
P(J) = 0,0
CONTINUE ‘ _
READ 430, (P(I) yI=1,N1), T
FORMAT(5E16.4)
T = 0,0
NP = INT(TOTIME/PTINT + 0,001)
M = INT(PTINT/DELT + 0,001)
DO 113 L = 1,NP
DO 102 I = 1,M
T=17T+. DELT
CALL RADIUS(T,R)
VOL = ALP*R*R¥R
ARRIVE = RMU*R
DEPART = BETA/VOL
TOTAL = 0,0
DO 108 J = 1,N1 | ,
GONE = DEPART*FLOAT(J)*FLOAT(J+1)*P(J+2)
IF(J=2) 109 99,1
Q) = ¥ P(J) ZGOND-(ARRIVE*P(J)))*DELT
GO TO
Q(J) = P(J) + ((ARRIVE*(P(J-1)-P(J))) + GONE)*DELT
GO TO 50 - . ~

R A U Lok
Al L e et (37, S0 Tt ein s B -




501
112

502
113

2%

47=

COME = DEPART‘FLOAT(J- 1)*FLOAT(J-2)
ARRATE = ARRIVE + COME

Q§J) P(J) + ((ARRIVD*P(J-1)) (ARRATE*P(J)) + GON

TOTAL = TOTAL + Q(J)

CONTINUE

DO 111 J = 1,N1

P(J) = Q(J)

CONTINUE

CONTINUE

PRINT 397, T, R,

FORMAT(/// y *
* RADIUS = »

5x * VOLUME = *,

5X, * BIRTH RATE

Sx * DEATH RATE

00’112 J = 1.1

PRINT 501,. pZ

FORMAT(5X SE20. 8 /17)

CONTINU

IF(ABS(TOTAL - 1.0) ,GT. 0.0001) GO TO 230

IF(P(NT) .GT. 1,0B-12) N1 = N1 + 1

IF(M .GT. 20) N1 = 20

PRINT 502, N1

FORMAT(120X,*N1 = *, I3)

GO TO 113

CONTINUE

CALL EXIT

PRINT 210

FORMAT(//,5X,* ABS(TOTAL) .GT..1 #)

CALL EXIT

END

VOL, ARRIVE DEPART
o 2 +,E20.5,
JE20

nzo )
' Eéofs,/
0.5,//)




LBANS UNSTEADY - STATE SOLUTION
The six simultaneous , unsteady-state, coupled,
linear 0.D.E. to be solved are :
1. ar_(€)
0 = MEP(t) | ﬁz%y.pz(t)

2. dpP, (t) - - .
| 1 . = ML) () + m(t)P (t) +T?']£‘T P4(t)
. 3. &plt) (P(E)+ 2k IR () +  m(t)p, (t)
;;' T = M viE) 2 M -0
+ LB (0)
: dP, (t: £)P..
;} 4 %( ) = -(/v"(t) + ??%)_ )P3(-t)_ + /-A_(t.)Pz(t)

20k Pu(t)
+ ~TEr 5

P i e SR

SRR - SUURYAGING

-(/“(t) + %()%T )Ps(t) +/U(t)Pl‘_(t)
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B2, LISTING OP LEANS PROGRAMME
ELEMENT BLOCK  INPUT  INPUT  INPUT 1/C,CONSTANT,
TYPE NO. 1. . .
0., 2 3 GAIN

IND 1 0 0 0 0.

CON 8 0 0 0 1.6650E-16
gggu 2 1 0 0 3'h8 )

2 0 0 .44800E-0

MULT ﬁ 2 2 0 0.

MULT 5 2 b 0 0.

GAIN 6 g 0 0 l4.1890E- 2}
DIV 7 6 0 0.

GAIN 9 7 0 0 2.0000E+00
MULT 10 17 9 0 0.

MULT 12 11 3 0 0.

INT 11 10 -12 0 1.0000E+00
MULT 13 13 3 0 0.

GAIN 1 7 0 0 6.0000E+00
MULT 15 23 16 0 0.

INT 13 12 15 -1l 1.0000E-11
GAIN 19 7 0 0 2.0000E+00
SUM 18 8 19 0 0.

MULT 20 1 7 0 0.

GAIN 21 7 0 0 1.2000E+01
MULT 22 21 30 0 0.

INT 17 1 22 =20 1.0000E-11
MULT 2l 17 3 0 0.

GAIN 25 7 0 0 2.0000E+01
MULT 26 25 39 0 0.

GAIN 27 7 0 0 6.0000E+00
SUM 28 3 27 0 0.

MULT 29 28 23 0 0.

INT 23 2 26 ., =29 1,0000E-11
MULT 31 3 23 0 0.

GAIN 32 7 0 0 1.2000E+01
SUM 33 3 32 0 0.

MULT 3L 33 30 0 0.

INT 30 31 =34 0 1.0000E-11
MULT 35 30 3 0 0.

GAIN 36 7 -0 0 2.0000E+01
SUM 37 3 36 0 0.

MULT 38 37 39 0 0. .

35 -38 0 1.0000E-11

INT




7. - e
a. STRADY - STATE SOLUTION
The equations to be solved simultaneously are :
1. ¥8 L ey 1,(c1 »?) |
dt
Q= (0.6743.14 B,/(k,, ¥ F ) |
c2 = 0L (04 M,)/(26000.043.14 p N,)
1 2. W8 = (h/3.)w3.1y o
3. P = R or(e) /(NT)
b k = ktc/ l‘{a_
? .
. P (t - 2k P.(t
':, - 6. () o P(t) v6k.;u P4(t)
" 7. Po(t) M P(t) . 1 P, (t) |
| 2k v(t) (u+_2k ) '-
ref Ty |
8. P, (t) (J(8) B,(6) + 20k PL(t))/( p(t) '

* (T
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9. Bt M (£) P.(t)
h (pmlt) . 22k ) 2
AR+ T

10. .Ps(t) "I'\é M (t) Pll-(t)
T (A 4 20k)
v(t)

11, 1.0 = Po(t) + B (t) + By(t) +Py(t) +

Ph(t) + Ps(t)

B
+
4
-8
N
E\

(
g;
!
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c2, - G PROG.

DIMENSION X(2),Y (2) DERY(Z),PRMT(5) AUX(8,1)
DIMENSION XT(1600 YR(1
| DIMENSION Q(6,6 (6) SN
: DIMENSION P10UT f100) P20UT(1100) ,P30UT(1100)
' 1 PLOUT(1100) psouw(noé),psour(noé) ,TOUT(1100]
COMMON/GP1/NDIM, C1 ,
¢ COMMON/GP2/1CO0U’
: COMMON/GP3/XT , YR
CONNON,/CPR/AZh
_ EQUIVALENCE (TOUT,XT) -
i EXTERNAL FCT,OUTP’ -
; READ 10, PARTN
; 10 FORMAT(E10.5)
: READ 20, THIP, CI, CE
5 20 FORMAT(3E10.5]
1 READ 10, PARTNO
b READ 10, PI
” READ 10, SURCON
READ 3o RKT, RM

30 FORKAT(3E10.%)
] READ 40, SNC,SMW,RHO ,AVAG
4 40  FORMAT(4E10,5)
y READ 10, RBAR
READ 10 Y(1)
A READ 10, RNT
B READ 10, RKP
| : READ_ 10, SMCO
1 RNI/PARTN
i RMU = Z/RBA.R
BETA = (RKT/AVAG)*(1.0E+24)
PRINT 420
1 . ~ 420 FORMAT (141 10X,* PHYSICAL CONSTANTS OF THE
3 - 1 BHULSION syStmi’*,//)
B PRINT 421, RKT, REP, RNI PARTY, CI, CE, RBAR
- k21 FORMAT(5X,* TERMINATION RATE CONSTANT ='#,E20, 5,/
4 | 1 5X,* PROPAGATION RATE CONSTANT = *, E20,5./,

Zﬂ*RMEWIMHMmNPFEWS/

3 5X,* PARTICLE NUMBER = *, E30.5
L 5X,* INITIATOR CONCENTRATION = * Ezo.s
2 5%, 5,7,

. o s

* EMULSIFIER CONCENTRATION = *, E20.

5x * AVERAGE RADIUS = *, E20.5, /////) |

READ 200, NK :

200 FORMAT(I10) '
* ICOUNT = 1,0
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333

S

P10UT Icouurg = 1,0
P20UT(ICOUNT) = 0,0 —
P30UT(ICOUNT) = 0,0

PYOUT(ICOUNT) = 0.0 -
P50UT(ICOUNT) = 0.0

P6OUT(ICOUNT) = 0.0

TOUT(ICOUNT) = 0,0
c1 = SQRT(10.67*?1'RNI/(RKT'PARTN*RBAR))
(RKP*ShC*SLWV(16000 *PI*RHO*AVAG) )*C1* (1,0B+2

)
PRINT 50, C1, C2

hmﬂ1)=oo

PRMT(2) = L,0E+O%

PRMT(3) = 640.0

PRMT(}) = 5.0E-O6

PRMT(5) = 0.0

DERY(1) = 1.0

NDINM = 1

ICOU = 1 |

CALL RKGS(PRMT,Y,DERY,NDIM,IHLF,FCT,0UTP,AUX)
DO 102 IL = 42} |

VOL = ALP*YR(fL)‘YR(IL)*YR(IL)

ARRIVE = RMU*YR(IL)

DEPART = BETA/VOL

DO 1 J = 1 NK .

D021 = .

IF(I .EQ.. 3) Q(I,J) = =(ARRIVE + DEPART*FLOAT(I-1)
*FLOAT(I-2))

IF((I-1) .EQ..J) = ARRIVE |
I?((I+2) <EQ. J) DEPART* FLOAT (I+1)*FLOAT(
I

IF(J .GT. (I+2))
IF(J LT, (I-1))
IF(J .EQ. (I+1))
Q(NK,J) = 1,0
CONTINUE
CONTINUE

DO 3K =1,
IF(K .LT.. NK) R(X)
IF(K .EQ. NK) R(K)
CONTINUE

NP NK

CALL SIMQ(Q R%ﬂ KK)
PRINT 333, L
FORMAT(7E18.5)
ICOUNT = ICOUNT + 1
P1OUT(ICOUNT) = R(1)

0.0
0.0
.0.0

mtni

nu
d.l
L ]

o

|
(
!
|
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PZOUT(ICOUNT; = R(2; )
P30UT(ICOUNT) = R(e

UT§ICOUNT) = R( ;

PSOUT ICOUNT) = R(5

P60UT(ICOUNT) = R(6)

CONTINUE

ICOUNT = ICOUNT - 1
CALL QIKPLT(TOUT,P10UT,ICOUNT,6H TIME® ,13H* PROBABI
LITYs 31H~ABSOLU%E PROBABILITY OF STATE®)

CALL PLOT(-7.0,1.0,-3)
CALL QLINE(TOU?,P20uT ,ICOUNT ,~0)
CALL QLINE(TOUT P OUT ICOUNT -1)
CALL QLINE(TOUT,PkoUT, ICOUNT -2)
CALL QLINE(TOUT,P50UT,ICOUNT -3)
CALL QLINE(TOUT,P60UT,ICOUNT )
CALL PL0T(12.0,0.0,-3]

CALL ENDPLT

CALL EXIT

END

SUBROUTINE FCT(X,Y,DERY)

DIMENSION X(1),¥{1],DERY(1)

D01 I =1,NDIN

XBES 1»&0)*Yﬁ)
= 0

CALL BESI (XBES,N,BI ,Ie¥)
Y0 = BI

N =1

CALL BFSI(XBES N BI IER)
Y1 = BI

DERY(1) = C2*(Y0/Y1)
CONTINUE

RETURN

END

SUBROUTINE OUTP(X3Y:,DERY THLF,NDIM ,PRNT)
DIMENSION X(1),Y(1),prRY{1),PAMT (5}
DIMENSION XT(1800),¥R(1000)’
COMMON/GP2/1COU

COMMON/GP3/XT , YR

co?uom/ap /171

XT(ICOU) = X(1

YR(ICOU) = Y%1%

ICOU = ICOU + 1

m

e —
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20
11

=76«

IP(ABS(X(1) = PRMT(2) .LB.. 1.0E~08) 12,11
PRINT 40
FORMAT(/////,12X,* TIME *,13X,* RADIUS *,//)
12T = 1C0U -1
DO 20 II = 1,I2T
PRINT 30, x7lII)
FORVAT(5X, 2E20, 5
CONTINUE

RETURN

END

XYR(II)

Note :  RKGS, SIMQ, BESI are I,.B.M. Scientific

Subroutines.
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