### Lehigh University Lehigh Preserve

Theses and Dissertations

1967

# Permeation of organic liquid through fully swollen polyethylene employing a tracer technique

Frank August Pollak *Lehigh University* 

Follow this and additional works at: https://preserve.lehigh.edu/etd Part of the <u>Chemical Engineering Commons</u>

**Recommended** Citation

Pollak, Frank August, "Permeation of organic liquid through fully swollen polyethylene employing a tracer technique" (1967). *Theses and Dissertations*. 5056. https://preserve.lehigh.edu/etd/5056

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

PERMEATION OF ORGANIC LIQUID THROUGH FULLY SWOLLEN POLYETHYLENE EMPLOYING A TRACER TECHNIQUE

by Frank August Pollak

A Thesis

Presented to the Graduate Faculty

of Lehigh University

in candidacy for the Degree of

Master of Science

in

Chemical Engineering

Lehigh University

This research report is accepted and approved in partial fulfillment of the requirements for the Degree of Master of Science in Chemical Engineering.

CERTIFICATE OF APPROVAL

Dr. Robert W. Coughlin Professor in charge

Dr. Leonard A. Wenzel Chairman of the Department of Chemical Engineering

The author wishes to express his gratitude for the privilege of being selected a National Defense Education Act Fellow and also to Dr. Robert W. Coughlin, Assistant Professor of Chemical Engineering, for suggesting the problem and for his helpful guidance during the work. This work was also materially assisted by use of the liquid scintillation spectrometer made available through the Office of Saline Water Grant No. 14-01-0001-753.

### ACKNOWLEDGEMENT

· ··· · ABSTRACT ..... INTRODUCTION ..... THEORETICAL BACKGROUND Concept of Diffus Tracer Technique Factors Effecting DESCRIPTION OF APPARATUS Experimental Appa Reagents and Mater EXPERIMENTAL TECHNIQUE . DISCUSSION OF RESULTS .. CONCLUSIONS AND RECOMMENT **APPENDIX** Sample Calculation Data in Tabular Fo Graphs ..... Symbol Notation .. Error Analysis ... BIBLIOGRAPHY ..... VITA .....

## TABLE OF CONTENTS

|                                         | page |
|-----------------------------------------|------|
| • • • • • • • • • • • • • • • • • • • • | 1    |
|                                         | 2    |
|                                         |      |
| sion                                    | 5    |
| •••••                                   | 12   |
| Permeation                              | 13   |
| AND MATERIALS                           |      |
| ratus                                   | 17   |
| rials                                   | 24   |
| •••••                                   | 26   |
| •••••                                   | 31   |
| DATIONS                                 | 35   |
|                                         |      |
| a                                       | 38   |
| orm                                     | 44   |
| • • • • • • • • • • • • • • • • • • • • | 65   |
| • • • • • • • • • • • • • • • • • • • • | 68   |
| •••••••                                 | 69   |
| ••••••                                  | 81   |
| • • • • • • • • • • • • • • • • • • • • | 84   |

iv

|  |   |                 | LIST OF TABLES |                                                                                                                                                       |        |
|--|---|-----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|  |   |                 | TABLE(S)       | TITLE or DESCRIPTION                                                                                                                                  | PAGE(S |
|  |   |                 | 1-16           | Swelling liquid-polyethylene<br>system data                                                                                                           | 44-59  |
|  |   |                 | 17             | Spectrometer efficiency and<br>evaporation rate for each system<br>at each temperature                                                                | 60     |
|  |   | · · · ·         | 18             | Calculated values for the average<br>chamber volume, the rate of<br>permeation, and the permeation<br>constant for each system at<br>each temperature | 61     |
|  |   |                 | 19             | Calculated values for the activation energy for the permeation process for each system                                                                | 62     |
|  |   |                 | 20             | Permeation equations                                                                                                                                  | 63     |
|  | ł |                 | 21             | Comparison of the molecular<br>volumes of the swelling liquids<br>to the values of the activation<br>energy for the permeation process                | 64     |
|  |   | •               |                |                                                                                                                                                       |        |
|  |   | · · · · · · · · |                |                                                                                                                                                       |        |
|  |   | · · · · · · ·   |                |                                                                                                                                                       |        |
|  |   |                 |                |                                                                                                                                                       |        |
|  |   |                 |                |                                                                                                                                                       |        |
|  |   |                 |                | <b>v</b>                                                                                                                                              |        |

|   |        | LIST OF FIGURES                                                   |      |
|---|--------|-------------------------------------------------------------------|------|
|   | FIGURE | TITLE                                                             | PAGE |
|   | 1      | FILM CROSS-SECTION                                                | 7    |
|   | 2      | TYPICAL PLOT OF<br>AMOUNT PENETRANT PERMEATED VERSUS TIME         | 11   |
|   | 3      | TYPICAL CONCENTRATION GRADIENT<br>IN A POLYMER FILM               | 14   |
|   | 4      | DIFFUSION CELL                                                    | 18   |
|   | 5      | FLANGE SCHEMATIC                                                  | 19   |
|   | 6      | EXPERIMENTAL APPARATUS SETUP                                      | 22   |
|   | 7      | TRI CARB LIQUID<br>SCINTILLATION SPECTROMETER                     | 23   |
|   | 8      | C <sub>B</sub> VERSUS TIME<br>FOR THE TOLUENE-POLYETHYLENE SYSTEM | 65   |
|   | 9      | LOG <sub>10</sub> (Ds) VERSUS 1/T                                 | 66   |
| , | 10     | LOG <sub>e</sub> (Do) VERSUS △E                                   | 67   |
|   |        |                                                                   |      |
|   |        | vi                                                                |      |

The permeation of toluene through polyethylene film which was fully swollen by an organic liquid (toluene, chlorobenzene, mesitylene, cumene, ethylbenzene, cyclohexane, tetrahydronapthalene, or decahydronapthalene) was studied in the temperature range 25 to 40 °C. During all experiments, the 1.5 mil thick polyethylene film was in complete equilibrium with each swelling liquid used. It was possible to study diffusion under these conditions by using a new and simplified technique. This involved employing a small quantity of tritated toluene

as the diffusing specie.

For the permeation process corresponding to each swelling liquid the data were fitted to an Arrhenius type plot to determine the energy of activation for permeation of toluene through the swollen polyethylene membrane. This resulted in the following values: Swelling Solvent Activation Energy Do  $cm.^{2/sec}$ . cal./g. mole

Toluene Chlorobenzene Mesitylene Cumene Ethylbenzene Cyclohexane Tetrahydronapthalene Decahydronapthalene

### ABSTRACT

15,772.35 16,218.53 14,253.56 16,675.40 11,414.84 14,753.32 12,166.11 16,535.79

 $4.89326 \times 10^4$  $9.12629 \times 10^4$  $3.40398 \times 10^{3}$  $1.29250 \times 10^5$  $3.65872 \times 10^{1}$  $1.32904 \times 10^4$  $6.72825 \times 10^{1}$  $1.01184 \times 10^5$ 

While many studies of diffusion of gases and liquids through polymeric materials have been reported in the literature, almost all of these studies employed a pressure differential across the polymer film itself. The diffusing gas or liquid was placed into a chamber on one side of the polymeric material and diffusion was allowed to occur through the polymer film to the low pressure side. This method always required a pressure difference across the membrane. The equipment for the pressure differential approach has become standard in diffusion work and is best described by Schumacher (25), Park (18), and Paul and DiBenedetto (21), each having their own modification. However, the present work does not incorporate any pressure differential across the film, thereby, limiting the need for extensive equipment. In this work the polymeric film is held in place between two chambers, each of which is filled with the organic liquid which causes the swelling. After equilibrium swelling is attained, a radioactive tracer is injected into one chamber and its rate of diffusion to the other chamber is measured by taking small samples at appropriate times and measuring their radioactivity concentration. Thereby an accurate measure of the rate of diffusion is possible. As a result, there is no chance that pressure gradients influence the data. This concept of employing radioactive tracers has been employed before; but only on a very limited scope, and

### INTRODUCTION

then usually employing a thick layer method (32) for measuring the rate of diffusion. The tracer is the essential agent in the present work since without it, it would be impossible to measure permeation through the film, since this is the only way to determine accurately the amount of the diffusing specie which has diffused. Some interesting work using tracers has been done by Gromov (5) on the diffusion of the antioxidants, 2:6-di-t-butyl-4-methylphenol and phenothiazine in isotactic polypropene and polyformaldehyde and by deBrouckere (3) on Cl<sup>36</sup> activated poly(chlorobutyl acrylate) dissolved in Me<sub>2</sub>CO through cellophane films. Work on the permeation of polyethylene using trace quantities of tritated water vapor has also been done (29). However, in all these cases using tracer elements no mention is made that the film was allowed to reach equilibrium before measurements were begun.

In the present work, the polyethylene film is allowed to attain complete equilibrium with the swelling liquids even before the tracer element is added to one chamber. In this swollen condition, which indicates the existence of a liquid solution of the swelling liquid and the diffusing specie and the polymer film, the increased thickness could lead to lower permeability values due to possible effect of thickness on concentration gradients (9) within the film.

The experimental work on the diffusion of organic substances through polymer films had until ten years ago

been very limited, the diffusion work being mainly concerned with the simple gases. Since that time extensive work has been completed. Barrer (1) in his book presents an extensive review of diffusion work primarily with the simple gases, while Paul and DiBenedetto (21) have recently performed new studies with the simple gases. Prager and Long (23), Michaels et. al. (16), and Sobolev et. al. (26) have done extensive work on hydrocarbons in polyisobutylene, xylene in polyethylene, and methyl bromide and isobutene in polyethylene, respectively. Raff and Allison (24) have complied most of the significant data on polyethylene in their publication. Prager and Long (23) and Sobolev et. al. (26) in their work had a concentration influence in their diffusion constant while Michaels et. al. (16) were not troubled by a concentration influence having preswollen their polyethylene film in xylene. The employment of a tritated toluene tracer in the present work has reduced the need for extensive equipment

The results for each organic liquid-polyethylene system were studied in order to formulate and to verify an Arrhenius type relationship of the form  $Ds=Do \exp(-\Delta E/RT)$ .

to a minimum.

Concept of Diffusion The permeation process of a liquid through a polymer film occurs in three steps (7): 1. solution of the permeating liquid molecules at the surface of the film 2. diffusion of these liquid molecules through the film 3. desolution of the diffused liquid molecules at

the opposite film surface. Of these three steps, the second, diffusion through the film, is by far the slowest and is, accordingly, the rate controlling step.

The concept of diffusion has been and still is a process poorly understood. Several theories as to the exact mechanism have been proposed and supported; but to date none is more widely accepted than Eyring's Hole Theory of Diffusion for the diffusion through solids. In the Eyring Hole Theory of Diffusion an amorphous polymer is visualized as a random mass of

polymer chains and holes. These segments of polymer chains and holes are thought of as being arranged in some quasicrystalline lattice. Above the glass transition temperature of the polymer, thermal motion results in the continual disappearance and reformation of these holes in the polymer. It is this availability of holes that promotes diffusion. Molecules are supposed to diffuse by "jumping"

### THEORETICAL BACKGROUND

from hole to hole as a result of a concentration gradient being set-up in the polymer. Thus, the diffusing molecules work their way through the polymer, the speed of their diffusion depending on the availability of a hole. This hole must be at least the same size as the diffusing molecule; therefore, the larger the diffusing molecule, the less chance there is that it would find a suitably large hole and the slower it should diffuse. There is also some energy attributable to hole formation. This "activation energy" for the diffusion process is associated with the energy required for the hole formation against the cohesive forces of the polymer. It is also related to the energy a diffusing molecule must acquire to enable it to "jump" from one hole to another. Therefore, the looser a polymer is; in other words, the less crystalline or the more amorphous it is, the faster the diffusion should be due to the lower activation energy required. Lack of symmetry in a polymer leads to a larger diffusion constant for it than for another polymer of similar cohesive energy but more symmetric. Similarly, for two symmetric polymers, the polymer which is more polar, thus exhibiting higher cohesive energy, would produce a lower diffusion rate than

the non polar polymer.

Now that an explanation of the mechanism of diffusion has been presented, let us consider the calculation of the diffusion rate.

Consider a film x cm. thick with a cross-sectional area for diffusion A cm.<sup>2</sup>. This film is exposed to a fluid containing solute (tracer) at concentration  $C_A^{*}$  on one side and at a lower concentration  $C_B^{\#}$  on the other side as shown in Figure 1.

fluid  $concentration C_A$ 

left side

The boundary conditions resulting from this presen-

tation are:

1. at x=0,  $C=C_{A}'$ 2. at x=x,  $C=C_{B}'$ in the permeation direction. also be expressed as follows:  $\begin{array}{rcl}C_{\mathbf{A}}' &= & \mathbf{s}C_{\mathbf{A}}^{\mathbf{*}}\\C_{\mathbf{B}}' &= & \mathbf{s}C_{\mathbf{B}}^{\mathbf{*}}\end{array}$ 



Figure 1

where the concentrations,  $C_{A}$ ' and  $C_{B}$ ', are the concentrations in the first and last layer of the film, respectively, On assuming Henry's law, these concentrations can [1] [2] where s is the solubility of the fluid in the polymer. Let us now consider a differential element, dx, in the film, such that, at a distance y, the rate of permeation will be  $J^{\#}$  cc./sec., and correspondingly, at a distance (y+dx), the rate of permeation will be  $J^{#}+(dJ^{#}/dx)dx$ .

differential volume will be  $-(dJ^*/dx)/A$ . C, in the film with respect to time.  $\frac{-\frac{dJ}{dx}}{-\frac{dL}{dt}} = \frac{dC}{dt}$ [3]  $\frac{J^{\star}}{A} = -D\frac{dC}{dx}$ 

For steady state diffusion, dC/dt=0 and  $dJ^*/dx$  is Fick's first law of diffusion (1), which expresses [4]Substituting [4] into [3] and rearranging,  $\frac{\mathrm{d}\mathbf{C}}{\mathrm{d}\mathbf{t}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \frac{\mathrm{d}\mathbf{C}}{\mathrm{d}\mathbf{x}}\mathbf{D}$  $\frac{dC}{dt} = D\frac{d^2C}{dx^2}$ C 6 ] Equations [4] and [6] are the basic diffusion

a constant, thus,  $J^*$  is also a constant (28). the rate of permeation in terms of a concentration gradient across the film, is given by: where D is the diffusion constant. Assuming D is independent of concentration: which is Fick's second law of diffusion (1).

equations. For steady state diffusion, which is approximated in the present work, the above equations reduce to a more convenient form. The approximation for steady state diffusion is justified in the present work since the left side concentration does not drastically change during the experiment. A calculation made for the effect of back diffusion from the right side to the left side showed the

Therefore the amount of diffusant retained per This is equal to the rate of change of concentration,

result to be negligible when compared to the right side concentration. As has previously been stated, in steady state diffusion  $J^*$  is a constant, so that, equation [5] can be directly integrated to give a simple equation to solve for the diffusion constant.

 $\frac{J^{*}}{A} \int_{x=0}^{x=x} dx = -D \int_{C=C_{A}}^{C=C_{B}} dC$ 

or,

 $\frac{J^{\#}}{A} = \frac{D(C_A' - C_B')}{x}$  $D = J^{*} \frac{\mathbf{x}}{\mathbf{A}} \frac{1}{(C_{\mathbf{A}} - C_{\mathbf{B}}^{\dagger})}$ 

Equation [7] defines the diffusion constant in terms

of the rate of permeation,  $J^*$ , and the concentration difference of the diffusing specie across the film of thickness x.

In the present work, this film concentration will be in reality, the concentration of the radioactively labeled specie in the film. Now substituting equations [1] and [2] into equation [7], the following is arrived at:

 $(Ds) = \frac{J^*}{A} \frac{x}{(CA^* - CB^*)} \qquad [8]$ 

From equation [8] it is seen that the measurement of the rate of permeation yields the diffusion constant coupled with the solubility of the diffusing specie in the film. Several expressions have been proposed to relate the diffusion constant to temperature as well as the permeability and the solubility to temperature; the most widely accepted form is that of an Arrhenius equation

## C 7 ]

which applies to activated processes such that:  $D = D_1 \exp(-\Delta E_D/RT)$ C 9 ]  $P = P_1 \exp(-\Delta E/RT)$ C 10]  $S = S_1 \exp(-\Delta H/RT)$ C 11 ] where  $\Delta E_D$  is the activation energy for the diffusion process,  $\Delta E$  is the energy for the permeation process, and AH is the heat of solution of the diffusing molecules in the polymer and  $D_1$ ,  $P_1$ , and  $S_1$  are constants. The permeability is the combination of the diffusion constant and the solubility at a temperature, such that: P = (DS)[12] then,  $P = D_1 S_1 \exp((-(\Delta E_D + \Delta H))/RT)$ C 13 ]

or,

 $P_1 = D_1 S_1$  $\Delta E = \Delta E_{D+\Delta H}$ 

Therefore, measurements of the rate of permeation through a polymer film do not directly yield a value for the activation energy for the diffusion process alone. A simplified mathematical approach, for the determination of the diffusion constant alone has been devised (1, 28) and, was recently modified by Paul and DiBenedetto (21) to yield both the diffusion constant and the solubility with their corresponding energy terms from just the permeability data alone. Both methods employ a time-lag technique to calculate the diffusion constant. Figure 2 is a typical curve for the amount of fluid permeated versus time.

[14]

### C 15]



This time-lag method employs the extrapolation of the steady state portion of the curve back to zero amount permeated. This value of time,  $\Theta$ , is called the time-lag for steady state attainment and the diffusion constant can be calculated directly from this value by (1,28):  $D = x^2/6^{-5}$ [16] where x is the film thickness.

Thus, the solubility is readily obtainable from equation [12]. The method of Paul and DiBenedetto (21) which is more rigorous and exact, is concerned primarily with gas permeation but can be modified for a liquid permeation process.

Figure 2

### Tracer Technique

1

Tritated toluene, the tracer used in the present work, emits negatively charged beta particles. The initial concentration of the tracer is 0.141 millicuries per cubic centimeter. This means that  $(3.7 \times 10^7)(0.141)$  beta particles are emitted within one milliliter of tritated toluene per second. Through the use of a liquid scintillation spectrometer, it is possible to count beta particle emission with a high degree of efficiency and discrimination. If this one milliliter of tritated toluene is diluted to one hundred milliliters, the total emission of the one hundred milliliters is that for the original one milliliter; but now the emission per milliliter has been reduced ninty-nine fold. This type of dilution is that which occurs in the present work. In order to calculate the radioactive concentration in any given sample, the number of beta emissions per sample is counted for a preset time. This emission rate divided by the efficiency of the liquid scintillation spectrometer yields the number of tritium molecules which decayed. This amount of tritium molecules which have decayed is the activity of the sample. On dividing the activity of the sample by the sample volume and using appropriate conversion factors, the radioactive concentration of the sample is calculated.

### Factors Effecting Permeation

The solubility of a fluid in a polymer depends on their mutual compatability and, in general, the principle of "like dissolves like" is applicable. Likewise, the permeability also increases with similarity in chemical structure between the polymer and the fluid penetrant. This borne out by the fact that the permeation rate through polyethylene is lowest with strongly polar penetrants and greatest with hydrocarbons (15,22). These effects were confirmed by the data from the present work.

The permeation rate decreases as the symmetry and The effect of polymer cross-linking on permeation

the cohesive energy density of the polymer increases. (31) is significant. The permeation rate through polyethylene (27) is seen to decrease as the degree of cross-linking in the polymer is increased. It has been proposed that the decrease in the permeation rate is due to a decrease in the entropy of activation for the diffusion process. This entropy is related to the probability of the polymer chains moving away from some central point, thereby, creating a hole for diffusion to occur. This probability will decrease if the polymer chain segments are tied together at intervals by cross-linking (28).

The crystallinity of a polymer also effects the permeation rate. As the degree of crystallinity is increased the permeation rate decreases. As a result of their work. Michaels and Parker (17), it has been proposed that a

polymer should be considered a "porous medium," the "particles" of which are the crystallites and the "pores" of which are the amorphous phase. Impedance to diffusion is shown to depend primarily on the geometry of the crystalline (impermeable) phase, its volume concentration and to be independent of the crystallite size. These crystallites reduce polymer chain segment mobility in the amorphous phase, thus increasing the energy barrier for diffusion and decreasing the diffusion rate. The value of the diffusion constant depends very

highly on the concentration of solvents in the polymer film. Numerous expressions have been proposed to relate the diffusion constant to the solubility of the solvent in the film but none is more widely accepted than the following:

 $D = D_0 \exp(ac^*)$ [17] where D is the diffusion constant,  $c^*$  is the concentration of the solvent in the polymer, and Do and a are constants. Figure 3 represents a typical concentration gradient in a polymer film.

 $C_1$ concentration solvent 0 distance through film

Figure



3

As can be seen in Figure 3, there is a very steep solvent concentration gradient near the downstream side of the polymer film. This indicates the fact that essentially all resistance to permeation is near the downstream side of the film. (7)

have a marked effect on the permeation rate. Park (19,20,28) has concluded that the probability of a diffusing molecule in a polymer moving from one position to another is proportional both to the probability of finding a gap between the polymer chains wide enough to pass the penetrant and to the probability of finding a hole in the polymer matrix large enough to accomodate it. Thus the larger the penetrant molecule, the further must the polymer segments move to allow the penetrant to pass and thus causing an increase in the activation energy and, correspondingly, a decrease in the diffusion constant. However, other factors such as chain flexibility and the segmental chain length involved per unit diffusion step must also effect the ease of diffusion so that the stated dependence on hole size and volume alone can only be part of the actual conditions governing diffusion. Except for small and simple molecules, however, the effect of penetrant solubility usually overshadows the influence of penetrant molecular diameter (7).

Permeation through swollen and unswollen polymers does not yield the same results. As a "dry" film begins

The size and shape of the penetrant molecule also

the uptake of a liquid solvent it undergoes a change in thickness which can result in a changing value for the diffusion constant. However, more important is the fact that the film undergoes a constant increase in the solvent concentration until the equilibrium concentration is reached. During this time, which is usually several days, the diffusion constant is not a constant value but continually changes due to change in solvent concentration, as shown by equation [17]. Therefore, calculations made for the diffusion constant during the equilibration period must always take account of the fact that the diffusion constant is not uniform throughout the film when the concentration is not uniform throughout the film. In the work reported here, these difficulties were avoided by measuring the diffusion of a small quantity of radioactively labeled component through a film swollen to equilibrium.

### DESCRIPTION OF APPARATUS AND MATERIALS

Experimental Apparatus Several types of diffusion cells have been developed to measure permeation through polymer films, but none is simplier or as trouble-free as the apparatus required for the present work. Previous researchers have required extensive equipment and usually the need for a complicated high vacuum system to aid in their investigations, but this is not the case in this work.

The basic piece of equipment is a twin-chamber brass diffusion cell, which was constructed from threesixteenth inch thich brass plate. This rectangular cell, as depicted in Figure 4, has overall dimensions of 4-9/16 in. by 2-3/8 in. by 2-7/16 in. Each chamber has inner dimensions of 2 in. by 2 in. by 2-1/4 in. The cell is silver soldered and thereby made leak tight. The chambers are separated by a brass partition which has dimensions of 2 in. by 3/16 in. by 2-1/4 in. and itself lead soldered into place. A 1-1/8 inch diameter circular hole was drilled into the center partition with its center at a distance of 1 inch from the bottom and each side. Brass flanges, one for each side of the partition, were then fashioned to fit into the center hole. The was dimensioned so that when the unit was assembled, the

flanges were beveled as shown in Figure 5. Each flange beveled portions made contact with each other. Each flange was drilled and tapped to accomodate four brass





# FLANGE SCHEMATIC



Figure 5

screws in order to secure it to the center partition. Two thickol rubber gaskets were fashioned to fit the flanges and give a tighter fit between the center partition and the flange.

Two additional thickol rubber gaskets were fashioned to fit the beveled portion of the flanges exactly. It was between these two gaskets that the polymer film to be studied was placed.

A brass plate was made to fit the top of the diffusion cell. Two 3/4 inch diameter holes were drilled in the plate so that when the plate was placed on the diffusion cell, the center of each hole would correspond to the center of each chamber. These holes enabled a glass stirring rod, 16 mm. diameter propeller, to be admitted to each chamber.

A constant temperature water bath controlled to  $\pm 0.02$  C was employed in order to assure a constant liquid temperature in the diffusion cell. The diffusion cell was placed into this water bath and rested upon a tripod. The liquid level in the water bath was maintained at a distance of 1/8 inch from the top of the diffusion cell. One stirrer was needed for mixing the contents of each diffusion chamber. Each stirrer was attached to a powerstat. This enabled the same degree of mixing in each chamber to be achieved without splashing. Mixing was always maintained sufficiently to insure that the only

resistance to transport was diffusion through the film.

The entire apparatus is shown in Figure 6.

Since the novel feature of the present work is the employment of the tracer technique, an instrument was needed to measure the concentration of the tracer. Shown in Figure 7 is the Tri Carb Liquid Scintillation Spectrometer Model 2101 which was used for all tracer measurements. The spectrometer counts the number of beta particles emitted by a radioactive sample for any preset time. Then, from this emission rate, the actual amount of tracer element present in the sample can be calculated. The operation (33) of the spectrometer will not be dealt with here in detail except to mention that each sample in order to be counted by the spectrometer had to be placed in 15 milliliters of a specially prepared scintillation cocktail. This scintillation cocktail converted the beta particle energy emitted by the tracer to light quanta which were detected by the spectrometer and recorded.





### Reagents and Materials

The polyethylene film used in the present work was 1.5 mils thick with a density of 0.920 to 0.930 grams per cubic centimeter and a number average molecular weight of 40-50,000. This film was supplied by the Celanese Plastics Company.

The tracer used in this work was tritiated toluene The scintillation cocktail was prepared by adding

having an initial activity of 0.141 millicuries per cubiccentimeter. The tracer was obtained from Isotopes Inc. 0.3 grams 1,4-bis-(2-4(methyl-5-phenyloxazolyl)) benzene and 5.0 grams 2,5 diphenyloxazole together in a one liter volumetric flask which was then brought up to volume with toluene (6). The 1,4-bis-(2-4(methyl-5-phenyloxazolyl)) benzene and the 2,5 diphenyloxazole were obtained from the Packard Instrument Co. Inc.

The organic liquids employed as the swelling agents were all Baker Analyzed Reagent Grade with the exception of cyclohexane and tetrahydronapthalene. The tetrahydronapthalene was the Baker Practical Grade, and the cyclohexane was an Eastman Chemical Company product which was of a higher quality than the Baker Analyzed Reagent Grade. The gasket material was a thickol rubber obtained from the Reliable Rubber Company. This gasket material was found the most suitable for the organic liquids used since it did not swell as much as other rubber gasket

materials tested. The thickol rubber also did not release



liquids causing a color change as the other rubber products did when tested. The other rubber gasket materials tested were neoprene and Buna-N. Teflon was also tested but did

Eight organic liquids, each used at four different temperatures in the temperature range 25 to 40 °C in intervals of about 5°C, were employed as the swelling agents in the present work. These eight organic liquids were toluene, chlorobenzene, mesitylene, cumene, ethylbenzene, cyclohexane, tetrahydronapthalene, and decahydronapthalene.

In the present work the diffusion chamber into which the initial tracer was added will be referred to as the "hot" chamber; and, similarly, the chamber into which no tracer was initially added will be referred to as the "cold" chamber.

For each run, the second set of thickol gaskets, those which were to be placed on the beveled portions of the brass flanges, were swollen to equilibrium in the organic liquid to be used as the swelling agent prior to insertion in the cell. The gaskets were allowed to remain in the swelling agent about twelve hours. This insured no further swelling of the gaskets while in the diffusion cell, thus keeping the cross-sectional area of the polymer film for diffusion constant.

A one inch diameter section of polyethylene film served as the medium for diffusion. This section was cut from a sheet of the film. One of the two brass flanges was then secured, though not completely in the diffusion cell along with its accompanying gasket. Then one of the

### EXPERIMENTAL TECHNIQUE

### EXPERIMENTAL TECHNIQUE

Eight organic liquids, each used at four different temperatures in the temperature range 25 to 40  $^{\circ}$ C in intervals of about 5 $^{\circ}$ C, were employed as the swelling agents in the present work. These eight organic liquids were toluene, chlorobenzene, mesitylene, cumene, ethylbenzene, cyclohexane, tetrahydronapthalene, and decahydronapthalene.

In the present work the diffusion chamber into which the initial tracer was added will be referred to as the "hot" chamber; and, similarly, the chamber into which no tracer was initially added will be referred to as the "cold" chamber.

For each run, the second set of thiokol gaskets, those which were to be placed on the beveled portions of the brass flanges, were swollen to equilibrium in the organic liquid to be used as the swelling agent prior to insertion in the cell. The gaskets were allowed to remain in the swelling agent about twelve hours. This insured no further swelling of the gaskets while in the diffusion cell, thus keeping the cross-sectional area of the polymer film for diffusion constant.

A one inch diameter section of polyethylene film served as the medium for diffusion. This section was cut from a sheet of the film. One of the two brass flanges was then secured, though not completely in the diffusion cell along with its accompanying gasket. Then one of the

swollen gaskets was placed in the circular portion of the center partition on the beveled portion of the flange. The polymer film was now placed on this swollen gasket and immediately the second swollen gasket was placed upon the polyethylene film. Finally, the second flange and its gasket were secured to the center partition and both flanges tightened fast.

Now the organic liquid to be used as the swelling agent was measured and placed in the diffusion cell. One hundred and nineteen milliliters of the liquid were placed in the "hot" chamber and one hundred and twenty milliliters were placed in the "cold" chamber.

The diffusion cell, as now prepared, was placed on the tripod in the constant temperature water bath. The cover was placed over the diffusion cell and the stirring rods placed in the chambers.

The diffusion cell was allowed to remain in the constant temperature bath for forty-two hours before diffusion measurements were initiated by the addition of the tracer. This time was chosen to insure equilibrium swelling of the polyethylene film by the organic liquid. While waiting for the attainment of equilibrium, a determination of the liquid evaporation rate from the cell under the same conditions to be employed for diffusion measurements was made. The stirring rate was maintained as constant as possible for each chamber by the use of a

powerstat. The speed of the stirrer was such to avoid

splashing of the contents of the cell. The calculation of the evaporation rate would lend itself to calculation of an average volume for each chamber. The effect of evaporation itself makes no difference in the determination of the "hot" or "cold" chamber concentration, since on evaporation from either chamber the liquid evaporated has the same concentration of tracer as that liquid in the chamber, thereby, resulting in no net concentration change. This average volume value was needed in order to calculate a permeation constant. The chambers were maintained at their original volume during this period of equilibration, except for the short time when the evaporation rate determination was being carried out, by addition of liquid at the same temperature as that in the cell.

After the equilibration period, the chambers were brought up to their respective volumes for the final time prior to the addition of the tracer.

As soon as this final volume attainment was made, one milliliter tritated toluene having a concentration of 0.141 millicuries per milliliter was added by means of a pipette to the "hot" chamber and time zero for diffusion measurements was realized. Thus, at the start of the tracer diffusion, both chambers were at equal volumes.

For the next four hours, at thirty minute intervals after the addition of the tritated toluene, one-half milliliter samples were withdrawn from each chamber by means of a pipette. In order to take a sample, the stirrers were
turned off, and pipettes, one for each respective chamber, were inserted through the holes in the cover into the "hot" or "cold" chamber, respectively, and a sample was withdrawn. After samples were withdrawn from both sides, the stirrers were again turned on. This procedure was followed throughout the four hour period.

Prior to the addition of the tritated toluene to the cell, fifteen milliliters of the specially prepared scintillation cocktail were pipetted into twenty-two milliliter glass sample bottles equipped with a polyseal insert in the plastic cap for a sure seal.

After the one-half milliliter sample was withdrawn from the cell, it was emptied into the previously prepared sample bottle. The fifteen milliliters of scintillation cocktail in each sample bottle were held constant for all samples to insure the same value of counting efficiency for any given system. Each sample bottle's cap was secured tightly to avoid evaporation of the contents. The sample bottles with their radioactive contents were then placed into a dark room, in which the scintillation spectrometer was kept, for a period of at least twelve hours. This so called "cooling-off" period allowed the contents of the sample bottles to reach room temperature. But mainly, since the scintillation cocktail is sensitive to the ultraviolet rays of the sun and to the fluorescent lights in the laboratory, this period allowed decay of ultraviolet activated molecules to the ground state. A small red light

was the only light in the room. After the "cooling-off" period each sample bottle was placed in the scintillation spectrometer and the number of beta particles emitted for a preset time was counted. Half-way through the counting of the samples from any one run, a Tri Carb standard was placed in the spectrometer and counted. This standard served to determine the efficiency of the spectrometer.

To calculate the effect of background radiation a blank cocktail was counted. This blank cocktail consisted only of the scintillation cocktail and a non-radioactive one-half milliliter sample of the respective organic liquids. For the Tri Carb standard, which was used to determine the efficiency of the scintillation spectrometer, a Tri Carb blank standard was used to determine its background. After the blank was counted, substraction of its value from that for the sample would yield the sample's true reading. This procedure was followed throughout the present work for all the organic liquids with the exception of cyclohexane, in which the actual sample time was cut to two hours and sampling was carried out every fifteen minutes. The purpose of this deviation was caused by the higher diffusion rate for cyclohexane and the desire of the researcher to keep the amount of tracer transferred fairly

consistent with that observed during the other trials.

The data from the present work may be found in tabular form in Tables 1 to 16 with the corresponding final permeation equations in Table 20.

The present work yielded only the values for the permeation constant and the energy for the permeation process. The diffusion constant could not be directly calculated as indicated by equation [16] due to the inaccessability of the value for the time-lag. As can be seen from a typical plot for the "cold" chamber tracer concentration versus time, Figure 8, the steady state tracer permeation through the polyethylene film was achieved in a very short time, in most cases less than two minutes after addition of the tracer. Thus with such a small time increment and the drawing of the "best" straight line through the data, the time-lag was seen to be indeterminate. With reference to the plots which are extrapolated to give a negative time-lag, this was due to the retention of some radioactive tracer in the gaskets from a prior run, since the gaskets were interchanged after each run. Correction was made for this initial radioactive tracer but still no certain time-lag was obtained.

The use of the method of Paul and DiBenedetto (21) to obtain the solubility of the liquid in the polymer could not be carried out due to the uncertain time-lag values.

# DISCUSSION OF RESULTS

The permeation constant values at the different temperatures conform to an Arrhenius type relation as shown by the graph in Figure 9. However there is some permeability does not fall on the straight line indicated by the other data. It is supposed that this fact is due to some inherent physical or chemical property of the polyethylene film itself and not to the data or the method since the effect can be observed for most of the liquids. The permeability does not seem to follow any set

inconsistency shown near 30°C where the logarithm of the pattern with regard to molecular size, as is seen by Table 21, although the factor of solubility could be highly important.

The solubilities of toluene and chlorobenzene in polyethylene (8) are approximately the same, while the solubility of cyclohexane in polyethylene (8) is much greater. From the values calculated for the activation energy of the permeation process a pattern can possibly be recognized since the energy values for toluene and chlorobenzene are very close while that for the cyclohexane is very low, possibly indicating the effect of solubility on the permeation energy. The increased solubility could somehow lend itself to decrease the resistance to permeation. The use of ethylene dibromide and nitrobenzene, both having low solubilities in polyethylene (8), were considered; however. due to the high cost and the high toxicity, respectively, of these substances, no attempt was made to

employ them.

An evaluation was made to determine whether the heat of solution term, as shown in equation [15], could be considered negligible in comparison to the activation energy for the permeation process, thereby, arriving at a satisfactory value for the activation energy for the diffusion process. However, Michaels et. al. (16) arrived at a value of 4.1 Kcal./g. mole for the heat of solution of liquid p-xylene in polyethylene film while Sobolev et. al. (26) computed a value of 5.7 Kcal./g. mole for the heat of solution of methyl bromide in polyethylene film. Klute and Franklin (10) found a value of 5.5 Kcal./ g. mole for the heat of solution of water vapor in polyethylene film. These findings lend support to the fact that the heat of solution value is significant and separate work must be done to determine it and, correspondingly, to determine the true value for the activation energy for the diffusion process.

Any attempt to compare the values for the activation energy for the permeation process of the present work to those found by other researchers is meaningless. Since, as has been pointed out, there are many factors, such as degree of crystallinity and cross-linking, low density or high density polyethylene, which cause the polyethylene used by one observer to differ from that used by another observer. Also each processor of the polyethylene film does not prepare the film in exactly the same fashion

again adding to the differences in the polyethylene films. Figure 10 which depicts a plot of ln(Do) versus  $\Delta E$ , shows a straight line relationship with some scatter. This is a modified form of the "linear free energy relationship" which is said to exist for a process in similar systems whose rate constants show the temperature dependence of the Arrhenius type (2,11,12,21). Very good agreement is thus shown, considering the work of other researchers who have realized more scatter than found in the present work (21).

Tables 17 and 18 present the pertinent values leading to the calculation of the permeation constant while Table 19 lists the values obtained for the energy for the permeation process for each system. Presented in Table 20 are the final empirical equations for the permeation of the toluene specie through the swollen polyethylene film in the temperature range 25 to 40 °C. However the most important feature of the present work is the highly successful operation of the novel technique employed for the measurement of the liquid permeation through the polymer film. The conformity of the data to the Arrhenius equation and the "linear free energy

relationship" is satisfactory.

The effect of the substitution of the isopropyl side chain on the benzene ring in place of the ethyl side chain on ethylbenzene is seen to produce a marked effect on the permeation energy yielding 16,675.40 cal./g. mole and 11,414.84 cal./g. mole for cumene and ethylbenzene, respectively. Consideration should be given to the use of straight-chain and branched-chain hydrocarbons for liquid permeation measurements.

The effect of solubility of the liquid in the polyethylene film is the most important factor in this work. Work must be done with liquids of varying solubilities in the polyethylene film in order to test the hypothesis of the increased permeability with the increased solubility of the liquid in the polyethylene film.

To check the accuracy of the Paul and DiBenedetto method when applied to the present work, it is proposed that numerous determinations of the solubilities of various liquids in the polyethylene film be made through the construction of a separate solubility apparatus and the experimental results compared to their theoretical results.

To employ equation [ 16] for the direct determination of the diffusion constant it is suggested that thicker films be utilized, which will give a larger and more certain time-lag value. The effect often observed of temperature on the

# CONCLUSIONS AND RECOMMENDATIONS

permeation constant was verified to be a linear relationship, and this fact was further verified by the agreement with the "linear free energy relationship" aspect. The use of new gaskets for each run is strongly suggested to offset any radioactive tracer buildup in the old gaskets which might lead to an erroneous time-lag

value if not corrected.

Along with processing of new data with regard to organic liquid permeation through polyethylene film, the successful operation of a new and simplified technique for measuring the liquid permeation through a polymer film is the prime contribution this work has presented.

APPEN DI X

| SAMPLI                                                           |
|------------------------------------------------------------------|
| following is an                                                  |
| ning the permeabi                                                |
| e polyethylene fi                                                |
| following notati                                                 |
| number of bet<br>the liquid se<br>including bec                  |
| number of bet<br>the liquid se<br>less backgrou                  |
| number of bet<br>minutes for t<br>chamber inclu<br>efficiency (c |
| number of bet<br>minutes for t<br>chamber less<br>(counts/10 mi  |
| "hot" chamber<br>background ex                                   |
| "cold" chambe<br>background ex                                   |
| "hot" chamber<br>background in                                   |
| "cold" chambe:<br>background ind                                 |
| average volum                                                    |
| thickness of a                                                   |
| cross sections<br>(cm. <sup>2</sup> )                            |
| spectrometer e                                                   |
| permeation rat                                                   |
| permeation rat                                                   |
| permeability (                                                   |
|                                                                  |

E CALCULATION example of the method followed ility of the diffusing specie ilm. ion is used: ta particles counted per minute for ample in the "hot" chamber ekground excluding efficiency (cpm) ta particles counted per minute for ample in the "hot" chamber and excluding efficiency (cpm) a particles counted per ten the liquid sample in the "cold" ding background excluding ounts/10 min.) a particles counted per ten the liquid in the "cold" background excluding efficiency n.) tracer concentration less cluding efficiency (mc./cc.) r tracer concentration less cluding efficiency (mc./cc.) tracer concentration less cluding efficiency (mc./cc.) r tracer concentration less cluding efficiency (mc./cc.) e of chamber (cc.) film (cm.) al area of film for diffusion efficiency te excluding efficiency (mc./sec.) te including efficiency (mc./sec.) (cm.2/sec.)

| T                                          | temperature                               |
|--------------------------------------------|-------------------------------------------|
| ΔE                                         | activation er<br>(cal./g. mole            |
| Do                                         | constant (cm.                             |
| R                                          | gas constant                              |
| В                                          | background (c                             |
| For the                                    | e calculation                             |
| "cold" chamber                             | liquid sampl                              |
| the equations                              | are seen to b                             |
| Ca- = C                                    | a <sup>+</sup> -B C                       |
| C <sub>b</sub> - = C                       | бъ⁺-В С                                   |
| Taking                                     | into account                              |
| scintillation                              | spectrometer,                             |
| are found:                                 |                                           |
| $C_A^* = C$                                | A/E C                                     |
| $C_B^{\bigstar} = C$                       | B/E C                                     |
| <b>J*</b> = J                              | /E C                                      |
| A milli                                    | curie (mc.) i                             |
| tegrations per                             | second. Ther                              |
| concentration                              | at any time,                              |
| $C_{\mathbf{A}} = \frac{C\mathbf{a}}{1/2}$ | <u>-(cpm)</u> <u>min.</u><br>2 cc. 60 sec |
| C <sub>A</sub> (me./c                      | c.) = 9.00901                             |
| Correspondingly                            | y, the "cold"                             |
| at any time can                            | n be written a                            |
| $C_{B} = \frac{C_{b}}{(1)}$                | -(counts/10 mi<br>/2 cc.)(10 min          |

```
(°K)
                        nergy for the permeation process
                        e)
                        2/sec.)
                        (1.987 cal./g. mole ^{\circ}K)
                        counts/time)
                        of the "hot" chamber and the
                        le counting rate less background
                        be:
                        18]
                        19]
                        the efficiency of the liquid
                         E, the following equations
                        20 🗅
                        21 🛛
                        22]
                        is defined (4) as 3.7 \times 10^7 disin-
                        efore the "hot" chamber tracer
                        t, is found:
                        \frac{mc.}{3.7 \times 10^7 \text{ dis./sec.}}
                        (10^{-10}) Ca-
                                               E 23 □
                         chamber tracer concentration
                        as:
                        min.) min.
m.) 60 sec. 3.7x10<sup>7</sup> dis./sec.
C_B(mc./cc.) = 9.00901 (10^{-11}) C_b^{-11}
                                               [ 24 ]
To determine the rate of permeation, J, a graph
```

of the "cold" chamber tracer concentration,  $C_B$ , versus time was plotted, the slope of which gave the rate of permeation per "cold" chamber volume. Since the chamber volume was decreased with time, an average value was computed using the volumes calculated at each of the extremes on the C<sub>B</sub> versus time plot for any particular run. An analysis of the error introduced by this choice of an average volume will be presented in the following section on error analysis. The product of this average volume times the slope of the C<sub>B</sub> versus time curve gives directly the rate of permeation, J. Through the use of stirrers in the cell, an assump-

Through the use of stirrers in the cell, an assumption of perfect mixing in each chamber is justified. The value for the concentration of the tracer in the "hot" chamber is very large compared to that for the tracer in the "cold" chamber, so that, the value for the "cold" chamber can be considered negligible in comparison to the "hot" chamber tracer concentration. This further reduces equation [8] to:

$$(Ds) = J^{\#} \frac{x}{A} \frac{1}{C_A^{\#}}$$

In a separate experiment the difference between the thickness of a polyethylene film in the unswollen state with that for the film fully swollen in each respective swelling agent could not be detected using a micrometer with a sensitivity of ±0.01 mil. This then justified the use of the unswollen film's thickness. On substituting equations [20] and [22] into

[ 25 ]

equation [25], the final working equation for the determination of the permeability is found to be: [26] For the purpose of clarity, the calculation of the permeation of the tracer through the polyethylene film swollen in toluene at 25°C will be made in detail. From the data in Table 1 a graph of the concentration of the tracer in the "cold" chamber versus time was plotted as shown by Figure 8. On taking the slope of this plot, it is found: slope =  $\frac{(5.3093-0.5832)(10^{-6}) \text{ mc./cc.}}{242-32 \text{ min.}}$ = 2.2505(10-8) mc./(cc.)(min.)The chamber volume was therefore found by taking the initial chamber volume, 120.0 ml., and substracting

$$(Ds) = J \quad \frac{x}{A} \quad \frac{1}{C_A}$$

the volume evaporated and or volume withdrawn by sampling at the time the sample was taken. VR Reason At the time of v sample withdrawl ml. ml. 0 0.15 0.65 0.65 0.65 0.65 0.65 0.65 7 0.65 8 The average volume is the average of the volumes corresponding to the extremes of the steady state portion

of the CB versus time plot, Figure 8.

 $Vavg = \frac{119.35 + 115.30}{2}$  cc.

| 120.00 | -             |        |
|--------|---------------|--------|
| 119.85 | evaporation   |        |
| 119.20 | evaporation & | sample |
| 118.55 | evaporation & | sample |
| 117.90 | evaporation & | sample |
| 117.25 | evaporation & | sample |
| 116.60 | evaporation & | sample |
| 115.95 | evaporation & | sample |
| 115.30 | evaporation & | sample |
|        | +             | -      |

| = 117.575 cc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The rate of permeati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $J = \frac{2.2505(10-8) \text{ mc.}}{\text{cc. min.}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $= 4.4101(10^{-8})$ mc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The concentration of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| is found by using equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_{A} = 9.00901(10^{-10}) \\ = 9.00901(10^{-10}) \\ = 4.3994(10^{-4}) \text{ mc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Therefore, solving f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| found that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(Ds) = 4.4101(10^{-8})$<br>sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $= 1.3401(10^{-7})$ c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| where $x=3.81(10^{-3})$ cm. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| thickness and cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The determination of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| permeation process can be s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and [12] the slope of a plo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| the constant $P_1$ is the interview of the second |
| For the system of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| through the polyethylene fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| calculation will be shown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| From the plot of log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| it is found:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| slope = $\frac{2.3025(10g_{10})}{2.3025(10g_{10})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= \frac{2.3025((-6.31))}{-0.000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $= -7937.78^{\circ} K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

on then is found to be:  $\frac{\text{min.}}{60 \text{ sec.}}$  117.575 cc. /sec. the tracer in the "hot" chamber [23] to be: Ca-(488295) ./cc. for the permeability, it is  $\frac{\text{mc.}}{2.85 \text{ cm.}^2} \frac{3.81(10^{-3}) \text{ cm.}}{4.3994(10^{-4}) \text{ mc.}}$ cm.<sup>2</sup>/sec. A=2.85 cm.<sup>2</sup>, the respective al area of the film. the activation energy for the seen to be from equations [10] t of ln(Ds) versus (1/RT) where ercept at (1/RT)=0. e toluene tracer permeating lm swollen in toluene this 10(Ds) versus (1/T), Figure 9,

# $\frac{4.7989(10^{-7}) - \log_{10} 1.3401(10^{-7})}{0.0031932 - 0.0033539})$ <u>18859)-(-6.872867))</u> .0001**6**07

since, slope =  $-\frac{\Delta E}{R}$  $- \frac{\Delta \mathbf{E}}{\mathbf{R}} = -7937.78 \text{ K}$ therefore,  $\Delta E = 15,772.35$  cal./g. mole Now to determine the constant, Do, the following method is employed. Since the permeation equation is:  $(Ds) = Do exp(-\Delta E/RT)$ therefore,  $\ln(Ds) = -\frac{\Delta E}{RT} + \ln(Do)$  $(Ds)=4.7989(10^{-7})$  cm.<sup>2</sup>/sec. T=313.16 K using substituting, 2.3025(-6.318859) = ln(Do) = 10.7982 $Do = 4.89326(10^4)$ Therefore the final permeation equation for the toluene-polyethylene system in the temperature range 25 to 40 °C is:  $(Ds) = 4.89326(10^4) \exp(-15.772.35/RT)$ 

$$-\frac{7937.78}{313.16} + \ln(D_0)$$

|                                                                     |   |     |                                       | 1. 1977 E.F.     |                                                                                   |                                                                       | TABLE 1                                                               |                                                                                                                             |
|---------------------------------------------------------------------|---|-----|---------------------------------------|------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                     |   |     |                                       | j ← g = 20-      |                                                                                   | TOLUEN                                                                | E-POLYE THYLENE                                                       | SY STEM                                                                                                                     |
|                                                                     |   |     |                                       |                  | T=25.                                                                             | 0 <b>°</b> C                                                          |                                                                       | B=16.7 cpm                                                                                                                  |
| •                                                                   |   |     | ι.                                    |                  | Time<br>min.                                                                      | Ca<br>· counts/ 1                                                     | . min.                                                                | Ca <sup>-</sup><br>counts/ l min.                                                                                           |
|                                                                     |   |     | л<br>- ,<br>-                         |                  | 31<br>60<br>90<br>121<br>151<br>131<br>211<br>241                                 | 48881<br>47900<br>48521<br>48737<br>49483<br>4001<br>4907<br>3360     | .2<br>)4<br>7<br>(4)<br>38<br>)4<br>37<br>)8                          | 433295<br>478987<br>485200<br>487357<br>494321<br>486177<br>490770<br>439536                                                |
|                                                                     |   |     | X                                     |                  | Time                                                                              | Cb <sup>+</sup>                                                       | Cb-<br>counts/10 min.                                                 | CB                                                                                                                          |
|                                                                     | · | ·   | ,                                     |                  | $ \begin{array}{c} 32\\ 61\\ 91\\ 122\\ 152\\ 152\\ 152\\ 212\\ 242 \end{array} $ | 0641<br>13694<br>21251<br>23499<br>35700<br>42670<br>51492<br>59100   | 6474<br>13527<br>21084<br>28382<br>35533<br>42503<br>51325<br>53923   | 5.8324x10-7<br>12.1365x10-7<br>13.9946x10-7<br>25.5243x10-7<br>32.0117x10-7<br>33.2910x10-7<br>46.2337x10-7<br>53.0928x10-7 |
| a.<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、 |   | •   |                                       | •                | T= 30.                                                                            | 0 <b>°</b> 0                                                          |                                                                       | B=19.7 com                                                                                                                  |
|                                                                     |   |     | r                                     |                  | Timė<br>min.                                                                      | Ca <sup>+</sup><br>counts/ 1                                          | min.                                                                  | Ca-<br>counts/ l min.                                                                                                       |
|                                                                     |   | i.  |                                       |                  | 30.5<br>60.0<br>90.5<br>120.0<br>150.0<br>130.0<br>210.0<br>240.0                 | 43401<br>49854<br>49090<br>47964<br>48213<br>47315<br>47906<br>43075  | 1<br>5<br>4<br>8<br>5<br>5<br>9<br>5                                  | 433991<br>493525<br>490834<br>479628<br>432115<br>473135<br>479049<br>480735                                                |
|                                                                     |   |     |                                       |                  | Time<br>min.                                                                      | Cb <sup>+</sup><br>counts/10 min.                                     | Cb <sup>-</sup><br>counts/10 min.                                     | C <sub>B</sub><br>millicuries/cc.                                                                                           |
|                                                                     | , | , · | · · · · · · · · · · · · · · · · · · · | ,<br>,<br>,<br>, | 31.5<br>61.0<br>91.5<br>121.0<br>152.5<br>181.0<br>211.0<br>241.0                 | 12645<br>25951<br>39046<br>52743<br>65143<br>78313<br>92151<br>105165 | 12448<br>25754<br>38849<br>52546<br>64951<br>78116<br>91954<br>104968 | 1.1214x10-6<br>2.3202x10-6<br>3.4999x10-6<br>4.7339x10-6<br>5.8514x10-6<br>7.0375x10-6<br>8.2841x10-6<br>9.4566x10-6        |

のの記録

1

| C       | я   |      |
|---------|-----|------|
| counts/ | 1   | min. |
| 433     | 29  | 5    |
| 4789    | 987 | 1    |
| 485     | 200 | )    |
| 437     | 357 | 7    |
| 494     | 821 | Ĺ    |
| 486     | 177 | 7    |
| 4903    | 77( | )    |
| 439     | 586 | 3    |

|   | , |           |     |       |   |   |                                                                                                  | •                                                                         | TABLE 2                                                                   |                                                                                                                                                                                                                        |
|---|---|-----------|-----|-------|---|---|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   |           |     |       |   |   |                                                                                                  | TOLUEN                                                                    | VE-POLYETHYLENE                                                           | SYSTEM                                                                                                                                                                                                                 |
|   |   |           |     |       |   |   | T=35.0                                                                                           | °c                                                                        |                                                                           | B=19.7 cpm                                                                                                                                                                                                             |
|   | • |           | іх. |       |   |   | Time<br>min.                                                                                     | Ca<br>counts/1                                                            | ⊧<br>L mín.                                                               | Ca-<br>counts/ l min.                                                                                                                                                                                                  |
|   |   |           |     |       |   |   | 30<br>60<br>90<br>126<br>150<br>180<br>210<br>241                                                | 49290<br>49238<br>49640<br>49197<br>49175<br>49175<br>49155<br>49099      | )2<br>34<br>)1<br>76<br>32<br>)1<br>97<br>97                              | 492332<br>492364<br>496381<br>491956<br>491712<br>491681<br>491577<br>490977                                                                                                                                           |
|   |   |           |     |       |   |   | Time<br>min.                                                                                     | C <sub>b</sub> +<br>counts/10 min.                                        | Cb <sup>-</sup><br>counts/10 min                                          | C <sub>B</sub><br>. millicuries/cc                                                                                                                                                                                     |
|   |   |           |     |       | · |   | 21<br>61<br>91<br>127<br>151<br>131<br>211<br>242                                                | 17120     34949     52443     74595                                       | 16922<br>34752<br>52246<br>74393<br>33110<br>107218<br>126917<br>145371   | $1.5255 \times 10^{-6}$<br>$3.1303 \times 10^{-6}$<br>$4.7063 \times 10^{-6}$<br>$6.7025 \times 10^{-6}$<br>$7.3378 \times 10^{-6}$<br>$3.6593 \times 10^{-6}$<br>$11.4340 \times 10^{-6}$<br>$13.0965 \times 10^{-6}$ |
|   |   |           |     |       | , |   | T=40.0                                                                                           | C                                                                         |                                                                           | в=19.3 соm                                                                                                                                                                                                             |
|   |   |           | ,   |       |   |   | Time<br>min.                                                                                     | Ca<br>counts/ 1                                                           | ⊢<br>. min'.                                                              | Ca <sup>-</sup><br>counts/ 1 min.                                                                                                                                                                                      |
| 2 |   |           |     |       |   |   | $\begin{array}{r} 30.5 \\ 60.5 \\ 90.5 \\ 120.5 \\ 150.5 \\ 130.5 \\ 210.5 \\ 240.5 \end{array}$ | 49130<br>50060<br>43622<br>43416<br>47770<br>43794<br>49091<br>47430      | 52<br>)4<br>33<br>57<br>)2<br>13<br>.9<br>)6                              | 491342<br>493932<br>434663<br>482549<br>476106<br>436313<br>489312<br>472721                                                                                                                                           |
| 4 |   | · · · · · |     | X.    | * | ÷ | Time<br>min.                                                                                     | Cb <sup>+</sup><br>counts/10 min.                                         | $c_b^{-}$ counts/10 min.                                                  | $C_{\rm B}$ millicuries/cc                                                                                                                                                                                             |
| • |   |           |     | <br>- | • |   | 31.5<br>61.0<br>91.5<br>121.5<br>151.5<br>182.5<br>211.5<br>241.5                                | 25983<br>51406<br>30452<br>106053<br>130111<br>160588<br>188816<br>215778 | 25791<br>51209<br>80259<br>105360<br>129918<br>160395<br>188623<br>215585 | 2.3235x10-6<br>4.6132x10-6<br>7.2305x10-6<br>9.5369x10-6<br>11.7043x10-6<br>14.4500x10-6<br>16.9931x10-6<br>19.4221x10-6                                                                                               |

新聞記

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                     |        | , |        |    | , | T=25.3°C<br>Time<br>min.<br>30.0<br>60.0                                    | CHLOROBENZENE-<br>Ca <sup>+</sup><br>· counts/ 2 min<br>439303<br>495118                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--------|----|---|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| min. counts/10 min. counts/<br>min. counts/10 min. counts/<br>11.0 3256<br>61.0 6633<br>91.0 10113<br>121.0 12516<br>151.5 17020<br>121.0 22515<br>241.0 2704<br>T=20.0°C<br>Time Ca <sup>+</sup><br>min. counts/10 min.<br>30 12473559<br>60 1243340<br>90 12333399<br>120 12276382<br>150 12495144<br>180 1/2365867<br>212 12291731<br>240 12216639<br>Time Cb <sup>+</sup><br>min. counts/10 min. counts/<br>31 30679 |        |   |        |    |   | 90.0<br>120.0<br>150.0<br>180.5<br>~ 210.0<br>240.0                         | 492353<br>491826<br>433935<br>487040<br>490553<br>435408                                                 |
| $T=30.0^{\circ}C$ $Time Ca^{+}$ min. counts/10 min.<br>30 12473559<br>60 12433240<br>90 12333399<br>120 12276832<br>150 12495144<br>180 12365867<br>212 12231731<br>240 12216639<br>Time Cb^{+} min. counts/10 min. coun<br>31 30679                                                                                                                                                                                     |        |   |        |    |   | min. c<br>31.0<br>61.0<br>91.0<br>121.0<br>151.5<br>131.5<br>211.0<br>241.0 | ounts/10 min. cou<br>3256<br>6639<br>10113<br>13516<br>17630<br>20207<br>20207<br>22515<br>27043         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                     |        |   |        |    | ĩ | T=80.0°C<br>Time<br>min.<br>30<br>60<br>90<br>120<br>150                    | Ca <sup>+</sup><br>counts/10 min<br>12473559<br>12433240<br>12383399<br>12276882<br>12495144<br>12365367 |
|                                                                                                                                                                                                                                                                                                                                                                                                                          | ،<br>۲ | ÷ | ۰<br>۱ | ₹. | 4 | 212<br>240<br>Time<br>min. co<br>31                                         | 12291731<br>12216639<br>C.b <sup>+</sup><br>punts/10 min. cour<br>30679                                  |

# TABLE 3

# POLYETHYLENE SYSTEM B=19.3 cpm Ca-counts/ 2 min. 489264 495079 492319 491787 483946 457001 490514 435369 C<sub>B</sub> millicuries/cc. Cb-ts/10 min. 2.3496x10-7 5.8072x10-7 8.9414x10-7 12.0013x10-7 15.1766x10-7 13.5712x10-7 21.0108x10-7 24.1937x10-7 8168 6446 9925 13382 16346 20614 28322 26355 B=19.3 com Ca-counts/10 min. 12473366 $\frac{12433047}{12333206}$ 12276689 12494951 1236517412291533 12216446 C<sub>b</sub>-nts/10 min. C<sub>B</sub> millicuries/cc. 2.7465x10-6 5.3559x10-6 8.2122x10-6 10.7736x10-6 13.5720x10-6 16.1120x10-6 18.8267x10-6 21.5571x10-6 30486 59451 91155 119587 150649 178843 208976 239284

1

i si

. . . .

> 1 7 1

t j

•

|         |          |       | r        |          |                                  |                                                        |                                                        |                                                                                |
|---------|----------|-------|----------|----------|----------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|
|         | •        | ·     |          |          |                                  |                                                        | T                                                      | •                                                                              |
|         |          | ,     |          |          |                                  |                                                        | TABLE 4                                                |                                                                                |
|         |          |       |          |          |                                  | CHLOROBEN ZEN                                          | L-POLYETHYLENE                                         | SYSTEM                                                                         |
|         |          |       |          |          | T=35.0°C                         |                                                        | Ċ                                                      | B=19.3 cpm                                                                     |
|         |          |       | Ň        |          | Time<br>min.                     | Ca <sup>+</sup><br>· counts/10 m                       | in. c                                                  | Ca-<br>ounts/10 min.                                                           |
|         |          |       |          |          | 30<br>60<br>90                   | 2394978<br>2366571<br>2159861<br>2425175               |                                                        | 2394785<br>2356378<br>2159668<br>2424982                                       |
|         |          |       |          |          | 150<br>130<br>210<br>240         | 2323173<br>2383969<br>2343260<br>2301562<br>2366473    |                                                        | 23233776<br>2343067<br>2301369<br>2266236                                      |
|         |          |       |          |          | Time                             | C +                                                    | C,b_                                                   | CB                                                                             |
|         | <i>`</i> | ţ     | ,        |          | min. cc<br>31                    | ounts/Ĩ0 min. c<br>Lö305                               | ounts/Ĩ0 min.<br>15612                                 | millicuries/cc.<br>1.4065x10-6                                                 |
|         |          |       |          |          | 61<br>91<br>121                  | 2342)<br>31216<br>39157                                | 23235<br>31023<br>38964                                | 2.0932x10-6<br>2.7133x10-6<br>3.5103x10-6                                      |
|         |          |       |          |          | 151<br>131<br>211                | $\begin{array}{c} 47576 \\ 55316 \\ 61330 \end{array}$ | $\begin{array}{c} 47383 \\ 55123 \\ 61637 \end{array}$ | $-4.2637 \times 10^{-6}$<br>$4.9660 \times 10^{-6}$<br>$5.5574 \times 10^{-6}$ |
|         |          |       |          | •        | 241                              | 70740                                                  | 70547                                                  | 6.3556x10-0                                                                    |
|         |          |       |          |          | T=39.3°C                         | +                                                      |                                                        | B=20.0 cpm                                                                     |
|         |          | ι,    |          | ė        | Time<br>min.                     | Ca<br>counts/L0 m                                      | in. c                                                  | Ca-<br>ounts/10 min.                                                           |
|         | ·        |       |          |          | 30.5<br>60.0                     | 2533400<br>2500559<br>2503526                          |                                                        | 2533200<br>2500359<br>2508326                                                  |
|         |          |       |          |          | 120.0<br>150.0                   | 2445641<br>2424452<br>2426024                          |                                                        | 2445441<br>2424252<br>2435884                                                  |
| のないである。 | •<br>•   |       |          |          | 210.5<br>240.0                   | 2409336<br>2332145                                     |                                                        | 2409136<br>2381945                                                             |
|         | А        | . \   | , Y      | <b>e</b> | Time<br>min, co                  | Cb <sup>+</sup><br>unts/10 min. co                     | C <sub>b</sub> -<br>punts/10 min.                      | $c_{ m B}$ millicuries/cc.                                                     |
|         | •        | ۰     |          |          | 31.5<br>61.0<br>91.0             | 21724<br>33302<br>45107                                | 21524<br>33102<br>44907                                | 1.9391x10-6<br>2.9822x10-6<br>4.0457x10-6                                      |
|         |          | • · · | . •<br>• | . ·      | 121.0<br>151.0<br>181.0<br>211.0 | 57982<br>70710<br>82439<br>93661                       | 57782<br>70510<br>82239<br>93461                       | 5.2056x10-6<br>6.3522x10-6<br>7.4089x10-6<br>8,4199x10-6                       |
|         | j J      |       | · · ·    |          | 241.0                            | 103218                                                 | 103018                                                 | 9.2809x10-6                                                                    |
|         |          |       |          | •        | · ·                              |                                                        | 47                                                     |                                                                                |

Ľ.,

|          |       |                                                                                 |              |    | ,                |                                                   | ·                                                                                                            |                                                                                               |                                                                                                                      |
|----------|-------|---------------------------------------------------------------------------------|--------------|----|------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <b>1</b> |       |                                                                                 |              |    |                  |                                                   |                                                                                                              | TABLE 5                                                                                       |                                                                                                                      |
|          |       |                                                                                 |              |    |                  |                                                   | MESITYLE                                                                                                     | NE-POLYETHYLENE                                                                               | SYSTEM                                                                                                               |
|          |       |                                                                                 |              |    |                  | T=2                                               | 5.4°C                                                                                                        |                                                                                               | B=17.4 com                                                                                                           |
|          |       |                                                                                 |              | 1  |                  | Tim                                               | e Ca <sup>+</sup><br>counts/10                                                                               | min.                                                                                          | Ca-<br>counts/10 min.                                                                                                |
|          |       |                                                                                 |              |    | ·                | 29<br>60<br>90<br>120<br>150<br>180<br>211<br>240 | $\begin{array}{r} 471896\\ 471365\\ 463534\\ 466711\\ 466711\\ 464768\\ 464109\\ 457638\\ 457134\end{array}$ | 4<br>2<br>1<br>2<br>9<br>4<br>3                                                               | 4713790<br>4713478<br>4635167<br>4666933<br>4647508<br>4640925<br>4576710<br>4571169                                 |
|          | ,     |                                                                                 | ,            |    |                  | Time                                              | $c_b^+$                                                                                                      | $C_b^-$                                                                                       | C <sub>B</sub> .                                                                                                     |
|          |       |                                                                                 |              |    |                  | 20<br>61<br>71<br>121<br>151<br>131<br>212<br>241 | $\begin{array}{r} 9591 \\ 16461 \\ 23143 \\ 30041 \\ 36951 \\ 43310 \\ 50269 \\ 61294 \end{array}$           | $\begin{array}{c} 9327\\ 16237\\ 22969\\ 29367\\ 36777\\ 43136\\ 50095\\ 61120\\ \end{array}$ | 0403x10-6<br>1.4673x10-6<br>2.0693x10-6<br>2.6907x10-6<br>3.3132x10-6<br>3.3361x10-6<br>4.5131x10-6<br>5.5063x10-6   |
|          |       |                                                                                 |              |    |                  | T=30                                              | 0°C                                                                                                          |                                                                                               | B=22.9 cpm                                                                                                           |
|          |       | 1                                                                               |              |    |                  | Time<br>min.                                      | Ca<br>counts/10                                                                                              | min.                                                                                          | Ca-<br>counts/10 min.                                                                                                |
|          |       |                                                                                 |              |    | •                | 31<br>60<br>90<br>120<br>150<br>130<br>210<br>240 | 4703013<br>4693460<br>4705431<br>4611597<br>462144<br>4590216<br>4543726<br>4541026                          |                                                                                               | 4702789<br>4693231<br>4705202<br>4611368<br>4621219<br>4589987<br>4543497<br>4540797                                 |
|          | x     |                                                                                 | N            | ١  |                  | Time<br>min.                                      | $C_b^+$ counts/10 min.                                                                                       | $C_b^-$ counts/10 min.                                                                        | CB<br>millicuries/cc.                                                                                                |
| •        | х<br> | 5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |              | ۰. | ·<br>·<br>·<br>· | 32<br>61<br>91<br>121<br>151<br>181<br>211<br>241 | 9430<br>18213<br>27321<br>37313<br>46292<br>55219<br>65648<br>75156                                          | 9201<br>17984<br>27092<br>37084<br>46063<br>54990<br>65419<br>74927                           | 0.8289x10-6<br>1.6202x10-6<br>2.4407x10-6<br>3.3409x10-6<br>4.1498x10-6<br>4.9541x10-6<br>5.8936x10-6<br>6.7502x10-6 |
|          | 1     |                                                                                 | <b>(</b> " ; |    |                  |                                                   |                                                                                                              | 48                                                                                            |                                                                                                                      |

.

# T=35.0°C

Time min.

移長

# T=40.0℃ Ca<sup>+</sup> counts/10 min. Time min. 4 00730 4304227 4717569 120 4599736 Time Ċ counts/10 min. coun min.

11539L

45957 67143 62 130010 151979 181 241 

# TABLE 6

# MESITYLENE-POLYETHYLENE SYSTEM

# B=15.1 com

**.** 

|                                | Ca-                               |
|--------------------------------|-----------------------------------|
| •                              | counts/10 min.                    |
|                                | 4819985                           |
|                                | 4317620                           |
|                                | 4763949                           |
|                                | 4691016                           |
|                                | 4099540                           |
|                                | 4573395                           |
|                                |                                   |
| Cp_                            |                                   |
| its/10 min.                    | , millicurles/cc.                 |
| 14747                          | $1.3236 \times 10^{-6}$           |
| 2957 L<br>44423                | $4.0025 \times 10^{-6}$           |
| 59677                          | $5.3763 \times 10^{-6}$           |
| 75771                          | $5.3262 \times 10^{-6}$           |
| 33182                          | 7.9483x10-0<br>9.2761x10-6        |
| 115740                         | $10.4270 \times 10^{-6}$          |
|                                |                                   |
|                                | B=15.1 com                        |
|                                | Ca-                               |
|                                | counts/10 min.                    |
|                                | 4300629                           |
|                                | 4804076                           |
|                                | 4703460                           |
|                                | 4599635                           |
|                                | 4524120                           |
|                                | 4503469<br>4438333                |
|                                | 115,9000                          |
| Cb <sup>-</sup><br>its/10 min. | C <sub>B</sub><br>millicuries/cc. |
| 24323                          | 2.1913x10-6                       |
| 45706                          | $4.1176 \times 10^{-6}$           |
| 66997                          | $6.0358 \times 10^{-6}$           |
| 35876                          | $7.7366 \times 10^{-6}$           |
| 129859                         | $11.6990 \times 10^{-6}$          |
| 151828                         | $13.6782 \times 10^{-6}$          |
| 172406                         | 15.5321x10 <sup>-0</sup>          |
|                                |                                   |

|   | 4                          |         |                                                       |                                                                                      | TABLE 7                                                                                                                                                                                                                                               |
|---|----------------------------|---------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                            |         | <b>T</b> L OF <b>4</b>                                | COMENE-POL                                                                           | IETHILENE SISTEM                                                                                                                                                                                                                                      |
|   |                            |         | T=20.4                                                | с.• <b>+</b>                                                                         | B=15.1 Cpm                                                                                                                                                                                                                                            |
|   | ١                          | Y       | min.                                                  | · counts/10 min                                                                      | counts/10 min.                                                                                                                                                                                                                                        |
|   | ,                          |         | 30<br>60<br>92<br>121<br>151<br>130<br>210<br>240     | 4795047<br>4801084<br>4753241<br>4640288<br>4722722<br>4704302<br>4677321<br>4633046 | 4794896<br>4300933<br>4753090<br>4640137<br>4722571<br>4704651<br>4677170<br>4632395                                                                                                                                                                  |
|   |                            |         | ſime<br>min.                                          | Cb <sup>+</sup><br>counts/10 min. cou                                                | $C_{b}^{-}$ $C_{B}$ ats/10 min. millicuries/c                                                                                                                                                                                                         |
|   |                            |         | <br>91<br>61<br>92<br>122<br>152<br>131<br>211<br>241 | 471.2<br>2491<br>13529<br>13595<br>21872<br>25936<br>80457<br>84389                  | 2962       0.3569x10-6         3280       0.7459x10-6         13373       1.2052x10-6         16444       1.4314x10-6         21221       1.9118x10-6         25335       2.3275x10-6         30306       2.7303x10-6         34633       3.1251x10-6 |
| Ś |                            |         | r=30.0°                                               | °C                                                                                   | B=17.9 c vm                                                                                                                                                                                                                                           |
|   |                            | ,       | Time<br>min.                                          | Ca <sup>+</sup><br>counts/10 min                                                     | . Ca-<br>. counts/10 min.                                                                                                                                                                                                                             |
| , |                            |         | 30<br>60<br>90<br>120<br>150<br>180<br>210<br>240     | 4741569<br>4738080<br>4760012<br>4673036<br>4715677<br>4590327<br>4581628<br>4569918 | $\begin{array}{r} 4741390\\ 4737901\\ 4759333\\ 4677877\\ 4715498\\ 4590648\\ 4581444\\ 4569739\end{array}$                                                                                                                                           |
|   |                            | ۰.<br>۲ | Time<br>min.                                          | $C_b^+$ counts/10 min. cour                                                          | C <sub>b</sub> - C <sub>B</sub><br>nts/10 min. millicuries/c                                                                                                                                                                                          |
| • | ۲<br>۲<br>۲<br>۲<br>۲<br>۲ | •       | 31<br>61<br>91<br>121<br>151<br>181<br>211<br>241     | 6937<br>13203<br>19649<br>26238<br>32967<br>39883<br>46052<br>52770                  | $6758$ $0.6088x10-6$ $13024$ $1.1733x10-6$ $19470$ $1.7541x10-6$ $26109$ $2.3522x10-6$ $32788$ $2.9539x10-6$ $39704$ $3.5769x10-6$ $45901$ $4.1352x10-6$ $52619$ $4.7405x10^{-6}$                                                                     |
|   |                            |         |                                                       | <b>,</b>                                                                             |                                                                                                                                                                                                                                                       |

12

-

| TABLE 8                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CUMENE-POLYETHYLENE                                                                                                 | SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| T=35.4°C                                                                                                            | B=15.1 cpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time Ca <sup>+</sup><br>min. counts/10 min.                                                                         | Ca-<br>counts/10 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                | 4794602<br>4749442<br>4781326<br>4700137<br>4703715<br>4666903<br>4591613<br>4562150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Time $C_b^+$ $C_b^-$<br>min. counts/10 min. counts/10 min                                                           | C <sub>B</sub><br>. millicuries/cc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                | 1.2205x10-6<br>2.2343x10-6<br>3.1315x10-6<br>4.1606x10-6<br>5.1265x10-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 131         67937         67333           211         79004         73353           241         90059         89908 | 6.1114x10 <sup>-6</sup><br>7.1039x10 <sup>-6</sup><br>3.0993x10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 'T= 3.9 <b>.</b> 3 <sup>°</sup> C                                                                                   | B=17.9 cpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time Ca<br>min. counts/10 min.                                                                                      | Ca-<br>counts/10 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                | 4844506<br>4788624<br>4758851<br>4705376<br>4688777<br>4654324<br>4629584<br>4600824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Time $C_b^+$ $C_b^-$<br>min. counts/10 min. counts/10 min                                                           | C <sub>B</sub><br>n. millicuries/cc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                | 1.7399x10-6<br>3.3016x10-6<br>4.8086x10-6<br>6.1560x10-6<br>7.7054x10-6<br>9.0775x10-6<br>10.5760x10-6<br>12.0320x10-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 51                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                     | and the second state of the se |

Ľ,

- 3

|                                                                         |    |        | T=25.0°C<br>Time<br>min.<br>30<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>Time<br>min. coun<br>31<br>61<br>91<br>121<br>151<br>131<br>911<br>241<br>T=30.0°C<br>Time<br>min.<br>30<br>62<br>92<br>120<br>150<br>182<br>210<br>240<br>Time<br>min. coun<br>31<br>61<br>91<br>121<br>151<br>131<br>91<br>241<br>T=30.0°C<br>Time<br>min.<br>30<br>62<br>92<br>120<br>150<br>182<br>210<br>240<br>Time<br>min. coun<br>31<br>61<br>91<br>121<br>151<br>131<br>91<br>241<br>T=30.0°C | ETHYLBENZ<br>Ca <sup>+</sup><br>counts/10<br>461766<br>459371<br>461989<br>460209<br>456341<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>457216<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45726<br>45764<br>45726<br>45764<br>45726<br>45764<br>45726<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>45766<br>4576 | min.<br>23<br>count<br>55<br>count<br>57<br>count |
|-------------------------------------------------------------------------|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| ۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰<br>۰ | Υ. | ς<br>γ | 92<br>120<br>150<br>182<br>210<br>240<br>Time<br>min. coun<br>31                                                                                                                                                                                                                                                                                                                                                                                                                        | 465532'<br>4626959<br>453764<br>4542609<br>453298'<br>4519369<br>ts/10 min.<br>11971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | count                                             |

# ABLE 9

OLYETHYLENE SYSTEM B=17.9 cpm Ca-counts/10 min. 4617433 45)35**3**9 4619712 4301914 4563236 4571937 4530797 45130<mark>3</mark>1  $C_b^-$ ts/10 min.  $C_{\rm B}$  millicuries/cc. 0.6342x10-6 1.3391x10-6 2.0367x10-6 3.5025x10-6 3.5025x10-6 4.3742x10-6 5.0961x10-6 5.3707x10-6 7040 14564 23162 30863 38873 43554 56567 **~** 65164 B=17.7 com Ca<sup>-</sup> counts/10 min.  $467127 \circ$ 4608379 4655150 4626778 4537467 4542423 4532310 4519635 C<sub>b</sub>-ts/10 min.  $C_{\rm B}$  millicuries/cc. 1.0625x10-6 2.2019x10-6 3.2740x10-6 4.2979x10-6 5.3728x10-6 6.5027x10-6 7.5163x10-6 8.5701x10-6  $\begin{array}{c} 11794\\ 24441 \end{array}$ 36341 47707 59638 72180 83431 95128

÷

|   | n na marina na manazina 🧍 na na manazina manazina manazina na manazina n<br>Na manazina na m | and a second |     |                | · · · · · · · · · · · · · · · · · · · |                                    |                                                             |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|----------------|---------------------------------------|------------------------------------|-------------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     |                | · •                                   |                                    |                                                             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     |                |                                       |                                    |                                                             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     |                |                                       | TABLE 10                           |                                                             |
|   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |     |                | ETHLYBEN                              | ZENE-POLYETHYLEN                   | ie sistem                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | T=35           | . 4 <sup>°</sup> C                    | (                                  | B=17.9 cpm                                                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | Time           | Ca                                    | +                                  | Ca                                                          |
|   | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                              |     | min.           | counts/1                              | 0 min.                             | counts/10 min.                                              |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 30             | 46934                                 | 76                                 | 4693297                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 90             | 46131                                 | 70<br>88                           | 4613009                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 120            | 46060                                 | 28                                 | 4605844                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 150            | 45139                                 | 92<br>15                           | 4513812<br>4466636                                          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 210            | 444310                                | 12                                 | 4442923                                                     |
|   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |     | 240            | 44093                                 | 67                                 | 4409683                                                     |
|   | ۸.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>,</i>                                                                                                       |     | Time<br>min.   | Cp+<br>counts/lo min.                 | C <sub>b</sub> -<br>counts/10 min. | C <sub>B</sub><br>mil'icuries/cc.                           |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | <u>3</u> ]     | 14556                                 | 14377                              | $1.2952 \times 10^{-6}$                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 61             | 29760                                 | $29531 \\ 44427$                   | $2.6650 \times 10^{-6}$<br>$4.0024 \times 10^{-6}$          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 121            | 61332                                 | 61 203                             | $5.5138 \times 10^{-6}$                                     |
|   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |     | 151            | 76250                                 | 76071                              | $6.3532 \times 10^{-6}$                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     |                | 112645                                | 112466                             | $10.1321 \times 10^{-6}$                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 241            | L28003                                | 127829                             | LL.5162x10 <sup>-6</sup>                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | T=40.          | 0 <sup>.0</sup> C                     |                                    | B=17.9 cpm                                                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | Time           | Ca                                    |                                    | Ca                                                          |
|   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                                                                                                             | e e | min.           | counts/10                             | ) min.                             | counts/10 min.                                              |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 30             | 473364                                | 19<br>5                            | 4773470                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 90             | 469695                                | 53<br>53                           | 4675585                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 120            | 460163                                | 22                                 | 4601443                                                     |
|   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                              |     | 150            | 457348                                | 51.<br>95                          | 4573302<br>4561426                                          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 210            | 455291                                | 0                                  | 4552731                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                              |     | 240            | 453011                                | 0                                  | 4529931                                                     |
|   | , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | ÷   | Time           | C <sub>b</sub>                        | $c_{b}^{-}$                        | C <sub>B</sub>                                              |
|   | y .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | •   | ີ ພາກ.<br>ເມັນ | 29826                                 | 29647                              | 2.6709x10-6                                                 |
|   | •.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |     | 61             | 51652                                 | 51473                              | 4.6372x10-6                                                 |
| - | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |     | 91             | 72780                                 | 73601                              | 6.6370x10 <sup>-0</sup><br>8.5117 <b>x</b> 10 <sup>-6</sup> |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |     | 151            | 117016                                | 116837                             | $10.5258 \times 10^{-6}$                                    |
|   | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |     | 181            | 138735                                | 138556                             | $12.4825 \times 10^{-6}$                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                                                                                                            |     | 211<br>24L     | 182220                                | 182041                             | 16.4001x10-6                                                |
|   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | -   |                |                                       |                                    |                                                             |

ني: وليه

| $\mathcal{R}_{1}$ |                                                                                                                      |                      |                                                                                             | х<br>Х                |                                                                                                                         |                                                                         | <u>к</u> (°                       |                                                                                                                |                                   |               |                  |          |                                                                                                                 |
|-------------------|----------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|------------------|----------|-----------------------------------------------------------------------------------------------------------------|
|                   | 16<br>31<br>46<br>61<br>77<br>91<br>106<br>121                                                                       | Time<br>min.         | $     15 \\     30 \\     45 \\     60 \\     76 \\     90 \\     105 \\     120   $        | Time<br>min.          | 75<br>105<br>120<br>₩=29.6                                                                                              | 15<br>80<br>45<br>60                                                    | Time<br>min.                      | 14<br>29<br>44<br>59<br>74<br>89<br>104<br>119                                                                 | Time<br>min.                      | <b>T=</b> 25. |                  |          |                                                                                                                 |
|                   | 9412<br>16945<br>26230<br>34045<br>42918<br>50959<br>58903<br>67358                                                  | Cb<br>counts/10 min. | $\begin{array}{r} 47450\\ 46361\\ 46357\\ 47035\\ 47091\\ 47050\\ 46342\\ 46797\end{array}$ | Ca<br>counts/1        | 26730<br>22646<br>38102<br>43590                                                                                        | 4477<br>10074<br>15733<br>20186                                         | Cb<br>counts/10 min.              | 46465<br>46227<br>46396<br>46396<br>45846<br>45846<br>45621<br>45623<br>45335                                  | Ca<br>counts/1                    | 0. <b>°</b> C | CYCLOHEX         | ,        | n na                                                                        |
| 54                | 9235<br>16768<br>26053<br>33868<br>42741<br>50782<br>58726<br>67181                                                  | Cb-<br>counts/10 min | 63<br>52<br>45<br>46<br>94<br>95<br>24<br>75                                                | +<br>O min.           | 32469<br>37925<br>43413                                                                                                 | 4809<br>9897<br>15556<br>20009                                          | C <sub>b</sub> -<br>counts/10-min | 531<br>754<br>555<br>542<br>587<br>181<br>299<br>317                                                           | a <sup>+</sup><br>10 min.         |               | XANE-POLYETHYLEN | TABLE 11 | and an iter of the second o |
| <b>\$</b> ,       | 0.8320x10-6<br>1.5106x10-6<br>2.3471x10-6<br>3.0512x10-6<br>3.8505x10-6<br>4.5750x10-6<br>5.2906x10-6<br>6.0523x10-6 | . millicuries/c      | 4744836<br>4685975<br>4695568<br>4703369<br>4709017<br>4704918<br>4684047<br>4679598        | Ca-<br>counts/10 min. | $2.3967 \times 10^{-6}$ $2.9251 \times 10^{-6}$ $3.4167 \times 10^{-6}$ $3.9111 \times 10^{-6}$ $B = 17.7 \text{ c om}$ | 0.3374x10-6<br>0.3916x10-6<br>1.4015x10-6<br>1.8026x10-6<br>2.8026x10-6 | C <sub>B</sub>                    | $\begin{array}{r} 4646354\\ 4622577\\ 4639578\\ 4639465\\ 4584510\\ 4562004\\ 4549122\\ 4538640\\ \end{array}$ | Ca <sup>-</sup><br>counts/10 min. | B=17.7 cpm    | VE SYSTEM        |          |                                                                                                                 |

Ļ

| TABLE 12       OTCOMMEND-POLIFITILISHS STRIM       These of a construction of a construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anda ( <mark>dinis</mark> ikangkan karanga dinis). |                                                                                              | and the state of the                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | TABLE                                                                                        | E 12                                                                                                                                                                                                                                             |
| $\frac{T_{2} \times 3}{100} \frac{9^{2}}{100} C + \frac{10^{4}}{100} C + \frac{10^{4}}{1000} C + \frac{10^{4}}{10000} C + \frac{10^{4}}{100000} C + \frac{10^{4}}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | CYCLOHEXANE-POLYET                                                                           | THYLENE SYSTEM                                                                                                                                                                                                                                   |
| Time     0.7     0.7       mit.     'counts/10 min.     counts/10 min.       15     4349175     4340195       46     4340175     4340996       46     4340176     4340996       47     430996     431765       4309776     430996     431786       46     430776     4341986       47     4309777     440011       76     4309791     400611       76     4309791     400611       76     4309791     400611       76     430996     431766       76     43099     431766       76     43094     51160000       76     43094     51160000       76     43094     51160000       76     43094     51120000       76     11201     1100000000       76     113100     1200000000       77     11394     11300000000       78     471300     120200       78     4737783     47381200       78     4738130     47412000       78     474834     474834       191     137753     13.65634100       191     137753     47381200       78     4743434     474464   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T=39.                                              | . 3° <sup>0</sup> C                                                                          | B=18.0 cpm                                                                                                                                                                                                                                       |
| 13     4348135     434015       46     430396     430396       60     430176     430396       60     430176     430396       76     430713     430513       70     477731     430513       70     477731     430714       120     0.07731     430714       120     0.07731     430714       120     0.07731     1.41310-6       121     0.17731     1.641310-6       120     0.17731     1.641310-6       121     1.213     1.641310-6       121     1.213     1.641310-6       121     1.213     1.641310-6       121     1.213     1.641310-6       121     1.213     1.641310-6       121     1.7135     1.213       121     1.7132     1.3552210-7       121     1.4735     74715       121     1.4735     1.3552210-7       121     1.4735     1.552210-7       121     1.4735     1.552210-7       121     1.4735     1.552210-7       121     1.4735     1.552210-7       121     1.4735     1.5522010-7       121     1.4735     1.5522010-7       121     1.47473<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time<br>min.                                       | Ca <sup>+</sup><br>counts/10 min.                                                            | Ca-<br>counts/10 min.                                                                                                                                                                                                                            |
| $ \begin{array}{c} 120 \\ \text{Fine} \\ \text{curate}(1) \text{ min}_{2} \\ \text{counts}(1) \\ \text{min}_{2} \\ \text{counts}(1) \\ \text{min}_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>30<br>46<br>60<br>76<br>90<br>105            | 4346195<br>4349176<br>4340776<br>4831976<br>4800791<br>4797931<br>4779331<br>4760921         | 4846015<br>4848996<br>4340596<br>4331796<br>4300611<br>4797751<br>4779651<br>4760741                                                                                                                                                             |
| $\frac{1}{10}  \frac{c \operatorname{cont} 5/1^{\circ} \operatorname{min}}{10}  \frac{c \operatorname{con} 5/1^{\circ} \operatorname{min}}{10}  \frac{c \operatorname{cont} 5/1^{\circ} \operatorname{min}}{$ | Fime                                               | C <sub>b</sub> + ) C <sub>t</sub>                                                            |                                                                                                                                                                                                                                                  |
| $\frac{77}{10} \frac{9521}{14934} \frac{95041}{11814} \frac{5.6222310^{-6}}{11.375310^{-6}} \frac{91}{114934} \frac{11814}{11816} \frac{10.522310^{-6}}{11.375310^{-6}} \frac{11.4934}{121} \frac{11.375310^{-6}}{121} \frac{11.50573}{121} \frac{11.50573}{13.565510^{-6}} \frac{11.2}{121} \frac{150753}{150573} \frac{15.565510^{-6}}{13.565510^{-6}} \frac{11.2}{121} \frac{150753}{150573} \frac{15.565510^{-6}}{13.565510^{-6}} \frac{11.2}{121} \frac{150753}{150573} \frac{15.56573}{13.565510^{-6}} \frac{11.2}{121} \frac{11.2}{150753} \frac{11.2}{13.565510^{-6}} \frac{11.2}{121} \frac{11.2}{150753} \frac{11.2}{121} \frac{11.2}{121$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | min.<br>16<br>31<br>47<br>61                       | counts/10 min. counts/1<br>13393 132<br>35564 353<br>57148 569<br>74395 747                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                             |
| $T_{\pm}25.7^{\circ}C$ $T_{\pm}27.7^{\circ}C$ $T_{\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77<br>91<br>106<br>121                             | 95221       950         114094       113         113106       1229         150753       1505 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T= 25                                              | , <b>°°</b> C                                                                                | B=17.7 com                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time<br>min.                                       | Ca <sup>+</sup><br>counts/10 min.                                                            | Ca-<br>counts/10 min.                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29<br>(44<br>59<br>74<br>89<br>104<br>119<br>134   | 4771022<br>4753763<br>4321997<br>4743543<br>4754941<br>4741399<br>4739736<br>4725760         | 4770345<br>4753536<br>4821820<br>4743366<br>4754764<br>4741222<br>4739609<br>4725583                                                                                                                                                             |
| 30       24927       24750       2.2297x10 <sup>-6</sup> 45       37778       37601       3.3875x10 <sup>-6</sup> 60       50639       50462       4.5461x10 <sup>-6</sup> 75       64411       64234       5.7869x10 <sup>-6</sup> 90       76735       76558       6.8971x10 <sup>-6</sup> 105       89551       89374       8.0517x10 <sup>-6</sup> 120       104530       104353       9.4012x10 <sup>-6</sup> 135       115857       115680       10.4217x10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Time                                               | $C_b^+$ $C_E$<br>counts/10 min. counts/1                                                     | - C <sub>B</sub><br>10 min. millicuries/cc.                                                                                                                                                                                                      |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>45<br>60<br>75<br>90<br>105<br>120<br>135    | 24927247377783765063950464411642767357658955189310453010431158571156                         | $750$ $2.2297 \times 10^{-6}$ $301$ $3.3875 \times 10^{-6}$ $462$ $4.5461 \times 10^{-6}$ $234$ $5.7869 \times 10^{-6}$ $558$ $6.8971 \times 10^{-6}$ $374$ $8.0517 \times 10^{-6}$ $353$ $9.4012 \times 10^{-6}$ $360$ $10.4217 \times 10^{-6}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | 55                                                                                           |                                                                                                                                                                                                                                                  |

.

.

Ľ

|          | <br>ч<br>- токуто на на селото на селото<br>- токуто на селото на | • · · · · · · · · · · · · · · · · · · · |                       |          | in or sincipality | an na sha na sha ƙ |       |    | Setting of the |   | . Ola Preservanjarov |   |           | n nitera interación                              |              |                                                                      | energen i nin i nin nev den dela a cas                     | i<br>Linden de Afrika                                        |                                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|----------|-------------------|--------------------|-------|----|----------------|---|----------------------|---|-----------|--------------------------------------------------|--------------|----------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                             |                                         | I                     |          |                   | ı.                 |       |    |                |   |                      |   |           |                                                  |              |                                                                      | TABLE 13                                                   |                                                              |                                                                                                      |
|          |                                                                                                                                                                                                                                             |                                         |                       |          |                   |                    |       |    |                |   |                      |   |           |                                                  | T            | ETRAHYDRONA                                                          | PTHALENE-POLYE                                             | THYLENE S                                                    | YSTEM                                                                                                |
|          |                                                                                                                                                                                                                                             |                                         |                       |          |                   |                    |       |    |                |   |                      |   |           | T=25.                                            | 2 <b>°</b> C |                                                                      | i.                                                         | B                                                            | =18.0 cpm                                                                                            |
| •        |                                                                                                                                                                                                                                             | ٠                                       | ,                     | Ň        |                   |                    |       | v. |                |   |                      |   | $\langle$ | Time<br>min.                                     |              | Ca<br>counts/1                                                       | ) min.                                                     | Counts/                                                      | a-<br>10 min.                                                                                        |
|          |                                                                                                                                                                                                                                             |                                         |                       |          |                   |                    |       |    |                |   |                      |   |           | 16<br>30<br>60<br>86<br>120<br>150<br>130<br>210 |              | 37684<br>37113<br>37137<br>36560<br>37217<br>36333<br>36542<br>37271 | 34<br>02<br>76<br>05<br>47<br>23<br>33<br>45               | 3768<br>3711<br>3713<br>3655<br>3721<br>3633<br>3654<br>3726 | 254<br>122<br>596<br>325<br>567<br>148<br>103<br>965                                                 |
|          | e                                                                                                                                                                                                                                           | r                                       |                       |          | ۰                 | x                  |       |    |                |   |                      |   |           | Time<br>min.                                     | coun         | Cb <sup>+</sup><br>ts/10 min.                                        | C <sub>b</sub> -<br>counts/10 mi                           | n. mil                                                       | CB<br>licuries/cc.                                                                                   |
|          |                                                                                                                                                                                                                                             |                                         |                       |          |                   |                    |       |    |                |   |                      |   |           | 17<br>31<br>61<br>87                             |              | 1912<br>3098<br>5936<br>3007                                         | 1732<br>2913<br>5756<br>7827                               | 1.<br>2<br>5<br>7                                            | .5605x10-7<br>.6283x10-7<br>.1356x10-7<br>.0514x10-7                                                 |
|          |                                                                                                                                                                                                                                             |                                         | •.<br>•<br>•          |          |                   |                    |       |    |                |   |                      |   |           | 191<br>151<br>181<br>211                         |              | 11026<br>13805<br>16639<br>19039                                     | 10346<br>13625<br>16159<br>18859                           | 9<br>12<br>14<br>16                                          | .7712x10 <sup>-7</sup><br>.2748x10 <sup>-7</sup><br>.5576x10 <sup>-7</sup><br>.9901x10 <sup>-7</sup> |
|          |                                                                                                                                                                                                                                             |                                         |                       |          |                   |                    |       |    |                |   |                      |   |           | T=30 (                                           | о <b>°</b> с |                                                                      |                                                            | Ŕ                                                            | mco 0.81=                                                                                            |
|          |                                                                                                                                                                                                                                             |                                         | X                     |          |                   |                    |       | 7  |                |   | ·                    |   |           | Time<br>min.                                     | - (          | C Ca<br>counts/1                                                     | ⊢<br>) min.                                                | C<br>counts/                                                 | <b>a</b> -<br>10 min.                                                                                |
|          |                                                                                                                                                                                                                                             | 9                                       | ·                     |          |                   |                    |       |    |                |   | ×                    |   | ·         | 30<br>60<br>90<br>120<br>150<br>180              |              | 46633<br>46487<br>45972<br>45217<br>45373<br>44659<br>44376          | 37<br>55<br>36<br>34<br>07<br>23<br>03                     | 4663<br>4643<br>4597<br>4521<br>4537<br>4465<br>4437         | 657<br>575<br>106<br>554<br>127<br>743<br>423                                                        |
|          | -R.                                                                                                                                                                                                                                         |                                         |                       |          |                   |                    |       | 5  |                |   |                      |   |           | 210<br>240                                       |              | 44003                                                                | 43                                                         | 4400                                                         | 168                                                                                                  |
|          | ٠                                                                                                                                                                                                                                           | ١.                                      |                       |          | ٠                 | ١                  | -     |    | Ŋ              |   | t                    |   |           | Time<br>min.                                     | count        | C <sub>b</sub><br>ts/10 min.                                         | counts/10 mi                                               | n. mil                                                       | licuries/cc.                                                                                         |
|          |                                                                                                                                                                                                                                             |                                         | ۲<br>۲<br>۲<br>۲<br>۲ |          | •                 |                    |       |    |                |   |                      | , |           | 31<br>61<br>91<br>121<br>151<br>181<br>211       |              | 7450<br>11765<br>16264<br>21499<br>26460<br>31592<br>36661           | 7270<br>11585<br>16084<br>21319<br>26280<br>31412<br>36481 | 6<br>10<br>14<br>19<br>23<br>28<br>32                        | .5496x10-7<br>.4369x10-7<br>.4901x10-7<br>.2063x10-7<br>.6757x10-7<br>.2991x10-7<br>.8654x10-7       |
| <b>x</b> |                                                                                                                                                                                                                                             |                                         | •                     |          |                   |                    |       |    |                |   | ۵.                   |   |           | 241                                              | 3            | 42031                                                                | 41851                                                      | 34                                                           | • 2241 X10 <sup></sup>                                                                               |
|          | <br>                                                                                                                                                                                                                                        |                                         |                       | ÷        | -                 | 34                 |       |    |                | ۰ |                      |   |           |                                                  |              |                                                                      | 56                                                         |                                                              |                                                                                                      |
|          | e<br>Geografie                                                                                                                                                                                                                              | a la de la com                          |                       | in a dia |                   |                    | 1<br> |    |                |   |                      |   |           |                                                  |              | ·                                                                    | and a second state of the second                           | and the second second                                        | 14 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                             |

and a second

.

, ÷

i

and the second second second

-3

|     |             | , j        |    |        |   |                                                          |                                                                                                             | TABLE 14                                                                                                                          |                                                                                                                                                                                                                                     |
|-----|-------------|------------|----|--------|---|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |             |            |    |        |   |                                                          | TETRAHYDRON                                                                                                 | APTHALENE-POLYETI                                                                                                                 | HYLENE SYSTEM                                                                                                                                                                                                                       |
|     |             |            |    |        |   | T=34                                                     | .8°C                                                                                                        |                                                                                                                                   | B=18.0 com                                                                                                                                                                                                                          |
|     | ٨           | ,          | ۵. |        |   | Time<br>min.                                             | C<br>counts/                                                                                                | a <sup>+</sup><br>10 min.                                                                                                         | Ca <sup>-</sup><br>counts/10 min.                                                                                                                                                                                                   |
|     |             |            |    |        |   | 30<br>60<br>89<br>123<br>151<br>180<br>210<br>240        | 4555<br>4506<br>4478<br>4424<br>4311<br>4309<br>4270<br>4259                                                | 459<br>901<br>569<br>877<br>427<br>867<br>942<br>431                                                                              | 4555279<br>4506721<br>4473381<br>4424697<br>4311247<br>4309687<br>4200762<br>4259251                                                                                                                                                |
| , Y |             | í,         |    | ŕ,     |   | Time<br>min.                                             | Cb <sup>+</sup><br>counts/10 min.                                                                           | Cb <sup>-</sup><br>counts/10 min.                                                                                                 | C <sub>B</sub><br>millicuries/cc.                                                                                                                                                                                                   |
| ·   | •<br>•<br>• |            |    |        |   | 31<br>61<br>90<br>124<br>152<br>181<br>211<br>211<br>241 | $\begin{array}{r} 9193 \\ 16079 \\ 21629 \\ 29577 \\ 25731 \\ 42231 \\ 43743 \\ 55416 \end{array}$          | <ul> <li>))13</li> <li>15899</li> <li>21449</li> <li>29397</li> <li>35601</li> <li>42001</li> <li>43568</li> <li>55236</li> </ul> | $\begin{array}{c} 0.3120 \times 10^{-6} \\ 1.4323 \times 10^{-6} \\ 1.9323 \times 10^{-6} \\ 2.6434 \times 10^{-6} \\ 3.2073 \times 10^{-6} \\ 2.3019 \times 10^{-6} \\ 4.3755 \times 10^{-6} \\ 4.9762 \times 10^{-6} \end{array}$ |
|     |             |            |    |        |   | T= 39                                                    | . 3 <sup>o</sup> C                                                                                          |                                                                                                                                   | B=18.0 com                                                                                                                                                                                                                          |
| 4   | ۱.          | ٤          | 1  |        | Ł | .Time<br>min.                                            | counts/                                                                                                     | +<br>a<br>10 min.                                                                                                                 | Ca <sup>-</sup><br>counts/10 min.                                                                                                                                                                                                   |
|     |             |            |    |        |   | 30<br>60<br>90<br>120<br>150<br>180<br>210<br>240        | $\begin{array}{r} 4392 \\ 43270 \\ 43193 \\ 42963 \\ 41952 \\ 41542 \\ 41542 \\ 41109 \\ 40993 \end{array}$ | 107<br>012<br>386<br>343<br>205<br>219<br>037<br>037                                                                              | $\begin{array}{r} 4391927\\ 4326332\\ 4319706\\ 4296663\\ 4195025\\ 4154039\\ 4110817\\ 4099817\end{array}$                                                                                                                         |
|     | ,<br>•      | ۲          | `  | Y      |   | Time<br>min.                                             | Cb <sup>+</sup><br>counts/10 min.                                                                           | Cb-<br>counts/10 min.                                                                                                             | C <sub>B</sub><br>millicuries/cc.                                                                                                                                                                                                   |
| -   | •           | ·<br>· · , |    | •<br>• |   | 31<br>61<br>91<br>121<br>151<br>181<br>211<br>241        | 11396<br>19332<br>28634<br>37483<br>46318<br>55916<br>65123<br>74338                                        | $11216 \\ 19152 \\ 28454 \\ 37303 \\ 46638 \\ 55736 \\ 64943 \\ 74158 $                                                           | 1.0104x10-6<br>1.7254x10-6<br>2.5634x10-6<br>3.3606x10-6<br>4.2016x10-6<br>5.0213x10-6<br>5.8507x10-6<br>6.6809x10-6                                                                                                                |
|     |             |            |    | 'n     |   |                                                          | •<br>•                                                                                                      | ŝ                                                                                                                                 |                                                                                                                                                                                                                                     |

e.

57

۰, .

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          |        | n ni sudenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|--------------------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                           |                                                              |                    | •                                                                                                                   | *                                                                    |                         |                    |          |        | in the second |
| ¥          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | į                           |                                                              |                    | ١                                                                                                                   |                                                                      |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                              |                    | •                                                                                                                   |                                                                      |                         | •                  |          |        | , na ini dina Aranti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | •.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                                              |                    |                                                                                                                     |                                                                      | 4                       |                    |          |        | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | •<br>••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷                           | , s<br>, ·                                                   |                    |                                                                                                                     |                                                                      |                         | ð                  |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | è                                                            |                    |                                                                                                                     | ,                                                                    |                         |                    |          |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٨                           | м                                                            |                    |                                                                                                                     | •                                                                    |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | -                                                            | 4                  |                                                                                                                     |                                                                      | e                       |                    |          |        | an dei Subr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                              | v                  |                                                                                                                     |                                                                      | ١.                      |                    |          | ••     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                              |                    |                                                                                                                     |                                                                      |                         | į                  | •        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | ; ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-                          |                                                              |                    | ι.                                                                                                                  |                                                                      |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | ۰.                                                           |                    | -                                                                                                                   |                                                                      |                         | •                  |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          |        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | <u>``</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                                              |                    |                                                                                                                     |                                                                      |                         |                    |          | ı      | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 33<br>63<br>91<br>126<br>166<br>181<br>211<br>241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time<br>min.                | 31<br>62<br>90<br>125<br>165<br>180<br>210<br>240            | T= 30<br>Time      | Time<br>min.<br>31<br>53<br>91<br>121<br>151<br>151<br>131<br>211<br>241                                            | 30<br>57<br>90<br>120<br>150<br>130<br>210<br>240                    | Tim<br>min              | T=2                |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e<br>C                      | . •                                                          | ),0°0              | 2<br>• (                                                                                                            |                                                                      | e<br>•                  | 5.2 <sup>0</sup> ( |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ount                        |                                                              | Ϋ́                 | coub                                                                                                                |                                                                      |                         | C                  | D        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,          | 3037<br>13546<br>19686<br>26919<br>35732<br>39029<br>45487<br>52071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $c_b^+$ ts/10               |                                                              |                    | $0.5^{+}$<br>3.32<br>741<br>1167<br>1696<br>2086<br>2449<br>2361<br>3270                                            |                                                                      | °c o                    |                    | ECAHY    |        | 10 - 17 ( <b>1</b> 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 7<br>6<br>9<br>2<br>9<br>7<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | min.                        | 4632<br>4569<br>4551<br>4467<br>4438<br>4429<br>4403<br>4336 | -C                 | min.<br>8<br>0<br>4<br>2<br>5<br>6<br>7<br>1<br>8                                                                   | 4619<br>4558<br>4482<br>4478<br>4399<br>4322<br>4298<br>4253         | C<br>unts/              |                    | DRONA    |        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ċ 01                        | 410<br>601<br>004<br>364<br>545<br>660<br>720<br>792         | +<br>8             | 00                                                                                                                  | 966<br>019<br>197<br>915<br>337<br>701<br>703<br>701                 | a <sup>+</sup><br>10 mi |                    | PTHAL    | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 58         | 1<br>1<br>2<br>3<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | unts,                       | 11 •                                                         | n                  | l<br>1<br>2<br>2<br>3                                                                                               | ,                                                                    | n.                      |                    | ENE-     | ΊÆ     | , ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>}</b> - | 7860<br>3369<br>9509<br>6742<br>5555<br>8852<br>5310<br>1894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С <sub>b</sub> -<br>/10 min |                                                              |                    | Cb <sup>-</sup><br>3751<br>7283<br>1497<br>5835<br>0188<br>4319<br>8440<br>2524                                     |                                                                      |                         |                    | -POLYE'I | BLE 15 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ñ.                          |                                                              |                    | ł) <b>.</b>                                                                                                         |                                                                      | CO                      |                    | HYLE     |        | )<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 0<br>1<br>2<br>3<br>3<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mil                         | 4632<br>4569<br>4550<br>4467<br>4438<br>4429<br>4408<br>4386 | B<br>C<br>un + c / | mi (<br>8<br>6<br>10<br>14<br>18<br>21<br>25<br>29                                                                  | 4619<br>4557<br>4482<br>4472<br>4399<br>4829<br>4829<br>4298<br>4258 | C<br>unts/              | Ē                  | NE SY    |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | .7081x<br>.2044x<br>.7576x<br>.4092x<br>.2032x<br>.5002x<br>.0820x<br>.6751x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>B</sub><br>licuri    | 233<br>424<br>827<br>187<br>368<br>483<br>543<br>615         | =17.7<br>a-        | C <sub>H</sub><br>licuri<br>3793x<br>5162x<br>3577x<br>3108x<br>3108x<br>3108x<br>51374x<br>9090x<br>6217x<br>3007x | 9789<br>7842<br>2020<br>8783<br>9710<br>8524<br>8524<br>8524         | ¦a−<br>′10 min          | B=17.7             | STEM     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ 10-6 \\ $ | es/c                        |                                                              | с ли               | ies/c<br>c10-7<br>c10-7<br>c10-7<br>c10-7<br>c10-7<br>c10-7<br>c10-7<br>c10-7                                       |                                                                      | a.                      | ເງຫ                |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

د. در در در

|                                                                    |         |   | <u>a Managan yang sang sang sang sang sang sang sang s</u> |                                                                                      | สมหัว ในกรรมหรือ มีขณะอยู่หรือเห็นสาวใหญ่หรือ<br>สมหร                   | and and an                                                                                                                                                                       |
|--------------------------------------------------------------------|---------|---|------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |         |   |                                                            |                                                                                      | TABLE 16                                                                |                                                                                                                                                                                                                      |
|                                                                    |         |   |                                                            | DEC AHYDRON APTH                                                                     | ALENE-POLYETHY                                                          | LENE SYSTEM                                                                                                                                                                                                          |
|                                                                    |         |   | T=35.                                                      | .0 <b>°</b> C                                                                        |                                                                         | B=17.6 cpm                                                                                                                                                                                                           |
|                                                                    | X       |   | Time<br>min.                                               | Ca <sup>+</sup><br>counts/10                                                         | min. (                                                                  | Ca-<br>counts/10 min.                                                                                                                                                                                                |
|                                                                    |         |   | 20<br>60<br>89<br>124<br>150<br>180<br>210<br>240          | 4556315<br>4532536<br>4474344<br>4372236<br>4355617<br>4380633<br>4389763<br>4320942 | 5                                                                       | $\begin{array}{r} 4556139\\ 4532410\\ 4474163\\ 4372060\\ 4255441\\ 433^{-}507\\ 4339537\\ 4320766\end{array}$                                                                                                       |
|                                                                    | ,       |   | Time<br>min.                                               | Cb <sup>+</sup><br>counts/10 min.                                                    | counts/10 min.                                                          | Ċ <sub>B</sub><br>millicuries/cc.                                                                                                                                                                                    |
|                                                                    |         |   | 21<br>61<br>90<br>125<br>151<br>131<br>211<br>- 241        | 11355<br>21202<br>20442<br>41934<br>50570<br>60614<br>70473<br>20339                 | 1 (67)<br>21026<br>30260<br>41303<br>50394<br>60438<br>70297<br>30213   | $1.0522 \times 10^{-6}$<br>$1.3942 \times 10^{-6}$<br>$2.7267 \times 10^{-6}$<br>$3.7665 \times 10^{-6}$<br>$4.5400 \times 10^{-6}$<br>$5.4449 \times 10^{-6}$<br>$6.3331 \times 10^{-6}$<br>$7.2264 \times 10^{-6}$ |
|                                                                    |         |   | T=39.                                                      | 7 °C                                                                                 |                                                                         | B=17.6 com                                                                                                                                                                                                           |
|                                                                    | Υ.      |   | Time<br>min.                                               | Ca <sup>+</sup><br>counts/10 r                                                       | ain. c                                                                  | Ca-<br>ounts/10 min.                                                                                                                                                                                                 |
|                                                                    |         |   | 30<br>60<br>90<br>120<br>143<br>130<br>202<br>240          | 4034134<br>4045692<br>4004637<br>3950381<br>2894537<br>3336901<br>3782655<br>3750177 |                                                                         | 4084003<br>4045516<br>4004511<br>3950205<br>3394361<br>8836723<br>3782479<br>3750001                                                                                                                                 |
|                                                                    | ۵.<br>• |   | 'Time<br>min.                                              | C <sub>b</sub><br>counts/10 min. c                                                   | C <sub>b</sub> -<br>counts/10 min.                                      | $C_{B}$ millicuries/cc.                                                                                                                                                                                              |
|                                                                    | •       |   | 31<br>61<br>91<br>121<br>149<br>181<br>203<br>241          | 15631<br>28717<br>41916<br>57408<br>67141<br>81629<br>91219<br>108597                | $15455 \\ 28541 \\ 41740 \\ 57232 \\ 66965 \\ 81453 \\ 91043 \\ 108421$ | 1.3923x10-6<br>2.5713x10-6<br>3.7604x10-6<br>5.1560x10-6<br>6.0329x10-6<br>7.3381x10-6<br>3.2021x10-6<br>9.7677x10-6                                                                                                 |
| 533<br>513<br>513<br>513<br>513<br>513<br>513<br>513<br>513<br>513 |         | 4 |                                                            | •                                                                                    | 59,                                                                     | •                                                                                                                                                                                                                    |

|                                       |                                       |                     | TABI          | .E 17                                 |                        |
|---------------------------------------|---------------------------------------|---------------------|---------------|---------------------------------------|------------------------|
|                                       |                                       | SYSTEM I            | EMPERATURE    | SPECTROMETER<br>EFFICIENCY            | EVAPORATION<br>RATE    |
|                                       |                                       |                     | °C            | %                                     | cc./hr.                |
| τ                                     |                                       | Toluene-            | 25.0          | 39.57                                 | 0.302                  |
|                                       |                                       | Polvethylene .      | 30.0          | 39.43                                 | 0.415                  |
| · · · · · · · · · · · · · · · · · · · | •                                     |                     | 85.0          | 39.54                                 | 0.563                  |
|                                       |                                       |                     | 40.0          | 39.17                                 | 0.746                  |
|                                       |                                       | Chlorobenzene-      | 25.3          | 39.66                                 | 0.200                  |
|                                       |                                       | Delwethylone        | 30 0          | 39.47                                 | 0.323                  |
|                                       |                                       | TOLYCONYICHC        | 35 0          | 39.18                                 | 0.507                  |
|                                       |                                       |                     | 00.0<br>00.0  | 20 1 Å                                | 0.691                  |
|                                       |                                       | ×                   | いろ・3<br>05 4  | 00 10                                 | 0 1 5 0                |
|                                       |                                       | Mesitylene-         | 20.4          | 39.L3                                 | 0.100                  |
|                                       |                                       | Polyethylene        | 30.0          | 14.31.152                             | 0.200                  |
|                                       |                                       |                     | 85 <u>.</u> 0 | 39.30                                 | 0.246                  |
|                                       |                                       |                     | 40.0          | 39.12                                 | 0.497                  |
|                                       |                                       | Cumene-             | 25.4          | 39.25                                 | 0.200                  |
|                                       |                                       | Polvethylenc        | 30.0          | 39.13                                 | 0.418                  |
| •                                     |                                       | 1 ULY CONVECTO      | 35.4          | 39, 20                                | 0.492                  |
|                                       |                                       |                     | 29.8          | 39.18                                 | 0.700                  |
|                                       |                                       | the lbon const      | 25 0          | 33.65                                 | 0.375                  |
|                                       |                                       | Ltny Lbenzene-      | 20.0          | 22 - 22                               | 0.500                  |
|                                       |                                       | Polyethylene        | 00.U          | 00,00<br>02,00                        | 0.627                  |
|                                       |                                       |                     | 25.4          | 30.00                                 | 0.750                  |
|                                       | l l l l l l l l l l l l l l l l l l l |                     | 40.0          | 38.70                                 | 0.109                  |
|                                       |                                       | Cvclohexane-        | 25.0          | 39.09                                 | 1.300                  |
|                                       |                                       | Polvethylene        | 29.6          | 38.95                                 | 1.300                  |
|                                       |                                       | - • <b>/</b> ·      | 35.0          | 39.23                                 | 2.440                  |
|                                       |                                       |                     | 39.3          | 38.96                                 | 3.840                  |
|                                       |                                       | Ustrobydroconthelen | c- 25.2       | 39.24                                 | 0.071                  |
|                                       |                                       | Delivetivi one      | 30.0          | 38.31                                 | 880.0                  |
|                                       |                                       | тотувенитене        | 21 X          | 88.53                                 | 0.110                  |
| ,                                     |                                       |                     | on o          | 88.22                                 | 0 132                  |
|                                       |                                       | a service a         | 0000<br>05 0  | 90.00<br>90.10                        | 0.188                  |
|                                       |                                       | Decahydronapthalene | - %0.%        | 00.10<br>00 00                        | 0.050                  |
|                                       |                                       | Polyethylene        | 30.0          | 30. 90<br>00 00                       | 0, <u>200</u><br>∩ 004 |
|                                       |                                       |                     | 35.0          | 38.60                                 | 0.204<br>0.000         |
|                                       |                                       |                     | 39.7          | 39.07                                 | 0.332                  |
|                                       |                                       |                     |               |                                       |                        |
|                                       |                                       |                     |               |                                       |                        |
|                                       |                                       |                     |               |                                       |                        |
|                                       |                                       |                     |               |                                       |                        |
| \<br>•                                |                                       |                     |               |                                       |                        |
|                                       |                                       |                     |               | ;                                     |                        |
|                                       |                                       |                     |               |                                       |                        |
| ,                                     |                                       |                     |               | · · · · · · · · · · · · · · · · · · · |                        |

i i s

| 1   | n ser genneg i tur et strander<br>t | and the second | <ul> <li>A set of the set of</li></ul> | and an and a second | at all a second      |
|-----|-------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|
| •   |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                      |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                      |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 17.) T               |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | '1' <b>A</b> F       |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSTEM 'T                                                                                                      | EMPERATURE           |
| . \ |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | • C                  |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Toluene-                                                                                                       | 25.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polvethvlene                                                                                                   | 30.0                 |
| •   | ٢                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 35.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 40.0                 |
| •   |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chlorobenzene-                                                                                                 | 25.3                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polyethylene                                                                                                   | 30.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9. V                                                                                                           | 35.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 39.3                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mesitylene-                                                                                                    | 25.4                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polyethylene                                                                                                   | 30.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 25.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 4().()               |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cumene-                                                                                                        | 25.4                 |
| t   |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polyethylene                                                                                                   | 20.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 35.4                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 39.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lthylbenzone-                                                                                                  | ?;, ()               |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , olyethylene                                                                                                  | 30.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 35.4                 |
|     | ۴                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 40.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cyclohexane-                                                                                                   | 25.0                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polyethylene                                                                                                   | 29.6                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 35.0                 |
|     |                                     | L                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 39.3                 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tetranydronastnalene                                                                                           |                      |
| ٢   |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polyetnylene                                                                                                   | 30.0                 |
| ŧ   | *                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 04.0<br>20 8         |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lies shudnen so the long                                                                                       | 07.0<br>95.9         |
|     |                                     | •                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Decanyaronapunatene-                                                                                           | 39 0                 |
| •   |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | roryetnyrene                                                                                                   | .25.0                |
| •   |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 30. <b>0</b><br>30.7 |
|     |                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 12.12 · 1.           |

# TABLE 18

| AVERAGE<br>VOLUME | J x10 <sup>8</sup> | Ds $x10^7$   |
|-------------------|--------------------|--------------|
| CC.               | mc./sec.           | cm. $^2/sec$ |
| 117.575           | 4.4101             | 1.3401       |
| 117.260           | 1.1155             | 2.3079       |
| 116.945           | 10.6900            | 0.2104       |
| 116.980           | 10.0900            | 4.1909       |
| 117.800           | 1.9900             | 0 0264       |
| 117.021           | L/.0400            | 2.0004       |
|                   | 4.0990             | 2.0002       |
| 110 000           | 0.0474             | 4.1201       |
| 110.200           | 0,0100<br>E 5694   | 1 7551       |
| 112 009           | 0.0024<br>9 8240   | 9 6795       |
| 110.000           | 19 4016            | 2.0100       |
| 117 - 200         | 12,4010<br>2 5220  | 0.3000       |
| 117.000           | 2.2719             | 1 2116       |
| 117-203           | 6 3957             | 1 0794       |
| 110 875           | 0.5304             | 0 0102       |
| 117 404           | A 2794             | 1 5621       |
| 117 195           | 2 4722             | 2 2170       |
|                   | 9 4752             | 2 9960       |
| 116 540           | 19 6934            | 3 9475       |
|                   | 6 5309             | 2.0258       |
| 116 270           | 9.6343             | 3.0120       |
| 114.395           | 14,9400            | 4.6468       |
| 113,930           | 21,5641            | 6,6081       |
| 113.033           | 1.5653             | 0.5085       |
| 117.780           | 2,9213             | 0.3913       |
| 118.002           | 3,9000             | 1.1919       |
| 117.070           | 5.3992             | 1.8242       |
| 117.827           | 2.4241             | 0.7786       |
| 117.375           | 3.8143             | 1.2387       |
| 117.265           | 5.7396             | 1.8356       |
| 117.503           | 7.3106             | 2.8379       |
| ·                 |                    |              |

SYSTEM

Toluene-Polyethylene

Chlorobenzene-Polyethylene

Pesitylone-Polyethylond

Cumene-Polyethylene

Lthylbenzene-Polyethylene

Cyclohexane-Polyethylene

letrahydronanthalenc-Polyethylone

Oecahydronapthalene-Polyethylene

62

# TABLE 19

| ΔE<br>cal./g. mole | cm. <sup>2</sup> /sec.  |
|--------------------|-------------------------|
| 15,772.35          | 4.39326x10 <sup>4</sup> |
| 16,213.58          | $9.12629 \times 10^4$   |
| 14,258.56          | 3.40398x10 <sup>3</sup> |
| 16,675.40          | 1.00250x10 <sup>5</sup> |
| 11,414.84          | 8.05872x10 <sup>1</sup> |
| 14,753.8?          | 1.82904x104             |
| 12,166.11          | 6.72325x10 <sup>1</sup> |
| 10,525.79          | 1.01184x10 <sup>5</sup> |

TABLE 20

| ٠ | SYSTEM                                |                    |
|---|---------------------------------------|--------------------|
|   | Toluene-<br>Polyethylene              | Ds=4.              |
|   | Chlorobenzene-<br>Polyethylene        | Ds=9.              |
|   | Mesitylene-<br>Polyethylenc           | Ds=3.              |
|   | Cumene-<br>Polyethvlene               | Ds=1.              |
|   | Ethylbenzene-<br>Polyethylene         | Ds= <sup>₽</sup> , |
|   | Cyclohexano-<br>Polyethylenc          | Ðs=l.              |
|   | Tetrahydronapthelene-<br>Folyethylene | Ds=6.              |
|   | Decahydronapthelene-<br>Polyethylene  | Ds=1.              |

11.11

| .89326x10 <sup>4</sup> | exp(-15,772.35/RT) |
|------------------------|--------------------|
| .12629x10 <sup>4</sup> | exp(-16,218.53/RT) |
| .40393x10 <sup>3</sup> | exp(-14,253.56/RT) |
| .29250x10 <sup>5</sup> | exp(-16,675,40/RT) |
| ,65379x10 <sup>1</sup> | exp(-11,414.34/RT) |
| .82904x104             | exp(-14,758.32/RT) |
| .72825x10 <sup>1</sup> | exp(-12,166.11/RT) |
| .01184x10 <sup>5</sup> | exp(-16,535.79/kr) |

| SWELLING SOLVENT      | MOLECULAR*<br>VOLUME<br>cc./g. mole | ∆E<br>cal./g. mole | Do<br>cm. <sup>2</sup> /sec. |
|-----------------------|-------------------------------------|--------------------|------------------------------|
| Ethylbenzene          | 149.4                               | 11,414.84          | 3.65872x10 <sup>1</sup>      |
| Tetrabydronapthalene  | 162.4                               | 12,166.11          | 6.72825x10 <sup>1</sup>      |
| <i>hesitylene</i>     | 162.6                               | 14,258.56          | 3.40393x10 <sup>3</sup>      |
| Cyclohexane           | 118.2                               | 14,758.32          | 1.32904x10 <sup>4</sup>      |
| Toluene               | 118.2                               | 15,772.35          | 4.39326x104                  |
| <u>Chlo</u> róbenzené | 32.3                                | 16,218.53          | $9.12629 \times 10^4$        |
| Decahydronapthalene   | 134,6                               | 16,535.79          | 1.01134x10 <sup>5</sup>      |
| Cumene                | 166.3                               | 16,675.40          | 1.29250x10 <sup>5</sup>      |
|                       |                                     |                    |                              |

# \* calculated by Lebas Equation (13)

88

# TABLE 21




## FIGURE 9

<u>1</u> (°K-1) 103





FIGURE 10

# LOG<sub>e</sub>(Do) VERSUS ∆E



## SYMBOL NOTATION

| Symbol | System                            |
|--------|-----------------------------------|
| ٠      | Toluene-Polyethylene              |
| •      | Chlor <b>o</b> benzene-Polyethyle |
| e      | Cyclohexane-Polyethylene          |
| 0      | Tetrahydronapthalene-Pol          |
| O      | Cumene-Polyethylene               |
| Ø      | Decahydronapthalene-Poly          |
| 0      | Ethylbenzene-Polyethyler          |
| Ø      | Mesitylene-Polyethylene           |

.

yethylene

thylene

ene-Polyethylene

ne-Polyethylene

ethylene

### ERROR ANALYSIS

This section will present an analysis of the accuracy of the values calculated for the permeability and for the activation energy for the permeation process. The errors encountered can be divided into the

### following:

- 1. counting error
- 2. sampling error
- 3. error resulting from use of average volume
- 4. curve fitting error

is expressed as:

% Error = 
$$\frac{1}{(t)^{0.5}} \frac{(\text{count})}{\text{count}}$$

The error is greatest for the least count rate. The maximum per cent error in the present work for the "cold" chamber tracer concentration is 0.76 for tetrahydronapthalene and 0.32 for mesitylene; this being for the initial sample with the per cent error decreasing sharply as further samples were taken having a higher count rate. The error encountered for the "hot" chamber tracer concentration is about 0.05% for all the systems. The sampling error is that for the tolerance of the measuring pipette. The one-half milliliter pipettes used had a maximum tolerance of  $\pm 0.003$  milliliters, this yielding a per cent error of  $\pm 0.6$ . The use of the average volume over the extremes of

the "cold" chamber tracer concentration versus time plot

The error encountered in the counting of any sample

 $\frac{\text{nt rate}}{\text{int rate}} (100)$ 

compared to that using the "true" cold chamber volume at each sampling time in order to calculate the rate of permeation is felt by the researcher to be justified. The chamber volumes are not actually measured at each sampling time, such that, the "true" chamber volume is not really a known quantity. It is calculated from the results of a previous evaporation rate measurement, so that, any change in stirring rate can effect the "true" volume. Also added to this is the error of the sampling pipettes which again can cause a difference in the volume computed to the "true" volume in each chamber. An example of the error estimation for the toluenepolyethylene system at 25.0°C follows. A least squares analysis is made on the plot of  $C_{\rm B}$  versus time for both the case of an average volume assumption and also for the case employing the "true" volume at each sampling time to determine the permeation rate.

An outline of the least squares analysis for the plot of "cold" chamber tracer concentration in millicuries per cubic centimeters versus time in minutes employing the use of an average volume to calculate the rate of permeation follows.

| C <sub>B</sub> (10 <sup>6</sup> )<br>time | (mc./co<br>(minute | :.)<br>;;)             | 0.5832<br>32         |
|-------------------------------------------|--------------------|------------------------|----------------------|
| C <sub>B</sub> (106)<br>time              | (mc./co<br>(minute | 2.)<br>es)             | 3.2011<br>152        |
| Le                                        | et the e           | equation               | of the l             |
| CH                                        | 3 = a +            | bt                     |                      |
| Tł                                        | ie form            | of the r               | esidual              |
| v                                         | 1 = a +            | $b \mathbf{t}_n - C_B$ | n                    |
| Tł                                        | ne resid           | luals equ              | ations a             |
| <b>v</b> ]                                | = a +              | 32b - 0.               | 5832(10 <del>-</del> |
| V                                         | 2 = <b>8</b> +     | 61b - 1.               | 2186(10-             |
| ve                                        | 3 = a +            | 91b - 1.               | 8995(10-             |
| V.                                        | 1 = a +            | 122b - 2               | 2.5524(10            |
| Vį                                        | 5 = a +            | 152b - 3               | 8.2011(10            |
| ve                                        | 3 = <b>a</b> +     | 182b - 3               | .8291(10             |
| V                                         | y = a +            | 212b - 4               | .6239(10             |
| <b>v</b> {                                | 3 = <b>a</b> +     | 242b - 5               | .3093(10             |
| Мι                                        | ltiply             | ing the r              | ight-han             |
| equation                                  | by the             | coeffici               | ent of t             |
| member, a                                 | adding '           | the produ              | icts obta            |
| sum to ze                                 | ero, it            | is found               | l <b>:</b>           |
| 81                                        | a + 1094           | 4b - 23.2              | 2171(10-6            |
| Ми                                        | iltiply:           | ing the r              | ight-han             |
| equation                                  | by the             | coeffici               | ent of t             |
| member, a                                 | adding '           | the produ              | icts obta            |
| sum to ze                                 | ero, it            | is found               | l:                   |
| 10                                        | )94a + 1           | 187646b -              | 4025.82              |
| TI                                        | ne norma           | al equati              | ons are              |

71

```
1.2186 1.8995 2.5524
61 91 122
                    5.3093
242
3.82914.6239182212
line be:
equation is then:
are then:
-6)
-6)
-<sup>6</sup>)
)-6)
)-6)
0-6)
0<sup>-6</sup>)
0-6)
nd members of each residual
the first unknown in that
ained, and equating their
```

<sup>6</sup>) = 0

nd members of each residual the second unknown in that ained, and equating their

 $251(10^{-6}) = 0$ 

then:

23.2171(10-6) 8a + 1094b =  $1094a + 187646b = 4025.8251(10^{-6})$ Solving by determinates it is found that: 23.2171(10-6) 1094 4025.8251(10-6) 187646  $a = \frac{1}{2}$ 1094 8 187646 1094 = -1.565944(10-7)23.2171(10<sup>-6</sup>) 8  $b = \frac{1094}{2}$ 4025.8251(10-6) 1094 8 187646 1094 = 2.236732(10<sup>-8</sup>) The equation is then:  $C_{B} = -1.565944(10^{-7}) + 2.236732(10^{-8})t$ The slope of the  $C_B$  versus t plot would be: slope =  $2.2367(10^{-8}) \text{ mc./(cc.)(min.)}$ and the rate of permeation is:  $J = 2.6298(10^{-6}) \text{ mc./min.}$ 

The following is an outline of the least squares analysis on the plot of "cold" chamber tracer activity in millicuries versus time in minutes employing the "true" volume at each sampling in order to calculate the rate of permeation.

| $C_{B'}$ (10 <sup>4</sup> ) (mc.) 0.6989652 1.<br>time (min.) 32         |
|--------------------------------------------------------------------------|
| C <sub>B'</sub> (10 <sup>4</sup> ) (mc.) 3.75328975 4<br>time (min.) 152 |
| Let the equation of the                                                  |
| $C_{B'} = a + bt$                                                        |
| The form of the residual                                                 |
| $v_n = a + bt_n - C_B n$                                                 |
| The residuals equations                                                  |
| $v_1 = a + 32b - 0.6989652$                                              |
| $\mathbf{v}_2 = \mathbf{a} + 61\mathbf{b} - 1.4525712$                   |
| $\mathbf{v}_3 = \mathbf{a} + 91\mathbf{b} - 2.2518572$                   |
| $v_4 = a + 122b - 3.009275$                                              |
| $v_5 = a + 152b - 3.753288$                                              |
| $v_6 = a + 182b - 4.464730$                                              |
| $v_7 = a + 212b - 5.361412$                                              |
| $\mathbf{v}_8 = \mathbf{a} + 242\mathbf{b} - 6.121622$                   |
| Applying the same condition                                              |
| equations are found to be:                                               |
| 8a + 1094b = 27.1                                                        |
| 1094a + 187646b = 4684.1                                                 |

73

```
4525712 2.25185725 3.0092796
                         122
              91
 61
                       6.1216229
4.4647306 5.36141205
                          242
  182
              212
line be:
l equation is then:
are then:
2(10^{-4})
2(10-4)
25(10-4)
96(10-4)
975(10-4)
306(10-4)
205(10-4)
29(10-4)
tions as before, the normal
```

1137(10-4) 1579(10-4)

Solving the normal equations by determinates, it is found that: 27.1137(10-4) 4684.1579(10-4) a \_ 1094 8 187646 1094  $= -1.205637(10^{-5})$  $27.1137(10^{-4})$ 8 4684.1579(10-4) 1094 b = -1094 8 187646 1094 = 2.566563(10-6) The equation is then:  $C_{B'} = -1.2056(10^{-5}) + 2.5666(10^{-6})t$ The slope of the CB: versus t plot would be:  $slope = 2.5666(10^{-6}) mc./min.$ and the rate of permeation is:  $J = 2.5666(10^{-6}) \text{ mc./min.}$ 

A least squares analysis on the plot of the logarithm of the permeability versus reciprocal temperature for the toluene-polyethylene system follows. In this analysis the value of the permeability of the tracer at 30.0°C is not used since, as had been discussed before, due to some inherent property of the polymer the data near 30°C were inconsistent with the other data points. Employment of the value at 30.0°C would yield a value for Do about half that found by disregarding that point. 3.2184 3.2451 4.7989 3401 (D 1/ 3.1932 3539 line be:  $\log_{10}e (1/RT)(\Delta E)$ equation is then:  $(1/RT_n)(\Delta E) = \log_{10}((Ds)_n)$ are then:  $49(10^{-3})(\Delta E) + 6.872867$  $47(10^{-3})(\Delta E) + 6.492358$  $10(10^{-3})(\Delta E) + 6.318859$ ure as before, the normal

Ds) 
$$(10^7)$$
 (cm.<sup>2</sup>/sec.)  
/T  $(10^3)$  (K-1)  
Let the equation of the 1  
 $\log_{10}(Ds) = \log_{10}(Do) - 1$   
The form of the residual  
 $v_n = \log_{10}(Do) - \log_{10}e$  (  
The residuals equations a  
 $v_1 = \log_{10}(Do) - 0.733054$   
 $v_2 = \log_{10}(Do) - 0.709274$   
 $v_3 = \log_{10}(Do) - 0.697931$   
Applying the same procedu  
quations are found to be:  
 $3 \log_{10}(Do) - 2.140261(10)$   
 $-2.140261(10^{-3}) \log_{10}(Do)$ 

е

 $(\Delta E) = -19.68408$  $\begin{array}{l} +1.527548(10^{-6})(\Delta E) =\\ 14.053182(10^{-3}) \end{array}$ 

Solving the normal equations by determinates it

is found that:

$$log_{10}(Do) = \frac{\begin{vmatrix} -19.68408 & -2.140261(10^{-3}) \\ 14.05318(10^{-3}) & 1.527548(10^{-6}) \end{vmatrix}}{8 & -2.140261(10^{-3}) \\ -2.140261(10^{-3}) & 1.527548(10^{-6}) \end{vmatrix}}$$
$$= 4.72061$$
$$(Do) = 5.25544(10^{4})$$
$$3 & -19.68408 \\ -2.140261(10^{-3}) & 14.05318(10^{-3}) \\ -2.140261(10^{-3}) & 1.527548(10^{-6}) \end{vmatrix}}$$
$$= 15,816.61$$

The equation is then:  $(Ds) = 5.25544(10^4) \exp(-15,816.61/RT)$ 

The energy of activation for the permeation process

is:

 $\Delta E = 15,816.61 \text{ cal./g. mole}$ and the value of the constant is:  $(D_0) = 5.25544(10^4) \text{ cm}.^2/\text{sec}.$ 

The following is a determination of the confidence interval for the least squares equation for the plot of the "cold" chamber activity in millicuries versus time in minutes.

The least squares equation was found to be:  $C_{B'} = -1.2056(10^{-5}) + 2.5666(10^{-6})t$ Let y<sub>i</sub> represent the value of  $C_{B'}$  obtained from the data and  $\tilde{y}_i$  represent the value of  $C_{B'}$  calculated from the above least squares equation at the appropriate times. Also let x<sub>i</sub> represent the values for the time of sampling in minutes.

| v: (10 <sup>4</sup> )                                                                                   | 0.6989652                                  | 1.45           |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|
| $\frac{y_1}{y_1}$ (104)                                                                                 | 0.7007365                                  | 1.44           |
| $(v_{1} - v_{1})$ (10 <sup>6</sup> )                                                                    | -0.17713                                   | 0.75           |
| $(y_i - y_i)^2 (10^{12})$                                                                               | 0.0313750                                  | 0.56           |
| v: (10 <sup>4</sup> )                                                                                   | 3.75328975                                 | 4.4            |
| $\frac{y_1}{y_4}$ (10 <sup>4</sup> )                                                                    | 3.7806121                                  | 4.5            |
| $(v_{i} - \tilde{v}_{i})$ (106)                                                                         | -2.73223                                   | -8.5           |
| $\begin{pmatrix} y_{1} - y_{1} \\ y_{1} - y_{1} \end{pmatrix} 2 \begin{pmatrix} 10 \\ 10 \end{pmatrix}$ | 7.4650808                                  | 73.7           |
| <u> څ</u> (y <sub>i</sub> -ÿ <sub>i</sub>                                                               | $)^2 = 121.7351$                           | 523(1          |
| <sup>s</sup> y/x =                                                                                      | $\frac{\ddot{z}(y_i - \ddot{y}_i)^2}{n-2}$ |                |
| •                                                                                                       |                                            |                |
|                                                                                                         | 121.7351523(                               | 10-12          |
|                                                                                                         | 6                                          |                |
| =                                                                                                       | 4.5043525(10-                              | <sup>6</sup> ) |
| $\bar{\mathbf{x}} = \frac{\hat{\boldsymbol{\Sigma}} \mathbf{x}_j}{n}$                                   | $i_{-} = \frac{1094}{8} = \frac{136}{8}$   | .75            |
| ¥.:                                                                                                     | 32                                         |                |
| $(\mathbf{x}_i - \mathbf{x})$                                                                           | -104.75                                    | -7             |
| $(x_i - x)^2 (10^{-4})$                                                                                 | 1.0972562                                  | 0.573          |
| <b>*</b> .                                                                                              | 152                                        | 18             |
| $\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix}$            | 15.25                                      | 45.            |
| $\binom{x_1 - x_2}{x_1 - \bar{x}}^2 (10^{-4})$                                                          | 0.0232562                                  | 0.204          |
| _                                                                                                       |                                            |                |

77

25712 2.25185725 3.0092796 3.0106432 50397 2.2150086 -0.13636 3.68486 315 72349 13.5781932 0.0185940 6.1216229 647306 5.36141205 6.0905188 505810 5.3205499 3.11041 4.08621 8504 029118 16.6971122 9.6746504

 $10^{-12}$ 

2)\_\_\_

A.J

 $\xi_i(x_i-x)^2 = 3.8041496(10^4)$ Using confidence coefficient  $(1-\checkmark)$  of 0.95, so that

the value of *x* is 0.05.

The degrees of freedom are (n-2) or 6. that the value of  $t_{a/2;n-2}$  is 1.943.

b 
$$\pm t_{\alpha/2;n-2} \frac{S_{y/x}}{\sqrt{\frac{2}{5}(x_i-x)^2}}$$
  
b  $\pm 1.943$  (4.5043525(10-6)  
b  $\pm 0.0448721(10^{-6})$   
Therefore, the value of th  
confidence of 95% is:

 $2.5666\pm0.0449$  (10<sup>-6</sup>) mc./min.

or,

2.5666(10<sup>-6</sup>)<sup>+</sup>1.75% mc./min.

Correspondingly, the diffusion constant with a

confidence of 95% is:

1.3401(10<sup>-7</sup>)<sup>+</sup>1.75% cm.<sup>2</sup>/sec.

```
Therefore, from Student's t-distribution it is found
The confidence interval for b = 2.5666(10^{-6}) is:
                           )) (3.8041496(10^4))^{-0.5}
                           he slope, b, with a
```

The following is a determination of the confidence interval for the least squares equation for the plot of the logarithm of the permeability versus reciprocal temperature for the toluene-polyethylene system. The least squares equation was found to be:  $\log_{10}(Ds) = 4.72061 - (1/RT) \log_{10}e (15,816.61)$ Let  $y_i$  represent the value of  $log_{10}(Ds)$  obtained from the data and  $\tilde{y}_i$  represent the value of  $\log_{10}(Ds)$ calculated from the above least squares equation at the appropriate temperatures. Also let x<sub>i</sub> represent the value of  $log_{10}e$  (1/RT) at the respective temperatures.

79

-6.31886 -6.31828 -5.8 33.64 49236 49770 **.4** 51.56

 $0.713420(10^{-3})$ 0.697931 709275 -15.489 4.145 239.9091 .1810 ent (1-a) of 0.90, so that (n-2) or 1. t-distribution it is found

The confidence interval for b = 15,816.61 is:

b 
$$\pm t \frac{s_{y/x}}{\sqrt{\frac{x}{x}(x_i-x)^2}}$$
  
b  $\pm 3.078 (5.4548(10^{-3}))$   
b  $\pm 662.32$   
Therefore, the value of the

confidence of 90% is:

15,816.61±662.32 cal./g. mole

or,

15,816.61<sup>+</sup>4.19% cal./g. mole The confidence interval for a = 4.72061 is: x<sup>2</sup>  $\frac{\tilde{\Sigma}(x_i-\bar{x})^2}{(x_i-\bar{x})^2}$  $\frac{1}{3} + \frac{(0.713420(10^{-3}))^2}{6.426233(10^{-10})}$ 

$$a + t_{\alpha/2;n-2} (S_y/x) \sqrt{\frac{1}{n}}$$
  
 $a + 3.078 \quad 5.4548(10^{-3})$ 

a ± 0.048234

Therefore, the value of  $log_{10}(Do)$  with a confidence

of 90% is:

4.72061-0.04823

or,

4.72061-1.0%

Finally a value of Do with a confidence of 90%

is found to be:

 $5.25544(10^4)^{+0.61727(10^4)}_{-0.55234(10^4)}$ 

or,

 $5.25544(10^4)^{+11.7\%}_{-10.5\%}$ 

 $(6.426233(10^{-10}))^{-0.5}$ 

he slope,  $\triangle E$ , with a

### BIBLIOGRAPHY

- 1. Barrer, Richard, Diffusion in and through Solids, The Macmillan Company, New York, 1941.
- 2. Barrer, Richard, and G. Skirrow, Journal of Polymer Science, 3: 549, 564 (1948).
- 3. deBrouckere, L., R. von Lumpert, and R. Stein, Radioisotopes Physical Industries, Proc. Conf. Use., pp. 187-194, Copenhagen, 1960.
- 4. Glasstone, Samuel, and Alexander Sesonske, Nuclear Princeton, N. J., 1963.
- Radiation and Isotopes, 13: 281 (1962).
- 6. Hayes, F. Newton, "Solutes and Solvents for Liquid Scintillation Counting," Packard Technical Bulletin Number 1, 1963.
- 7. Henley, E. J., N. N. Li, and R. B. Long, Industrial
- Non-Electrolytes, Reinhold Publishing Co., New York, 1955.
- 9. Kammermeyer, K. A., Chem. Engr. Prog. Symp. Series, 55: 115 (1959).
- 10. Klute, C. H., and P. J. Franklin, Journal of Polymer Science, 32: 161 (1958).
- 11. Kwei, T. K., and W. Arnheim, Journal of Chem. Phys., 37: 1900 (1962).
- 12. Kwei, T. K., and W. Arnheim, Journal of Polymer Science, A2: 957 (1964).
- 13. Lebas, The Molecular Volumes of Liquid Chemical Compounds, Longmans, London, 1915.
- and Computations, Edwards Bros. Inc., Ann Arbor, Michigan, 1960.
- 15. Martinovich, R. J., and P. J. Boeke, Modern Packaging, 31: 147 (1957).

81

Reactor Engineering, D. Van Nostrand Co. Inc., 5. Gromov, B. A., V. B. Miller, M. B. Neiman, and Yu. A. Shlyapnikov, International Journal of Applied and Engineering Chemistry, 57(3): 18 (1965). 8. Hildebrand, Joel, and Robert Scott, The Solubility of 14. Mainardi, Marcus, and Archille Capecelatro, Experiments

- . . .

- t • •

- 16. Michaels, Alan, Raymond Baddour, Harris Bixler, and C. Y. Choo, Industrial and Engineering Chemistry Design and Development, 1(1): 14 (1962).
- 17. Michaels, Alan, and R. B. Parker Jr., Journal of Polymer Science, 61: 53 (1959).
- 18. Park, G. S., Transactions Faraday Society, 48: 12 (1952).
- 19. Park, G. S., Transactions Faraday Society, 46: 684 (1950).
- Park, G. S., Transactions Faraday Society, 47: 1007 20. (1951).
- 21. Paul, D. R., and A. T. DiBenedetto, Journal of Polymer Science, 10: 17 (1965).
- 22. Pinsky, J., Modern Plastics, 34: 145 (1957).
- 23. Prager, Stephen, and F. A. Long, Journal of American Chemical Society, 73: 4072 (1951).
- Raff, R. A., and J. B. Allison, Polyethylene, 24.
- 25. Faraday Society, 49: 427 (1927).
- 26. Sobolev, Ivan, J. A. Meyer, Vivian Stannett, and Chemistry, 49(3): 441 (1957).
- 27. Sobolev, I., J. A. Meyer, V. Stannett, and M. Szwarc,
- 28. Stannett, V., M. Szwarc, R. L. Bhargaua, J. A. Meyer, and Paper Industry, New York, 1962.
- 29. DP-792, 1963.
- Tuwiner, Sidney, Diffusion and Membrane Technology, 30. Reinhold Publishing Co., New York, 1962.
- M. Szwarc, Industrial Engineering Chemistry, 47: 2524 (1955).

Interscience Publishers Inc., New York, 1956. Schumacher, Earle, and Lawrence Ferguson, Transactions Michael Szwarc, Industrial and Engineering Journal of Polymer Science, 17: 417 (1955). A. W. Meyers, and C. E. Rogers, Permeability of Plastics Films and Coated Papers to Gases and Vapors, Technical Association of the Pulp Symonds, A. E., United States Atomic Energy Commission 31. Waack, R., N. H. Alex, H. L. Frisch, V. Stannett, and

32. Zhookhovitzky, A. A., <u>International Journal of</u> <u>Applied Radiation and Isotopes</u>, 5: 159 (1959).

•

33. - , Packard Tri Carb Liquid Scintillation Spectrometer Model 2101 Manual, Packard Instrument Co. Inc., Downers Grove, Ill., 1965.

•

VITA

Name: Frank August Pollak Place of Birth: Newark, New Jersey Date of Birth: December 5, 1943 Parents: Frank Carl Pollak and Agnes Helen Morris Newark College of Engineering Newark, New Jersey Education:

Lehigh University Bethlehem, Pennsylvania

Bachelor of Science in Chemical Engineering Newark College of Engineering, 1965 Degree: