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ABSTRACT

Most modern corﬁmunication systems require that messages be sent securely.
While there exist many cryptographic methods with which to provide this security,
implementation making use of error-control codes lends itself to the possibility of also
supplying reliability to the system. There are two prevalent methods for using error-
control codes in the design of cryptographic systems. The first, based on a scheme
proposed by McEliece and adapted by Rao-Nam, relies on the use of a scrambled code
generator matrix to provide encryption, while the intractability of decoding arbitrary codes
provides the security. The second, proposed by Niederreiter, relies on the decimation of
feedback shift register sequences to generate an encryption matrix, whereas the difficulty of
determining these factors provides the security. A characterization of the cryptosystems
based on the McEliece system is proposed. A generalization of the Niederreiter Feedback
Shift Register Cryptosystem that makes use of multiple sequences is also proposed. The
suitability of both general types of systems towards solving the authentication problem as

well as their application to joint encryption and error correction is discussed.




Chapter | - Introduction

Since the introduction of modern communications in the nineteenth century the
study of cryptography, the science of protecting communications, has grown. With society
today having an increased dependence upon electronic commincations such as radio,

facsimile and high-speed data communications, communication security has become even

more important.

There are two primary methods of providing security. The first is to have
impenetrable lines between every pair of users in the system. However; this is impractical
from both a cost and implementation viewpoint. The second more practical method is to
alter in some way the appearance of any message so that its content is concealed from all

but the intended recipient. It is this method that will be the focus of discussion. Such

systems are referred to as cipher or cryptosystems.

While there are many possible methods for implementing the second option,
cryptographic systems that rely on ideas from error-control coding for their
implementation are of value for they also suggest the ability to provide reliability for the

communication system as well.

This type of cryptosystem was first proposed by McEliece [18] in 1978, and used
the intractability of decoding general error-correcting codes as the basis for its security. In
1983 Jordan [11] proposed a variant of this system. Both of these systems are public-key
cryptosystems, a form of cryptosystem proposed by Diffie and Hellman [7] in 1976. Rao
and Nam [27] offered a private-key or traditional cryptosystem variation of the NicEliece
system 1n 1986. Their system has since has modifications proposed by Struik and van
Tilburg [29] in 1987, as well as Denny and Rao [6] in 1988, in efforts to improve upon the

security of the system.




A second type of cryptosystem based on the ideas of algebraic codes was proposed
by Niederreiter [21] in 1985. His system involves making use of feedback shift register
(FSR) sequences and decimating them by privately known factors in order to provide the

system security. This system is a generalization of the discrete logarithm cryptosystem.

A third type of system, prposed by Niederreiter [20] in 1986, is based on the
knapsack problem. Again this system relies on the difficulty in decoding a general

algebraic code.

While an attempt has been made to be exhaustive, recent developments such as

the work by Park and Tzeng [22], using concatanated codes on an attempt to solve the

JOEEC problem, are not included.
The remainder of this thesis is organized as follows.

Chapter II is a review of the background material needed in order to describe the
cryptosystems based on error-control coding. Section one is devoted to error-control
coding. Included are reviews of the basics of linear and cyclic codes as well as the
encryption and decryption of BCH, Goppa and non-linear codes. Section two is a review of
the basics of cryptology. Included are discussions of both private and public key
cryptosystems, as well as the rudiments of cryptanalysis specifically what is meant by a
system being insecure. Mention is also made of the authentication problem and joint
encryption and error-correcting. Chapter two concludes with section three, where feedback
shift registers are described. Included in this section are the notion of the characteristic
polynomial, families of sequences, and the synthesis of a feedback shift register to generate

a multiple sequence system.

Chapter III is an analysis of the feedback shift register cryptosystem as originally
suggested by Niederreiter. Section one is a description of his system. Section two is a

description of our proposed generalization relying on multiple sequences, for which an

3




example is given. Section three is a cryptanalysis of the generalized system. The chapter

concludes with a mention of the systems applicability to the authentication problem.

Chapter IV is devoted to the McEliece public key cryptosystem including the
variation by Jordan. Mention is also made of its private key counterpart suggested by
Rao-Nam and its variants by Struik-Van Tilburg and Rao-Denny. A characterization of
these systems is made so that all possible variants, both public and private key can be
discussed with one encryption algorithm. Finally the suitability of this family of
cryptosystems to the joint encryption error-correction problem and their insuitability to

solving the authentication problem is mentioned.

Chapter V deals with Niederreiter’s knapsack cryptosystem. Following a brief
introduction to the knapsack problem, section one is a presentation of the cryptosystem.

Section two presents two attacks on the system, showing its vulnerability.

Chapter VI is a summary of results. A comparison of the three basic types of

cryptosystems, FSR, McEliece, and Niederreiter knapsack is also offered.

For further information regarding algebraic coding the reader is referred to sources
14, 15, 17, 30 and 31. For further information regarding cryptology the reader is referred
to sources 2, 4, and 23. For information regarding feedback register sequences the reader is

referred to source 10. Finally for general background sources 12 and 13 are recommended.




Chapter Il - Preliminaries

In this chapter sofne preliminary concepts that are needed to discuss
communication security using algebraic codes are presented. We begin with a review of
error-correcting codes, including Goppa codes, BCH and Reed-Solomon codes as well as
non-linear codes. Both encoding and decoding for these classes of codes will be described.
Goppa codes are essential as they are used in the McEliece system, while non-linear codes
are used in a variation of the Rao-Nam scheme. BCH and Reed-Solomon codes are used in

applications to the joint encryption error-correction (JOECC) problem.

Following a discussion of coding theory the basic concepts of cryptology are
described. Included in this is the difference between public and private-key encryption.

Also included in this area is the notion of authentication. The idea of JOEEC is also

presented.

This chapter concludes with a presentation of feedback shift register sequences,
which are used by Niederreiter to perform public key encryption. Various important

properties of these sequences will be discussed.

II.1 Fundamentals of Error-Correcting Codes

In communication systems (see figure 2.1) it is desirable to have the ability to
correct any errors introduced due to noise in the channel. It is for this reason that error-

correcting codes were developed.




r=x-+e

u . X .
source J—message—¥ encoding [—codeword—{ channel |—received—{ decoder |—
| vector
u . !
— estimated—{sink error
message vector

Figure 2.1 Communication System

Let u and v be elements of lF(rll. Define the Hamming Weight of x, w(u), to be the
number of non-zero entries of u. The Hamming Distance between u and v, denoted d(u,v),
is defined to be the number of cooridinates in u and v that are different, that is d(u,

v)=[{i|u#v,, 1<i< n}|. We then have w(u)=d(u, 0).

Over a finite field Fq, a linear (n, k, d) code C is a k-dimensional subspace of Fg
whose elements have minimum distance d. The generator matrix, G, of the code is an kxn
matrix whose rowspace is C. If G is of the form (P I, ) then it is said to be in standard

form, and from G we obtain the parity check matrix H=(1 L —PT). For any u € C,

uHT = 0 and for u € Fg, ulHT is called the syndrome of u. A code capable of correcting

up to t errors is known as a t-error-correcting code; note that dmin > 2t+1.

For a code C define the minimum distance d . =min{d(y, v)lu, v € C}, and
minimum weight w_ . =min{w(u) |u € C,u # 0}. If the code is linear, since d(u, v) =
d(u—v, 0) = w(u—v) and u, y € C implies u—v € C the minimum distance is equal to

the minimum weight of C.

A code C is cyclic if (cg, ¢y, ..., cy_y) € C implies (c;, ¢y, ..., cu_1, €o) € C. For
cyclic codes, a codeword can’be viewed as a polynomial, namely (cg, ¢, ..., cp_;) can be
viewed as ¢(x) = ¢y + ¢;x + -+ + ¢y_;x"'. Then a linear code C is cyclic if and only if
C is an ideal in Fq[x]/(x"—1). Since Fq[x]/(xn—l) is a principal ideal ring, it has a
generator polynomial, this polynomial is the generator polynomial of the code and is a
divisor of xM-—1. If the «code has as its generator polynomial

gx) =g + gx + - + gn_kxn—k, then it has as its parity check polynomial
6




h(x) = x —1_ hy + hyx + -+ + hkxk. The generator and check matrices are

(%)

determined as below.

8 8 - g,y 0 R
0 g0 g1 gn—k 0 0
G =
0 0
0 0 8o 81 &hn_k \>
- -
0 0 0 hk h; h,
H =
hk hy hy, 0 0 0
L —

IT.1.1 BCH and Reed-Solomon Codes

An important class of cyclic codes are the BCH codes. To generate these codes let

Fq be an arbitrary field, let g(z) be a generator polynomial that is the least common
multiple of the minimal polynomials of o’ ab+1, e ab+6“2, for an arbitrary b and o a
primitive n‘” root of unity. This gives a BCH code of designed distance §, the minimum

distance of these of codes is at least 6. If b = 1 the narrow-sense BCH codes are obtained

and when n = q™ —1 the code is said to be primitive.

A subclass of the BCH codes are the Reed-Solomon codes. These codes are

primitive BCH codes of length n = q—1 over F q- The generator for this code is
d—1 .
g(z) = [] (z— '), with « primitive in Fq- Thisis an (n, n—d+1, d) linear code.

1=1

The parity check matrix for these codes is given by the following

/




1 O’b azb a'(n—l)b

1 ab+1 a2(b+1) a(n-—l)(b+1)
H = N

. az}'\+5-2 B L(n=D)(b+5-2)

To decode a (n, k, d) BCH code with generator g(X) and design distance d, let
L = (Fgy Ty ooy Tp_q); Iy € Fq be the received vector for a sent message vector f. Then e
= r—f is the error pattern, then r(X) = f(X) + e(X), where r(X), ¢(X) and f(X) are the
polynomials associated with r, e and [ respectively. Associate with e(X) the symmetric
functions Sy, Sy, ... where S; = e(a'). Since g(X) divides f(X) it then follows that S, =
r(ai), 1 = b, b+1, ..., b+d—2, and the set of the d—1 consecutive S, can be formed by
the receiver. The decoding problem is given the set of S5;, find the error polynomial e(X).
Let e have Hamming weight t, and the j** non-zero component of e be e, X, = a* ¢
qum the locator of the error and Y; = e; € Fq the error magnitude. Thus S, = j};Yij-,
for ¢ :ul, 2, 3, ... . The essential problem is the determination of the error locations. To
do this determine the connection polynomial C(D) for the feedback shift register of least
length that will generate the sequence Sty Sp1s **» Spyg_gs (see §3.1 for the Berlekamp-
Massey algorithm to accomplish this task). The t roots of C(D) are the recipricals of the

error locators, thus decoding is possible if 2t < d—1. .




d

II1.1.2 Goppa Codes

If G(z) is a polynomial of degree t over [qu and L = {yg, 71y ...y Yn_1} 15 a

subset of qum with G(y;) # 0 for : = 0, 1, ..., n—1, then the Goppa code, I'(L, G), with

Goppa polynomial G(z) is the set of codewords ¢ = (cg, ¢y, ..., cy_;) over Fq satisfying

n-1 ..
> Z_C_‘q,, = 0(mod(G(z)). This class of codes is linear, have dimension k > n—mt and
1=0 !

minimum distance at least t+ 1.

The parity check matrix for the Goppa codes is given by the following,

h, h, hy_,
hyvg h;v, hn--1'Yn—1
H =
ho’Y(t)—1 h17{—1 hn—l‘y;l——-ll
[ _

_ -1
where h; = G(v;)™.

Example: Let L = GF(3) and G(z) = z°+2+2 =(z—a)(z—a?>), where « is

primitive in GF(3°) and a®*+a+2 = 0. The parity check matrix is

This is a (3, 1) linear code over GF(3) that consists of the codewords {(0, 0, 0), (1, 2, 1),
(2, 1, 2)}.
To decode, make use of Euclid’s algorithm, a recursive technique for finding the

greatest common divisor d(z) of two polynomials a(z) and b(z), namely producing the

equation




s(z)a(z) + t(z)b(z) = d(z)
which expresses d(z) as a linear combination of a(z) and b(z).

&

Let r = (rg, 1y, ..., Tn_;) be the received vector and ¢ = r—c, where ¢ is the
transmitted codeword, the error vector. The syndrome s(z) of r is the unique polynomial

of degree less than t such that

(1) = ) 7 (mod(G(2) = Y 7t (mod(G(); o € L.

Let B = {ail e; # 0} be the set of error locations with eg = e;, where § = a; is the

value of the error at location ez. Decoding is the process of determining the error locations

and values. Rewrite the syndrome as

sz) = 3 Ze_f’ﬁ mod(G(z))

sgeBB

and define, the error-locator and error-evaluator polynomials as

a(z) = [] (z—p), and
peB

w(z) = ) eg-]] (z—7), respectively.

seB ~+¢B
vF£ P

If B has e elements then deg(o) = e, deg(w) < e, ged(o, w) = 1, ey = w(p)/a'(B), and

o(z)s(z) = w(z) (mod(G(z)).

If o(z) and w(z) are the error locator and evaluator polynomials respectively, and

the error pattern has weight < (%) then o(z) = At (z) and w(z) = Ar,(z), where r;(z) and

t;(z) are obtained from Euclid’s algorithm with a(z) =sG(z) and b(z) = S(z) and j is the

least integer such that deg(r;) < (%) The scalar A € qum is chosen so that At;(z) is

monic.

To continue, find the solutions to o(z) =0inF m, these are the values of the
q

error locations. The error values are found by finding ey = w(ﬁ)/a'(ﬁ), where o/(2) is

the formal derivative of o(z). If q = 2 this last step is not necessary since the error values

10




will always be one.

IT.1.3 Non-Linear Codes

Linear codes have the property that the sum of any two codewords is also a
codeword. However, there exist codes that do not have this property, non-linear codes. An

(n, M, d) non-linear code is a set of M vectors of lerngth n such that any two have at least

d positions in which they do not agree.

For an example of a specific non-linear code consider the class of non-linear codes
described by Preparata[21]. Let q = 2™~ for m greater than 2, a(x) € IFQ[X]/(xq-l—{- 1),
and B = {b(x)} a single error-correcting Reed-Solomon code of length q—1 generated by
g,(x) with o primitive in Fq as a root. Let C = {c(x)} be the BCIl code whose generator
polytnomial has roots a, a”, and 1. Finally let u(x) = (xq_l—i- 1)/(x+1). The code V
consists of vectors of the form

v = [b(x), i, b(x) + {b(1) + i}u(x) + c(x)]
where 1 is a binary parameter. The code is a (2™M—1, 2m~3m+1) linear code of distance

S1X.

If 2(x) = (x7 '+ 1)/gy(x), then there exists an s such that x%z(x) = (x2(x))2.
Let f(x) = x°z(x). Then the set K, of vectors w such that
w=[b(x) + p(x), i, b(x) + PR + {b(1) + iJu(x) + c(x)}
with p(x) a monomial such that deg(p) < q—2, and B(x), c(x), i and p(x) are

independently chosen is a (2™M—1, 2M_om, 5) non-linear code.

To decode assume that r = [ry(x), r, r;(x)] = w + [ey(x), e, e;(x)] is received.
Given the following:
H, = [aq-z, aq—B, oy ay 1]

Hy = [(o®)77, ()17, ., (2®), 1]

11




U =

1,1,...,1,1]

then the syndrome is calculated as follows.

Uoz

g =

ro(OHT = aa®+ eq(a)

f()HT = aa®+ e,(a)

(ro(x) + ry(x))HT

d =T + I'l(X)UT

where p(x) = ax” is the monomial used in the codeword. Then ¥ = (o, 04, 0, d) is the

syndrome for r.

Let p = o4+(0y+0,)°.
the non-linear code. If the above condition is not met then let ¢ = [cy(x), ¢, ¢;(x)] be such

that c+r is a codeword. It remains to find ¢, which is possible according to the following

rules, taking 7 modulo 2;

Rule 1: If p = o; and p # o, thenc;  (x) = x! where o' = oy+0; and

¢ = d+c(1).

If p=0; (j=1,2) and d = 0 then r is a member of

In the following p # 0? fory =1, 2.

Rule

Rule

Rule 4: Ifd = 0 and o0y+0,; = 0 then ris at distance at least three from any

k.

2: Ifd =1 then ¢ = 0 and ¢;(x) = x 7, where

k.

a’ Tip1t 3J0+0'001(0'0+01).

k
3: Ifd = 0and 0g+0y # 0 thenc =0, c;(x) = 0 and c; (x) =x '+ x

k

where a ! and a

codeword.

k

2 are the solutions to

2’ + (0o+0,)z+

12

p+o;
Oo+0,

= 0.

k,
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IT.2 OVERVIEW OF CRYPTOLOGY

In order to provide secure communications it is necessary to disguise the
information sent. The system which does this is referred to as a cipher system, the original
message as plaintext and the enciphered message as ciphertext. The cipher system can be
thought of as a mapping from the plaintext to the ciphertext.  The set of all possible
plaintexts is called the message space, denoted by M,and the set of all possible ciphertexts
1s the cryptogram space, denoted by C. The mapping from M into C should be injective,
that is each message uniquely determines a cipher, this will guarantee that the cryptogram
1s decipherable back to the original message. There will be more than one such mapping
Ek: M - C, index these mappings with a key k, the set of possible indexes is called the

keyspace. By abuse of notation the specific mapping used is sometimes referred to as the

key.

» Cryptanalist

Source ]—m—¥ encryption —Ek(m) decryption —m:Dk(Ek)ﬂ sink
" 0 ;
k k
key source —[aser

Figure 2.2 Privaté—Key Cryptosystem

We will only concern ourselves with block cipher systems, In which the message to

be sent is first broken into blocks of n characters for some appropriate positive integer n.

Conventional cryptosystems in which the key is kept private are referred to as
private-key cryptosystems (see figure 2.2). In these systems it is necessary to distribute the

key to be used in that cryptographic session prior to the session in such a way as they are

13




only known to the recipient, such as by courier.

I1.2.1 Public-Key Cryptography

As an alternative to private-key systems Diffie and Hellman [7] propsed using
publically distributed keys (see figure 2.3). To implement, all members who wish to
communicate together decide on a common encryption algorithm, then each wuser
determines and publishes an encryption key. For user A to send a message to user B, first
A looks up B’s key, then encrypts the message under that key. Upon receipt B then
decrypts the message. In order for systems of this type to work it is necessary that the
decryption algorithm not use the same key as the encryption algorithm. It must still be
necessary for B to easily decrypt A’s message. What is needed are encryption algorithms
that are hard to invert, but with the introduction of additional information inversion 1s
possible. Such functions are called one-way trap door functions, and in the determination
of the public keys, users must keep the trap door information that is needed to invert the

encryption key private.

SOurce J|—m-¥ encryption —c=Eg(m)-—| decryption —m:DB(c)—v sink

]
Ep
keybook ¥ cryptanalist

Figure 2.3 Public-Key Cryptosystem

The rules for public-key cryptography are summarized below.
(P1) If ¢ = E(m) then m = D(c) and D(E(m)) = m for each m € M, where E (D) is

the encryption (decryption) algorithm.

14 r




(P2) E and D must be quickly and easily applied.

(P3) E can be made public without revealing D, that is it is not computationally

feasible to derive D from E.

I1.2.2 Cryptanalysis

In the design of any cryptographic system, the question of how secure is that
system must be answered. It is in the answering of this question that cryptanalysis of the
system must be done. The cryptanalist is th e person whom is connected to the system in
an attempt to either intercept and decipher messages, passive cryptanalysis or
eavesdropping; or corrupt the message traffic itself in an attempt to make it
undecipherable by any legitinmate recipient, active cryptanalysis or tampering. It is

primarily with passive cryptanalysis that is the concern here.

There are three levels of cryptanalysis, concerned with how much information they
have about the system and message traffic is needed in order to break the system. It is
always assumed in determining how secure the system is that any cryptanalist knows
complete details of the emcryption algorithm, this is especially important, and true, when
discussing public-key cryptosystems. A system is considered broken if a cryptanalist given

any ciphertext then produce the corresponding plaintext.

The highest level is ciphertext only. In this the cryptanalist only knows certain
encrypted messages. It may also be assumed that they also know context, but not content
of the message. The second level is known plaintext. In this the cryptanalist knows
certain plaintext as well as its corresponding ciphertext. If a system is insecure against this
type of attack then it is important to destroy any deciphered messages. The third level is
chosen plaintext. 1In this the cryptanalist knows plaintext-ciphertext pairs of their

choosing. It is impoprtant that all public-key cryptosystems be secure against this type of
15




attack since the encryption algorithm and keys are made public any cryptanalist has this

information at their disposal.

I1.2.3 Authentication

For any communication system it is also necessary for users to know who they are
talking to. This problem is known as the authentication problem. Authentication can be
obtained in a public-key system if we add the property
P(4) Every element in the cryptogram space C can be decrypted, that is there is an m

such that m = D(c) for every ¢ € C. This is equivalent to saying that

E(D(c) = c for every c. That is in addition to the mapping being injective it is

also surjective.
With the adition of this pfoperty user A signs his message to B by forming a message
dependent Jsignature s = Dy(c), and then computes ¢/ = Eb(s). User B upon receipt of ¢’
applies Db to obtain s, and then using the public encryption key for a finds Ea(s) =

Ea(Da(c)) = c. B is then satisfied that A sent the message for only A should know D,

and E4(D(c)) # cifd # a.

[1.2.4 Joint Encryption Error-Correction

In some enviroments it‘ ‘may be desirable to have both error-qotrection and
encryption capabilities. Certainly these can be implemented seperately, but with the use of
algebraically coded encryption it is possibie to implement both in one step. By
‘Incorporating both steps into one step speed and efficiancy are both increased, since they
can be implemented on a single chip. The trade-off encountered is that the security
provided by JOEEC is inferior to that provided by singuiar encryption as is the error-

correcting capability.

16




II.3 FEEDBACK SHIFT REGISTERS

Let k be a positve integer and a, a,, gy ..y B be fixed elements in a finite field

Fq- A sequence (s;) of elements from F q satisfying
Snek = k- 1Snak_i T A _oSpik_ot " T 3gsp+ a forn =0,1,...
1s called a linear recurring sequence, with initial values 805 Sty - S}, in qu. If a =20
then the sequence is said to be homogeneous. The polynomial
k k- k-
f(x) = x*— ?_lx I a X ‘— . —a;x— ag; a. € Fq[x]

1s called the characteristic polynomial of the sequence. The characteristic polynomial of a

linear recurring sequence of least possible order that generates the sequence is said to be the

minimal polynomial of the sequence.

output«—| Dy |¢&— D |« - « Dp_, |+

Figure 2.4 Feedback Shift Register System
Th'e ééquence 1s sald to be ultimately periodic with period r if there exists positive integers
r and ny such that sy, = s, for every n > n,. The smallest number of all poSsible
periods of an ultimately periodic sequence is called the least period of the sequence. An
ultimately periodic sequence Qith least period r is called periodic if sy, = sy holds for all
integers n > 0. It turns out that a sufficient condition for a sequnce with characteristic

polynomial f(x) to be periodic is that f(0) # 0. The least period for a sequence with
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minimal polynomial m(x) is equal to the order of m(x).

.

The implementation of these sequences is done on a feedback shift register (FSR),
for this reason these sequences are also known as FSR sequences. The characteristic

polynomial is also known as the connection polynomial for the register (see figure 2.4).

We define the decimation of (s;) by a factor of k as the sequence (s;).)s that is take
every k'" term of the original sequence starting at s,. To see that all the decimated
sequences are n-stage FSR sequences over [Fq with minimal polynomials of degree n we
refer to the following lemmas.

Lemma 2: If the characteristic polynomial g(x) of an FSR sequence (s;) in Fq has
factorization g(x) = ﬁl(x—ﬁj) in its splitting field over Fq then the
j=
decimated sequence (Sik) has the characteristic polynomial
2 k
gk(X) = ]I;Il(x'—ﬁj)-
Lemma 3: If (s;) is an FSR sequence over F q with minimal polynomial and

ged(k, M) = 1 and x* does not divide g(x) then (s:}.) has the minimal
polynomial g (x).

For feedback register sequences sometimes it is ideal to be able to efficiently
determine the k** element without having to calculate the entire sequence up to that point.
Fiduccia [9] has given an algorithm that will do that. Given a shift register sequence of
length n, with characteristic polynomial g(z), and initial elements 3 fori =0,1,.., n-1,

k

if we want to calculate the value of S} determine the value of z

n-1 .
modulo g(z). This will be a polynomial ['(z) = ) v, z'. The value of the k*” element of
1=0

n-1
the sequence is then determined by 8 = Y v,8; In this manner the k*»
=0

element of a sequence can be detei'mined in O(u(k)-log n) arithmetic operations, where
p(k) is the number of arithmetic operations to multiply two length k—1 polynomials.

This can be done in O(k-logk-logn) operations over a field that supports fast Fourier
18




transforms.

I1.3.1 FEEDBACK SHIFT REGISTER SYNTHESIS

GGiven a sequence (Si) it 1s often desirable to know the shift register of minimum
length that will generate that sequence. The Berlekamp-Massey algoriithm [17] is a
recursive algorithm that will do so without knowledge of a characteristic polynomial for

the sequence. The only knowledge needed is an upper bound for the degree of the

polynomial.
00
Let (Si) be sequence over Fq, and let G(z) = z.zosiz’. Define polynomials g ;(z)

and h;(z) over Fq and integers m; € Fq recursively. Initially let gy(z) = 0, hy(z) = 2z

and m; = 0. Define b; to be the coefficient of g:(z) G(Z). Proceeding let

8j+1(z) — gj(z)— bj hj(z)’

b>'zg.(z2) b, #0andm. > 0
hioy(a) = 4 g;j(z) b; # m; >
z h,(z) otherwise
L —m, b; # 0 and m; > 0
I+l m; + 1 otherwise

If the sequence has a minimal polynomial of degree k , then g, (z) is the reciprical
minimal polynomial.  If instead the minimal polynomial 1s of degree < k, then

let r = Lk—i—%—-% mzk_l’ and the minimal polynomial m(z) = 2'g,.(1/2). In either case

m(z) depends only on the first 2k terms of the sequence (s;) so G(z) can be replaced by
2k -1

G(z) = Z s;2".

1=0

Given m sequences (si(h) ) we are interested in finding the feedback shift register of

minimal length that will generate them. The following algorithm proposed by Feng and

Tzeng [8] from their generalized Euclidean algorithm will do that.
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Step 1. Letro_}: m-1-h Z (h)m(nll), Uo(z) = 1,

h=o 1=0

b (z) = 2™ vy — o forallh = o, l,..,m—1;and j = 0.

Step 2. j = j+1.

(h)

Step 3. Calculate r,(z), p;(z™) and q; '(z™) from r;_1(z) and b (z) so that

ri(2) = pi(e™) r;_1(2) + zq<h>(zm) bh)

Let v;_; = degr;_,(z) mod m,

( J— 1) (h)

(z) =r;_4(z) and b; '(z) = b(h) 1(z) forallh # v,

Step 4. Determine U,(z) from U,_, and V(h) 1(z) so that

U;(2) = p;(2) U,_,( +Zlq(h) v(h)l()

(vj..1)

Let V; (z) = U,_,(z) and V(h)(z) = V(h)(z) for all h # v

Step 5. If deg r;(z) > deg Uj(zm) then go to step 2, otherwise go to step 6.
Step 6. Let k = j, and §U,(z) is the connection polynomial for the shortest length
feedback shift register generating the multiple sequences. Where § is the field

element making U, (z) monic.

It deg r;_(z) > deg U;_1(z™) for all 1 <j <k and degr,(z) < deg U,(z") and deg

(h)

U (z') < (h) for all h = 0,1, .., m—1 where m-g; ' = (deg bgl)(z))——h then 6U,(z) is

the unique shortest length feedback shift register generating the sequences. If however deg

r;_1(z) > deg Uj__l(zm) for all 1<j<k and deg ry(z) < deg U,(z™),

m-
deg U, (z™) = (h)+d(h) for all 0 < h < m—1, then U,(z) = Z W(h)(z) V(h)(z),
h=o
thy, . . . (hy .. (h)
where for each h W" ’(z) is any polynomial of degree less than d“ "’ if d°~ > 0, and

| W(h) (2) = 0 otherwise are all the shortest length feedback shift registers that will generate

the multiple sequences.
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2.3.2 FAMILIES OF SEQUENCES

Let f(z) € Fq[z] be monic of positive degree. Let S(f) denote the set of linear
recurring sequences in Fq having f(z) as tehir characteristic polynomial. If deg(f) = k
then |S(f)| = qk, as there are that many choices for the initial states of the sequences
generated by f. This set can also be viewed as a vector space of dimension k over Fq if

operations are defined termwise.

k-1 k-2

If we define f(x) = xK — ay _ X — ap X — -+ — a;X — ag, and add the

further requirement that f(0) # 0, then every sequence that has f(z) as its characteristic

polynomial will be periodic. If we let (si(h)) for h =0,1, ..., qk——l be the sequences in
S(f), then we claim the following
Lemma: If (si(h)) forh = 0, 1, ..., N—1 are N linearly independent sequences over a

finite field F ¢ of period My and M = lﬁm {mh} then the decimated sequences

(si(}}:)) for k relatively prime to M are also linearly independent.

Proof. Suppose the decimated sequences were linearly dependent. Since the decimation
factor was relatively prime to the period of each of the sequences the decimation
ammounts to reordering of the elements of each sequence. Thus if the decimated
sequences were linearly dependent, then the originals must have been also. Since

this is a contradiction of our original assumption, the decimated sequences

must be linearly independent.

21




Chapter Il - Feedback Shift Register Cryptosystems

In this chapter encryption using feedback shift register sequences will be discussed.
The system originally proposed by Niederreiter [21] will be presented, as well as a new
system resulting from the work of Feng and Tzeng [8] in multiple sequences that is a

generalization of the original system.

While these sequences are not directly related to error-correcting codes, their use in

the decoding of certain types of codes, namely the Goppa codes makes them relevent for

discussion here.

Section one will deal with the system proposed by Nieddereiter. Section two will
be a discussion of our proposed generalization of that system using multiple sequences.

Section three will be a discussion of the cryptanalysis of this system.

IIT.1 Niederreiter FSR Cryptosystem

Let q be a power of a prime and g(z) be a monic polyinomial of positive degree n
over g such that g(0) # 0. Let (s;) be a sequence with characteristic polynomial g(z),

period M and initial terms sy= --- = s;_,= 0, and s,_,;= 1. In this case g(z) will be the

minimal polynomial of (s;)- (

For two users of the system, A and B to correspond they each need to generate
their own public key. This is done as follows: each user picks an integer h such that
1 <h <M and ged(h, M) = 1, then decimates the sequence (Si) by that factor and
publishes as their public key the second 2n—1 terms of the decimated sequence (Sih)’

namely Spy Sopy -+ S(zn—1)h; 1t is not necessary to publish the first term as it will always

be 0.
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For user B to send a length n, non-zero message vector (ay, ..., ay_,) over Fq to
A, B chooses an integer k such that 1 < k < M and (k, M) = 1. From A’s public key, B
determines the minimal polynomial of (si,) = (t;) and decimates this new sequence by the

factor k to obtain a new sequence (Skin) = (u;). Then B constructs the matrix

Up U Upn-1
u; U Up
U =
Upn—y Up -+ Ugp_o

and sends to A the ciphertext pair Spr Sopr S(zn-l)k’ (agy a7y *+y ap_q)U.

In order for A to decrypt B’s messa e, A must first determine the minimal
yp g

polynomial of the sequence Sy Sy T and decimate this sequence by the factor

S
*“en-1)k?
h to recover the sequence (Ui)' A then generates the matrix U. Since the matrix U is

invertible, A inverts U and recovers the original message vector by postmultiplying (ay, a,

-y an_p)U with U™,

Transmission requirements can be further reduced if instead of selecting a different
decimation factor k and transmitting along with the ciphertext the initial elements of his
sequence, I3 instead uses the same decimation factor k as the its private key. A then refers
to the public k.ey list to find the sequence (Sik)' This assumption will be made throughout

the remainder of this thesis.

When n = 1, the cryptosystem reduces one based on discrete exponentiation,
where the security is derived from the difficulty of given x and y in a field finding «a such

that x¥ = y.




IITI.2 Multiple Sequence‘Cryptosystem

As Niederreiter pointed-out his system is susceptible to attack by knowledge of
certain plaintext-ciphertext pairs. Notably two message vectors (1,0, ---, 0),
(0,0, ---, 0, 1) and their ciphertext pairs are sufficient to completely determine the matrix
U. While Niederreiter proposes to improve upon the situation by first encrypting the
message by using either the knapsack method, two forms of which will be discussed in
appendix A, or by using error correcting codes, we propose a method that will improve on
the minimum number of plaintext-ciphertext pairs that are necessary to determine the
matrix U. This will be done by using more than one sequence generated by a given
characteristic polynomial to develop the encryption matrix U. It should be pointed out

-

that after n linearly independent messages have been encrypted with the matrix U, they

together with their corresponding ciphertexts will allow for the complete determination of

U.

1l .
Let g(z) = Egizl, with g = 1, be a publically known polynomial over Fq with
1=0

g(0) # 0. Select a basis § for the vector space S(g), and a subset 8’ of 3, let X = Iﬁll.

For each element (s") of B’ find its period M,, then determine M = l.c’.lm.{Mh}. This
may either be done privately or publically. To implement as a public-key cryptosystem
make the characteristic polynomial g(z) together with the set 8’ public. As a private key
system, keep knowledge of both private. Let (si(h)), h=0,1,..., X—1, be the sequences
of 4.

Each user A selects an integer kA such that 1 < kA < M and (kA, M) = 1, and

(h)
= (s
lkA

publishes as their public key the first 2n terms of the sequences (ti(h) ) ) for each h.

It is important that the decimation factors k A be kept private.

For user A to send a message to user B, first find the minimal polynomial g'(z)

that will generate B’s public key; this is best done by using the Feng-Tzeng algorithm [8].
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Once the minimal polynomial is obtained, user A then generates the family of sequences

(h) (h)
(™) = ).
1 1kA
— . i .
If n = X then B constructs an n x n matrix V, where Vii = (uj mod M)’ for 1, j
=0, 1, .., n—1. Length n, non-zero message vectors a are encrypted by computing aV,
Since the decimated sequences are linearly independent the matrix V is non-singular, and
(h)

so from B’s public key A is able to reconstruct the sequences (ui ) and thus the matrix V.

After finding V™' A can readily recover a.

If n<X, let p= Bﬂ and then construct X p X n matrices Vp, where the ph

block, p =0, 1, ..., X—1 is given by vi’; = (u z'(}rz)—kj(modM)); 1 =20,1, ..., p—1 and j
= 0,1, ..., n—1. If X/n then for in Voo p=0,1,..., n—pXlet:=0,1,..., p—2 that

1s let Vp have one fewer row in those matrices.

Length n, non-zero message vectors a are encrypted by the following process: first
construct the matrix V :l: VO Vi VX—'—IJT‘ If V is non-singular then the
encrypted message is ¢ = aV. If V is singular then let ap = (app, app+1"---a app+p—1)’
again if X/n then for p = 0, 1, ..., n—pX, let ap = (a,pp, Ap 41y -0 app+p-2)a and
calculate ¢cp = apVp. These vectors are then sent as the encrypted message. If X = 1
then the cryptosystem describes the original Niederreiter FSR cryptosystem, and the

matrix V = VO 1s always non-singular.

In order to decrypt, the recipient looks up the senders public key, generates the
minimal polynomial for the multiple sequence, and decimates by their own private factor
to generate the multiple sequence (ui(h) ) From this the recipient then reconstructs the
matrix V, if it is invertible, inverts it and recovers the message vector a. If V is not
invertible, since the rank of the matrices Vp 1s p, each matrix has a right inverse Vﬁ", and

ap = chI")", and a is completely recoverable.

29




The major drawback to this generalization is that excpet for the case when

= 1 or X = n, the matrix V is not in general non-singular and so there is a increase in

the data expaansion by a factor of X.

I11.2.1 EXAMPLE OF GFSR CRYPTOSYSTEM

Let g(z) = z°+2°+2*+2°+2+1, over F,. Any sequence (s;) with characteristic
polynomial g(z) then satisfies sy, s = Spys5+Snsa+Snso+Sns1+5n. Choose as B the
three sequences (si(h)) generated by the following vectors (0, 0, 0, 0, 0, 1), (0, 1, 0, 1, 0, 1)
and (1, 1, 0, 0, 1, 0). The sequences are:

() =000001101011 -
(/) =010101010101--
() =1100T0100111 -

here My = 12, M; = 6, M, = 12, M =12, X = 3 and p = 2.

Choosing kA = 5, A constructs the public key:

(J”):011010110000~-

51

@Sﬁ::010101010101-~

(i?):101001111100-~

After determining the characteristic polynomial for these three sequences, B decimates
i@hem by their factor kB, here taken to be 7 to obtain:
(é”):011010110000~-
351
(s4,) = 010101010101 -
351
(59)2111100101010~~
351

and constructs the three matrices:




It is noted that row 1 of V, together with the two rows of V; are linearly dependent, so
the matrix V would be singular. Thus any message vector a would have to be broken up

into three length two vectors. Take as a sample message a = (1, 0, 0, 1, 1, 1). This

would be encrypted into:

0,1,1,0,1,0),(1,0,1,0,1,0), (0, 1,1, 1,0,0,1).

0 L To1 1
0} Vl'—[lo 0}

8 ?], the original message is recoverable. There are other

. —r 00100 010
Using VO'“[O 0010 10 1

o Jo1o0
V?"[O()o

‘choices for the right inverses.

oo O

IIT.3 Crypatanalysis

There are two ways to attack the FSR cryptosystem. The first is by attempting to
derive the decimation factors h and k, and in this way deriving the matrix U. The second

is by attempting to directly determine what the elements of the matrix U are.

There are three steps in determining k from the knowledge of both g (z) and g(z).
The first is to factor the characteristic polynomial g(z) of the original sequence. This needs
only to be done once, when the the system is initialized, as it will remain constant. One
also needs to factor the characteristic polynomial gk(z) of the decimated sequence (Sik)"
The second step is to pair off the roots of gk(z) with the roots of g(z). There is one correct
matching for this, and it can take up to n! trials to obtain it. This step 1s not necessary if
8(z) is irreducible. The final step is inferring the factor k from the pairing of the roots,

this is the same as solving discrete logarithms in various extensions of F g

In both the original single sequence and the genralized multiple-sequence system
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the above steps must be performed. Thus in both cases g(z) should be reducible. It is also
desirable that as large a value for the period of the sequences be obtained as possible, in
order to have as many different decimation factors as possible. A large power of 2 for the
period is ideal. In the multiple sequence case the complexity is not adjusted, with the
exception that the period will increase as it is the least common multiple of the periods of

the basis, as there is only one characteristic polynomial for all the sequences.

To determine the matrix V used for the encryption of the messages directly, as far
as the multiple sequence system is concerned, we will present a lower bound on the number
of linearly independent message vectors that will be necessary to determine U, it is to be
noted that the upper bound on the number of messages needed to determine U is still n,

that is any set of n linearly independent messages along with their respective ciphertexts is

sufficient to derive the entries for U.

In U theré are 0 = [(p—2)X+n]n—pX]+[(p—1)X+n][X—(n—pX)]
= X2[2p—1] unknowns. Since each plaintext-ciphertext pair generates n equations in the
¢ unknowns, at least %\linearly independent plaintexts and their corresponding ciphertexts
are needed in order to completely determine the entries in the matrix V. To see that in
general 1% is only necessary but not sufficient consider the 3x3 case with one sequence to
determine V. The two vectors (1, 0, 0) and (1, 1, 0) while linearly independent cannot
give the entry for u, whereas (1, 0, 1) and (1, 1, 0) will. In the case when X = n, § = n?
and so the optimal security is obtained as n linearly independent messages and their

ciphertexts are both necessary and sufficient.

Thus it can be seen that it is possible that in the original system two linearly
independent vectors will be able to break the system, but as the number of sequences used
to to describe the system increases the minimum number of known plaintext-ciphertext

pairs necessary to break the system also increases.
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Chapter IV - McEliece-Type Cryptosystems

In this chapter encryption using algebraic codes is presented. Discussion in this
chapter will be restricted to those that are related to the scheme originally proposed by

McEliece [18]. In addition to McEliece’s system the variant of that system proposed by

Jordan [11] is discussed.

Attention is then turned to the private key scheme proposed by Rao-Nam [27].
After a detalied ananlysis of these systems is presented the variations of this scheme is
presented, as vyell as the resulting variations that have arisen from these analysis.
Following these variations a new characterization formula that can be used to describe all
codes in this class (both the McEliece and its variants as well as Rao-Nam and its
variants) will be presented. Resulting from this generalization another variant will be

discussed.

This is followed with a discussion of the applicability of these codes to joint
encryption and error control. An observation on the insuitability of these codes to the

authentication problem will be presented.

IV.1 McEliece Cryptosystem

In 1978 McEliece [18] proposed using algebraic error-correcting codes, specifically
Goppa codes, to perform public key encryption. The user generates a t-error-correcting
Goppa code of length n = 2™, and dimension k 2> n—tm, then produces the associated
kxn generator matrix G. Also used as part of the private key are two matrices, a kxk
non-singular matrix S and an nxn permutation matrix P. The user then constructs and

publishes their public encryption key G' = SGP.

A message is sent by breaking it into k-bit blocks. For each block m calculate and
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send the n-bit vector
¢ = mG'+z
where z is a randomly chosen vector of length n with weight no more than t, and G’ is the

public key for the receiver.

To recover m calculate cP™' = mSG+2zP~!. Since P is a permutation matrix w(z)

= W(ZP—I), so by decoding for the designed Goppa code obtain mS then postmultiply by

S~! to recover the original message m.

IV.1.1 Cryptanalysis of McEliece

It remains to analyze the security of the system as presented. An obvious attack
would be to randomly choose k of the n cooridinates of ¢ and denote this k-bit vector by
Cp. - Let Gl,< and 7). denote the corresponding k columns from G’ and z respectively. We
now have ¢, = mGl,(+Zk’ or alternatively if Gl'{ IS invertible we have (¢ +Zk)(Gl,<)—1: m.
If the k components of 7 are zero then ckx(Gl'()—I: m and one can recover the message
without decoding. The work factor for this attack is calculated as follows. If the error
vector has t non-zero components (the maximum possible) the probability of choosing k
non-zero cooridinates is p = (n l;_t)/(lr(l), and on average 1/p choices must be made before
succesfully picking k zero cooridinates. The k x k submatrix Gl,( must be inverted for each
choice of k cooridinates, assuming matrix inversion requires between k? and k3 steps the
expected total work factor is as follows: 4

W = G{l)/(n k—t) steps.
McEliece suggested using codes with n = 1024 and k = 50, but Adams and Meijer [1]
C

have shown that for n = 1024, t = 37 gives the highest work factor, approximately 234-!

(as opposed to 2%% 7 for t = 50). They also point out that with the decreased value of t

the value for k increases from 524 to 654 thus reducing the data expansion.
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IV.1.2 Jordan Variation

Jordan [11] has proposed a variant of this system. Construct a Goppa polynomial
with no linear or repeated factors over the base field, a bijection (not necessarily linear) S
on the set of data vectors, and a permutation matrix P, which are then distributed to the
intended receiver. The message m is encrypted by ¢ = S(m)GP+z; w(z) < t, where t is

the error correcting capability of the Goppa code.

The recipient who knows S, G, and P then recovers m by calculating c¢P, decoding

for G then ¢ applying S™! to the result.

By using as a private-key system it is possible to reduce the required weight of the
error vectors, Jordan suggests as low as t=10, and thus further reduce the data expansion

of the system. In analyzing the system, consider the case where S is linear. The proposed

2 2
work factor to find the k? elements of SGP is k®/(1—t/n )* , where (1—t/n)* is the

probability of finding k*® equations with no errors in them. If one first attempts to guess
the Goppa polynomial, and use that to eliminate z then the work factor involved is at least
k6(2mt/t), where (th/t) arises as the number of irreducible polynomials with degree t
over F 1. In both cases the factor k® arises as the estimated work factor in solving k?

2

equations in k? unknowns.. Forn = 2%t = 5, k = 216 the work factor is 1025,

IV.2 Rao-Nam Cryptosystem

In 1986 another variant on the McEliece system was proposed by Rao and Nam

[27].  They proposed using low distance linear (n, k) codes with generator matrix G and
N . . . . n

_error vectors z that have been specifically chosen with Hamming weight approximately 5
Again let S be an kxk non-singular matrix and P be an nxn permutation matrix. We let

G' = SG and encrypt a message m by computing ¢ = (mG'+2z)P. The vector z is
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chosen by one of two methods.

Method 1: z is an ATE, a vector of length n with (< % adjacent ones, and the
remaining n—t cooridinates zero. It is important that the ATE chosen is not a codeword.

For a non-cyclic code there are n—t+1 ATE’s, for a cyclic code there are n ATE’s.

Method 2: Use a predetermined set of vectors such as the syndrome-error table.
Choose one vector for each possible error pattern with weight as close to % as possible.

Each error pattern will have a distinct syndrome and there are 2n_k possible error

patterns.

Regardless of the method chosen the keys S, G and the choices for z in method 2

are kept secret, as this system is implemented as a private-key cryptosystem.

In order to decrypt a message c the receiver must first calculate ¢cP~! = mGQ'+2
then by using the parity check matrix for the code calculate post mulitiply by HT to
obtain the syndrome zHT and identify the error pattern. Recover mS by correcting for

the appropriate error pattern, and postmultiply by S™! to obtain the original message m .

Rao and Nam show that for method 1 there are at least (n - [%J- 1)! possible

permutation matrices P that transform the ATE’s into non-ATE’s where 2 <t < 121-, where

n is the length of the ATE, and t is the number of adjacent ones. Thus for t:[%J there are
R - R L

at least (n—3)! choices for P. Over GF(2) there are Ng = H(2 —2*) > 2° 7% possible

1 =0 :

non-singular matrices S. Due to the large number of matrices involved an attack by trying

all possible matrices S, G, and P is not likely to work.

IV.2.1 Cryptanalysis of Rao-Nam System

The attack presented for the McEliece system will not be benificial since the value

for t is approximately 5. Instead the following attack is proposed.
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Encipher a message m twice, that is, let c; = mG"-}-sz and let Cp = mG”+sz
then we have C;—C = (zj—-zk)P. Repeat for all pairs of z’s, of which there are (g)

where N = % for method 1, and N > n for method 2. If we denote the i'" row of G'’ by

| u]

[g"'] , then we see that [g'"] = ¢;—cy—(2,—2,)P. This must be done for each row i, then

the solution must be verified for correctness. Since the rows cannot be verified

2\ k
independently all rows must be calculated first, involving a work factor of W > %(—NQ—-) :
Struitk and van Tilburg [29] proposed an attack on method 2 of encipherment. An

error pattern z 18 selected from % = {z(J)} the set of N distinct error patterns. Denote by

%P the set of these error patterns postmultiplied by the permutation matrix P. Let ZA

— z(i’j) = z(i)—z(j) , and %P as the elements of 3 , permuted by P. Denote by 7 a
A A

guessed error pattern, and let i(w) = 2(1)—-2(]). FFor any message m there are N possible:

encipherments, c(]) = mSG + z(])P. Denote the set of posssible encipherments by 8. Let

u; be a unit vector and let m; = m + u;. Denote the possible encipherments of m; by &.

To attack the Rao-Nam scheme first choose an arbitrary message m and obtain
the N possible cryptograms. With these cryptograms construct the directed graph I' = (8,
%Z) The vertices being the ¢'") and the edges the z(i’j), being derived from the fact that
) = (mSG+z(i)P)-—(mSG+z(‘j)P) —p.
Then construct the automorphism group Aut(I'), the permutations on & which leave the

labels for the edges invariant.

Now, for cach 1 <i < k repeat for m; = m + u;, enciphering for all of the N

possible cryptograms, and constructing the graph I'; = (8§, %Z) Select an arbitrary ¢ €

Aut(T'). This mapping induces a mapping on I'; which will syncronize the elements of &,

(1 ()_

: : L ~(1,1) :
with those of 8. From this syncronization calculate ¢; ' —c "= e; + 7 )P, where e, is

the i'® row of the matrix SG. The probablity of this being the correct row is IAut(I‘)l"1

1,1
2(‘ )

since there is exactly one automorphism @ such that = 0. Since the correctness of
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each row cannot be independently verified from the other rows the cryptanalyst will have
to construct on average IAut(F)Ik encipher matrices before correctly approximating SG.
After approximating SG the analyst must also find a matrix D = HP and then construct

the syndrome error table. If the solution is not correct then a new ® is chosen and new

matrix D is generated.

Struik and van Tilburg have also shown that if method 1 is used- then
lAut( F)I = 1, namely ®(z) = 2z, for any non-cyclic code. For any cyclic code IAut(F)l =
2, the mappings being ®(z) = 2z, and ®(z) = z + 1. Thus method 1 of choosing the error

vector z 1s not appropriate for encryption as it is insecure against a chosen-plaintext

attack.

Rao has since observed [26] that while the system is insecure against chosen- -

plaintext attack for practical codes the number of encipherments necessary to generate the
set & 1s large. For example he proposes the (72, 64, 4) Hamming Code encrypted with
method 2; here there are 2% possible error vectors, since the work factor projected to obtain
all distinct ¢; is N*In(N) and is to be repeated for k unit vectors. Thus O(kNxIn(N))
plaintext-ciphertext pairs are needed, and for realistic codes the attack time is not feasible.
While the scheme is succeptible to chosen-plaintext attacks it is still relatively secure due
to the time required to break the system. Encryption under method 1, though is still

easily broken and thus should not be consisdered further.

IV.2.2 Variations of the Rao-Nam Scheme

Rising from the Struik attack, adaptations have been made in the Rao-Nam

scheme. Struik and van Tillburg [29] proposed to modify the scheme by replacing the kxk
non-singular matrix S by a non-linear injective function operating on both the message m

and on the error vector z, namely having ¢ = f(m,z)GP + z, where fis chosen so that Vz,
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| .
Vm {'(f(m, z), z2) = m. The decoding algorithm is the same as previously with the
exception that instead of taking S™' one must now take f~!. This scheme will defeat the
attack of Struik if one chooses a function f that will not allow the unit vectors to be able to

estimate the rows of the matrix GP.

Denny and Rao [6] have also propsed an adaptation of the Rao-Nam scheme by
using non-linear codes instead of a linear code as the basic block of the system. Let m be
an k-bit message vector, and S an kxk non-singular matrix, and let m; = mS. The
encryption, denoted by G(m), using Preperata’s class of non-linear codes is done as follows.
Use the first 27! bits of m, to be encoded using B. The next bit is used for the binary
index i, followed by 2™~! _9m bits encoded under C.. The last m—1 bits will give the
polynomial p(x), by p(x) = 0 if all the bits are one, and p(x) = x" where v is the decimal
equivalent of the bits if the digits are not all ones. Compute w as described in chapter two

to give my, = G(m,).

Choose a random error vector z of the form z = v + y where v is an error in the

linear code and w(y) < 2, and compute ms = (m,+2z)P for P a permutation matrix.

To decrypt first find ms;PT = m,+2z and determine the syndrome described in
chapter two. After finding the error positions use a look-up table to discover z, and add to
reveal m,. Recalculate o, to give p(x). Adding p(x) to the first 2™~ bits yields the
encoded vector in B. This value and the knowledge of i allows for the recovery of the

encoded vector in C. The decoding of these vectors will give mS and the message vector m

= (mS)S_l.

The work factors involved in this scheme are as follows. For encryption, two
matrix multiplications are needed, of orders k and n. Also needed are the encoding of two
BCH codes of order 2™~ as well as assorted vector additions. To decrypt again two

matrix multiplications are needed, syndromes must be calculated as well as the
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corresponding error positions for the non-linear code, and ¢, must be calculated a second
time. Finally two 2™~! BCH codes must be decoded. Thus the encryption by this
method is more complicated than the encryption by any of the previously mentioned
methods; however this encryption method stops the Struik attack at the point of using unit
vectors to find the rows of SNP, where here N stands for the encryption using a suitable
non-linear code. The encryptions from the unit vectors will not give proper

approximations to the matrix elements due to the non-linearity of the code.

IV.3 Characterization of McEliece Type Cryptosystems

It has been observed previously that the Rao-Nam scheme is a derivative of the
McEliece scheme. What will now be presented is a characterization equation for
encryption that can be used to describe both general types of systems as well as their

variants depending upon the context in which the code is implemented.

Let G be a generator matrix for a t-error correcting linear (n,k) code €. Let S, be
an kxk non-singular matrix, P;, and P, be nxn permutation matrices, and S, be an nxn
non-singular matrix. To encrypt an k-bit block m calculate

c = (mS,GP,+2z)P,S,.
The multiplication of the error-vector z by P,S, will alter the weight of z thus careful

attention must be paid to both S, and the error-vectors z that are used.

If the system is to be implemented as a public-key crypt.osystem then the public
key becomes [S,GP, P,S,], where P = P,P, which is also a permutation matrix.
However, by making P,S, public any cryptoanalyst will also know (stz)"l and thus can
calculate

¢S;'P;' = mS,GP,P;! + z = mS,GP + 1.

When G describes a Goppa code the system reduces to the McEliece public-key
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cryptosystem.

By changing S; to be an automorphism of length k vectors and adding the
requirement that G describe a Goppa code with no repeated factors the encryption process

becomes that of the Jordan variant.

To implement as the Rao-Nam private-key cryptosystem, take P; = P, = I, S,
to be a permutation matrix, and select z from the syndrome table. By additionally
making S; a non-linear operator we get the Struik and van Tilburg variant. By having G

describe the encryption process for a non-linear code then we are able to describe the Rao-

Denny variant.

It remains to discuss the approximate key size for this type of encryption system.
Using the (72, 64, 4) Hamming Code as mentioned by Rao [26] we need one 64x64 matrix,
one 72x72 matrix and one 64x72 matrix for a total of approximately 2% °K bits. It
should be noted that for the variants mentioned above the key size will increase due to the
added complexity needed to describe the non-linear operations, as well as thew non-linear
codes. There is still a marked decrease in the key-size for the private-key variations as

oppposed to the original scheme described by McEliece.

IV.4 JOINT ENCRYPTION ERROR CORRECTION

As was previously mentioned algebraic codes lend themselves to the notion of joint
encryption and error correction (JOEEC). If we are communicating over a noisy channel,
we want to also provide the ability to correct errors, and JOEEC is a fast method of doing

this as well as supplying some security.

The idea of doing this with algebraic codes originates with Rao [25]. He suggests
that for public key encryption, using McElice’s scheme that using Reed-Solomon codes over

F vb with distance d > 6 be used instead of Goppa codes, and instead of introducing a
2
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random error vector z introduce an error vector that is a single or double byte error, this

will allow detection/correction of most errors due to noise.

If implementing as a private key system, codes simpler than the Reed-Solomon
codes needed for the public key situation may be used. Rao suggests that even Hamming

codes with distance three or four can be used.

In either case the presence of noise on the communication channel may help
provide additional security, proivided the error vector originally used, when taken in
conjunction with the errors that will be provided by the channel do not overload the error
correcting capability of the code in question. On a particularly noisy channel it may be
wise to use the scheme originally describe by McEliece, and instead of adding error vectors

of weight t, add error vectors of weight %

Recently Park and Tzeng [22] have developed a conctonated scheme that does not
necessitate the addition of noise to provide security, thus allowing the full error-correcting
;

capabilities of the codes used for error correction purposes. A scheme such as this would be

highly desirable if JOEEC capability is needed.

IV.5 AUTHENTICATION

In the above mentioned encryption schemes the encryption process is an injective
function E: Fis € CF2, and in most cases C % IFE. In order to implement
authentication it must be that for any x € Fg, E(D(x)) = x. But, unless for every vector
X, w(x—c) <t for some codeword c, then the decryption algorithm will produce an error
message and decryption process will not supply the message sent. Even if we do have the
above deéired property then when the encryption algorithm is applied, if z # x—c, then
the resulting encryption will produce a result different from x. Thus for algebraic coded

encryption schemes of this type authentication is not possible.
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CHAPTER V - NIEDERREITER KNAPSACK SYSTEM

The general knapsack problem may be described as follows: let S be a set of

distinct positive integers, given a sum s, find a subset TCS such that Zt = s. It may be
te'’l

that no such subset exists, or there may be more than one such solution. As this problem

is NP-complete, there have been many attempts to develop cryptosystems based on the

knapsack problem, for example the systems of Merkle-Hellman [19], and Chor-Rivest [5],

most of which have since been broken. In this chapter the knapsack system proposed by

Niederreiter [20] will be discussed. Section one is a description of the knapsack

cryptosystem, section two is the cryptanalysis of the same system.

V.1 Niederreiter Knapsack System

The following knapsack encryption method WéS proposed by Niederreiter [20] in
1986. Let C be a t-error correcting linear (n, k) code over IFq, with parity-check matrix H,
an (n—k)xn mr’atrix over [ q with rank n—k. Note that C consists exactly of those length
n vectors ¢ over |y such that HcT = 0. Consider the following
Lemma. If HuT = HvT for some u, v € IF{Il and w(u), w(v) < t then u = v.
Let X = {m| w(m) < t}, and f: X C [Fg—»l}‘—g_k be given by f(m) = HmT then by the

above lemma, f is an injection from X into Fa_k.

A private-key cryptosystem can be obtained from this mapping by using the
parity-check matrices as the keys, and vectors of weight no more than t as messages. To
encipher m let ¢ = HmT. To recover the message use the syndrome ¢ to decode according

to the code C. Note that m is an error vector for the code word 0.

To use as a public-key cryptosystem we need to scramble H. Following the

example presented by the McEliece type cryptosystems let S be an (n—k)x(n—k) non-
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singular matrix, and P be an nxn permuted diagonal matrix, both over Fq- Let
K = SHP be the public-key, keeping S, H, and P private. Encrypting a message m € lF{]1
with w(m) < t is done by computing ¢ = KmT. To decrypt the received vector first
compute M~ '¢c = HPmT = H(mPT)T.  Since w(mPT) <t obtain mPT from the
sysndrome as with the private-key cryptosystem. From mPT recover m by

postmultiplying it by P.

For the case where q = 2 this is a variant of the classical knapsack system, since
the ciphertext is the sum of at most t columns of K and determining m is the problem of
deciding which columns they were. For the general q, the ciphertext is a weighted sum of
at most t columns from K and decrypting is equivalent to determining which columns were

chosen and with what weight.

To determine the best types of codes to implement this system under it is desirable

to have a large error-correcting capability since we have only Z(?) possible message
- i=1

vectors. As second property that is desirable is to have a code C that can be efficiently

decoded so that decryption will run faster. It is important not to have n—k be to small

for if so the ciphertexts will be of short length, and thus the system will be easier to break.

Niederrieter gives examples of two codes, the first a binary concatenated code (104, 24)

code capable of correcting t = 15 errors, with a public keysize of 8320 bits. The second is

an (30, 12, 19) Reed-Solomon code over [ 3; capable of correcting up to t = 9 errors, with

a keysize of 2700 bits.

V.2 Cryptanalysis

To be able to defeat this system there are two possible attacks. In the first given
- by Brickell and Odlyzko, given ciphertext ¢ pick a submatrix K’ consisting of n—k

columns from K. This matrix is non-singular since H was of rank n—k and both S and P
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were. Now compute ¢/ = (K')'c. If the t columns added to form c are in K’ then ¢/ is
the encrypted message, and K¢/ = ¢. To find the message m: when a column is not
included in K’ the corresponding cooridinate is zero. If a column is included in K’ then the
corresponding cooridinate is the value of the same cooridinate from ¢'. The probability of
this occuring is p = (nzk)/(?) We will have to repeat this procedure, and calculate the

inverse of an (n—k)x(n—k) matrix on average 1/p times before success. For the first code

suggested 1/p = 72, and for the second 1/p = 295.

For the second attack we will use the previous result that the matrix H invokes an
injective mapping on vectors of weight t or less, thus there is a left inverse for this
mapping, that is there exists an nx(n—k) matrix H™' such that for all vectors m € [F{ln
‘with w(m) < t H'HmT = mT. Since we know that the matrix H has a left Inverse and
that S and P are non-singular there a left inverse for the public-key K, K~' so that if KT
= ¢ then mT = K '¢, if w(m) < t. In order to deteremine K~' we need to solve u, =
K™ 'k;, where u; is the unit vector of length n—k with the one in the i'* position, and k, is
the i'® column of the public matrix K. Each equation will give n equations in the n(n—k)
unknowns of K=! thus solving n—k of these sets of equations, for any 1 <1< n will give

n(n—k) equations in n(n—k) unknowns, and thus we will be able to solve for K~'.
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CHAPTER VI - SUMMARY

Three types of cryptosystlems that require concepts taken from algebraic coding for

their implementation have been discussed.

The first making use of feedback shift registers was originally suggested by
Niederreiter using a single FSR sequence. For this system a generalization has been
proposed making use of multiple sequences generated by a single register. When only one

sequence 1s used the generalization describes the original system.

The second type are variations of the system originally suggested by McEliece for
public key encryption, for which a private key variant was recommended by Rao-Nam.

These systems are shown to be variants of the original.

The third type is a knapsack system proposed by Niederreiter. This system has

been shown to be insecure and so should not be considered for implementation.

The strengths of the McEliec type cryptosystems are their ability to be used in
enviroments where JOEEC is desirable. Their major drawback however is the large key-

size, on the order of thousands of bits per user, needed to implement these systems.

The GFSR cryptosystems alone are unable to support JOEEC. One major
drawback to this class of cryptosystems is the need for changing the public key, or private
decimation factors after a relatively small numbner of messages have been sent. This is
due to the linear nature of the encryption process and its vulnerability to linear algebraic
type atttacks. A second major drawback is that not all matrices generated are non-

singular and thus require a signiﬁc&nt data expansion factor.
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