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Abstract 

The doctoral dissertation of Jorge Leon, of Lehigh University 

introduces a degenerate form of the AND/OR game tree that 

represents a process scheduling scenario. Current research 

in the area of game trees with probabilistic nodes does not 

address this specific type of tree. 

A game tree search algorithm was devised (named a-Cutoff), 

which accepts the occurrence of CHANCE-Nodes within a tree, 

and provides a pruning capability to improve the efficiency 

of the search algorithm. 

Secondly, the AO* search algorithm for AND/OR graphs was 

modified to accept CHANCE-Nodes within a tree, and was further 

improved to support pruning based upon heuristic information 

relating to the node value bounds that may exist for trees of 

this type. 

Programs were written that implement both of the above 

algorithms, and provide statistical information relating to 

nodes touched in a search, time used for a search, and 

terminal nodes touched. The results of approximately 1440 

runs of the programs on various configurations of the tree 

with CHANCE-Nodes were statistically analyzed and compared to 

provide an indication of the efficiency of the two new 

algorithms. 
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The AOC* algorithm proved to be a far better performer, as 

expected, due to the availability of more heuristic 

information than that of the a-cutoff case. However, there 

is a trade-off in execution time, when the heuristic requires 

significant computation during the search, and that heuristic 

information is relatively distant from being correct. There 

is also a tradeoff in regard to the maximum memory required 

during the search process. It was found that as the branch 

factor increases, the a-Cutoff algorithm requires less memory 

to perform the search. 

Charts are provided within this paper that indicate the 

characteristics • on various tree the two algorithms of 

configurations, including PERFECT, WORST, and RANDOM ordering 

of the tree. 

The accuracy of the heuristic used with the AOC* algorithm is 

proven to affect the efficiency of the search. Further, the 

effects of a uniform vs scatter probability distribution of 

children of CHANCE-Nodes is evaluated for the above mentioned 

algorithms. 
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1.0 Introduction 

It is the purpose of this paper to discuss search techniques 

that may be used to evaluate two-player, zero sum, perfect 

information games, that can be modeled by utilizing 

probabilistic game-trees which contain chance nodes. Two 

algorithms for evaluating such trees are introduced and 

analyzed. The algorithms, a-cutoff and AOC*, are based upon 

the doctoral work of Jorge Leon, Lehigh University [5]. 

1.1 Description of the representative game 

The two players involved in this type of game make alternating 

moves, one attempting to make the game follow a particular 

path such that the expected value of the cost for the game is 

kept to a minimum; and the other player making moves with an 

element of randomness (chance), which may make the game follow 

a path which increases the cost. 

The strategy in this particular game is such that player-I, 

described above, will aim at returning the game to the planned 

solution path. 

It . 
lS of this paper to describe a game-tree the goal 

representation of this particular game, and to introduce two 

possible algorithms for evaluation of the game. 

3 



2.0 Description of the Gawa-tree 

Game~trees are described as a subset of AND/OR trees 
\ ' 

(described by Nilsson [8]). A typical AND/OR tree is 

illustrated in Figure 1. Note that AND-Nodes are identified 

by their successor arcs. The successot arcs have a small 

semicircle passing through them. During a search, all arcs 

of an AND-Node are processed. The arrows that follow the arcs 

in the figure indicate a possible search path through the 

tree. 

--OR NodtMS 

( AND Nodes 

( Terminals 

Figure 1. Typical AND/OR tree representation 
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MAX Nodes 
\ I 

----. MIN Nodes 

+- T ~rminols 

Figure 2. Typical MIN/MAX Game Tree Representation 

Figure 2 illustrates a typical MinjMax game-tree that is 

representative of a two-player, perfect information game. 

Note that MAX and MIN nodes actually equate to the concept of 

an OR-Node, where only one successor arc is chosen during the 

search. The difference actually occurs during the search. At 

a MAX Node, the successor of greatest value is chosen for 

search completion. At a MIN Node, the successor of least 

value is selected. (Note that this is a matter of perspective, 

since in reality, the opponent would choose the most 

advantageous for himself, which, in turn is the lowest value 

for player-1). 
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This type of tree is the foundation of the particular game-

tree that is the subject of this paper. By introducing a 

CHANCE-Node, which replaces the AND-Node of a AND/OR tree, 

and utilizing the Min/Max type strategy game-tree, we have a 

representation for games in which a probabilistic move is made 

by player-2. This particular form of tree will be referenced 

throughout this paper as the 'degenerate tree'. 

2.1 Description of the 'Degenerate Tree' 

Game-trees with CHANCE-Nodes are similar to And/Or trees, as 

described above. The root of the tree represents the initial 

state of the game. The successors of a given node represent 

all available moves for a player at that particular position 

in the game-tree. At alternating levels of the game-tree, the 

available connectors to the next level evaluated based upon 

the type of node. 

The basic AND/OR graph described by Nilsson [8] and Pearl [10] 

can be extended to support the addition of CHANCE-Nodes rather 

easily. From the perspective of problem decomposition, a 

CHANCE-Node can be interpreted as a problem that can be solved 

in a different finite number of ways according to some 

probability distribution. A given solution may solve the 

problem in some instances, but a different solution might be 

required at other times. This forces the treatment of a 

CHANCE-Node to be similar to that of an AND-Node, since, in 

6 
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order to be solved, one aust solve all of its cbildren. 

However, CHANCE-Nodes do have a certain similarity to OR-
\ I • 

Nodes, in that, each child represents an alternative solution 

to the problem represented by the parent node. In the 

particular tree studied in this research, Player-1 moves are 

deterministic, represented by OR-Nodes. Since all probable 

reply moves made by player-2 must be examined, the connectors 

emanating from Player-2 nodes (CHANCE-Nodes) are 

probabilistic. In reference to currently available 

literature, Player-1 nodes correspond to MAX nodes, and 

Player-2 nodes correspond to MIN nodes in game trees. 

Figure 3 illustrates a 'degenerate tree', a game-tree with 

CHANCE-Nodes. 

~ OR Node 

~ CHANCE Nodes 

Level j 

. . 
' . 

Figure J. Degenerate Tree Representation 
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The computation of node values in the 'Degenerate Tree' 

illustrated in Figure 3, is as follows: 

Actual Value of OR-Node: 

Vi ( j) = MIN ( Vi ( j+ 1) , • • • , V i=N ( j+ 1) ) 

Actual Value of CHANCE-Node: 

vi(j-1) -
. 
1 - 1 

.. J-'·. 

( P· · * V· · ) 1] 1] 
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3.0 Searching strategies for trees with CIIAIICB-llodes 

Depending upon the amount of heuristic information available, 

one of two search algorithms can be used. The first, a-

Cutoff, is a depth-first search, and is best suited for cases 

where little heuristic information is available. secondly, 

AOC*, a modification of the AO* algorithm [8], is basically 

breadth-first, and performs admirably when more heuristic 

information is available throughout the game-tree search. 

3.1 CUrrent Research 

Game-trees are generally classified as deterministic or 

probabilistic. Most current research in searching game-trees 

deals with those of the deterministic gender. In most cases, 

the research in the search of deterministic game-trees is 

carried over to the probabilistic trees. Variations are made 

to deterministic tree search algorithms to accommodate the 

introduction of probability. The game-trees discussed in this 

paper are of the probabilistic variety. 

Two trends have appeared in the current research of 

probabilistic game-trees. The first, studies the case where 

the value related to a node is a random variable 

[4], [6], [9], [10]. The second considers the probability of 

choosing a given branch in the tree [ 1], which is the 

applicable case in regard to this paper. 
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Ballard [l] has extended the a-B procedure to game trees where 

there is a probability associated with the branches emanating 

from a node, rather than probabilities associated with the 

value of a node. These nodes are named 'CHANCE' nodes in his 

work. 

The game tree discussed in this paper is similar to that 

studied by Ballard [1]. 

3.1.1 a-8 Pruning 

a-B Pruning is based upon the following strategy: In the 

process of searching a tree, if the value of a node crosses 

a threshold ( a pre-determined bound) , then the subsequent 

successors of that node do not warrant further evaluation. 

X < MAX Node 

-- ~IN Node 

A 

10 8 1 2 

Figure 4. Illustration of Alpha-Beta Pruning 
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Figure 4 displays a partial tree that illustrates this form 

of pruning. First, assume that a value of node Y has been 

evaluated to be 8, by exploring both of it's successor nodes. 

Node Z is currently under evaluation, and the value of it's 

first successor (node C) is 1. Since X (the parent of node 

Z) is at a maximizing level, node z will only be chosen as a 

move if it's value is greater than that of node Y (who's value 

is 8). In this particular example, the a-bound for node z is 

therefore a. Further, since node Z is at a minimizing level, 

the chosen successor of node z would be the node of lowest 

value. The first successor of Z, node c, has a value of 1. 

This value is lower than that of the a-bound. Furthermore, 

an unexplored successor of node z will only be chosen if it's 

value is less than the value of node C (1). In this case, 

node Y (value 8) will always be the chosen node over node Z 

(maximum value 1). Therefore, it is not necessary to explore 

any more successors of node Z. A 'cutoff' is performed, 

eliminating the subtree beginning with node z. 

Similarly, cutoffs can be accomplished when exploring MAX 

nodes. In that case, a cutoff is performed whenever a 

successor has a value greater than the 8-bound. 

detailed description of a-B pruning, see [8],[10]. 

11 
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3.1.2 CCllplting tbe value bounds of a ~;. - .... -llode 

The value of a CHANCE-node is calculated from the value of 
\' it's children and their corresponding probabilities. It is 

not exactly determined until all of it's children's values are 

known. Ballard [1] assumes that upper bounds (U) and lower 

bounds (L) on the value of the node can be determined during 

the evaluation of the children. At the S811e time, the a- and 

8- bounds can be passed to the node. Given these conditions, 

a cutoff below a CHANCE-node is possible if 

(1) U < a-Bound, 

or (2) L > 8-Bound. 

In addition, the ordinary forms of a-B pruning can occur while 

searching the tree. 

Assume that a CHANCE-node has N children. The value Vj of 

node j is known for j=l, ... , i, and there are still N-i 

children to be explored. There is a probability Pi, 

associated with each arc connecting the node with a child node 

i. Assume that the value of any node is in the interval 

[Vijmax,Vijminl· The following bounds are proposed for the 

value of the node: 

i 

Upper Bound - ~ (Vj * Pjl 
(la) L-- + Vijmax * P * (N-i) 

j = 1 

12 
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i \' L Lower Bound= (Vj * Pjl 
(lb) 

Where 

p = 

j = 1 

i 
1 - L p· 

. 1 J J= 

N - i 

+ Vijmin * P * (N-i) 

The bounds are conservative, since the Vmax and Vmin are taken 

from the limits of the range of the values of the terminal 

nodes. 

For example, figure 5 displays a CHANCE-Node A with two 

children (nodes Band C). Assume that Vmin = O and Vmax = 20. 

The bounds for the value of node A can be calculated from {la) 

and (lb) above as: 

Upper Bound= (10 * 0.4) + (20 * 0.6 * 1) - 16.0 

Lower Bound - (10 * 0.4) + (0 * 0.6 * 1) - 4.0 

13 
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R 

8 C E r 
10 20 1 2 

Figure 5. Computation of CHANCE-Node value bounds 

3.1.3 Computing the value of children of CHANCE-Hodes 

During the search process, it may be necessary to compute the 

value of the child node that is being processed. Let i be a 

child node on a chance connector arc that needs further 

expansion, and let Ai and Bi be it's a- and B- bounds, 

respectively. These values are determined from equations (la) 

and (lb) above, and the fact that Ai>=Vijmin and Bi<=Vijmax· 

Thus, 

i 

Ai = MAX(Vijmin,a -~ (Vj 

j=l 

* Pj) 

14 

+ Vijmax * P * (N-i)) 
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i 

Bi= MIN(Vijmax,8 - ~ (Vj * Pj) + Vijmin * P * (N-i)) 

j=l 

Where 

p -

• 1 

1 -.L Pj 

j=l 

N - i 

a and Bare the a- and B- bounds of the parent node. 

3.2 a-cutoff AlgoritluD 

Searching a game-tree that contains CHANCE-Nodes can be 

accomplished by utilizing Ballard's (1] findings, with the 

addition of a pruning strategy as discussed above. 

3.2.1 Description of the a-cutoff Algorithll 

Assume that a restrictive range [Vijmin, Vijmax] be placed 

upon the values of all nodes in the tree being searched. At 

OR-Nodes, a choice of successor will be based upon the value 

of the successor node. The path of greatest value will be 

chosen. CHANCE-Nodes are treated similarly to AND-Nodes, in 

that all successor paths from a CHANCE-Node must be considered 

in the search. 

15 
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The actual values of OR-Nodes and CHANCE-Nodes are computed 
\ I 

as described previously (Section 2.1). 

During the search, it is advantageous to apply the technique 

discussed above for performing a cutoff when evaluating 

CHANCE-Nodes. This improves the search efficiency by 

eliminating paths that obviously will not contribute to the 

search. 

To further improve efficiency during the search, value bounds 

are associated with each CHANCE-Node (as discussed by [1]). 

Referring to Figure 3, the value bounds for a CHANCE-Node are 

computed in the following manner: 

UBc(j-1) -

LBc(j-1) -

k 

~ Pij * Vij 

i = 1 

k 

L Pij * Vij 
• = 1 J 

16 
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N 

~ Pij * Vijmax 

i = N-k 

N 

Pij * Vijmin 
• N-k J -



where 

UBc(j-1) is the Upper Bound of Node cat level (j-1). 

LBc(j-1) is the Lower Bound of node cat level (j-1). 

N is the number of children that the CHANCE-Node 

has. 

k is the last child node that has been evaluated. 

Pij is the probability associated with the ith 

child of node at level j. 

Vij is the value associated with the ith child of 

node at level j. 

Vijmax, Vijmin are defined as described in Section 2.1. 

cutoff pruning is performed below OR-Nodes, by comparing 

ranges or values that have been computed for successor CHANCE­

Nodes. At most during any evaluation of the successors of an 

OR-Node, there wi 11 be two active CHANCE-Nodes. In the 

process of selecting the proper successor path from an OR­

Node, a value range will be computed for up to two successor 

CHANCE-Nodes. Given CHANCE-Nodes A and B with ranges [LBA, 

UBA] and [LB8 , UBa] respectively, the following criterion for 

cutoff will be examined: 

If UBA < LB8 then cutoff node A. 

If UB8 < LBA then cutoff node B. 

17 



A single successor of each of the two CHANCE-Nodes being 

considered for cutoff is explored, to generate a value range 

that can be used for the cutoff check. In the event that a 

range comparison fails to yield a cutoff of one of the CHANCE­

Nodes, the range values must be improved. This is 

accomplished by evaluating more successor nodes, until a 

cutoff can be performed. This process is repeated until all 

the CHANCE-Node successors of the OR-Node in question except 

one, are cutoff. The remaining CHANCE-Node is evaluated to 

completion, and it's value is passed to the parent OR-Node. 

The process of node evaluation continues until the root OR­

Node obtains a value as the result of the evaluation of 

successor nodes. 

The sections that follow present pseudocode and an example 

that illustrates the a-cutoff algorithm, as described above. 

3.2.2 Pseudocode Illustration of a-cutoff 

To implement the a-Cutoff search algorithm, an OPEN list is 

created which contains specific state information for the 

duration of the search. 

18 
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Each entry on the open list consists of the following 

information: (I, s, v, R) 

where I= Node identifier 

s = Status of the node (LIVE or SOLVED) 

V - Value of the node 

R - Node value Range, if exists 

The search begins with the root of the tree on the OPEN List, 

with a status S = LIVE. The search is terminated when the 

root appears back on the OPEN list with a status s = SOLVED. 

Note that a node value range is only meaningful in the case 

of CHANCE-Nodes. The following procedure illustrates the a­

Cutoff Search Algorithm. 

Procedure a Cutoff Search: 

1. Place the start state for the search on the OPEN List. 
(i.e., the root) (!=root, S=LIVE, V=UNDEF, R=UNDEF) 

2. Remove the first state x = (I,S,V,R) from the OPEN List. 

3. If !=root and S=SOLVED, terminate the search with a root 
value of V for the search. 

4. Apply the state space operator (defined in table 1) on 
the state x. 

5. Go to Step 2. 

The State Space Operator, illustrated in Table 1, checks for 

any possible cutoff, and installs / expands any nodes as 

necessary. The next section provides a complete example of 

the a-Cutoff Algorithm on a typical 'degenerate tree'. 

19 
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case Input State conditions Action of State Space Operator 

1 

2 

3 

4 

5 

Type(I) = CIWICE-lfode 
S = LM 

Ranqe_exists(I)= F~E 

Type(!)= CBAIICE-Hode 
S = LIVE 

Range_exists(I)= TRUE 

Type(I) = CHANCE-Node 
S = SOLVED 

Type(I) = OR-Mode 
S = LIVE 

Type(I) = OR-Mode 
S = SOLVED 

Add next unprocessed child of 
I to front of OPD List. 
(If terainal lfode S=SOLVED) 

If sibling exists on OPEii List 
Check for a possible cutoff 
If cutoff occurred 

Place reaaining sibling on front of OPElf List 
else 

If status(sibling)=LIVE 
Add I to front of OPElf. 
Add next unprocessed child of sibling to front of OPEi List 

else 
Add sibling to front of OPEii List. 
Add next unprocessed child of I to front of OPEN List. 

else no sibling exists on OPEii 
Check for unprocessed siblings of I. 
If unprocessed sibling exists 

Add I to front of OPEN List. Add sibling to front of OPEN List. 
else 

Add next unprocessed child of I to front of OPEN. 

If sibling exists on OPEN List 
Check for possible cutoff 
If cutoff occurred 

Add remaining sibling to front of OPEi List. 
else 

Add I to front of OPEi List. Add sibling to front of OPEi 
else no sibling existed 

Check for unprocessed sibling 
If unprocessed sibling exists 

Add I to front of OPEN. Add sibling to front of OPEN List. 
else no unprocessed sibling 

Add parent of I to front of OPEll List with 
status s = SOLVED, and value V = value of I. 

Add eldest child of I to front 
of OPEJf List. 

Coapute value Range for parent 
of I. ( *) 

Add parent of I to front of OPEN List. 
If Opper Bound= Lower Bound, set status s = SOLVED. 

(*) The fot'IU.las for co1putation of the value range for CHAJICE-lodes appears in section 3.2.1. 

Table 1. a-Cutoff State Space Operator 

20 



3.2.3 An example of an a-cutoff search 

Figure 6 illustrates a sample degenerate tree to be searched 

using the a-cutoff search algorithm. Note that CHANCE-Nodes 

are indicated by a small arc connecting the child arcs 

emanating from the node. Further, for this example, the 

probability associated with each CHANCE-Node arc to a sibling 

is designated as 0.8 for the leftmost child arc, and 0.2 for 

the rightmost child arc. In reality, the probabilities for 

CHANCE-Node arcs to their children can be different than those 

used in this example. ( keep in mind that the sum of the 

probabilities of all arcs emanating from a single CHANCE-Node 

must add to 1.0) 

A 

7 2 3 8 4 6 10 3 0 7 2 4 1 1 

Rote: CHAHCE-Hode Arc probabilities are treated in the following 1anner: 
Left Arc Probability = o.a 
light Arc Probability= 0.2 

Figure 6. Example Tree for A-C Search 
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The process of searching the tree is best illustrated by Table 

2, which displays the OPEN List during the search at each 

loop. The particular State Space Operation that is used at 

each loop is also indicated. 

For clarity, the first 10 iterations of the example a-cutoff 

search loop are described below. 

Iteration 1 

The OPEN List is initialized to contain the root node, Node 

A. It is an OR-Node that currently has no value. 

Iteration 2 

Node A is removed from the OPEN List. It is an OR-Node with 

LIVE status. The eldest child (the leftmost child) of Node 

A (Node B) is added to the front of the OPEN List. 

Iteration 3 

Node Bis removed from the OPEN List. It is a CHANCE-Node 

with LIVE status, and no current value range. The first 

unprocessed child of Node B (Node D) is added to the front of 

the OPEN List. Since it is not a terminal node, its status 

is set to LIVE. 
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Iteration 4 

Node Dis removed from the OPEN List. It is an OR-Node with 

LIVE status. The eldest child (leftmost child) of Node D 

(Node H) is added to the front of the OPEN List. 

Iteration 5 

Node His removed from the OPEN List. It is a CHANCE-Node 

with LIVE status, and no current value range. The first 

unprocessed child of Node H (Node P) is added to the front of 

the OPEN List. 

terminal node. 

Iteration 6 

It is labeled as SOLVED, since it is a 

Node Pis removed from the OPEN List. It is an OR-Node, that 

has SOLVED status. The value range of the parent node (Node 

H) is computed as described in section 3.2.1. 

UB - 7 * 0.8 + 10 * 0.2 - 7.6 

LB - 7 * 0.8 + 0 * 0.2 - 5.6 

The parent node (Node H) is added to the front of the OPEN 

List, with status of LIVE, since all of the children of Node 

H have not been evaluated. The value range is assigned as 

computed above ([5.6,7.6]). 
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Iteration 7 

\ Node His removed from the OPEN List. It is a CHANCE-Node, I 
'j 
' 
) with LIVE status, and a current value range exists. Since no 

sibling node exists on the OPEN List, and there is an 

unprocessed sibling in the tree (Node I), the sibling is added 

to the OPEN List, along with the current node. The Nodes are 

added in the following order, to force the sibling to be 

processed first: 

Node His added to the front of the OPEN List. 

Node I is added to the front of the OPEN List. 

The status of Node I is set to LIVE, with no current value 

range present. 

Iteration 8 

Node I is removed from the OPEN List. It is a CHANCE-Node 

with LIVE status, and no current value range. The first 

unprocessed child of Node I (Node R) is added to the front of 

the OPEN List. The status is SOLVED, since it is a terminal 

node. 

Iteration 9 

Node R is removed from the OPEN List. It is an OR-Node with 

status SOLVED. The value range of the parent node (Node I) 

is computed as described in section 3.2.1. 
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UB - 3 * 0.8 + 10 * 0.2 - 4.4 

LB= 3 * 0.8 + 0 * 0.2 - 2.4 

Node I is added to the front of the OPEN List, with status of 

LIVE, and the newly computed value range. 

Iteration 10 

Node I is removed from the OPEN List. It is a CHANCE-Node 

with status LIVE, and a current value range present. Since 

a sibling node exists on the OPEN List (Node H), a check for 

possible cutoff occurs. Node I is cutoff, since UB(I) < LB(H) 

(section 3.2.1]. Node H, the remaining sibling, is added to 

the front of the OPEN List. 

Reaainder of the Search 

The search process continues, as described above, by 

processing the first node on the OPEN List at each iteration, 

and applying the state space operator of Table 1. 

By keeping track of those successful choices from the Terminal 

Nodes backwards to the root, the complete solution tree can 

be obtained. 
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loop state Space Open List 

lmr q,&rator 

1 - (A, L, V=lone, ti-lode) 
2 4 (B, L, V=lone, R=lone) 
3 1 ( D, L, V=lone, Or-lode) 
4 4 ( H, L, V=llone, R=None) 
5 1 ( ~ s, V=7, OR-lode) 
6 5 (H, L, V=Mone, R=[5.6,7.6]) 
7 2 (I, L, V=lone, R=Kone), (H, L, V=Hone, R=[5.6,7.6J) 
8 1 (R, s, V=J, OR-Node), {H, L, V=Hone, R=[5.6,7.6]) 
9 5 ( I , L, V=lone , R= [ 2 • 4 , 4. 4 J ) , ( H , L, V=Kone , R= [ 5 • 6 , 7 • 6 J) 

10 2 (H, L, V=Hone, R=(5.6,7.6J) 
11 2 (Q, S, V=2, OR-Mode) 
12 5 (H, S, V=6, R=[6,6J) 
13 3 (D, S, V=6, OR-Mode) 
14 5 (B, L, V=Hone, R=[4.8,6.8]) 
15 2 (C, L, R=Kone, V=Mone), (B, L, V=None, R=[4.8,6.8]) 
16 1 (F, L, V=None, OR-Node),(B, L, V=None, R=[4.8,6.8]) 
17 4 (L, L, V=Mone, R=None), (B, L, V=None, R=[4.8,6.8}) 
18 1 (X, S, V=O, OR-Rode), (B, L, V=None, R=[4.8,6.8]) 
19 5 (L, L, V=Hone, R=[0,2]), (B, L, V=Hone, R=[4.8,6.8]) 
20 2 (M, L, V=None, R=None), (L, L, V=None, R=[0,2]), (B, L, V=None, R=[4.8,6.8]) 
21 1 (Z, S, V=2, OR-Node), (L, L, V=None, R=[0,2]), (B, L, V=None, R=[4.8,6.8]) 
22 5 (M, L, V=None, R=[l.6,3.6]), (L, L, V=Mone, R=[0,2]), (B, L, V=None, R=[4.8,6.8]) 
23 2 (Y, S, V=7, OR-Rode), (M, L, V=None, R=[l.6,3.6]), (B, L, V=None, R=[4.8,6.8]) 
24 5 (L, S, V=l.4, R=[l.4,1.4]), (M, L, V=None, R=[l.6,3.6]), (B, L, V=None, R=[4.8,6.8]) 
25 3 ( M, L, V=Hone, R= [ 1. 6 , 3 . 6 ]) , ( B, L, V=None, R= [ 4. 8 , 6. 8 ] ) 
26 2 (Zl, S, V=4, OR-Node), (B, L, V=Hone, R=[4.8,6.8]) 
27 5 (K, S, V=2.4, R=(2.4,2.4]), (B, L, V=Hone, R=[4.8,6.8]) 
28 3 {F, S, V=2.4, OR-Node), (B, L, V=Mone, R=[4.8,6.8]) 
29 5 (C, L, V=ftone, R=[l.92,3.92]), (B, L, V=Hane, R=[4.8,6.8]) 
30 2 (B, L, V=None, R=(4.8,6.8]) 
31 2 (E, L, V=Mone, OR-Node) 
32 4 (J, L, V=None, R=None) 
33 1 (T, S, V=4, OR-lode) 
34 5 (J, L, V=None, R=[J.2,5.2]) 
35 2 (K, L, V=Bone, R=None), (J, L, V=None, R=[3.2,5.2]) 
36 1 (V, S, V=lO, OR-Mode), {J, L, V=Kone, R=[3.2,5.2]) 
37 5 (K, L, V=None, R=(S,10]), (J, L, V=None, R=[3.2,5.2]) 
38 2 (K, L, V=Hone, R=[B,10]) 
39 2 (W, S, V=3, OR-Mode) 
40 5 {K, S, V=8.6, R=[S.6,8.6]) 
41 3 {E, s, V=8.6, OR-Mode) 
42 5 {B, S, V=6.52, R=[6.52,6.52]) 
43 3 (A, S, V=6.52, OR-Rode) 

Table 2. a-cutoff OPEN List (Example Search) 
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The f igura below illustrates the solution tree that is 

obtained when utilizing the a-cutoff search algorithm on the 
\ • r 
\ 

given example tree of figure 6. 

V w 

Figure 7. Example Solution Tree of Alpha cutoff Search 

3.3 AOC* Algoritlllll 

The AOC* (AND-OR-CHANCE *) algorithm is primarily derived from 

the AO* algorithm, with the additional treatment of CHANCE­

Nodes and pruning based upon addit~onal heuristic information 

(node value bounds). T~e following sections illustrate the 

modified AO* algorithm, with the addition of CHANCE-Node 

support and pruning. 
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3.3.1 Deacription of tbe M>C1' Algoritbll 

The AOC* algorithm is modified fro• the AO* algorithm, with 

the following differences. 

The value of a CHANCE-Node is defined si•ilarly to that used 

for the alpha-cutoff procedure as: 

N 

q(n) -~ [Bi+ h(ni)J*Pi 

i=l 

where N = Number of children of the CHANCE-Node 

Bi= the cost of the arc to the child. 

h(ni) = The estimated cost of the node ( <=h*(n)) 

Pi= probability associated with the arc to child. 

To accomplish pruning in this algorithm, we establish two 

values of assumed available heuristic information: 

(1) h(n) <= h*(n) 

(2) u(n) >= h*(n) 

lower bound to cost of node. 

upper bound to cost of node. 

The range [h(n), u(n)] for each node is used in the process 

of pruning as below: 

if we are comparing CHANCE-Nodes A and B for a cutoff, 

if h(A) > u(B) then cutoff node A. 
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The values for h(n) and u(n) are generally computed during the 

process of searching the degenerate tree. 

Note that pruning is performed in this algorithm only below 

OR-Nodes (that is, only CHANCE-Node values and value-ranges 

are checked for a possible cutoff). 

This algorithm also differs from the a-cutoff algorithm in 

that all child CHANCE-Nodes of an OR-Node are expanded at 

once, rather than one at a time. Therefore, when checking for 

a cutoff possibility, several nodes are compared at once, and 

many cutoffs are possible at one time. 

3.3.2 Pseudocode Illustration of the AOC* Algorithm 

The heuristic search procedure AO* as illustrated by Nilsson 

[8] appears below in its modified form to support pruning 

(similar to a-cutoff pruning) and the inclusion of CHANCE-

Nodes. 
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Create a search tree, T, consisting of the start-node, s. Associate with nodes a cost 
q(s) = h(s). Ifs is a terainal node, labels as SOLVED. 

UlfIL sis labeled SOLVED, 00: 

Co1pute a partial solution tree P, in T by tracing down the aarked connectors in T 
fro1 s. (Connectors of Twill be 1arked in a subsequent step) 

) 

SELECT any non-teninal leaf node, n, of P. 

Expand node n generating all of its children and place them in T. For each child, Dj, 
not already appearing in P, set the cost q(nj) = h(nj)· 

Label any children that are terminal nodes as SOLVED. 

Check the generated children for a possible cutoff. Prune any children that are 'cutoff' from T 

Create a set H, containing only node n. 

DITIL His e1pty, IX>: 

DD 
DD 

Remove a node, 1, fro1 H, such that node m has no descendants in T occurring in H. 

Revise the cost q(1) for 1, as follows: 
for each connector directed from I to a set of nodes { n1i,···,nki} coapute 

Set q(1) to the ninillll over all outgoing connectors of qi(•) and 1ark the connector 
through which this 1inillllll is achieved, removing any previous marking that is present. 

If all child nodes through this connector are labeled as SOLVED, then label node 1 
as SOLVED. 

Check the newly generated children for a possible cutoff. (As discussed in the 
previous section). Prune any children that are 'cutoff' fro1 T. 

If I has been labeled as SOLVED, or if the revised cost of I is different than the 
previous cost of 1, then add to the set H the parent node of 1. 
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Note that, as described. above, associated with each node n is 

h(n) <= h*(n), which can be considered a lower bound on the 

cost of node n. Also associated with each node n is u(n) >= 

h*(n), which describes an upper bound to the value of the 

node. In the case of CHANCE-Nodes, these values are computed 

as discussed in the previous section, using the formulas of 

section 3. 2 .1 on page 14. These values are used for 

comparison purposes when checking for cutoff. 

Upon completion of this search, the partial solution tree P 

will contain the optimal search path for the initial game­

tree. Note that in the process of revising the cost of node 

n in the procedure above, the revised cost q(n), is an updated 

estimate of the cost of an optimal solution tree from n to a 

set of terminal nodes. Because of the monotone restriction 

on the cost h(n) (discussed in the previous section), cost 

revisions can only be considered to be cost increases. 

Selection of a non-terminal leaf node to expand (step 5) is 

left to the user by Nilsson [ 8]. Altering the manner in which 

a leaf node of Pis selected changes the search pattern. Two 

schemes of selection were attempted in experimentation. 

The first selection scheme was to choose the 'deepest' non­

terminal leaf node. This will force the algorithm to appear 

similar to a 'depth-first' approach. 
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The second selection scheme was to choose the non-terminal 

leaf node that was closest to the root. This resulted in an 

approach similar to the 'breadth-first' search. 

Variations of these two selection schemes are possible, with 

the results varying based upon the accuracy of the heuristic 

information available for the search. 

3.3.3 An exaaple of an AOC* Search 

Figure 8 illustrates a sample degenerate tree to be searched 

using the AOC* search algorithm. Note that CHANCE-Nodes are 

indicated by a small arc connecting the child arcs emanating 

from the node. Further, for this example, the probability 

associated with each CHANCE-Node arc to a sibling . 
is 

designated as 0.5. In reality, the probabilities for CHANCE­

Node arcs to their children can be non-uniform. (keep in mind 

that the sum of the probabilities of all arcs emanating from 

a single CHANCE-Node must add to 1.0) 
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-3 -3 -7 -10 -9 -7 -1 -4 -4 -8 -1 -3 -1 -1 -1 -1 

Note : All CHANCE-Node Arc Probabilities ore considered as O. 5 

Figure 8. Example degenerate tree for AOC* Search 

Table 3 (below), depicts values for the heuristic information 

that is used during the search as lower and upper bounds for 

the value of the particular node. Note that in most cases, 

the estimated values for the node value bounds [h{n), u(n)] 

are computed during the search. The values are pre-defined 

in this example for clarity, and to illustrate the principles 

of cutoff involved. 
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Node Id h(node) u(node) 

A -10 -7 
B -10 -7 
C -5 -2 
D -9 -7 
E -8 -7 
F -6.5 -5 
G -3 -1 
H -3 -1 
I -10 -7 
J -10 -5 
K -2.5 -1 
L -7 -1 
M -3 -1 
N -1 -1 
0 -2 -1 

Table 3. Heuristic Information for AOC* Sample 

The AOC* Search of the tree depicted in Figure 8 is solved in 

6 iterations. Each iteration is displayed below, in Figure 

9. Following Figure 9 is a description of what has occurred 

at each step in the search. 
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1-10.-7) [-5.-2) 

<Step 1 > <Step 2> 

A 

[-2.5.-1) 

I-J.-1] (-10.-7) 
(-10,-5) 

<Step 3> <Step 4> 

A (-8.25] 

[-8.5] [ (-8.5] D E f-8.0] 

[-8.5] 

R s R s 

<Step 5> <Step 6> 

Figure 9. Sample AOC* Search 
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Iteration 1 of AOC* 

In Iteration 1, the root node A is expanded. The children, 

Band c, are checked for a possible cutoff, based upon the 

h(n) and u(n) values for the nodes. Node C is cutoff. This 

is because the Lower Bound of Node C is greater than the Upper 

Bound of Node B. The arc (connector) leading to Node Bis 

marked. 

Iteration 2 of AOC* 

In Iteration 2, Node Bis selected for expansion, since it is 

a non-terminal leaf node of a subtree consisting of only 

marked connectors. Nodes D and E are generated, and the 

CHANCE-Connector is marked. 

Iteration 3 of AOC* 

In Iteration 3, Node Dis chosen for expansion, and the child 

nodes Hand I are added to the tree. A cutoff occurs because 

the Lower Bound of Node His greater than the Upper Bound of 

Node I. The connector to Node I is therefore marked in the 

process. 

Iteration 4 of AOC* 

In iteration 4 of the example search, Node Eis chosen for 

expansion, and the child nodes J and Kare added to the tree. 

A cutoff occurs in this step also, since the Lower Bound of 

Node K is greater than the Upper Bound of Node J. 
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The connector leading to Node J 'is also marked in this step. 

Iteration 5 of the AOC* Search 

In this iteration of the AOC* Search, Node I has been chosen 

for expansion, and the child nodes (which are terminals) Rand 

Sare added to the tree. Since both children are terminals 

(and therefore considered SOLVED), node I is considered 

SOLVED. The value of I is computed to be -8.5. Further, since 

no sibling nodes of I exist, Node Dis also considered SOLVED. 

The value -8.5 is therefore passed up to Node Din this step. 

Iteration 6 of the AOC* Search 

In Iteration 6 of the search (the final one), Node J has been 

chosen for expansion, and the child nodes (which are terminal 

nodes) T and u have been added to the tree. Since Nodes T and 

U are terminal, and the ref ore SOLVED, the node J is now 

SOLVED, and its value is computed to be -8.0. Since no 

siblings of J exist to search, Node E is also considered 

SOLVED, and the value of -8.0 is passed up to Node E. 

Node D and E are the only children of node B, and both are 

considered SOLVED. Therefore, the value for Node B is 

computed to be -8.25, and the node is considered to be solved. 
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Further, no siblings of B remain to be processed, so the value 

-8.25 is passed up to Node A, which is the root node. Since 

all children of the root have been considered, and the 

remaining child is SOLVED, Node A is considered SOLVED. 

This completes the example AOC* Search. The marked connectors 

in the degenerate tree represent the solution tree as 

determined by the AOC* Algorithm. 
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4.0 Analysis of Algoritbws - the experiaents 

A set of experiments were developed to evaluate the relative 

performance of the a-Cutoff and AOC* search algorithms when 

searching game trees with CHANCE-Nodes. Four search 

procedures were studied; a-Cutoff, and three AOC* searches 

(with varying accuracy of heuristic information). The two 

search algorithms were coded in 'C' language, and the 

experiments discussed below were run on a Unisys PW2/800 

Personal Computer, running the Interactive Systems 386/ix Unix 

Operating System. 

4.1 Description of experiments performed 

The a-cutoff and AOC* searches assumed a global range for node 

values of [0,100]. The variations of AOC* searches were as 

follows: 

AOC-I • h( n) I u(n) were offset by 10% • 

AOC-II • h( n) I u(n) were offset by 25% • 

AOC-III • h( n) I u(n) were offset by 50% • 

By adjusting the accuracy of the heuristic, it is possible to 

make a determination of the possible points at which the a­

cutoff algorithm may be a better choice for searching this 

type of tree. For the purpose of this experiment, the values 

for the cost function at node 'n' were calculated as follows: 

h(n) = h*(n) - h*(n)*(offset percentage)*UNIFORM(0,1) 

u(n) = h*(n) + h*(n)*(offset percentage)*UNIFORM(O,l) 
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f. Note that UNIFORM(O,l) represents a random number between o 

and 1, which is generated under a uniform probability 

distribution. 

The trees generated for the experiments were of the degenerate 

AND/OR variety as described in section 2. o. The trees 

consisted of alternating levels of OR-Nodes and CHANCE-Nodes. 

The trees used are considered to be uniform, that is, all non­

terminal nodes have the same branch factor, and all terminal 

nodes are at the same depth. The parameters used to generate 

the test trees were: 

(1) Depth of tree (number of levels) : 2,4 

(2) Branch Factor (number of children per node) : 2,4,8 

(3) Distribution of Probabilities across CHANCE 

Nodes (U = Uniform, s = Scatter) 

(4) Tree Ordering (P = Perfect, W = Worst, 

R = Random) 

: u,s 

: P,W,R 

In reference to the probabilities across CHANCE-Nodes, the two 

distributions UNIFORM and SCATTER were chosen for evaluation. 

UNIFORM distribution of probabilities means that for a given 

number of child nodes, the probability of selection of a 

single child node is equally likely as any other child node. 

(i.e., for N child nodes, each probability associated with the 

selection of a child is given by 1.0/N). 
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In the case of SCA'rl'ER distribution, a random probability is 

associated with each child node, and those probabilities are 

normalized to add to 1. o. The random probability is generated 

by a function that selects a uniformly distributed random 

number between o and 1. 

Three possible orderings of the trees used in the experiments 

include PERFECT, WORST, and RANDOM. PERFECT ordering is the 

condition in which all levels are arranged such that they 

favor the search algorithm used (i.e., best paths to the 

left). WORST ordering is the condition in which all levels 

are arranged such that they are the worst-case for the 

particular search algorithm (i.e., best paths to the right). 

RANDOM ordered trees are those that are not arranged to any 

specific ordering, and do not necessarily help or hurt a 

particular search algorithm. 

This resulted in 36 different trees for evaluation. 

Considering four search procedures and 10 replications 

(Uniform, Random, worst) the total number of search runs was 

1440. 
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The nwnber of replicates (n) depends upon type I (a) and type 

II (8) errors, the differences that we wish to detect (D), 

and the standard deviation of the population (o). For the 

experiments run, the following assumptions were made: 

(1) Number of treatments= 4 

(2} Power of the test (1-8) = .90 

(3) Significance Level (a)= .05 

Using Operating characteristic curves and the formula: 

no2 

2{a) {a) 2 

Consulting the operating characteristic curves and the above 

formula, it can be estimated that the number of replications 

needed is {for the ratio of leaves explored/ total leaves): 

(a) n = 15, if D - .03 and a - .02 

{b) n = 8, if D - .10 and a= .05 

In case {a), very tight differences must be detected and at 

the same time the standard deviation is assumed to be 'loose' 

relative to D; however, in case (b), a more realistic distance 

is considered while we assume more variation in the population 

( Also note that the formula for~ gives a conservative value 

for n). From the above analysis, a selection of n = 10 {10 

replications) appears to be appropriate. 
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The following steps were taken to perform the analysis of the 

algorithms: 

(i) Random values were assigned to the terminal nodes. The 

range used was (0,100]. 

(ii) In the case of Scatter probability distribution for 

the CHANCE-Node children, random arc probabilities 

were assigned. 

In the case of Uniform probability distribution for 

the CHANCE-Node children, uniform arc probability 

values were assigned. 

(iii) Correct node values h*(n) for each tree node were 

computed. 

(iv) The tree was then ordered to either Perfect (most 

advantageous for search algorithm used), Worst (worst 

case for search algorithm used), or Randomly (left 

alone as generated). 

(v) h(n) and u(n) values based upon the algorithm used 

(particularly AOC-I, AOC-II, and AOC-III) were 

computed. Note that in the actual program, a constant 

time delay (2 microseconds) was introduced when a 

heuristic value was needed. This delay covers the fact 

that there is a time impact in computing h(n) and u(n) 

in a normal tree search (not under test conditions). 

43 

.I 



(vi) The specially generated tree was searched and certain 

statistical information was produced / recorded. That 

information included: 

- Number of non-terminal nodes in tree 

- Number of terminal nodes in tree 

- Number of non-terminals touched during search 

- Number of terminals touched during search 

- Time in microseconds for the actual search 

- Maximum count of nodes in memory during search 

- Expected Search root value (for comparison) 

- Actual result of search root value 

- Tree configuration information 

Note that the addition of statistic gathering code to 

the programs, variations in coding technique, and 

multi-tasking under the Operating System used affect 

the resultant execution time. Since all test were run 

under the same conditions, the relative nature of the 

times is adequate for the experiments performed. 

Timing results may vary on different systems. 

(vii) The steps from (i) were repeated for 10 replications. 

(viii) The steps from (i) were repeated for each of the 

search algorithms. 

(ix) The steps from ( i) were repeated for all combinations 

of tree parameters. 
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4.2 Analysis of results of ·experi:aents 

The output of the 1440 runs of the search algorithms on the 

tree configurations discussed in section 4.1 were tabulated, 

and representative graphs of the results were generated. 

Three metrics were chosen for evaluation of the algorithms. 

The 'Nodes Touched', 'Search Time', and 'Maximum Memory Used' 

statistics were generated by the test programs, and a group 

of plots were generated for each metric. 

The table below illustrates the plots that were generated, 

with their corresponding figure numbers for reference. 

Metric Plot Description Figure Number 

Max Memory a-cutoff VS All AOC* A-1 
Max Memory a-cutoff vs All AOC* A-2 
Max Memory a-cutoff vs All AOC* A-3 
Max Memory a-cutoff vs All AOC* A-4 
Max Memory a-cutoff vs All AOC* A-5 
Nodes Touched All Algorithms A-6 
Nodes Touched All Algorithms A-7 
Nodes Touched All Algorithms A-8 
Nodes Touched All Algorithms A-9 
Nodes Touched All Algorithms A-10 
Search Time All Algorithms A-11 
Search Time All Algorithms A-12 
Search Time All Algorithms A-13 
Search Time All Algorithms A-14 
Search Time All Algorithms A-15 

Table 4. Experiment Result Plots 
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Rote that the plots illustrating Nodes Touched and Search 

Times were developed by an exponential regression of the 

statistic$ returned by the test programs. The Maximum Memory 

used plots are straight line graphs, without regression 

analysis. 

In all cases examined, the AOC* algorithm outperformed the a­

cutoff algorithm. This was as expected, since more heuristic 

information is available for the AOC* algorithm. It appears 

that as the heuristic worsens (i.e., AOC-III), there may be 

a point reached where a-Cutoff may be the preferred search 

algorithm. However, from the current results obtained, this 

point would be reached at some point where the heuristic is 

greater than 50% in error. It was observed that when searching 

trees of branch factor greater than 4, a-cutoff used less 

memory than the AOC* algorithm. 

In the comparison of how the algorithms performed on trees 

with child probability distribution of Uniform vs Random, the 

following determinations were made: 

a-cutoff 

• Scatter was slightly better run-time than Uniform. 

• Scatter was less nodes touched than Uniform. 
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• overall better performer. 

• Nearly identical number of nodes touched for 

scatter vs Uniform. 

• As tree gets larger, Scatter times appear better 

than Uniform. 

In comparison of how the algorithms performed on trees of 

varying order (i.e., Perfect, Worst, Random), the following 

determinations were made: 

a-cutoff 

• Worst case ordering results in the algorithm touching 

nearly every node. 

• For branch factors greater than 4, memory utilization 

appears to be better with the a-cutoff algorithm. 

AOC* 

• Better performer, overall. 

overall 

• Perfect Order resulted in the least amount of nodes 

being touched for all algorithms. 

• Worst Order resulted in the largest amount of nodes 

being touched for all algorithms. 

• Random Order resulted in an amount of nodes touched 

between the best and worst case trees. 

• As the branch factor gets larger, memory utilization is 

better when using the a-cutoff algorithm. 
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5.0 Conclusion 

In consideration of the above described results, it was 

determined that both algorithms do adequately search the 

degenerate tree, discussed in Section 2.1. If the appropriate 

heuristic information (better than 50% error in heuristic) is 

available, AOC* is the chosen algorithm for searching the 

degenerate tree. 

The manner in which the AOC* algorithm selects a non-terminal 

leaf node during the search of the degenerate tree can be 

modified slightly, to change the approach to a more 'depth­

oriented' one. Nilsson [8], describes the selection procedure 

in the AO* algorithm as 'user-defined'. For the purposes of 

the experiments performed, the node closest to the root was 

selected. This resulted in a close approximation to a 'bredth­

first' approach to node selection. By choosing the node 

furthest from the root, an approximation of a 'depth-first' 

approach would be reached. Brief experimentation with this 

scheme for non-terminal leaf node selection indicated a poorer 

performance than the chosen near-'bredth-first' scheme. 

In regard to the computation of the lower and upper bounds for 

the AOC-I, AOC-II, and AOC-III variations of the AOC* 

algorithm for the experiments, it should be noted that the 

offset percentage of h * ( n) is multiplied by a uniformly 
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distributed random nUJ1ber between o and 1, creating a range 

of estimated costs that are at a maximum either 10%, 251, or 

501 from the actual cost. By the introduction of the random 

number multiplier, the values can appear anywhere in the range 

of 01 to the maximum offset percentage. Therefore, AOC-I, 

AOC-II, and AOC-III test results do NOT indicate the worst 

case situations of 10%, 25%, and 50% offsets in estimated cost 

values. 

The a-cutoff algorithm can likewise be modified to follow a 

different scheme of evaluating child nodes. The scheme chosen 

for cutoff evaluation processes at most two CHANCE-Nodes until 

a cutoff can be performed, by repeatedly improving CHANCE-Node 

range values. An alternative scheme could be to expand all 

children of an OR-Node (possibly more than two CHANCE-Nodes) 

at once and improve all the range values at each iteration, 

until all nodes but one can be cutoff. This scheme has not 

been evaluated in the course of the described experiments, 

however, it is believed that this approach may improve the 

efficiency of the a-Cutoff algorithm. 
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In terms of the amount of memory utilized during the search 

process, the Q-cutoff algorithm processes at most two child 

paths from an OR-Node until one can be cutoff. This results 

in a memory savings during the search in cases of branch 

factors that are greater than 4, as shown by the result plots 

that appear in the previous section. Altering the way child 

nodes of an OR-Node are processed would affect this 

conclusion. 
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Appendix 

The following pages contain the set of plots that represent 

the results of the experiments performed to evaluate the a­

cutoff and AOC* algorithms, based upon the metrics described 

in section 4.2. 
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