
Lehigh University
Lehigh Preserve

Theses and Dissertations

1989

An analysis of ga s-Cutoff and AOC* search
algorithms on trees containing probabilistic nodes
/
Daniel Zenzel Jr.
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Zenzel, Daniel Jr., "An analysis of ga s-Cutoff and AOC* search algorithms on trees containing probabilistic nodes /" (1989). Theses
and Dissertations. 4979.
https://preserve.lehigh.edu/etd/4979

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4979?utm_source=preserve.lehigh.edu%2Fetd%2F4979&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

An Analysis of a-cutoff and AOC*

Search Algorithms on Trees Containing

Probabilistic Nodes

by

Daniel Zenzel, Jr

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

.
1n

Computer Science

Lehigh University

1988

. ··' ;,~
·;"<f

1: :~"'
~,:.

. ·::
\1,

. ~·-·

,,

Certificate of Approval

The document contained herewith has been approved ·by the

following individuals:

Author

Advisor

CSEE Dept:

• ..

Daniel Zenzel, Jr

Wu (Industrial Engineering)

Dr. Lawrence • Varner in (CSEE Dept·. .Head)

ii

I ~

. :·,,,

Acknowledgeaents

I would like to thank Dr. s. David Wu for his assistance and

guidance in the research performed that resulted in this

paper. Also, I would like to thank Jorge Leon, of Lehigh

University, for making his preliminary dissertation material

available to me, and his desk-checking of the computer

programs written to evaluate the search algorithms.

I would also like to acknowledge the assistance that I

received from Casey Murphy, for preparation of diagrams for

inclusion in the text.

Further, this work could not have been completed without the

patience of my wife Cindy, and son Danny, who accepted my many

hours of research.

iii

.• ·,,

Table of contents

1. o Introduction • • . . • • • • • . • • • • • . • • • • • . . • • • • . . • • • • • . • . • • 3

1.1 Description of the Representative Game ••••••••..••• 3

2.0 Description of the game tree .•••....•••...••......• 4

2.1 Description of the Degenerate Tree •.••.•...•...•.•• 6

3.0 Searching Strategies for trees with CHANCE-Nodes ... 8

3 .1 Current Research • . • • • • • • . . . • . • • 8

3.1.1 a-B Pruning 10

3.1.2 Computing the value bounds of a CHANCE-Node•. 12

3.1.3 Computing the value of children of CHANCE-Nodes ... 14

3.2 a-cutoff Algorithm 15

3.2.1 Description of the a-Cutoff Algorithm 15

3.2.2 Pseudocode Illustration of a-Cutoff 18

3.2.3 An Example of an a-Cutoff Search 21

3. 3 AOC* Algorithm . 27

3.3.1 Description of the AOC* Algorithm 28

3.3.2 Pseudocode Illustration of the AOC* Algorithm 29

3. 3 • 3 An Example of an AOC* Search . 3 2

4.0 Analysis of Algorithms - the experiments 39
\ 4.1 Description of experiments performed 39

4.2 Analysis of results of experiments 45

5.0 Conclusion ... 48

6. o Bibliography . 51

7 • o Appendix . 5 3

8. 0 Vi ta . • . • . 69

iv

;,~

List of Tables

Table 1. a-Cutoff State Space Operator 20

Table 2. a-Cutoff OPEN List (Example Search)•.. 26

Table 3. Heuristic Information for Sample AOC* Search .. 34

Table 4. Experiment Result Plots 45

V

i
-·~

Figure 1. Typical AND/OR tree Representation ••••••••••••

Figure 2. Typical Min/Max Game Tree Representation .•••••

Figure 3. Degenerate Tree Representation ...•..••••..••••

4

5

7

Figure 4. Illustration of a-8 Pruning •••..••..••••..•••. 10

Figure 5. Computation of CHANCE-Node Value Bounds•. 14

Figure 6. Example Tree for a-Cutoff Search .•...••...•••. 21

Figure 7. Example Solution Tree for a-cutoff Search ...•• 27

Figure 8. Example Degenerate Tree for AOC* Search•. 33

Figure 9. Sample AOC* Search • . 3 5

Figure A-1. Perfect Order Tree (Maximum Nodes in Memory). 54

Figure A-2. Worst Order Tree (Maximum Nodes in Memory) .. 55

Figure A-3. Random Order Tree (Maximum Nodes in Memory) . 56

Figure A-4. Uniform Child Probability
(Maximum Nodes in Memory) 57

Figure A-5. Scatter Child Probability
(Maximum Nodes in Memory) 58

Figure A-6. Perfect Order Tree (Nodes Touched) 59

Figure A-7. Worst Order Tree (Nodes Touched)• 60

Figure A-8. Random Order Tree (Nodes Touched) 61

Figure A-9. Uniform Child Probability (Nodes Touched) .•. 62

Figure A-10. Scatter Child Probability (Nodes Touched) .• 63

• vi

List of Figures

Figure A-11. Perfect Order Tree (Search Time) • • • • • • • • • • • 64

Figure A-12. Worst Order Tree (Search Time) • • • • • • • • • • • • • 65

Figure A-13. Random Order Tree (Search Time) • • • • • • • • • • • • 66

Figure A-14. Uniform Child Probability (Search Time) • ••• 67

Figure A-15. Scatter Child Probability (Search Time) • • • • 68

• •
V1.l

Abstract

The doctoral dissertation of Jorge Leon, of Lehigh University

introduces a degenerate form of the AND/OR game tree that

represents a process scheduling scenario. Current research

in the area of game trees with probabilistic nodes does not

address this specific type of tree.

A game tree search algorithm was devised (named a-Cutoff),

which accepts the occurrence of CHANCE-Nodes within a tree,

and provides a pruning capability to improve the efficiency

of the search algorithm.

Secondly, the AO* search algorithm for AND/OR graphs was

modified to accept CHANCE-Nodes within a tree, and was further

improved to support pruning based upon heuristic information

relating to the node value bounds that may exist for trees of

this type.

Programs were written that implement both of the above

algorithms, and provide statistical information relating to

nodes touched in a search, time used for a search, and

terminal nodes touched. The results of approximately 1440

runs of the programs on various configurations of the tree

with CHANCE-Nodes were statistically analyzed and compared to

provide an indication of the efficiency of the two new

algorithms.

1

The AOC* algorithm proved to be a far better performer, as

expected, due to the availability of more heuristic

information than that of the a-cutoff case. However, there

is a trade-off in execution time, when the heuristic requires

significant computation during the search, and that heuristic

information is relatively distant from being correct. There

is also a tradeoff in regard to the maximum memory required

during the search process. It was found that as the branch

factor increases, the a-Cutoff algorithm requires less memory

to perform the search.

Charts are provided within this paper that indicate the

characteristics • on various tree the two algorithms of

configurations, including PERFECT, WORST, and RANDOM ordering

of the tree.

The accuracy of the heuristic used with the AOC* algorithm is

proven to affect the efficiency of the search. Further, the

effects of a uniform vs scatter probability distribution of

children of CHANCE-Nodes is evaluated for the above mentioned

algorithms.

2

.•,il,

1.0 Introduction

It is the purpose of this paper to discuss search techniques

that may be used to evaluate two-player, zero sum, perfect

information games, that can be modeled by utilizing

probabilistic game-trees which contain chance nodes. Two

algorithms for evaluating such trees are introduced and

analyzed. The algorithms, a-cutoff and AOC*, are based upon

the doctoral work of Jorge Leon, Lehigh University [5].

1.1 Description of the representative game

The two players involved in this type of game make alternating

moves, one attempting to make the game follow a particular

path such that the expected value of the cost for the game is

kept to a minimum; and the other player making moves with an

element of randomness (chance), which may make the game follow

a path which increases the cost.

The strategy in this particular game is such that player-I,

described above, will aim at returning the game to the planned

solution path.

It .
lS of this paper to describe a game-tree the goal

representation of this particular game, and to introduce two

possible algorithms for evaluation of the game.

3

2.0 Description of the Gawa-tree

Game~trees are described as a subset of AND/OR trees
\ '

(described by Nilsson [8]). A typical AND/OR tree is

illustrated in Figure 1. Note that AND-Nodes are identified

by their successor arcs. The successot arcs have a small

semicircle passing through them. During a search, all arcs

of an AND-Node are processed. The arrows that follow the arcs

in the figure indicate a possible search path through the

tree.

--OR NodtMS

(AND Nodes

(Terminals

Figure 1. Typical AND/OR tree representation

4

...

MAX Nodes
\ I

----. MIN Nodes

+- T ~rminols

Figure 2. Typical MIN/MAX Game Tree Representation

Figure 2 illustrates a typical MinjMax game-tree that is

representative of a two-player, perfect information game.

Note that MAX and MIN nodes actually equate to the concept of

an OR-Node, where only one successor arc is chosen during the

search. The difference actually occurs during the search. At

a MAX Node, the successor of greatest value is chosen for

search completion. At a MIN Node, the successor of least

value is selected. (Note that this is a matter of perspective,

since in reality, the opponent would choose the most

advantageous for himself, which, in turn is the lowest value

for player-1).

5

'·'

. "·~.). ··x

This type of tree is the foundation of the particular game-

tree that is the subject of this paper. By introducing a

CHANCE-Node, which replaces the AND-Node of a AND/OR tree,

and utilizing the Min/Max type strategy game-tree, we have a

representation for games in which a probabilistic move is made

by player-2. This particular form of tree will be referenced

throughout this paper as the 'degenerate tree'.

2.1 Description of the 'Degenerate Tree'

Game-trees with CHANCE-Nodes are similar to And/Or trees, as

described above. The root of the tree represents the initial

state of the game. The successors of a given node represent

all available moves for a player at that particular position

in the game-tree. At alternating levels of the game-tree, the

available connectors to the next level evaluated based upon

the type of node.

The basic AND/OR graph described by Nilsson [8] and Pearl [10]

can be extended to support the addition of CHANCE-Nodes rather

easily. From the perspective of problem decomposition, a

CHANCE-Node can be interpreted as a problem that can be solved

in a different finite number of ways according to some

probability distribution. A given solution may solve the

problem in some instances, but a different solution might be

required at other times. This forces the treatment of a

CHANCE-Node to be similar to that of an AND-Node, since, in

6

..

order to be solved, one aust solve all of its cbildren.

However, CHANCE-Nodes do have a certain similarity to OR-
\ I •

Nodes, in that, each child represents an alternative solution

to the problem represented by the parent node. In the

particular tree studied in this research, Player-1 moves are

deterministic, represented by OR-Nodes. Since all probable

reply moves made by player-2 must be examined, the connectors

emanating from Player-2 nodes (CHANCE-Nodes) are

probabilistic. In reference to currently available

literature, Player-1 nodes correspond to MAX nodes, and

Player-2 nodes correspond to MIN nodes in game trees.

Figure 3 illustrates a 'degenerate tree', a game-tree with

CHANCE-Nodes.

~ OR Node

~ CHANCE Nodes

Level j

. .
' .

Figure J. Degenerate Tree Representation

7

The computation of node values in the 'Degenerate Tree'

illustrated in Figure 3, is as follows:

Actual Value of OR-Node:

Vi (j) = MIN (Vi (j+ 1) , • • • , V i=N (j+ 1))

Actual Value of CHANCE-Node:

vi(j-1) -
.
1 - 1

.. J-'·.

(P· · * V· ·) 1] 1]

8

3.0 Searching strategies for trees with CIIAIICB-llodes

Depending upon the amount of heuristic information available,

one of two search algorithms can be used. The first, a-

Cutoff, is a depth-first search, and is best suited for cases

where little heuristic information is available. secondly,

AOC*, a modification of the AO* algorithm [8], is basically

breadth-first, and performs admirably when more heuristic

information is available throughout the game-tree search.

3.1 CUrrent Research

Game-trees are generally classified as deterministic or

probabilistic. Most current research in searching game-trees

deals with those of the deterministic gender. In most cases,

the research in the search of deterministic game-trees is

carried over to the probabilistic trees. Variations are made

to deterministic tree search algorithms to accommodate the

introduction of probability. The game-trees discussed in this

paper are of the probabilistic variety.

Two trends have appeared in the current research of

probabilistic game-trees. The first, studies the case where

the value related to a node is a random variable

[4], [6], [9], [10]. The second considers the probability of

choosing a given branch in the tree [1], which is the

applicable case in regard to this paper.

9

Ballard [l] has extended the a-B procedure to game trees where

there is a probability associated with the branches emanating

from a node, rather than probabilities associated with the

value of a node. These nodes are named 'CHANCE' nodes in his

work.

The game tree discussed in this paper is similar to that

studied by Ballard [1].

3.1.1 a-8 Pruning

a-B Pruning is based upon the following strategy: In the

process of searching a tree, if the value of a node crosses

a threshold (a pre-determined bound) , then the subsequent

successors of that node do not warrant further evaluation.

X < MAX Node

-- ~IN Node

A

10 8 1 2

Figure 4. Illustration of Alpha-Beta Pruning

10

Figure 4 displays a partial tree that illustrates this form

of pruning. First, assume that a value of node Y has been

evaluated to be 8, by exploring both of it's successor nodes.

Node Z is currently under evaluation, and the value of it's

first successor (node C) is 1. Since X (the parent of node

Z) is at a maximizing level, node z will only be chosen as a

move if it's value is greater than that of node Y (who's value

is 8). In this particular example, the a-bound for node z is

therefore a. Further, since node Z is at a minimizing level,

the chosen successor of node z would be the node of lowest

value. The first successor of Z, node c, has a value of 1.

This value is lower than that of the a-bound. Furthermore,

an unexplored successor of node z will only be chosen if it's

value is less than the value of node C (1). In this case,

node Y (value 8) will always be the chosen node over node Z

(maximum value 1). Therefore, it is not necessary to explore

any more successors of node Z. A 'cutoff' is performed,

eliminating the subtree beginning with node z.

Similarly, cutoffs can be accomplished when exploring MAX

nodes. In that case, a cutoff is performed whenever a

successor has a value greater than the 8-bound.

detailed description of a-B pruning, see [8],[10].

11

For a

3.1.2 CCllplting tbe value bounds of a ~;. - -llode

The value of a CHANCE-node is calculated from the value of
\' it's children and their corresponding probabilities. It is

not exactly determined until all of it's children's values are

known. Ballard [1] assumes that upper bounds (U) and lower

bounds (L) on the value of the node can be determined during

the evaluation of the children. At the S811e time, the a- and

8- bounds can be passed to the node. Given these conditions,

a cutoff below a CHANCE-node is possible if

(1) U < a-Bound,

or (2) L > 8-Bound.

In addition, the ordinary forms of a-B pruning can occur while

searching the tree.

Assume that a CHANCE-node has N children. The value Vj of

node j is known for j=l, ... , i, and there are still N-i

children to be explored. There is a probability Pi,

associated with each arc connecting the node with a child node

i. Assume that the value of any node is in the interval

[Vijmax,Vijminl· The following bounds are proposed for the

value of the node:

i

Upper Bound - ~ (Vj * Pjl
(la) L-- + Vijmax * P * (N-i)

j = 1

12

·'

i \' L Lower Bound= (Vj * Pjl
(lb)

Where

p =

j = 1

i
1 - L p·

. 1 J J=

N - i

+ Vijmin * P * (N-i)

The bounds are conservative, since the Vmax and Vmin are taken

from the limits of the range of the values of the terminal

nodes.

For example, figure 5 displays a CHANCE-Node A with two

children (nodes Band C). Assume that Vmin = O and Vmax = 20.

The bounds for the value of node A can be calculated from {la)

and (lb) above as:

Upper Bound= (10 * 0.4) + (20 * 0.6 * 1) - 16.0

Lower Bound - (10 * 0.4) + (0 * 0.6 * 1) - 4.0

13

/

tL
.. ;:{·

' ·:,;
.'i

.:i·
'

R

8 C E r
10 20 1 2

Figure 5. Computation of CHANCE-Node value bounds

3.1.3 Computing the value of children of CHANCE-Hodes

During the search process, it may be necessary to compute the

value of the child node that is being processed. Let i be a

child node on a chance connector arc that needs further

expansion, and let Ai and Bi be it's a- and B- bounds,

respectively. These values are determined from equations (la)

and (lb) above, and the fact that Ai>=Vijmin and Bi<=Vijmax·

Thus,

i

Ai = MAX(Vijmin,a -~ (Vj

j=l

* Pj)

14

+ Vijmax * P * (N-i))

' . ' , ..

i

Bi= MIN(Vijmax,8 - ~ (Vj * Pj) + Vijmin * P * (N-i))

j=l

Where

p -

• 1

1 -.L Pj

j=l

N - i

a and Bare the a- and B- bounds of the parent node.

3.2 a-cutoff AlgoritluD

Searching a game-tree that contains CHANCE-Nodes can be

accomplished by utilizing Ballard's (1] findings, with the

addition of a pruning strategy as discussed above.

3.2.1 Description of the a-cutoff Algorithll

Assume that a restrictive range [Vijmin, Vijmax] be placed

upon the values of all nodes in the tree being searched. At

OR-Nodes, a choice of successor will be based upon the value

of the successor node. The path of greatest value will be

chosen. CHANCE-Nodes are treated similarly to AND-Nodes, in

that all successor paths from a CHANCE-Node must be considered

in the search.

15

\ ,
'

The actual values of OR-Nodes and CHANCE-Nodes are computed
\ I

as described previously (Section 2.1).

During the search, it is advantageous to apply the technique

discussed above for performing a cutoff when evaluating

CHANCE-Nodes. This improves the search efficiency by

eliminating paths that obviously will not contribute to the

search.

To further improve efficiency during the search, value bounds

are associated with each CHANCE-Node (as discussed by [1]).

Referring to Figure 3, the value bounds for a CHANCE-Node are

computed in the following manner:

UBc(j-1) -

LBc(j-1) -

k

~ Pij * Vij

i = 1

k

L Pij * Vij
• = 1 J

16

+

+

N

~ Pij * Vijmax

i = N-k

N

Pij * Vijmin
• N-k J -

where

UBc(j-1) is the Upper Bound of Node cat level (j-1).

LBc(j-1) is the Lower Bound of node cat level (j-1).

N is the number of children that the CHANCE-Node

has.

k is the last child node that has been evaluated.

Pij is the probability associated with the ith

child of node at level j.

Vij is the value associated with the ith child of

node at level j.

Vijmax, Vijmin are defined as described in Section 2.1.

cutoff pruning is performed below OR-Nodes, by comparing

ranges or values that have been computed for successor CHANCE­

Nodes. At most during any evaluation of the successors of an

OR-Node, there wi 11 be two active CHANCE-Nodes. In the

process of selecting the proper successor path from an OR­

Node, a value range will be computed for up to two successor

CHANCE-Nodes. Given CHANCE-Nodes A and B with ranges [LBA,

UBA] and [LB8 , UBa] respectively, the following criterion for

cutoff will be examined:

If UBA < LB8 then cutoff node A.

If UB8 < LBA then cutoff node B.

17

A single successor of each of the two CHANCE-Nodes being

considered for cutoff is explored, to generate a value range

that can be used for the cutoff check. In the event that a

range comparison fails to yield a cutoff of one of the CHANCE­

Nodes, the range values must be improved. This is

accomplished by evaluating more successor nodes, until a

cutoff can be performed. This process is repeated until all

the CHANCE-Node successors of the OR-Node in question except

one, are cutoff. The remaining CHANCE-Node is evaluated to

completion, and it's value is passed to the parent OR-Node.

The process of node evaluation continues until the root OR­

Node obtains a value as the result of the evaluation of

successor nodes.

The sections that follow present pseudocode and an example

that illustrates the a-cutoff algorithm, as described above.

3.2.2 Pseudocode Illustration of a-cutoff

To implement the a-Cutoff search algorithm, an OPEN list is

created which contains specific state information for the

duration of the search.

18

i

~

Each entry on the open list consists of the following

information: (I, s, v, R)

where I= Node identifier

s = Status of the node (LIVE or SOLVED)

V - Value of the node

R - Node value Range, if exists

The search begins with the root of the tree on the OPEN List,

with a status S = LIVE. The search is terminated when the

root appears back on the OPEN list with a status s = SOLVED.

Note that a node value range is only meaningful in the case

of CHANCE-Nodes. The following procedure illustrates the a­

Cutoff Search Algorithm.

Procedure a Cutoff Search:

1. Place the start state for the search on the OPEN List.
(i.e., the root) (!=root, S=LIVE, V=UNDEF, R=UNDEF)

2. Remove the first state x = (I,S,V,R) from the OPEN List.

3. If !=root and S=SOLVED, terminate the search with a root
value of V for the search.

4. Apply the state space operator (defined in table 1) on
the state x.

5. Go to Step 2.

The State Space Operator, illustrated in Table 1, checks for

any possible cutoff, and installs / expands any nodes as

necessary. The next section provides a complete example of

the a-Cutoff Algorithm on a typical 'degenerate tree'.

19

(.

I ,,1 ·>l·•'•,,,• ';

case Input State conditions Action of State Space Operator

1

2

3

4

5

Type(I) = CIWICE-lfode
S = LM

Ranqe_exists(I)= F~E

Type(!)= CBAIICE-Hode
S = LIVE

Range_exists(I)= TRUE

Type(I) = CHANCE-Node
S = SOLVED

Type(I) = OR-Mode
S = LIVE

Type(I) = OR-Mode
S = SOLVED

Add next unprocessed child of
I to front of OPD List.
(If terainal lfode S=SOLVED)

If sibling exists on OPEii List
Check for a possible cutoff
If cutoff occurred

Place reaaining sibling on front of OPElf List
else

If status(sibling)=LIVE
Add I to front of OPElf.
Add next unprocessed child of sibling to front of OPEi List

else
Add sibling to front of OPEii List.
Add next unprocessed child of I to front of OPEN List.

else no sibling exists on OPEii
Check for unprocessed siblings of I.
If unprocessed sibling exists

Add I to front of OPEN List. Add sibling to front of OPEN List.
else

Add next unprocessed child of I to front of OPEN.

If sibling exists on OPEN List
Check for possible cutoff
If cutoff occurred

Add remaining sibling to front of OPEi List.
else

Add I to front of OPEi List. Add sibling to front of OPEi
else no sibling existed

Check for unprocessed sibling
If unprocessed sibling exists

Add I to front of OPEN. Add sibling to front of OPEN List.
else no unprocessed sibling

Add parent of I to front of OPEll List with
status s = SOLVED, and value V = value of I.

Add eldest child of I to front
of OPEJf List.

Coapute value Range for parent
of I. (*)

Add parent of I to front of OPEN List.
If Opper Bound= Lower Bound, set status s = SOLVED.

(*) The fot'IU.las for co1putation of the value range for CHAJICE-lodes appears in section 3.2.1.

Table 1. a-Cutoff State Space Operator

20

3.2.3 An example of an a-cutoff search

Figure 6 illustrates a sample degenerate tree to be searched

using the a-cutoff search algorithm. Note that CHANCE-Nodes

are indicated by a small arc connecting the child arcs

emanating from the node. Further, for this example, the

probability associated with each CHANCE-Node arc to a sibling

is designated as 0.8 for the leftmost child arc, and 0.2 for

the rightmost child arc. In reality, the probabilities for

CHANCE-Node arcs to their children can be different than those

used in this example. (keep in mind that the sum of the

probabilities of all arcs emanating from a single CHANCE-Node

must add to 1.0)

A

7 2 3 8 4 6 10 3 0 7 2 4 1 1

Rote: CHAHCE-Hode Arc probabilities are treated in the following 1anner:
Left Arc Probability = o.a
light Arc Probability= 0.2

Figure 6. Example Tree for A-C Search

21

1 1

. I
i

The process of searching the tree is best illustrated by Table

2, which displays the OPEN List during the search at each

loop. The particular State Space Operation that is used at

each loop is also indicated.

For clarity, the first 10 iterations of the example a-cutoff

search loop are described below.

Iteration 1

The OPEN List is initialized to contain the root node, Node

A. It is an OR-Node that currently has no value.

Iteration 2

Node A is removed from the OPEN List. It is an OR-Node with

LIVE status. The eldest child (the leftmost child) of Node

A (Node B) is added to the front of the OPEN List.

Iteration 3

Node Bis removed from the OPEN List. It is a CHANCE-Node

with LIVE status, and no current value range. The first

unprocessed child of Node B (Node D) is added to the front of

the OPEN List. Since it is not a terminal node, its status

is set to LIVE.

22

·';
I: :

Iteration 4

Node Dis removed from the OPEN List. It is an OR-Node with

LIVE status. The eldest child (leftmost child) of Node D

(Node H) is added to the front of the OPEN List.

Iteration 5

Node His removed from the OPEN List. It is a CHANCE-Node

with LIVE status, and no current value range. The first

unprocessed child of Node H (Node P) is added to the front of

the OPEN List.

terminal node.

Iteration 6

It is labeled as SOLVED, since it is a

Node Pis removed from the OPEN List. It is an OR-Node, that

has SOLVED status. The value range of the parent node (Node

H) is computed as described in section 3.2.1.

UB - 7 * 0.8 + 10 * 0.2 - 7.6

LB - 7 * 0.8 + 0 * 0.2 - 5.6

The parent node (Node H) is added to the front of the OPEN

List, with status of LIVE, since all of the children of Node

H have not been evaluated. The value range is assigned as

computed above ([5.6,7.6]).

23

Iteration 7

\ Node His removed from the OPEN List. It is a CHANCE-Node, I
'j
'
) with LIVE status, and a current value range exists. Since no

sibling node exists on the OPEN List, and there is an

unprocessed sibling in the tree (Node I), the sibling is added

to the OPEN List, along with the current node. The Nodes are

added in the following order, to force the sibling to be

processed first:

Node His added to the front of the OPEN List.

Node I is added to the front of the OPEN List.

The status of Node I is set to LIVE, with no current value

range present.

Iteration 8

Node I is removed from the OPEN List. It is a CHANCE-Node

with LIVE status, and no current value range. The first

unprocessed child of Node I (Node R) is added to the front of

the OPEN List. The status is SOLVED, since it is a terminal

node.

Iteration 9

Node R is removed from the OPEN List. It is an OR-Node with

status SOLVED. The value range of the parent node (Node I)

is computed as described in section 3.2.1.

24

•

•, 11

UB - 3 * 0.8 + 10 * 0.2 - 4.4

LB= 3 * 0.8 + 0 * 0.2 - 2.4

Node I is added to the front of the OPEN List, with status of

LIVE, and the newly computed value range.

Iteration 10

Node I is removed from the OPEN List. It is a CHANCE-Node

with status LIVE, and a current value range present. Since

a sibling node exists on the OPEN List (Node H), a check for

possible cutoff occurs. Node I is cutoff, since UB(I) < LB(H)

(section 3.2.1]. Node H, the remaining sibling, is added to

the front of the OPEN List.

Reaainder of the Search

The search process continues, as described above, by

processing the first node on the OPEN List at each iteration,

and applying the state space operator of Table 1.

By keeping track of those successful choices from the Terminal

Nodes backwards to the root, the complete solution tree can

be obtained.

25

-
loop state Space Open List

lmr q,&rator

1 - (A, L, V=lone, ti-lode)
2 4 (B, L, V=lone, R=lone)
3 1 (D, L, V=lone, Or-lode)
4 4 (H, L, V=llone, R=None)
5 1 (~ s, V=7, OR-lode)
6 5 (H, L, V=Mone, R=[5.6,7.6])
7 2 (I, L, V=lone, R=Kone), (H, L, V=Hone, R=[5.6,7.6J)
8 1 (R, s, V=J, OR-Node), {H, L, V=Hone, R=[5.6,7.6])
9 5 (I , L, V=lone , R= [2 • 4 , 4. 4 J) , (H , L, V=Kone , R= [5 • 6 , 7 • 6 J)

10 2 (H, L, V=Hone, R=(5.6,7.6J)
11 2 (Q, S, V=2, OR-Mode)
12 5 (H, S, V=6, R=[6,6J)
13 3 (D, S, V=6, OR-Mode)
14 5 (B, L, V=Hone, R=[4.8,6.8])
15 2 (C, L, R=Kone, V=Mone), (B, L, V=None, R=[4.8,6.8])
16 1 (F, L, V=None, OR-Node),(B, L, V=None, R=[4.8,6.8])
17 4 (L, L, V=Mone, R=None), (B, L, V=None, R=[4.8,6.8})
18 1 (X, S, V=O, OR-Rode), (B, L, V=None, R=[4.8,6.8])
19 5 (L, L, V=Hone, R=[0,2]), (B, L, V=Hone, R=[4.8,6.8])
20 2 (M, L, V=None, R=None), (L, L, V=None, R=[0,2]), (B, L, V=None, R=[4.8,6.8])
21 1 (Z, S, V=2, OR-Node), (L, L, V=None, R=[0,2]), (B, L, V=None, R=[4.8,6.8])
22 5 (M, L, V=None, R=[l.6,3.6]), (L, L, V=Mone, R=[0,2]), (B, L, V=None, R=[4.8,6.8])
23 2 (Y, S, V=7, OR-Rode), (M, L, V=None, R=[l.6,3.6]), (B, L, V=None, R=[4.8,6.8])
24 5 (L, S, V=l.4, R=[l.4,1.4]), (M, L, V=None, R=[l.6,3.6]), (B, L, V=None, R=[4.8,6.8])
25 3 (M, L, V=Hone, R= [1. 6 , 3 . 6]) , (B, L, V=None, R= [4. 8 , 6. 8])
26 2 (Zl, S, V=4, OR-Node), (B, L, V=Hone, R=[4.8,6.8])
27 5 (K, S, V=2.4, R=(2.4,2.4]), (B, L, V=Hone, R=[4.8,6.8])
28 3 {F, S, V=2.4, OR-Node), (B, L, V=Mone, R=[4.8,6.8])
29 5 (C, L, V=ftone, R=[l.92,3.92]), (B, L, V=Hane, R=[4.8,6.8])
30 2 (B, L, V=None, R=(4.8,6.8])
31 2 (E, L, V=Mone, OR-Node)
32 4 (J, L, V=None, R=None)
33 1 (T, S, V=4, OR-lode)
34 5 (J, L, V=None, R=[J.2,5.2])
35 2 (K, L, V=Bone, R=None), (J, L, V=None, R=[3.2,5.2])
36 1 (V, S, V=lO, OR-Mode), {J, L, V=Kone, R=[3.2,5.2])
37 5 (K, L, V=None, R=(S,10]), (J, L, V=None, R=[3.2,5.2])
38 2 (K, L, V=Hone, R=[B,10])
39 2 (W, S, V=3, OR-Mode)
40 5 {K, S, V=8.6, R=[S.6,8.6])
41 3 {E, s, V=8.6, OR-Mode)
42 5 {B, S, V=6.52, R=[6.52,6.52])
43 3 (A, S, V=6.52, OR-Rode)

Table 2. a-cutoff OPEN List (Example Search)

26

The f igura below illustrates the solution tree that is

obtained when utilizing the a-cutoff search algorithm on the
\ • r
\

given example tree of figure 6.

V w

Figure 7. Example Solution Tree of Alpha cutoff Search

3.3 AOC* Algoritlllll

The AOC* (AND-OR-CHANCE *) algorithm is primarily derived from

the AO* algorithm, with the additional treatment of CHANCE­

Nodes and pruning based upon addit~onal heuristic information

(node value bounds). T~e following sections illustrate the

modified AO* algorithm, with the addition of CHANCE-Node

support and pruning.

27

·"
!;,!

·. ;..;
• ,::.1 ... ·.,

.·, .,.

3.3.1 Deacription of tbe M>C1' Algoritbll

The AOC* algorithm is modified fro• the AO* algorithm, with

the following differences.

The value of a CHANCE-Node is defined si•ilarly to that used

for the alpha-cutoff procedure as:

N

q(n) -~ [Bi+ h(ni)J*Pi

i=l

where N = Number of children of the CHANCE-Node

Bi= the cost of the arc to the child.

h(ni) = The estimated cost of the node (<=h*(n))

Pi= probability associated with the arc to child.

To accomplish pruning in this algorithm, we establish two

values of assumed available heuristic information:

(1) h(n) <= h*(n)

(2) u(n) >= h*(n)

lower bound to cost of node.

upper bound to cost of node.

The range [h(n), u(n)] for each node is used in the process

of pruning as below:

if we are comparing CHANCE-Nodes A and B for a cutoff,

if h(A) > u(B) then cutoff node A.

ZI

,.,,•
··:'-'

t

The values for h(n) and u(n) are generally computed during the

process of searching the degenerate tree.

Note that pruning is performed in this algorithm only below

OR-Nodes (that is, only CHANCE-Node values and value-ranges

are checked for a possible cutoff).

This algorithm also differs from the a-cutoff algorithm in

that all child CHANCE-Nodes of an OR-Node are expanded at

once, rather than one at a time. Therefore, when checking for

a cutoff possibility, several nodes are compared at once, and

many cutoffs are possible at one time.

3.3.2 Pseudocode Illustration of the AOC* Algorithm

The heuristic search procedure AO* as illustrated by Nilsson

[8] appears below in its modified form to support pruning

(similar to a-cutoff pruning) and the inclusion of CHANCE-

Nodes.

29

!'

Create a search tree, T, consisting of the start-node, s. Associate with nodes a cost
q(s) = h(s). Ifs is a terainal node, labels as SOLVED.

UlfIL sis labeled SOLVED, 00:

Co1pute a partial solution tree P, in T by tracing down the aarked connectors in T
fro1 s. (Connectors of Twill be 1arked in a subsequent step)

)

SELECT any non-teninal leaf node, n, of P.

Expand node n generating all of its children and place them in T. For each child, Dj,
not already appearing in P, set the cost q(nj) = h(nj)·

Label any children that are terminal nodes as SOLVED.

Check the generated children for a possible cutoff. Prune any children that are 'cutoff' from T

Create a set H, containing only node n.

DITIL His e1pty, IX>:

DD
DD

Remove a node, 1, fro1 H, such that node m has no descendants in T occurring in H.

Revise the cost q(1) for 1, as follows:
for each connector directed from I to a set of nodes { n1i,···,nki} coapute

Set q(1) to the ninillll over all outgoing connectors of qi(•) and 1ark the connector
through which this 1inillllll is achieved, removing any previous marking that is present.

If all child nodes through this connector are labeled as SOLVED, then label node 1
as SOLVED.

Check the newly generated children for a possible cutoff. (As discussed in the
previous section). Prune any children that are 'cutoff' fro1 T.

If I has been labeled as SOLVED, or if the revised cost of I is different than the
previous cost of 1, then add to the set H the parent node of 1.

30

,. ' 1

i.
;l

'

Note that, as described. above, associated with each node n is

h(n) <= h*(n), which can be considered a lower bound on the

cost of node n. Also associated with each node n is u(n) >=

h*(n), which describes an upper bound to the value of the

node. In the case of CHANCE-Nodes, these values are computed

as discussed in the previous section, using the formulas of

section 3. 2 .1 on page 14. These values are used for

comparison purposes when checking for cutoff.

Upon completion of this search, the partial solution tree P

will contain the optimal search path for the initial game­

tree. Note that in the process of revising the cost of node

n in the procedure above, the revised cost q(n), is an updated

estimate of the cost of an optimal solution tree from n to a

set of terminal nodes. Because of the monotone restriction

on the cost h(n) (discussed in the previous section), cost

revisions can only be considered to be cost increases.

Selection of a non-terminal leaf node to expand (step 5) is

left to the user by Nilsson [8]. Altering the manner in which

a leaf node of Pis selected changes the search pattern. Two

schemes of selection were attempted in experimentation.

The first selection scheme was to choose the 'deepest' non­

terminal leaf node. This will force the algorithm to appear

similar to a 'depth-first' approach.

31

The second selection scheme was to choose the non-terminal

leaf node that was closest to the root. This resulted in an

approach similar to the 'breadth-first' search.

Variations of these two selection schemes are possible, with

the results varying based upon the accuracy of the heuristic

information available for the search.

3.3.3 An exaaple of an AOC* Search

Figure 8 illustrates a sample degenerate tree to be searched

using the AOC* search algorithm. Note that CHANCE-Nodes are

indicated by a small arc connecting the child arcs emanating

from the node. Further, for this example, the probability

associated with each CHANCE-Node arc to a sibling .
is

designated as 0.5. In reality, the probabilities for CHANCE­

Node arcs to their children can be non-uniform. (keep in mind

that the sum of the probabilities of all arcs emanating from

a single CHANCE-Node must add to 1.0)

32

' ' t

. ,,

•

J
I

A

-3 -3 -7 -10 -9 -7 -1 -4 -4 -8 -1 -3 -1 -1 -1 -1

Note : All CHANCE-Node Arc Probabilities ore considered as O. 5

Figure 8. Example degenerate tree for AOC* Search

Table 3 (below), depicts values for the heuristic information

that is used during the search as lower and upper bounds for

the value of the particular node. Note that in most cases,

the estimated values for the node value bounds [h{n), u(n)]

are computed during the search. The values are pre-defined

in this example for clarity, and to illustrate the principles

of cutoff involved.

33

Node Id h(node) u(node)

A -10 -7
B -10 -7
C -5 -2
D -9 -7
E -8 -7
F -6.5 -5
G -3 -1
H -3 -1
I -10 -7
J -10 -5
K -2.5 -1
L -7 -1
M -3 -1
N -1 -1
0 -2 -1

Table 3. Heuristic Information for AOC* Sample

The AOC* Search of the tree depicted in Figure 8 is solved in

6 iterations. Each iteration is displayed below, in Figure

9. Following Figure 9 is a description of what has occurred

at each step in the search.

34

1-10.-7) [-5.-2)

<Step 1 > <Step 2>

A

[-2.5.-1)

I-J.-1] (-10.-7)
(-10,-5)

<Step 3> <Step 4>

A (-8.25]

[-8.5] [(-8.5] D E f-8.0]

[-8.5]

R s R s

<Step 5> <Step 6>

Figure 9. Sample AOC* Search

35

(•''
., '

Iteration 1 of AOC*

In Iteration 1, the root node A is expanded. The children,

Band c, are checked for a possible cutoff, based upon the

h(n) and u(n) values for the nodes. Node C is cutoff. This

is because the Lower Bound of Node C is greater than the Upper

Bound of Node B. The arc (connector) leading to Node Bis

marked.

Iteration 2 of AOC*

In Iteration 2, Node Bis selected for expansion, since it is

a non-terminal leaf node of a subtree consisting of only

marked connectors. Nodes D and E are generated, and the

CHANCE-Connector is marked.

Iteration 3 of AOC*

In Iteration 3, Node Dis chosen for expansion, and the child

nodes Hand I are added to the tree. A cutoff occurs because

the Lower Bound of Node His greater than the Upper Bound of

Node I. The connector to Node I is therefore marked in the

process.

Iteration 4 of AOC*

In iteration 4 of the example search, Node Eis chosen for

expansion, and the child nodes J and Kare added to the tree.

A cutoff occurs in this step also, since the Lower Bound of

Node K is greater than the Upper Bound of Node J.

36

The connector leading to Node J 'is also marked in this step.

Iteration 5 of the AOC* Search

In this iteration of the AOC* Search, Node I has been chosen

for expansion, and the child nodes (which are terminals) Rand

Sare added to the tree. Since both children are terminals

(and therefore considered SOLVED), node I is considered

SOLVED. The value of I is computed to be -8.5. Further, since

no sibling nodes of I exist, Node Dis also considered SOLVED.

The value -8.5 is therefore passed up to Node Din this step.

Iteration 6 of the AOC* Search

In Iteration 6 of the search (the final one), Node J has been

chosen for expansion, and the child nodes (which are terminal

nodes) T and u have been added to the tree. Since Nodes T and

U are terminal, and the ref ore SOLVED, the node J is now

SOLVED, and its value is computed to be -8.0. Since no

siblings of J exist to search, Node E is also considered

SOLVED, and the value of -8.0 is passed up to Node E.

Node D and E are the only children of node B, and both are

considered SOLVED. Therefore, the value for Node B is

computed to be -8.25, and the node is considered to be solved.

37

:·r

,,.
'(

,,;

Further, no siblings of B remain to be processed, so the value

-8.25 is passed up to Node A, which is the root node. Since

all children of the root have been considered, and the

remaining child is SOLVED, Node A is considered SOLVED.

This completes the example AOC* Search. The marked connectors

in the degenerate tree represent the solution tree as

determined by the AOC* Algorithm.

38

,.,

4.0 Analysis of Algoritbws - the experiaents

A set of experiments were developed to evaluate the relative

performance of the a-Cutoff and AOC* search algorithms when

searching game trees with CHANCE-Nodes. Four search

procedures were studied; a-Cutoff, and three AOC* searches

(with varying accuracy of heuristic information). The two

search algorithms were coded in 'C' language, and the

experiments discussed below were run on a Unisys PW2/800

Personal Computer, running the Interactive Systems 386/ix Unix

Operating System.

4.1 Description of experiments performed

The a-cutoff and AOC* searches assumed a global range for node

values of [0,100]. The variations of AOC* searches were as

follows:

AOC-I • h(n) I u(n) were offset by 10% •

AOC-II • h(n) I u(n) were offset by 25% •

AOC-III • h(n) I u(n) were offset by 50% •

By adjusting the accuracy of the heuristic, it is possible to

make a determination of the possible points at which the a­

cutoff algorithm may be a better choice for searching this

type of tree. For the purpose of this experiment, the values

for the cost function at node 'n' were calculated as follows:

h(n) = h*(n) - h*(n)*(offset percentage)*UNIFORM(0,1)

u(n) = h*(n) + h*(n)*(offset percentage)*UNIFORM(O,l)

39

' , ..
f. Note that UNIFORM(O,l) represents a random number between o

and 1, which is generated under a uniform probability

distribution.

The trees generated for the experiments were of the degenerate

AND/OR variety as described in section 2. o. The trees

consisted of alternating levels of OR-Nodes and CHANCE-Nodes.

The trees used are considered to be uniform, that is, all non­

terminal nodes have the same branch factor, and all terminal

nodes are at the same depth. The parameters used to generate

the test trees were:

(1) Depth of tree (number of levels) : 2,4

(2) Branch Factor (number of children per node) : 2,4,8

(3) Distribution of Probabilities across CHANCE

Nodes (U = Uniform, s = Scatter)

(4) Tree Ordering (P = Perfect, W = Worst,

R = Random)

: u,s

: P,W,R

In reference to the probabilities across CHANCE-Nodes, the two

distributions UNIFORM and SCATTER were chosen for evaluation.

UNIFORM distribution of probabilities means that for a given

number of child nodes, the probability of selection of a

single child node is equally likely as any other child node.

(i.e., for N child nodes, each probability associated with the

selection of a child is given by 1.0/N).

40

In the case of SCA'rl'ER distribution, a random probability is

associated with each child node, and those probabilities are

normalized to add to 1. o. The random probability is generated

by a function that selects a uniformly distributed random

number between o and 1.

Three possible orderings of the trees used in the experiments

include PERFECT, WORST, and RANDOM. PERFECT ordering is the

condition in which all levels are arranged such that they

favor the search algorithm used (i.e., best paths to the

left). WORST ordering is the condition in which all levels

are arranged such that they are the worst-case for the

particular search algorithm (i.e., best paths to the right).

RANDOM ordered trees are those that are not arranged to any

specific ordering, and do not necessarily help or hurt a

particular search algorithm.

This resulted in 36 different trees for evaluation.

Considering four search procedures and 10 replications

(Uniform, Random, worst) the total number of search runs was

1440.

41

i

The nwnber of replicates (n) depends upon type I (a) and type

II (8) errors, the differences that we wish to detect (D),

and the standard deviation of the population (o). For the

experiments run, the following assumptions were made:

(1) Number of treatments= 4

(2} Power of the test (1-8) = .90

(3) Significance Level (a)= .05

Using Operating characteristic curves and the formula:

no2

2{a) {a) 2

Consulting the operating characteristic curves and the above

formula, it can be estimated that the number of replications

needed is {for the ratio of leaves explored/ total leaves):

(a) n = 15, if D - .03 and a - .02

{b) n = 8, if D - .10 and a= .05

In case {a), very tight differences must be detected and at

the same time the standard deviation is assumed to be 'loose'

relative to D; however, in case (b), a more realistic distance

is considered while we assume more variation in the population

(Also note that the formula for~ gives a conservative value

for n). From the above analysis, a selection of n = 10 {10

replications) appears to be appropriate.

42

.•

The following steps were taken to perform the analysis of the

algorithms:

(i) Random values were assigned to the terminal nodes. The

range used was (0,100].

(ii) In the case of Scatter probability distribution for

the CHANCE-Node children, random arc probabilities

were assigned.

In the case of Uniform probability distribution for

the CHANCE-Node children, uniform arc probability

values were assigned.

(iii) Correct node values h*(n) for each tree node were

computed.

(iv) The tree was then ordered to either Perfect (most

advantageous for search algorithm used), Worst (worst

case for search algorithm used), or Randomly (left

alone as generated).

(v) h(n) and u(n) values based upon the algorithm used

(particularly AOC-I, AOC-II, and AOC-III) were

computed. Note that in the actual program, a constant

time delay (2 microseconds) was introduced when a

heuristic value was needed. This delay covers the fact

that there is a time impact in computing h(n) and u(n)

in a normal tree search (not under test conditions).

43

.I

(vi) The specially generated tree was searched and certain

statistical information was produced / recorded. That

information included:

- Number of non-terminal nodes in tree

- Number of terminal nodes in tree

- Number of non-terminals touched during search

- Number of terminals touched during search

- Time in microseconds for the actual search

- Maximum count of nodes in memory during search

- Expected Search root value (for comparison)

- Actual result of search root value

- Tree configuration information

Note that the addition of statistic gathering code to

the programs, variations in coding technique, and

multi-tasking under the Operating System used affect

the resultant execution time. Since all test were run

under the same conditions, the relative nature of the

times is adequate for the experiments performed.

Timing results may vary on different systems.

(vii) The steps from (i) were repeated for 10 replications.

(viii) The steps from (i) were repeated for each of the

search algorithms.

(ix) The steps from (i) were repeated for all combinations

of tree parameters.

44

4.2 Analysis of results of ·experi:aents

The output of the 1440 runs of the search algorithms on the

tree configurations discussed in section 4.1 were tabulated,

and representative graphs of the results were generated.

Three metrics were chosen for evaluation of the algorithms.

The 'Nodes Touched', 'Search Time', and 'Maximum Memory Used'

statistics were generated by the test programs, and a group

of plots were generated for each metric.

The table below illustrates the plots that were generated,

with their corresponding figure numbers for reference.

Metric Plot Description Figure Number

Max Memory a-cutoff VS All AOC* A-1
Max Memory a-cutoff vs All AOC* A-2
Max Memory a-cutoff vs All AOC* A-3
Max Memory a-cutoff vs All AOC* A-4
Max Memory a-cutoff vs All AOC* A-5
Nodes Touched All Algorithms A-6
Nodes Touched All Algorithms A-7
Nodes Touched All Algorithms A-8
Nodes Touched All Algorithms A-9
Nodes Touched All Algorithms A-10
Search Time All Algorithms A-11
Search Time All Algorithms A-12
Search Time All Algorithms A-13
Search Time All Algorithms A-14
Search Time All Algorithms A-15

Table 4. Experiment Result Plots

45

Rote that the plots illustrating Nodes Touched and Search

Times were developed by an exponential regression of the

statistic$ returned by the test programs. The Maximum Memory

used plots are straight line graphs, without regression

analysis.

In all cases examined, the AOC* algorithm outperformed the a­

cutoff algorithm. This was as expected, since more heuristic

information is available for the AOC* algorithm. It appears

that as the heuristic worsens (i.e., AOC-III), there may be

a point reached where a-Cutoff may be the preferred search

algorithm. However, from the current results obtained, this

point would be reached at some point where the heuristic is

greater than 50% in error. It was observed that when searching

trees of branch factor greater than 4, a-cutoff used less

memory than the AOC* algorithm.

In the comparison of how the algorithms performed on trees

with child probability distribution of Uniform vs Random, the

following determinations were made:

a-cutoff

• Scatter was slightly better run-time than Uniform.

• Scatter was less nodes touched than Uniform.

46

• overall better performer.

• Nearly identical number of nodes touched for

scatter vs Uniform.

• As tree gets larger, Scatter times appear better

than Uniform.

In comparison of how the algorithms performed on trees of

varying order (i.e., Perfect, Worst, Random), the following

determinations were made:

a-cutoff

• Worst case ordering results in the algorithm touching

nearly every node.

• For branch factors greater than 4, memory utilization

appears to be better with the a-cutoff algorithm.

AOC*

• Better performer, overall.

overall

• Perfect Order resulted in the least amount of nodes

being touched for all algorithms.

• Worst Order resulted in the largest amount of nodes

being touched for all algorithms.

• Random Order resulted in an amount of nodes touched

between the best and worst case trees.

• As the branch factor gets larger, memory utilization is

better when using the a-cutoff algorithm.

47

5.0 Conclusion

In consideration of the above described results, it was

determined that both algorithms do adequately search the

degenerate tree, discussed in Section 2.1. If the appropriate

heuristic information (better than 50% error in heuristic) is

available, AOC* is the chosen algorithm for searching the

degenerate tree.

The manner in which the AOC* algorithm selects a non-terminal

leaf node during the search of the degenerate tree can be

modified slightly, to change the approach to a more 'depth­

oriented' one. Nilsson [8], describes the selection procedure

in the AO* algorithm as 'user-defined'. For the purposes of

the experiments performed, the node closest to the root was

selected. This resulted in a close approximation to a 'bredth­

first' approach to node selection. By choosing the node

furthest from the root, an approximation of a 'depth-first'

approach would be reached. Brief experimentation with this

scheme for non-terminal leaf node selection indicated a poorer

performance than the chosen near-'bredth-first' scheme.

In regard to the computation of the lower and upper bounds for

the AOC-I, AOC-II, and AOC-III variations of the AOC*

algorithm for the experiments, it should be noted that the

offset percentage of h * (n) is multiplied by a uniformly

48

.. i

distributed random nUJ1ber between o and 1, creating a range

of estimated costs that are at a maximum either 10%, 251, or

501 from the actual cost. By the introduction of the random

number multiplier, the values can appear anywhere in the range

of 01 to the maximum offset percentage. Therefore, AOC-I,

AOC-II, and AOC-III test results do NOT indicate the worst

case situations of 10%, 25%, and 50% offsets in estimated cost

values.

The a-cutoff algorithm can likewise be modified to follow a

different scheme of evaluating child nodes. The scheme chosen

for cutoff evaluation processes at most two CHANCE-Nodes until

a cutoff can be performed, by repeatedly improving CHANCE-Node

range values. An alternative scheme could be to expand all

children of an OR-Node (possibly more than two CHANCE-Nodes)

at once and improve all the range values at each iteration,

until all nodes but one can be cutoff. This scheme has not

been evaluated in the course of the described experiments,

however, it is believed that this approach may improve the

efficiency of the a-Cutoff algorithm.

49

In terms of the amount of memory utilized during the search

process, the Q-cutoff algorithm processes at most two child

paths from an OR-Node until one can be cutoff. This results

in a memory savings during the search in cases of branch

factors that are greater than 4, as shown by the result plots

that appear in the previous section. Altering the way child

nodes of an OR-Node are processed would affect this

conclusion.

50

Bibliography

[1] Ballard, Bruce w., "The *-Minimax Search Procedure for
Trees Containing Chance Nodes", Artificial
Intelligence, Vol. 21 (1983), pp 327-350.

[2] Campbell, Murray s., and Marsland, T. A., "A Comparison
of Minimax Tree Search Algorithms", Artificial
Intelligence, Vol. 20 (1983), pp 347-367.

[3] Ibaraki, T., "Generalization of Alpha-Beta and SSS* Search
Procedures", Artificial Intelligence, Vol. 29 (1986),
pp 73-117.

[4] Karp, R.M. and Pearl, J., "Searching for an Optimal Path
in a Tree with Random Costs", Artificial Intelligence,
Vol. 21 (1983) pp 99-116.

[5] Leon, Jorge, "Real Time Scheduling and Control of a
Failure-Prone Single Machine Using Probabilistic Game
Trees", Preliminary Doctoral Dissertation prepared
at Lehigh University, Bethlehem, Pa. , October 1, 1988.

[6] Nau, D.S., "Pathology on Game Trees Revisited An
Alternative to Minimaxing", Artificial Intelligence,
Vol. 21 (1983), pp 221-244.

[7] Newborn, M. M., "The efficiency of the Alpha-Beta Search
on Trees with Branch-Dependent Terminal Node Scores",
Artificial Intelligence, Vol. 8 (1977), pp 137-153.

[8] Nilsson, Nils J. Principles of Artificial Intelligence.
Los Altos: Morgan Kaufmann Publishers, Inc, 1980.

[9] Palay, A.J. Searching with Probabilities. Pitman Advanced
Publishing Program. 1985

51

,1.,. ,,,
.,
'~

! .,.

:r

Bibliograpb.y

[10] Pearl, Judea. Heuristics - Intelligent Search Strategies
for Computer Problem Solving. Menlo Park: 1985.

[11] Rivest, Ronald L., "Game Tree Searching by Min/ Max
Approximation", Artificial Intelligence,
Vol. 34 (1988), pp 77-96.

52

Appendix

The following pages contain the set of plots that represent

the results of the experiments performed to evaluate the a­

cutoff and AOC* algorithms, based upon the metrics described

in section 4.2.

53

()(111)

11

e

....

J.
Cl
~

aJ
G)

-,:,
0 z
~
0

~

J
! z

f
~

:I!

a

I

····.·-·· ·· · , .. .

: ,:
.... i ; ;, -~.

.. , , ,. ...•.

.. !.

•

I

I

I

I

I

I

I

I

I

·' /'.

1

I

I

I

I

I

I

I

I

I

I

I

I

I

•·

./.

/.

·/·

a

I

I

I

I

I

I

,' ¢i
I

I~

I "'"

I

I

I

Total Nodes

3

I

. - ... ~

s
()(1111)

Figure A-1. Perfect Order Tree (Maximum Nodes in Memory)

54

·.~

,,
I

-~

oc 111)

12

8

2

I

'I ~J

.... ; : ~ •.•

. . . ·•

I

.. "''"''."I···

I
;

1

I

I

I

I

I

I
I

'I

I

I
1.·

I

I

.I
I

I

l

/

I

I

I

I

:l

I.
l

a 3
Total Nodes

l

I
I

I

I
I

I

l

l

I

l
.. /

:1
I.

'

l

l

l

l

l

l

l

6
<X 1111>

Figure A-2. Worst Order Tree (Maximum Nodes in Memory)

55

:;··I'

,,

(X 111>

11

8
L4

i
!

c:I
-"4

CIJ
GI
~·
0 :z:

'M
0 e
L4 .,

,,Q

I :z:

i
j

'

2·

•

····:·············.······:,

p.,
r

•

I

I

I

I

I

., .. ,,.

/

I

I

/

1

/

I

a

/

/

I

Total

i

.I
/

I

/

/

Nodes

I

.. i
I

. ·. 1 ·

-1--·

3

I
··j-... ··- -· - -•..• -t-··

I
!
I

l / ~-· .;7 .. /.1/_

: ./

I /

,f

/

/I

i
/

/

I

I• .

,,
• .••• ,J

I
-

- I,. •• ~

I .,
. r·

5
()(1•••>

Figure A-3. Random Order Tree (Maximum Nodes in MeJIOry)

. '

. ,

~
'•

i
~
j

()(111)

12

11

e

2

•

.... ; ,._ .: , ,, <

····>· ' ·········· ······

.. (....... .

•

I

I

/

I

/

/

1

/

I

I

I

I

I ,.
I

I

I

./

.I.

/

I

/.

/,

'/

/

a 3

Total Nodes

I

I

I

/

I

Figure A-4. Uniform Child Probability
(Maximum Nodes in Memory)

57

I

I

/
! ..

I

/

I

I

' ////
. I/

,vi ,,/

.)

..
'i
I

6
CX 1111>

·.,';.''•

()(lll>

11

8

..... ...
I :a:
c::
~

Ill
Q)

,,:,
0 z • 1M
0

...
.!
I z
g

-~
w
! •

a

•

.. ,

····•··· ···!·····················'"'.

····•··························:·······"··········•·· ·······:·:·················.····

ti

/ ..

/

I
/

:·

·I··

I

/

I _t,
I/-~·

~
'"

.. r. : : ············· ; _.

• 1

.•·•·•·C••·••· ...•...•...•.......•..

I

i
I.

/

;,:

I

/

.I

I

/

I

I
)

a 3
Total Nodes

I

I

I

/

Figure A-5. Scatter Child Probability
(Maximum Nodes in Memory)

58

I
I

I

I

/

I

I

I

I

I

I

I

I

I

I

I

I

I

I

..........

r

•
I

5
<X 1aaa>

OJ
Q)

"C
0 :a:
~
a,
~
0

1-4
"C
Q)

..c:
CJ
:,
0

1-4
a,
Q)

"C
0

:a:

I . t--l!------------11----------t·----------·,···-----------.i ... : • I 1

1.TII

,.s

,.as

•

. I
I
r
i
I
i
j

i

I ! 1
i . !
i j
i !

~
i

i

!
I

! --~---··-···-···-·-·;··-······-···········-·-·······
l

!
i
!
I

~
i
!

·----:------·----········--·-····-···-···-·····-·············---······ ; · : :

AOC~II1

·····••················•···•··.···•··• ~· . . : ..

AOC-II

AOC-I

------.;

--~---··························· .. ·····-~--~---·······~---················· ·······r··. ~- ········· -................. - ·:·..

• 1 a 3 15

I -

Total Nodes ()(1•••>

Figure A-6. Perfect Order Tree (Nodes Touched)

l.,,__,. ________ ,.._ ________ ..., _______ ..., ________ ...,.. _______ ~
I

•• 'TIS

ID
QJ

"C
0 z
~
ca .,
0

f,-1
........
"C •• 8

QJ
.c
u = 0

f,-1

Ill
QJ

"C
0 z

,.as·

. I

l
j
1

!

r
I
:.

,,.

I
i
I
I

t
i

!
1
i
!
!
i
i

l
i
I

i
l
I

!
I
i
!
I
! r

!

,:·

I
i
l
;
.,

. . . --.--····· ·-·r···-- -· .. -·-----······r·········-········H····· .. ···············

L
l
!
!
i

.

. -·-·: ·--------··- i ···-··---·-··························

AoC-:--rrr

: '

. · - ...•....

............... ~ Aix::1; ,

I . -··~·-····--·····-·····-····· ; · · ... : · • ,·

I 1 a 3 ' 5

1

Total Nodes ()(1•••>

Figure A-7. worst Order Tree (Nodes Touched)

60

·, \ ..
... \. ·-

1
. . . . ·T---·-··---.. ··t---·-·-···--······-···;··-·-···---········--·1·--····-···'!··-·· .. ········-·····-·····t·····················-······················~····

. i ! i .
: : ;
~ ! f . ~

.,
l

1
1.78 ···!·····-······································~···················· :······.··········~·-··! ···~·-······ · .. · · ······•····

. : : .

al
Q,I
~
0 z

....
«s
,&..I
0

f,-1 ,.s
~

: . : : . . . : . :• . .

Q,I
..c: u
::,
0

f,-1

al
4>·
~
0 z ACX}-III

1.25

• ···-~·-·····················;, - -.i · ,;.,.~ ; ~ · · ' .. -

• 1 a 3 5

Total Nodes ()(· 1•••)

Figure A-8. Random Order Tree (Nodes Touched)

61

. ·,

i
I

'

1
! I I -t------1···------·---l·-·---·-·-----··-----.. t .. --··· .. - ·····/············"··· -i····
! I ,' :.·
: I
tz ' i : ! i CC-c I

I

·! ! !
I

. . f

I

/.
I .. .,. ·r---····· .. ···--- i . . j t ':" ... :

en
Q)

"'O
0
z
.-4
a,
4,J

~ •••• "'O
•••f•-•-••••••••••••••u•••••••-•-•••-••••1•••••••••--•••~•-•••••••••-•-••-•••••i• •••••••••••••••••••••••••••••••••••.:•••••••••;•• 0

•••••••• ••••~•••
0
•, •• •••• •••• •••••,

0
• ••

0
• • •: •. • • • •,. •, ·•, ,,, ••., • ••. • •

Q)
.c:
(J
:,

~
Ill
Q)

"'O
0
z

AOC}-III -

,.as ... : .. i,, -...................... ~ ... _ ········· ·········-~·-················ ,

AOC-II

• ... 1 ; !''''' •.•••.• i ··············. ~ ,, ,

Total Nodes
3 ' 15

()(11••>
a •

Figure A-9. Uniform Child Probability (Nodes Touched)

1 ···;··························.··················;············-·.····························· . .
. . : . . : . .

. .

)
I. 'TS .. ,,\, : · , .. i,,,, ; ... ;,, i

Ill
Q)
~
0
z
~ as
.,I
0 e,..

I. IS o • • • ~ o '. • • • • • o • ' • • • ' • • • o • • • • • • • • •' • • • o; • : • • • ,_. • • "'' • • • o • • • o • : • • 'oo• • • • • • o • • • • ,. • • • • ' • • ' • • • • • • •' • • • • ' ' ' ' • • ' • • ' • • • • • • ••• • • • • • • • ' ' • • • • • • • ' •: o • • • ' I •: • o • • o • • o o • • • o • • • • • • • • • • ,., '. • • • • ' • • • • • • • • • •' • ' • • •

~
Q)

..c: u ::, .
0 e,..

Ill
«J
~
0
z

-AOC-III

I.a&
. . . . : . : . . : : .. , ... ! .. "!'

----_A.OC-II

AOC-I

. . • ..· .. ~ '. '.''"''''''''"'·····"'"''.''""'''.'""''"'''"'""'''•' ······ ,., -.. ········· ········· ,,

I 1 a 3 ' Total Nodes

Figure A-10. Scatter Child Probability (Nodes Touched)

63

:C'

()(d8)

18

11

a

2

•

i • i
• I ' • r ·· · ·r- - 1 - 1 ·
i . . .
!

:•
;·

i·
! !

. . ! ····i ___ J .. r ... ; .. .
..

. .
····~······························.··.··:··········~·-····-·······-··························!···········-~·-··············:··················~··········:·····: ., ······' ·····~··

. ~ .. [............................ ~ ~ .. : ·.· ... "' { :

····t····························.·················!································· ,

····!···················"'''''''''''"''''''."'''''i•................. ••.• ·····.··· ······•· ············ ,,

• 1 a 3 ' Total Nodes

Figure A-11. Perfect Order Tree (Search Time)

64

'/

.... ······I·

.aa;-m

>ro-I

s
()(1118)

' ~ i

()(1U)

-1a ····:-··!··-:·-·· : . : :.
---· CX __ -c

11
. . . ····r···r·················-····:···········:·········r···················· ··················

. .

. . a •••. ' ••••••••••••••••••.••••••••.••••• ~"' •••.•••••....•..•• f· •••••••••••••.•.•...••.
. .
: :

-en
~
C
0
CJ
4)
Ill
0 ...
CJ
~ e a
~

···}·····--································ .. ······~··:···················· (·········· .. -.... ·······:. ············ .. ,,,,; ... -;, :

4)

~ e,...
·..C:
. CJ
~
a,
4)

Cl)

' ····t·················.····················.······:··1··········-······························ , .. ._ ·············
: : . .

2 ••• ·• •.•.••.•. ' .. '........... . ••.•••••••••••• ~ .. f'

AOC-III ~oc-
• . AlX}-T

3 • 1 a
Total Nodes

6
(X 1891.)

Figure A-12. Worst Order Tree (Search Time)

65

'J":

'·.

UC lB>

1a
; . . ••:•••'"············.·-····-·················!···:··•,••• .· ·
i I i

l !
I
;"

11 ····t············.-······························T········-.................................... i···················· _

f:

•
: : :

····~··+·············-················· ;. _ _ • I , I·

-en
'C
c::
0
cJ
«) -
ID
0
M
cJ • I

···;······---····················-··········:································ ; _ ·.; - -
!
f"4

.c:
cJ
M
«,
«) cc-c

Cl'l

4 ·····r················--·········· .. ················:r ~ ; ;

2
. . .. :4·············.¥••••

........................... .. .;. : .. •

• 1 a 3 g

()(1•••> ...
Total Nodes

·Figure A-13. Random Order Tree (Search Time)

. ,,· .
.;'·
-.1_1

(>C 1D>

181

1••

&I

2&

•

... ·························•··················

.. .. ······································.

.•• ·f.. .•••• .••.• ..•• •• . .•. .• .•. . . .•••.••.. .••. ••. .••••. .•.••. ••••.•••. .•. .• ••. . ..•.. ' •...... ' -~

. : .. ~

. .

····•···

................................... ·····t·

·•··
I

.... ··········· , .. ···

• 1 2

Total Nodes
3

C[-C

AOC-III

AOC-I

5
(X llel>

Figure A-14. Uniform Child Probability (Search Time)

67

<>< lR>
-----..-----------,.------.-...--,--.,...--,---,-..,..--,--,..-"""T'"--,~T"""....,.---r--r-i

191 ····· ··•········· .. : ······· ·····•·· · · ~-............ . ; . r . . ~ : ~ .. ~ .. ,.,

12S ····r·········:··································:~················ ···--·· ·· ... ······ .. , -·· · .. -. ; ; : ······-··
. .
. .

111 ~ .. •'• .•.... ' .. •.••................. ·I· ..•....••.. •.... • t . •.· : , ,

-11]
~
C
0
u
GJ
11]
0
k
u

of"!
I 7S :: ... ~ : ~. -
i

of"!
E--i AOC-III
.c:
u
k
a,
QJ.

Cl)

61 ····:···:·•'"''•···········-················
: :

·····"·•·•,;, ~-· .. ,

. .

..

. · i ~ ; ... ; ;

AOC-I

: :

• ····~····"'······--·················•"'"''""'"~·························"''''••·"'"""'"•~··:·········· .. ················•o0, .. · _7······"'""""'"·······················""""••···:

• 1 a 3 ' 15

Total Nodes ()(11••>

Figure A-15. Scatter Child Probability (Search Time)

68

.
' ' r .,

Vita

The author of this paper, Daniel Zenz el Jr. , is the son of Mr •

and Mrs Daniel Zenzel, of Berwick, Pennsylvania. He was born

in Bloomsburg, Pennsylvania, on November 1, 1960.

married to wife Cindy, and has a son Daniel.

He graduated from Bloomsburg University .
in 1983,

He is

with a

Bachelor of Science in Mathematics and Computer Science.

He has been employed by the Unisys Corporation for five years,

where he is a Section Manager.

Daniel has been published in 80-Micro Magazine several times

due to programs that he has written for the TRS-80

microcomputer line. These articles include a C-Interpreter,

an Operating System Shell, and an automated help facility for

disk-based TRS-80 users.

69

!

.~ .,
. ,J

<I .. ,
'

.~

' 1
.'J

	Lehigh University
	Lehigh Preserve
	1989

	An analysis of ga s-Cutoff and AOC* search algorithms on trees containing probabilistic nodes /
	Daniel Zenzel Jr.
	Recommended Citation

	tmp.1551116526.pdf.bEeql

