
Lehigh University
Lehigh Preserve

Theses and Dissertations

1989

A general purpose menu processor user interface
tool for mechanical engineering applications /
Catherine Mary Curtin
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Curtin, Catherine Mary, "A general purpose menu processor user interface tool for mechanical engineering applications /" (1989).
Theses and Dissertations. 4988.
https://preserve.lehigh.edu/etd/4988

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4988?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A GENERAL PURPOSE MENU PROCESSOR
/ USER INTERFACE TOOL FOR

-Y)_,

MECHANICAL ENGINEERING APPLICATIONS

bv .,

Catherine Mary Curtin

.,

A Thesis

Presented to tl1e Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Masters in Science

.
111

Nlechanical Engineering

Lel1igl1 U p.iversity

1989

..... -··
\

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillme11t of tl1e requirements for tl1e

degree of Master of Science in Mechanical Engineering.

M~ 16, 1989
-'

Date

I

Professor in Charge.

Cha,irman of Department

I

. .
11

ACKNOWLEDGEMENTS

I would like to thank Dr. Tulga M. Ozsoy, my graduate advisor, for I1is ideas

and enthusiasm tl1roughout the development of this thesis. Alsc), I \Vo11ld like to tl1ank

Joe Clifford, my husband, for convincing me to pursue a graduate clegree.

" ...
lll

0

'

I .

CERTIFICATE OF APPROVAL

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

ABSTRACT

CHAPTER 1. Introduction

1.1 Introduction

1. 2 User Interface

1.3 In1pleme11 tat ion

1.4 Ter111inologies

CHAPTER 2. l1nple1nentation

2.1 Introduction

2.2 Automatic Implementation

2.3 Interactive Implementation

2.4 VAX 01)erating System Installation

CI-IAPTER 3. Features

3 .1 Introduction

3.2 Built-in Global Menu

3.2.1 Dialogue Style Device

3.2.2 U nigraphics Device

3.3 Application Dependent Global Menu

3.3.1 Global Menu Name

3.3.2 U nigraphics Device

•
IV

TABLE OF CONTENTS

l

..
. • >-

••
11

•••
111

•
IV

• •
Vll

1

2

2

3

5

5

7

7

10

11

14

15

15

16

16

17

17

18

18

3.3.3 Menu Dependency

3.4 Messages

3.5 Type Ahead

CHAPTER 4. Data File Specification

4.1 Introduction

4.2 Menu Data Set

4.3 Option Delimiters

4.4 Pointers

4.4.1 To Submenus

4.4.2 To Subroutines

4.5 Application Dependent Global Menu Information

4.6 Message Data Set

4.7 CONTROL.FOR

CHAPTER 5. Progra1n Structure

5.1 Introduction

5.2 Menu Initialization

5.2.1 Initialization Routines

5.2.2 Reading Data

5.3 User Interface

5.4 Processing User Input

5.5 Global Menus

5.5.1 Built In Global Menus

5.5.2 Application Dependent Global Menus

CHAPTER 6. UIT$CREA TE

6.1 Introduction

6.2 File Access

V ',>

19

19

21

24

24

24

25

26

26

27

27

28

28

31

31

31

31

32

36

38

38

38

39

40

40

40

6.3 Menu Database

6.4 Create Menu Branch

6.5 Change Menus

6.5.1 Cr1ange Option

6.6 Messages

6.7 Global Menu

6 .8 List Hierarcl1y

6.9 Save File -
""'

6.10 Program Structure

6.11 Installation 011 a VAX

REFERENCES

i\PPENDIX A - l\1enu Processor Routines

APPENDIX B - UIT$CREATE Routi11es

1\PPENDIX C - Sa.rnple Tree Structure Data File

APPENDIX D - Sample UIT$CREATE session

VITA

. ~

Vl

' '

41

41

42

42

43

43

'.44

44

45

45

47

49

64

90

95

106

•·

"

ij

Figure 2.1. File Relationships.

Figure 2.2. Sample main program for automatic menuing~

Figure 2.3. Sample main program for i11teractive menuing.

Figure 3.1. Built-in global menu.

Figure 3.2. Redefining global menu name.

Figure 3.3. Sample subroutine using message informatio11.

Figure 3.4. Sample subroutine accessing type al1ead buffer.

Figure 4.1. General menu data set format.

Figure 4.2. Option line pointing to a submenu.

Figure 4.3. Option li11e poi11 ting to a su bro11 tine.

Figure 4.4. Example menu title data line.

Figure 4.5. Exa1nple n1essage data line.

Figure 4.6. Trivial data file.

~·igure 4.7. Associated CONTROL.FOR.

'II

Figure 5.1. Sample MENDAT and MID arrays.

Figure 5.2. ACCESS array.

Figure 5.3. KEY_CHARS and I{EY_ID arrays.

Figure 6.1. File Access menu.
..

Figure 6.2. Menu Database menu.

Figure.,6.3. Create Menu Branch menu.

Figure 6.4. Change Menu menu.

Figure 6.5: Change Option men·u.

• •
Vll

\
I

LIST OF FIGURES

8

11

13

17

18

21

22

25

27

27

28

28

29

29

34

35.

35

40

41

42

42

43

,_ ~ .. ·~-- ,. - ·.-;

(

Figure 6.6. Messages menu.

Figure 6.7. Global Menu Status menu.

Figure 6.8. Sample menu hierarchy list.

Figure 6.9. Save File menu.

Figure A.l. Menu processor common blocks.

Figure B.l. UIT$CREATE common blocl{s.

/)

'. -·

•••
VIII

f, .•

-- \
\

43

44

44

45

50

64

, .

..

~· ABSTRACT

This thesis discusses a general purpose menu processor user interface tool for

applications in Mechanical Engineering .. The menu processor triggers subroutines or submenus

based on user input to an applications program.

The menu processor relies on a data file for menuing hierarchy inf9rmation. 'fo build
'"..

a11 interactive application program, the menu processor trigger function library is linked with

applications subroutines. The menu processor may be implemented to control an entire

application or the application programmer may choose to i11terface with the processor on a

subroutine by subroutine basis.

The menu processor is written in FORTRAN on a VAX/VMS 1 operating system. :The

user interface supports two types of devices, Tektronix 41-series2 termi11als a·nd workstation-s

witl1 a program function keyboard (PFI{) for user input.

The menu processor includes several features in addition to the. menu hierarchy

triggeri11g function. These inclu.de built-in and app1jcations dependent global ·menuing, user

option selection type-ahead, and warning and error message storage. Also, the data file

contai11ing the hierarchy information may be automatically generated using UIT$CREA TE, an

example of an interactive application using the menu processor .

. 'II

1VAX/VMS is a trademark of Digital Equipment Corporation.

2Tektronix 41-series is a trademark of Tektronix, Incorporated.
1

I

Chapter 1

INTRODUCTION

1.1 INTRODUCTION

Many computer applications in mechanical engineering require the use of menus

to guide the user through an interactive software program. A user selects oi)tions fron1

a list and the -menu processor forces the appropriate action to follow l)ased on a

..

particular menu l1ierarchy. Currently-, each progra_mmer must write a ·menu processot ·to

fit his application. A common general purpose menu processor would alleviate this

duplication of effort and free the programmer to concentrate on tl1e applications. 3 In

addition, if implemented within a company or a department, botl1 progra111mers and

users would enjoy a standard user interface. 4

This thesis discusses a general purpose menu processor user interface written for

" tl1e mechanical engineering community at Lehigh University. It is written in

FOR'TRAN on the VAX/VMS operating system. It supports VT100 5 dialogt1e display

style terminals, Tektronix 41-series terminals, and U nigraphics II6 workstations. Tl1e

3 I(ir-k Christenson, "Writing Easy-to-Use Programs for Computers," l\fechanic_al

Engin-eering, Volume 4 No. 12, pp 66-69.

"
4 Dan R. Olsen, William Buxton, Roger Ehrich, and David J. I{asik, "A

Context for User Interface Management," IEEE Computer Graphics and Applications,_

Volume106 No. 9, pp. 33-41.

5VT100 is a trademark of Digital Equipment Corporation.
Ii·

2

Tektronix terminals and Unigraphics workstations support graphics applications.

1.2 USER INTERFACE

• R;

A common menu processor user interface can alleviate many applications

programming problems. First and foremost is the duplication of effort warranted for

V
programmers without this tool. Each programmer must decide how to attack the user

interface problem and then spend time implementing it. Also, because developing a user

interface is considered application dependent, the interface is not often versatile. 7 For

example, the programmer must alter sections of existing code in order to make small

additions or modifications to his user -interface.

A common menu processor provides a more consistent interface to both users

and programmers. If tl1e processor is easy to i11tegrate into an application,

programmers will opt to incorporate it into applications on a regular basis. The menu

l)rocessor design should allow modifications or additions to the menu structure to be

quick and simple with no rewrite of the programmer's original code. 8 Error or ,varning I .

1nessages .also should be processed separately from the application code for easy changes

and foreign language portability. The users benefit from a common user interface by

being familiar with the features of the interface independent of the application6. This

6Unigraphics II is a trademark of McDonnell Douglas Manufacturing and

Engineering Systems Company.

7 Olsen, Buxton, Ehrich, and Kasik, pp.34-38.

'

8Christenson, pp. 66-69.

3

,

. '

eradicates much of the unusability of cutreht applications by users other than the

programmer. 9 In addition, the user will .regard applications p.tograms· with a common

interface as much more unified.

Two user interfaces of the menu processor support the two types of devices.

Both the VTlOO display and the Tektronix 41-series terminals are dialogue style devices.

In this interface, the menus scroll along the left side of the screen. From these menus,

the user selects an option by keying in the alpl1an umeric characters correspondi11g to the

characters displayed before a deli1niter for that particular option. Tl1is type of

environment is offered by the IDEAS 10 Solid Modeling and Design soft\\rare. 11 The

other interface supports the workstations with two sepa.rate devices, a message monitor

(MM) and a program function keyboard (PFI(). . In this case, the menus appear on

the MM and the user select an option by pushing tl1e button on the PFI(corresponding

to tl1e number of the option on the rnenu. This type of environment is offered ,.QY the
j .

U nigraphics II software. 12 The Tektronix 41-series terminals may also be used as

U nigraphics workstations where the dialogue area is used as a message monitor. If an

application supports both types of devices, tl1e programmer may specify tl1at option

9 Robert F. Sproull, W. R. Sutherland, and Michael I{. U1Iner, Device-

Jn·dependent Graphics, (New York: McGraw-Hill Book Company, 1985}; pp. 206-210.

lO IDEAS is a trademark of Structural Dynamics Research Corporation.

11Structural Dynamics Research Corporation, IDEAS User's Guide, (Milford OH:

Structural Dynamics Research Corporation, 1988), pp. 11-1,11-3.

12McDonnell Douglas Manufacturing and Engineering Systems Com_pany,
;,..,.,.

Unigraphics II Design Module, (Cypress CA: McDonnell Douglas Man ufacturi.ng an·d

.

Engineering Systems Company, 1987), pp. 1-3.1,1-3.3~
~. ' ...

4

' 1 . I'

numbers are displayed on the dialogue style interface, thus the application appears

device independent.

1.3 IMPLEMENTATION

The general purpo~e menu processor consists of several parts. It relies on a tree

data structure file for all menu interaction data. A library of routines drive the menuing

according to its menu hierarchy. In addition, each application m·'ust have its library of

routines that are triggered by menu selections.

The programmer may cl1oose from two separate types of implemen_tation. The

first, and simplest, is for the programmer to mal<e a single call to the menu processor

triggering function and allow the processor to drive the entire application. The other

method allows tl1e programmer to make individual calls to the processor on an as needed

basis.

The general purpose menu processor relies on a tree structute. data file.

According to specification, this file holds the information on menus, the relationsl1ips

among menus and applications subroutines, additional information on global menu

status, and warning or error messages. An interactive menu-driven program allows the

programmer to create a menu hierarchy and save tl1e data to a file that conforms to

specifications.

1.4 TERMINOLOGIES

Tree structure refers to the menu hierarchy·. Pointers refer to the interaction of

·'

elements within the menu hierarchy. For example,. a portion of a tree structure may be

that the third option of the second menu points to the fifth menu. The uppermost

5

menu in the hierarchy is called the top level menu or rnain menu.

The programmer implements the menu processor into his application. This

application, in tur11, is intended for the user. The menu p-rocessor and its related files

reside in the user interface tool (UIT) directory on a VAX.

data file, the programmer runs the UIT$CREA TE program.

/·-,,,,/
j

6

For example, to create a

(.

\.

I
(

' a'
~- _.;- '.'·

Chapter 2

IMPLEMENTATION

2.1 INTR0DUC
1
TION

There are two implementations of the general purpose men.u processor. In the

automatic implementation, the applications program triggers the interaction l1andler

function at a specified level of the menu hierarchy. Branching down tl1e hiera.rchy and

activating menus from the menu library or subroutines from the applicatio11s library is

controlled wholly by user selected options. In the interactive i1nplementation, the

applications program activates the menu triggering function one level at a ti1ne. Most

applications prefer a mixture of __. e two implementations.

In general, the programmer creates an applications library, a main program, a
;tl

tree structure data file, and an automatically created controlling subroutine. I-Ie links

these modules together with the menuing trigger function lil)rary to obtain an executable

image of the main application program.

The tree structure data file includes a field that indicates whether an option

points to a subroutine or a menu, as well as a field to indicate wl1icl1 menu or subroutine

the option calls. Appendix C lists a ~ample tree structure data file. Chapter .3 discusses

the tree structure data file specifications in detail. The programmer m~y create the d<:tta

(file according to specifications or he may run the UIT$CREATE program in order to do

this for him, Chapter 6 discusses the UIT$CREA TE program in detail.

"

The,·programmer's first step, is to create a library of his applicatons subroutines. ·

7

•

,,,(';,-,\ ::,

For the purposes of this document, APP .OLB will designate this applications library file.

Second, the programme~ sets up a menu structure to guide his application and he

creates a menu tree data file. Even if he created this file according to specification, he

must run UIT$CREATE once to write the subroutine CONTROL.FOR from tl1e data

file. This subroutine performs all of the necessary calls to the applications library based

on user selected options. In addition, CONTROL.FOR must not be renamed. An

example CONTROL.FOR is listed in Appendix D. Finally, he must con-struct tl1e main

program, MAIN.FOR, which activates the menuing.

relationships.

'

.

Input

Interactive

Data

MAIN.FOR

CON'fROL.FOR

UIT library

Application

library

MENU.DAT

.

Into

UIT$CREATE

Link cornmand

·•

'

MAIN.EXE

.Figure 2.1. F'ile r.eta.tionships.

)

.

Figure 2.1 outlines these

Output

MENU.DArf

CONTROL.FOR

MAIN.EXE

. . ..

Application

progr<:1m

{
In general, the arguments to the pre-processor subroutines are the data file

name, the delimiter, and the display switch. If the data file field sent is blank, the

8

(
\
)

•

menu processor assumes the name MENU.DAT as the default. Each menu option has

an associated set of key characters that fully specify the option for selection. The

delimiter is the character that separates the key characters from the re1nainder of the

option description. The characters that fall before the delimiter are the key characters.

For example, in the following option:

ST-Calculate stresses

the delimiter is a dash - and the key characters are ST. If no delimiter is defined, the

J)rocessor assumes that the first four characters in an option are the key cha.ra.cters.

TI1e switch variable detern1ines wheter the k:ey characters or option 11 um hers \Vill lJe

'

displayed on a 1nenu. If tl1e switch variab'le equals 1, then the optio11s are clisplayecl a.s

they are found in the data file, complete with delimiter. If tl1e switcl1 variable eqt1als 2,

tl1en the options are displayed ,vitl1 option n un1 lJers ,vhile the key chara.cters are ignored.

For example, witl1 a switch variable of 2, the above optio11 ,vould appear:

4 Calculate stresses

if it were the fourtl1 optio11 on the menu. A switch variable of 2 is recommended in an

application that is impleme11ted on both the dialogue style d.evice and the U 11igraphics

workstations so that menu selection appears device independe11t to tl1e user. The s,vitch

integer is automatically assu1ned equal to 2 ,vhen li11king with the U nigrapl1ics device

)

1nenu trigger function library. The data file variable must be declared

CHARACTER*30; the delimiter variable CHARACTER*l; and the switcl1 variable

INTEG ER*2. -

Before the programmer may run his application, he must link all of the

compiled modules together with the menuing trigger function library. The order of the

modules in the link command is important. The Digital Command Language (DCL)13

9

. ,

,
i .

·'

linking comll))il,nds for the dialogue style terminals and the U nigraphics workstations

follow respectively:
d

$ LINI{ MAIN, CONTROL, APP /L, UIT$MENUS/L

$ LINI{ MAIN, CONTROL, APP /L, UIT$UFMENUS/L, UGUSER2/L

These result in one executable file, MAIN.EXE, the executable
.
1111age of th.e

applications progra111.

2.2 AUTOMATIC IMPLEMENTATION

The automatic i1nplementation requires that each menu optior1 pcJints to either

a subroutine or a rnenu. The 111enu tree structure data file contains a.11 of the pointer

i11formation. 'fl1e main application progra1n issues a si11gle call to tl1e MEN US

subroutine of the menuing trigger function library. Tl1e applications progra111mer then

links the 111odules together and runs the resulting executable i111age. During· the

a,pplication program execution, if the user cl1ooses an optio11 tl1at pain ts to a su l)men u,

tl1e sub111enu is displa,yed. If the user selects a.n optio11 that points: to a sul)rc)utine, the

subroutine is executed and the original menu remains active.

The • main program issu.es a call to the menuing trigger function library's

MENUS routine. The arguments for this subroutine a,re tl1e tree structure data file

name , the delimiter symbol, the first m·enu activated, ancl a display switch. The first

1nenu activated variable must be declared CHARACTER*30. Figure 2.2 lists a sample

• main program.

13DCL is a trademark of Digital Equipment Corporation.

10

!.

•

C

C

PROGRAM MAIN

This is provided by the applications programmer

CHARACTER*30 NAME, FIRST

CHARACTER DEL

Any initialization goes here

NAME == 'THESIS.DAT'

FIRST == 'Top Level Menu'

DEL ' '

C Invoke the menus

CALL MENUS (NAME, DEL, FIRST,1)

END

Figure 2.2. Sample main prog.r·am .for automatic menu_ing·.

2.3 INTERACTIVE IMPLEMENTATION

/

The interactive imple111entatio11 attends to the ca.ses wl1ere more versatility is

war'ranted. For example, an option first executes a subroutine, then branches to

another menu. Self-contai11ed modules tl1at c_an be classi-fied as separate fro1n the rest of

the application, such as view rnanirJulations, may use tl1is i1111)len1e11tation also. TI1e

interactive implementation may be used
. .
1.n conjunction witl1 {} the au.tom.atic

\\

implementation.

In order to invol{e a menu, a call must be issued to the menu trigger function

library TREE routine. The argume11ts are the starting menu, the option selected, the.

next menu based on the option selected, and the display switch. The starting menu

variable and the display switch comprise the input variables. The option selected

variable and the next menu variable comprise the output from the subroutine. After

TREE has returned the next menu branch and the option selection via key characters,

11

the applications program acts on this information. The menu processor is only activated

during a call to TREE. The starting menu variable a11d the next menu variable are

declared CHARACTER*30. Each one must contain the exact spelling, including

capitalization, as the corresponding menu in the data file. The option selected variable

1nust be declared as CHARACTER*4.

· There are two methods of using the TREE subroutine. The more common use

drives the er1tire application from the start. The otl1er mixes some calls to TREE \vitl1

the original call to MENUS as in the automatic case. This secon.d method is

recommended when only a few special cases exist. In both methods, the 1ne11ui11g trigger

function routines manage automatically the simple cases where an option points to

either a subroutine or a submenu based on tl1e tree structure data and the CONTROL,

subroutine. After tl1e simple case has been handled, control of the applica.tio11 returns

to the application program rather than to the menu processor.

In the first metl1od, tl1e program must ma.ke a call to INIT_MENU i11 order to

read i11 the data. file and' set up tl1e arrays. Tl1e arguments of tl1is subroutine a.re the

data file name and the delin1iter symbol. WI1en a particular optio11 points to both a

subroutine and a n1en·u, tl1e data file pointer must be to the submenu. After a.11 option

l1as been selected, TREE returns the key characters of the option in tl1e option selected

variable. It also determines tl1e next menu in the I1ierarchy and returns this information

via the next menu variable. The applications program checks tl1e option ret_urned and

acts upon it accordingly. The TREE subroutine may be called from anywhere in tl1e

program, including within applications subroutines. This approach is recommended for

very large applications because of the potential complexity of the menus.

The example program in figure 2.3 illustrates this method. The option whose

l(ey character are ST requires both a subroutine call and a :branch down the menu

l1ierarchy. The data file specified that this option points to a submenu, returned in the

NEXT variable. Also, the application begins at the "Read in file" menu.

.

PROGRAM APPLIC

CHARACTER*30 FILE, START, NEXT

CHARACTER*4 STATE

CHARACTER*l DEL

FILE

DEL

'THESIS.DAT'

' '

NEXT 'Read in File'

CALL INIT_MENU (FILE, DEL)

50 START== NEXT

CALL TREE (START, STATE, NEXT, 1)

---IF (STATE. EQ. 'ST') CALL STRESS

GO TO 50

END
.

Figure 2.3. Sample rnain. program for interactive menuing.

·•

Alternatively, whe11 there are relatively few instances of an option pointing to

both a menu _and a subrouti11e, some minor adjustments to the automatic method are in

order. The main program is identical to the main program of the automatic

implementation as in Figure 2.3. In this case, tl1e data file pointer i11dicates the

subroutine rather than the menu. The call to TREE indicates that a menu is also

warranted. Within the subroutine TREE is called with the START variable equal to

the next menu down the hierarchy. At this point, however, the subroutine does not

return any of the TREE data to the automatic part of the application. Therefore, the
" ,·

subroutine must use th~ TWEE subroutine for all control beyond this point _in the

.13

..

l1ierarchy.

2.4 VAX OPERA.TING SYSTEM INSTALLATION

The menuing trigger function libraries must be installed by the system manager

on a VAX system. Th.e user interface tool kit directory must be created in whicl1 tl1e

menus libraries reside. All files within this directory need a \Vorld read and world

r
execute protection. Then, a system logical name must be djh-ed for each library. The

directory is crea,~d wit-11 the following DCL commands:
•

$ CREA TE/DIR [UIT]

The libraries MENUS.OLE and UF1\1ENUS.OLB are i11stalled witl1 the follo\ving DCL

co111mands:

•

$ DEFINE/SYS UIT$MENUS UIT$MENUS.OLB

l) $ DEFINE/SY6 UIT$UFMENUS UIT$UFMENUS.OLB

rrhese logical name definitio:ns should be included in the ·system startup command

procedure. Once these logical names are defined, all users on the system may access the

libraries for linking purposes.

14

,.
'· ·-

1

.._
, ... ,,,
I

.I
/

./

l
. .

Chapter 3

FEATURES

3.1 INTRODUCTION

Several features distinguish the automatic menu processor user interface tool

otl1er than automatic menuing according to a hierarcl1y. Most of these features are

modeled after those found in the computer-aided engineerig graphics pa.cka.ges

Unigraphics II and IDEAS. A n1ain feature is the option selection. On the Unigrapl1ics

II user interface, tl1e user selects options by pusl1ing lit buttons on a PFI(. while the

1nenu is listed on tl1e Ml\11. 14 011 the IDEAS interface, the user selects options by typing

in key characters of each menu item listed on the screen. 15

A feature common to both systems is the built-in global menu. Tl1is menu is .

available to the user for selection at all tirnes. In U 11igraphics, l1owever, some of the

global options are not available to a menu when not feasible.

IDEAS allows the user to type several option l{ey characters on one command

line. If an .1 error is encountered, IDEAS aborts reading the remainder of tl1e command

line. This type ahead capability is extremely useful for the user who is very familiar

,·:5, ,-,

14Unigraphics II Design Module, p. 1-3.1.

15IDEAS User's Guide, p. 1-4.

15
/

•

..

-·~·

3.2 B.UILT-IN GLOBAL MENU

The built-in global menu is an inherent part of tl1e general purpose menu

processor. These global options are available at all times on all applications that use the

1nenu processor. There are three menu control options in the global menu, reject, main

1nenu, and list global menu. The "reject" option brings the user up one level in the

1nenu hierarchy. The maximum levels tl1at tl1e hierarchy 1nay l1ave is 100. Tl1e "main

n1en u" option moves tl1e user to tl1e top level menu rega.rdless of tl1e current position.

The "display global menu" option lists the global menu options.

3.2.1 DIALOGUE STYLE DEVICE

Because the menus scroll on the left side of the scree11, there are tl1ree

additional built-i11 global options for dialogue style devices. Tl1e first is "clear screen"

which erases all dialogue from the screen. The second is "write 111enu" wl1icl1 rewrites

tl1e current menu on tl1e dialogue area. The third is "111en u display" w l1icl1 toggles the

1nenu display between on and off. F_igure 3.1 is a listing of the built-in global inenu. 17

16IDEAS User's Guide, p. 1-5.

17IDEAS User's Guide, p.1-8.
I

·/
{

16

..

•

! - Reject

? - List Global Menu

/ - l\!Iain Menu

M - Rewrite Current Menu

-. CLS - Clear Screen

* - Menu Display

Figure 3.1. Built-in glo bat menu.

3.2.4UNIGR/\PHICS DEVICE

\
\)
! ' ,,

I

On a U nigraphics device, the user selects options by pusl1ing lit buttons. 18 If a

user selects an unlit button, 11othing happens. Because of tl1e MM, tl1e "write current i

1nenu" and "clear scree11" options are unneccesary. This reduces tl1e built-in global

n1enu to two options, each with a per1nane11tly set button. Tl1e "Reject" button

1:. '

activates the reject option. The "Terminate Operatio11" button serves as the main

menu option.

3.3 APPLICATION DEPENDENT GLOBAL MENUS
• \,

The programmer 111ay want to include more global menu options tl1an have

been built into the menu processor. Any menu in the menu data file is eligible to be a

global menu. This menu name must be specified in the main program before the

initiali:i'ation call. In the glob.al menu listing, the application dependent options follow

18Unigraphics II Design Module.

17

'.

\

the built-in options. Every application dependent global option may be turned on or off

for each menu so the programmer may control which global options are available to

which menu. They are assumed off unless specifically turned on in the data file .
.

\, ·,.;
\ .

3.3.1 GLOBAL MENU NAME

'

The global menu name defaults to "Global Menu" unless otherwise specified.

In order to specify a new 11ame for the globaJ menu, the progra.mmer must inclucle the

GLOBAL common block in his main program and redefine the variable GMWORD.

The men uing trigger function library searches for this menu in. the data file and fills the

global menu arrays accordingly. GMWORD is declared CI-IARACrfEil*30. Figure 3.2

lists a sample portion of a main progra.n1 that redefines CJl\1W()IlI).

PROGRAM MAIN

COMMON / GLOJ3AI_J/ GMWOrtD

C1IARACTER*30 GMWOilD

GMWORD

.
•

'Change IJarameters'

Figure 3.2.. Redefinin.g global menu name.

3.3.2 UNIGRA"PHICS DEVICE

To access the global menu on a U11igraphics device, the global menu button

must be pushed. These devices have a limited number of buttons that may be

implemented, so that the global button may change from menu to menu. It will always

be the last button in a menu list. Since the list is limited to fo'tirteen choices and one is
..

taken up by the global menu, the programmer should limit a menu that will be

18

I

' . '

,,

implemented on a Unigraphics device to tl1irteen options per menu unless no ap:plication

dependent global menu exists.

3.3.3 MENU DEPENDENCY

Each option on the applications dependent global menu may be activated

differently for each·-menu in the application. This information resides in the menu tree

structure data file. For example, an application has four additional global menu options.

For the seventh menu, option 2 is turned off, while the other three are on. If the

current menu is the seventh menu, and the user keys in ? to list the global menu, the

following is listed to the screen underneath the built-in global me-nu:

F-First Option

T-Third Option

FT-Fourtl1 Option

Tl1e second option of the global menu is unselectable at this ti111e. On a U nigra.phics

,vorkstatio11, these would be listed as the first three options under the global menu.

3.4 MESSAGES

Accessing warning, error, or informational messages is an additional feature to

the user interface. Because the messages are stored in the data file rather tl1an l1ard-

coded into the application, minor changes to messages do not require recompiling and

linking to create the executable image. This allows the programmer more flexibility in

changing the syntax of l1is interface. He may choose to define his final output

statements at one time by editing the messages in the data file, th us providing users

with a more understandable interface. 19 Further, if the application is for the

international m?,rket,. the only alteration necessary to translate the application into

19

another language; i.e. Turkish; is to translate the information in the data file. With

this in mind, it is not difficult to plan the application such that all output to the screen

' ~

is stored in the tree structure data file. 1

In order to access a message, the progra.mmer must include the INOUT

MESSAGE and common blocks in his subroutine. 1'he INOUT common lJlock conta.ins
I:?

the input and output registers. The MESSAGE common block contains the WARERR

array with all of the message information. It is declared CHARACTER*30 and has

1000 elements. The messages are stored in the sequential order in which they appear in

the data file. For example WARE RR(5) is the fifth message found in the message
-f

i.)~r ~·;,.

l section of the data file.

The program1ner may choose to mix tl1e W ARERR, information with his data

or use it alone. The INr'ORM subroutine lists a n1essage to the screen according to

message number. If the programmer needs to mix otl1er information in the message, the

subroutine LONG deter111ines how 111any of the 30 characters are filled. Its input

arguments are the message variable and the total n u111 ber of characters. The output

argument is the filled number of cl1aracters. Both of the integer variables are declared

INTEG ER*2. Figure 3.3 lists a sample subroutine using tl1e message information.

:1·9 Christenson.

20

Q

\

1·

100

SUBROU'"I'INE EXAMPLE

COMMON/ MESSAGE/ WARERR (1000)

COMMON / IN OUT / IDINP, IDOUT

CHARACTER*30 W ARERR

INTEGER*2 Ll, L2

CALL INFORM (4)

X == 3.0

CALL LONG (WARERR(6), Ll, 30)

CALL LONG (WARERR(7), L2, 30)

WRITE (IDOUT,100) WARERR(6), X, WARERR(7)

FORMAT (5X,A<Ll>,F4.1,1X,A<L2>)

RETURN

END

Figure 3.3. Sample subroutine using m·essage information.

3.5 TYPE AHEAD

.

I

'

On a dialogue style device, an option is selected by typing in the key cl1aracters
• /-r-·~·--~-

/
of that option after the "Enter Command: " req·uest. Users fam.iliar with an application

1nay choose to key in several sequential option l{ey characters at one time. These

A

sequential commands are stored in the type ahead buffer.

The user may type in a list of commands"'up to 30 characters in length. This

type ahead is applicable also in the interface where option numbers are displayed rather

than ke~y characters. Each command must be separated from the next with either a

space or a comma. The command line is read as one unit and then decoded into

elements of four characters or less. The menu processor then processes each command

separately~ On detecting an invalid option, the processor clears the entire buffer and the

21

\
i '•

·,

r
I

remainder of the command line is aborted.

The programmer may want .. to extract user input from the type ahead buffer to

:his application. In order to access the buffer, the application subroutine must include

the T AHEAD common block. Figure 3.4 lists a sample portion of an application

subroutine accessing the type ahead buffer.

.
.

C

50

C

SUBROUTINE APPLIC

COMMON/ INOUT / IDINP, IDOUT

COMMON / TAI-IEAD/ BUF, PBUF, MAXBUF

CIIARACTER*4 BUF(30), WLEN

PBUF,MAXBUF

Find length

WRITE(IDOUT,*) ' Enter le11gth: '

PBUF ==.PBUF + 1

IF (PBUF.GT.MAXBUF) THEN

READ (IDINP,100) LENGTH

ELSE

WLEN == BUF (PBUF)

' '

DECODE (WLEN ,300,ERR==50) LENG TI-I

END IF

Continue application

•
•

Figure 3.4. Sample subroutine accessiQll type ahead buffer.

. ' . "

'
'

First the application subroutine declares the common blocks and the variables. PBUF is
}?

the pointer to the latest element of the BUF type ahead buffer. MAXBUF is the
'

number of elements in the buffer. When the buffer is searched for input, the application

increments the pointer and checks it against MAXBUF. Then the su.broutine reads the

22

increments the pointer and checks it against MAXBUF. Then the subroutine reads the

'
11ext element of BUF and dee.odes it from a character string to a numeric value. If the

-
next element of BUF cannot be decoded into a value, execution returns to the line

requesting user input.

; .

j

,~ ...

23

DATA FILE SPECIFICATION

4.1 INTRODUCTION

The tree structure data file contains all information regarding the menu

l1ierarchy, global menu options, messages, and subroutine pointers. Tl1e file specification

is fairly rigid. A file is most easily created or updated by ru1111ing the CREA TE

program and electing to save tl1e information. This als.o automatically generates the

CONTROL.FOR subroutine. Appendix C lists an example data file.

A tree structure data file consists of a n um her of data sets. Eacl1 <la.ta set

holds either menu data or messa.ge data designated by a type number. A type number

100 indicates tl1at a n1e11 u data set follows; a type number 200 indicates that a messa,ge

data set follows. Between each data set is a line containing the integer -1.

4.2 MENU DATA SET

A data set type number 100 designates that the following information composes

• a menu. The menu data set consists of a title followed by options. The menu data sets

are separated from one another by -1 delimiters. The menu processor can handle a

maximum of 1000 menus and 10000 total ·options per tree da,ta file. Data fields· to the

right of the menu title or option hold any additional information such as pointers or

global menu status. Both menu titles and menu options data fields have a length of
\

thirty characters. There is no maximum number of options per menu but a maximum

0

f 24

- \-

/

,.

of thir,..teen is recommended because only thirteen are in any one menu on a U nigraphics

device. Figure 4.1 lists the general format for a menu.

..

100

Title of Menu

Option 1

Option 2

•
•

Option N

-1

J

Figure 4.1. General menu. data set format.

The first menu listed in the data file must be the top level menu, however this

is the only restriction on tl1e order of menu(.·data sets in tl1e file. Tl1e top level menu is

the trunk of the menu tree. Control is returned to the top level menu llpon tl1e user

selection of 'main me11u' from tl1e global menu. Often, it is the first n1enu displayed i11

tl1e application.

4.3 OPTION DELIMITERS

1 • Delimiters help the user to determine exactly what l(ey strokes a.re necessary to

choose an option. If a delimiter is used in tl1e options of a menu, it should be specified

in every option within the data file for continuity amo11g men us. These delimiters

promote continuity from menu to menu. They also allow for less l{ey str.ol(es pet o_ptio·n

selection because if a delimiter is not used, the key characters for the o·ption default to

the first four characters in the option. For example, if a dash '-' is the delimiter., it

appears in every option somewhere within the first five characters ·of the thirty character

field.

25

..

4.4 POINTERS

Within an application, the selection of a menu option triggers some response.

(

This response may be to display a new menu, to call a subroutine, or to execute some

other code from the applications program. Regardless of the response, there must be a
.)

,.

pointer in the data file to guide the men uing trigger function library to react properly.

The pointer field occupies the same line as the option. It is a 1 cl1aracter

integer field occupying tl1e 31st cl1aracter in the line. A 1 points to a menu; a 2 points

to a subroutine; and a O or blank field indicates that the menuing trigger ft1nction

p •

library is not responsible for triggering a response on this option. A cl1aracter field

follow directly next to tl1e integer pointer field. It is 30 characters long: and indica.tes to

\Vl1ich 1nenu or subroutine the option points, depending on the i11teger field.

D

4.4.1 TO SUBMENUS

If a 1 occupies tl1e pointer integer field, the option points to a submenu. The

following character field names tl1is menu. The spelling and capitalization of the

su bmen u must 1natch tl1at of the corresponding menu's ti tie. This menu must exist

"
somewl1ere i11 the data file or the application program will encounter an error when tl1is

option is selected. The programmer may preprocess the data file to test for this

compa~ibility by using the 'check file' option in the UIT$CREATE program. When

using the interactive implen1entation, it is important to remember that if an option

points to both a, submenu and a subroutine, the submenu is to b·e named in the data file

since the application will call the subroutine when the option is s~Jected. Figure 4.2

shows an example option line of a data file pointing to a submenu.

26

.>·

PO- Specify Point !Generic Point Menu

Figure 4.2. Option line pointing to submenu.

4.42 TO SUBROUTINES

If a 2 occupies the pointer integer field, the option points to a subroutine. The

following character field names this subrutine. This field also includes any arguments of

'the subroutine. The CREA TE program mu~t be run at least once and the save option

must be chosen in order to create the subroutine CONTROL.FOR which deals with

these subroutines. Figure 4.3 shows an example option line of a data file pointi11g to a

subroutine.

AB- Absolute Coordinates 2 ABSOLUTE

Figure 4.3. Option line pointing to subroutine.

4.5 APPLICATION DEPENDENT GL()BAL MENU INFORMATION

Each menu in the tree may specify which applic&.tion dependent global 1nenu

options are available to it. Since the globaJ menu is menu dependent, this information

is included on the line containing tl1e menu title. This d!ta field begins in column 32 to
,!

-/

correspond with the start of the pointer subroutine or submenu of the option lines. This

field may accomodate up to 32 items in the application dep~ndent global menu.

The data field is composed of 1 's and O's in sequence. A 1 signifies that an.

data field indicates

a O signifies th.~91t an option is unavailable. The first integer in the
j/

the status offthe first option on the global menu; the second integer

option is available;

\),, i

27

\

"

.,

indicates the status of the second option on the global menu, and so on. If the field is

blank, no options are available to the menu. This is useful when no application

dependent global menu exists.
'-.#'

Although this field may be up to 32 switches long, it

11eed only accomodate as many opt_ions as the global menu holds. Figure 4.4 lists an

example title data line for a me.nu to which the first, third, and fourth options of a five

option application dependent global menu are available.

_C_r_e_at_e_G_e_o_m_et_r_y ______ l_O_l_lO ______________ _________.\

Figure 4.4. Example menu title data line.

4.6 MESSAGE DATA SET

A data set with type num her 200 designates that tl1e following information

composes a message da~ta set. There is a maxim um of 1000 1nessages. Each message is

f
in a field ·bf 30 characters. The ·programmer accesses a message by its relative pla.ce111ent

in the data file. For example, tl1e tenth message in the data file is n1essage # 10. Figure

4.5 lists an example 1nessage data line.)

\

Warning: Surface 11ot closed
I

Figure 4.5. Example message data lin·e.

If a message is longer than 30 characters, it should be truncated at the 30th character

and continued on the next data line -in the file.

il

4.7 CONTROL.FOR

Once the tree structure data file is completed, the . controlling subroutine

CONTROL.FOR is created. CONTROL.FOR is unique for each data file. If one

28

option from a menu tree is deleted, CONTROL.FOR must be recreated. The most .

reliable way to create it is to run the CREA TE program and save the information.

The CONTROL.FOR subroutine triggers the applications subroutines where

necessary. It calls subroutines based on relative placement of the options within the file.

The subroutines it calls are equivalent to the data field containing subroutine name after

a subroutine pointer in tl1e data file.
0

The relative placement parameter is equal to the placement of the option in the

data file. Both menu titles and menu options are counted in this placement. For

example, the trivial data file in. figure 4.6 would produce the CONTROL.FOR in figure .

4.7.

100

Top Level Menu

ST-Stresses

EX-Exit

-1

100

First Menu

SH-Sl1ow Stresses

-1

Figure 4. 6. Trivial data file.

lFirst Menu

2EXIT

2STRESS

SUBROUTINE CONTROL (NOPT)

IF (NOPT.EQ.3) CALL EXIT

IF (NOPT.EQ.5) CALL STRESS

RETURN

END

Figure 4. 7. Associated CONTROL.FOR.

i

29

. :

.. ;,~

}

· If the data file were changed so the 'EX- Exit' were no longer an option,

CONTROL.FOR would also require changes. If the applications subroutines include
'7s

arguments that must be commoned and/or declared, the programmer must edit the

CONTROL.FOR file accordingly. Since the menu processor triggers the applications

subroutines and control of the application alternates between the menu processor and

the application, any arguments to these routines would be. lost during the menu

procestor activation. Therefore, the use of common blocl{s in tl1e application subroutine

is recommended.

30

. ~ ' '•"'
\

\

-

Chapter 5

..... PROGRAM STRUCTURE

5.1 INTRODUCTION

The general purpose menu processor prog-ra-in consists of three parts; menu

initialization, user interface, and option processing. The menu initialization part sets up

the menuing data structure. The device dependent user interface part displays the

menus and reads user response. The processing part controls the application according

to the user's input command and the menu l1ierarchy.

5.2 MENU INITIALIZATION

The menu i11itialization initializes variables, reads in the data file, and fills the

menu hierarchy arrays. The initialization differs slightly between the automatic

implementation and the interactive implementation. The programmer interface of the

automatic implementation is simpler than that of the interactive implementation. In the

automatic implementation, only one call is made to the menuing trigger function library

to cover both the initialization and the menu processing.

5.2.1 INITIALIZATION ROUTINES

In the interactive implementation, the applications program must call

INIT _MENU before proceeding with any menu processing. This routine initializes

menuing variables and calls the routine to read the data file. The arguments for

31 .•

INIT MENU are the tree structure data. file name and the delimiter symbol,

respectively. Appendix A lists the calling sequence for INIT_MENU. Figure 2.3 lists a

sample applications program using INIT_MENU.

Before issuing a call to read the data file, INIT MENU initializes several

variables; the input and output registers, the type ahead buffer pointers, and the reject

~

pointer. If the programmer I1as not specified a data file name, it defaults -4o

MENU .DAT. The global menu name is checked against the default "Global Menu",

also. Then INIT MENlJ calls READ l\lIENUS to read the 1nenu data into menuing

arrays.

In the automatic implementation, the applications program must issue a call to

l\1ENUS. This routine performs all of the i11itializa.tion in INIT 1\1:ENU, a.s well a.s the

1nenu processing. Its calling sequence is listed in Appendix A. Figure 2.2 lists a.n

example program using this automatic implementation.

For the U nigraphics user interface, there is an additional initialization call in

both INIT MENU and MENlJS. Tl1e User Function routine UFlOOO is called to

i11itialize the U nigraphics terminal. Tl1is call enables later calls to the User Fu11ction

library.

5.2.2 READING DATA

The READ . MENUS routine fills the menuing arrays by reading in the tree
l

structure according to data file specifications. It reads the· menu data sets and message

data sets of the specified data file and fills the menu and pointer arrays. Finally, it
\

determines the key characters of each option. At the conclusion of the READ MENUS

routine, the initialization is complete.

3.2

' .

READ MENUS reads each line of the data file and interprets it. The first line

of the data file indicates whether the data set immediately following is a menu data set

or a message data set. After a data set has been read, the next indicator is read and the

data set following is interpreted. This continues until the end of the data file is

encountered.

If a message data set is encountered, the. message arrays are filled. As each

message is read and put into the W ARERR array, the rnessage counter, NWE, is

incremented. These messages are available to the progran1mer via the MESSAGE

common block and/or tJ1e INFORM subroutine. Figure 3.3 lists an example use of this.

If a menu data set is encountered, the menu arrays a.re filled. The four a.rrays

filled directly from the data file are the MEND AT, MID, ACCESS, and G lJO J>r_r a.rra.ys.

MENDAT contains the actua.l menus, as well as tl1e submenu a11d subroutine interaction

data. MID and ACCESS are pointer arrays. GLOPT contai11s application dependent

global menu option data.

The MENDAT array holds the menu information in the sequential order of the

data file. MENDAT is a two column array and stores up to 11000 rows of <la.ta. The

menu titles and option s are stored in the first column of MENDArT. TI1e subroutine or

submenu to which an option points is stored in the second colun1n of the array. I11 the

rows containing a menu title in the first column, tl1e second column is blank. MENDAT

is declared CHARACTER*30.

The· MID array describes the trigger function of an option for the menu

processor. It is a one column array of the same length as MENDAT. The ith element -

of MID may be 0, 1, or 2. A O indicates that the menu processor ignores the option

selected. A 1 indicates that the ith option in MENDAT points to a submenu. This

33

)

...

'

submenu ·is stored in MENDAT (i,2). A 2 indicates that the option points to the

subroutine stored in MENDAT (i,2). MID is declared INTEGER*2. Figure 5.1 lists a

sample MENDAT and associated MID arrays.

MENDAT MID

View Manipulations 0

MO-Model Model 1

S-Screen Screen 1

Model 0

T-Translate . MTR,ANS 2

R-Rota.te MROT 2
.

EYF~-J~ye MEYE 2

Screen 0

1'-11 ra,nslate STR,ANS 2

ll- Ilota,te SilOrI' 2

f~YE-l~yc poi11 t SEYE 2

Figure .5.1. Sample MEN DAT' and MID arrays.

The ACCESS a.rray holcls the pointers to MENDAT and the key cha.racters

arrays. AC(~ESS is a three cc)lumn arra.y a.nd stores Uf) to 1000 rows c)f pointers. The

itl1 line i11 ACCE:SS describes the ith menu in the MENDArl' arra,y. rrhe first cc)lurnn cJf

ACCESS points to the start of the ith menu in MENDAT. 1'he second column is the

11umber of options in the ith menu. the third column points tcJ the begin11ing of the ith

menu in the key character array. the key character array will be· discussed later in this

document. ACCESS is declared IN'fEGER*2. Figure 5.2 lists the ACCESS array for

the MENDAT in figure 5.1.

34

,.

ACCESS

1 2 1

4 3 3
• 'l

8 3 6

Figure 5.2.. ACCESS array.

After the data file has been successfully read, the two option selection arrays

are filled. The I(EY CHARS array holds the key chara.cters in sequential order of the

options only. Because key cl1aracters 1nay have a length from 1 to 4 characters, the

l(EY_ID array hold the length of eacl1 corresponding I(EY_CIIARS. l(EY ClIARS is

declared CHARACTER*4; l(EY ID is INTEGEll*2. Figure 5.3 lists these arrays for

the l\1ENDAT of Figure 5.1.

l(EY CIIARS l(EY ID

MO 2

VP 2

T 1

R 1

EYE 3

T 1

R 1
...

EYE 3

Figure 5.3. 1<EY_ CHARS and I<EY_ ID arrays.

In addition, the menu nurr1ber of the application dependent global menu is

determined. The titles of each menu are checked until a match is -made with the

GMWORD string variable. GMWORD defaults to "Global Menu" unless .changed in

35

, .

the applications program before the menu initialization is called as in figure 3.2.

5.3 USER INTERFACE

,.

The first half of the TREE subroutine contains the device dependent user

interface. The menu processor drives the entire user interface for dialogue devices. This

includes menu display, option selection, and option validity checking. For Unigraphics

workstations, User Function routines drive the interactive user devices for the interfa.ce.

This includes message monitor (MM) and program function l<eyboard initia.lization,

menu display on the MM, lighting the function buttons on the PFI(, option selection

through button pushes, and option validity checking.

For the dialogue style device, the menu processor displays the menu as well a.s

l1andles the user response. In order for tl1e dialogue interface to more closely resen1ble

the Unigraphics interface, it is possible to display the options with option nun1bers

rather than with the key characters and a delimiter. The user responds by keying in

characters which are then checked against the available options. These respo11ses must

l1ave the exact capitalization as listed in the menu. In addition, a user fa.miliar \vith an

application may choose to type several responses on one comma11d line.

In the dialogue style interface, TREE first determines tl1e menu number and

then lists the menu to the screen. The MENNUM subroutine receives a character string

containing the menu name and returns the number of the menu in the data structure:

Next, DSPLY MENU is called to list the menu to the screen. DSPL Y MENU utilizes

the pointers in ACCESS to determine which portion of MENDAT to display. If the
I

. "

display switch variable of 2 is,. sent to DSPL Y_MENU, the key characters and delimiter

are stripped from an option and option num.bers are displayed instead. At tl1e end of
{ ..

36

(

the menu listing, DSPLY MENU requests the user to enter a command.

After the menu has been displayed, the user keys in his con1mand. TREE reads

the input from the user into a string variable. The string is broken into commands,

delimited from each other by a space or a comma. These commands are stored in the

type ahead buffer. The type ahead buffer is set to 1 to be ready to process the first

command. After a command is proc~ssed, the type ahead buffer pointer is incremented

for the next command.

In order to determine an option's validity, the current string in the type ahead.

buffer is checked against the key characters of the options in the current menu and in

the global menu. The pointers in ACCESS are used to determine wl1ich ele1nents of

I(EY CI-IAR,S to search. If tl1e user has input an invalid option, an error n1essa.ge is

written to the screen, the type ahead buffer is cleared, and tl1e user is prc)mpted to input

a new response.
'•

In the Unigraphics style i11terface, after determining the rr1enu 11uml)er, TREE

calls a User Function routine, lJF'160:3, to display the 1nenu, light the I)FJ(a.ccording tcJ

the menu, and receive user feedback.. The arguments afe the 1nenu title, the rnenu

array, the length of the menu, the default setting, and the output user response. 20 The

User Function library returns only valid button pushes so that the processor need
1
not

determine if a button were lit when it was pushed. Also, there is no type ahead concept

with button pushes.

20 User Function Manual, McDqnnell Douglas Corporation, (-!988), Cypress CA,

p. 3.3.19. ~-

37

,·

5.4 PROCESSING USER INPUT

The processing part controls the menu triggering or applications subroutine

calling based on user input. The processing is device and implementation independent.

When the user interface part determines that the option is valid for processing, it also

stores the valid option's relative position in the data arrays. The associated elernent in

MID then determines whether a submen11 is triggered or an a,pplications sul)routine is

called. If a menu is to be triggered, the menu processor updates the current n1enu

in forrnation to reflect the next rr1en u in the hierarchy. If a su brcJu tine is to he cal1ed,

'l'l{J1:l1~ calls C()N'I'llOl.1 which ,vas created based on the data file. After the processing
\,

is complete, 1'ltl-1:r~ returns the original 1nen u, the option selected, and the ne;xt_ 1nen u in

the tree structure.
\

(\
_ -

l)uring processing, the vaJid (Jption rnay be checked agajnst the gl<)ba.l rncn11.

Doth the built-in global rnenu and the a,f)plication dependent rr1enu arc search<-~d. 'T'he

c; I...10 BAJ .1 r<JU tine f)rcJcesses opti<)ns fc)U n d on the glc) bal menu.

fi.,5.1 BUIL1"'- IN GI.100AL MENU

1"'he l)uilt-in global menu contains six options; main menu, ·list menu, ·clea.r

screen, toggle menu display, display global menu, and reject. Main 1nenu cha·nges the

value of the menu number to 1. List menu lists the current n1enu to tt1e screen,

regardless of the menu display toggle. Clear screen clears all dialogue from the screen.

Toggle menu display switches between "display menu" and "do not display menu".

Display global menu lists the global menu including the applications dependent global

38

a

J

•

menu options. Reject moves the menu up one level in the hierarchy.

The reject buffer for tl1e reject option is dynamic. As each new level is reached

in the hierarchy, the reject buffer, REJECT, stores the new menu number a.nd the

pointer to the current level in the hierarchy. When the reject option is chosen, the

pointer moves one level up in tge hierarchy and the new menu number is obtained from

REJECT. The REJECT buffer is cleared when the user chooses the main menu option.

5~5.2 APPLICATION DEPENDENT GLOBAL MENU

The GLOBAL subroutine also tests the option against the application

dependent global menu. These options are checked in the same manner as they are

against the current me11u. The difference is tl1at some global n1enu options 111ay not be

available to the current 1ne11 u. For tl1e itl1 me11 u, G LO PT (i) must be tra.nsla.ted from

an integer into a series of l's and O's. The GLVAL subroutine accepts the integer and

returns an array of tl1e 1 's a11d O's. An option is only checked if its corresponding switch

is equal to 1.

39

r1 ·.

I

Chapter 6

UIT$CREATE

6.1 INTRODUCTION

The UIT$CR,EA TE program allows a programmer to interactively create or

1nodify a menu hierarchy data file, as well as the associated CONTROL.FOR

subroutine. To begin creating or modifying a menu l1ierarchy, one must run the

UIT$CREA TE image. UIT$CREA TE is an example of an application of the genera.I

purpose n1enu processor using the interactive imple1nentation. 1\.ppendix D lists a

sample UIT$CREATE session.

6.2 FILE ACCESS

The first menu encountered in UIT$CREATE is tl1e File Access men11 listed i11

figure 6.1. This menu allows one to modify a11 existing tree structure from a data file or
,t

to begin a new tree structure. rro modify or add to an existing data file, one chooses RE

and specifies the file name. UIT$CREA TE reads this file and updates its arrays before
""'-

starting the • session. To create a new data structure, one selects NEW.

initializing the session, UIT$CREATE branches to the top level menu.

File Access

RE- Read in existing file

NEW- Create new file

Figure 6.1. File Access menu.

.. J

40·.

After

I

I

I

I ... • \

6.3 M~NU DA_T ABASE (

The top level menu is called Menu Database. All of the main functions are

accessed from this menu listed in figure 6.2. From this, one may choose to create a

menu, modify an existing menu, set the application dependent global menu status, add

or modify warning or error messages, list the hierarchy, save the information to a file, or

exit UIT$CREA TE.

Menu Da,tahase

CR- C~reate new menu branch

Cfl- (~hange menu hra,nch

c; I-1- c; I c) l) 3,J men u status

ME- M essa.ges

LI1- I..,ist hiera,rchy

SA- Save entire menu tree

EX- Ij~xit

Figure 6.2. Menu Database menu.

6.4 CREA1-,l~ MENU nn,AN(~II

/

In order tc> create 3, 1nenu data set, cJne selects Cll frorn the to1J level rne·nu.

Next, one enters the title cJf the menu })ranch. 11 hcn one chooses c)ptions frcJnl the

Create Menu 13ranch menu listed in figure 6.3. ,-fo add an or>tion to tl1e current rnenu,

one selects Al). rfhc cJptions ancl associated fJointers to subroutines or subrr1enus are

added in sequential order to tl1e current rnenu. If the OfJtior1 added f)Oints to a

submenu, the submenu must have the exact capitalization as in its menu title. To view

the current menu and ·its pointers, one selects LI. To finish working on this menu, on

uses reject (!) or main menu (/) from the built-in global menu to return to the Menu

Database menu.

41

.r

•

•

Create Menu Branch

AD- Add option to branch

LI- List current menu

Figure 6.3. Create Menu Branch menu.

6.5 CHANGE MENUS

'· J ..

To modify an existing menu, one selects CH from the top level menu. This

branches to the Change Menu menu listed in figure 6.4. To alter the title of a menu,

one selects CT, chooses the menu to renan1e, a11d keys in a new title. To delete an

entire menu data set, one selects DB and subsequently selects the menu to delete from a

list. To list all of the menu names created, one chooses LM. In order to modify options
<....

within a menu, one selects CO.

Change Menu

CT- Change title of menubranch

DB- Delete 1nenu branch

LM- List menu names

CO- Change option on menu

Figure 6.4. Change Menu menu.

6.5.1 CHANGE OPTION

After selecting which men·u· to modify, one chooses the modification type from

the Change Option menu listed in figure 6.5. One selects AD to put an additional

option on the menu. The new option follows all of the previous options in the menu .

One chooses DE to delete an option from the menu. RE is chosen to replace a

particular menu choice. LI lists the en tire menu to the screen.

42··

6.6 MESSAGES

Change Option

AD- Add option to branch

DE- Delete option from branch

RE- Replace option from branch

LI- List current menu branch

Figure 6.5. Change Option menu.

. .

In order to create a message data set, one chooses ME from the top level menu.

This branches UIT$CREA TE to the Messages menu listed in figure 6.6. To add a

warning or error message to tl1e data, one selects AM. To delete a message, one selects

DM and then deletes a message from the list. RE is selected to replace a message in the

list with a new message. LM lsimply lists tl1e messages seque11tially.

Messages

AM- Add message to list

DM- Delete message to list

RE- Replace message to list

LM- List messages

Figure 6. 6. Messages Menu.

6.7 GLOBAL MENU

To manipulate the application dependent global menu, GL is selected from the

Menu Database menu, This branches to the Global Menu Status menu listed in figure

6. 7. To add an option to the global menu, AD is chosen. This assumes that a default

menu called "Global Menu" has been created or that one of the existing menus has been

designated as the global menu. To select an existing menu as the application dependent

43
I

I

..

global-menu, one chooses RE. This must also be declared in the applications program as

in figure 3.2. To set the global menu switches of a particular m·enu, ST is chosen and

then the menu is specified~ The switches default to 1 or on until toggled off. LI lists the

applications dependent global menu.

"'

Global Menu Status

AD- Add option to global menu

ST- Set status of global menu

RE- Select me11 u to be global

LI- List global menu

Figure 6. 7. Global Menu Status menu.

6.8 LIST HIERARCHY

To list the n1enu hierarchy that l1as bee11 built, one cl1ooses LH from the top

level menu. If a starting menu is chosen fro1n a list, the menu tree structure is displayed

from that poi11t down the branches. For each bra11cl1 in the l1ierarchy, tl1e menu name

is indented to indicate a lower menuing level. Figure 6.8 lists a sample hierarchy list.

6.9 SA VE FILE

'"

Create Geo1netry

Generic Point

Line Type

Generic Point

Arc Type

Generic Point

Figure 6.8. Sample menu hierarch.y list.

,

I

'

To save the ·menuing tree sturcture dat'a to a file, SA is chosen from

44

the main menu. This branches to the Save Tree menu listed in figure 6.9. The CHI(

option checks that all of the menu data sets that are pointed to by an option have been

created. For example, ·if an option points to a menu called "View Manipulations", the

CHK option checks this menu exists in the data. The menus that are pointed.to but do

not exist are listed to the screen. One may choose to return to the main menu and

create these menus. To save the data to a file, one opts for SA from the menu. This

creates a menu tree structure data file and the associated CONTROL.FOR subroutine.

If the data file has been created or modified using editing rather tl1an UIT$CREA TE,

tl1is step is necessary to produce the proper seque11cing in CONTROL.FOR. Even a

minor change to a single menu data set requires a new CONTROL.FOR . .

.

Save Tree

CHI(- Check tree

SA- Save tree to file

Figure 6.9. Save File me·nu.

6.10 PROGRAM STRUCTURE

UIT$CREATE uses the general purpose n1enu processor to trigger its submenus

and subroutines. It maintains a data structure of the input menu data parallel to those

of the menuing trigger function library. The subroutines store this data in common

blocks and manipulate it according to user input. The common block:s, purpose of each

subroutine, and each s11broutine's calling sequence are listed in Appendix D .

. , .,

6.11 INSTALLATION ON A VAX ~--

,,

To install UIT$CREA TE, the VAX system manager must have a · copy of

CREATE.EXE and CREATE MENU.DAT in the UIT$ directory. They must have
'

45

world read and world execute protection. The system logical name UIT$CREA TE is

made with the following DCL command:

$ CREATE/SYS UIT$CREATE [UIT]CREATE.EXE

This should be included in the system startup command procedure. Then all users of

the system may access to the UIT$CREATE program.

46·

;;.

'

"

' I

r

I •

REFERENCES

Christenson, Kirk. "Writing Easy-to-Use Programs for Computers." Mechanical

Engineering, Volume 106 No.9, 1983, pp.66-69.

Digital Equipment Corporation. CorrNpon Graphics Interface User's Manual,

\

An Integration Architecture Module. Maynard, lvIA: Digital Equipment Corporation,

1987.
..

Digital Equipment Corporation. Programming in VAX FORTRAN. l\1aynar<l,

MA: Digital Equipment Corporation, 1984.

McDonnell Douglas Manufacturi11g and Engineering Systen1s Company. User

Function Manual. Cypress, CA.: McDonnell Douglas Manufacturing and Engineering

Systems Company, 1988.

McDonnell Douglas Manufacturing and Engineering Systems Company.

Unigraphics II Design Module. Cypress, CA: McDonnell Douglas Manufacturing and

Engineering Systems Company, 1984.

Olsen, Dan R., Buxton, William, Ehrich, Roger, and I{a,sik, David J. "A

Context for; User Interface Management." IEEE Computer Grapichs & Applicatio-ns·,
t

Volume 4 No. 12, (1984), pp. 33-41.

Sproull, Robert F ., W. R. Sutherland, and Michael K. Ullner.

Device-Independent Graphics. New York, NY: McGraw-Hill Book Company, Inc., 1985.

47

.'f

•

Structural Dynamics Research Corporation. Geomod Solid Modeling and .

Design. Milford OH: Structural Dynamics Research Corporation, 1988.

Structural Dynamics Research Corporation. IDEAS User's Guide. Volume 1,

Milford OH : Structural Dynamics Research Corporation, 1988.

.('

48·

Appendix A

MENU PROCESSOR ROUTINES

Due to the nature of the menu processor, its routines depend on data stored in

common blocks. Because the applications program · may access the processor at any

point in the application, the common blocks are necessary to store the menu data,

pointer data, and current status data. In this way, the applicatio11s program. does not

i11terfere with the • menu processing. Care must be take11 by tl1e applications

programmer, however, in the selection of names for applications commo11 blocks and

subroutines. Those reserved for the menu processor are listed in this appendix.

..

49 i

...

/

BLOCK NAME

MENUS

TREE

APPLIC

GLOBAL

INOUT

MESSAGE

TAHEAD

CONTENT DESCRIPTION

Menu data and pointer arrays

Reject buffer and triggering pointer

Application file name and delimiter

Global menu information

Input and output registers

Message information

Type al1ead buffer and pointers

Table A. I. Menu _processor common blocks

50

DSPLY MENU

This routine displays the current menu to the output device.

Format CALL DSPLY_MENU (nm, itype)

Arguments nm, itype

format: integer*2

access: read only

Devices Dialogue device only

Descri ptio11 Tl1e curre11t me11 u is displayed witl1 eit11er key c11aracters or

option numbers to indicate valid selection.s

Input:

nm the current menu number;

itype == l to display key characters;

== 2 to displa~y option numbers.

J

•
i

• I

..,, .

..

51

....

GLOBAL

Format

Arguments

Devices

Description

This routine drives the appropriate global rr1enu-.

CALL GLOBAL (menu, state, iq, ix, isw)

menu, isw

format: in teger*2

access: read only

state

format: character*4

access: read only

,, .
io, ix

format: integer*2

access: write only

All

The global 1nenu may be displayed according to tl1e current

menu. It may also be checked for valid options depending on the

current menu and t built-i11 global menu.

Input:

menu. == current menu nu-mber;
'·

s.tate · .·.· option selected by user;

i~w ==· I for display purposes;

== 2 for option checking purposes.

52

..

Output:

io == -pointer to mendat array for menu data;

ix pointer to key_ chars array for option data.

<.,

.53

.,

GLVAL

menu.

Format

Arguments

Devices

Description

This routine determines the status of the application dependent global

CAI.JL G L VAL (menu, .bits)

menu

format: integer*2

access: read only

bits

format: byte (32)

access: write only

All

Each variable • 1n the bit array corresponds to an application.

dependent global menu option. This routine translates a single i11teger

associated with the current menu into on and off s,vitcl1es for the

global menu.

Input:

menu == ~equential men1;1 n uinber·.

Output:
a

bits(i) ·. 1 if the ith option is on;

•

== 0 if the ith option is off.

54

INFORM

This routine writes a message to the output device.

Format
\.-

CALL INFORM (num)

Arguments num

format: integer*2

access: read only

Devices All

/

Description A message from the menu .tree- structure data. file is written

on the output device. This routine is application program callable.

Input:

num = message number in database.

55

,)

INIT MENU

Format

This routine initializes the menuing environment.

~

CALL INIT_MENU (file, del)

Arguments fil.e

Devices

Description

--.~

I.

format: character*30

access: read and write

del

format: character* 1

access: read only

All

All variables are initialized.

Input:

file - name of tree structure data file;

del == option delimiter symbol;

56

'""

LONG

This routine determines the filled portion of a string variable~

Format CALL LONG (word, inuse, size)

Arguments ·word

format:. character*·size

access: read only

. .
inus.e, s.ize

format: in teger*2

access: read and write

Devices All

Description The used portion of a string variable
.
lS determi11ed for

output purposes.

Input:

word == string variable;

size == length of string variable;

" '

inuse == used portion of stri11g variable.

'·

57

MENUS

processor.

Format

Arguments

Devices

Description

..,;

This routine initializes the menu variables and drives tl1e menu

CALL MENUS (file, delim, isw)

file

format: character*30

access: read and write

delim

format: character* 1

access: read and write

.
isw

format: integer*2

access: read only

All

After the variables are initialized, READ MENUS is ca.lied to

read in data. Tree is called i11 sucl1 a manner to drive tl1e menu

processor.

Input:

file == name of tree structure data. file;

del == delimiter character;

isw == l to display key characters;

58

c,

= 2 to display option numbers.

59

..
/

READ MENUS

This routine reads the menu tree structure data file.

Format CALL READ MENUS ()

Arguments none

Devices All

Description The menu l1ierarchy data file is read. ·All of the • menu1ng

arrays. are· filled and ready for processing .

•

\
'

60
.J

TREE

processor.

Format

Arguments

Devices

·n·escription
.,

This routine is the • main menu handling routine for the me11u

CALL TREE (start, state, next, isw)

start

format: character*30

access: read only ,,·

state

format: cl1aracter*4

access;,.v write only

:next

for1nat: character*30

access: write only

isw·

format: integer*2

access: read only

All

This routine displays the cu-rrent menu and allows the user t.o

select an option. The type ahead buffer is filled and the option is

I

checked against the valid options for·. that menu. The processor

updates the current menu, activates the global menu, ot calls a

-61.

subroutine according the the user option and the 1nen u hierarchy.

Input:

start current menu name;

isw == l to display key characters;

== 2 to display option numbers.

Output:

state == option selecte·d;

·next == next menu to be displayed.

f

.52

.,

,

MENNUM

This routine determines the 11ame or n um be.r of a menu . . · . . .

Format CALL MENNUM (name, num, index)

Arguments ·name

format: character*30

access: read and write

nuin, index

format: integer*2

access: read and write

Devices All

D.es.cri pt ion If the name of a me11 u is specified, tl1e correspondi11g menu

number is returned. If tl1e number of the menu is specified, the name
... I is returned.

Input:

index == 0 if name is input;

== 1 if number in input;

. Input/Output:

name == menu name;

num ~ menu· number.

63

Appendix B

UIT$CREATE ROUTINES

Due to the interaction between the general purpose menu processor and the

Uir_i;$CREATE routines, its routines depend on data stored in common blocl<s. Because

the information that UIT$CREA TE generates will become m.en uing information, the

common blocks and arrays have much the same format as the menu processor routines .

.

.

.

BLOCI(NAME CONTENT DESCRIPTION

USER Menu data and pointer arrays

GLOBE Global menu i11formation

INOUT Input and output registers

WORDS Message i11formation

CURRENT Current 1nen u poiri ters

Table B.l. UIT$CREATE common blocks

..

•

......

64

ADMESS

This routine adds a message to the d·ata base.

Format CALL ADMESS

Arguments none

,"

Description The user inputs a message whicl1 is added to tl1e d:ata.

. ,.

0

,.

CHECK

This routine checks the validity of the data.

Format CALL CHECI{ ()

Arguments none

Description This routine cl1ecks that each menu pointed to exists. If ·a

menu is painted to and a corresponding data. set does not exist, tl1e

menu is written to the screen .

•

. ..

. /
'

66

q

.....

..

CREATE CONTROL

This routine creates CONTROL.FOR.

Format CALL CREATE_CONTROL ()

Arguments none

·oescript"ion The triggering subroutine CO NTRO J_J. FC) R .
JS created

according to the data.

67

LHIER

Format

Arguments

Description

This routine lists the menu data hierarchy.

CALL LI-IIER ()

none

The menu hierarchy· is listed to the screen. from a user

inputed starting point.

l ·.

68

DELMEN

Format

Arguments

Description

I •

)

This routine deletes a menu from the data.

CALL DELMEN ()

none

A user specified ·menu data set is deleted from tl1e data.

common blocks are up.dated to reflect this cl1ange.

69

Tl1e

DELOPT

Tl1is routine deletes an option from a menu.

Format CALL DELOPT ()

'. I

' '

Arguments -none

Description A user specified option is deleted fron1 the current 111enu. All

.,,,
com1non blocks are updated to reflect the cl1ange.

i

·I

!

DEMESS

Format

Arguments

Description

J.

. .;_/'

This routine deletes a message fro1n the dat·a.

CALL DEMESS ()

none-

A user specified message is deleted fro1n tl1e 1nessa.ge data

set. The MESSIJ common blocl{ elen1ents are updated to reflect this.

71

DETGLOB

Format

Arguments

Description

This routine determines which menu is the global menu.

CALL DETGLOB ()

none

Tl1is j routine searches through the 1ne11u titles to find tl1e

global men-u number.

72

LIMESS

This routine lists the messages to the screen.

Format CALL LIMESS ()

Arguments none

Description This routine lists the message data set wl1ich tl1e .user has

entered.

'

73

FINDNO

Format

Argu1nents

QescriJJtion

0

This routine determines tl1e name or number of a me·nu.

CALL FINDNO (name,. num, index)

name

format: cl1aracter*30

access: read anc1 write

num, index

format: integer*2

access: read and write

If the name ofs: a 111enu is SJ)ccified, the corrcspc)ndi11g n1enu

numlJcr is returned. If the number of the rnenu is SJ)ecified, the narne

is re tu r 11 ed . This exec u ta lJ 1 e 1 in es of this routine are identical to those

of J\1ENNUM in the n1enuing trigger functio11 library, hcJ\Vcvcr the

COMMON blocks reflect the inforrnation tl1e user has input.

Input:

index == 0 'if 11arhe is input;

== 1 if n u1nbe.r in input;

Input/Output:

name - men-u name;

num · · ·1nenu number.

74

LIST

This routine lists the current menu to the screen.

CALL LIST ()

Arguments non.e

Description The 1nen u on wl1ich tl1e user is working is displa)re.d to tl1e

scree:µ. Tl1is routine is called from several different points i11 tl1e menu

tree.

75

LISTMEN

This routine lists tl1e menu titles.

a

Format CALL LISTMEN ()

Argu1nents none

Description All of the tit1es of the user' inputed menu data sets are listed

to the screen. . . .

.•

76

.. J. ;

NEWTITLE

Format

Arguments

Description

This routine determines the title of a new menu data. set.

CALL NEWTITLE ()

none

For a new menu data set, the title is specified_. If tl1e 1nenu is

to be the top level menu, -the user is 11otified. All of the global options

are activated.

77

OLDFIL

This routine reads in an existing data file for modifications.

Format CALL OLDFILE ()

Arguments none

Description All of the data of a specified 1nenu tree structure cla.ta file

is read in to the proper arrays.

l

I,. ...

78

"

ONEOI-I

Format

Arguments

Description

!

This routine determines the global option switches of a menu.

CALL ONEOH (menu, bit"s)

menu

bits

for1nat: integer*2

access: read

format: integer*2

access: write

Tl1e global menu in tcgcr of a particular 1nenu is clccocled in to

its glc) bal option switches.

I11put:

menu 1nen u n un1 ber;

Output:

bits array containing 1 's a11d O's for switcl1es.

' 79

·.) ..

OPTION

Format

Arguments

Description

''·

This routine adds an option to the current menu ..

CALL OPTION ()

none

An option is added to tl1e current 1nenu at tl1e botto111 of the

menu data set. All of the arrays for tl1is menu are ·updated to reflect

the new optio11.

80

PUTBITS

Format

Arguments

Description

This routine translates a binary number to its integer equivalent.

CALL PUTBITS (menu, bits)

m·enu, bits

format: i11 teger*2

access: read only

Tl1e global option s,vitcl1es for a particular 111e11u. a,re encodecl

in to a si11gle integer value for eas-y· sto-rage.

Input:

menu == me11 u 11 umber;

bits == array of 1 's and O's.

81

•

SAVE

data file.

Format

Arguments

Description

This routine saves all of the user input data to a met1u tree structure

CALL SAVE ()

none

All of tl1e data stored in tl1e co1111nbn block:s is written to a

data file according to specification .

. 1

·82

SAVEMENU

Format

Arguments

Description

This routine saves menu data to commo11 blocl<s.

CALL SA VEMENU ()

n.one

All of the options of a m.enu are saved to tl1e con1n1on l)locks.

Some of the data poi11ters are updated to reflect tl1is save.

t'

83

SEGLOB

Format

Arguments

Description

(

This routine sets a particular menu to be tl1e global men_u.

·cALL SEGLOB ()

none

This routine determines wliich menu the user prefers to be

the global menu.

_,)

84

•

SETGLO

This routine sets the current me11u at the global menu.

Format CALL SETGLO ()

Arguments none

Description Tl1is routine sets the current 1ne11 u tl1at the • user 1s ,vorking

with to be the .global menu. If 110 global menu e·xists, tl1e user is

warned.

•

85

SPECFILE

Format

Arguments

Description

This routine determines an input file name.

CALL SPECFILE (name)

name

fo.r1uat: cl1aracter*30

access: read only

This routine requests the file n:ame of a, data file that is to

"
be read for 111odifications.

Input:

name == data file name. SI'.

··l· ,

0.

86

STAGLO

Format

Arguments

Description

.

',\

This routine :sets the status of the global menu switches for a menu.

'

CAL·L STAGLO ()

none

The routine lists the available me11us to tl1e screen for user

input. It then lists the current global 1nenu switcl1 status of the

selected menu. The user may tl1en toggle s\vitcl1es .

..

87

r TITLE

This routine determines the title of the current- menu.

Format CALL TITLE ()

Arguments n-one

Description The title of the current menu is obtained fro111 tl1e us-er. This

routine is used for new menu data sets as well as renamin·g ·existing

ones.

{

88

WHICHM

Format

Arguments

Description

)

)

{
/

/

This routine determines the current menu.

CALL WHICHM (num)

num

for.mat: integer*2

access: write

This routine determines tl1e current me11 u for tl1e 1nen u

modification optio11s. All of tl1e 111enu pointer i11for1na.tio11 is t1pda.ted

to reflect tl1e current 111enu.

;at

89

Appendix C

SAMPLE TREE STRUCTURE DATA FILE
t1II

This appendix lists a sample data file of ·ct solids modeling application whose

menu tree structure follows. In this diagram, an underline denotes th.e end of a brancl1.

An option with no underline points to a submenu.

..

Create

Geometry

Primitive

Prism

Orie11t

Sphere

Solids Modeling

Analysis

Create Geometry

Boolean

Operations

Primitive

Cylinder

Display File

Profile

l\1a11i pulations

Profile Cone

.>

.. ; ...
"'F

Difference

Translate

Translate

/

...

Boolean Operations

Union Plane Cut Intersection

Plane Cut

3 Point Normal

Profile Manipulations

Revolve Ext.rude

Orient

Object Scree11

\.. .

Orient Object

Rotate Scale Eye Point

Orient Screen

Rotate Scale Eye. Pofnt

91

'·

Hidden

Line

Save Model

Store

Object

Properties

Edge

Analysis

Interference

Display Options

Shaded

Image

File

Color

Save Picture Read

Exter11al

Delete

Object

On

Global Me11u

Redraw

Switch

92

Exit

Off

Perspective

Svvitch

'-''rite

External

Name display

Switcl1

1

100
Solids Modeling
CG- Create Geometry
OR- Orient
AN- Analysis
DO- Display Options
F- File ~

-1
100
Create Geometry
PR-Primitive
B- Boolean Operations
PM- Profile Manipulations
-1
100
Pri1nitive
r>RI- Prism
SP- Sphere
CY- C~yli11der
PF- Profile
CO- Co11e
-1
100
Boolean Operations
D- Difference
U- U 11io11
P- Plane Cut
I- I11 tersection
-1
100
Plane Cut
3P-3 Poi11t Definition
N-Normal and Point
-1
100
Profile l\1a11ipulations
RE- Revolve
E- Extrude
-1
100
Orie11 t
OB- Object
SC- Screen
-1
100
Orient Object
TR- Translate

~~
'il RO- Rotate

SC- Scale
EYE - Eye Point
-1

11111
lCreate Geometry
lOrient ·
lAnalysis
1Display Options
lFile

11111
lPrimitive
lBoolean Operations
!Profile Manipulations

11111
2PRIS1\1
2SPHERE
2CY'"LNDR
2PROFIL
2CONE

11111
2DIFF
2UNI0N
lPla.ne Cut
2INTSCT

11111
2P0INT3
2N O Rl\,1.,t\L

11111
2RE\10LV
2EXTRUD

11111
lOrient Object
10 rien t Screen

11111
20TRANS
20ROT
20SCAL
20EYE

93

100
Orient Screen 11111
TR- Translate 2STRANS
RO- Rotate 2SROT
SC- Scale 2SSCAL
EYE - Eye Point ! . 2SEYE
-1
100
Analysis 11111
PR- Properties 2PROP
I- Interference 2INTFER
-1
100
Display Options 11111
I-IL- Hidden Li11e 2HIDDEN
ED- Edge Display 2EDGE
SI- Shaded I111age 2SHADE
C- Color 2COLOR
P- Perspective Switch 10n / Off
-1
100
File 11111
SM- Save Model 2SA \11\10D
SP- Save Picture to File 2SAVPIC
RE- Rea.cl Exter11al File 2READEX
\i\TR- Write External File 2\iVRITEX
-1
100
Global Menu
ST- Store Object 2STORE
DE- Delete Object 2DELET
RED- Redra,v 2R.EDRA \i\1
EX- Exit 2EXIT
NA- Name Display Switch 1011 / Off
-1
100
On/ Off 00000
ON- Tur11 switcl1 on 20N
OFF- Turn s,vitcl1 off 20FF
-1
200

'
Enter object name:
E11ter translation (x,y,z):
Enter rotation (x,y,z):
Enter scale:
Enter file name:
Enter point for primitive:
Enter cutting object name:
-1

·-·,-

I

94!

•'

Appendix D

SAMPLE UIT$CREATE SESSION

This appendix lists a sarriple interactive session of the UIT$CREA TE program.

This session begins creating the data file of appendix C. Tl1e user input is italicized.

$ RUN UIT$CREATE

File Access
RE- Read in existing file
NEW- Create 11ew file

Enter Comma11d: NElV

Option selected: NEW- Create nevv file

Me11 u Database
CR- Create new 1nenu bra11cl1
CH- Change menu branch
GL- Globa.l 1nenu status
ME- l\1essages
LH- List l1ierarchy
SA- Save entire menu tree
EX- Exit

Enter Command: CR
)

Option selected: CR- Create new menu branch

***** This must be your top level men11!! *****
Enter menu name (exact caps please): Solids Modeling

Create Menu Brancl1
AD- Add option to branch
LI- List current menu

Enter command: AD

Option selected: AD- Add option to branch

Enter option no. 1 (Include delimiter): QG- Create Geometry

95

CG- Create Geometry points t.o:
1 - Another 1nenu
2 - Subroutine
0 - Tak:en care of by application code

Enter choice: 1

Enter menu name: Create Geometry

Create Menu Brancl1
AD- Add option to branch
LI- List current menu

Enter comma11d: AD

Option selected: AD- Add option to branch

Enter option no. 2 (Include delimiter): OR- Orient

OR- Orient points to:
1 - Another 1nenu
2 - Subroutine
0 - Ta.l<en ca.re of by a.pplicatio11 code

Enter choice: 1

Enter ment1 name: Orient

Create ~1enu Brancl1
AD- Add 01)tion to brancl1
LI- List current n1en u

Enter command: AD

Option selected: AD- Add option to bra.11cl1

Enter option no. 3 (Include delimiter): AN- Ari-alysis

AN- Analysis poi11 ts to:
1 - A11other n1en u
2 - Subrouti11e
0 - Tak:en ca.re of by a.pplication code

Enter choice: 1

Enter menu name: Analysis

Create Menu BrancI1
AD- Add option to brancI1
LI- List current n1enu

Enter.,command: AD

Option selected: AD- Add option to branch

/

Enter option no. 4 (Include delimiter): DO- Display Options

DO- Display Options points to:
1 - Another menu
2 - Subroutine
0 - Taken care of by application code

96·

.,·

\
)

Enter choice: 1

Enter menu name: Display Option.s

Create Menu Branch
AD- Add option to branch.
LI- List current menu

Enter command: AD
Option selected: AD- Add option to branch

Enter option no. 5 (Include delimiter): F- File

File points to:
1 - Another menu
2 - Subroutine
0 - Taken care of by application code

E11ter cl1oice: 1

Enter menu name: File

Create Me11u Branch
AD- .,t\dd option to branch
LI- List current menu

Enter comma,nd: LI

Option selected: LI- List current me11u

Solids Modeling
CG- Create Geometry points to Create Geometry
OR- Orient poi11ts to Orient
AN- Analysis points to Analysis
DO- Display Options points to Display Options
F- File poi11 ts to File
Create I\1en u Bra.11cl1
D- Add option to brancl1
I- List curre11t me11u

Enter Command: \

Menu Database
CR- Create new menu brancl1
CH- Change menu branch
GL- Global menu status
ME- Messages
LH- List hierarchy
SA- Save entire menu tree
EX- Exit

Enter Command: * CR

Option selected: Toggle menu display off

97

I

"

I
'

Enter menu name (exact caps plea.se): Create Geometry

Enter command: / CR

Option Selected: CR- Create new menu. brancl1

Enter menu name (exact caps please): Primitive

Enter command: / CR

Enter menu name (exact caps please): Boolean

Enter command: / CR

Enter menu name (exact caps please): Plane Cut

Enter command: AD

Enter option no. 1 (Include delimiter): 3P- 3 p:oint _Defi~ition

3P- 3 Point Definition poi11ts to:
1 - Anotl1er menu
2 - Su lJrou tine
0 - Ta,k:e11 care of by apJ)lication code

Enter choice: 2

Enter subroutine name: POINT3

Enter comma.nd: AD

Enter option no. 2 (Include delimiter): N- Normal and Point

N- Normal and Point points to:
1 - Another menu
2 - Subrouti11e
0 - Ta.ken care of by application code

Enter choice: 2

Enter subroutine name: NORMAL

Enter command: / CR

Enter menu name (exact caps please): Profile M an.ipulations

Enter command: / CR

Enter menu name (exact caps please): Orient

. 'l

Enter command: / CR

Enler menu name (exact caps please_): Orient ObjeJ;t
,.

Enter command: / CR.

98

,..

\

\
I

j• .

Enter menu name (exact caps please): Orient Screen

Enter command: / CR

Enter menu name (exact caps please): -Analysis

Enter command: ! CR

Enter menu name (exact caps please): .Display· Option.s

Enter command: / CR

Enter menu name (exact caps please): Global Menu

Enter command: AD

Enter option no. 1 (Include deli1niter): ST- Store Object

ST- Store Object points to:
1 - Another menu
2 - Subroutine
0 - Ta,ken care of by application code

Enter choice: 2

Enter subroutine name: STORE

Enter command: AD

Enter optio11 no. 2 (I11clude delimiter): DE- Delete Obje·ct

DE- Delete Object poi11ts to:
1 - Another menu
2 - Subrouti11e
0 - Taken care of by application code

Enter choice: 2

Enter subroutine name: DELET

Enter command: AD

Enter option no. 3 (Include deli1niter): RED- Redraw

RED- Redraw points to:
1 - Anotl1er menu
2 - Su brouti11e
0 - Taken care of by application code

Enter choice: 2

Enter subroutine name: REDRAW

Enter command: AD

Enter option no. 4 (Include delimiter): EX- Exit

EX- Exit points to:
gg

"

1 - Another menu
2 - Subroutine
0 - Tal<en care of by application code

Enter choice: 2

Enter subroutine name: EXIT

Enter command: AD

Enter option no. 5 (Include d·elimiter): NA- Name Display· Switch

NA- Name Display Switch pain.ts to:
1 - Another menu
2 - Subroutine
0 - Taken care of by application code

Enter choice: 1

Enter subroutine name: On/ Off

Enter command: / CR

Enter menu name (exact caps please): On / Off

Enter command: / *

Option selected: Toggle me11 u display 011

Menu Database
CR- Create new menu branch

· CH- CI1ange 1nen u bra11ch
GL- Global rnenu status
ME- Messages
LH- List hierarcl1y
SA- Save entire menu tree
EX- Exit

Enter comrr1and: CH

Option Selected: CH- Change menu branch

Change Menu
CT- Change title of menubranch
DB- Delete menu branch
LM- List menu names
CO- CI1ange option on menu

Enter command: CT
Option Selected: CT- Change Title of menubranch.

Select Menu by Number:
1 Solids Modeling
2 Create Geometry
3 Primitive
4 Boolean

..

100

..

5 Plane Cut
6 Profile Ma11ipulations
7 Orient
8 Orient Object
9 Orient Screen
10 Analysis
11 Display Options
12 File
13 Global Menu
14 On/ Off
999 No selection

Enter number: 4

Enter menu name (exact caps please): Boolean Operations

Change Menu
CT- Change title of ment1bra11cl1
DB- Delete 1nenu bra,ncl1
LM- List menu na1nes
CO- Change option on menu

Enter command: Co

Option Selected: CO- Cl1ange optio11 on menu

Select Ment1 by Number:
1 Solids i\1odeling
2 Create Geometry
3 Primitive
4 Boolea11 Operatio11s
5 Plane Cut
6 Profile Manipulations
7 Orient
8 Orient Object
9 Orie11t Screen
10 Analysis
11 Display Options
12 File
13 Global Men11
14 011 / Off
999 No selection

Enter number: 3

Change Option
AD- Add option to branch
DE- Delete option from branch
RE- Replace option on branch
LI- List curre_nt menu branch

Enter command: AD

. 101

Option selected: AQ- Add option to branch

Enter option no. 1 (Include delimiter): PR!- Prism

PRI- Prism points to:
1 - Another menu
2 - Subroutine
0 - Taken care of by applfcation code

Enter choice: 2

Enter subroutine name: PR1S.M

Change Option
AD- Add option to branch
DE- Delete option from branch
RE- Replace option on branch
LI- List current menu branch

Enter command: AD

Enter option no. 2 (Include delimiter): SP- Sphere

N- Normal and Point points to:
1 - A11other menu
2 - Subroutine
0 - Taken care of by application code

Enter choice: 2

Enter subroutine name: SPHERE

Change Option
AD- Add option to branch
DE- Delete option fro1n bra,11ch
RE- R,eplace option on bra11ch
LI- List current menu brancl1

Enter command: ! !

Menu Database
CR- Create new menu branch
CH- CI1ange menu branch
GL- Global menu status
ME- Messages
LH- List hierarchy
SA- Save entire menu tree
EX- Exit

Enter Comm,and: ME

Option selected: ME- Messages.

Messages
AM- Add message to list
DM- Delete message from list

.. .,.,

102
·,

RE- Replace message in list
LM- List messages

Enter Command: AM

Option selected: AM- Add message to list

Enter message no. 1: Enter object name:

Messages
AM- Add message to list
DM- Delete message fro1n list
RE- Replace message in list
LM- List messages

Enter command: *

Option selected: Turn off menu display

Enter command: AM

Enter message no. 3: Enter translation (x,y,z):

Enter command: AM

Enter 1nessage no. 3: Enter rotation (x,y,z):

Enter command: Al\f

E11 ter message no. 4: Ente~, scale:

Enter command: AM

Enter message no. 5: Enter file name:·

Enter command: AM

Enter message no. 6: Enter point for: primitive:

"

Enter command: AM

Enter message no. 7: Enter cutting object name:

Enter command: / GL *

Global Menu Status
AD- Add option to global menu
ST- Set status of global menu
RE- Select menu to be global
LI- List global menu

Enter command: RR

103

I, .

Q

r

\
'

,~·

L

·'

Invalid command RR

Enter command: ST

Option selected: ST- Set status of global menu

Select Menu by Number:
1 Solids Modelin.g
2 Create Geometry
3 Primitive
4 Boolean
5 Plane Cut

. 6 Profile Manipulations
7 Orient
8 Orient Object
9 Orient Screen
10 Analysis

12 File
13 Global Menu
14 On / Off
999 No selection

Enter number: 14

Status for On / Off

1 ST- Store Object ON
2 DE- Delete Object ON
3 RED- RJedraw ON
4 EX- Exit ON
5 NA- Name Display Switcl1 ON
999 No selection

Enter switch to toggle: 1

Status for On / Off

1 ST- Store Object OFF
2 DE- Delete Object ON
3 RED- Redraw ON
4 EX- Exit ON
5 NA- Name Display Switch ON

Global Menu Status
AD- Add option to global menu
ST- Set status of global menu
RE- Select menu to be global
LI- List global menu

Enter command: * \ SA *

Option selected: ·Toggle displa'y s~itch. off
. j

I
/

104

...

J

Option selected: Toggle display switch on

Save Tree
CHI(- Check tree
SA- Save tree to file

Enter command: CHI<

The following menus do not exist:
File

End of menu list

Save Tree
CHI(- Check tree
SA- Save tree to file

~
~ Enter command:/ CR

'-

Enter menu title (exact caps please): File

Enter command: / SA SA

E11ter save file name: SOLIDS.DAT

Enter command: EX

$

/
I

105

...

VITA

Catherine Mary Curtin was born on January 3, 1962, in Hartford, Connecticut.
\)

I I

She is)he daughter of Charles Miller Curtin and Margaret Simon Curtin.
' !

'-.,

She was graduated from Lehigh University ,vitl1 a B·achelor of Science in

Mechanical Engineering in June of 1984. After graduation, :s11e joined Digital

Equipmer1t Corporation as a software e11~i11eer.

On February 22, 1986, sl1e married Josepl1 TI10111as Clifford. Soon after., they

moved to Grof] l{arben, West Germany. Both Mr. Clifford and iv1s. Curtin· rett1r11ecl to

graduate school at Lehigl1 in the fall of 1987. Ms. Curtin ,vas a teaching assistant in the

College of Business and Eco11omics duri11g her graduate education.

As of this writing, Ms. Curtin is lool(ing forwa.rd to a lo11g sunJme.r vacation

before she continues witl1 her engineering career.

. }' .)

106

(
'
(

(j

	Lehigh University
	Lehigh Preserve
	1989

	A general purpose menu processor user interface tool for mechanical engineering applications /
	Catherine Mary Curtin
	Recommended Citation

	tmp.1551116526.pdf._e51I

