Lehigh University
Lehigh Preserve

Theses and Dissertations

1989

A general purpose menu processor user interface
tool for mechanical engineering applications /

Catherine Mary Curtin
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Mechanical Engineering Commons

Recommended Citation

Curtin, Catherine Mary, "A general purpose menu processor user interface tool for mechanical engineering applications /" (1989).
Theses and Dissertations. 4988.
https://preservelehigh.edu/etd /4988

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4988?utm_source=preserve.lehigh.edu%2Fetd%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A GENERAL PURPOSE MENU PROCESSOR
- USER INTERFACE TOOL FOR
MECHANICAL ENGINEERING APPLICATIONS

by

Catherine Mary Curtin

A Thesis
Presentegd to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Masters in Science
1n

Mechanical Engineering

Leh‘igih University

1989

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillment of the requirements for the

degree of Master of Science in Mechanical Engineering.

May 76, 7989

Date

o ,

Professor in Charge

Chairman of Department

11

ACKNOWLEDGEMENTS

I would like to thank Dr. Tulga M. Ozsoy, my graduate advisor, for his ideas
and enthusiasm throughout the development of this thesis. Also, I would like to thank

Joe Clifford, my husband, for convincing me to pursue a graduate degree.

i

TABLE OF CONTENTS

1

CERTIFICATE OF APPROVAL i

ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS - iv
LIST OF FIGURES vii
ABSTRACT 1
CHAPTER 1. Introduction. | (2
] 1.1 Introduction . 2
1.2 User Interface 3
1.3 Implementation 3
1.4 Terminologies 5
CHAPTER 2. Implementation 7
2.1 Introduction 7
2.2 Automatic Implementation .‘ 10
2.3 Interactive Implementation 11
2.4 VAX Operating System Installation 14
CHAPTER 3. Features 15
3.1 Introduction ‘ | 15
3.2 Built-in Global Menu | 16
3.2.1 Dialogue Style Device 16
3.2.2 Uhigraphics Device - 17

3.3 Application Dependent Global Menu 17 r
3.3.1 Global Menu Name | 18

3.3.2 Unigraphics Device 18

5%

3.3.3 Menu Dependency
3.4 Messages
3.5 Type Ahead
CHAPTER 4. Data File Specification
4.1 Introduction
4.2 Menu Data Set
4.3 Option Delimiters
4.4 Pointers
4.4.1 To Submenus
4.4.2 To Subroutines
4.5 Application Dependent Global Menu Information
4.6 Message Data Set
4.7 CONTROL.FOR
CHAPTER 5. Program Structure
5.1 Introduction
5.2 Menu Initialization

5.2.1 Inmitialization Routines
5.2.2 Reading Data

5.3 User Interface

5.4 Processing User Input

5.5 Global Menus
5.5.1 Built In Global Menus
5.5.2 Application Dependent Global Menus

CHAPTER 6. UITSCREATE
- 6.1 ’Introduction

6.2 File Access

19

19

21

24

24

24

25

26

20

27

27

28

31

31

32

36

38

38

38

39

40

40

40

6.3 Menu Database 41

6.4 Create Menu Brahch | 41
6.5 Change Menus 49
6.5.1 Change Option | 42
6.6 Messages 43
6.7 Global Menu ‘ - 43
6.8 List Hierarchy | 44

6.9 Save File - - | 44

6.10 Progre;m Str}ucture 45
6.11 Iﬁstallation on a VAX 45
REFERENCES 47
APPENDIX A - Menu Processor Routines 49
APPENDIX B - UITSCREATE Routines . . 64
APPENDIX C - Sample Tree Structure Data File 90
APPENDIX D - Sample UITSCREATE session : 95
VITA 106

vi

LIST OF FIGURES

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 3.1.
Figure 3.2.
Figure 3.3.

Figure 3.4.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.
Figure 4.7.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 6.1.
Figure 6.2.
Figure 6.3.

Figure 6.4.

- Figure 6.5.

File Relationships.

Sample main program for automatic menuing.

Sample main program for interactive menuing.

Built-in global menu.
Redefining global menu name.

Sample subroutine using message information.

Sample subroutine accessing type ahead buffer.

General menu data set format.
Option line pointing to a submenu.
Option line pointing to a subroutine.
Example menu title data line.
Example message data line.]
Trivial data file.

Associated CONTROL.FOR.

Sample MENDAT and MID arrays.
ACCESS array.

KEY_CHARS and KEY_ID arrays.
File Access menu. \;
Menu Database menu.

Create Menu Branch menu.

Change Menu menu.

Change Option meﬁ'u.

Vil

11

13

17

18

21

22

25

27

27

28

28

29

29

34

35

39

40

41

42

42

43

Figure 6.6. Messages menu.
.Figure 6.7. Global Menu Status menﬁ.
Figure 6.8. Sample menu hierarchy list.
Figure 6.9. Save File menu.

Figure A.1. Menu processor common blocks.

Figure B.1. UITSCREATE common blocks.

viii

43

44

44

45

o0

64

ABSTRACT

This thesis discusses a general purpose menu processor user interface tool for
applications in Mechanical Engineering. The menu processor triggers subroutines or submenus

based on user input to an applications program.

The menu processor relies on a data file for menuing hierarchy information. To build

S
an interactive application program, the menu processor trigger function library is linked with
applications subroutines. The menu processor may be implemented to control an entire

application or the application programmer may choose to interface with the processor on a

subroutine by subroutine basis.

The menu processor is written in FORTRAN on a VAX/VMS! operating system. The

user interface supports two types of devices, Tektronix 41-series® terminals and workstations

with a program function keyboard (PFK) for user input.

The menu processor includes several features in addition to the menu hierarchy
triggering function. These include built-in and applications dependent global menuing, user
option selection type-ahead, and warning and error message storage. Also, the data file
contalning the hierarchy information may bé automatically generated using UIT$CREATE, an

example of an interactive application using the menu processor.

1VAX/VMS 1S a tra,de;nark of Digital Equipment Corporation.

2Tektronix 41-series is a trademark of Tektronix, Incorporated.
| 1

Chapter 1

INTRODUCTION

&

1.1 INTRODUCTION

Many computer applications in mechanical engineering require the use of menus

to guide the user through an interactive software program. A user selects options from

a list and the menu processor forces the appropfi-ate action to follow based on a

particular menu hierarchy. Currently, each programimer must write a menu processor to

fit his application. A common general purpose menu processor would alleviate this

3

duplication of effort and free the programmer to concentrate on the applications.® In

addition, 1if implemented within a company or a department, both programmers and

users would enjoy a standard user interface.?

This thesis discusses a general purpose menu processor user interface written for

the mechanical engineering community at Lehigh University. It 1s written in

FORTRAN on the VAX/VMS operating system. It supports VT100° dialogue display

style terminals, Tektronix 41-series terminals, and Unigraphics I1°® workstations. The

” Mechanical

3Kirk Christenson, ”Writing Easy-to-Use Programs for Computers,

Engineering, Volume 4 No. 12, pp 66-69.

“Dan R. Olsen, William Buxton, Roger Ehrich, and David J. Kasik, ”A
Context for User Interface Management,” IEEE Computer Graphics and Applications,

Volumel06 No. 9, pp. 33-41.

®VT100 is a trademark of Digital Equipment Corporation.
| 2

3

Tektronix terminals and Unigraphics workstations support graphics applications.

1.2 USER INTERFACE

<RI

A common menu processor user interface can alleviate many applications

programming problems. First and foremost is the duplication of effort warranted for
| v

programmers without this tool. Each programmer must decide how to attack the user

interface problem and then spend time implementing it. Also, because developing a user

interface is considered application dependent, the interface is not often versatile.! For

example, the programmer must alter sections of existing code in order to make small

additions or modifications to his user interface.

A common menu processor provides a more consistent interface to both users
and programmers. If the processor is easy to integrate into an application,
programmers will opt to incorporate it into applications on a regular basis. The menu
processor design should allow modifications or additions to the menu structure to be
~quick and simple with no rewrite of the programmer’s original code.® Error or warning
messages also should be processed separately from the application code for easy changes
and foreign language portability. The users benefit from a common user interface by

being familiar with the features of the interface independent of the application®. This

6Unigraph‘ics IT is a trademark of McDonnell Douglas Manufacturing and

Engineering Systems Company.
7Olsen, Buxton, Ehrich, and Kasik, pp.34-38.

8Christenson, pp. 66-69.

eradicates much of the unusability of current applications by users other than the
programmer.® In addition, the user will regard applications programs with a common

interface as much more unified.

Two user interfaces of the menu processor support the two types of devices.
Both the VT100 display and the Tektronix 41-series termihals are dialogue style devices.
In this interface, the menus scroll along the left side of the screen. From these menus,
the user selects an option by keying in the alphanumeric characters corresponding to the
characters displayed before a delimiter for that particular option. This type of
environment is offered by the IDEAS!? Solid Modeling and Design software.’! The
other interface supports the workstations with two separate devices, a message monitor
(MM) and a program function keyboard (PFK). . In this case, the menus appear on
the MM and the user select an;option by pushing the button on the PFK corresponding
to the number of the option on the menu. This type of environment is otfered by the
Unigraphics II software.l? The Tektronix 41-series terminals may also be used -as

Unigraphics workstations where the dialogue area is used as a message monitor. If an

application supports both types of devices, the programmer may specify that option

Robert F. Sproull, W. R. Sutherland, and Michael K. Ullner, Device-

Independent Graphics, (New York: McGraw-Hill Book Company, 1985), pp. 206-210.
10 IDEAS is a trademark of Structural Dynamics Research Corporation.

11Structural Dynamics Research Corporation, IDEAS User’s Guide, (Milford OH:

Structural Dynamics Research Corporation, 1988), ppz. 1.1'-1,1143.

12McDonnell Douglas Manufacturing and Engineering Systems Company,
Unigraphics II Design Module, (Cypress CA: McDonnell Douglas Manufacturing and

Engineering Systems Company, 1987), pp. 1-3.1,1-3.3',
, "

numbers are displayed on the dialogue style interface, thus the application appears

device independent.

1.3 IMPLEMENTATION

The general purpose menu processor consists of several parts. It relies on a tree
data structure file for all menu interaction data. A library of routines drive the menuing

according to its menu hierarchy. In addition, each application must have its library of

routines that are triggered by menu selections.

The programmer may choose from two separate types of implementation. The
first, and simplest, is for the programmer to make a single call to the menu processor
triggering function and allow the processor to drive the entire application. The other

method allows the programmer to make individual calls to the processor on an as needed

basis.

The general purpose menu processor relies on a tree structure data file.
According to specification, this file holds the information on menus, the relationships
among menus and applicatiorisv.l‘subroutines, additional information on global menu
status, and warning or error messages. An interactive menu-driven program allows the

programmer to create a menu hierarchy and save the data to a file that conforms to

'+, specifications. “

1.4 TERMINOLOGIES

Tree structure refers to the menu h"iéra,rchy. Pointers refer to the interaction of
elements within the menu hierarchy. For example, a portion of a tree structure may be

 that the third option of the second menu points to the fifth menu. The uppermost

menu in the hierarchy is called the top level menu or main menu.

The programmer implements the menu processor into his application. This
application, in turn, is intended for the user. @ The menu processor and 1ts related files
reside in the user interface tool (UIT) directory on a VAX. For example, to create a

data file, the programmer runs the UITSCREATE program.

N
\\4—-‘.\
A

Chapter 2

IMPLEMENTATION

2.1 INTRODUC)TION

There are two implementations of the general purpose menu processor. In the
automatic implementation, the applications program triggers the interaction handler
function at a specified level of the menu hierarchy. Branching down the hierarchy and
activating menus from the menu library or subroutines from the applications library is
controlled wholly by user selected options. In the interactive implementation, the

applications program activates the menu triggering function one level at a time. Most

applications prefer a mixture of %\two implementations.

In general, the programmer creates an applications library, a main program, a
' n

tree structure data file, and an automatically created controlling subroutine. He links

these modules together with the menuing trigger function library to obtain an executable

image of the main application program.

The tree structure data file includes a field that indicates whether an option
points to a subroutine or a menu, as well as a field to indicate which menu or subroutine
the option calls. Appendix C lists a sample tree structure data file. Chapter 3 discusses
the tree structure data file specifications in detail. The programmer may create the data
‘file according to specifications or he may run the UIT$CREATE program in order to do

PR

this for him, Chapter 6 discusses the UITSCREATE program in detail.

The programmer’s first step is to create a library of his applicatons subroutines.

7

For the purposes of this document, APP.OLB vwill de-signate this applications library file.
Second, the programmer sets up a menu structure to guide his application and he
creates a menu tree data file. Even if he created this file according to specification, he
must run UITSCREATE once to write the subroutine CONTROL.FOR from the data
file. This subroutine performs all of the necessary calls to the applications library based
on user selected options. In addition, CONTROL.FOR must not be renamed. An
example CONTROL.FOR is listed in Appendix D. Finally, he mﬁst construct the main

program, MAIN.FOR, which activates the menuing. Figure 2.1 outlines these

1'elatioﬁships.

Input | Into 1 Output

Interactive | UIT$SCREATE MENU.DAT
(Data | | CONTROL.FOR
MAIN.FOR Link command | MAIN.EXE

CONTROL.FOR
UIT hbrary
Application
library

MENU.DAT MAIN.EXE Application

program

Figure 2.1. File relationships.

)

7 | .
In general, the arguments to the pre-processor subroutines are the data file

name, the delimiter, and the display switch. If the data file field sent is blank, the

-

menu processor assumes the name MENU.DAT as the default. Each menu option has
an associated set of key characters that fully specify the option for selection. The
delimiter is the character that separates the key characters from the remainder of the

option description. The characters that fall before the delimiter are the key characters.

FFor example, in the following option:

ST-Calculate stresses

the delimiter is a dash - and the key characters are ST. If no delimiter is defined, the
processor assumes that the first four characters in an option are the key characters.
The switch variable deterr“ﬁ.ines wheter the key characters. or optioh numbers will be
displayed on a menu. If the switch variable equals 1, then the options are displayed as
they are found in the data file, complete with delimiter. If the switch variable equals 2,
then the options are displayed with option numbers while the key characters are ignored.

For example, with a switch variable of 2, the above option would appear:
4 Calculate stresses

1f 1t were the fourth option on the menu. A switch variable of 2 is recommended in an
application that is implemented on both the dialogue style device and the Unigraphics
workstations so that menu selection appears device independent to the user. The switch

integer is automatically assumed equal to 2 when linking with the Unigraphics device

menu t’figger function library. The data file wvariable must be declared

CHARACTER=%30; the delimiter variable CHARACTERx*1; and the switch variable

INTEGER*2.

Before the programmer may run his application,- he must link all of the

compiled modules together with the menuing trigger function library. The order of the

‘modules in the link command is important. The Digital Command Language (DCL)13

1
\

Laif

linking commands for the dialogue style terminals and the Unigraphics workstations

follow respectively:

" $ LINK MAIN, CONTROL, APP/L, UITSMENUS/L
$ LINK MAIN, CONTROL, APP/L, UITSUFMENUS/L, UGUSER2/L

Py

These result in one executable file, MAIN.EXE, the executable image of the

applications program.

2.2 AUTOMATIC IMPLEMENTATION

The automatic implementation requires that each menu option points to either
a subroutine or a menu. The menu tree structure data file contains all of the pointer
information. The main application program issues a single call to the MENUS
subroutine of the menuing trigger function library. The applications programmer then
links the modules together and runs the resulting executable image. During the
application program execution, if the user chooses an option that points to a submenu,
the submenu is displayed. If the user selects an option that points to a subroutine, the

subroutine is executed and the original menu remains active.

The main program issues a call to the menuing trigger function library’s
MENUS routine. The arguments for this subroutine are the tree structure data file
name , the delimiter symbol, the first menu activated, and a display switch. The first

menu activated variable must be declared CHARACTERx*30. Figure 2.2 lists a sample

main program.

13DCL is a trademark of Digital Equipment Corporation.
10

. PROGRAM MAIN
C This 1s provided by the applications programmer
CHARACTER+*30 NAME, FIRST
CHARACTER DEL
C Any initialization goes here
NAME = THESIS.DAT’
FIRST = ’Top Level Menu’
DEL =2 /
C Invoke the menus |
CALL MENUS (NAME, DEL, FIRST,1)
END

Figure 2.2. Sample main program for automatic menuing.
Iy

2.3 INTERACTIVE IMPLEMENTATION

The interactive implementation attends to the cases where more versatility is
warranted. For example, an option first executes a subroutine, then branches to
another menu. Self-contained modules that can be classified as separate from the rest of
the application, such as view manipulations, may use this implementation also. The
interactive implement'ation may be wused in conjunction with , the automatic

\

implementation.

In order to invoke a menu, a call must be issued to th¢ menu trigger function
library TREE routine. The arguments are the starting menu, the option selectied, the
next menu based on the option selected, and the display switch. The starting menu
variable and thé diéplay switch comprise the input variables. The option selected
variable and the next mef;u variable comprise the output from the subroutine. After

TREE has returned the next menu branch and the option selection via key characters,

11

the applications program acts on this information. The menu processor is only activated
during a call to TREE. The starting menu variable and the next menu variable are
declared CHARACTER%30. Each one must contain the exact spelling, including

capitalization, as the corresponding menu in the data file. The option selected variable

must be declared as CHARACTER *4. i

- There are two method‘s of using the TREE subroutine. The more common use
drives the entire application from the start. The other mixes some calls to TREE with
the original call to MENUS as in the automatic case. This second method is
recommended when only a few special cases exist. In both methods, the menuing trigger
function routines manage automatically the simple cases where an option points to
either a subroutine or a submenu based on the tree structure data and the CONTROL
subroutine. After the simple case has been handled, control of the application returns

to the application program rather than to the menu processor.

In the first method, the program must make a call to INIT MENU in order to
read in the data file and set up the arrays. The arguments of this subroutine are the
data file name and the delimiter symbol. When a particular option points to both a
subroutine and a menu, the data file pointer must be to the submenu. After an option
has been selected, TREE returns the key characters of the option in the option selected
variable. It also determines the next menu in the hierarchy and returns this information
via the next menu variable. The applications program checks the option returned and
acts upon it accordingly. The TREE subroutine may be called from anywhere in the
program, including within applications subroﬁtines. This approach is recommended for

very large applications because of the potential \complexity of the menus.

The example program in figure 2.3 illustrates this method. The option whose

‘12

key character are ST requires both a subroutine call and a branch down the menu
hierarchy. The data file specified that this option points to a submenu, returned in the

NEXT variable. Also, the application begins at the "Read in file” menu.

PROGRAM APPLIC
CHARACTER*30 FILE, START, NEXT
CHARACTER*4 STATE
CHARACTERx*1 DEL
FILE = °’THESIS.DAT’
- DEL = 2
NEXT = "Read in File’
CALL INIT MENU (FILE, DEL)
50 START = NEXT

CALL TREE (START, STATE, NEXT, 1)
“IF (STATE. EQ. ’ST’) CALL STRESS |
GO TO 50

END

Figure 2.3. Sample main program for interactive menuing.

s

Alternatively, when there are relatively few instances of an option pointing to
both a menu and a subroutine, some minor adjustments to the automatic method are in
order. The main program is identical to the main program of the automatic
implementation as in Figure 2.3. In this case, the data file pointer indicates the
subroutine rather than the menu. The call to TREE indicates that a menu is also
warranted. Within the subroutine TREE is called with the START wvariable equal to
the nextpmenu down the hierarchy. At this point, however, the subroutine does not

return any of the TREE data to the automatic part of the application. Therefore, the

subroutine must use the TREE subroutine for all control beyond this point in the

13

hierarchy.

2.4 VAX OPERATING SYSTEM INSTALLATION

The menuing trigger function libraries must be installed by the system manager
on a VAX system. The user interface tool kit directory must be created in which the

menus libraries reside. All files within this directory need a world read and world

()

execute protection. Then, a system logical name must be deﬁ/ued for each library. The

directory is created with the following DCL commands:

$ CREATE/DIR [UIT]
W

The libraries MENUS.OLB and UFMENUS.OLB are installed with the following DCL

commands:

$ DEFINE/SYS UIT$SMENUS UITSMENUS.OLB

i

$ DEFINE/SYS UIT$UFMENUS UIT$SUFMENUS.OLB

These logical name definitions should be included in the system startup command
procedure. Once these logical names are defined, all users on the system may access the

libraries for linking purposes.

14

Chapter 3

FEATURES

3.1 INTRODUCTION

Several features distinguish the automatic menu processor user interface tool
other than automatic menuing according to a hierarchy. Most of these fewatures‘ are
modeled after those found in the computer-aided engiﬁeerig graphics packages
Unigraphics II and IDEAS. A main feature is the option selection. On the Unigraphics

IT user interface, the user selects options by pushing lit buttons on a PFIK while the

menu is listed on the MM. 1% On the IDEAS interface, the user selects options by typing

in key characters of each menu item listed on the screen. 15

A feature common to both systems is the built-in global menu. This menu 1s
available to the user for selection at all times. In Unigraphics, however, some of the

global options are not available to a menu when not feasible.

IDEAS allows the user to type several option key characters on one command

line. If an error is encountered, IDEAS aborts reading the remainder of the command

line. This type ahead capability is extremely useful for the user who is very familiar

with th%pagkaéé{\

N

*4Unigraphics II Design Module, p. 1-3.1.°

ISIDEAS User’s Guide, p. 1-4.
15

3.2 BUILT-IN GLOBAL MENU

The built-in globa,l- menu 18 an Inherent part of the general purpose menu
processor. These global options are available at all times on all applications that use the
menu processor. There are three menu control options in the global menu, reject, main
menu, and list global menu. The ”reject” option brings the user up one level in the
menu hierarchy. The maximum levels that the hierarchy may have is 100. The ”"main
menu”’ option moves the user to the /top level menu regardless of the current position.

{

The ”display global menu” option lists the global menu options.

3.2.1 DIALOGUE STYLE DEVICE

Becduse the menus scroll on the left side of the screen, there are three
additional built-in global options for dialogue style devices. The first is ”clear screen”
which erases all dialogue from the screen. The second is ”write menu” which rewrites
the current menu on the dialogue area. The third is "menu display” which toggles the

menu display between on and off. Figure 3.1 is a listing of the built-in global menu.t’

18IDEAS User’s Guide, p. 1-5.

L"IDEAS User’s Guide, p. 1-8. /
16

- Reject

7 - List Global Menu

/ - Main Menu

M - Rewrite Current Menu
~ CLS - Clear Screen

* - Menu Display

Figure 3.1. Built-in global menu.

3.2.2,UNIGRAPHICS DEVICE

On a Unigraphics device, the user selects options by pushing lit buttons.'® If a
user selects an unlit button, nothing happens. Because of the MM, the ”write current’
menu” and “clear screen” options are unneccesary. This reduces the built-in global
menu to two options, each with a permanently set button. The ”Reject” button

activates the reject option. The ”Terminate Operation” button serves as the main

" menu option.

3.3 APPLICATION DEPENDENT GLOBAL MENUS
§
The programmer may want to include more global menu options than have
been built into the menu processor. Any menu in the menu data file is eligible to be a

global menu. This menu name must be specified in the main program before the

initialization call. In the global menu listing, the application dependent options follow

18Unigraphics II Design Module.
17

the built-in options. Every application dependent global option may be turned on or off
for each menu so the programmer may control which global options are available to

which menu. They are assumed off unless specifically turned on in the data file.

(;v

-

3.3.1 GLOBAL MENU NAME

The global menu name defaults to ”Global Menu” unless othérwise specified.
In order to specify a new name for the global menu, the programmer must include the
GLOBAL common block in his main program and redefine the variable GMWORD.
The menuing trigger function library searches for this menu in:};he data file and fills the
global menu arrays accordingly. GMWORD is declared CHARACTER=*30. Figure 3.2

lists a sample portion of a main program that redefines GMWORD.

PROGRAM MAIN

COMMON / GLOBAL/ GMWORD
CHARACTER*30 GMWORD
GMWORD = ’Change Parameters’

Figure 3.2. Redefining global menu name.

3.3.2 UNIGRAPHICS DEVICE

To access the global menu on a Unigraphics device, the global menu button
must be pushed. These devices have a limited number of buttons that may be
’ implemented, so that the global button may change from menu to menu. It will always

be the last button in a menu list. Since the list is limited to fourteen choices and one is

taken up by the global menu, the programmer should limit a menu that will be

18

implemented on a Unigraphics device to thirteen options per menu unless no application

dependent global menu exists.

3.3.3 MENU DEPENDENCY

FEach option on the applications dependent global menu may be activated
differently for each ‘menu in the application. This information resides in the menu tree
structure data file. For example, an application has four additional global menu options.
For the seventh menu, option 2 is turned off, while the other three are on. If the
current menu is the seventh menu, and the user keys in ? to list the global menu, the
following is listed to the screen underneath the built-in global menu:

F-First Option
T-Third Option
F'T-Fourth Option
The second option of the global menu is unselectable at this time. On a Unigraphics

workstation, these would be listed as the first three options under the global menu.

3.4 MESSAGES

Accessing warning, error, or informational messages is an additional feature to

the user interface. Because the messages are stored in the data file rather than hard-

[4
Rt

coded into the application, minor changes to messages do not require recompiling and
linking to create the executable image. This allows the programmer more flexibility in
changing the syntax of his ingerface. He may choose to define his final output
statements at one time by editing the messages in the data file, thus providing users

with a more understandable interface.l® Further, if the application is for the

——iy

277 .
o~

international market, the only alteration necessary to translate the application into

19

another language; i.e. Turkish; is to translate the information in the data file. With
this in mind, it is not difficult to plan the application such that all output to the screen

1S étored in the tree structure data ﬁle.jl

In order to access a message, the programmer must include the INOUT
MESSAGE and common blocks in his subroutine. The INOUT common block contains
the input and output registers. The MESSAGE common block contains the WARERR
array with all of the message information. It is declared CHARACTER%30 and has
1000 elements. The messages are stored in the sequential order in which they appear in

the dataz file. For example WARERR(5) is the fifth message found in the message

I 4
{7

section of the data file.

The programmer may choose to mix the WARERR information with his data
or use it alone. The INFORM subroutine lists a message to the screen according to
message number. If the programmer needs to mix other information in the message, the
subroutine LONG determines how many of the 30 characters are filled. Its input
arguments are the message variable and the total number of characters. The output
argument is the filled number of characters. Both of the integer variables are declared

INTEGER=*2. Figure 3.3 lists a sample subroutine using the message information.

"1'9Christenson.

20

\JW &

100

SUBROUTINE EXAMPLE
COMMON / MESSAGE / WARERR (1000)
COMMON /INOUT / IDINP, IDOUT
CHARACTER+30 WARERR

INTEGER*2 L1, L2
CALL INFORM (4)
X = 3.0

CALL LONG (WARERR(6), L1, 30)

CALL LONG (WARERR(7), L2, 30)

WRITE (IDOUT,100) WARERR(6), X, WARERR(7)
FORMAT (5X,A<L1>,F4.1,1X,A<L2>)

RETURN

END

Figure 3.3. Sample subroutine using message information.

3.0 TYPE AHEAD

On a dialogue style device, an dption is selected by typing in the key characters
of that option after the "Enter Command: ” request. Users familiar with an application

may choose to key in several sequential option key characters at one time. These

sequential commands are stored in the type ahead buffer.

The user may type in a list of c_omma,nds\ﬁ/f) to 30 characters in length. This
type ahead is applicable also in the interface where option numbers are displayed rather
than key characters. Each command must be separated from the next with either a
space or a comma.
elements of four characters or less. The menu processor then processes each command

separately. On detecting an invalid option, the processor clears the entire buffer and the

The command line is read as one unit and then decoded into

21

rema,inder of the command line is aborted.

The programmer may want to extract user input from the type ahead buffer to

his application.

the TAHEAD common block.

In order to access the buffer, the application subroutine must include

subroutine accessing the type ahead buffer.

50

SUBROUTINE APPLIC
COMMON / INOUT / IDINP, IDOUT

COMMON / TAHEAD/ BUF, PBUF, MAXBUF

CHARACTER«+4 BUF(30), WLEN
INTEGERx*2 PBUF, MAXBUF

Find length
WRITE(IDOUT,*) > Enter length: ’
PBUF = PBUF +4 1
IFF (PBUF.GT.MAXBUF) THEN
READ (IDINP,100) LENGTH
ELSE
WLEN = BUF (PBUF)
DECODE (WLEN,300,ERR=50) LENGTH

END IF

Continue application

Figure 3.4. Sample subroutine accessing type ahead buffer.

First the application subroutine declares the common blocks and the variables. PBUF is
the pointer to the latest element of the BUF type ahead buffer.
number of elements in the buffer. When the buffer is searched for input, the application

increments the pointer and checks it against MAXBUF. Then the subroutine reads the

29

Figure 3.4 lists a sample portion of an application

MAXBUF 1s the

increments the pointer and checks it against MAXBUF. Then the subroutine reads the
next element of BUF and decodes it from a character string to a numeric value. If the

next element of BUF cannot be decoded into a value, execution returns to the line

requesting user input.

23

Chapter 4

DATA FILE SPECIFICATION

4.1 INTRODUCTION

The free structure data file contains all information regarding the menu
hierarchy, global menu options, messages, and subroutine pointers. The file specification
is fairly rigid. A file is most easily created or updated by running the CREATE
program and electing to save the information. This also automatically generates the

CONTROL.FOR subroutine. Appendix C lists an example data file.

A tree structure data file consists of a number of data sets. FEach data set

holds either menu data or message data designated by a type number. A type number
100 indicates that a menu data set follows; a type number 200 indicates that a message

data set follows. Between each data set is a line containing the integer -1.

4.2 MENU DATA SET

A data set type number 100 designates that the following information composes
a menu. The menu data set consists of a title followed by options. The menu data sets

are separated from one another by -1 delimiters. The menu processor can handle a

maximum of 1000 menus and 10000 total options per tree data file. Data fields to the

right of the menu title or option hold any additional information such as pointers or
/™ . |
global menu status. Both mienu titles and menu options data fields have a length of

thirty characters. There is no maximum number of options per menu but a maximum

(W o

¥ 24

of thirfeen is recommended because only thirteen are in any one menu on a Unigraphics

device. Figure 4.1 lists the general format for a menu.

N

100
Title of Menu

Option 1
Option 2

Option N
-1

Figure 4.1. General menu d-ata‘.',set format.

The first menu listed in the data file must be the top level menu, however this
is the only restriction on the order of menu-data sets in the file. The top level menu is
the trunk of the menu tree. Control is returned to the top level menu upon the user

selection of 'main menu’ from the global menu. Often, it is the first menu displayed in

the application.

4.3 OPTION DELIMITERS

Delimiters help the user to determine exactly what key strokes are necessary to
choose an option. If a delimiter is used in the options of a menu, it should be specified
In every option within the data file for continuity among menus. These delimiters
promote continuity from menu to menu. They also allow for less key strokes per option
selection because if a delimiter is not used, the key characters for the option default to
the ﬁrst four characters in the -option._} For example, if a dash ’-’ is the delimiter, it

appears in every option somewhere within the first five characters of the thirty character

field.

25

4.4 POINTERS

Within an application, the selection of a menu option triggers some response.
This response may be to display a new menu, to call a subroutine, or to execute some

other code from the applications program. Regardless of the response, there must be a

pointer in the data file to guide the menuing trigger function library to react properly.

The pointer field occupies the same line as the option. It 1s a 1 character
integer field occupying the 31st character in the line. A 1 points to a menu; a 2 points
to a subroutine; and a 0 or blank field indicates that the menuing trigger function
library is not responsible for triggerinfg a responée on this option. A character field
follow directly next to the integer pointer field. It is 30 characters long and indicates to
which menu or subroutine the option points, depending on the integer field.

4.4.1 TO SUBMENUS

If a 1 occupies the pointer integer field, the option points to a submenu. The
following character field names this menu. The spelling and capitalization of the
submenu must match that of the corresponding menu’s title. This menu must exist
somewhere in the data file or the application program will encounter an error when this
option is selected. The programmer may preprocess the data file to test for this
compatibility by using the ’check file’ option in the UITSCREATE program. When
using the interactive implementation, it 1s important to remember that if an option
points to both a submenu and a subroutine, the submenu 1s to be named in the data file
since the application will call the subroutine when the option is sq}ecte‘d.. Figure 4.2

shows an example option line of a data file pointing to a submenu.

26

PO- Specify Point 1Generic Point Menu

Figure 4.2. Option line pointing to submenu.

4.42 TO SUBROUTINES .

If a 2 occupies the pointer integer field, the option points to a subroutine. .The
following character field names this subrutine. This field also includes any arguments of
the subroutine. The CREATE program must be run at least once and the save option
must be chosen 1n order to create the subroutine CONTROL.FOR which deﬂals with
these subroutines. Figure 4.3 shows an example option line of a data file pointing to a

subroutine.

AB- Absolute Coordinates 2 ABSOLUTE

Figure 4.3. Option line pointing to subroutine.

4.5 APPLICATION DEPENDENT GLOBAL MENU INFORMATION

Fach menu in the tree may specify which application dependent global menu
options are available to it. Since the global menu is menu dependent, this information

1s included on the line containing the menu title. This dita field begins in column 32 to

correspond with the start of the pointer subroutine or submenu of the option lines. This
|

field may accomodate up to 32 items in the application depéndent global menu.

The data field is composed of 1’s and 0’s in sequence. A 1 signifies that an
option is available; a 0 signifies th&t an option is unavailable. The first integer in the

Vs

data field indicates the status of/the first option on the global menu; the second integer

27

indicates the status of the second option on the global menu, and so on. If the field is
blank, no .options are available to the menu. This is useful when no application
dependent global menu exists. Although ;jfvhis field may be up to 32 switches long, it
need only accomodate as many options as the global menu holds. Figure 4.4 lists an
example title data line for a menu to which the first, third, and fourth options of a five

option application dependent global menu are available.

Create Geometry 10110

Figure 4.4. Fzample menu title data line.

4.6 MESSAGE DATA SET

A data set with type number 200 designates that the following information
composes a message data set. There is a maximum of 1000 messages. Each message is
In a ﬁeldﬁbf 30 characters. The programmer accesses a message by its relative placement
in the data file. For example, the tenth message in the data file is message #10. Figure

4.5 lists an example message data line. | N

Warning: Surface not closed

Figure 4.5. Fxample message data line.

If a message is longer than 30 characters, it should be truncated at the 30th character

and continued on the next data line.in the file.

4.7 CONTROL.FOR

Once the tree structure data file is completed, the controlling subroutine

CONTROL.FOR is created. CONTROL.FOR is | unique for each data file. If one
' 28

option from a menu tree is deleted, CONTROL.FOR must be recreated. The most

reliable way to create it is to run the CREATE program and save the information.

The CONTROL.FOR subroutine triggers the applications subroutines where
necessary. It calls subroutines based on relative placement of the options within the file.

The subroutines i1t calls are equivalent to the data field containing subroutine name after

a subroutine pointer in the data file. /

The relative placement parameter is equal to the placement of the option in the
data file. Both menu titles and menu options are counted in this placement. For

example, the trivial data file in figure 4.6 would produce the CONTROL.FOR in figure

4.7.
100
Top Level Menu
ST-Stresses 1First Menu
EX-Exit 2EXIT
-1
100
First Menu
SH-Show Stresses 2STRESS
-1
Figure 4.6. Trivial data file.
SUBROUTINE CONTROL (NOPT)
IF (NOPT.EQ.3) CALL EXIT
IF (NOPT.EQ.5) CALL STRESS

) RETURN

END

Figure 4.7. Associated CONTROL.FOR.

29

-If the data file were changed so the ’EX- Exit’ were no longer an option,
CONTROL.FOR would also require changes. If the ap\;:lica,tions subroutines include
arguments that must be comﬁoned and/or declared, the programme‘r must edit the
CONTROL.FOR file accordingly. Since the menu processor triggers the applications
subroutines and control of the application alternates between the menu processor and

the application, any arguments to these routines would be.lost during the menu

processor activation. Therefore, the use of common blocks in the application subroutine

1s recomrhended.

30

Chapter 5

PROGRAM STRUCTURE

¢

5.1 INTRODUCTION

The general purpose menu processor program consists of three parts; menu
initialization, user interface, and option processing. The menu initialization part sets up
the menuing data structure. The device dependent user interface part displays the
menus and reads user response. The processing part controls the application according

to the user’s input command and the menu hierarchy.

5.2 MENU INITIALIZATION

The menu initialization initializes variables, reads in the data file, and fills the
menu hierarchy arrays. ‘The initialization différs slightly between the automatic
implementation and the interactive implementation. The programmer interface of the
automatic implementation is simpler than that of the interactive implementation. In the
automatic implementation, only one call is made to the menuing trigger function library

to cover both the initialization and the menu processing.

5.2.1 INITIALIZATION ROUTINES

In the 1interactive implementation, the applications program must call
INIT MENU before proceeding with any menu processing. This routine initializes

menuing variables and calls the routine to read the data file. The arguments for

A

31

INIT MENU are the tree structure data file name and the delimiter symbol,
respectively. Appendix A lists the calling sequence for INIT MENU. Figure 2.3 lists a

sample applications program using INIT MENU.

Before issuing a call to read the data file, INIT_MENU initializes several
variables; the input and output registers, the type ahead buffer pointers, and the reject
pointer. If the programmer has not specified a data file name, 1t defaults‘-.\jso‘
MENU.DAT. The global menu name is checked against the default ”Global Menu”,

also. Then INIT MENU calls READ MENUS to read the menu data into menuing -

arrays.

In the automatic implementation, the applications program must issue a call to
MENUS. This routine performs all of the initialization in INIT MENU, as well as the

menu processing. Its calling sequence is listed in Appendix A. Figure 2.2 lists an

example program using this automatic implementation.

For the Unigraphics user interface, there is an additional initialization call in
both INIT MENU and MENUS. The User Function routine UF1000 is called to

initialize the Unigraphics terminal. This call enables later calls to the User Function

library.

5.2.2 READING DATA

The READ MENUS routine fills the menuing arrays by reading in the tree
structure according to data file specifications. It reads the menu data sets and message
data sets of the specified data file and fills the menu and pointer arrays. Finé,lly, 1t

determines the key characters of each option. At the conclusion of the READ MENUS

routine, the initialization is complete.

392

READ _MENUS reads each line of the data file and interprets it. The first line
of the data file indicates whether the data set immediately following is a menu data set
or a message data set. After a data set has been read, the next indicator is read and the

data set following is interpreted. This continues until the end of the data file is

encountered.

I[f a message data set is encountered, the message arrays are filled. As each
message is read and put into the WARERR array, the message counter, NWE, is
incremented. These messages are available to the programmer via the MESSAGE

common block and/or the INFORM subroutine. Figure 3.3 lists an exarmiple use of this.

If a menu data set is encountered, the menu arrays are filled. The four arrays
filled directly from the data file are the MENDAT, MID, ACCISS, and GLOPT arrays.
MENDAT contains the actual menus, as well as the submenu and subroutine interaction

data. MID and ACCESS are pointer arrays. GLOPT contains application dependent

global menu option data.

The MENDAT array holds the menu information ivn the sequential; order of the
data file. MENDAT i1s a two column array and stores up to 11000 rows of data. The
menu titles and option s are stored in the first column of MENDAT. The subroutine or
submenu to which an option points is stored in the second column of the array. In the

rows containing a menu title in the first column, the second column is blank. MENDAT

1s declared CHARACTER=%*30.

The MID array describes the trigger function of an option for the menu

processor. It is a one column array of the same length as MENDAT. The ith element

&

of MID may be 0, 1, or 2. A 0 indicates that the menu processor ignores the option

.selected. A 1 indicates that the ith option in MENDAT points to a submenu. This
33

submenu is stored in MENDAT (i,2). A 2 indicates that the option points to the
subroutine stored in MENDAT (i,2). MID is declared INTEGER%2. Figure 5.1 lists a

sample MENDAT and associated MID arrays.

MENDAT MID
View Manipulations N 0
MO-Model Model 1
S-Screen Screen 1
Model 0
T-Translate . MTRANS 2
R-Rotate | MROT 2
EYE-Eye | | MEYE 2
Screen 0
T-Translate “ STRANS 2
R-Rotate ~ |sror 2
EYE-Eye point SEY L 2

Figure 5.1. Sample MENDAT and MID arrays.

The ACCESS array holds the pointers to MENDAT and the key (tlla,ractelfé
arrays. ACCESS is a three column array and stores up to 1000 rows of pointers. The
ith line in ACCESS describes the ith menu in the MENDAT array. The first column of
ACCESS points to the start of the ith menu in MENDAT. The second column is the
number of options in the ith menu. t-heﬂ;t‘llir,d column points to the beginning of the ith
menu in the key character array. the key character array will be discussed later in this
document. ACCESS is declared INTEGER*2. Figure 5.2 lists the ACCESS array for

the MENDAT in figure 5.1.

34

ACCESS

1 2 1
4 3 3
8 3 6

Figure 5.2. ACCESS array.

After the data file has been successfully read, the two option selection arrays
are filled. The KEY CHARS array holds the key characters in sequential order of the
options only. Beéause key charapters may have a length from 1 to 4 characters, the
KEY ID array hold the lengthrof each corresponding KEY CHARS. KEY CHARS is
declared CHARACTER«4; KEY 1D is INTEGE\f\{\'*Q. Figure 5.3 lists these arrays for

the MENDAT of Figure 5.1.

KEY CHARS KEY ID
MO 2
VP 2
T 1
R 1
EYE 3
T [1]
R 1|
EYE 3

Figure 5.3. KEY CHARS and KEY ID arrays.

In addition, the menu number of the application dependent global menu is
determined. The titles of each menu are checked until a match is made with the

v

GMWORD string variable. GMWORD defaults to ”Global Menu” unless changed in

39

the applications program before the menu initialization is called as in figure 3.2.

5.3 USER INTERFACE

The first half of the TREE subroutine contains the device dependent user
interface. The menu processor drives the entire user interface for dialogue devices. This
includes menu display, option selection, and option validity checking. For Unigraplli(;s
workstations, User Function routines drive the interactive user devices for the interface.
This includes message monitor (MM) and program function keyboard initialization,
menu display on the MM, lighting the function buttons on the PFIK, option selection

through button pushes, and option validity checking.

For the dialogue style device, the menu processor displays the menu as well as
handles the user response. In order for the dialogue interface to more closely resemble
the Unigraphics interface, it is possible to display the options with option numbers
rather than with the key characters and a delimiter. The user responds by keying in
characters which are then checked against the available options. These responses must
have the exact capitalization as listed in the menu. In addition, a user familiar with an

application may choose to type several responses on one command line.

In the dialogue style interface, TREE first determines the menu number and
then lists the menu to the screen. The MENNUM subroutine receives a character string
containing the menu name and returns the number of the menu in the data structure_:
Next, DSPLY MENU is called to list the menu to the screen. DSPLY MENU utilizes
the pointerslin ACCESS to determine which portion of MENDAT to display. If the
display swi;ch variable of 2 is'sent to DSPLY__MENU,' the key characters and delimiter

are stripped from an option and option numbers are displayed instead. At the end of

‘
-

36

W

!

the menu listing, DSPLY MENU requests the user to enter a command.

After the menu has been displaygd, the user keys in his command. TREE reads
the input from the user into a string variable. The string is broken into commands,
delimited from each other by a space or a comma. These commands are stored in the
type ahead buffer. The type ahead buffer is set to 1 to be ready to process the first

command. After a command is processed, the type ahead buffer pointer is incremented

for the next command.

In order to determine an option’s validity, the current string in the type ahead
buffer i1s checked against the key characters of the options in the current menu and in
the global menu. The pointers in ACCESS are used to determine which elements of
KEY CHARS to search. If the user has input an invalid option, an error message is

written to the screen, the type ahead buffer is cleared, and the user is prompted to input

a New response.

In the Unigraphics style interface, after determining the menu number, TREE
calls a User'Function' routine, UF1603, to display the menu, light the PIF'IK according to
the menu, and receive user feedback. The arguments are the menu title, the menu
array, the length of the menu, the default setting, and'the output user response.zo The
User Function library returns only valid button pushes so that the processor need)not
determine if a button were lit when it was pushed. Also, there is no type ahead concept

with button pushes.

20(ser Function Manual, McDonnell Douglas Corporation, (1988), Cypress CA,

p. 3.3.19. -
37

5.4 PROCESSING USER INPUT

The processing part controls the menu triggering or applications subroutine
calling based on user input. The processing is device and implementation independent.
When the user interface part determines that the option is valid for processing, it also
stores the valid option’s relative position in the data arrays. The associated element in
MID then determines whether a submenu is triggered or an applications subroutine is
called. If a menu is to be triggered, the menu processor updates the current menu
information to reflect the next menu in the hierarchy. If a subroutine is to be called,
TRELE calls CONTROL which wa:s;\crea,ted based on the data file. After the processing
is complete, TREL returns the original menu, the option selected, and the next menu in

the tree structure.

- \
{ \ L

5.5 GLOBAIL MENUS

During processing, the valid option may be checked against the global menu.
Both the built-in global menu and the application dependent menu are searched. The

GLOBAIL routine processes options found on the global menu.

5.5.1 BUILT- IN GLOBAL MENU

The bui]t-in’global menu contains six options; main menu, list menu, clear
screen, toggle menu display, display global menu, and reject. Main menu changes the
value of the menu number to 1. List menu lists the current menu to the screen,
regardless of the menu display toggle. Clear screen clears all dialogue erm the screen.
Toggle menu display switches between ”display menu”’ and ”do not display menu”.

Display global menu lists the global menu including the applications dependent global

38

menu options. Reject moves the menu up one level in the hierarchy.

The reject buffer for the reject option is dynamic. As each new level is reached
in the hierarchy, the reject buffer, REJECT, stores the new menu number and the
pointer to the current level in the hierarchy. When the reject option is chosen, the
pointer moves one level up in the hierarchy and the new menu number is obtained from

REJECT. The REJECT buffer is cleared when the user chooses the main menu option.

9:0.2 AP;PLICATION DEPENDENT GLOBAL MENU

The GLOBAL subroutine also tests the option against the application
dependent global menu. These options are checked in the same manner as they are
against the current menu. The difference is that some global menu options may not be
avallable to the current menu. For the ith menu, GLOPT (i) must be translated from
an integer into a series of 1’s and 0’s. The GLVAL subroutine accepts the integer and

returns an array of the 1’s and 0’s. An option is only checked if its corresponding switch

1s equal to 1.

Vo

Chapter 6

UITSCREATE

6.1 INTRODUCTION

The UITSCREATE program allows a programmer to interactively create or

modify a menu hierarchy data file, as well as the associated CONTROL.FOR
subroutine. To begin creating or modifying a menu hierarchy, one must run the
UITSCREATE image. UITSCREATE is an example of an application of the general

purpose menu processor using the interactive implementation. Appendix D lists a

sample UITSCREATE session.

6.2 FILE ACCESS

The first menu encountered in UITSCREATE is the File Access menu listed in
figure 6.1. This menu allows one to modify an e.xisting tree structui‘ée from a data file or
to begin a new tree structure. To modify or add to an existing data file, one chooses RE
and specifies the file name. UITSCREATE reads this file and updates its arrays beiore

starting the session. To create a new data structure, one selects NEW. After

initializing the session, UITSCREATE branches to the top level menu.

File Access
RE- Read in existing file
NEW- Create new file

Figure 6.1. File Access menu.

6.3 MENU DATABASE (

The top level menu is called Menu Database. All of the main functions are
accessed from this menu listed in figure 6.2. From this, one may choose to create a
menu, modify an existing menu, set the application dependent global menu status, add

or modify warning or error messages, list the hierarchy, save the information to a file, or

exit UITSCREATE.

Menu Database

CR- Create new menu branch
CH- Change menu branch
GL- Global menu status

ME- Messages ;
LH- List hierarchy
SA- Save entire menu tree | !

EX- Exit

Figure 6.2. Menu Database menu.

6.4 CREATE MENU BRANCII

In order to create a menu data set, one selects CR from the top. level menu.
Next, one enters the title of the menu branch. Then one chooses options from the
Create Menu Branch menu listed in figure 6.3. To add an option to the current menu,
one selects ADD. The options and associated pointers to subroutines or submenus are
added in sequential order to the current menu. If the option added points to a
submenu, the submenu must have the exact capitalization as in its menu title. To view
the current menu and its pointers, one selects LI. To finish working on this menu, on
uses réje@t (!) or main menu (/) from the built-in global menu to return to the Menu

Database menu.

41

Create Menu Branch
AD- Add option to branch

LI- List current menu

Figure 6.3. Create Menu Branch menu.

6.0 CHANGE MENUS

To modify an existing menu, one selects CH from the top level menu. This
branches to the Change Menu menu listed in figure 6.4. To alter the title of a menu,
one selects CT, chooses the menu to rename, and keys in a new title. To delete an
entire menu data set, one selects DB and subsequently selects the menu to delete from a

list. To list all of the menu names created, one chooses LM. In order to modify options

within a menu, one selects CO.

Change Menu
CT- Change title of menubranch
DB- Delete menu branch

LM- List menu names

CO- Change option on menu

Figure 6.4. Change Menu menu.
t@i‘-a?

6.50.1 CHANGE OPTION

After selecting which menu to modify, one chooses the modification type from
the Change Option menu listed in figure 6.5. One selects AD to put an additional
option on the menu. The new option follows all of the previous options in the menu.

One chooses DE to delete an option from the menu. RE is chosen to replace a

particular menu choice. LI lists the entire menu to the screen.

49

Change Option

AD- Add option to branch

DE- Delete option from branch
RE- Replace option from branch

ILI- List current menu branch

Figure 6.5. Change Option menu.

6.6 MESSAGES

In order to create a message data set, one chooses ME from the top level menu.
This branches UIT$CREATE to the Messages menu listed in figure 6.6. To add a
warning or error message to the data, one selects AM. To delete a message, one selects
DM and then deletes a message from the list. RE is selected to replace a message in the

list with a new message. LM simply lists the messages sequentially.

Messages

AM- Add message to list
DM- Delete message to list
RE- Replace message to list

LM- List messages

Figure 6.6. Messages Menu.

6.7 GLOBAL MENU

To manipulate the application dependent global menu, GL is selected from the
Menu Database menu. This branches to the Global Menu Status menu listed in figure
6.7. To add an option to the global menu, AD is chosen. This assumes that a default
menu called ”Global Menu” has been cfeated or that one‘of the existing menus has been

designated as the global menu. To select an existing menu as the application dependent

43

Q

global-menu, one chooses RE. This must also be declared in the applications program as
in figure 3.2. To set the global menu switches of a particular menu, ST is chosen and
then the menu is specified: The switches default to 1 or on until toggled off. LI lists the

applications dependent global menu.

Global Menu Status

AD- Add option to global menu
ST- Set status of global menu
RE- Select menu to be global
LI- List global menu

Figure 6.7. Global Menu Status menu.

6.8 LIST HIERARCHY

To list the menu hierarchy that has been built, one chooses LH from the top
level menu. If a starting menu is chosen from a list, the menu tree structure is displayed
from that point down the branches. For each branch in the hierarchy, the menu name

1s indented to indicate a lower menuing level. Figure 6.8 lists a sample hierarchy list.

Create Geometry
Generic Point
Line Type

Generic Point
Arc Type

Generic Point

Figure 6.8. Sample menu hierarchy list.

.
6.9 SAVE FILE

.. To save the menuing tree sturcture data to a file, SA is chosen from

44

the main menu. This branches to the Save Tree menu listed in figure 6.9. The CHK
option checks that all of the menu data sets that are pointed to by an optiton have been
created. For example, if an option points to a menu called ”View Manipulations”, the
CHK option checks this menu exists in the data. The menus that are pointed.to but do
not exist are listed to the screen. One may choose to return to the main menu and
create these menus. To save the data to a file, one opts for SA from the menu. This
creates a menu tree structure data file and the associated CONTROL.FOR subroutine.
If the data file has been crealted or modified using editing rather than UITSCREATE,

this step i1s necessary to produce the proper sequencing in CONTROL.FOR. Even a

minor change to a single menu data set requires a new CONTROL.FOR.

Save Tree

CHK- Check tree
SA- Save tree to file

Figure 6.9. Save File menu.

6.10 PROGRAM STRUCTURE

UIT$CREATE uses the general purpose menu processor to trigger its submenus
and subroutines. It maintains a data structure of the i.nput menu data parallel to those
of the menuing trigger function library. The subroutines store this data in common
blocks and manipulate it according to user input; | The common blocks, purpose of each

subroutine, and each subroutine’s calling sequence are listed in Appendix D.

6.11 INSTALLATION ON A VAX

To install UITSCREATE, the VAX system manager must have a copy of

CREATE.EXE and CREATE_MENU.DAT in the UIT$ directory. They must have
45

world read and world execute protection. The system logical name UIT$CREATE is

made with the following DCL command:

$ C'REATE/SYS UITSCREATE [UIT]CREATE.EXE
This should be included in the system startup command procedure. Then all users of

the system may access to the UITSCREATE program.

46

REFERENCES

Christenson, Kirk. ”Writing Easy-to-Use Programs for Computers.” Mechanical

Engineering, Volume 106 No.9, 1983, pp.66-69.

Digital Equipment Corporation. Comumon Graphics Interface User’s Manual,

(

An Integration Architecture Module. Maynard, MA: Digital Equipment Corporation,

1987.

Digital Equipment Corporation. Programming in VAX FORTRAN. Maynard,

MA: Digital Equipment Corporation, 1984.

McDonnell Douglas Manufacturing and Engineering Systems Company. User

Function Manual. Cypress, CA.: McDonnell Douglas Manufacturing and Iingineering

Systems Company, 1988.

McDonnell Douglas Manufacturing and Engineering Systems Company.

Unigraphics II Design Module. Cypress, CA: McDonnell Douglas Manufacturing and

Engineering Systems Company, 1984.

Olsen, Dan R., Buxton, William, Ehrich, Roger, and Kasik, David J. A
Context for, User Interface Management.” IEEE Computer Grapichs & Applications,

8
Volume 4 No. 12, (1984), pp. 33-41.

Spfoull, Robert F., W. R. Sutherland, and Michael K. Ullner.

Device-Independent Graphics. New York, NY: McGraw-Hill Book ACompany, Inc., 1985.

47 }

Structural Dynamics Research Corporation. Geomod Solid Modeling and .

Design. Milford OH: Structural Dynamics Research Corporation, 1988.

Structural Dynamics Research Corporation. IDEAS User’s Guide. Volume 1,

Milford OH : Structural Dynamics Research Corporation, 1988.

48

Appendix A

MENU PROCESSOR ROUTINES

Due to the nature of the menu processor, its routines depend on data stored in
common blocks. Because the applications program may access the processor at any
point in the application, the common blocks are necessary to store the menu data,
pointer data, and current status data. In this way, the applications program does not
interfere with the menu processing. Care »must be taken by the applications
programmer, however, in the selection of names for applications common blocks and

subroutines. Those reserved for the menu processor are listed in this appendix.

49

BLOCK NAME

CONTENT DESCRIPTION

MENUS
TREE
APPLIC
GLOBAL
INOUT
MESSAGE

TAHEAD

Menu data and pointer arrays
Reject buffer and triggering pointer
Application file name and delimiter
Global menu information

Input and output registers

Message information

Type ahead buffer and pointers

Table A.1. Menu processor common blocks

50

DSPLY MENU

This routine displays the current menu to the output device.

Format CALL DSPLY MENU (nm, itype)

Arguments nm, itype
format: integerx2

access: read only

h.
Devices Dialogue device only
Description The current menu 1s displayed with either key characters or

option numbers to indicate valid selections
Input:

nm = the current menu number;

itype. = 1 to display key characters;

= 2 to display option numbers.

51

GLOBAL

This routine drives the appropriate global menu.

Format CALL GLOBAL (menu, state, 1o, 1T, z”sw)

Arguments menu, isw

format: integerx2
access: read only

state
format: characterx4
access: read only

10, 1T
format: integerx2

access: write only

Devices All

Description The global menu may be displayed according to the current
menu. It may also, be checked for valid options depending on the

current menu and the built-in global menu.

Input:

menu = current menu number;

A,

state = option selected by user;

1SW

-1 for display purposes;

= 2 for option checking purposes.

52

Output:

10 pointer to mendat array for menu data; ‘

i pointer to key chars array for option data.

53

GLVAL

This routine determines the status of the application dependent global

- menu.
Format CALL GLVAL (menu, '.bz'ts)i
Arguments menu
format: integerx2
access: read only
bits
format: byte (32)
access: write only
Devices All
Description Each variable in the #it array corresponds to an application

dependent global menu option. This routine translates a single integer
associated with the current menu into on and off switches for the
global menu.

Input:

menu = sequential menu number.

Output:

bits(i) = 1 if the ith option is on;

— 0 if the ith option is off.
54

INFORM

4

This routine writes a message to the output device.

Format

CALL INFORM (num)

Arguments

num
format: integerx2

access: read only

Devices

All

Description

on the output device. This routine is application program callable.

Input:

num = Imessage number in database.

A message from the menu tree structure data file

55

written

INIT MENU

This routine initializes the menuing environment.

,
’ﬁg

Format CALL INIT MENU (Jile, del)

Arguments file
format: characterx30
access: read and write
del
format: characterxl
access: read only
Devices All
Description All variables are initialized.
Input:

file = name ot tree structure data file;

del — option delimiter symbol;

o6

LONG

This routine determines the filled portion of a string variable.

Format CALL LONG (word, inuse, size)
Arguments ‘word
format: characterxsize
access: read only
inuse, size
format: integerx2
access: read and write
Devices All
Description The used portion of a string variable is determined for

output purposes.

Input:

word = string variable;

size = length of string variable;
Qutput:

inuse = used portion of string variable.

57

MENUS

This routine initializes the menu variables and drives the menu

pProcessor.
Format CALL MENUS (file, delim, isw)
Arguments file
format: characterx30
access: read and write
delim
format: characterxl
access: read and write
1SWw
format: integerx2
access: read only
Devices All
Description After the wvariables are initialized, READ MENUS is called to

read in data. Tree is called in such a manner to drive the menu

processor.

Input:

file = name of tree structure data file;

del = delimiter character;

isw = 1 to display key characters;

58

= 2 to display option numbers.

READ MENUS :

This routine reads the menu tree structure data file.

Format CALL READ MENUS ()

Arguments none

Devices All

Description The menu hierarchy data file is read. All of the menuing

arrays are filled and ready for processing.

60

TREE \

This routine i1s the main menu handling routine for the menu

Processor.
&
Format CALL TREE (start, state, next, -z"sw)
Arguments start
format: characterx30
access: read only -~ \"‘/‘\\
state .
format: characterx4)
access;.. write only
nect
format: characterx30
access: write only
1sw-
format: integerx2
access: read only
Devices All
Description This routine displays t@h‘e current menu and allows the user to

select an option. The type ahead buffer is filled and the option is
checked against the valid options for that ‘menu. The processor

updates the current menu, activates the global menu, or calls a

61

subroutine according the the user option and the menu hierarchy.

Input:

start = current menu name;

isw = 1 to display key characters;
= 2 to display option numbers.

Output:

state = option selected;

nert = next menu to be displayed.

MENNUM

This routine determines the name or number of a menu.

Format CALL MENNUM (name, num, z';nde:c)
Arguments name
format: character*30
access: read and write
num, tndex
format: integerx?2
access: read and write
Devices All
Description If the name of a menu is specified, the corresponding menu

number is returned. If the number of the menu is specified, the name
| /

1s returned.

Input:

inder = 0 1f name is input;

= 1 if number in input;

Input/Output:
name = IN€nu name;
num = menu number.

63

Appendix B

UITSCREATE ROUTINES

Due to the interaction between the general purpose menu processor and the
UIT;SBCREATE routines, its routines depend on data stored in common blocks. Because
the information that UITSCREATE generates will become menuing information, the

common blocks and arrays have much the same format as the menu processor routines.

5
BLOCK NAME CONTENT DESCRIPTION
USER | Menu data and pointer arrays
GLOBE (Global menu information
INOUT Input and output registers
WORDS Message information
CURRENT Current menu pointers

Table B.1. UIT$8CREATE common blocks

04

ADMESS

This routine adds a message to the data base.

Format CALL ADMESS
Arguments none.
Description The user inputs a message which is added to the data.

65

CHECK

This routine checks the validity of the data.

Format CALL CHECK ()
Arguments none
Description This routine checks that each menu pointed to exists. If ‘a

menu 1s pointed to and a corresponding data set does not exist, the

menu 1s written to the screen.

66

CREATE CONTROL |
This routine creates CONTROL.FOR.
Format -~ CALL CREATE_CONTROL ()
Arguments none
Description The triggering subroutine CONTROL.IFOR 15 created

according to the data.

LHIER

This routine lists the menu data hierarchy.

Format CALL LHIER ()
Arguments none
Description The menu hierarchy is listed to the screen from a user

inputed starting point.

68

DELMEN
This‘ routine deletes a menu from the data.
Format CALL DELMEN ()
Arguments none
Description A user specified menu data set is deleted from the data. The

common blocks arée updated to reflect this change.

69

DELOPT

This routine deletes an option from a menu.

Format CALL DELOPT () >
Arguments none
Description A user specified option is deleted from the current menu. All

-

common blocks are updated to reflect the change

70

DEMESS
This routine deletes a 'mes’sage from the data.
Format CALL DEMESS ()
Arguments none
Description A user specified message is deleted from the message data

set. The MESSIJ common block elements are .updated to reflect this.

71

DETGLOB

This routine determines which menu is the global menu.

Format CALL DETGLOB ()
Arguments nomne
Description This “routine searches through the menu titles to find the

global menu number.

72

LIMESS

This routine lists the messages to the screen.

Format CALL LIMESS ()

Arguments none

Description This routine lists the message data set which the wuser has
entered.

73

FINDNO
This routine determines the name or number of a menu.
Format CALL FINDNO (name, num, indez)
Arguments name
format: characterx30
access: read and write
num, index
format: integerx2
access: read and write
Description If the name of*a menu 1is specified, the corresponding menu

number is returned. If the number of the menu is specified, the name
1s returned. This executable lines of this routine are identical to those
of MENNUM in the menuing trigger function library, however the
COMMON blocks reflect the information the user has input.

Input:

inc?ea: = 0if name is input;

= 1 if number in input;

Input/Output:
name — IINI€nNu nalmne;
num = menu number.

74

LIST

This routine lists the current menu to the screen.

. ’7, ~\'
{7

v .
\ P4

Format ~ CALL LIST ()

Arguments none

Description The menu on which the wuser is working is displayed to the
screen. 'This routine is called from several different points in the menu

tree.

-

LISTMEN

This routine lists the menu titles.

Format CALL LISTMEN ()
Arguments none
Description All of the titles of the user inputed menu data sets are listed

to the screen.

N

76

NEWTITLE

This routine determines the title of a new menu data set.

Format CALL NEWTITLE ()
Arguments none
Description For a new menu data set, the title is specified. If the menu is

to be the top level menu, the user is notified.

are activated.

77

All of the global options

OLDFIL

This routine reads in an existing data file for modifications.

Format CALL OLDFILE ()
Arguments none
Description All of the data of a specified menu tree structure data file
i1s read into the proper arrays.
y)
L2\

78

ONEOH

This routine determines the global option switches of a menu.

Format CALL ONEOH (menu, bz't's")

Arguments menu
format: integerx2

access: read

bits
format: integerx2
access: write
Description The global menu integer of a particular menu is decoded into

its global option switches.

Input:

menu = menu number;

Output:

bits = array containing 1’s and 0’s for switches.
= A

79 a

OPTION

This routine adds an option to the current menu.

Format CALL OPTION ()
Arguments none
Description An option is added to the current menu at the bottom of the

menu data set. All of the arrays for this menu are updated to reflect

the new option.

80

PUTBITS

This routine translates a binary number to its integer equivalent.

Format

CALL PUTBITS (menu, bits)

Arguments

menu, bits
format: integerx2

access: read only

Description

The global option switches for a particular
into a single integer value for easy storage.

Input:

menu = mMmenu number;

bits = array of 1’s and 0’s.

81

menu

are encoded

SAVE

This routine saves all of the user input data to a menu tree structure

data file.

Format CALL SAVE ()

Arguments none

Description All of the data stored in the common blocks is written to a

data file according to specification.

82

SAVEMENU

This routine saves menu data to common blocks.

Format CALL SAVEMENU ()
Arguments none
Description All of the options of a menu are saved to the common blocks.

Some of the data pointers are updated to reflect this save.

33

SEGLOB

This routine sets a particular menu to be the global menu.

Format CALL SEGLOB ()

Arguments none

Description This routine determines which ‘menu the wuser prefers to be
the global menu.

84

SETGLO

This routine sets the current menu at the global menu.

Format CALL SETGLO ()
Arguments none
Description This routine sets the current menu that the wuser is working

with to be the global menu. TIf no global menu exists, the user is

warned.

89

SPECFILE

This routine determines an input file name.

Format CALL SPECFILE (name)
Arguments name
format: characterx30
access: read only)
Description This routine requests the file name of a data file that is to
~

be read for modifications.
Input:

name = data file name.

36

STAGLO

This routine sets the status of the global menu switches for a menu.

Format CALL STAGLO ()
Arguments none
Description The routine lists the available menus to the screen for user

input. It then lists the current global menu switch status of the

selected menu. The user may then toggle switches.

~ TITLE

This routine determines the title of the current menu.

/

Format CALL TITLE ()
Arguments none
Description The title of the current menu is obtained from the user. This

routine is used for new menu data sets as well as renaming existing

ones.

88

/
7
WHICHM
This routine determines the current menu.
Format CALL WHICHM (num)
’ Arguments num
format: integerx2
access: write
Description This routine determines the current menu for the menu

modification options. All of the menu pointer information is updated

to reflect the current menu.

89

Appendix C

SAMPLE TREE STRUCTURE DATA FILE

This appendix lists a sample data file of a solids modeling application whose
menu tree structure follows. In this diagram, an underline denotes the end of a branch.

An option with no underline points to a submenu.

Solids Modeling

Create Orient Analysis Display File

Geometry Options

Create Geometry

Primitive Boolean Profile
Operations Manipulations
Primitive
Prism Sphere Cylinder Profile Cone

90

Boolean Operations

|
]

Difference Union Plane Cut Intersection

Plane Cut

|

3 Point Normal

Profile Manipulations

|

Revolve " Extrude

Ol‘lent ®

Object Screen

Orient Object

Translate Rotate Scale | Eye Point

Orient Screen

o
| |

Tran sl‘at”fe Rotate Scale Eye Point

91

Analysis

Properties Interference

Display Options

Hidden Edge Shaded Color Perspective
Line Image Switch
File
Save Model Save Picture Read Write
External External

Global Menu

Store Delete Redraw Exit Name display

Object Object Switch
Switch
On Off

92

100

Solids Modeling

CG- Create Geometry
OR- Orient

AN- Analysis

DO- Display Options
F- File .

-1

100

Create Geometry
PR-Primitive

B- Boolean Operations

PM- Profile Manipulations

-1

100

Primitive

PRI- Prism

SP- Sphere

CY- Cylinder

PF- Profile

CO- Cone

-1

100

Boolean Operations
D- Difference

U- Union

P- Plane Cut

[- Intersection

-1

100

Plane Cut

3P-3 Point Definition
N-Normal and Point
-1

100

Profile Manipulations
RE- Revolve

E- Extrude

1

100

Orient

OB- Object

SC- Screen

-1 \:

100

Orient Object

TR- Translate

RO- Rotate

SC- Scale

EYE - Eye Point
-1

11111

1Create Geometry
10rient

1 Analysis
1Display Options

1File

11111
1Primitive
1Boolean Operations
1Profile Manipulations

11111
2PRISM
2SPHERE
2CYLNDR
2PROFIL
2CONE

11111
2DIFF
2UNION
1Plane Cut
2INTSCT

11111
2POINTS3
2NORMAL

11111
2REVOLV
2EXTRUD

11111
10rient Object
10Orient Screen

11111
20TRANS
20ROT
20SCAL
20EYE

93

100

Orient Screen

TR- Translate

RO- Rotate

SC- Scale

EYE - Eye Point

-1

100

Analysis

PR- Properties

I- Interference

-1

100

Display Options

HL- Hidden Line

ED- Edge Display

SI- Shaded Image

C- Color

P- Perspective Switch
-1

100

File

SM- Save Model

SP- Save Picture to File
RE- Read External File
WR- Write External File
-1

100

Global Menu

ST- Store Object

DE- Delete Object
RED- Redraw

EX- Exit

NA- Name Display Switch
-1

100

On / Off

ON- Turn switch on
OFF- Turn switch off
-1

200

Enter object name:
Enter translation (x,y,z):
Enter rotation (x,y,z):
Enter scale:

Enter file name:

Enter point for primitive:

Enter cutting object name:

-1

11111
2STRANS
2SROT
2S5SCAL
25EYE

11111
2PROP
2INTFER

11111
2HIDDEN
2EDGE
2SHADE
2COLOR
10n / Off

11111
25SAVMOD
25AVPIC
2READEX
2WRITEX

2STORE
2DELET
2REDRAW
2EXIT

10n / Off

00000
20N
20FF

94

Appendix D

SAMPLE UIT$CREATE SESSION

This appendix lists a sample interactive session of the UITSCREATE program.

This session begins creating the data file of appendix C. The user input is italicized.

$ RUN UITSCREATE

File Access
RE- Read in existing file
NEW- Create new file

Enter Command: NEW
Option selected: NEW- Create new file

Menu Database

CR- Create new menu branch
CH- Change menu branch
GL- Global menu status

ME- Messages

LH- List hierarchy

SA- Save entire menu tree

EX- Exit

Enter Command: CR
|

Option selected: CR- Create new menu branch

**xx*k This must be your top level menu!! ss*xxx
Enter menu name (exact caps please): Solids Modeling

Create Menu Branch
AD- Add option to branch

LI- List current menu

Enter command: AD
Option selected: AD- Add option to branch

Enter option no. 1 (Include delimiter): ©G- Create Geometry

95

CG- Create Geometry points to:
1 - Another menu
2 - Subroutine
0 - Taken care of by application code

Enter choice: 1
Enter menu name: Create Geometry

Create Menu Branch (
AD- Add option to branch

LI- List current menu

Enter command: AD |
Option selected: AD- Add option to branch

Enter option no. 2 (Include delimiter): OR- Orient

OR- Orient points to:

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 1
Enter menu name: Orient

Create Menu Branch
AD- Add option to branch

LLI- List current menu

Enter command: AD |
Option selected: AD- Add option to branch

Enter option no. 3 (Include delimiter): AN- Analysis

AN- Analysis points to:

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 1
Enter menu name: Analysis

}

Create Menu Branch
AD- Add option to branch
[LI- List current menu

Enter command: AD
Option selected: AD- Add option to branch

Enter option no. 4 (Include delimiter): DO- Display Options

DO- Display Options points to:
1 - Another menu |
2 - Subroutine
0 - Taken care of by application code

96

Enter choice: 1
Enter menu name: Display Options

Create Menu Branch
AD- Add option to branch
LI- List current menu

Enter command: AD
Option selected: AD- Add option to branch

Enter option no. 5 (Include delimiter): F- File

File points to:

1 - Another menu

2 - Subroutine

0 - T'aken care of by application code
Enter choice: 1
Enter menu name: File

Create Menu Branch
AD- Add option to branch
LI- List current menu

&

Enter command: LTI
Option selected: LI- List current menu

Solids Modeling
CG- Create Geometry points to Create Geometry
OR- Orient points to Orient |
AN- Analysis points to Analysis
DO- Display Options points to Display Options
F- File points to File
Create Menu Branch
D- Add option to branch
I- List current menu

Enter Command: |

Menu Database

CR- Create new menu branch
CH- Change menu branch
GL- Global menu status
ME- Messages |

LLH- List hierarchy

‘SA- Save entire menu tree
EX- Exit

Enter Command: x CR

Option selected: Toggle menu display off

97

Enter menu name (exact caps plea.se): Create Geometry

Enter command: / CR

Option Selected: CR- Create new menu branch
Enter menu name (exact caps please): Primitive
Enter command: / CR

Enter menu name (exact caps please): Bosolean
Enter command: / CR

Enter menu name (exact caps please): Plane Cut

Enter command: AD
Enter option no. 1 (Include delimiter): 3P- 3 Point Definition

3P- 3 Point Definition points to:
1 - Another menu
2 - Subroutine
0 - Taken care of by application code

Enter choice: 2
Enter subroutine name: POINTS3

Enter command: AD
Enter option no. 2 (Include delimiter): N- Normal and Point

N- Normal and Point points to:
1 - Another menu 3
2 - Subroutine
0 - Taken care of by application code

Enter choice: 2
Enter subroutine name: NORMAL

Enter command: / CR
Enter menu name (exact caps please): Profile Manipulations
Enter command: / CR
Enter menu name (exact caps please): Orient
-
Enter command: / CR
Enter menu name (exact caps please): Orient Object
Enter command: / CR

98

Enter menu name (exact caps please): Orient Screen

Enter command: / CR

Enter menu name (exact caps please): Analysis

Enter command: ! CR

Enter menu name (exact caps please): Display Options
Enter command: / CR

Enter menu name (exact caps please): Gl-'o.ba‘l‘ Menu
Enter command: AD

Enter option no. 1 (Include delimiter): ST- Store Object

ST- Store Object points to:
1 - Another menu
2 - Subroutine
0 - Taken care of by application code

Enter choice: 2
Enter subroutine name: STORE

Enter command: AD
Enter option no. 2 (Include delimiter): DE- Delete Object

DE- Delete Object points to:

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 2
Enter subroutine name: DELET

Enter command: AD
Enter option no. 3 (Include delimiter): RED- Redraw

RED- Redraw points to:

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 2

Enter subroutine name: REDRAW
Enter command: AD

Enter option no. 4 (Include delimiter): EX- Ezit

EX- Exit points to:
99

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 2
Enter subroutine name: EXIT

Enter command: AD
Enter option no. 5 (Include delimiter): NA- Name Display Switch

NA- Name Display Switch points to:

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 1 |
Enter subroutine name: On / Off

Enter command: / CR

Enter menu name (exact caps please): On / Off
Enter command: / =«

Option selected: Toggle menu display on

Menu Database

CR- Create new menu branch
- CH- Change menu branch

GL- Global menu status

ME- Messages

LH- List hierarchy

SA- Save entire menu tree

EX- Exit
Enter command: CH
Option Selected: CH- Change menu branch

Change Menu

CT- Change title of menubranch
DB- Delete menu branch

LM- List menu names

CO- Change option on menu

Enter command: CT
Option Selected: CT- Change Title of menubranch

Select Menu by Number:
1 Solids Modeling
2 Create Geometry
3 Primitive
4 Boolean

100

5 Plane Cut
6 Profile Manipulations
7 Orient
8 Orient Object
| 9 Orient Screen

< | 10 Analysis
11 Display Options
12 File
13 Global Menu
14 On / Off
999 No selection

Enter number: 4
Enter menu name (exact caps please): Boolean Operations

Change Menu

CT- Change title of menubranch
DB- Delete menu branch

LM- List menu names

CO- Change option on menu

Enter command: Co
Option Selected: CO- Change option on menu

Select Menu by Number:
1 Solids Modeling
2 Create Geometry
3 Primitive
4 Boolean Operations
5 Plane Cut
6 Profile Manipulations
7 Orient
8 Orient Object
9 Orient Screen
10 Analysis
11 Display Options
12 File
13 Global Menu
14 On / Off
999 No selection

Enter number: 3

Change Option

AD- Add option to branch
DE- Delete option from branch
RE- Replace option on branch
LI- List current menu branch

Enter command: AD

101

Option selected: AD- Add option to branch

Enter option no. 1 (Include delimiter): PRI- Prism

PRI- Prism points to:

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 2
Enter subroutine name: PRISM

Change Option

AD- Add option to branch
DE- Delete option from branch
RE- Replace option on branch
LI- List current menu branch

Enter command: AD

Enter option no. 2 (Include delimiter): SP- Sphere

N- Normal and Point points to:

1 - Another menu

2 - Subroutine

0 - Taken care of by application code
Enter choice: 2
Enter subroutine name: SPHERE

Change Option

AD- Add option to branch
DE- Delete option from branch
RE- Replace option on branch
LI- List current menu branch

Enter command: ! !

Menu Database

CR- Create new menu branch
CH- Change menu branch
GL- Global menu status

ME- Messages

LH- List hierarchy

SA- Save entire menu tree
EX- Exit

Enter Command: ME

Option selected: ME- Messages

Messages
AM- Add message to list

DM- Delete message from list
102

RE- Replace message in list
LM- List messages

Enter Command: AM

Option selected: AM- Add m.vessage to list

Enter

message no. 1: Enter object name:

Messages

AM- Add message to list
DM- Delete message from list
RE- Replace message in list
LM- List messages

Enter command: =

Option selected: Turn off menu display

Enter

Enter

Enter

Enter

Enter

Enter

Enter
Enter

Enter

Enter

Enter

Enter

Enter

command: AM

message no. 3: Enter translation (z,y,z):
command: AM

message no. 3: Enter rotation (:c,y,z)
command: AM

message no. 4: Entef scale:

command: AM
message no. 9: Enter file name:

command: AM

message no. 6: Enter point for{pr_ihm'z‘,.ive::
cor;lmand: AM

message no. (: Enter cutting object name:

command: / GL x

Global Menu Status

AD- Add option to global menu
ST- Set status of global menu
RE- Select menu to be global
LI- List global menu

Enter command; RR

103

fIinvalid command RR

Enter command: ST

Option selected: ST- Set status of global menu

Select Menu by Number:
1 Solids Modeling
2 Create Geometry
3 Primitive
4 Boolean
5 Plane Cut

6 Protfile Manipulations
7 Orient

8 Orient Object

9 Orient Screen

10 Analysis

:("Y\]ﬂ‘r n“+:f\v\ﬁ

1 1 DlDlJlG;J W P ULlULLD

12 File

13 Global Menu

14 On / Off

999 No selection
Enter number: 14

Status for On / Off

1 ST- Store Object

2 DE- Delete Object

3 RED- Redraw

4 EX- Exit

9 NA- Name Display Switch
999 No selection

Enter switch to toggle: 1

Status for On / Off

1 ST- Store Object

2 DE- Delete Object

3 RED- Redraw

4 EX- Exit

9 NA- Name Display Switch

Global Menu Status

ON
ON
ON
ON
ON

OFF
ON
ON
ON
ON

AD- Add option to global menu

ST- Set status of global menu
RE- Select menu to be global

LI- List global menu

Enter command: * \ SA x

Option selected: Toggle display switch off

Option selected: Toggle display switch on

Save Tree
CHK- Check tree
SA- Save tree to file

Enter command: CHK

The following menus do not exist:
File
End of menu list

Save Tree
" CHK- Check tree
SA- Save tree to file

AN

N

\ Enter command: / CR
Enter menu title (exact caps please): File
Enter command: / SA SA

Enter save file name: SOLIDS.DAT J | N

Enter command: EX

105

VITA

I Catherine Mary Curtin was born on January 3, 1962, in Hartford, Connecticut.
() |

She is }he daughter of Charles Miller Curtin and Margaret Simon Curtin.
S/

)

She was graduated from L_ehigh University with a Bachelor of Science in
Mechanical Engineering in June of 1984. After graduation, she joined Digital

Equipment Corporation as a software engineer.

On February 22, 1986, she married Joseph Thomas Clifford. Soon after, they

moved to Gro Karben, West Germany. Both Mr. Clifford and Ms. Curtin returned to

graduate school at Lehigh in the fall of 1987. Ms. Curtin was a teaching assistant in the

College of Business and Economics during her graduate education.

As of this writing, Ms. Curtin 1s looking forward to a long summer vacation

before she continues with her engineering career.

106

	Lehigh University
	Lehigh Preserve
	1989

	A general purpose menu processor user interface tool for mechanical engineering applications /
	Catherine Mary Curtin
	Recommended Citation

	tmp.1551116526.pdf._e51I

