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ABSTRACT 

Most modern communication systems require that messages be sent securely. 

While there exist many cryptographic methods with which to provide this security, 

implementation making use of error-control codes lends itself to the possibility of also 

supplying reliability to the system. There are two prevalent methods for using error

control codes in the design of cryptographic systems. The first, based on a scheme 

proposed by McEliece and adapted by Rao-Nam, relies on the use of a scrambled code 

generator matrix to provide encryption, while the intractability of decoding arbitrary codes 

provides the security. The second, proposed by Niederreiter, relies on the decimation of 

feedback shift register sequences to generate an e11cryption matrix, whereas the difficulty of 

determining these factors provides tl1e security. A characterization of tl1e cryptosyste1ns 

based on tl1e McEliece system is proposed. A generalization of the Niederreiter Feedback 

Shift Register Cryptosystem that makes use of multiple sequences is also proposed. Tl1e 

suitability of both general types of systems towards solving the authentication problem as 

well as their applicatio11 to joint encryption and error correction is discussed. 
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Chapter I - Introduction 

Since the introduction of modern communications in the nineteen th century the 

study of cryptography, the science of protecting communications, has grown. With society 

today having an increased dependence upon electronic commincations such as radio, 

facsimile and high-speed data communications, communication security has become even 

more important. 

There are two primary methods of providing security. The first is to have 

impenetrable lines between every pair of users in tl1e system. However; this is i1npractical 

from both a cost and implementation viewpoint. The second more practical 1netl1od is to 

alter in some way the appearance of any message so that its content is concealed from all 

but the intended recipient. It is this method that will be the focus of discussion. Such 

systems are referred to as cipher or cryptosystems. 

Wl1ile there are many possible methods for impleme11ting the second option, 

cryptograpl1ic systems that rely on ideas from error-control coding for their 

implementation are of value for they also suggest tl1e ability to provide reliability for the 

communication system as well. 

This type of cryptosystem was first proposed by McEliece [18] in 1978, and used 
• 

the intractability of decoding general error-correcting codes as the basis for its security. In 

1983 Jordan [11] proposed a variant of this system. Both of these systems are public-key 

cryptosystems, a form of cryptosystem proposed by Diffie and Hellman [7] in 1976. Rao 

and Nam [27] offered a private-key or traditional cryptosystem variation of the McEliece 

system in 1986. Their system has since has modifications proposed by Struik and van 

Tilburg [29] in 1987, as well as Denny and Rao [6] in 1988, in efforts to improve upon the 

security of the system. 
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A second type of cryptosystem based on the ideas of algebraic codes was proposed 

by Niederreiter [21] in 1985. His system involves making use of feedback shift register 

(FSR) sequences and decimating them by privately known factors in order to provide the 

system security. This system is a generalization of the discrete logarithm cryptosystem. 

A third type of system, prposed by Niederreiter (20] in 1986, is based on the 

knapsack problem. Again this system relies on the difficulty in decoding a general 

algebraic code. 

While an attempt has been made to be exhaustive, recent developments sucl1 as 

the work by Park and Tzeng [22], using concatanated codes on an attempt to solve the 

JOEEC problem, are not included. 

The remainder of this thesis is organized as follows. 

Chapter II is a review of the background material needed in order to describe the 

cryptosystems based on error-control coding. Section one is devoted to error-control 

coding. Included are reviews of the basics of linear and cyclic codes as well as the 

encryption and decryption of BCH, Goppa and non-linear codes. Section t\vo is a review of 

the basics of cryptology. Included are discussions of both private and public key 

cryptosystems, as well as the rudiments of cryptanalysis specifically what is meant by a 

system being insecure. Mention is also made of the authentication problem and joint 

encryption and error-correcting. Chapter two concludes with section three, where feedback 

shift registers are described. Included in this section are the notion of the characteristic 

polynomial, families of sequences, and the syn thesis of a feed back shift register to generate 

a multiple sequence system. 

Chapter III is an analysis of the feedback shift register cryptosystem as originally 

suggested by Niederreiter. Section one is a description of his system. Section two is a 

description of our proposed generalization relying on multiple sequences, for which an 
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example is give11. Section three is a cryptanalysis of the generalized system. The chapter 

concludes with a mention of the systems applicability to the authentication problem. 

Chapter IV is devoted to the McEliece public key cryptosystem including the 

variation by Jordan. Mention is also made of its private key counterpart suggested by 

Rao-Nam and its variants by Struik-Van Tilburg and Rao-Denny. A characterization of 

these systems is made so that all possible variants, both public a11d private key can be 

discussed with one encryption algorithm. Finally the suitability of this family of 

cryptosystems to the joint encryption error-correction problem and their insuitability to 

solving the authe11tication problem is mentioned. 

Chapter V deals with Niederreiter's knapsack cryptosystem. Following a brief 

introduction to tl1e kna.psack problem, section one is a presentation of the cryptosystem. 

Section two presents two at tacks on the system, showing its vulnerability. 

Chapter VI is a summary of results. A comparison of tl1e tl1ree basic types of 

cryptosystems, FSR, McEliece, and Niederreiter knapsack is also offered. 

For further information regarding algebraic coding the reader is ref erred to sources 

14, 15, 17, 30 and 31. For further information regarding cryptology the reader is referred 

to sources 2, 4, and 23. For information regarding feedback register sequences the reader is 

referred to source 10. Finally for general background sources 12 and 13 are recommended. 
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Chapter II - Preliminaries 

In this chapter some preliminary concepts that are needed to discuss 

communication security using algebraic codes are presented. We begin with a review of 

error-correcting codes, including Goppa codes, BCI-I and Reed-Solomon codes as well as 

non-linear codes. Both encoding and decoding for these classes of codes will be described. 

Goppa codes are essential as they are used in the McEliece system, while non-linear codes 

are used in a variation of the Rao-Nam scheme. BCII and Reed-Solomon codes are used in 

applications to the joint encryption error-correction (JO ECC) problem. 

Following a discussion of coding theory the basic concepts of cryptology are 

described. Included in this is the difference between public and private-key e11cryption. 

Also included in this area is the notion of authentication. The idea of JOEEC is also 

presented. 

This chapter concludes with a presentation of feedback shift register sequences, 

which are used by Niederreiter to perform public key encryption. Various i1nportant 

properties of these sequences will be discussed. 

II.1 Fundamentals of Error-Correcting Codes 

In communication systems (see figure 2.1) it is desirable to have the ability to 

correct any errors introduced due to noise in the channel. It is for this reason that error

correcting codes were developed. 
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u x r==x+e 
I sot1rce 1-message--+f encoding j--codeword--+f channel !-received-+( decoder I • u' l vector 
- estimated-+( sink 1 error message vector 

Figure 2.1 Communication System 

Let u and v be elements of fq. Define the Hamming Weight of x, w(u), to be the 

number of non-zero entries of u.. The !lamming Distance between u and v, denoted d(u,v), 

is defined to be the number of cooridinates in u and v that are different, that is d( u, 

v)==J{i J ui#vi, 1 < i < n}J. We then have w(u)==d(u, 0). 

Over a finite field f q, a linear (n, k, d) code C is a k-dimensional subspace of IF~ 

whose elements have minimum distance d. The generator matrix, G, of tl1e code is an k xn 

matrix whose rowspace is C. If G is of the form (P Ik) tl1en it is said to l)e in standard 

form, and from G we obtain tl1e parity check matrix H == ( In-k -PT). For any u E C, 

uHT = 0 and for u E fq, uHT is called the syndrome of u. A code capable of correcting 

up to t errors is known as a t-error-correcting code,· note that d . > 2t + 1. min -. 

For a code C define the minimum distance d . =min { d(u, v)Ju, v E C}, and min 

minimum weight wmin =min{w(u) Ju E C, u -=f. 0}. If tl1e code is linear, since d(u, v) 

d(u-v, 0) == w(u-v) and u, y E C in1plies u-v E C tl1e 1nini1num distance is equal to 

the minimum weight of C. 

A code C is cyclic if (c0 , c1 , ... , Cn_1) EC implies (c1, c2 , ... , cn-t, c0 ) E C. For 

cyclic codes, a codeword can be viewed as a polynomial, namely ( c0 , c1 , ... , cn_1) can be 

viewed as c(x) == c0 + c1x + · · · + cn_1xn-i. Then a linear code C is cyclic if arid only if 

C is an ideal in fq[x]/(xn-1). Since IFq[x]/(xn-1) is a principal ideal ring, it has a 

generator polynomial, this polynomial is the generator polynomial of the code and is a 

divisor of xn-1. If the code has as 

g(x) = g0 + g1x + · · · + gn_kxn-k, then it has 

6 
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xn-1 k 
h(x) = g(x) = h0 + h1x + · · · + hkx . The generator and check matrices are 

determined as below. 

go gl . . . 
gn-k 0 0 . . . 0 

0 go gl • • • gn-k 0 . .. 0 
G 

0 • 
0 . . . . 

0 0 . . . . . . g k 
n-

0 0 . . . 0 hk . . . h1 ho 

0 0 . . . hk h . . . ho 0 k-1 
H 

. . 
. 

0 0 0 

II.1.1 BCH and Reed-Solomon Codes 

An irr1portant class of cyclic codes are the BCH codes. To generate these codes let 

IF q be an arbitrary field, let g( z) be a generator polynon1ial that is the least con11non 

l . I f h . . I I . l f b b+l b+b- 2 " b' , b 1 mu tip e o t e m1n11na po ynom1a s o a , a , ... , a ·, 1or an a.r 1trary anc a a 

primitive nth root of unity. This gives a BCII code of designed distance 8, the mini1nurn 

distance of these of codes is at least 8. If b == 1 the narrow-sense BCH codes are obt.ained 

and when n == qm-1 the code is said to be primitive. 

A subclass of the BCH codes are the Reed-Solomon codes. These codes are 

primitive BCH codes of length n == q-1 over IF q. The generator for this code is 

d-l . 

g(z) = f1 (z-01
), with a primitive in 1Fq. This is an (n, n-d+l, d) linear code. 

i=l . 

The parity check matrix for these codes is given by the following 
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1 

1 

H 

b+l 
0 

"-

\ 

2(b+l) 
a 

••• 

.... 

. . . 

· (n-l)b 
Q' 

(n-l)(b+l) 
a 

• 

• 

(n-l)(b+6-2) a 

To decode a (n, k, d) BCH code with generator g(X) and design distance d, let 

r- == (r0 , r1 , ... , rn_ 1); ri E 1Fq be the received vector for a sent message vector f. Then e 

== r-f is the error pattern, then r(X) == f(X) + e(X), where r(X), e(X) and f(X) are the 

polynomials associated with r, e and f respectively. Associate with e(X) the sy1nmetric ·' 

functions S1 , S2 , ... where Si == e(ai). Since g(X) divides f(X) it then follows that Si == 

r( ai), i == b, b+ 1, ... , b+d-2, and the set of the d-1 consecutive Si can be forn1cd by 

the receiver. The decoding problem is given the set of Si, find tl1e error polynomial e(X). 

Let e have !lamming weigl1 t t, and the j th non-zero coin ponen t of e be e k, Xi == a k E 

t . IF m the locator of the error and Yi == ei E f q the error ma.gnitucle. Thus Si == I: Y jXj, q 
j=l " 

for i == 1, 2, 3, . . . . The essential l)roblem is the determination of the error locations. To 

do this determine the connection polynomial C(D) for tl1e feedback shift register of least 

length that will generate the sequence Sb, Sb+l' ···, Sb+d- 2 , (see §3.1 for tlie Berleka111p

Massey algorithm to accomplish this task). The t roots of C(D) are the recipricals of the 

error locators, thus decoding is possible if 2t < d-1. 
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II.1.2 Gappa Codes 

.. 

If G(z) is a polynomial of degree t over IF m and L = {,0 , , 1, ... , ,n_1} is a 
q 

subset of r m with G(,i) =/= 0 for i == 0, l, ... , n-1, then the Goppa code, r(L, G), with 
q 

Goppa polynomial G ( z) is the set of codewords c == ( c0 , c 1 , ... , en-I) over IF q satisfying 

n-1 c. 
E z-',. = O(mod(G(z)). This class of codes is linear, have dimension k > n-mt and 
i=O I 

minimum distance at least t + 1. 

The parity check matrix for the Goppa codes is given by the following, 

H == 

h t-1 
OTO 

h t-1 
l/1 

hn-1,n-1 

h t-1 
n-1,n-1 

'\ . 

Example: Let L == GF(3) and G(z) == z2 +z+2 ==(z-a)(z-a 3 ), where a is 

primitive in GF(3 2
) and o: 2 + o: + 2 == 0. The parity check matrix is 

H == 
2 1 2 

0 1 1 
•. 

This is a (3, 1) linear code over GF(3) that consists of the codewords {(O, 0, 0), (1, 2, 1), 

(2, 1, 2)}. 

... 

To decode, make use of Euclid's algorithm, a recursive technique for finding the 

greatest common divisor d(z) of two polynomials a(z) and b(z), namely producing the 

equation 
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s(z)a(z) + t(z)b(z) = d(z) 

which expresses d(z) as a linear combination of a(z) and b(z). 

< 
Let r = (r0 , r1, ... , r0 _ 1) be the received vector and c == r-c, where c is the 

transmitted codeword, the error vector. The syndrome s(z) of r is the unique polyno1nial 

of degree less than t such that 

n-1 r. n-1 e. 
s(z) = ~ z-'a; (mod(G(z)) = L z-'o:i (mod(G(z)); ai E L. 

i=O i=O 

Let B == { a if ei #- 0} be the set of error locations with e f3 == ei, where (J == a i is the 

value of the error at location ef3. Decoding is the process of deter1nining the error locations 

and values. Rewrite the syndrome as 

s(z) - L z:.{J mod(G(z)) 
/3€ B 

and define, the error-locator and error-evaluator polynomials as 

o-(z) == rr (z -(J), and 
f3€ B 

w(z) == I: ef3·f1 (z- 1 ), respectively. 
f3€B -ycB 

1 #-f3 

If B has e elements then deg( a) == e, deg( w) < e, gcd( O", w) 

o-(z)s(z) = w(z) (mod(G(z)). 

. . . I 
1, e13 = w((J)/o- ((J), and 

If O"(z) and w(z) are the error locator and evaluator polynomials respectively, and 

the error pattern has weight < (;) then a(z) = At j(z) and w(z) -- Ar j(z ), where r j(z) and 

tj(z) are obtained from Euclid's algorithm with a(z) =sG(z) and b(z) == S(z) and j is the 
i 

least integer such that deg(r j) < ( ! ). The scalar A E F qm is chosen so that At /z) is 

• mon1c. 

To continue, find the solutions to o-(z) == 0 in IF m, these are the values of the 
q 

error locations. The error values are found by finding e f3 == w(/3) / 0"1 (/3), where o- 1 ( z) is 

the formal derivative of o-(z). If q == 2 this last step is not necessary since the error values 

10 



will always be one. 

II.1.3 Non-Linear Codes 
' ,, 

Linear codes have the property that the sum of any two codewords is also a 

codeword. However, there exist codes that do not have this property, non-linear codes. An 

(n, M, d) non-linear code is a set of M vectors of lerngth n such that any two have at least 

d positions in which they do not agree. 

For an example of a specific non-linear code consider the class of non-linear codes 

described by Preparata[21]. Let q == 2m-l form greater than 2, a(x) E IF 2[x]/(xq-l + 1), 

and B == {b(x)} a single error-correcting Reed-Solomon code of length q-1 generated by 

g1(x) with a primitive in IF q as a root. Let C == {c(x)} be the IlClI code whose ge11erator 

polytnomial has roots a, a 3
, and 1. Finally let u(x) == (xq-l + 1)/(x+l). The code V 

consists of vectors of the form 

v == [b(x), i, b(x) + {b(l) + i}u(x) + c(x)] 

where i is a binary parameter. Tl1e code is a (2m -1, 2m -3m + 1) linear code of distance 

• 
SIX. 

q-1 . S S 2 
If z(x) == (x + 1)/g1(x), then there exists an s sucl1 that x z(x) == (x z(x)) . 

Let f(x) == xsz(x). Then the set K, of vectors w sucl1 that 

w==[b(x) + p(x), i, b(x) + p(x)f(x) + {b(l) + i}u(x) + c(x)} 

with p(x) a monomial such tl1at deg(p) < q-2, and B(x), c(x), i and p(x) are 

independently ·chosen is a (2m-1, 2m-2m, 5) non-linear code. 

To decode assume that r == [r0 (x), r, r1(x)] == w + [e0 (x), e, e1(x)] is received. 

Given the following: 

q-2 q-3 
H1 == (a , a , ... , a, 1] 

[( 3)q-2 3 q-3 3 H3 = a , ( a ) , ... , ( a ), 1] 

11 



U = [ 1, l, ... , 1, 1] 

then the syndrome is calculated as follows. 

u 0 = r0(x)HT = aa8 + e0 (a) 

u1 = r1(x)HT = aa8 + e1(a) 

where p(x) = ax8 is the monomial used in the codeword. Then I: == ( a 0 , a 1, a, d) is the 

syndrome for r. 

Let p = a+(a-0 +a1 ) 3 . If p = ai (j == l, 2) and d = 0 then r is a men1ber of 

the non-linear code. If the above condition is not met then let c == [c0(x), c, c1(x)] be such 

that c+r is a codeword. It remains to find c, which is possible according to the following 

rules, taking j modulo 2; 

h h Rule 1: If p = <ri and p -:p a-j+l then cj+1(x) == x where a == a 0 +a 1 and 

In the following p i= a; for j - 1, 2. 

k. 
Rule 2: If d = 1 then c = 0 and cj(x) = x 1 , where 

k. 
a J = aj+i+ 3~u+u0 a- 1(u 0 +u1). 

k k 
Rule 3: If d = 0 and a 0 +u1 # 0 then c = 0, cj(x) = 0 and cj+(x) =x 1+ x 2 , 

k k ' 
where a 1 and a 2 are the solutions to 

Rule 4: If d = 0 and (1 0 + (1 1 == 0 then r is at distance at least three from any 

codeword. 

12 
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II.2 OVERVIEW OF CRYPTOLOGY 

In order to provide secure communications it is necessary to disguise the 

information sent. The system wl1ich does this is referred to as a cipher system, tl1e original 

message as plaintext and the enciphered message as ciphertext. The cipher system can be 

thought of as a mapping from tl1e plaintext to tl1e ciphertext. The set of all possible 

plaintexts is called the 111essage space, denoted by M,and the set of all possible ciphertexts 

is the cryptogran1 space, denoted by C. The map1)ing from rv1 into C should be i11jective, 

that is eacl1 1nessage u11iquely determines a cipher, this will gua.rantee tl1at the cryptogram 

is decipherable back to tl1e origi11al message. There will be more tha.n one such n1apping 

Ek: ~1 -+ C, i11dex tl1ese ma.ppings witl1 a key k, the set of possil)le indexes is ca.l1f~cl the 

ke~yspace. By abuse of notation tl1e specific 111appi11g 11sed is someti1nes referred to as the 

key. 

----1 Cryptanalist j 

[source 1-m-+! encryption J-Ek(m)- decryption -n1=Dk(Ek:)-.lsink I 
0 

k k 

key source ---·-..... • user 

Figure 2.2 Private-Key Cryptosystem 

We will only concern ourselves with block cipher systems, in which the messa.ge to 

be sent is first broken into blocks of n cl1aracters for some a.ppropriate positive i11teger n. 

Conventional cryptosystems in which the key is kept private are referred to as 

private-key cryptosystems (see figure 2.2). In these systems it is necessary to distribute the 

key to be used in that cryptographic session prior to the session in such a way as they are 

13 
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only known to the recipient, such as by courier. 

II.2.1 Public-Key Cryptography 

As an alternative to private-key systems Diffie and llellman [7] propsed using 

publically distributed keys (see figure 2.3). To implement, all members who wish to 

communicate together decide on a common encryption algorithm, then each user 

determines and publishes an encryption key. For user A to send a message to user B, first 

A looks up B's key, then encrypts the 1nessage under that key. Upon receipt B then 

decrypts tl1e message. I11 order for sy·stems of this typf' to work it is necessa.ry tha.t the 

decryptio11 algorithm 11ot use the same key as the encryption algorithm. It must still he 

11eccssary for B to easily decrypt A's n1essage. \Vhat is needf'd are encryption a.lgorit.h1ns 

tl1at are l1ard to invert. but with the i11troduction of a,clditional information inversion is I 

possible. Sucl1 f unctio11s are called one-way trap door functions, and in tl1e detern1ina.tion 

of the public keys, users must keep the trap door informa.tion that is needed to invert the 

encryption l(ey private. 

I source 1-m -+ encryption -c==EB(m) ~ decryption -. 

EB 

keybook I 
~ crypt.an a.list .. 

Figure 2.3 Public-Key Cryptosystem 

.The rules for public-key cryptography are summarized below. 

(Pl) If c = E(m) then m == D(c) and D(E(m)) = m for each m E 1\1, where E (D) is 

the encryption (decryption) algorithm. 
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(P2) E and D must be quickly and easily applied. 

(P3) E can be made public without revealing D, that is it is not computationally 

feasible to derive D from E. 

II.2.2 Cryptanalysis 

In the design of any cryptographic system, the questio11 of how secure is that 

system must be answered. It is in the answering of this questio11 tl1at crypta.nalysis of the 

system must be done. The cryptanalist is th e person whom is connected to the system in 

an attempt to either intercept and decipher messages, passive cryptanalysis or 

eavesdropping; or corrupt the message traffic itself in an attempt to . make it 

undecipherable by any legitinmate recipient, active crypta11alysis or ta1npering. It is 

primarily with passive cryptanalysis that is the concern here. 

Tl1ere are three levels of cryptanalysis, concerned with how n1 ucl1 inf ormatio11 they 

have about the system a11d message traffic is needed in order to break the systen1. It is 

always assumed in determining how secure the system is that any cryptanalist knows 

complete details of the encryption algorithm, this is especially i111porta11t, and true, wl1cn 

discussing public-key cryptosystems. A system is considered broke11 if a crypta11alist given 

any ciphertext then produce the corresponding plaintext. 

The highest level is ciphertext only. In this the cryptanalist only knows certain 

encrypted messages. It may also be assumed that they also know context, but not content 

of the message. The second level is known plaintext. In tl1is tl1e cryptanalist knows 

certain plaintext as well as its corresponding ciphertext. If a system is insecure against tl1is 

type of attack then it is important to destroy any deciphered messages. The third level is 

chosen plaintext. In this the cryptanalist knows plaintext-ciphertext pairs of their 

choosing. It is impoprtant that all public-key cryptosystems be secure against this type of 

15 
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attack since the encryption algorithm and keys are made public any cryptanalist has this 

information at their disposal. 

II.2.3 Authentication 

For any communication system it is also necessary for users to know who they are 

talking to. This problem is known as the authentication problem. Authentication can be 

obtained in a public-key system if we add the property 

P( 4) Every element in the cryptogram space C can be decrypted, that is there is an m 

such that m == D( c) for every c E C. This is equivalent to saying that 

E(D( c) == c for every c. That is in addition to the mapping being injective it is 

also surjective. 
,. 

With tl1e a.dition of this property user A signs his message to B by for1ning a message 

dependent ~ignature s == Da(c), arid then computes c1 == Eb(s). User B upon receipt of c1 

applies Db to obtain s, and then using the public encryption key for a finds Ea(s) == 

Ea(Da(c)) == c. B is then satisfied that A sent the message for only A should know Da 

and Ea (D d ( c)) -j:. c if d -j:. a. 

II.2.4 Joint Encryption Error-Correction 

In some enviroments it may be desirable to have both error-correction and 

encryption capabilities. Certainly these can be implemented seperately, but with the use of 

al.gebraically coded encryption it is possible to implement both· in one step. By 

incorp~!ating both steps into one step speed and efficiancy are both increased, since they 

can be implemented on a single chip. The trade-off encountered is that the security 

provided by JO EEC is inferior to that provided by singular encryption as is the error

correcting capability. 

16 
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II.3 FEEDBACK SHIFT REGISTERS 

Let k be a positve integer and a, a 0 , a 1, ... , ak be fixed elements in a finite field -1 ' 

1Fq. A sequence (si) of elements from IF q satisfying 

s k == ak s k + ak s k + · · · + a 0sn + a for n == 0,1, ... n+ -1 n+ -1 -2 n+ -2 

is called a linear recurring sequence, witl1 initial values s0 , s1, .. :' sk-t in IF q. If a == 0 

then the sequence is said to be homogeneous. The polynomial 

f( ) k k-1 k-2 JC [ ] x = x -t_ 1x - ak_ 2x - ··· -a1x- a0 ; ai E irq x 

is called the cl1aracteristic polynomial of the seque11ce. The characteristic polyno1nial of a 

linear recurri11g sequence of least possible order tl1at genera.tes the sequence is said to be the 

minimal polynomial of tl1e sequence. 

n-1 
f(Do, D1, ... , Dn-1) == LgiDi 1-

i=O 
l j • 

' I 

output+- Do ' D1 +- ... +- Dn-1 ' . 
" 

Figure 2.4 Feedback Shift Register System 

The sequence is said to be ultimately periodic with period r if there exists positive integers 

r and n0 such that sn+r == sn for every 11 > n0 • The smallest number of all possible 

periods of an ultimately periodic sequence is called the least period of the sequence. An 

ultimately periodic sequence with least period r is called periodic if sn+r == sn holds for all 

integers n > 0. It turns out that a sufficient condition for a sequnce with characteristic 

polynomial f(x) to be periodic is that f(O) =/:. 0. · The least period for a sequence with 
.. 
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minimal polynomial m(x) is equal to the order of m(x). 
./ 

The implementation of these sequences is done on a feedback shift register (FSR), 

for this reason these sequences are also known as FSR sequences. The characteristic 

polynomial is also known as the connection polynomial for the register (see figure 2.4). 

We define the decimation of (s.) by a factor of k as the sequence (s.k), that is take I I 

every kt h term of the original sequence starting at s0 • To see that all the decimated 

seq11ences are n-stage FSR sequences over IF q with minimal polynomials of degree n we 

refer to the fallowing lemmas. 

Lemma 2: If tl1e characteristic polynomial g(x) of an FSR sequence (si) in IF q has 
n 

factorization g(x) == Il (x-/3 j) in its sp]i tting field over IF q then tl1e 
j=l 

decimated sequence (sik) has the characteristic polynomial 

n k 
gk(x) == TI (x·-/3 j ). 

j=l 

Lemma 3: If (si) is an FSR sequence over IF q with minimal polynomia.l and 

gcd(k, M) == 1 and x2 does not divide g(x) tl1en (sik) has the minimal 

polynomial gk (x). 

For feedback register sequences sometimes it is ideal to be able to efficiently 

determir1e the k th eleme11t without I1aving to calculate the e11tire sequence up to that poi11t. 

Fiduccia [9) has given an algorithm that will do tl1at. Given a sl1ift register sequence of 

length n, wi tl1 characteristic polynomial g( z), and i11i tial elem en ts s. for i == 0, 1, ... , 11 -1, 
1 

if we want to calculate the value of detern1ine the value of 

Il-1 . modulo g(z). This will be a polynomial f(z) = E Ii z1
• The value of the kth element of 

i=O 

Il-1 
the sequence is then determined by sk = E , isi. 

i=O 
In this manner the kth 

element of a sequence can be determined in CJ(µ(k) ·log n) arithmetic operations, where 

µ(k) is the number of arithmetic operations to multiply two length k-1 polynomials. 

This can be done in C, (k · logk · logn) operations over a field that supports fast Fourier 
18 



transforms. 

11.3.1 FEEDBACK SHIFT REGISTER SYNTHESIS 

Given a sequence (si) it is often desirable to know the shift register of minimum 

length that will generate that sequence. The Berlekamp-Massey algoriitl1m (17] is a 

recursive algorithm that will do so without knowledge of a characteristic polynomial for 

the sequence. The only knowledge needed is an upper bound for the degree of the 

polynomial. 

00 . 
Let (s.) be sequence over IF q, and let G(z) == L sizi. Define polyno1nials gj(z) 

1 i=O 

and hj(z) over fq and integers mi E 1Fq recursively. Initially let g0 (z) == 0, h0 (z) == z 

and m 0 == 0. Define bi to be the coefficient of gj(z) G(Z). Proceeding let 

mj+l 

bi 1z gj(z) 

z hj(z) 

-m. 
J 

ill·+ 1 J 

bi # 0 and m j > 0 
otherwise 

b j f:. 0 and m j > 0 
otherwise 

If the sequence has a minimal polynomial of degree k , then g2 k ( z) is tl1e reciprical 

minimal polynomial. If instead the minimal polynomia.l is of degree < k, tl1en 

let r = L k+!-~ m2kj, and the minimal polynomial m(z) = zrg2k(l/z). In either case 

m( z) depends only on the first 2k terms of the sequence ( s.) so G ( z) can be replaced by 
I 

Given m sequences ( sf h)) we are interested in finding the feedback shift register of 

minimal length that will generate them. The following algorithm proposed by Feng and 

Tzeng [8] from their generalized Euclidean algorithm will do that. 
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S 1 L t - ~1 m-1-h ~ (h) m(n-1-i) U ( ) - 1 tep . e r O - L..i z ~ si z , 0 z - , 
h=O i=O 

(h) mn+h (h) ) . . . b O ( z) = z , VO ( z = 0, for all h = 0, 1, ... , m - 1 ; and J == 0. 

Step 2. j = j + 1. 

Step 3. (h) (h) Calculate rj(z), Pj(zm) and qi (zm) from rj_1(z) and bj_1(z) so that 

m m-1 (h) m (h) rj(z) = Pj(z ) rj_1(z) + Lqj (z ) bj-l· 
h=O 

Let v j-l = deg r j-l (z) mod m, 

(v j-1) (h) (h) bi (z) = rj_ 1(z) and bj (z) = bj_1(z) for all h -:f. v j-l· 

Step 4. Determine U j(z) from U j-l and v}h)1 (z) so that 

m-1 (h) (h) 
Uj(z) == Pj(z) uj-1(z) + L qj (z) vj-1(z). 

h=O 

(vj-1) (h) . (h) Let Vi (z) == Ui_ 1(z) and Vi (z) == Vi_ 1(z) for all ·h # vi_1• 

Step 5. If deg r j(z) > deg U j(zm) then go to step 2, otherwise go to step 6. 

Step 6. Let k == j, and 6U k ( z) is tl1e connection polynomial for the sl1ortest lengtl1 

feedback shift register generating the multiple seque11ces. Where 8 is the field 

element making lJ k ( z) monic. 

If deg r j-l (z) > deg U j-l (zm) for all 1 < j < k and degrk(z) < deg U k(zm) and deg 

Uk(zm) < gkh) for all h = 0, 1, ... , m-1 where m·gkh) = (deg b~11\z))-h then 6Uk(z) is 

the unique shortest length feedback shift register generating the sequences. If l1owever deg 

rj_1(z) > deg U j-1(zm) for all 1 < j < k and deg rk(z) < deg Uk(zm), 

m (h) d(h) m-l (h) (h) deg Uk(z ) = gk + for all O < h < m-1, then Uk(z) == L W (z) Vk (z), 
h=O 

where for each h W(h)(z) is any polynomial of degree less than lh) if d(h) > 0, and 

w<h)(z) == 0 otherwise are all the shortest length feedback shift registers that will generate 

the multiple sequences. 
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2.3.2 FAMILIES OF SEQUENCES 

Let f(z) E F q[z] be monic of positive degree. Let S(f) denote the set of linear 

recurring sequences in F q having f( z) as tehir characteristic polynon1ial. If deg(f) == k 

then IS(f) I == qk, as there are that many choices for the initial states of the sequences 

generated by f. This set can also be viewed as a vector spa.ce of dimension k over f q if 

operations are defined term wise. 

If we define f( x) == xk - ak xk-l 
-1 

ak xk- 2 - · · · - a 1x - a 0 , and add the -2 

further requirement that f(O) f. 0, then every sequence that has f(z) as its characteristic 

polynomial will be periodic. If we let ( sf h)) for h = 0, 1, ... , qk -1 be the sequences in 

S( f), then we claim the following 

Lemma: If ( sf h)) for h = 0, 1, ... , N-1 are N linearly independe11t sequences over a 

finite field f" q of period M h and M = lh m { m h} then the decimated sequences 

( s~~)) for k relatively prime to M are also linearly independent. 

Proof. Suppose the decimated sequences vv1ere li11early dependent. Since the decimation 

factor was relatively prime to the period of each of the sequences the dcci1nation 

ammounts to reorderi11g of the elements of each sequence. Thus if the decimated 

sequences were linearly dependent, then tl1e originals must have been also. Since 

this is a contradiction of our original assumption, the decimated sequences 

must be linearly independent. 
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Chapter Ill - Feedback Shift Register Cryptosystems 

In this chapter encryption using feedback shift register sequences will be discussed. 

The system originally proposed by Niederreiter [21] will be presented, as well as a new 

system resulting from the work of Feng and Tzeng [8] in multiple sequences that is a 

generalization of the original system. 

Wl1ile these sequences are not directly related to error-correcting codes, their use in 

the decoding of certain types of codes, namely the Goppa codes makes them rel event for 

discussion l1ere. 

Section one will deal with the system proposed by Nieddereiter. Section two will 

be a discussion of our proposed generalization of that system using multiple sequences. 

Section three will be a discussion of the cryptanalysis of this syste1n. 

III.1 Niederreiter FSR Cryptosystem 

Let q be a power of a prime and g( z) be a monic polyi11omial of positive degree n 

over IF q such that g(O) # 0. Let (si) be a sequence with cl1aracteristic polynon1ial g(z), 

period M and initial terms s0 == · · · == sn_ 2 == 0, and sn-l == 1. In this case g( z) will be the 
\ 

minimal polynomial of ( s. ). 
1 

For two users of the system, A and B to correspond tl1ey each 11eed to generate 

their own public key. This is done as follows: each user picks an integer h sucl1 that 

1 < h < M and gcd(h, M) == 1, then decimates the sequence ( si) by that factor and 

publishes as their public key the second 2n-1 terms of the decimated sequence (sih), 

namely sh, s2h, ... , s( 2n-i)h; it is not necessary to publish the first term as it will always 

be 0. 
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For user B to send a length n, non-zero message vector ( a 0 , ... , an-t) over IF q to 

A, B chooses an integer k such that 1 < k < M and (k, M) == 1. From A's public key, B 

determines the minimal polynomial of (s.h) == (t.) and decimates this new sequence by the 
l l 

factor k to obtain a new sequence ( skih) == ( ui ). Then B constructs the matrix 

Uo u1, . . . Un-1 

U1 U2 . . . Un 
U= . 

• 
• 

Un-1 Un . . . U2n-2 

and sends to A the ciphertext r>air sk, s k, · · ·, s( )k, ( a0 , a1, · · ·, a11 1) U. 2 2ll-1 -

In order for A to decrypt B's rn~ssage, A must first dcterrr1ine the rninirnal 

polynomial of the sequence sk, s
2 k, ···, s(

2n-t)k' and decirnate this sc(1ucncc by the factor 

h to recover the sc<1uence ( u. ). A then generates the rnatrix U. Since the n1;-1trix U is I 

invertible, A inverts U and recovers the original message vector by postr11ultiplying (a0 , a 1, 

···, a 11 _ 1)U with u- 1
• 

Transrnission re<1uirernents can l)e further reduced if instead of selecting a different 

decirnation factor k and transrnitting along with the cir>hertext th,~ initial elcrnents of his 

sequence, 13 instead uses the sarne dccin1ation factor k as the its private key. A then refers 

to the public key list to find the sequence (sik). This assumption will l>c rnacJe throughout 

the remainder of this thesis. 

When n == 1, the cryptosystem reduces one based on discrete exponentiation, 

where the security is derived from the difficulty of given x and y in a field finding a such 

that XO' = y. 
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III.2 Multiple Sequence Cryptosystem 

As Niederreiter pointed'· out his system is susceptible to attack by knowledge of 

certain plain text-ci phertext • pairs. Notably two message vectors (1, 0, · · ·, 0), 

(0, 0, · · ·, 0, 1) and their ciphertext pairs are sufficient to completely determine the matrix 

U. While Niederreiter proposes to improve upon the situation by first encrypting the 

.message by using either the knapsack method, two forms of which will be discussed in 

appendix A, or by using error correcting codes, we propose a method that will improve on 

the minimum number of plaintext-ciphertext pairs that are necessary to determi11e the 

matrix U. This will be done by using more tl1an one sequence generated by a given 

characteristic polynomial to develop the encryption matrix U. It should be pointed out 
- ,, 

that after n linearly independent n1essages have been encrypted with tlie rnatrix U, they 

together with their corresponding ciphertexts will allow for tl1e co111plete determination of 

u. 

n . 
Let g( z) == Lg. z1, with gn == 1, be a publically known polyno1nial over IF q with . 1 

l=O 

g(O) f- 0. Select a basis /3 for the vector space S(g), and a sulJset /3 1 of /3, let X == jf]'f. 

For each element (sh) of j31 find its period Mh, tl1cn determine M == I.e. m.{l\,fh}. This 
h 

may either be done privately or pt1blically. To implfment as a public-key cryptosystem 

make the characteristic polynornial g(z) together with the set (3 1 public. As a private key 

system, keep knowledge of both private. Let (st)), h = 0, 1, ... , X-1, be the seqt1ences 

of {3 1• 

Each user A selects an integer k A such that 1 < k A < M and (k A, M) == 1, and 

publishes as their public key tl1e first 2n terms of tl1e sequences ( t~ h)) == ( s~kh) ) for each h. 
1 I A 

It is important that the decimation factors k A be kept private. 

For user A to send a message to user B, first find the minimal polynomial g1 ( z) 

that will generate B's public key; this is best done by using the Feng-Tzeng algorithm (8]. 
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Once the n1inimal polynomial is obtained, user A then generates the familJ' of sequences 

(h) (h) 
(u. ) == (t.k ). 

1 1 A 

If n = X then B constructs an n x n matrix V, where vi,j = (u; mod M), for i,j 

= 0, 1, ... , n -1. Length n, non-zero message vectors a are encrypted by computing a V. 

Since the decimated sequences are linearly independent the matrix V is non-singular, and 

so from B's public key A is able to reconstruct the sequences ( u?)) and thus the matrix V. 

After finding v- 1 A can readily recover a. 

If n < X, let p = rx1 and then construct x p x n matrices v p, where the p 1h 

block, p = 0, 1, ... , X-1 is given by vi,j = ( u it+ j(modM)); i = 0, 1, ... , p-1 a11d j 

0, 1, ... , n - 1. If X f n then for in V p , p == 0, 1, . . . , n - p X 1 et i == 0, l , ... , p - 2, t 11 at 

is let V p have one fewer row in those matrices. 

Length n, non-zero message vectors a are encrypted by the following process: first 

construct the matrix V = [ VO V 1 · · · V X-· JT. If V is non-singular then the 

encrypted n1essage is c = aV. If V is singular then let ap == (app, app+i, ... , app+p-i), 

again if Xfn then for p == 0, 1, ... , n-pX, let ap == (app, app+i, ... , app+p- 2 ), and 

calculate Cp == ap V p· These vectors are then sent as the encrypted message. If X == 1 

then the cryptosystem describes the original Niederreiter :F'SR cryptosystem, and the 

matrix V == VO is always non-singular. 

In order to decrypt, the recipient looks up the senders public key, generates tl1e 

minimal polynomial for the multiple sequence, and decimates by their own private factor 

to generate the multiple sequence ( u?)). From this the recipient then reconstructs the 

matrix V, if it is invertible, inverts it and recovers the message vector a. If V is not 

invertible, since the ·rank of the matrices V p is p, each matrix has a right inverse V pr, an~ 

ap = Cp Vpr, and a is completely recoverable. 
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The majot drawback to this generalization is that excpet for the case when 

X = 1 or X == n, the matrix V is not in general non-singular and so tl1ere is a increase in 

the data expaansion by a factor of X. 

III.2.1 EXAMPLE OF GFSR CRYPTOSYSTEM 

Let g(z) = z6 +z 5 +z 4 +z 2 +z+l, over IF 2 • Any sequence (s-) witl1 characteristic 
l 

polynomial g(z) then satisfies sn+ 6 == sn+ 5 +sn+ 4 +sn+ 2 +sn+l +sn. Choose as /3 1 the 

three sequences (sf)) generated by the following vectors (0, 0, 0, 0, 0, 1), (0, 1, 0, 1, 0, 1) 

and (1, 1, 0, 0, 1, 0). 'The sequences are: 

( sf O)) = 0 0 0 0 0 1 1 0 1 0 1 1 

( sf 1 
) ) = 0 1 0 1 0 1 0 1 0 1 0 1 

( sf 2 )) = 1 1 0 0 ro 1 0 0 1 1 1 

here M 0 == 12, M1 == 6, M2 == 12, M == 12, X == 3 and p == 2. 

Choosing k A == 5, A constructs the public key: 

(s;r)) = 0 110101100 0 0 

( s~~)) = 0 1 0 1 0 1 0 1 0 1 0 1 · · · 

( s;?) = 1 0 1 0 0 1 1 1 1 1 0 0 · · · 

After determining the characteristic polynomial for these three sequences, B decin1ates 

·them by their factor kB, here taken to be 7 to obtain: 

( 
(0)) s. =011010110000··· 
351 

( 
(1)) s. ==010101010101 ··· 
351 

( s ( 
2 ~ ) == 1 1 1 1 0 0 1 0 1 0 1 0 · · · 

351 

and constructs the three matrices: 

Vo= 
0 1 1 0 1 0 
0 1 0 1 1 0 ' Vi 

0 1 0 1 0 1 
1 0 1 0 1 0 'V2 = 
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It is noted that row 1 of V 2 together with the two rows of V 1 are linearly dependent, so 

the matrix V would be singular. Thus any message vector a would have to be broken up 

into three length two vectors. Take as a sample message a = (1, 0, 0, 1, 1, 1). This 

would be encrypted into: 

Using 

V-r -
2 -

(0, 1, 1, 0, 1, 0), (1, 0, 1, 0, 1, 0), (0, 1, 1, 1, 0, 0, 1). 

0 1 0 0 0 0 
0 0 0 0 0 1 

0 0 1 0 0 0 
000100' 

, the original message is recoverable. 

0 1 0 1 0 1 
101010' 

There are other 

choices for the right in verses. 

III.3 Crypatanalysis 

There are two ways to attack tl1e FSR cryptosystem. The first is by atte1npting to 

derive the decimation factors h and k, a11d in this way deriving the 111atrix U. The second 

is by attempting to directly determine wl1at the elements of the matrix U are. 

There are three steps in determining k from the know ledge of both g k ( z) and g( z). 

The first is to factor the characteristic polynomial g( z) of the origi11al sequence. This needs 

only to be done once, whe11 the the system is initialized, as it will remain constant. One 

also needs to factor the cl1aracteristic polynomial gk ( z) of the deci1nated sequence ( sik ). 

The second step is to pair off the roots of gk ( z) wi tl1 the roots of g( z). There is one correct 

matching for this, and it can take up to n! trials to obtain it. This step is not necessary if 

g(z) is irreducible. T·he fi11al step is inferring the factor k from the pairing of the roots, 

this is the same as solving discrete logarithms in various extensions off q· 

In both the original single sequence and the genralized multiple-sequence system 
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the above steps must be performed. Thus in both cases g(z) should be reducible. It is also 

desirable that as large a value for the period of the sequences be obtained as possible, in 

order to l1ave as many different decin1ation factors as possible. A large power of 2 for the 

period is ideal. In the multiple sequence case tl1e complexity is not adjusted, witl1 the 

exception that the period will increase as it is the least com1non multiple of the periods of 

the basis, as there is only one characteristic polynomial for all the sequences. 

To determine the matrix V used for the encryption of the n1essages directly, as far 

as the multiple sequence system is concerned, we will present a lower bound on the nu111bcr 

of linearly inclependent n1cssa.ge vectors that will lJc nccessa.ry to deter111ine U, it is to be 

noted that t]1e upper bound on the nun1ber of 1nessagcs needed to dctern1ine U is still n, 

that is any set of 11 linearly independent messa.ges along \vith their rcs1)cctive cipl1ertcxts is 

sufficient to derive the entries for U. 

In u there are (} == [(p-2)X+n][n-pX]+[(p-l)X+n][X-(n-pX)] 

== X 2 [2p-1] unknowns. Since eacl1 plaintext-ciphertext pair generates 11 equations in the 

0 unknowns, at least ~, linearly independe11t plain texts and tl1eir corres1)011cling ciphertexts 

are needed in order to completely detern1ine the e11tries in the 1r1atrix V. To see that in 

general ~ is only necessary but not sufficient consider the 3 x 3 case witl1 one sequence to 

determine V. The two vectors (1, 0, 0) and (1, 1, 0) while linearly independent cannot 

give the entry for u 4 whereas (1, 0, 1) and (1, 1, 0) will. In the case when X == n, (} == n 2 

and so the optimal security is obtained as n li11early independent n1essages and tl1eir 

ciphertexts are both necessary and sufficient. 

Thus it can be seen that it is possible that in the original system two linearly 

independent vectors will be able to break the system, but as the number of sequences used 

to to describe the system increases the minimum number of known plaintext-ciphertext 

pairs necessary to break the system also increases. 
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Chapter IV - McEliece-Type Cryptosystems 

In this chapter encryption using algebraic codes is presented. Discussio11 in this 

chapter will be restricted to those that are related to the scheme originally proposed by 

McEliece (18]. In addition to McEliece's system the variant of that system proposed by 

Jordan (11] is discussed. 

Attention is then turned to the private key scheme proposed by Rao-Nam [27]. 

After a detalied ananlysis of these systems is presented tl1e variations of this schen1e is 

presented, as well as tl1e resulting variations that have arisen fro111 these analysis. ' 

Following these variations a new characterizatio11 formula tl1at can l)e used to describe all 

codes in tl1is class (both the McEliece and its variants as well as Rao-N a111 and its 

variants) will be presented. Resulting from this generalization another variant will be 

discussed. 

This is followed witl1 a discussion of the applicability of these codes to joint 

encryption and error control. An observation on the insuitability of tl1ese codes to tl1e 

authentication problem will be presented. 

IV.1 McEliece Cryptosystem 

In 1978 McEliece (18] proposed using algebraic error-correcting codes, specifically 

Goppa codes, to perform public key encryption. The user ge11erates a t-error-correcting 

Goppa code of length n == 2m, and dimension k > n-tm, then produces the associated 

kxn generator matrix G. Also used as part of the private key are two matrices, a kxk 

non-singular matrix S and an n x n permutation matrix P. The user then constructs and 

publishes their public encryption key G 1 = SG P. 

A message is sent by breaking it into k-bit blocks. For each block m calculate and 
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send the n-bit vector 

c==mG1+z 

where z is a randomly chosen vector of length n with weight no more than t, and G1 is the 

public key for the receiver. 

To recover m calculate cP-1 == mSG +zP- 1• Since P is a. permutation matrix w(z) 

== w(zP- 1
), so by decoding for the designed Goppa code obtain mS then postmultiJ)ly by 

s-1 to recover the original message m. 

IV.1.1 Cryptanalysis of McEliece 

It re1nains to analyze the security of the system as presented. An obvious attack 

would be to rando111ly cl1oose k of the 11 cooridinates of c a.nd denote this k-bit vector by 

ck. Let Gk and zk dc11ote the correspo11ding k colun1ns from G 1 and z respectively. \\Te 

If the k compone11ts of zk are zero then ck x(G0-l == m and one can recover the messa.ge 

witl1out decoding. The work factor for this attack is calculated as follows. If the error 

vector has t non-zero components ( the n1axi1nun1 possible) the probability of choosing k 

non-zero cooridinates is p = (n kt)!(k), and on average 1/p choices must be made before 

succesfully picking k zero cooridinates. The k x k subn1a.trix Gk must be i11verted for ea.ch 

choice of k cooridinates, assuming matrix inversio11 req11ires between k2 a11d k3 steps the 

expected total work factor is as follows: 

McEliece suggested using codes with n == 1024 arid k == 50, but Adams and Meijer [1] 
(. 

have shown that for n == 1024, t = 37 gives the highest work factor, approximately 284 · 1 

( as opposed· to 280
• 

7 for t = 50). They also point out that with the decreased value of t 

the value for k increases from 524 to 654 thus reducing the data expansion. 



IV.1.2 Jordan Variation 

Jordan [11] has proposed a variant of this system. Construct a Goppa polynomial 

with no linear or repeated factors over the base field, a bijection ( not necessarily I inea.r) S 

on the set of data vectors, and a permutation matrix P, wl1icl1 are tl1en distributed to the 

intended receiver. The message m is encrypted by c == S(m)GP+z; w(z) < t, wl1ere t is 

the error correcting capability of the Goppa code. 

The recipient wl10 knows S, G, and P then recovers m by calculati11g cP, decodi11g 

for G then C applying s-1 to the result. 

By using as a private-key system it is possible to reduce the required weight of the 

error vectors, Jordan suggests as low as t=lO, and thus further reduce the data expansion 

of the system. In ana.lyzing the system, consider the case where S is linear. The proposed 

2 2 
work factor to fi11d the k 2 elements of SGP is k6 /(1-t/n )k , where (1-t/n)k is the 

probability of finding k2 equations with no errors in them. If one first attempts to guess 

the Goppa polyno111ial, a11d use that to elimi11ate z tl1en the work factor involved is at lea.st 

k6 (2mt /t), where (2n1t /t) arises as tl1e number of irreducible polynomials with clegree t 

over IF m· I11 both cases the fa.ct.or k6 arises as tl1e estimated work factor in solving k 2 
2 

equations in k 2 unk11owns.. For n == 28 , t == 5, k == 216 the work factor is 10 25 • 

IV.2 Rao-Nam Cryptosystem 

:v 

In 1986 a11other variant on th£ ~fcEli~~e system ,vas proposed by Ra.o and Na.in 

[27]. They proposed using low distance linear (n, k) codes with generator ma.trix G a11d 

-···. error vectors z that have been specifically chosen with Hamming weight a.pproxi1nately ¥· 
( 

Again let S be an k x k non-singular matrix and P be an n x n permutation matrix. \\Te let 

G1 == SG and encrypt a message m by computing c == (mG 1 +z)P. 
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chosen by one of two methods. 

Metl1od 1: z is an ATE, a vector of length n with t( < ~) adjacent ones, and the 

remaining n-t cooridinates zero. It is i1nportant that the A TE chosen is 11ot a co<leword. 

For a non-cyclic code there are n-t+ 1 A TE's, for a cyclic code there are n A TE's. 

Method 2: Use a predetermined set of vectors such as the syndrome-error table. 

Choose one vector for each possible error pattern with weight as close to ~ as possible. 

Each error pattern will have a disti11ct syndron1e and there are 2n-k possible error 

patterns. 

Regardless of the method chosen the keys S, G and the choices for z in method 2 

are kept secret, as this system is implemented as a private-key cryptosysten1. 

111 order to decrypt a n1essage c tl1e receiver must first calculate cP-1 == mG 1 +z 

then by using the parity check n1atrix for the code calculate post mulitiply by IIT to 

obtain the sy11dron1e zHT and identify tl1e error pattern. Recover mS lJy correcting for 

the appropriate error pattern, and post1nultiply by s-1 to olJtain the original 1nessage m . 

Rao and Nam show that for method l there are at least (n - lrJ- I)! possible 

permutation 1natrices P tha.t transform the ATE's into non-ATE's where 2 < t < ~, where 

n is the length of tl1e ATE, and t is the nu111ber of adjacent ones. Thus for t==l~J there are 

k-1 2 
at least (n-3)! cl1oices for P. Over GF(2) tl1ere are N8 == IJ (2k-2i) > 2k -k possible 

i=O 

non-singular 111atrices S. Due to tl1e large nun1ber of matrices involved an attack by trying 

all possible n1atrices S, G, and P is not likely to work. 

IV.2.1 Cryptanalysis of Rao-Nam System 

The attack prese11ted for the McEliece system will not be benificial since the va.lue 

for t is approximately ~. Instead the following attack is proposed. 
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Encipher a message m twice, tha~ is, let c; = mG 11+ziP and let ck = mG 11+zkP 

then we have ci-ck = (z;-zk)P. Repeat for all pairs of z's, of which there are (~) 

where N = ~ for method 1, and N > n for method 2. If we denote the ith row of G'' by 

[g 11
] . , then we see that [g 11] = c1 -c2 -( z1 - z2) P. This must l)e done for each row i, then 

i 

the solution must be verified for correctness. Since the rows cannot be verifierl 

independently all rows must be calculated first, involving a work factor of W > ~(~2
)k. 

Struik and van Ti Iburg [29] proposed an attack on method 2 of encipherment.. An 

error pattern z is selected from 2; = { z(j)} the set of N distinct error patterns. Denote by 

7,P the set of these error patterns postmultiplied by the permutation matrix P. Ll't. 7, ~ 
(i,j) (i) (j)} p ~ == {z == z -z , and 2'; d as the elements of 2'; d permuted l)y P. Denote l)y z a 

d d l _(i,j) A(i) (j) F h N 'hi guesse error pattern, an et z == z · -z . ~ or a.ny meRsage m t ere are po8s1 c, 

encipherments, c(j) == mSG + z(j)P. Denote the set of posssible encipher1nents hy b. l.1et 

ui be a unit vector and let mi == m + ui. Denote the possible P-ncipherrncnts of rni by bi. 

'I'o attack the Rao-Nam scheme first choose an arbitrary message rr1 and obtain 

the N possible cryptograms. With these cryptograms construct. the direct_ed graph I, == ( b, 

~~ ). The vertices being the c (;) and the edges the z ( i,j), being derived from the rad I.hat 

( i ) - C i ) - ( S G + ( i ) J> ) - ( Sc~ + ( i ) I) ) - < i ' i ) J) C C - m, ~ Z TJl, ~ Z - Z . 

'fhen construct the automorphism group Aut(f), the permutations on g which leave the 

lal)els for the edges invariant. 

Now, for each 1 < i < k repeat for mi = m + ui, enciphering for all of the N 

possible cryptograms, and constructing the graph r i = ( ~;, Z ~ ). Select an arbitrary <I> E 

Aut(f). This mapping induces a mapping on ri which will syncronize the elements of gi 

with those of ~- From this syncronization calculate c~ 1
) -c( 1

) == ei + z(l,l )P, where ei is 

the it h row of the matrix SG. The probablity of this being the correct row is f Au t( r )J- 1 

. h . 1 h. ""' h h _(t,l) 0 s· . I f since t ere is exact y one automorp ism 'j! sue t at z = . 1nce t 1e correctness o 
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each row cannot be i11dependently verified from tl1e other rows the cryptanalyst will have 

to construct on average IAut(f)lk encipher matrices before correctly approximating SG. 

After approximating SG the analyst must also fi11d a matrix D = HP and tl1en construct 

the syndrome error table. If the solution is not correct then a new <I> is chosen and new 

matrix D is generated. 

Struik and van Tilburg have also shown that if method 1 is used- then 

!Aut( r)I == 1, namely <I>(z) == z, for any non-cyclic code. For any cyclic code !Aut(f)I == 

2, the mappings being <I>(z) == z, and <I>(z) = z + 1. Thus method 1 of cl1oosing the error 

vector z is not appropriate for encryption as it is insecure against a cl1osen-plaintext 

attack. 

Rao I1as sir1ce observed (26] tl1at while the system is insecure a.gainst chosen

plaintext attack for practical codes the r1un1ber of c11cipherments necessary to generate the 

set g is large. For exa111ple he proposes tl1e (72, 64, 4) Han1ming Code encrypt.eel with 

method 2; here tl1ere are 28 possible error vectors, sir1ce the work factor project.eel to obta.in 

all distinct ci is N*ln(N) and is to be repeated fork unit vectors. TI1us O(kN*ln(N)) 

plaintext-cipl1ertext pairs are needed, and for realistic codes the attack time is not fea.sible. 

While the scheme is succeptible to chosen-plaintext attacks it is still relatively secure due 

to the time required to break the system. Encryption under method 1, though is still 

easily broken and tl1us should not be co11sisdered further. 

IV.2.2 Variations of the Rao-Nam Scheme 

Rising from the Struik attack, adaptations have been made in the Rao-Nam 

scheme. Struik and van Till burg [29] proposed to rnodify the scheme by replacing the k x k 

non-singular matrix S by a non-linear injective function operating on both the message m 

and on the error vector z, namely having c = f( m,z )GP + z, where f is chosen so that V z, 
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.r-· 
Vm r 1(f(m, z), z) = m. The decoding algorithm is the same as previously with the 

exception that instead of taking s-1 one must now take 1 1. This scheme will defeat the 

attack of Struik if one chooses a function f that will not allow the unit vectors to be able to 

estimate the rows of the matrix GP. 

Denny and Rao [6] have also propsed an adaptation of the Rao-Nam--scheme by 

using non-linear codes instead of a linear code as the basic block of the system. Let m be 

an k-bit message vector, and S an kxk non-singular matrix, and let m 1 == mS. The 

encryption, denoted by G(m), using Preperata's class of non-linear codes is done as follows. 

Use the first 2m-l bits of m 1 to be encoded using B. The next bit is used for the bi11ary 

index i, followed by 2n1- 1 - 2m bits encoded under C. The la.st m -1 bi ts "'Till give the 

polynomial p(x), by p(x) == 0 if all the bits are one, and p(x) == xv where v is the deci1nal 

equivalent of tl1e bits if tl1e digits are not all ones. Compute w as described in chapter two 

Cl1oose a randon1 error vector z of the form z == v + y where v is an error in the 

linear code and w(y) < 2, and compute m 3 (m 2 +z)P for P a permutation rnatrix. 

To decrypt first fi11d m 3 PT == m 2 +z and detern1ine tl1e syndrome described in 

chapter two. After finding the error positions use a look-up table to discover z, a.nd add to 

reveal m 2 • Recalculate u O to give p(x). Adding p(x) to tl1e first 2m-l bits yields the 

encoded vector in B. Tl1is value and tl1e knowledge of i allows for tl1e recovery of the 

encoded vector in C. The decoding of these vectors will give mS and the 1nessage vector m 

The work factors involved in this scl1eme are as follows. For encryption, two 

matrix multiplications are needed, of orders k and n. Also needed are the encoding of two 

BCH codes of order 2m-1, as well as assorted vector additions. To decrypt aga.in two 

matrix multiplications are needed, syndromes must be · calculated as well as the 
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corresponding error positions for the non-linear code, and u O must be calculated a second 

time. Finally two 2m-l BCH codes must be decoded. Thus the encryption lJy this 

method is more complicated than the encryptio11 by any of the previously mentioned 

methods; however this encryption method stops the Struik attack at the poir1t of using unit 

vectors to find the rows of SNP, where here N stands for the encryption using a suit.able 

non-linear code. The encryptions from the unit vectors will not • give proper 

approxin1ations to the matrix elements due to the non-linearity of the code. 

IV.3 Characterization of McEliece Type Cryptosystems 

It has been observed previously that the Rao-Nam scl1eme is .a derivative of the 

McEliece scl1e1ne. What will now be presented is a cl1aracterization equation for 

encryption that can be used to· describe botl1 general types of systems as well as their 

variants depending upon the context in wl1ich the code is implemented. 

Let G be a generator matrix for a t-error correcting Jin ear ( n, k) code e. Let S 1 l)e 

an kxk non-singular n1atrix, P 1, and P 2 be nxn perm11tation matrices, and S2 be a.n nxn 

non-singular 1natrix. To encrypt an k-bit block m calculate 

The multiplication of tl1e error-vector z by P 2S2 will alter the weight of z thus careful 

attention must be paid to both S2 and the error-vectors z that are used. 

If the syste1n is to be i1npleme11ted as a public-key cryptosystem then the p11l>1ic 

key becomes (S 1 GP, P 2S2], where P == P 1 P 2 which is also a permutation ma.trix. 

However, by making P 2 S2 public any cryptoanalyst will also know (P 2S2)-1 and thus can 

calculate 

When G describes a Goppa code the system reduces to the McEliece public-key 

36 



cryptosystem. 

By changing S1 to be an auto1norphisn1 of length k vectors and adding the 

requirement that G describe a Goppa code with no repeated factors the encryption process 

becomes that of the Jordan variant. 

To implement as the Rao-Nam private-key cryptosystem, take P 1 == P 2 == 111 , S2 

to be a permutation matrix, and select z from tl1e syndrome table. By additionally 

making S1 a non-linear operator we get the Struik and van Tilburg variant. By having G 

describe the encryption process for a non-linear code then we are able to describe the Rao-

Denny variant. 

It remains to discuss the approximate key size for this type of encryption system. 

Using the (72, 64, 4) Hamming Code as n1entioned by Ra.o [26] we need one 64x64 matrix, 

one 72 x 72 n1atrix and one 64 x 72 matrix for a total of approximately 2 4 · 6 I( bits. It 

should be noted that for the variants mentioned above the key size will increase due to the 

added complexity needed to describe tl1e non-linear operations, as well as tl1ew non-linear 

codes. Tl1ere is still a 1narked decrease in the key-size for tl1e private-key varia.tions as 

oppposed to tl1e original scheme described by McEliece. 

IV.4 JOINT ENCRYPTION ERROR CORRECTION 

As was previously mentioned algebraic codes lend themselves to the notion of joint 

encryption and error correction (JOEEC). If we are communica.ting over a noisy channel, 

we want to also provide the ability to correct errors, and JOEEC is a fast method of doing 

this as well as supplying some security. 

The idea of doing this with algebraic codes originates with R,a.o [25]. Ile suggests 

that for public key encryption, using McElice's scheme that using Reed-Solomon codes over 

IF b with distance d > 6 be used instead of Goppa codes, and instead of introducing a 
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random error vector z introduce an error vector tl1at is a single or double byte error, this 

will allow detection/ correction of most errors due to noise. 

If imple1nenting as a private key system, codes simpler than the Reed-Solomon 

codes needed for tl1e public key situation may be used. Rao suggests tl1at even Ha.mming 

codes with distance three or four can be used. 

In eitl1er case the presence of noise on the communication cl1annel may help 

provide additional security, proivided the error vector originally used, wl1en ta.ken i11 

conjunction with tl1e errors that will be provided by the channel do not overload the error 

correcting capability of the code in question. On a particularly noisy cl1annel it may l)e 

wise to use the scheme origi11ally describe by McEliece, and instead of adding error vectors 

of weight t, add error vectors of weigl1t ;. 

Recently Park and Tzeng [22] have developed a conctonated scl1en1e that does not 

necessitate the addition of noise to ,provide security, tl1us allowing the full error-correcting 
I 

I 
' ·, 

capabilities of tl1e codes used for error correctio11 purposes. A scheme such as tl1is would be 

highly desirable if JOEEC capability is 11eeded. 

IVa5 AUTHENTICATION 

In tl1e above mentioned encryption schemes the encryption process is an injective 

function E: IF:-+ e C IF~, and in most cases e i= IF~. In order to implement 

authentication it must be that for any x E IF~, E(D(x)) == x. But, unless for every vector 

x, w(x-c) < t for some codeword c, then tl1e decryption algorithm will produce an error 

message and decryption process will not supply the message sent. Even if we do have the 

above desired property tl1en when the encryption algorithm is applied, if z i= x-c, then 

the resulting encryption will produce a result different from x. Thus for algebraic coded 

encryption schemes of this type authentication is not possible. 
:' "" 
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CHAPTER V - NIEDERREITER KNAPSACK SYSTEM 

The general knapsack problem may be described as follows: let S be a set of 

distinct positive integers, given a sum s, fi11d a subset TCS such that Lt = s. It may be 
tcT 

that no such subset exists, or there may be more than one such solution. As this problem 

is NP-complete, there have been many atte1npts to develop cryptosyste1ns based on the 

knapsack problem, for example the systems of Merkle-Hellman [19], and Chor-Rivest [5], 

most of which have si11ce been broken. In this cl1apter the knapsa.ck syste111 proposed by 

Niederreiter (20] will be discussed. Section one is a description of the knapsack 

cryptosystem, section two is the cryptanalysis of tl1e same system. 

V.1 Niederreiter Knapsack System 

The following k11apsack encryptio11 111etl1od was proposed by Niederreiter [20] in 

1986. Let C be a t-error correcting li11ear (11, k) ~ode over IF q, witl1 parity-cl1eck matrix H, 

an (n-k)xn matrix over fq with rank 11-k. Note that C consists exactly of those length 

n vectors c over r q sucl1 that He T == 0. Co11sider the following 

Lemma. If HuT == HvT for some u, v E fq a.nd w(u), w(v) < t then u == v. 

Let X == {mf w(m) < t}, and f: X C fq-+IFq-k be given by f(m) == HmT then by the 

above lemma, f is an injection from X into lFq-k. 
' 

A private-key cryptosystem can be obtained from this mapping by using the 

parity-check matrices as tl1e keys, and vectors of weight no more than t as messages. To 

encipher m let c == Hm T. To recover tl1e message use tl1e syndrome c to decode according 

to the code C. Note that m is an error vector for the code word 0. 

To use as a public-key cryptosystem we need to scramble H. Following the 

example presented by the McEliece type cryptosystems let S be an (n-k)x(n-k) non-
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singular matrix, and P be an nxn permuted diagonal matrix, both over IF q· Let 

K == SHP be the public-key, keeping S, H, and P private. Encrypting a n1essage m E IF~ 

with w(m) < t is done by computing c == KmT. To decrypt the received vector first 

Since w(mPT) < t obtain mPT from the 

sysndrome as witl1 the private-key cryptosystem. From mPT recover m by 

postmultiplying it by P. 

For the case where q == 2 this is a variant of the classical knapsack system, since 

the ciphertext is the sun1 of at most t colu1n11s of I( and deter111ini11g m is tl1e problem of 

decidi11g whicl1 c0Iun1ns they were. For tl1e general q, the ciphertext is a weighted sum of 

at most t colun1ns from I( and decrypting is equivalent to detern1ining wl1ich columns were 

chosen and witl1 ,vl1at weight. 

To detern1ine the best types of codes to imple1nent tl1is system under it is desirable 

t to have a large error-correcting capability since we have only i~ (1J) possible message 

vectors. As seco11d property that is desirable is to have a code C that can be efficiently 

decoded so that decryption will run faster. It is i111portant not to have 11-k be to s1nall 

for if so the cipl1ertexts will be of short lengtl1, and tl1us the system will be easier to break. 

Niederrieter gives exa1n1)les of two codes, tl1e first a binary concatenated code (104, 24) 

code capable of correcti11g t == 15 errors, with a public keysize of 8320 bits. Tl1e second is 

an (30, 12, 19) Reed-S0lo1non code over IF 31 capable of correcting up to t == 9 errors, with 

a keysize of 2700 bits. 

V.2 Cryptanalysis 

To be able to defeat this system there are two possible attacks. In the first given 
' 

by Brickell and Odlyzko, given ciphertext c pick a submatrix K 1 consisting of n-k 

columns from K. This matrix is non-singular since H was of rank n - k and both S and P 
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were. Now compute c1 == (K')- 1c. If the t columns added to form c are in K1 then c1 is 

the encrypted message, and Kc1 == c. To find the message m: when a column is not 

included in K' tl1e corresponding cooridinate is zero. If a column is included in K 1 then the 

corresponding cooridinate is the value of the same cooridinate from c1• The probability of 

this occuring is p = ( n t k) / ( i). We will have to repeat this procedure, and calculate the 

inverse of an (n-k) x (n-k) matrix on average 1/ p times before success. For the first code 

suggested 1/ p == 72, and for the second 1/ p == 295. 

For the second attack we will use the previous result that the matrix H invokes an 

injective mapping 011 vectors of weight t or less, thus there is a. left inverse for this 

mapping, tl1at is tl1ere exists an n X ( n -k) 1natrix H-' sucl1 tl1at for all vectors ID E IFr 
. with w(m) < t II-1IImT == mT. Since we know tl1at the matrix II has a left inverse and 

that S and P are 11on-singular there a left inverse for the public-key K, K- 1 so tha.t if l{m T 

== c then mT == l(- 1c, if w(m) < t. In order to deteremine K- 1 we need to solve ui == 

I(-1ki, where ui is tl1e unit vector of lengtl1 11-k with tl1e ~ne in the i th position, ancl ki is 

the i th colu111n of tl1e public matrix I(. Each equation will give n equations in the n( n -k) 

u11knowns of I(-/ tl1us solving n-k of these sets of equations, for any 1 < i < n will give 

11(n-k) equatio11s i11 n(11-k) unknowns, a11d tl1us we will be able to solve for K- 1• 
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CHAPTER VI - SUMMARY 

Three types of cryptosystems that require concepts taken from algebraic coding for 

their implementation have been discussed. 

The first making use of feedback shift registers was originally suggested by 

Niederreiter using a single FSR sequence. For tl1is system a generalization has been 

proposed maki11g use of multiple seque11ces generated by a single register. When only one 

sequence is used the generalization describes the origi11al system. 

The second type are variations of tl1e systc1n originally suggested by l\1cEliece for 

public key encryption, for which a private key variant was recommended by Ra.o-Na,m. 

These systems are sl1own to be variants of the origi11aJ. 

The third type is a knapsack systen1 proposed lJy Niederreiter. This systern has 

been shown to be i11secure and so should 11ot be considered for implementation. 

The strengths of the McEliec type cryptosystems are their ability to be used in 

envirome11ts wl1ere JOEEC is desirable. Their major drawback l1owever is the large key

size, 011 the order of thousar1ds of bits per user, 11eeded to implement these systems. 

The GFSR cryptosystems alone are unable to support JOEEC. One major 

drawback to this class of cryptosystems is the need for cl1anging the public key, or private 

decimation factors after a relatively small numb11er of messages ha.ve been sent. This is 

due to the linear nature of the encryption process and its vulnerability to linea.r algebraic 
c, 

type atttacks. A second major drawback is that not all matrices generated are non

singular and thus require a significant data expansion factor. 
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