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Abstract 

The problem at issue in tolerance analysis is specifying tolerances at design 

time that will optimize both the overall cost and quality of the assembly while 

quantifying the risk of failure to function properly. In order to obtain a higher 

yield of assemblies performing to specification, a stronger link between design and 

manufacturing is needed. If process capabilities are readily available to a design 

engineer at design time, realistic tolerances can be specified that are satisfactory for 

the design's functional requirements and cost effective to produce. This study is 

concerned with developing design and tolerance analysis tools. The method of risk 

assessment developed accepts statistical data on dimensional variability that is 

inherent in manufacturing. 

The computer module to implement this task was developed in conjunction 

with the a relational geometric model data structure being developed by Ms. Wang. 

The analysis procedures employed were developed by Oyvind Bjorke. Bjorke has 

shown how statistical methods can be extended to complex mechanical assemblies. 

Bjorke clearly demonstrates the use of a variety of vector types that bring statistical 

methods into mechanical engineering. 

Two approaches to tolerance analysis are considered. First, the statistical 

parameters of an assembly's functional dimension are determined based on 

component parts tolerances and parameters to determine the percentage of 

assemblies that will fail to assemble with the specified component tolerances. 

Second, for a given set of characteristics of a functional dimension, tolerances are 

assigned to the individual components of the assembly while maintaining the 

desired functional characteristics. These approaches were implemented in an 

interactive, menu driven computer module that interfaces with a solid geometric 

modeling environment. 
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1. 

1.1. 

Introduction 

Problem Statement 

1.1.1. Variation of component dimensions 

When an engineer designs an assembly, the first design is usually a nominal 

design consisting of idealized dimensions. In a population of manufactured 

components, variations exist between the actual sizes of the individual parts. It 

would be unrealistic and extremely costly to attempt to manufacture parts without 

any variation. The designer, therefore, specifies the limited variations in part 

dimensions by the use of tolerances such that the assembly of parts performs as 

intended. The cost of producing and assembling a mechanical system is often 

directly related to the tolerances assigned to its components. If the imposed 

tolerances are too tight, the cost of manufacturing increases. If on the other hand, 

the tolerances are too loose, the percentage of functionally unacceptable assemblies 

may be too high. 

1.1.2. Tool for design stage 

In many cases after the design engmeer specifies tolerances that will 

adequately conform to the functional requirement, the problem is turned over to the 

manufacturing department. It is up to the manufacturing engineer to determine the 

process or processes that will confonn to the specifications set by the design 

engineer. The design engineer has the responsibility to tum out a product that will 

meet specifications for cost, government regulation, reliability, etc. The 

manufacturing engineer on the other hand is concerned with producing the parts 

within the specified tolerances according to the cost and plant resource constraints 

placed on him. Very often these two groups disagree about what tolerances are 

actually needed on the parts, and consequently, specifications are often debated and 
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sometimes even ignored. The industry has seemingly degraded to the design 

engineers deliberately tightening tolerances more than necessary anticipating that the 

manufacturing engineer is going to loosen them to meet machining cost and plant 

resources. The manufacturing engineer may automatically loosen constraints even 

further because he expects that the design engineer has over-tightened the 

tolerances. With the presence of a tool that had access to a facility's actual process 

capabilities at design time, the gap between design and manufacturing could be 

narrowed, if not closed altogether. 

Given the growing use of geometric modeling data as a common data base 

among design, analysis, and manufacturing, there is no more obvious environment 

in which to perfonn tolerance analysis and tolerance synthesis of an assembly of 

parts. Tolerance analysis examines the tolerances of component parts to detennine 

the variation in a specified functional dimension. Conversely, tolerance synthesis is 

concerned with obtaining component tolerances based on a specified functional 

dimension of an assembly. 

Assessing the dimensional relationships between component dimensions and 

design parameters is tedious and often difficult to manually assign. It is this feature 

relationship between parts that can exist in a geometric modeling data base that we 

wish to exploit. 
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1.2. Background literature 

The goal of this project was either to develop a method or utilize an 

existing method of tolerance analysis that would lend itself well to a geometric 

modeling interface. Several authors have published works in the field of tolerance 

analysis and optimal tolerance assignment. Some authors have focused on 

completely manual methods, while others employ some computer methods. 

D.B. Parkinson [1,2,3] has published several papers on reliability methods in 

tolerancing and its implementation in computer-aided design. Parkinson presents 

the relationship between components in the form of "limit state equations". The 

most useful analysis scheme in terms of available information is his second moment 

analysis. M.J. Womy, fil . .al. [4] have proposed a system based on a Monte Carlo 

approach that is based in computer aided design. J.N. Siddall [5,6] presents a 

mathematical model for optimally allocating tolerances. The most comprehensive 

theory is advanced by Bjorke [7] based on a relationship between components in an 

assembly which he calls a "fundamental equation". 

Except for that of Wozny, all of the methods mentioned are either manual 

methods or manual methods partially extended to computer algorithms. The Womy 

paper however is vague as to how the method is actually interfaced with the solid 

model. The most complete method is that developed by Bjorke. Although much of 

the analysis schemes set forth by Bjorke feature manual work, his relational concept 

between parts is well suited for implementation with a geometric modeling system 

Several commercial packages are available on the market such as "VSA", 

developed by Applied Computer Solutions, Inc. The available packages however 

require reams of input from the user in the form of dimensional data as well as 

relational data A user creates the model of the assembly by inputting both the 

functional requirements and the relationships between parts . 
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1.3. Approach 

1.3.1. Bjorke's method, 

The approach taken in this research using Bjorke's method, was chosen for 

its completeness in relational aspects. Additionally, since the statistical information 

that is readily available on part variation is seldom more than means and variances, 

in the method presented by Bjorke, either the actual sample data can be used, or 

typical machining characteristics can be assumed. Therefore, Bjorke's model can be 

developed for a wide variety of possible geometries; this paper presents such a 

development with a number of examples analyzed. 

1.3 .2. Engineering Design and Analysis Package 

The labor involved in generating and analyzing a mechanical or electro

mechanical design can be greatly reduced if the engineer has access to a complete 

Geometric and Informational Data Base that includes the data and relationships 

necessary for various analysis procedures. Such design and analysis procedures 

may feature finite element analysis, tolerance analysis, sheet metal flat pattern 

layout design, etc. The trend in design philosophy is increasingly in the direction 

of the total integrated design and manufacturing package with the geometric model 

as its basis. 

Figure 1.1 below details the flow of information in the software 

methodology. The geometric description would be contained in the GEOMETRIC 

DATA BASE in which the topology would be further augmented by relational 

information. Once the geometrical and relational information is in place, any 

number of the analysis and design schemes mentioned above could be carried out 

via an APPLICATIONS module. The application4i mcxlule would have the ability 

to communicate back to the data base and either fill in any missing information, 
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such as an unknown tolerance, or suggest changes in the design. The segment 

GEOMETRIC and RELATIONAL 
DATA BASE 

DISPLAY 

Figure 1.1 Total Design Package 

labeled DISPLAY would provide the interface with the user. This segment 

represents both graphical results of any of the applications modules and the input of 

design geometry at the geometric model data base stage. 

The geometric model data base segment of the proposed package is 

currently the doctoral work of Wang at Lehigh University. That research purports 

to "develop a feature oriented modeling strategy which will allow the user to design 

part components with features, specify datum references, tolerances and mating 

features, and automatically assemble components according to the mating features 

and mating conditions, with tolerances analyzed" .[8] The development of a tolerance 

analysis and synthesis applications module that interfaces with Ms. Wang's work is 

the focus of this thesis. 
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1.3 .3. Geometric model interface. 

The manual work necessary to use Bjorke's method is almost totally 

eliminated by interfacing with the geometric modeling data base that is currently the 

doctoral work of Ms. Wang. The geometry of the assembly to be analyzed would 

be created and edited in the geometric modeling package, with the functional 

relationships between the parts generated automatically. The data present in the 

geometric modeling data base with the design constraints could be used to establish 

the functional relationships of the components, thus relieving the manual tedium 

present in existing methods. The interface created has the capability of transferring 

geometrical information between the data base and the analysis package. Any 

tolerances assigned by the analysis package would be used to update the data base. 

1.3.4. Computer implementation 

The package designed is a menu driven, interactive computer program. The 

software allows the user to interact with several data files and supports the human 

interface. The program was written in VAX FORTRAN, and can run on any of 

Digital Equipment Corporation's VAX computers. Results of an analysis are 

displayed graphically using the graphics package Graph3d.LU, which is a set of 

FORTRAN callable graphics subroutines developed at Lehigh University's Computer 

Aided Design laboratory by Dr. Tulga Ozsoy [9]. The graphics applications 

routines were written to run on Tektronix 41:xx series of terminals. 
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1.4. Organization of thesis 

The remaining chapters of the thesis will discuss the implementation of 

Bjorke's theory in the nienu driven framework outlined above and some examples. 

Chapter 2 will review Bjorke's approach to analyzing tolerances on an assembly as 

well as the methods he sets forth for tolerance assignment Chapter 3 will detail 

the implementation of the scheme into a computer algorithm as well as describe 

some of the concepts to situations that Bjorke does not address. In Chapter 4 

example assemblies will be used to illustrate the package's capabilities and its 

operation; some of the examples involve case studies along the lines of a "what if' 

analysis. Since Tolerance analysis in CAD is genuinely an open field with 

considerable potential, COJ?-Clusions and recommendations for future work will be 

reviewed in Chapter 5. 

introduction 8 

. , . 
. ,. 

·. ·~ 
.:} 
., 
j· 



2. 

2.1. 

B jorke 's Method 

Tolerance Chains 

2.1.1. Fundamental equations and sum dimensions 

The sum or functional dimension of a mechanical assembly is a particular 

dimension whose size is critic·a1 to the satisfactory operation of the assembly. The 

variation in the sum dimension is affected by the variation of other dimensions in 

the assembly. Consider the simple example of a bore and a shaft in a journal 

bearing assembly in Figure 2.1. 

c:::aradial 
clearance. in 

/3 

Figure 2.1 Journal Bearing Assembly 
(reproduced from Shigley [14]). 

For this example, the size of this particular journal and bore can vary slightly 

without failing from the load placed on it Therefore, it has been decided that the 

clearance between the bore and the shaft is of critical importance, not so much the 

actual sizes of the bore and the journal. The sizes of the bore and the journal can 

vary as long as the clearance between them, the sum dimension, remains within the 

specified range. 

theory 9 
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The sum dimension is not only a function of the size of the other 

dimensions in the assembly, but also their relative locations. Examples of this will 

be seen later. 

As was seen above, the sum dimension, denoted Xt, is a function of the 

other dimensions in the assembly. 

Xt = f(XJ 

The mathematical representation of the relationship between dimensions is called 

the fundamental equation. In the case of the journal bearing assembly, the 

fundamental equation would be, 

with X. being the dimension of the shaft and Xb the dimension of the bore. 

In many assemblies there is more than one functional requirement and 

therefore more than one fundamental equation is needed. In the example given 

above, the function of the fundamental equation is linear, but it must be noted that 

this is not always the case. Bjorke likens a linearized fundamental equation to the 

concept of a chain, which he calls a tolerance chain. 

2.2. Model of individual dimensions 

Before the model of the individual dimensions can be discussed, some 

terminology associated with Bjorke's approach must be presented. The variable 

names used in this thesis will be the same as those used by B jorke to maintain 

consistency with the figures he uses in the development of the method. The basis 
-, 

of the study undertaken is to predict the effect of variation in parts' dimensions on 

the final assembly. This variation in a part's size is a continuous region, called its 

tolerance zone, ranging from the part's minimum size to the part's maximum size. 

Several notations exist to describe a part's tolerance zone, some of which are shown 

below in Figure 2.2. The basic or nominal size of the part is denoted as "BX". 

theory 10 



For most of the tolerance calculations limits on the dimension will be know an 

"LX" for the minimum dimension limit and "UX'' for the maximum dimension 

limit. The tolerance zone will be reffered to as "TIC'. 

Datum element 

Basic size (BX) 

Minimum dimension limit (l.X) 

Maximum dimension limit (UX) 

Tolerance zone 

Upper deviation (SX) 

lower deviation (IX) 

Tolerance (TX) 

Figure 2.2 Tolerance concepts (reproduced from Bjorke ). 

A hole might be dimensioned as shown below in Figures 2.3 and 2.4. 

0 30 .007 
d 29. 982 

Figure 2.3 Hole dimensioned 
by limits (reproduced from 
Bjorke). 
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+ 0.007 
030 - 0.018 

Figure 2.4 Hole dimensioned 
by basic size and upper and 
lower deviations (reproduced 
from Bjorke). 
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Figure 2.3 denotes the dimension by listing the holes upper and lower limits, while 

Figme 2.4 graphically presents the hole's basic size and its upper and lower 

deviations. ANSI and ISO standards also exist for the dimensioning of holes and 

shafts. 

The range of variation in a part's size is generally small as compared to the 

part's basic or nominal size. The approach taken by Bjerke to represent the 

variation in a part's size is to break down the part into a constant element and a 

stochastic element. The convention dictates the use of the middle of the range of 

variation as the constant part of the dimension. A dimension X is represented as 

X=MX+~ (eq. 2.1) 

MX : distance to the middle of the tolerance zone 

·LiX : the stochastic part of the dimension 

The two statistical parameters most important to the development of the 

model are the expectation and the variance. 

E[X] = E[MX + LiX] 

EX= MX + ELiX 

var[X] = var[MX + dX] 

varX = var~ 

(eq. 2.2) 

(eq. 2.3) 

To determine these statistical parameters, the distribution of X must be known; 

alternatively, the means and variances themselves could be determined by estimation 

theory from the past experience of a particular process or machine. Machines being 

used in a particular factory could be monitored to determine the means and 

variances of the parts it is producing. 
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Bjerke lists a table of traditional machining processes and tolermce grades 

accompanied by their parameters (see Appendix I). It is known that most 

machining processes vary between a nonnal and rectangular distnoution. Therefore, 

if the distribution is not known, and sample data is not available from previous part 

lots, a rectangular distribution could reasonably be used as a worst case example. 

Because of quality control efforts, the range of the parts entering the 

assembly is not always indicative of the range being produced by the machining 

process (RX). The quality control inspector maintains specifications of the 

dimensions that can enter the assembly. Pans that agree with the specifications 

(TX) are allowed to enter an assembly; those that do not are returned to be re

machined or are scrapped. The distribution of the dimensions entering assembly 

phase are cropped at the dimension limits specified. Dimensions of the parts 

entering the assembly have a range equal to the tolerance of the parts. 

RX=TX (eq. 2.4) 

Bjorke's model of the individual dimensions is illustrated below in Figure 2.5. It 

is obvious that it is desired to use a machine with a process capability (PC) equal 

to or less than the specified tolerance. 

f ( ;t.) 
PC 

LX TX :RX 

MX TX/2 

Figure 2.5 Model of individual dimensions 
(reproduced from Bjorke). 
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2.2.1. Determining parameters of the individual dimensions 

Having an understanding of the model of the individual dimensions, it is 

time to determine the actual parameters' behavior of the sum dimension. It would 

require an infinite number of entries to tabulate the expectations and variances for 

every dimension in the various processes. Bjorke has developed a scheme by 

which to "unify" the tolerance capability of manufacturing processes. To do ,so a 

unit distribution is used. The distribution of the individual dimension is 

transformed such that its minimum dimension limit is at the origin, and its 

maximum dimension limit is at 1. The unit dimension variable is z which has a 

range from O to 1. The equations are listed below and an example follows to 

illustrate this concept. 

L1X = TX(z-0.5) (eq. 2.5) 

Example; 

theory 

Length X has been assigned a dimension 10.o+-0.5. TX in this case is 1.0, 

and the middle of the tolerance zone~ is 10.0. From equation 2.2 

X = 10.0 + L1X 

From the tolerance zone it can be seen that dX has from -0.5 to 0.5. Table 

2.1 below created from equation 2.5 illustrates the transformation from the z 

domain to the X. 

Table 2.1 Domain transformations. 

z TX X 

0.0 1.0 -0.5 9.5 
0.5 1.0 0.0 10.0 
1.0 1.0 0.5 10.5 
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Taldng the expectation and variance of equation 2.5 the statistical 

parameters of the unit distribution are obtained. 

E[AX] = E[TX(z - 0.5)] 

E[L\X] = TX(Ez - 0.5) 

var[L\X] = var[TX(z - 0.5)] 

var[L\X] = var[TX(z)] 

var[L\X] = TX2varz 

(eq. 2.6) 

(eq. 2.7) 

If the statistical parameters EX and varX for the individual dimensions are not 

known from experience, they may be calculated from the predetermined parameters 

of the unit dimensions. 

The parameters of the unit distribution of widely used processes are taken 

from B jorke and listed in Appendix I. They are listed according to form element 

and technological process. When the form element and process are determined, the 

tolerance needed is selected from the limits listed for the process. The expectation 

and variance can be linearly interpolated for the tolerance specification. These 

parameters, along with the transformation equations 2.6 and 2.7, yield the statistical 

parameters of the individual dimensions. 

2.3. Sum dimensions 

2.3. I .Statistical parameters 

The statistical parameters of the sum dimension must be determined from 

the parameters of the individual dimensions. Because the individual dimensions are 

stochastic variables, the sum dimension will also be stochastic. The sum dimension 
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is not dependent on a manufacturing process, but rather on the assembly of a 

random sampling of the components whose parameters are process dependent. 
. 

Statistical parameters of the individual dimensions have been calculated in 

the local coordinate system of the individual parts. When the parts are placed in 

the assembly, they are placed in the global coordinate system of the sum dimension. 

The effect of the individual part's dimensions on the sum dimension must be 

determined. Individual dimensions must be transfonned according to direction and 

also according to location. An individual part's influence is transfonned to the sum 

direction and also to the coordinate system of the sum direction. The influence of 

an individual dimensions is represented by the linear equation: 

(eq. 2.8) 

A1: signed constant 

With this relationship, the range that the sum dimension follows to be, 

(eq. 2.9) 

and the distance to the middle of the range of the sum dimension: 

(eq 2.10) 

By substituting equation 2.2 into 2.8, the sum dimension can be broken 

down into its constant part and its stochastic part. 

(eq. 2.11) 

Equation (2.10) is subtracted from (2.11) to give the fundamental equation 

of the stochastic part of the sum dimension. 
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It follows that the expectation and variance of the stochastic pan of the sum 

dimension is: 

EMC,E = .E Ai FAX1 

VarAX,E = l: A/ VarMC:1 

(eq. 2.12) 

(eq. 2.13) 

The statistical parameters of the sum dimension are thus given by equations 

(2.9), and substituting (2.1) into (2.10), and finally by substituting (2.6) into (2.12) 

and (2.7) into (2.13). 

MXl:R = l: A1 MX1 

MXl: = l: IA1I TX, 

EL1Xl: = l: ~ TX1 (Ez1 - 0.5) 

2.3.2. Model of sum dimension 

(eq. 2.14) 

(eq. 2.15) 

(eq. 2.16) 

(eq. 2.17) 

Equations 2.14 - 2.15 show that the parameters of the sum dimension can 

be computed without knowing the actual distributions of the individual dimensions. 

The distribution of the sum dimension however must be known in order to 

determine the confidence level to which the parts will assemble. Determining the 

distribution of the sum dimension from actual distributions is not practical for two 

reasons. Many times the distribution assigned to a process is only approximate, and 

if the distributions were known exactly, the calculations would become unwieldy. 

Since only means and variances are summed, and not the actual distributions of the 

individual parts, the distribution of the sum dimension must be satisfactorily 

approximated to yield confidence levels of assemblies. 

Many techniques employ of the central limit theorem, which states that the 

sum distribution approaches the normal distribution as the number of individual 

dimensions increases, independent of distributions of the individual dimensions. 
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One drawback of this method is the requirement of a large number of dimensions 

for the above assumption to hold true. The nonnal distribution, therefore, was not 

used to model the sum dimension for the work covered in this study. For a more 

detailed discussion of how to approximate the sum dimension as a normal 

distribution, refer to Bjorke[7]. 

The only real advantages to approximating the sum dimension as a normal 

distribution is the simplicity of the calculations involved. The disadvantages far 

outweigh its benefits for it to be used as a viable model. The normal distribution is 

only a two parameter distribution, those parameters being the mean and variance. 

The use of the normal distribution does not allow for the sum dimension to be 

asymmetrical, nor does it allow for the movement of the tolerance zone within the 

range of the sum dimension. Last, as mentioned above, the model is not 

sufficiently accurate for a tolerance chain comprised of few dimensions. 

The approach taken in this research work to be covered here is to employ 

the beta distribution. As a four parameter distribution, the beta distribution model 

is more flexible and does not encounter many of the problems of the normal 

distribution referred to above, Greater flexibility of the beta distribution permits it 

to better approximate the actual distribution of the sum dimension. Changes in the 

parameters in the beta distribution, can cover actual distributions ranging from the 

rectangular distribution to normal distribution which are shown in Figure 2.6. 
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Figure 2.6 Unit beta distributions 
(reproduced from Bjorke). 

The parameters of the beta distribution allow for the swn dimension to be skewed) 

thus more realistically modeling actual manufacturing experience. 'The distribution 

is also a finite distribution, which allows an integration to be performed along the 

entire range. Though the drawbacks of the normal distribution model are addressed 

by the beta distribution model, the four parameter beta distribution model requires 

greater computation. 

Figure 2. 7 illustrates of the beta distribution model of a sum dimension. It 

can be seen that the confidence area, which is represented_ by the cross hatched 

area, dictates the size of the tolerance zone TXr,. It can also be seen that 
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Figure 2.7 Beta distribution model (reproduced 
from Bjorke). 

the tolerance zone is free to move within the range of the sum dimension. This 

movement, of the tolerance zone, ~L establishes a relationship between the 

confidence level and the middle point of the tolerance zone. Two different middle 

point and tolerance zone pairs could yield an identical confidence level. 

Bjorke presents a method to determine the relationship between tolerances 

and confidence levels using normalized dimensions. 

TXL = TWL (vari1.Xr)1/2 

M~:E = MW:E (var~:E)l/2 

(eq. 2.18) 

(eq. 2.19) 

A normalized beta distribution has an expectation of zero and the variance is 1.0. 

Tabulated values of normalized beta distribution parameters are listed in Appendix 

II. The four parameters needed to model the sum dimension are expectation, 

variance, range, and asymmetry. By tabulating nonnalized middle point moyements ··~ '~ . 

,. along with normalized tolerance zones, values of the actual tolerance . zone and its 

location can be determined from equations (2.18) and (2.19). The method of using 
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tables to determine the tolerance zone of a sum dimension based on a desired 

confidence level will not be discussed in further detail. If a more in depth 

explanation is desired, it is suggested that the reader refer to the Bjorke reference. 

Implementation of the beta distribution to model the sum dimension for a tolerance 

analysis does not make use of the tabulated values. Instead, the beta distribution is 

directly integrated using the known parameters to determine the confidence level of 

the assembly. 

The above discussion features two methods of modeling the sum dimension. 

Choosing between either method is based on a compromise between computing 

precision and computing effort. Justification of using the beta distribution over the 

normal distribution lies in the beta distribution's greater precision. As Bjorke 

argues, 

theory 

A sensitive parameter in the models is the normalized tolerance. In 
Figure 2.8, this parameter is drawn as a function of range, where the 
full drawn lines belong to the beta distribution model, and the dotted 
lines belong to the nonnal distribution model. The curves have been 
drawn with different confidence levels, and the influence of 
asymmetry is given by the hatched areas. The conclusion drawn 
from this figure is that the difference between the models increases 
with decreasing ranges, and increases with increasing confidence 
levels, either one or both models produce large computing errors. 

The exact tolerances in Figure 2.8 can only be given for the 
real distributions of the sum dimensions, but these are not known. 
On the other hand, something can be said in general about the 
precision of normalized tolerances, and this will be done in the 
following discussion. As stated in the foregoing, the beta 
distribution model is more flexible than the nonnal distribution 
model. It is, therefore, generally true that a beta distribution is more 
able to approximate a given distribution than is a normal 
distribution. This is especially true in our cases since all individual 
dimensions have distributions with finite ranges. 

Another indication of the errors in Figure 2.8 is given by the 
100 % confidence level line. This line represents the upper limit on 
the tolerance as a function of range. Consequently all estimates of 
tolerances above this line are definitely wrong. 
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x Exact valut!s found by convolution of rectangular distribution 

Figure 2.8 Normalized tolerance as a function of nonnalized 
range (reproduced from Bjorke). 

Although the exact distributions of sum dimensions are not 
known in general, we may calculate the exact distributions in some 
special cases by the convolution integral . This has been done 
under the assumption of rectangular distributions. The exact 
tolerances when two, three or four equal rectangularly distributed . 
dimensions have been summed up, are given by the crosses in 
Figure 2.8. It can be seen from the figure that the normal 
distribution model gives large errors in these special cases while the 
errors given by the beta distribution model are small. As an 
example, the errors on the 99.73% level are given in Table 2.2. On 
the 99.73 % level the nonnal distribution model gives errors greater 
than 5 o/o until more than eleven rectangular distributed dimensions 
have been summed up. 
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Table 2.2 Computing error · by summing up equal 
rectangular dimensions (reprod~ from Bjorke). 

number of normal beta 
dimensions distribution model distribution model 

2 29.7 % 3.0 % 

3 18.5 % 2.0 % 

It has been concluded, therefore, that the beta distribution is generally a 

more precise model than the normal distribution. The beta distribution model can 

be used in all cases, without the risk of losing accuracy when few dimensions are 

present in the analysis. In conclusion it can be noted that, although the beta 

distribution requires slightly more computing effort and book keeping because of its 

four parameters, its advantages exceed its disadvantages. 

theory 23 

' .• t. 

:f-,: 
.,.~ 
'I 
I 

',\ 

,.·1· ·, 
·~: 

'' 



2.4. Chain Links 
I 

2.4.1. Link characteristics 

The influence of the individual dimensions on the sum dimension is 

calculated by use of chain links. A chain link is a dimension whose siu and 

location have an effect on the sum dimension and, which can be comprised of more 

than one "sub-dimension". Geometry of the chain links are divided into two 

categories. A span is a dimension between surfaces on a part. A gap is a 

dimension between the surfaces on mating parts such as a shaft and a bore. A 

chain link that is a gap is comprised of the two parts that create the gap. 

Chain links must also be classified according to their direction in reference 

to the sum dimension. A chain link is called a line vector if its dimension and 

variation lie completely in or parallel to the direction of the sum dimension. A 

chain link is said to be a plane vector if it completely lies within the plane of the 

sum dimension or a plane parallel to it. If these criteria are not met, the link is 

referred to as a space vector. Space vectors are further broken down into 

components that are parallel and perpendicular to the plane of the sum dimension. 

The perpendicular ,9mponent has no influence on the sum dimension~ and the 

component in the parallel plane is treated as a plane vector. 

All of the categories of vectors can be seen in Figure 2.9. In the left most 

column are the vector types. In the figure, plane vectors are broken down into two 

subcategories. Plane vector chain links are said to have either lumped or distributed 

direction. A link with lumped direction has a given but uncertain angle to the sum 

direction. A link with distributed direction has a direction that is completely 

unknown; i.e., it can have any angle with respect to the sum dimension. 

Along the top of the figure are the classifications of spans and gaps. Gaps 

are divided into lumped and distributed magnitude. A gap with lumped magnitude 

has a given but uncertain value, whereas the magnitude of a gap with distributed 

theory 24 

-.-,, ~---



,. 
~· f 

Line 
.vector 

direc
tion 

Space 
vector 

Span 

/ 

Gap 

lumped Distributed 
magnitude magnitude 

2 

Figure 2.9 Classification of chain links 
(reproduced from Bjorke). 

can not be determined. An example of a gap with lumped magnitude is the gap 

between a shaft and a bore when they are touching. If the shaft is touching one of 

the sides of the bore, then it is known that the size of the gap is the diameter of the 

bore minus the diameter of the shaft. Since the diameters themselves are stochastic, 

the dimension of the gap, which is given by the relationship between the shaft and 

the bore, is unknown. If the shaft were not against the bore, but located anywhere 

within, the size of the gap would be completely uncertain. 

. , .. ,,, . 

It is standard design practice to give a dimension a specified clearance. The 

gap types illustrated in Figure 2.8 do not account for fit and clearance 

specifications. Link equations will also be developed for clearances and transitions. 

Interferences, or fits, always form a "negative gap" and do not have any effect on 

the sum dimension. 
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The influence of location of a chain link on the sum dimension must also 

be taken into account. A signed constant "Ai", as in equation 2.8, is introduced to 

transform the chain link's influence from its local coordinate system to the 

coordinate system of the sum dimension. A chain link is positive when an increase 

in magnitude increases the sum dimensipn and therefore A. is positive. For any 

chain link whose increase in magnitude decreases, the sum dimension is said to be 

negative, with A1 correspondingly negative. The location of a chain link may be 

such that its correspondence with the sum dimension may not be one-to-one. The 

magnitude of the constant A1 is therefore representative of the influence on the sum 

dimension due to a change in the chain link. 

2.4.2. Link types 

Link routines have been developed for fourteen different chain links. These 

routines transform the statistical parameters from the chain links to the sum 

dimension as specified in the previous sections. A sum dimension could be made 

up of any number and type of chain link. Equations are listed as if the 

fundamental equation were made up solely of the type of link being developed. 

2.4.2.1. Spans 

The simplest type of link with respect to equation development is the line 

vector span. . A line vector span has all of its influence on the sum dimension lying 

in the axis of the sum direction or an axis parallel to it. The fundamental equation 

for a line vector span is: 

X:ri=A X 

The equations of a line vector span are: 

theory 26 

;,·,f 

~ ".: 
< ·:~ 

.·; 



. .. ' . \ 

MXLR= AX 

RL\Xt = IAI TX 

EAX:E = A TX (Ez - 0.5) 

var~X:E = A2 TX2 varz 

(eq.s 2.20) 

Plane vector spans can exist as either lumped direction or distributed 

direction. A plane vector span with lumped directio~ fonns a given but uncertain 

angle with the sum direction (Figure 2.10). 

y 

.xa 

Figure 2.10 Plane vector span with 
lumped direction (reproduced from 
Bjorke). 

The fW1damental equation of a plane vector span with lumped direction is: 

xr = A XL cos(Xa) 

XL: length of span 

Xa: angle of sp,m with sum direction 

(eq. 2.21) 

Equation (2.21) is not a linear equation because the length XL and the angle Xa are 

both random variables. To linearize the equation, it will be assumed that the 

angular variation is small as compared to the variation in the length. The influence 

of a plane vector span on the sum dimension can be calculated by using the 

following equations. 
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MXLt = A cos(<X) MXi, 

RAXt = IA cos(a.)I ~ 

EAXt = A cos( a.) TXL (EzL - 0.5) 

(eq.s 2.22) 

The last type of span to be presented is the plane vector span with 

distributed direction. This type of link is referred to as an eccentricity. The 

direction of an eccentricity has no preference. The development of the eccentricity 

link type is fairly elaborate, and some of the concepts are imperative in the 

development of other link types. The development is taken directly from Bjorke [7] 

and can be -found in Appendix ill. The equations for a plane vector span with 

distributed direction are listed below, with some of the important concepts and 

results summarized. An illustration of a typical eccentricity is shown here in Figure 

2.11 to aid the visualization of the concept. 
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Figure 2.11 Bushing with eccentricity 
(reproduced from Bjorke). 
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MXLt = 0.0 

MXt = IAI 2TXR 

EMC:t = 0.0 

varAXt = A2 O.S(TX/ var0zJ 

(eq.s 2.23) 

Because of the symmetry that exists in the bushing, MXl:R and EAXt are 

both zero. The variable XR ranges from zero to XR, which also happens to be its 

tolerance. Because of symmetry the middle of the range is zero, X exists only in 

the stochastic part of the dimension as illustrated in equation 2.1. Since the model 

of individual dimensions states that the range of the individual dimensions equals 

the tolerance of the individual dimensions, it can be said that: 

Further, Figure 2.11, shows that the range of RMC:r, must be equal to twice XR. 

2.4.2.2. Gaps 

The analysis of chain links that are gaps will be discussed in two categories 

line vector gaps and plane vector gaps, 

Line Vector Gaps 

A line vector gap can have either lumped or distributed magnitude. A line 

vector gap with lumped magnitude is a link with its two components touching at 

either of the extremes along an axis parallel to the sum dimension (Figure 2.12). 

The point of contact is dependent on the fore es applied to the part. The important 

factor for a gap with lumped magnitude is that its components are, by definition, 

touching. 
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Figure 2.12 Line vector gap with lumped 
magnitude (reproduced from Bjorke). 

Among the line vector gaps with lumped magnitude, three distinctions may 

be made. The gap may be a clearance, an interference, or a transition. In the first 

case of a clearance, the gap is always positive requiring that the minimum 

dimension of Xb always be greater than the maximum dimension of X.. In the 

second case the gap is always negative (fit condition). The maximum dimension of 

X. is always greater than Xb. The gap in the case of a transitional fit is 

intermittently positive and negative. Figures 2.13 -2.15 illustrate graphically the 

three different types of fits. 
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Figure 2.13 Clearance (reproduced from 
Bjorke). 

clearance: lower limit of Xb > upper limit of X. 
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UX 0 

Figure 2.14 Interference (reproduced from 
Bjorke). 

interference: upper limit of Xb < lower limit of X, 

1-----~~~---------..._..__.'--'--+-~~~~~ xa 
LX 0 

Figure 2.15 
Bjorke). 

Transition (reproduced from 

transition: lower limit of Xb < upper limit of X. 

and 

upper limit of Xb > lower limit of ~ 
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The fundamental equation of a clearance is: 

X:t = A (X., - XJ I 2 

It can be seen that this equation is comprised of the two line vector spans 

Xb and X.. The equations for a line vector span with lwnped magnitude that is 

classified as a clearance are thus derived from equations (2.20). 

MXLR = A/2 (MXb - Mx.) 

~:r, = IAl/2 (TXb + TX.) (eq.s 2.24) 

E~:r, = A/2 (TXb (E2t, - 0.5) - TX. (Ez. - 0.5)) 

var~X:r, = A2/4 (TXb2 varzb + TX1

2 varz.) 

An interference type gap, because of its fit condition, does not allow any 

relative movement between the two parts. Although the functionality of the fit may 

be affected by the variability of the parts, the sum dimension is not affected as long 

as the parts remain in a fit condition. Any links in a tolerance chain that are 

determined interferences can the ref ore be neglected in the calculation of the sum 

dimension's parameters. 

The transition line vector gap is somewhat of a combination of the two gaps 

just described. The characteristic of this gap is distributed between an interference 

and a clearance. In order to describe the behavior of a transition, the variable XR is 

introduced. If XR is the size of the gap, 

XR = (X. - XJ / 2 

then the fundamental equation of a transition gap can be written: 

X:r, = A XR for 

X:r, = 0 for 
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In order to detennine the influence of a transition link on the sum dimension, the · 

distribution of XR must be determined. In other words what part of the time the 

link is a clearance and when it is an interference must be determined. If the 

variable XR has a probability density function f1(XJ, then the probability density 

function of XL is: 

f(XD = oo 

f(Xl:) = 0 

for 

for 

From the definitions of mean and variance, EXL and varXl: can be calculated as: 

EXl: = Xl: f(Xt) L1XL 

varX = Xt2 f(Xt) i1Xl: - (EXl:)2 

The general probability density function f(Xl:) above has been integrated by 

Haugrud [10] for the normal and r~ctangular distributions. The results are shown in 

Figures 2.16 and 2.17 below. The abscissas of the diagrams are values of the 

normalized expectation of XR, i.e. EXJaXR. The expectation of XR, EXR, is 

calculated from the equations 2.24 and equation 2J. 

From (2.23): 

theory 

EL1XR = 1/2 (TXb (E2ti - 0.5) - TX. (Ez. - 0.5)) 

vari1XR = 1/4 (TX/ varzb + TX.2 varz,) 

MXR = 1/2 (MXb - MX.) 
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The expectation and variance of the variable Xa can be written: 

(eq.s 2.25) 

EXR = 1/l (MX,, - MX. + TXb (E7.,, - 0.5) - TX. (Ez. - 0.5)) 

varXR = 1/4 (TX,,2 Vat"Zt, + TX.2 vazz.) 

~ Note the scaling factor "A" is left out above. This omission results from the fact 

that the influence on the sum dimension is not being calculated here. 

~EX 

3.0 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 2.16 Expectation of transitions (reproduced from 
Bjorke). 
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Figure 2.17 Variance of Transitions (reproduced from 
Bjorke). 

As stated above, the abscissas, o, are values of the normalized expectation 

The ordinates on the two diagrams are: 

and 

Therefore, 

and 

Finally the equations for the effect on the sum dimension of a line vector gap 

classified as a transition can be found using the Haugrud plots and the fallowing 

equations: 

theory 

MXLR = N4 (UXb - LXa) 

RL\Xt = IAl/2 (UXb - LXj 

EL\XL = A Oex O"XR - MXLR 

(eq.s 2.26) 
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The final type of line vector gap is the line vector gap with distributed 

magnitude. In the lumped magnitude line vector gap, the mating parts were 

touching so the gap was known as a relation between the two parts. The dimension 

of the gap in this type of link however is completely unknown and can be located 

anywhere along a axis coincident or parallel to the sum dimension. An example of 

this possible geometry is shown below in Figure 2.18. 

y 

Figure 2.18 Line vector gap with distributed 
magnitude (reproduced frorn Bjorket 

For this link the variable XR is be defined as: 

(eq. 2.27) 

The location of X. can be given by a probability distribution function and ranges 

from [-XR, XR], as shown in Figure 2.19. 
~ 
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Figure 2.19 Line vector gap with distnbuted 
magnitude (reproduced from Bjorke). 

In the figure above, the function of the link's effect on the sum dimension is shown 

as a normal and rectangular distribution. Regardless of its distribution, the function 

g1 is dependent on XR which is a variable itself. The function g1 is therefore the 

conditional probability density of XL, given ~. 

f(XL, XJ 
gi(XIJXJ = ---------------

fi(XJ 
(eq. 2.28) 

The probability density function f 1 (XJ is a function of the manufacturing of the two 

mating parts, while the function g1(XDXJ results from the assembly. For sum 

dimension analysis, it is desired to determine an unconditional density function in 

the sum direction g(XI). The density. g(XD is given by: 

00 

g(X:E) Jr(XL, X..) dXR 

-00 
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and from equation (2.28) 

00 

g(Xl:)-f g1(X:EIXJ f1(X.J dXit 

-oo 

Both integrals on the right hand side are usually known, but the derivation 

of the function of the sum dimension requires only that the g1 be known, and the 

distribution of Xt be left as general. The derivation of the effect of this link on 

the sum dimension is almost entirely calculations and is repeated verbatim from 

Bjorke[7] in Appendix III. The equations are derived for the conditional probability 

function's being normal. The steps for the rectangular distribution are similar to 

those for the normal and they are omitted from this discussion. The results however 

for the rectangularly distributed center location are included. The resulting steps in 

the derivations are very interesting and it is recommended that the reader review 

them. 

Results for line vector gaps with distributed center location are listed below 

first for normally distributed center location and then for the rectangularly 

distributed center location. 

MXLR = 0 

R~XL = IAI 2TXR 

E~I,=0 

(eq. 2.29) 

MXLR and E~:E are both zero because of symmetry of the gap (as in the 

eccentricity). The range of the XR is also similar to the range of eccentricities. 

The range must be two times XR, and like the eccentricity, the model of the 
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individual link is such that the range equals the tolerance. The range of XR equals 

the tolerance of XR and can be represented as: 

TXR = 1/2 (UXb - UXJ. (eq. 2.30) 

The variance varc,ZR is the variance of the unit distribution as measured 

relative to the origin instead of the mean. The details of this calculation are 

included in Appendix m. The value of the variance in relation to the origin, varc,ZR, 

is not needed to be known by the user of the computer module, the module 

calculates the value invisibly to the user. 

The equations for the rectangular distribution are: 

MXLR = 0 

R~XL = IAI 2TXR 

EL\x:1: = 0 

var~XS = A2/3 TX/ varc,2R 

(eq.s 2.31) 

where TXR is calculated the same as for the nonnally distributed center location. 

Plane vector gaps. 

The effect on the sum dimension of plane vector gaps with lumped 

magnitude is determined much the same way that line vector gaps were determined. 

The plane vector gap with lumped direction has a given but uncertain angle Xa in 

reference to the sum direction. The fundamental equation for a lumped direction 

plane vector gap is identical to the fundamental equation for line vector gaps, 

except for the last term. 

X1: = A ((Xb - X.) / 2 ) cos(Xa) (eq. 2.32) 
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It is the last term that transforms the influence of the link to the direction of the 

sum dimension. 

Equation 2.32 is not a linear equation. Both the magnitude and the angle 

are stochastic variables. It is generally the case that the variation in the direction is 

negligible as compared to the variation in the magnitude. Equation 2.32 is 

linearized in the same manner as is equation 2.21, by considering small variations 

from the mean of angle a. Equation 2.32 is therefore written: 

X:E = A ((Xb - XJ / 2 ) cos(a) (eq. 2.33) 

and the equations for plane vector gaps with lumped direction are similar to the line 

vector gaps with A replaced by A cos(a). Equations for lumped direction plane 

vector clearances, transitions, and distributed center location, both rectangularly and 

normally distributed, are obtained by replacing A with A cos(a). 

The last category of links are plane vector gaps with distributed direction. 

A distributed direction plane vector gap can form any angle with the sum direction. 

These gaps can be either lumped magnitude, as shown if Figure (2.20), or 

distributed magnitude as shown is Figure (2.21). The lumped magnitude link 

requires that the parts always be touching; that characteristic establishes the relative 

position of the parts. In the distributed magnitude, the internal part can be located 

anywhere within the circle of radius XR shown in Figure (2.20). 
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Figure 2.20 Plane vector gap with lumped 
magnitude and distributed direction (reproduced from 
Bjorke). 

Figure . 2.21 Plane vector gap/·: 'th distributed 
magnitude and distributed direction (reproduced from 
Bjorke). 
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Lumped mamitude 

The fundamental equation of a plane vector gap with lumped magnitude and 

distributed direction is the same as that for the plane vector gap with lumped 

magnitude and lumped direction, with the exception that the variate, Xa, is 

distributed. 

XR = (Xb - X.) / 2 

Xt = A XR cos(Xa) (eq. 2.34) 

The distribution of the angle Xa is a result of the assembly and not manufacture. 

As in eccentricity, it is assumed that the location talces no preference, and thus is 

characterized by a rectangular distribution. 

fz(Xa) = l/(27t) 

The equations for the plane vector gap with distributed direction and lumped 

magnitude are similar to those of the eccentricity. The ref ore, the equation 2. 34 is 

algebraically similar as the equation for the eccentricity. Although the variable XR 

has a different meaning, the solution of the equation is the same. The equations are 

again presented below, where TXR is found from equation (2.30). 

MXLR = 0 

Rt1xr = 1A1 2TxR 

Ei1XL = 0 

Distributed magnitude 

(eq.s 2.35) 

The plane vector gap with distributed magnitude can also have its direction 

distributed. In this case the internal part can be located within the circle in Figure 

2.19. The density of the sum dimension is again conditionaL as was the line vector 
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gap with lumped magnitude because XR is a variate. In this link, however, the 

position of the internal part is unknown, therefore making the location a bivariate 

distribution of XL and now also Y, given XR. This distribution is given by 

gi(Xt,YIXJ. Similar to the previous link, the probability density function of XR, 

fi(XJ, is a result of the machining of the parts, and the conditional distribution, 

gi(Xt, YIXJ, is dependent on the assembly. It is still the intention to determine 

the statistical parameters of the sum dimension as a function of the univariate 

distribution g(X:E). The conditional density can be calculated as: 

00 

gi(X:E!X.)= f g,(X:E, YIX.)dY (eq. 2.36) 

-00 

and the final univariate density function g(X:E), 

00 

g(XL)= f g1(X:E!X.) fi(X.) dX. (eq. 2.37) 

-00 

as was derived in the previous link development. As before, once g2 is known, g1 

can be calculated. The results for a distribution with g2 normal and rectangular are 

listed. The development for the two is similar and is carried out only for the 

bivariate normally distributed center location. 

The location of the internal part is said to be norrnall y distribut9~ in both 

the X_z: and the Y direction. The definition of'a bivariate nonnal distribution is: 

(eq. 2.38) 

ex r - 1 ((·xE -(x~)2-2 (XE -(xE). (y -(y) (y -(y)2)1 · l 2(1-p2) aXE p aXE ay + ay 'J g2(XE,Y) == . 
21rax O'y ~ l-p 2 

E 
Since the variables are uncorrelated, p=O, the function becomes: . _ 

{ 

X ( 2 . 2J ,. 1 l((J ~ - Xr;) (y -(y) ) (eq. 2.39) 
g~(X:i::;,Y) = 2;rcrXE "y ex - 2 "X:i::; + "y 
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It is also valid to assume to say that the expectation and the variance of the·two 

dimensions are equal. To do so reduces the above equation to: 

If it is assumed that the above equation is the distribution of the center location, the 

expectation is set to zero. It is further assumed that the range XR complies with the 

3cr limits. 

Substituting µ = 0, and a = XJ3 into the above equation yields the bivariate 

conditional density for X:E and Y given XR: 

By integrating out Y, as above in equation (2.36), the conditional univariate 

probability density function of X:E given XR is: 

(eq. 2.42) 

It can be seen that equation (2.42) is identical to the equation for normally 

distributed center location discussed in Appendix III; the development of the sum 

dimension equations is the ref ore identical. The effect of a plane vector gap with a 

bivariate normal distribution on a sum dimension is from equations (2.29): 
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MXI. = 0 

RAX:t = IAI 2TXR 

EAX:t = 0 

(eq.s 2.43) 

The equations for the effect on the sum dimension from a link that is a plane 

vector gap with a bivariate rectangular are given as the following: 

MXLR = 0 

MX:r, = IAI 2TXR 

EAX:r, = 0 

(eq.s 2.44) 

Significantly the only difference between the equations for the bivariate 

normal distribution and the bivariate rectangular distribution is the factor in front of 

the variance equation. Bjorke states that it can therefore be determined that any 

distribution between rectangular and normal will have a constant between 1/9 and 

1/4. This is important because the equations can be determined for any distribution 

between the normal and rectangular without going through the calculations above. 
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2.4.3. Summation of chain links 

The summation of the chain links is performed to detennine the statistical 

parameters of the sum dimension based on the parameters of the individual links. 

The manner in which the individual chain links are summed depends on the sum 

dimension being analyzed. There · are three basic types of sum dimensions that 

Bjorke differentiates, two of which will be considered in this thesis. The first case 

occurs when the sum dimension is on a stationary part or between two parts that 

don't experience any relative motion between them. The second is identified when 

the sum dimension exists between a rotating part and a stationary part. And the 

third case which is not developed here is reserved for a sum dimension between 

two rotating parts, such as a gear set. 

2.4.3.1. Stationary parts. 

The parameters for a sum dimension existing between two stationary parts 

are determined from the equations developed in section 2.3.1, equations 2.14 - 2.17; 

the results are simply summed up. The unit parameters for these equations can be 

found in the table of unit parameters listed in Appendix I. 

2.4.3.2. Stator - Rotor case. 

When the sum dimension exists between two rotating parts such as shaft 

and a bore, it is no longer sufficient to sum up the parameters in the X direction 

only. What is of concern is actually is the maximum deviation of the stator and the 

rotor in the radial direction as shown in Figure 2.22. 
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Figure 2.22 Summation of chain links between a stationary 
and a rotating part (reproduced from Bjorke). 

The technique requires summing the parameters on the stator and rotor separately, 

as was done in the stationary case, and then detennining the interaction between the 

parameters and tolerances in the radial direction. Bjorke separates the link types 

into two categories to make the summation more convenient. These categories are 

sum slants and sum eccentricities. Sum slants are link types that have non-zero 

expectations. 

The development that Bjorke presents assumes that only line vector gaps 

make up the chain. The scheme will be developed for all link types in Chapter 3 

of the paper. 

The equations for the stochastic part of a line vector span 111 the radial 

direction are listed below. 

theory 

~Xt = :E Al cosexi ~Xl 

~ Yt = :E Al sinUi ~l 
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The expectation and variance of the components are therefore: 

E&X~ = L A. cos( aJ TXu CEzu - 0.5) 

MY~= LA. sin(a.) T.Xu CEzu - 0.5) 

varAXL = L A/ cos2( a,) TXu2 varzu 
vardYL = L A.1

2 sin2(a,) TXu2 varzu 

(eq.s 2.46) 

\•· .. . '~ 

It can be seen that the components are correlated. The covariance is shown 

to be: 

(eq. 2.47) 

Using equations (2.46) and (2.47) 

varXe = vart1Xr, cos2(0) + var~Yr, sin2(0) + 2covdX~YL sin(0) cos(8) 

By way of analogy to the principle stress fonnulas, the principle axis of variance 

can be stated as: 

tan28P = 2 cov L\XrA Yr, / (var~Xr, - vard YI:) (eq. 2.48) 

and the principle variances are a combination of equation (2.47) and (2.48). 

(eq.s 2.49) 

var~ar, = vari1Xr, cos2(8J + var~ Yr, sin2(8~ + covdX~ Yr, sin(20p) 

A diagram of the calculations being performed is taken from Bjorke and 

shown below in Figure 2.23. 
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Figure 2.23 Deviation ellipse (reproduced from Bjorke). 

The goal of these calculations is to determine the uncertainty in the radial direction. 

Two, concentric circles are shown in the figure that are representative of the 

physical geometry. The point at which the circles and the ellipse touch is estimated 

as the point where the ellipse is touching a normal line to the radius vector. The 

variance is then calculated to be 

(eq. 2.50) 

a1:: angle between the radius vector and the X axis 

8P: angle between the principle axis and the X axis. 

From Figure 2.23 it can be seen that the expectation in the radial direction 

is given by: 

EVL = (EXI:2 + EY}:2)1/2 (eq. 2.51) 

The parameters in the radial direction may be determined for both the stator and the 

rotor and then algebraically summed. 
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Like the sum slants, the parameters of the sum eccentricities must be calculated in 

the radial direction. 

The parameters of the sum eccentricity can be calculated by procedures 

similar to the eccentricity type link Because of symmetry, the parameters in the X 

and Y direction are equal. The development shows that the length of an 

eccentricity approaches the Rayleigh distribution. Assuming the sum eccentricity to 

be Rayleigh distributed, the expectation and the variance of the variates are: 

E~ V = (rc/2 var~112 

var~ V = ( 4-rc)/2 var~ 

(eq.s 2.52) 

The expectation and variance of the sum eccentricity are the ref ore: 

E~ V:E = (rc/2 l:varL1Xi) 112 

var~ V:E = ( 4-rc)/2 l:var~Xi 

(eq.s 2.53) 

These parameters are both in the radial direction so the parameters may be added 

algebraically between the stator and rotor. 
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2.5. Tolerance Control 

A tolerance analysis or tolerance control is performed when the parts exist 

and the tolerances of the components are known. A tolerance control, determines 

the tolerance of the sum dimension at a desired confidence level based on the 

component parts. A tolerance control may be performed when the tolerances on 

parts have been approximated and the influence on the assembly needs to be 

determined. The distribution of the sum dimension is determined from the 

component parts as they were in previous sections. 

This section will list the steps involved in perfonning a tolerance control, 

with some modification of Bjorke's approach. Some of the steps are eliminated by 

the interface with the geometric model, and some are treated differently in the 

approach taken in this thesis. 

theory 

1. Determine the dimensions that influence the sum dimension and identify 

the variables. 

2. Determine the fundamental equation of the sum dimension. 

3. Compute the scaling factors. 

4. Classify the chain links 

5. Determine the tolerance of the individual dimensions. 
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6. Detennine the unit expectation and unit variance for the individual 

dimensions. 

7. Compute the middle point in the tol~rance zone, the range, and the 
' 

expectation and variance for the individual dimensions. 

8. Compute the middle point in the tolerance zone, range, expectation and 

variance for the sum dimension by summing up the contribution for the 

individual dimension to the chain. 

The approach taken in this paper diverges from Bjorke's approach at this 

point and the steps listed are different from those outlined by Bjorke. Bjorke 

makes use of normalized tables for the tolerance analysis, while the approach 

employed here is to directly integrate the beta distribution of the sum dimension in 

order to determine the confidence level of the assembly. 

9. Determine the desired tolerance zone and mid point of the tolerance zone 

of the sum dimension. 

10. Compute the confidence level of the assen1bly 

The above steps 1 - 5 are performed in the geometric model segment of the 

program and the data, needed by the tolerance analysis model are transferred via a 

data file. The interface between the two segments of the package will be discussed 

in detail later in the thesis. 
' 
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It is possible to change the desired tolerance on the sum djmension and 

move the tolerance zone within the range of the sum dimension to observe the 

changes in the confidence level calculated by the assembly. For instance if the 

designer realizes that the tolerance on the sum dimension could be larger, he can 

use the new value to detennine what the increased confidence would be. 
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f/ 2.6. Tolerance distribution 

The purpose of a tolerance distribution is to determine the tolerances on the 

components of an assembly based on the assembly's functional requirement Parts 

within the assembly have either predetennined or determinable tolerances. Parts 

acquired from vendors, such as screws, bolts, o-rings, etc., are usually standard and 

have predetermined tolerances. On the other hand, parts that are being designed 

specifically for an application or ordered specially have determinable tolerances. 

The goal for tolerance distribution is opposite of the goal in tolerance control but 

the mathematical basis remains the same. 

The total number of links in a chain is the sum of the links with 

determinable tolerances and the links with predetermined tolerances. 

n = n. + I\ 

n.: number of links with predetermined tolerances 

I\: number of links with determinable tolerances 

The variance of the sum dimension is separated into the contribution from parts 

with determinable tolerances and parts with predetermined tolerances: 

n 
var~Xi = L A1

2 TX/ varz1 

i=l 

n, I\ 
var~i = L A1

2 TX1
2 varz1 + I, A1

2 TX/ varz1 (eq. 2.54) 
i=l i=l 

The procedure for carrying out a tolerance distribution begins the same way as a 

tolerance control. Steps 1 - 6 in a tolerance distribution are identical to those of a 

tolerance control. In a tolerance control it was stated that B jorke used a table of 

normalized parameters for the beta distribution. In a tolerance distribution, the 

approach taken in this thesis uses the same table. Steps 7 -13 in a tolerance 

distribution are: 
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7. Determine the desired confidence level. 

8. Estimate the normalized range 

(eq. 2.55) 

n : total number of links in the chain 

n 
v~: mean unit variance 1/n L VarLi 

i-1 

The skewness of the distribution will usually be selected as FWL = 0 

9. Determine the normalized tolerance from the tables in Appendix II. 

10. Determine the links that have predetermined tolerances 

11. Substitute the above determined values into eq.(2.54) 

1\ n. 
L A/ TX/ varz1 = var~XL - L A/ TX/ varzi 
~1 ~1 

eliminate varL1XL by using the normalization formula: 

1\ ~ 
L A1

2 TX/ varz1 = (TXI/fWt)2 - L A1
2 TX/ varz1 = RHS (eq. 2.56) 

i=l i=l 

where RHS is the right hand side of the equation. 

12. Compute the 1\ unknown tolerances TX1 on the left hand side in (2.56) 

in such a way that (2.56) is satisfied and the manufacturing cost is minimized. The 

method chosen to do this will be discussed in the next section. 

,I 
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13. Determine the expectation of the I\ individual dimensions in such a way 

that the following equation is satisfied. 

n 
EXE= I A.(MX, + ,X.(Ez, - 0.5)) 

i=l 

2.6.1. Complexity Factor Method 

(eq. 2.57) 

Bjorke describes several methods such as the linear programming method, Peter's 

method, and about half a dozen other approximate methods for assigning tolerances. 

The method used in this thesis chosen has been coined the "complexity factor 

method" by Bjorke. This method, been chosen for its generic applicability, assigns 

tolerances based on a complexity factor assigned to the part. The complexity 

factors can be assigned bas~d on the criteria that best suits the application or 

manufacturing facility. The factors could represent cost of manufacturing, difficulty 

of manufacturing, time to manufacture, etc. Any criteria, which are almost always 

somehow related to cost, that is important to assigning tolerances to the assembly, 

can be represented by the complexity factor scheme. The procedure outlined by 

Bjorke is presented below. The factors assigned in this method should be 

normalized by the smallest value in the set of complexity factors; i.e., all of the 

complexity factors are divided by the smallest one, making the smallest factor equal 

to one. In the examples it will be shown how varying the complexity factors 

adjusts the tolerances assigned to a part. 

1. Estimate the complexity factor (Koi) of the dimensions in the chain (and 

normalize them). 
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2. Compute the weight of each dimension. 

Ko, 
Ve,=----

n 
L KoJ 

j=l 

3. compute the tolerances from the formula: 

TXa = 1/IAil (V Ci RHS / varzJ 

(eq. 2.58) 

(eq. 2.59) 

The validity of the equation (2.59) can be shown by squaring and summing both 

sides of (2.59). 

Ko, RHS 
A1

2 TX/ varz, = Ve, RHS = ----------
n 

n 

I KoJ 
j=l 

n I Ko, RHS 
L A,2 TXi 2 VafZi = --------------- = RHS 

i=l n 
I KoJ 

i=l 

The result is identical to (2.56). 
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2.7. Summary of theory 

Much of the theory presented is difficult to digest in the 

absence of concrete examples, which will be presented in Chapter 4. Toe theory 

presented relies heavily on Bjorke's calculations. In this thesis some of the theory 

has been modified and some has been expanded. The examples given in Chapter 4 

as well as the discussion in Chapter 3 should serve to illustrate the theory presented 

thus far and any modifications and expansions. 
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3.1 

3.1.1 Modular design 

Implementation of Theory 

Program Structure 

The theory laid out in Chapter 2 has been implemented as an interactive, 

menu driven computer program. This program is a tolerance analysis module that 

receives input from other modules and data files, e.g., the geometric modeling 

module, as well as from a user in the form of keyboard strokes. Control of the 

program is provided by a menu processor. 

The menu processor is the skeleton of the module that gives it its structure 

and sustains a manageable environment for programming. The menu processor is a 

flexible tool that can be adapted easily to accommodate changes in the structure of 

the program. How this is performed will be discussed in this chapter. Use of the 

menu processor allows for a very simple and concise main calling program and 

provides the organization for modular programming. 

Modular programming refers to a style of programming that places related 

ideas and tasks in manageable sub-programs. In this program, for instance, the 

mam calling program is only 190 lines as compared to the sum of all of the 

routines, which is over 3000 lines. A modular approach allows for easier testing of 

the code, and future additions can be implemented with minimal effort as branches 

to the main program or an existing sub-program. Negatively, the modular technique 

does create more lines of code than a non-modular approach. Its advantages, 

however, in debugging and maintainability far outweigh the disadvantage of a 

somewhat longer code. Errors can more easily be traced when the code exists in 

modular form. 

All of the routines written for the program are located in three object 

module libraries. The V AXNMS operating system allows the user to create 

libraries of compiled routines to which other programs that use the routines can be 
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This capability allows for a highly organized directory for programming as 

well as installation of the system. Three object module libraries have been created 

to house all of the routines in the program except the main calling programming 

and several data files. These modules are named menu.olb, support.olb, and 

l_class.olb. They have been named in such a way that someone acquainting · 

himself or herself with the operation of the program would have little difficulty 

finding a particular routine. Library menu.olb houses all of the routines necessary 

to drive the menu processor. L_class.olb contains all of the routines that calculate 

the individual link parameters. And similarly, the support.olb library contains all of 

the routines that provide the necessary support for the operation of the program. A 

list of the routines entered in these libraries is provided in Appendix IV. 

All of the routines used in the module will be discussed in this chapter. 

Any reference to a subroutine in this chapter will be printed in italic print. 

3.1.2 Menu processor 

As stated above, the menu processor is the fundamental skeleton of the 

program. The menu processor contributes more than only the framework of the 

program. More importantly, it provides the interface between the user and the 

analysis. Through the menu system, the user is guided through the program to the 

functions that he desires. It is the menu processor that controls the direction the 

program takes as directed by input from the user. A diagram of the menu structure 

is illustrated in Figure 3.1. 

When the program is run, execution begins by invoking the menu processor 

routine from the main program T ASM. The third line in the main program is an 

include statement that tells the computer to include the file "MENU _INIT' at 

compile time. This file was created to keep from cluttering the main program. The 

file initializes the menu processor permitting the menu structure to be used in the 
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program. It contains common blocks and data type declarations used in. the menu 

processor routines. 

It was stated earlier that the menu processor is flexible and· can be modified if it 

was desired to alter the menu structure. This customization is performed in the 

"MENU _INIT" file that reads the menu data file to be used with the program. 

There exists one executable subroutine in the "MENU _INIT" file that is named 

"read menus". This file reads in the data file created for the desired menu 

structure. When the structure of the menu is to be altered, i.e. selections added to a 

particular menu or other menus added to the menu tree, the changes are made to 

the menu data file, and the read_ menus routine reads in the new menu structure. 

The read_ menus routine reads through the data file until it comes across a 

sentinel in the form of a "-1 ". When it comes across the first "-1 ", it begins to 

read a new menu. The first menu it reads is assigned a menu number one. When 

the routine encounters another "-1 ", it determines that it has reached the end of the 

contents for the current menu. 

The information for a menu exists in the menu data file as follows in Figure 

3.2: 

-1 
"n" entries in menu 
menu title 
entry 1 
entry 2 

entry "n" 
-1 

Figure 3.2 menu in menu.dat data file 

The data file for the menu structure used in this program is listed in Figure 3.3. 

The last line in the data file is the text "end of file". When the read menus routine 

lmple~ntation of theory 62 

! . 



I • ·~ 

encounters this statement, it stops .reading menus and returns control to the main 

program, and the menu structure has been read in. 

-1 
4 
TOLERANCE ANALYSIS 
TC - TOLERANCE CONTROL 
TD-TOLERANCE DISTRIBUTION 
S- SYSTEM: PARAMETERS 
EX - EXIT 
-1 
-1 
4 
TOLERANCE CONTROL 
RE - RETRIEVE CHAIN 
LS - LINK ST A TISTICS 
AN - ANALYZE CHAIN 
SA - SAVE ANALYSIS RESULTS 
-1 
-1 
4 
TOLERANCE DISTRIBUTION 
RE - RETRIEVE CHAIN 
LS - LINK ST A TISTICS 
IE - INITIAL ST A TISTICS 
TU - TOLERANCE UPDATE 
-1 
-1 
2 
ANALYZE CHAIN 
CD - CALCULATE DISTRIBUTION 
TZ - TOLERANCE ZONE 
-1 
-1 
2 
TOLERANCE UPDATE 
MW - MODIFY WEIGHTS 
UD - UPDATE DATABASE 
-1 
END OF BUFFER 

Figure 3.3 program menu data file 
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After the menus are read in, the main calling program TASM displays the 

main menu of the program. It does so by first calling a routine named clear that 

clears the screen and then calls the routine get_ option. Get_ option is a two 

parameter subroutine get_option(menu,iopt) that receives a menu number,"menu", 

calls display menu to display that menu number, and waits for the user to make a 

selection from the displayed menu. Get_ option reads the selection made by the user, 

converts it to upper case, and compares it to the selections available on the active 

menu as well as several "global" menu selections. If it finds a match in either the 

current menu or the global menu, it returns the opcode for the choice through the 

variable "iopt" which directs the program's course. 

The menu processor has three global menu selections that allow for easier 

movement about the menus. The selections that are available from any menu are 

11f', "!", and 11M". These available choices are not displayed on any menu but are 

always active. The slash command "f' will bring the user up one menu level. 

Selecting the exclamation point command 11 ! 11
, the user is brought up to the main 

menu, and entering the "M", the user views the re-displayed active menu. 

If the selection made by the user was from the global menu, the value 

assigned by get option to "iopt" is "-1" for "!" and 11-2" for "/'. For an "M11 

selection, a value is not returned to the main program through iopt. Instead, the 

get_ option routine is instructed to re-display the active menu and wait for another 

input from the user. If the selection was found in the active menu, the opcode 

corresponding to that selection is returned as a positive integer value. The opcode 

value returned through "iopt" is first tested to see if it is a global menu selection. 

If it is, the displays the appropriate menu. If the selection was a positive value, 

however, the program is directed to the appropriate location by way of a "computed 

go to" FORTRAN statement operating on the opcode. 

Implementation of theory 64 

,.•, 

' J~ 



'.: 
, .. 
'· 

If however the routine can not find a match on either the active menu or the 

global menu, an error message is prompted to alert the user to an improper choice, 

and the module re-displays the active menu. 

The get_ option routine allows the user to input choices into the menu 

processor with multiple command input If, for example, a user is familiar with the 

menu structure and wants to access location in the program that is selected by a 

menu not on the current menu, but on one several menus deep, he or she could 

then make the appropriate successive menu selections from the current menu, and 

the processor will take the user through the selections, provided all choices are 

valid. For example suppose the user wants to select a choice "TC" from the main 

menu and knows on the next menu he will select "RE". Instead of selecting "TC" 

and waiting for the next menu to be displayed before he makes his selection of 

"RE", he can instead input "TC RE" at the first menu. The successive selections 

must be delimitated by a space, all valid on the menu that would nonnally appear 

next, and the entire command line may not be more that 30 characters long. If 

more than 30 characters are input in the multiple command set, the program notifies 

the user of the error and also displays the last command executed. 
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3.2 Data Input 

3.2.1 Data Base Structure 

When performing either a tolerance analysis or a tolerance distribution, the 

analysis routines must have acc~ss to the data file created by the geometric model. 

The data file includes all of the necessary information that constitutes a tolerance 

chain. This data file is read by selecting "retrieve chain", "RE", from either the 

tolerance control or the tolerance distribution menu. The format of the data file can 

be seen in the sample data file in Figure 3.4. The entire file shown in Figure 3.4 is 

set off at the beginning and end by a value of "-1". These serve as sentinels to 

delimitate where a chain link begins and ends. This feature will allow for a future 

capability of analyzing interrelated chains, i.e. chains with common links or chains 

with common probability. Both of these cases have equations that must be 

simultaneously satisfied. The files for now have only one chain in them, but an 

example will be given in Chapter 4 that illustrates links with common probability. 

The second line in the tolerance chain data file is the assembly type 

number. As was described in the previous chapter, the summing procedure 

employed relies on the type of sum dimension being considered. An assembly type 

number "1" , "stationary", indicates that the sum dimension occurs between two 

relative I y stationary parts. An assembly type number "2", "stator-rotor", is used for 

a sum dimension between a rotating and a stationary part. 

After the two initial entries, there remains only two different records in the 

data file. Each link in the chain is described by one set of two records. The first 

record is comprised of integer values only and is called the "type_params" record 

for the "type of parameters". The second record is called "lparams" record for the 

"link parameters record". 

The first of these two records is always~ .. made up of six integer values. The 

first entry in the type_params record denotes the type of chain link for which the 

data follows. The tolerance chain can be made up of a total of 14 types of 
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-1 
1 
1,0,0,0,1,1 
-1.00000,l l.00000,0.00000,-0.05000 
1,0,1,2,3,l 
-1.00000,9 .500000,0.00000,-0.03000 
1,0,2,4,5,1 
-l.00000,0.500000,0.00000,-0.10000 
1,0,3,7,8,1 
-1.00000,133.000000,0.00000,-0.10000 
5,0,4,11,9,1 
1.00000,43.000000,43.00000,0.023000,0.01600,0.016000,0.00900 
1,0,5,12,13,1 
-1.00000,380.00000,0.05000,-0.050000 
5,0,6,15,16,1 
1.00000,100.000000,100.00000,0.035000,0.00000,-0.04000,-0.07500 
1,0,7,16,17,1 
-1. 00000,65. 00000,0. 05000, -0. 050000 
6,0,8,19,17 ,1 
1.00000,90.000000,90.00000,0.035000,0.00000,0.02500,0.00300 
3,0,9, 19,18, 1 
1. 00000,0. 00000,0. 012000,0. 000000 
6,0,10,21,18,1 
1.00000,190.000000, 190.00000,0.046000,0.00000,0.00200,-0.03800 
3,0,11,21,20,1 
1. 00000,0. 00000 ,0. 025000,0. 000000 
15,0,12,22,20,1 
1.00000,255.000000,255.00000,0.046000,0.00000,0.00000,-0.03000 
1,0, 13,22,23, 1 
1. 00000,5 80. 00000,0. 00000, -0 .140000 
1,0,14,25,26,1 
1. 00000, 19. 00000,0 .00000 ,-0.100000 
1,0,15,29,30,1 
1.00000,0.80000,0.10000,0.000000 
-1,0,0,0,0,0 

Figure 3.4 Sample tolerance chain data file 

individual chain links. The type of chain link that is read in is used to determine 

which link equations to use and therefor which subroutine is called to calculate the 
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parameters for that link. A list of the link types and their link type numbers is 

listed in Table 3.1. 

The second entry as well as the fourth entry in the type_params record is 

used in the geometric modeling program but not in the tolerance analysis module. 

It is read here and is written back to any updated data files sent back to the 

geometric modeling program. The third entry is a link number pointer, counting 

the links beginning at link number zero. 

The fifth entry in the type _params record indicates the location of the chain 

link. As discussed in the section on summing between a stator and a rotor, the 

summation on each component is done separately. The fifth entry in the 

type_params designates whether the part is on the stator, or the rotor, or is a 

member of a stationary summation. The values denoting component location are: 

0 - stationary 
1 - stator 
2 - rotor 

The sixth and last entry in the type_params record signifies the links' 

determinability for a tolerance distribution. The link types for a tolerance 

distribution are categorized into two classes: links with determinable tolerances and 

links with predetermined tolerances. The sixth entry in the type_params record is: 

0 - for links with undetermined tolerances. 

1 - for links with predetermined tolerances. 
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Table 3.1 Link types and numbers 

1 - line vector span 

2 - plane vector span with lumped direction 

3 - eccentricity 

4 - space vector span 

5 - clearance 
(line vector gap with lumped magnitude) 

6 - transition 
(line vector gap with lumped magnitude) 

7 - Normally distributed center location 
(line vector gap with distributed magnitude) 

8 - rectangularly distributed center location 
(line vector gap with distributed magnitude) 

9 - clearance 
(plane vector gap with lumped direction and lumped 
magnitude) 

10 - transition 
(plane vector gap with lumped direction and lumped 
magnitude) 

11 - normally distributed center location 
(plane vector gap with lumped direction and distributed 
magnitude) 

12 - rectangularly distributed center location 
(plane vector gap with lumped direction and distributed 
magnitude) 

13 - plane vector gap with distributed direction and lumped 
magnitude 

14 - bivariate normal distributed center location 
(plane vector gap with distributed direction and distributed 
magnitude) 

15 - bivariate rectangular distributed center location 
(plane vector gap with distributed direction and distributed 
magnitude) 
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The size and contents of the lpamms record are contingent on the individual 

link. In all there are three variations in the size of the record and seven variations 

in the contents of the record. 

In all variations of the record, the first entry is the geometry transformation 

constant "A" discussed in section 2.4.1. For link type l, a line vector span, there 

are four entries in the lparams record. The entries in order from the second to the 

fourth are: 

link type 1: X, UX, LX 

2) X - the parts nominal dimension 

3) UX - upper deviation 

4) LX - lower deviation 

There are seven entries for link type 2, plane vector span with lumped direction. 

They are from the second to the seventh: 

link type 2: XL, UXL, LXu ANG, UANG, LANG 

2) XL - spans nominal dimension 

3) UXL - upper deviation of span 

4) LXL - lower deviation of span 

5) ANG - angle of span with sum dimension 

6) DANG - upper deviation of angle ANG 

7) LANG - lower deviation of angle ANG 

For the plane vector span with lumped direction, the values of the upper deviation 

of the angle (DANG) and lower deviation of the angle (LANG) are not used in the 

link parameter calculations in this program. The variation resulting from 

wicertainty in the angle is assumed small as compared to the span, and the 
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ftmdamental equation link type two is linearized by the above assumption. They 

are included, however, if the situation arises in which angular variation is not 

negligible. A routine could easily be amended to account for the situation. 

Link type 3, an eccentricity, has four parameters which are from the second 

to the fourth: 

link type 3: XR, UXR, LXR 

2) XR - nominal size of eccentricity 

3) UXR - upper deviation of eccentricity 

4) LXR - lower deviation of eccentricity 

Link type 4 is retained for the space vector span. In the actual program the 

space vector span is never used; it is broken down into its constituent components 

as described in Chapter 2. The type number is however left on reserve in the event 

of future utilization. 

Link types 5 - 8 all have the same seven parameters. The link names are: 

link 5: line vector clearance. 

link 6: line vector transition. 

link 7: line vector gap, rectangularly distributed center location. 

link 8: line vector gap, normally distributed center location. 

Implementation of theory 

X8 - nominal size of bore. 

XA - nominal size of shaft. 

UX8 - upper deviation of size of bore. 

LX8 - lower deviation of size of bore. 

UXA - upper deviation of size of shaft. 

LXA - lower deviation of size of shaft. 

71 



Link types 9 - 12 all have eight parameters and me the plane vector gap 

relatives of link types 5 - 8. Entries 2 through 8 in the record lparams for ]jnks of 

types 9 - 12 are listed in order as: 

ANG - the angle of the gap with the sum dimension 

X8 - nominal size of bore 

XA - nominal size of shaft 

UX8 - upper deviation of size of bore 

LX0 - lower deviation of size of bore 

UXA - upper deviation of size of shaft 

LXA - lower deviation of size of shaft 

Link types 13 - 15 are distributed direction links, and all have the same seven 

parameters. The names of the links are: 

link 13: plane vector gap with distributed direction and lumped 
magnitude. 

link 14: bivariate normal distributed center location. 

link 15: bivariate rectangular distributed center location. 

Entries 2 through 8 for a link of type 13 through 15 are listed identical in both 

number and content as those listed for links 5 - 8. A summary of the different 

record types is listed below in Table 3.2 
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Table 3.2 Summary of l':CCQrds in array lparams 

link type 1: A, X, UX, LX 

link type 2: A, XL, UXL, LXL, AND, UANG,LANG 

link type 3: A, X, UAR, LXR 

link type 4: (nil) 

link types 5 - 8: A, XB, XA, UXB, urn, UXA, LXA 

link types 9 - 12: A, ANG, XB, XA, UXB, LXB, UXA, LXA 

link types 13 - 15: A, XB, XA, UXB, urn, UXA, LXA 

The tolerance chain data is read from the data file by invoking the "RE" 

command, i.e., "RETRIEVE CHAIN" command, from either the tolerance control or 

the tolerance distribution menu, which calls the subroutine get_ chain. It can be 

seen in the main calling program TASM that get_chain has only one argument, and 

it is of variable type logical. This variable is a flag that regulates program 

operation after reading the data file by flagging whether the data file was without 

error. The flag is initially set to false, which will not let the program perfonn any 

other steps in a tolerance analysis or tolerance distribution before a chain has been 

read in. If the program were to try to perf onn some of the calculations that need 

the data in the tolerance chain data file before it had read it, it would in many cases 

"bomb", and in others give erroneous output. Once the chain has been read 

successfully however, the chain flag is set to true, and any other points in the 

program that need the information now know that it has been read in without error 

and is available. 

The subroutine get _chain initially calls the subroutine open _file, which 

prompts the user to choose the chain to be analyzed and opens the file for reading 
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in ge~_ chain. If there is an error in opening the file specified, the user is prompted 

that the file is not in the directory and is asked to re-enter the file name. The 

convention used for tolerance chain data files is to use a ".CHN'' file extension. 

The program. prompts the user with a default data file which is currently set to the 

compression chamber example used in Chapter 5. The user need only hit return to 

accept the default. This default can be changed by editing the routine open _file 

source code. 

After the file is opened, control returns to get_ chain. The routine reads the 

tolerance chain data file until it encounters a "-1" which tells it that it is at the 

beginning of a chain file. With the sentinel, headers could be placed in the top of 

the data file that would not affect the reading of the file. After the "-1" is picked 

up, the type of sum dimension, i.e. stationary or stator - rotor, is read first. 

Get_chain then proceeds to read the type_params of the first link. It reads the six 
j 

. ~·~ parameters described above and then continues on to read the lparams record. The 

routine then reads either four, seven, or eight parameters for the link, depending on 

its type that it has just read from entry 1 in type_params. The routine continues 

until it encounters another "-1 ", signalling the end of the file. Parameters of the 

links in the tolerance chain that are read in, as well as the counted number of links, 

are placed in the common block /chain_par/ to be accessed by the necessary 

routines. If at any time there is an error in the reading of the tolerance chain data 

file, an error message is displayed, and the value of chain_flag is returned as false. 

3.2.2 User/Keyboard Input 

The data necessary for the program to perform a tolerance control or 

tolerance distribution are not yet complete. So far only the geometrical data have 

been input via the tolerance chain data file created by the geometric modelling 

package. Statistical data needed for the analysis have not been provided. 
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Logically, the statistical data are not located in the geometric modelling data base. 

The statistical data therefore must be input by the user in the tolerance analysis 

module. In order to determine completely the parameters of the individual links, 

the means and variances of the links must be known to the link parameter routines. 

The link means and variances are input after the tolerance chain has been 

read. Before the user can select "LS" for "Link Statistics" menu choice from either 

the tolerance control or tolerance distribution menu, a tolerance chain data file must 

have been successfully read, and the chain flag set true. With the chain flag set 

true, the link statistics can be read in. By choosing " LS" , the routine crlmv is 

invoked. This routine involves merely a calling routine to another routine read _lmv 

which actually reads the link means and variances. When the link means and 

variances are read in, they are placed in the common block /chain_par/ so that any 

routines that need them have only to access that common block. The main calling 

program T ASM was composed in such a way that it is more a director of 

calculations and procedures than a performer of them Crlmv was created was to 

ensure that procedural common blocks did not have reason to exist in the main 

program. 

When the user chooses "LS", the module asks the user if the data are to be 

input or to be read from an existing file. Initially, when the tolerance chain data 

file is first received from the geometric modelling module, the link means and 

variances have not yet been introduced to the tolerance module. The user then 

proceeds to input the link means and variances from the keyboard. 

After the link means and variances have been input by the user, the mcxiule 

asks if the user desires to save the link means and variances to a file. If the 

question is answered affirmatively, the module proceeds to save automatically the 

link means and variances to a file that has the same name as the tolerance chain 

data file, with the exception of the extension. For the case of the link means and 
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variances data file, the extension appears as ''fllename.1.MV" Once the data has 

been input by the user via the keyboard and saved to a file, the next time an 

analysis is run using the same means and variances, the user need only to retrieve 

them from the file that has been created, thus avoiding the labor of inputting them 

from the keyboard. Since the tolerance chain data file has been read prior to 

reading the link means and variances, the module knows the name of the file. 

When the user selects to retrieve an ".LMV" file, the module looks for a file with 

the file name of the current ".CHN' file with the extension ".LMV". If the module 

cannot find the appropriate file in the directory, it alerts the user and proceeds to 

take the user through a session to input the data from the keyboard. 

The read lmv routine that actually reads the data from the keyboard. 

Having access to the data in the common block /chain_par/, the routine knows how 

many links there are and what type of links they are. The routine prompts the user 

as to the link number and to what type of link the data are being read. The routine 

can prompt for data in two ways depending on what type of link data are being 

acquired. If the link is a span, then the routine prompts for only one mean and 

variance pair. If the link is a gap, however, the routine prompts for the means and 

variances of both components that make up the gap. As with all of the data input, 

the data input in the read _lmv routine are checked to see if it is the appropriate 

type that the routine is expecting. If it is not, the user is prompted to re-enter the 

data, thus insuring that erroneous data do not reach the analysis routines. 

After all of the link means and variances have been read in from either the 

keyboard or a file, the program control returns to the main calling program where 

the link statistics flag "l_stat" is set to true. This flag is used at various other 

points in the program to check if the link means and variances have been read in. 

If they were not if would reek havoc on certain analysis routines and cause the 

program to crash or yield erroneous results both of which are highly unacceptable. 
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3.3 Chain Link Routines 

"Chain Link Routines" describes the implementation of section 2.4 into 

computer code. The link routines are located in the object module library named 

l_class.olb for "link classifications". A list of the names of the routines in this 

library and the link types to which they pertain is included as Table 3.3. Some of 

the link routines provide support for more than one type of chain link. 

Table 3.3 Link routine names 

Subroutine 

lspan 

pspan 

eccentricity 

!_clearance 

l_transition 

l_dist_ctr 

p_clearance 

p_transition 

p_dist_ctr 

pgap_dd_lm 

bivar 

Implementation of theory 

Link type 

line vector span 

plane vector span 

eccentricity 

line vector clearance 

line vector transition 

line vector gap, normally 
distributed magnitude 

line vector gap rectangularly 
distributed magnitude 

plane vector clearance 

plane vector transition 

plane vector gap, normally distributed 
magnitude 

plane vector gap, rectangularly 
distributed magnitude 

plane vector gap, distributed 
direction, lumped magnitude 

bivariate rectangularly distributed 
bivariate normally distributed 
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The links that do support more than one type of link branches internally depending 

on the link number which is available in the common block. The following pages 

will show how this can be done with the link pointer that is sent down to the 

routines. 

Given the data input to the module as described in section 3.2, the effects 

of the chain links on the sum dimension can be calculated. The parameters of the 

links that are to be calculated are: distance to the middle of the range of the 

dimension, the range of the dimension, the expectation of the stochastic part of the 

dimension, and the variance of the stochastic part of the dimension. These 

parameters are transformed according to direction and location, and their effects on 

the sum dimension are summed up accordingly. The purpose of the link routines is 

only to determine the parameters of the individual links. Since the summing 

procedure is dependent on the geometry of the assembly and the link routines do 

not do any summing, they remain functional for any geometry. That is te say, the 

link routines can be called upon to deliver the parameters of the individual links by 

any summing routine for the geometry considered. Following sections will clarify 

how the summing routines for the geometry of a stationary part and the geometry 

of stator - rotor combination make use of the link routines. 

Each of the link routines contains the common block /chain_par/ which 

holds the link's geometrical and statistical data. The arrays in the common block 

have been dimensioned to accommodate up to 25 chain links and the maximum 

number of parameters for any individual link. Element arrays were chosen to be 

dimensioned at 25 so as not to waste computer resources. For any of the examples 

considered, all arrays of 25 elements proved to be sufficient. The size of the arrays 

can easily be expanded if circumstances should require such a modification. 

The information for an individual link is extracted from the common block 

/chain_par/ by way of a link pointer that is sent down to the link routine when the 
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link routine is called. This pointer identifies to the values in the arrays in the 

common block that are associated with the particular link under consideration. 

Since all of the link data have been read into the arrays in order, the link routine 

can access the links values and correct number of values by way of the link pointer. 

For example, the array that holds the link means and variances is dimensioned as a 

4 by 25 two dimensional array. In order to accommodate the links that have a set 

to two means and variances. It can be seen that for a link that has only one mean 

and variance pair, the third and fourth element are not filled after reading the data. 

The link routine does not have to know what size the array is or how many 

elements are present in it. Since the data were read in order and the link routines 

will be called in the same order, the correct number of values will be present for 

the link as pointed to by the link pointer. For example, a line vector span type link 

needs only one mean and one variance. The line vector span routine reads the 

mean and then the variance, and then proceeds, ignoring the last two empty 

elements in the array that would be reserved for a link that needs them. 

The same holds true for the link parameters array "lparams" which is 

dimensioned as 8 by 25. As described in section 3.2.1, some of the links have four 

parameters, some have seven parameters, and some have eight parameters. The link 

routines that call for fewer than eight parameters ignore the remaining empty 

memory locations that have been set aside for the link in the dimensioning. 

The first step that takes place in all of the link routines is the assignment of 

variables to the means and variances in the array lmv( 4,25). Next, the routine 

assigns variables to the link's geometrical data present in the array lparams{8,25). 

Once the variable assignment has been performed, the routines have the data in a 

state that can be used to calculate the link's contribution to the sum dimension. 

Before the data can be input to the equations presented in section 2.4, some 

preliminary calculations carried out to transform the data obtained from the 
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geometric modelling data base. The procedures used to obtain values that can be 

used in the link equation from the data in the array lparaim will be described in 

section 3.3.1. The calculations for the link parameters, however, will not be 

repeated from section 2.4. The operation of two link routines that interact with the 

user for additional input will be discussed further detail in section 3.3.2. 

3.3.1 Preliminary calculations, 

The preliminary calculations that are carried out transform some of the data 

in the tolerance chain data file into a fonn useful for the link equations. For 

instance, the link routines need the tolerances of the dimensions of the links. This 

infonnation is not found directly in the tolerance chain data file but can be 

determined from the upper and lower bounds of the dimensions that are located in 

the tolerance chain data file. 

For span type links, there is only one dimension; therefore only one 

tolerance must be calculated from the dimensional limits. The equation is of the 

form: 

TX = l(UX - LX)I. 

For a gap type link that is made up of two distinct dimensions, the link equations 

need both the tolerance of the shaft (TXJ and the tolerance of the bore (TX8). 

TXA = l(UXA - LXJI. 

TX8 = l(UX8 - LX8)1. 

Similarly the middle of the range of the link's dimensions must be 

calculated from the existing data in the tolerance chain data file. The effect of a 

span type link has only one dimension and is calculated as follows: 

MX = X + (UX + LX)/2.0. 
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The effect of a gap type link, however, must be detennined from the middle of the 

range of both component parts of the gap. The calculation is comparable to the 

calculation for the span type link but includes an equation for each of the parts of 

the gap type link. 

MXA = XA + (UXA + LXJ/2.0. 

MX8 = X8 + (UX8 + LX8)/2.0. 

After the values for tolerances and the middle of the range of the link's 

component parts have been calculated, the link routine can continue to perform the 

calculations for the link's effect on the sum dimension, using the equations provided 

in section 2. 4. 

3.3.2 Interactive Link Routines 

There are two link routines that need some additional data to determine 

their influence on the sum dimension. These link routines are for gaps with lumped 

magnitude, the line vector transition and the plane vector transition. The plane 

vector transition is identical to the line vector transition routine except for a 

substitution of "A cos(a)" for 11 A 11
, as described in section 2.4.2.2. The discussion 

that follows here is valid for both types of chain links. In order to determine the 

effect of the transition link on the sum dimension, the values of SEX and Svarx must 

be determined from Figures 2.16 and 2.17. After the routine has performed the 

preliminary calculations and has determined TXA, TX8 , and MXM and MX8 , the 

routine calculates EXR and V arXR, as explained in section 2.4.2.2. The value of s 
is then calculated and displayed on the screen. Given the value of Z, the user can 

retrieve the values of Sex and Svux, as seen in Figures 2.16 and 2.17. The routine 

prompts the user for the input of the two values obtained from the plots and can 

proceed when they are input. The user must decide whether the transitions are 
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rectangularly distributed or normally distributed to detennine which cmve to use in 

acquiring the values from the figures. 

' 
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3.4 Tolerance Analysis (Control) 

A tolerance analysis is performed when it is desired to determine the 

confidence level of an assortment of parts, whose tolerances are known or assumed, 

to be assembled to specification. By "asswned" it is meant that the tolerance is 

assigned for the analysis without really knowing what the tolerance is or what it 

should be. A later section of this paper will show how this module can be 

manipulated to be used as a tool to perform a "what if' type of analysis. That is to 

say, a designer could observe the direct consequence of altering a dimension's 

tolerance by making a change and performing another analysis. 

The tolerance analysis section of the module is executed by the user's 

choosing the tolerance control selection "TC" from the main menu. The module 

then prompts the user with the "tolerance control" menu shown below in Figure 3.5. 

TOLERANCE CONTROL 

RE - Retrieve Chain 
LS - Link Statistics 
AN - Analyze Chain 
SA - Save Results 

1------------- .. -- -- --··-----
Figure 3.5 Tolerance control 1nenu. 

Before the analysis can be carried out, the module must access an assembly's 

dimensional and statistical data in the form of a tolerance chain and the assembly 

link's means and variances, as mentioned in section 3.3. The module maintains the _ 

status of several data input flags to insure the user cannot call for an analysis 
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bdore:the. appropriate data are available for the analysis routineso 

When all · of the necessary data has been input. the module allows the user 

to select the analyze chain entry "AN" from the tolerance control menu. By 

selecting "AN'', the user invokes the routine analyze_ chain which determines the 

parameters of the sum dimension and the confidence level of the usembly based on 

the functional requirement and calls the appropriate routines to display the results. 

Output, of the results is displayed in graphic fonnat of a plot of the sum dimension's 

probability distribution function with its confidence area filled in. The remainder of 

this section will discuss the user's interaction and the operation of the analysis 

routines in performing a tolerance analysis. 

3. 4.1 Analyze Chain routine 

Analyze chain calculates the parameters of the beta distribution model of the 

sum dimension by calling the appropriate summing routine to sum both the 

dimensional and statistical parameters of the individual dimensions. In order to do 

so, the routine must know what type of sum dimension is being considered, i.e., 

does the sum dimension lie between two relatively stationary parts or between a 

stationary part and a rotating part. The analyze _chain routine has in its code the 

common block /chain_par/ so it has access to all of the chain's link parameters 

including the value "sum_type" which is the sum dimension type that was read 

from the tolerance chain data file. By way of the FORTRAN "computed go to" 

statement, the routine branches to the proper summing routine based on the value of 

"sum_type". The two types available for analysis are routines sum _ss and sum _sr 

which stand for "sum stationary" and "sum stator - rotor" respectively. These two 

routines return the statistical parameters of the beta distribution to analyze_ chain in 

order to model the sum dimension. 
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After the disttibution of the sum dimension has · been established,·· the last 

·step in performing a tolerance analysis is~to integrate the distribution over the 

desired tolerance zone of the sum dimension. The user inputs the desired tolerance 

zone for the sum dimension, and analyze _chain calls the integrating routines. 

Results of the analysis are then displayed on the terminal screen in graphics mode 

in the form of a plot of the distribution of the sum dimension with the input 

tolerance zone shaded and the confidepce level displayed. A detailed discussion of 

the routines called by analyze_ chain is included in the sections to follow. 

3.4.1.1 Sum_ss routine 

The sum ss routine is called when the sum dimension occurs between two 

',. surfaces that are stationary relative to each other. The routine sum _ss also has 

access to the common block /chain_par/ so its input parameters are not included in 

the subroutines argument list; instead they are obtained directly from the common 

block that was filled when the link data was read in. 

Subroutine sum ss calls the link routines discussed in section 3.3 to 

calculate the individual link's parameters. A FORTRAN "computed go to" 

statement which controls this routine, is in a loop that counts through the number of 

links in the tolerance chain. The "computed go to" statement directs the flow of 

the sum ss routine to the proper link routine for the current chain link being 

calculated. Sum ss calls one of the eleven routines described in section 3.3 for 

each link in the tolerance chain and sums them up. The manner in which the 

parameters are summed up is discussed in section 2.4.3. 

For the stationary situation that is considered in swn _ss, the individual link 

parameters calculated by the link routines are arithmetically summed as they are 

calculated. As was mentioned above, the subroutine sum_ ss does not have any 

input in its argument list, but the output of the sum dimension's statistical 
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parameters is retllDled through the argument list Toe beta distribution parameters 

returned by the summing routine sum_ss for the sum dimension are: 

A: lower bound of the range of the distribution. 

B: upper bound of the range of the <fist:ribution. 

EX: expectation of the distribution. 

var: the variance of the distribution. 

The parameters above are calculated from the sum totals of the link parameters 

upon completion of the loop that calls the link routines. The upper and lower 

limits of the range of the distribution of the sum dimension are calculated from the 

middle of the range of the sum dimension, and the range of the sum dimension. 

A = MX:r, - RL\X/2.0 

B = MX:r, + RL\X/2.0 

The expectation and variance of the distribution can be calculated from equations 

2.2 and 2.3. 

3.4.1.2 

EX = MX:r, + MXi 

VarX = Vari\Xi 

Sum sr routine 

The _summing routine sum sr is a bit more complex than the summing 

routine sum _ss; this increased complexity might be expected considering the 

development of the summing procedure for this case back in section 2.4.3.2. The 

procedure developed in section 2.4.3.2 assumes that all of the "sum slant" type links 

are all line or plane vector spans. A "sum slant" is a chain link that has an 

expectation different than zero. The equations derived in this section allow for the 

analysis of a sum dimension that is comprised of any kind of chain link for the 
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stator - rotor case. Toe detail of perfonning · the summation of a stator - rotor case 

will not be repeated, but the derivations of the necessary equations will be included, 

and the operation of the routine sum _sr will be discussed. 

The statistical parameters of the sum dimension that are returned by the 

summing routine sum_ sr are the same as those returned by the summing routine 

sum_ss, namely, A, B, EX, VarX. The direction of concern for the stator - rotor 

case is in the radial direction. The parameters returned by sum _sr are calculated in 

the radial direction by the method described in 2.4.3.2. The rest of the analysis 

routines are independent of the location of the sum dimension. They calculate the 

distribution of the sum dimension and the tolerance zone's confidence level based 

on the parameters given by swn ss or sum sr. - -

The summing procedure for the stator - rotor case is carried out in a 

different order than is the stationary case in sum _ss. In the routine sum _ss, the 

individual link parameters were calculated and immediately added to the sum. By 

contrast, the summing routine sum _sr, all of the individual link parameters are 

calculated first and stored in arrays to be used in the more complex summing 

procedure. The routine sum sr contains the common block 'chain_par\ which 

permits it to call the appropriate link routines for each link in the chain. 

After all of the individual link parameters have been calculated, the routine 

begins the task of determining the parameters of the sum dimension. The 

individual link statistics must be summed on the stator and rotor separately and then 

combined in the manner outlined in section 2.4.3.2. to obtain the statistics of the 

sum dimension (V ~X) in the radial direction. The parameters in the radial direction 

are summed by two subroutines called by sum _sr. The routines sr _slant and sr _ ecc 

are used to calculate the contributions in the radial direction of the "sum slant" and 

"sum eccentricity" respectively. The routine loops over all of the links in the chain 

and calls the appropriate routine, sr _slanl or sr _ecc, in a FORTRAN "computed go 
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After~ the sum_sr routine has calculated all of the individual Hob' 

parameters influence on the sum dimension in the radial direction for the stator and 

rotor respectively, it combines them to determine that parameters of the beta 

distribution. The routine then returns the limits of the range of the distribution (A 

and B) and the expectation and variance of the distribution. The expectation will 

be returned for the large clearance for the sum dimension; i.e., the expectation of 

the stochastic part of the dimension is added to the middle of the range to obtain 

the expectation for the dimension. 

Sum slants 

If the link in question is of type 1, 2, 5, 6, 9, or 10 (see Table 3.1) , ie., 

the link has an expectation different than zero, sum _sr calls sr _slant the input to 

this routine is the individual link parameters var~, EllX:, MX, RL\X, as well as a 

pointer to the link in question. The input is passed down to the routine via the 

subroutine argument list. The routine sr _ slant calculates the parameters in the 

radial direction by breaking down the parameters into their X and Y components. 

If the link is a line vector, type 1, 5, or 6, the Y component of the parameters is 

zero, and the covariance between the X and Y component is also zero. In this 

case, only the X direction has an influence. The contribution of the link is added 
• 

to the X sum. 

For links that are plane vectors, 2, 9, or 10, the Y component must also be 

considered and the link may have a covariance between the X and the Y 

compoqent. First the routine calculates the Y component of the expectation of the 

stochastic part of the dimension, FAY, the variance, Var~ Y, and the middle of the 

tolerance zone and the range MY, R~ Y. After the Y parameters of the link are 

detennined, the routine proceeds to determine the covariance of the link. 
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equations for the covariance of a plane vector span _: are included in :~1be secdOO 
. .. . 

2.3.4.2 and will not be derived here and repeated. Covariance equations for a plane 

vector gap that is a, clearance, and a plane vector gap that is a transition are derived 

in the same manner and the results are show below. 

cov(x,y) = E(x,y) - E(x)E(y) 

slant 

var(x) = E(x2)-[E(x) ]2 

~x = A1 TX1 cosexi (z1 - 0.5) 

~y = A1 TX1 sina, (z1 - 0.5) 

cov(L\x,~y) = E(l\x~l\y) - E(L\x) E(~y) 

= E[ { A. TX, COSCli(Zt-0.5)} { Ai ~ sinU.(Zt-0.5)} ]-
[E { A1 ~ cosexi(z.-0.5)} E{~ TX1 sino.i(z.-0.5)}] 

= E[ { A. 2 TX/ cosexisinexi(z1-0.5)2
} ]-

[ { A1 TX1 cosexi(Ez.-0.5)} { A1 ~ sincx.i(Ez.-0.5)}] 

= A/ TX/ cosa,sina1 {E[(z, - 0.5)2 
- CEzc0.5)2} 

= A/ TX,2 cosa,sinexi {E(z/) - [E(zJ]2
} 

transition 

cov(~x,~y) = A.2 cosa1sino.i ~ varX varXR 

= A.2 cosa,sina1 varXL 

clearanc~-
1 

When the link parameters are completed with the calculation of the covariance, the 

routine determines whether the link is on the stator or rotor. The links' influence 
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on the sum dimension are summed on the stator and rotor independently and must · 

be added to the proper component. The link's type parameters "type_parum" were 

read during the link retrieval from the tolerance chain data file and stored in the 

common block /chain_par/. Sum_slant determines whether the link is on the stator 

or rotor by checking the · second entry in the link's type parameters array. If the 

second entry is a "l ", the link is on the stator, if it is "2", the link is on the rotor. 

The routine returns an updated sum of either the stator or rotor for values of 

expectation, variance, range, and middle of the range for both the X and Y 

components and also the covariance. 

Sr ecc 

For links that are considered sum eccentricities, i.e., those that have an 

expectation of zero, sum _sr calls the subroutine sr _ ecc. Input to the routine include 

the values of var'1X, RMC, that were calculated by the link routines, and a pointer 

to the link under consideration. The middle of the range, MX, and the expectation 

are both zero so they are not sent to the subroutine. Output through the argument 

list is the sum of the variance for the sum eccentricities called thus far. The final 

value for the variance of the assembly for sum eccentricities is the algebraic. sum of 

"' the variance of the stator and that of the rotor. The variance for sum eccentricities 

is the ref ore not distinguished between for the stator and rotor and are summed up in 

one value. The range of the sum eccentricities is calculated in three different ways 

for the various link types. Link types 7 and 8 are both line vector type links which 

place the components in the X direction. Link types 11 and 12 are both plane 

vectors and have an X and a Y component. Components of the range are 

calculated in both the X and the Y direction and are stored in the summation 

variable rdx_sum and rdy _sum which are located in a common block named 

/radial_range/. Also present in routine analyze_ chain is the common block 
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/radial.range/ which gives analyze _chain access to the values of the ranges of the · 

sum eccentricities. 

3.4.2 Remainder of analyze chain routine 

The routines described thus far are called upon to provide the analyze_ chain 

routine with the parameters of the sum dimension, namely A, B, EX, varX. Toe 

range of the distribution and the middle of the range of the distribution of the sum 

dimension are displayed on the terminal for the user. The user is then prompted to 

enter the desired tolerance for the sum dimension. By inputting the desired 

tolerance of the sum dimension, the user provides the module with the range of the 

distribution that the integration routines will integrate to yield the number of the 

assemblies actually within the desired bounds. The user inputs the tolerance as the 

size of the tolerance zone and also the middle of the tolerance zone. The 

parameters of the beta distribution "( (gamma) and 11 (eta) are then calculated from 

the equations 3.2 and 3.3. For a brief outline of the beta distribution see Appendix 

V. 

THe routine check the tolerance zone values input by the user to see if they 

are within the limits of the range of the distribution. If either of the limits of the 

tolerance zone is outside of the range of the distribution, the corresponding limit of 

the range is substituted for the limit on the tolerance zone. The value of the 

integration of every probability density function over its entire range is known to be 

one. This fact is used to create an integration scheme that is very efficient and at 

the same time accurate. The scheme used to integrate the probability density 

function is the Gauss - Legendre method. For distributions that possess 

singularities in the form of spilces in the p.d.f., the number of gauss points is very 

important to maintain accuracy in the integration. 
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The integration routine begins with ten gauss points and coumma the value 
. . 

of the integration to unity. If the value for the integration falls within a certain 

specified error value, the integration routine uses 10 gauss points when integrating 

between the limits of the tolerance zone. If the value of the integration is not 

within the specified error, the routine adds two more gauss points and performs the 

integration again. The integration scheme proceeds in this fashion until the value of 

the integration of the range of the distribution is close enough to unity. When the 

error tolerance has been matched, the routine integrates over the tolerance zone with 

the number of gauss points calculated for the entire range. This procedure provides 

enough gauss points in the tolerance zone to provide the accuracy desired without 

wasting computer time in calculating some preset number of gauss points. The 

details of the integrating scheme will be discussed in the sections to follow. 

The last step the routine analyze _chain performs presents the results to the 

user. Analyze_ chain calls upon subroutine plot_ dist to display the results of the 

analysis. Subroutine plot_ dist accepts the statistical parameters of the distribution 

and the limits of the tolerance zone and calculates the points on the curve of the 

distribution. With the points on the distribution calculated, plot_ dist calls the 

plotting routine to/plot that displays the distribution, the input tolerance zone, and 

the results of the integration. The operation of these routines will be discussed in 

detail in their own section individual sections and their output will be demonstrated 

in Chapter 4. 

When "AN" is selected from the tolerance control menu, the analyze chain 

menu shown below in Figure 3.6 is presented to the user. To perform a first time 

analysis, the user must choose "CD" for calculate distribution; that choice initiates 

the analyze _chain, as was discussed above. The distribution of the sum dimension 
;r· 

is calculated from the input data known of the chain links. 
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ANAL'YZB CHAIN 

CD - Calculate Disttibution 
TZ - Tolerance'.Zone 

Figure 3.6 Analyze Chain Menu 

After the distribution has been determined for the sum dimension and the 

results have been displayed, the user may want to change the location or size of the 

sum dimension and re-display the new confidence. Since the distribution has 

already been calculated, it is unnecessary to completely execute analyze_ chain 

again. Instead, by selecting "T'Z" from the analyze chain menu, the user instructs 

the module to enter analyze_ chain at a point after the distribution has already been 

calculated. A new value for tolerance zone and middle of the tolerance zone is 

prompted for by the module and upon input, the new confidence level is displayed. 

Different tolerance zones and locations can be experimented with by using this 

feature without wasting the time to recalculate the entire distribution of the sum 

dimension. 

3.4.3 Saving Analysis Results 

When the user is satisfied with the results of an analysis, all of the 

parameters of the distribution as well as the confidence level determined by the 

module can . be saved to an output file. The parameters can be saved by selecting 

"SA" for "Save Analysis Results" from the tolerance control menu (Fig. 3.5). This 

file is written in the main directory from which the module is running. By default 

the user will be prompted with the name of the file "filename.out", where 

"filename" is the name of the tolerance chain data file originally read in. If the 

default file name is suitable, the user only has to hit the return key. However, if 

the user wants to change the name of the file, the change can be executed at the 

prompt. A sample of the saved output file is listed in C.hapter 4. 
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3.S Integration scheme 

Pragmatically, the confidence level of an assembly is the percentage of 

assemblies that coincide with the specification set fotth so that the assembly 

performs satisfactorily. This specification is designated by way of assigning a 

tolerance to a specific functional dimension of a assembly. If the dimension falls 

within the tolerance range specified by the designer, the assembly is considered 

satisfactory. From a mathematical standpoint, the percentage of acceptable 

assemblies is represented as a reliability, the area of integration under a probability 

distribution function bounded by the tolerance zone. The manner in which the 

parameters of this function are detennined has been presented in the preceding 

sections. This section continues to present the manner in which the parameters of 

the sum dimension are used to create the beta function distribution for the sum 

dimension, and the ways in which the function is integrated to yield the confidence 

level for the desired tolerance zone. 

The beta probability distribution function on the interval [a,b] is of the 

from: 

(eq. 3.1) 

The parameters y and 11 are calculated after the either summing routine returns 

control to analyze chain by the equations: 

(EX - a)2 (b - EX) - varX (EX - a) 
'Y = -------------------------------------- (eq. 3.2) 

varX (b - a) 

(EX - a) (b - EX)2 
- varX (b - EX ) 

11 -- --------------------------------------- (eq. 3.3) 
varX (b - a) 
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The beta function in equation 3.1, B('Y,Tl) ·is known to be related to the gamma 

ftmction by the relation: 

r(y) rc11) 
B()',T\) . -----

· r(y+T\) 

For any X > 0, r(X) is defined by 

I'(X) = t'·le·t dt. 

The function has an interesting property that is described as follows: 

r(X+l) = X I'(X) for all X > 0. 

This property can be proven by a simple integration by parts. 

R R 
Rl~00

{[tx( -e-t)Jo _ J _ -t d x 1 } ---.. e t xt - d t 
0 

00 

X J tx-l e-t dt = X f(x) 
0 

All of the routines involved in performing the integration are controlled by 

analyze_ chain. Since the equation for the beta function requires the gamma 

function, the routine gamma June was written. Gamma June returns the value of 

the gamma function of the input given to it. Since the values of the gamma 

function can sometimes be quite large, the subroutine gamma June returns the 

natural log of the gamma function. Details of numerically calculating the gamma 

function can be found in any numerical methods text The discussion presented by 

Press ~- al. tI 1] is quite clear and concise. The beta distnbution function has been 

rearranged in the computer code for an efficient solution of the equations. The 
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·· ·subroutines used for c8lculating the gamma function and the ~ function were 

developed by Nathan Graham at Ml.T. [12]. The beta function exists as a 

FORTRAN function named beta, called by the integration routine qgauss_gen 

which stands for "generic Gaussian integration routine". In the function beta, the 

actual beta function has the fonn: 

beta= exp(C+(gamma-l)*log((X-A)/{B-A))+(eta-l)*log(l-(X-A)/(B-A))) 

where gamma and eta are calculated from equations (3.2 and 3.3). The constant C 

is calculated in ana.lyze _cha.in and passed to beta along with gamma, eta, A, and B 

in the common block /pdf/. C is determined from the equation: 

{) C = f(y+T}) - r(y) - f(n) - ln(B-A) (eq. 3.4) 

It can be seen that, if the exponentiation is carried through in equation (3.4), the 

resulting equation is indeed equation (3.1). 

The beta function is now fully established and needs only to be integrated. 
:':·7 

The choice for an integration scheme was a Gaussian quadrature scheme whose 

order is, essentially, twice that of the Newton - Cotes fonnula (e.g. Simpson's rule) 

with the same number of function evaluations. More specifically, the integration 

method chosen was the Gauss - Legendre integration which is often referred to as 

simply Gaus~ian integration. 

The routine that actually perfonns the integration qgauss gen is a modified 

version of subroutine qgauss from "Numerical Recipes, the Art of Scientific 

Computing", Press, ~- .al.[11] This routine accepts as input the function which is in 

this case beta and the limits on integration, and returns the value of the integral. 

The routine that exists in "Numerical Recipes" integrates the function with a 

predetermined number of Gauss points which could waste computer resources or, 
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worse yet, prove to be insufficiently accurate. The routine was, therefore, modified 
'v 

to work with a variable number of Gauss points that is dependent on the particular 

function being integrated. The fact that the integral of all probability functions 

density functions is unity when integrated over their entire range is the key 

determinant of an appropriate number of Gauss points. 

The integration scheme in analyze_ chain begins by integrating over the 

entire range of the beta probability distribution of the sum dimension with ten 

Gauss points. If the value of the integration is not sufficiently close to one, two 

more Gauss points are calculated, and the integration is performed with twelve 

points. This scheme continues until the value of the integration over the entire 

range falls within the specified error. Once the sufficient number of Gauss points 

has been determined, the function is integrated over the range of the tolerance zone 

input by the user. To accomplish this integration this analyze chain calls 

qgauss _gen with the number of Gauss points used for the entire range and the 

limits of the tolerance zone. Since the range of the tolerance zone can be no larger 

than the actual range of the function, the number of gauss pbµits will be large ,, 
i 

enough to provide a sufficiently accurate integrand. In other cases in which the 

range of the tolerance zone is less than the entire range, the full number of Gauss 

points calculated for the entire range are used in a smaller range; increasing the 

accuracy even further. Qgauss _gen returns the value of the integration between the 

limits of the tolerance zone which is the confidence level of the assembly. 

The Gauss points and weights are calculated from the routine Gauleg taken 

from "Numerical Recipes". Each time the section of analyze _chain decides that the 

value of the integration over the entire range is not within the specified error, it 

calls Gauleg to calculate two more gauss points and weights for the next iteration 

of integration. 
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The user can .specify how close the integration over the entire range is to 

unity. The value defaults to an error of 105
• This value is initialized whm the 

module is first executed, but if it is decided that more accmacy is needed, it can be 

modified by the user in the system parameters menu. The changes made in the 

system parameters menu are only for the current session; for subsequent executions, 

the original default value will be valid. 
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3.6 Plotting Scheme 

The numerical solution of the confidence level of the assembly is the final 
·~ 

characteristic that is calculated for the distribution of the sum dimension. Rather 

than presenting a list of numerical parameters of the distnbution and confidence 

level, it is much more valuable to provide the user with some form of visual 

results. The plotting routine presents a plot of the distribution with its range and 

input tolerance zone clearly labeled. The X and Y axes of the plot are 

automatically scaled to accommodate the X and Y ranges of the clistribution and 

make maximum utilization of the screen. The various statistics that are relevant to 

the distribution, such as the expectation, variance, middle of the range, and 

confidence level, are listed along with the plot. The graphic output gives the user a 

frame of ref ere nee through which to view the location of the tolerance zone and 

observe any skewness and the overall shape of the distribution. By visually 

observing the distribution, the user can determine if a shift in the tolerance zone 

might yield a higher confidence level. The graphic output of the distribution allows 

for a quick evaluation of the assembly in the performance of a "what if' type 

analysis. An illustration of a sample output is shown if Figure 3.7. The example 

shown if Figure 3.7 only has a few points along the curve to illustrate that the 

curve is actually a series of straight line segments. 

There are actually two distinct subroutines that comprise the plotting 

capability of the tolerance analysis module, plot_ dist and tol_plot. The first of 

these routines is called by analyze _chain after the numerical solution to the 

integration of the p.d.f. has been obtained. The routine plot dist determines the X 

and Y coordinates of the points on the probability distribution. Once all of the 

points on the curve have been determined, including those that bound the tolerance 

zone, plot_ dist calls tolylot to toggle the terminal to graphics mode and actually 
~ 

plot the results. 
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3.6.1 Bo.utine .plot dist · 

The plot_dist routine accepts as input the limits of rarige of the distribution, 

the limits of the tolerance zone, a function that will be used to calculated the Y 

values of the distribution, and the calculated value for the confidence level First, 
I 

the routine divides the range of the distribution into a number of points for which 

to determine the Y values of the points along the distribution. The plotting routine 

actually draws straight lines between the points along the curve so the more points 

that are calculated for the curve, the smoother the curve will appear on the screen. 

The number of points into which the range of the distribution is broken up has a 

def a ult value of 30 points set in the system parameters menu. If the user decides 

that the curve is not smooth enough for the assembly being viewed, the number of 

points can be increased from the system parameters menu. Conversely, if the user 

feels it is unnecessary to generate and plot the current number of points, the 

number of points can be reduced. 

The plotting routines have been coded in such a way that they are 

independent of the distribution used. Plot dist has the ability to accept any 

function which calculates the Y values of the X points within the range of the 

distribution. For the case here, the function passed to plot_ dist is the beta function. 

Plot_ dist calculates the size of the step between the positions of the X values of the 

points on the curve by dividing the magnitude of the range of the distribution by 

the number of specified points. 

The beta function is undefined for values of X less than or equal to zero. 

If the sum dimension is a span, a case in which values of the range of the 

dimension are less than zero suggests a negative dimension which is a physical 

impossibility. If the sum dimension is a gap, negative values of the range infer an 

interference fit. For either of these cases, if an X value in the range is determined 

to be non-positive,.. it is assigned a Y value of zero. In none of the examples in 
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which · the module was tested did the sum dimension of a span have part of' its· 

range less than zero. If it had, it would suggest that for the other parts in the 

assembly given the ranges on their tolerances, for the negative part of the range, 

assembly of the parts would require a part with a negative dimension, making 

assembly impossible. The tolerance zone of the assembly would obviously never 

be placed in this region, but if it were, the analysis routines would yield what 

percentage of the assemblies fell into the specified area. 

The first point on the distribution that the routine calculates is the Y value 

corresponding to the lower limit on the range of the integration. The routine tests 

to see if the value is positive. If it is, it calls the function to calculate the 

corresponding Y value. If the value is not positive, it assigns a Y value of zero. 

The routine then enters a loop to calculate the intermediate points on the curve. It 

begins with an X value of the lower limit and increments each time through the 

loop by the step size previously calculated. Each value of X is checked to see if it 

is positive, and it is either assigned a value of 0, or is sent to the function to 

determine its corresponding Y value. Upon completion of the loop, the Y value of 

the upper bound of the range is determined by the same method just described. 

When the probability distribution function is displayed, the user defines 

tolerance zone, which is the shaded area of integration. The limits on the 

integration of the tolerance zone are the lower and upper bounds of the tolerance 

zone. The routine that will shade the area under the curve bounded by the 

tolerance zone limits needs a closed polygon to shade. The closed polygon consists 

of the lower bound of the tolerance zone on the X - axis, the point on the curve 

corresponding to the lower limit, all of the points along the curve up to and 

including the point corresponding to the upper bound of the tolerance zone, and 

finally the upper bound of the tolerance zone on the X - Axis. The only points that 

are not known are the two points on the curve corresponding to the limits of the 
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tolerance zone. These two points, shown as points B · and C in Figure 3. 7, are 

determined by linearly interpolating on the Y values between the two points that 

flank the tolerance zone limits. The Y values for the tolerance zone limits are not 

obtained by determining the beta function value for the two points. If they were, 

when the polygon to be filled, i.e. the area of integration, was drawn, the vertical 

lines that mark the boundary of the area might not end at the curve. Toe curve is 

actually a composition of straight line segments drawn between the points that were 

calculated to lie on the curve. A linear interpolation between the two points 

surrounding either of the tolerance zone limits produces the exact intersection point 

with a vertical line and the curve. The four points that bound the vertical sides of 

the integration area are sent to tol _plot in an array. 

3.6.2 Routine tol plot 

The input to the routine tol _plot is the points that make up the curve,the 

points that create the boundary of the area of integration, and the parameters of the 

distribution that are to be placed on the screen with the plot. The output of the 

routine a Cartesian coordinate system with the axis labeled and a color plot of the 

distribution with a shaded area of integration. 

The plotting routine used is a modified version of a terminal dependent 

plotting routine, plot2d, created by Audrey Griscavage [13] for a DEC VSll type 

graphics terminal. The routine is a system of Graph3d.lu callable graphics 

subroutines. Plot2d was upgraded to be terminal independent and modified to 

operate in conjunction with the rest of the tolerance analysis module and renamed 

tol _plot. The basics remain the same, but the routine has been changed to interface 

with the system parameters menu, create a polygon bounding the area of 

integration, employ the Tektronix 41xx series terminal's capability to fill the area of 

integration, and display the parameters of the distribution. 
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Operation of tol plot 

The routine begins by initiaHzing the tenninal to operate in graphics mode 

and to initialize the graph3d.lu routines so that they may be called from the module. 

The size of the graphics window is set to simulate the resolution of a VS 11 

graphics terminal for which the routine was originally written. By initializing the 

size of the window, any VS 11 terminal dependent routines will function properly· 

thereby making the plotting routine device independent 

Since the routine will always use the same size window, it must determine 

the smallest and largest values of both the X and Y values of the function to scale 

the plot to fit in the window. Tol_plot accomplishes this determination by calling 

two routines named bigfind and smallfind with the X and Y values of the curve as 

input. The range of the X and Y values must also be known to label the axes. 

Tolylot calls on the routine labcalc to determine the values of the labels of the tic 

marks on the axes. Some of the features of the plotting routine are controlled by a 

flag and can be either turned on or off. The axes and tic marks on the axes have 

this feature. If the axis/tic mark flag is set to 1, then the axes will be displayed 

with tic marks and the tic marks labeled. If the axis/tic mark flag is set to zeto, the 

axes and consequently the tic marks and their labels will not be displayed. This 

feature is controlled in the system parameters menu and defaults to featuring axes 

with labeled tic marks. 

The routine has the capability to change the symbol displayed at the 

calculated points on the curve; seven possible choices can be chosen from the 

system parameters menu. The default value is a circle, but the symbol can be 

chosen by inputting a value from the list shown below in Table 3.4 into the point 

symbol selection in system parameters. 
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number chlJllctm: 

0 no symbol 
1 + 
2 square 
3 triangle 
4 * 
5 diamond 
6 circle 

The routine plots the points before the curve is actually connected through them 

The routine draws the curve by calling subroutine connect. This routine connects 

straight lines through the coordinates that are passed to it in the order that they 

exist in the arrays that were passed. This process will not cause a problem because 

the arrays that hold the coordinates of the points along the curve were filled by 

starting at the lower limit of the range of the distribution and continued to the 

upper bound on the range. 

If the routine were to stop here, the curve of the probability distribution 

function characteristic of this assembly with its given parameters would be 

displayed. The next step places the tolerance zone within the range, and shades the 

area. Initially the points that make up the vertical boundaries to the window of the 

screen are scaled (points A, B, C, D, in Figure 3.7) so that they are in the proper 

location on the curve. A vertical line is drawn between points A and B, and 

between points C and D in Figure 3.7. The area to be filled consists of the area 

bounded by X - axis on the bottom, the vertical lines on the sides, and the portion 

of the curve between the two vertical lines on the top. The routine determines 

which points along the curve lie between the two vertical lines. These points along 

with A, B, C, and, D in Figure 3.7 are sent to routine poly2dfill. This routine 
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accepts the points as a closed polygon and fills the polygon with a ~ 

pattern. The color and pattern of the fill have been preselected and cannot be 

changed by the user. 

Once the curve is displayed and the area of integration is filled, the routine 

has completed its task. It returns the mode of the terminal to ANSI mode and 

returns control of program execution to plot_ dist which in tum returns control to 

analyze_ chain. The analysis process is now complete for one set of parameters. 
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3.7 Tolerance Synthesis (distribution) 

Tolerance synthesis is the allocation of tolerances to the component parts of 

an assembly based on some assignment criteria such that the final assembly of parts 

functions in conjunction with the designated design specifications. Tolerance 

synthesis is perfonned on a tolerance chain that has one or· more links with 

unassigned tolerances. At design time in the geometric modeling environment, the 

tolerances may not be specified for a dimension because either the tolerance is 

completely unknown, or because the link is flexible with respect to the tolerance. 

A link that possesses an untoleranced dimension is flagged in the tolerance chain 

data file in such a way that the tolerance analysis and synthesis module is aware 

that the particular link does not have an assigned tolerance. All of the links known 

to have unassigned are candidates to have their tolerances assigned so that the 

functional criteria of the assembly are met. 

The method of assigning tolerances used in TASM is the complexity factor 

method discussed in Chapter 2. This method lends itself well to a wide variety of 

applications. The actual factor can be assigned any me,aning because the system is 

one that is based on the relative weights of the factors. In other words, the factors 

can be based on cost, degree of difficulty of manufacturing, or any other application 

specific factor that would be affected by the tolerance assigned to a part. In most 

cases, somewhere down the line, the underlying factor is cost. The factors can be 

assigned values that are valid for a specific user, making the method very 

transportable. There is not one predetermined set of complexity factors that must 

be utilized for every user's application. As long as the user assigns realistic factors 

for each component, one set of factors is as gtxxi as another. 

Bjorke's method of distributing the tolerances described in his text is 

expanded here to include chain links that are gap type links. A system has been 
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devised that lets the user. input a complexity factor for both eoDlpUIC11tl 6f tho gap 

and· divide the tolerance assigned to the link among its constituent components 

based on the individual pans complexity factor. 

A tolerance synthesis is initiated from the main menu upon execution of the 

module. The approach to performing a tolerance synthesis arid the operation of the 

module in accomplishing the tolerance synthesis are discussed in this section . 

A tolerance synthesis session is begun by selecting menu choice "ID", for 

tolerance distribution, from the main menu. This choice directs the flow of 

program execution to the tolerance synthesis section of the main calling program. 

The next menu to be displayed is the tolerance distribution menu, shown. below in 

Figure 3.8. Similar to a tolerance analysis, a tolerance chain must first be read into 

the module. This input can be done by selecting the menu entry "RE" for retrieve 

chain. The menu choice invokes the same series of subroutine calls as is carried 

out in performing a tolerance analysis. The tolerance chain data file is read in via 

a call to the get_chain routine. Once the tolerance chain data file has been 

successfully read in, the flag indicating that the chain has been read in is 

appropriately set as described in Section 3.4, and the module will again display the 

tolerance distribution menu. 

TOLERANCE DISTRIBUTION 

RE - Retrieve Chain 
LS - Link Statistics 
IE - Initial Estimate 
TU - Tolerance Update 

Figure 3.8 Tolerance Distribution Menu 
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Analogous· to the proc~s of performing a tolerance analysis, the. next step in 

performing a tolerance synthesis is to read in the chain link's means and variances. 

Choosing the menu selection "LS" for link statistics initiates the same series of 

subroutine calls as those in the tolerance analysis. Crlmv is called as for a 

tolerance analysis, and the remaining steps in retrieving the link statistics follow 

exactly as in a tolerance analysis. Also, similar to the tolerance analysis procedure, 

the flag that maintains the input status of the link statistics must be updated upon 

successful completion of their being read. The flags are present in the tolerance 

synthesis portion for the same reasons they were incorporated in the tolerance 

analysis segment of the module. Certain analysis routines need specific data on 

which to operate. It is easier to make certain that the user has made this necessary 

data available than to attempt to anticipate and ameliorate all of the consequences 

resulting from a lack of data Upon reading the link statistics either from the 

keyboard or from an existing ".LMV" file, the tolerance distribution menu is again 

displayed to the user. 

After the tolerance chain data file and the link statistical data have been 

made available to the module, the similarities between the tolerance analysis 

approach and the tolerance synthesis approach end. The next step in determining 

the tolerances of the unassigned dimensions begins with the selection of "IE" ,for 

initial estimate, from the tolerance distribution menu. This selection transfers 

control of the main calling program T ASM to the line that calls routine inest, which 

stands for "initial estimate". The routine prompts the user for additional input and 

performs the necessary calculations. Output is presented in tabulated form of the 

tolerances assigned to the originally unassigned links. 

3.7.1 Routine inest 
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. Subroutine inest walks the user through the steps involved for a tolerance 

distribution using the complexity factor method described in Chapter 2. Toe routine 

prompts the user for input on the desired tolerance zone of the functional 

dimension. With this information the routine knows how much of a tolerance it has 

to spread among the unassigned tolerances in conjunction with the tolerances that 

are pre-assigned. The routine next requires the normalized tolerance for the 

confidence level desired. This value is retrieved from a table of nonnalized beta 

parameters based on the nonnalized range, skewness, and confidence level Such a 

table of normalized beta distribution parameters is listed in Appendix II. Since the 

tolerances have not yet been assigned to all of the parts, the actual range of the 

sum dimension is still unknown. An estimate of the normalized range is calculated 

by in est and presented to the user as a guide to determine a value for the 

normalized tolerance in the table. A second parameter "FW" in the table must also 

be known to determine the value of normalized tolerance for the sum dimension. 

"FW" is a normalized skewness parameter, and Bjorke suggests that a value of zero 

be used unless there is a known valid reason to use another. With the estimated 

value of the range, the specified confidence level, and given an "FW" of 0, the 

normalized tolerance can be extracted from the tables and input to the module. 

Routine inest has the common block /chain_par/ resident in its code giving 

it access the chain link parameters. Each link tolerance assignment status is tested 

and the number of links with unassigned tolerances are counted. The individual 

effects of each of the links with predetermined tolerances must be determined so 

that Equation (2.56) can be solved for RHS. /nest loops over the links in the chain 

and calls the same link routines used in the tolerance analysis for each of the links 

with predetermined tolerances. 

After the link parameters have been calculated by the link routines, inest 

prompts the user to input the complexity factors for the links with unassigned 
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tolerarices!' If the. link is a gap type link, the routine prompts the user to input a 

complexity factor for each of the components of the gap. Immediately the routine 

calculates the weights of the links from the complexity factors. For a link that is a 

gap and has two complexity factors, the highest complexity factor must be realized; 

therefore inest uses the higher complexity factor of the two components comprising 

up the gap. 

Given the weights of the links, the routine solves for the tolerances on the 

links using the equation (2.58). Although the tolerances have been spread across 

the links, the tolerance assignment is not yet complete. Knowing that a certain 

tolerance is to be assigned to a link if the link is a gap would be incomplete 

information. The routine checks to see if any of the links are gap type links that 

need their tolerances distributed to the component level. If the routine detects gap 
.,i, 

type links, it uses the two complexity factors read in for the link in question, 

recalculates the weights based on the two complexity factors for the link, and 

spreads the tolerances assigned to the link its two component parts. The tolerances 

that are assigned to the two component parts must be located on the parts. 

I nest prompts the user to input an allowance for the gap. An allowance in 

the minimum allowable clearance that must exist between the parts, is generally 

available because of the functional requirements of the gap. Assignment of the 

tolerance locations of the tolerance zones on the parts is then based on the ISO 

system of fits with the hole basis classification H7. The classification of the shaft 

is dependent on the allowance input by the user. By the user stating the hole basis, 

one of the limits of the tolerance zone is known when placing the zone on the part. 

At this point the tolerances calculated for the gap type links are placed into the 

appropriate link parameter arrays of the common block /chain_par/. 

The remainder of the procedure discussed in section 2.6 is now undertaken. 

I nest prompts the user for the desired expectation of the sum dimension and 
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presents a list of assignable MXs's. Only links whose MX are not equal to zero can 

be assigned an MX1• The list presented consists of link numbers and the 

dimension's basic size. All the links but one selected link must have their middle 

of the range decided by the user. The routine asks the user to input which link will 

have its MX solved for. A series of checks are taken to insure that the user has 

chosen a selectable link. It first checks to see if it was a proper type, ie. a span. 

It then checks to see if the span chosen had an unassigned tolerance. It finally 

proceeds to prompt for input for the rest of the available links mid-ranges. 

Tolerances that were calculate for the links can now be placed in a location on the 

span type links (Gaps have been already completely assigned). The parameters of 

these links can now also be updated in the common block /chain_par/. 

The last step for in est is to calculate the links with previously unassigned 

tolerances effect on the sum dimension by calling the link routines and to determine 

the mid-range MX for the chosen link. After the link parameters have been 

calculated for the previously unassigned links and the common block /chain_par/ 

has been updated, MX for the chosen link is calculated, sucb that equation 2.57 is 

satisfied. Once MX is calculated, the parameters for this last link can be calculated 

and the common block /chain_par/ can be completed for the last link. The contents 

of the would be updated data base are then displayed to the user. 

3.7.2 Analyzing the determined parameters 

After all of the links have had their tolerances assigned, the now complete 

data can be analyzed in the analysis section of the module. All of the data are 

available for the analysis to run, and the parameters of the sum dimension can be 

displayed graphically. 

3.7.3 Saving Assigned Tolerances 
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When the user is satisfied' with the tolerances. ·he has determined with the 

module, he can save them back to the original tolerance chain data file. This file 

can then be read back to the geometric modeling program to update its data base 

with the tolerances assigned by T ASM. From the tolerance distribution menu, the 

user selects the menu entry "UD" for "update data base". Selecting ''UD", the user 

invokes subroutine update_ dbase. Update_ dbase dumps the parameters in the 

arrays "type_params" and "lparams" back to the tolerance chain data file. The 

"lparams" array now contains values for the previously unassigned tolerances. This 

infonnation is now available to the designer in the geometric modeling 

environment. 
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3.8 Systems Parameters· 

The system parameters menu, mentioned several times throughout this 

paper, has been included as a tool by which to change a selected number of 

parameters of the module. Certain parameters may be inadequate for the particular 

analysis being performed, or the user may prefer a variation on a default 

specification. Two subroutines formulate the structure of the system parameters 

capabilities. They are called subroutine defaults and systemJJarameters. 

Subroutine defaults is read upon execution of the module. This routine 

reads in the default values from an file named "defaults.dat" that must be present in 

the main directory for the module to operate properly. If the file is not available to 

be read, upon module execution an error message is displayed to the user 

explaining the problem. When the file is successfully opened, the subroutine 

defaults begins to read in the default parameters. The opening of the defaults.dat 

file and the reading of the def a ult parameters are done without any interaction with 

the user. The format of the file is set such that it can be read without error. If 

however the format is changed in any way that disrupts proper reading of the file, 

an error message is displayed to the user. It is critical to the execution of the 

module that the defaults.dat data file is opened and read correctly. 

Changes can be made to the default values for any current session by 

selecting the "SP" menu choice for "system parameters" from the main menu. 

When this selection is made, the user is presented with the system parameters 

menu, shown below in Figure 3.9. Changes made to the parameters are changed 

only in the computers memory and not the defaults.dat file. Therefore any 

alterations made here will only be valid for the current session. When the user 

exits, the module any changes will be lost, and the original defaults.dat file will be 

read upon executing the module. Permanent changes to the defaults.dat file can be 

made by editing the file so that, when it is read, the desired parameter values are 

made available to the module. 
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SYSTEM PARAMETBRS 

HB - Hole basis 
TI - Tolerance for integration 
_NP - Number of points on curve 
PS - Point symbol 
XI - X axis increment 
YI - Y axis increment 
AC - Axis color 
LC - Labels color 
LA - Labels ( on or off) 
TM - Tic marks (on or off) 
TL - Tic labels ( on or off) 
CL - Connecting line ( on or oft) 
AS - Same scale both axes 

Figure 3.9 System Parameters Menu 
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4.0 Examples 

Chapter 4 describes how TASM may be used to perform both tolerance 

analysis and tolerance synthesis on an assembly. Presently the module receives its 

needed input as a tolerance chain data file. Tolerance chain data files that are used 

for either an analysis or synthesis must be located in the directory from which 

T ASM is executed. In the future, the data could be made available through a direct 

link with the geometric modelling environment. 

This chapter serves two purposes. It illustrates the capabilities of the 

module and demonstrates how to perform a tolerance analysis and tolerance 

synthesis using TASM. The step-by-step procedure and generated output are 

presented. Section 4.1 will consist of tolerance analysis examples while section 4.2 

presents an in depth tolerance synthesis. 

4.1 Tolerance analysis 

4.1.1 Compression chamber 

The first example features the analysis of the compression chamber in the 

compressor shown in Figure 4.1. The geometry for this example is taken from 

Bjorke[7] and has had the tolerance chain automatically generated by the work done 

by Wang[8]. All of the links shown in Figure 4.1 have an effect on the height of 

the compression chamber which in this case is the sum dimension XL- The 

fundamental equation for the sum dimension being considered is: 

Table 4.1 contains a list of the link descriptions and types that make up the 

tolerance chain for the sum dimension being considered in this example. A listing 

of the tolerance chain data file that contains the all of the tolerance chain data 
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including dimensions is listed in Table 4.2. The records in the file are highlighted 

in section 3.2.1. 

Figure 4.1 Compression chamber (reproduced from Bjorke). 

A tolerance analysis begins with the selection of the tolerance control entry 

from the main menu. When a tolerance control is selected, T ASM displays the 

tolerance control menu shown in Figure 4.2. 

Examples 

TOLERANCE CON1ROL 

RE - Retrieve Chain 
LS - Link Statistics 
AN - Analyze Chain 
SA - Save Results 

Figure 4.2 Tolerance control menu 
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Table 4.1 Links in the compression chamber tolerance chain 

link type description 
>·., 

t·. 
:.-·,. 
' X1 line vector span thickness of valve sleeve :r. 

X2 line vector span thickness of valve port plate 

X3 line vector span thickness of gasket 

x4 line vector span distance from piston head to wrist pin 
bore (on piston). 

Xs interference gap between the wrist pin bore ( on 
piston) and wrist pin. 

x6 clearance gap between wrist pin and wrist pin 
bearing ( on the connecting rod) 

X1 line vector span center distance between wrist pin 
bearing and connecting rod bearing. 

Xs clearance gap between connecting rod bearing 
and crank. 

x9 line vector span throw of the crank. I 
X10 transition gap between crank shaft and inner ring 

of crank shaft bearing 

xll eccentricity eccentricity of the crank shaft bearing 

X12 transition gap between outer ring of crank shaft 
bearing and bearing mount 

Xn eccentricty eccentricity of the bearing mount 

X14 bivariate rect. gap between bearing mount and 
distributed cy tinder block 

Xis line vector span distance between bearing mount bore 
in cylinder block and cylinder block 
head 

X16 line vector span thickness of cy tinder sleeve flange 

Xn line vector span thickness of spacer 
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Table 4.2. Listing of toleJ:ance. chain • file for compressqr. 

-1 
1 
1,0,0,0,1,1 
-1.00000, l l.00000,0.00000,-0.05000 
1,0,1,2,3,1 
-1.00000,9 .500000,0.00000,-0.03000 
1,0,2,4,5,1 
-1.00000,0.500000,0.00000,-0.10000 
1,0,3,7,8,1 
-1.00000, 133.000000,0.00000,-0.10000 
5,0,4,11,9,1 
1.00000,43.000000,43.00000,0.023000,0.01600,0.016000,0.00900 
l,0,5,12,13,1 
-1.00000,380.00000,0.05000,-0.050000 
5,0,6,15,16,l 
1. 00000, 100. 000000, 100. 00000,0. 035000,0. 00000, -0. 04000,-0.07 500 
1,0,7 ,16,17,1 
-1.00000,65.00000,0.05000,-0.050000 
6,0,8,19,17,1 
1.00000,90.000000,90.00000,0.035000,0.00000,0.02500,0.00300 
3,0,9,19,18,1 
1.00000,0.00000,0.012000,0.000000 
6,0,10,21,18,1 
1.00000,190.000000,190.00000,0.046000,0.00000,0.00200,-0.03800 
3,0,11,21,20,1 
1. 00000,0.00000 ,0. 025000,0.000000 
15,0,12)2,20,1 
1. 00000,255 .000000,25 5. 00000,0. 046000,0. 00000,0. 00000, -0. 03000 
1,0,13,22,23,1 
l.00000,580.00000,0.00000,-0.140000 
1,0,14,25 ,26,1 
1. 00000, 19. 00000,0. 00000,-0.100000 
1,0,15,29,30,1 
1. 00000,0. 80000 ,0 .10000 ,0. 000000 
-1,0,0,0,0,0 
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As mentioned in Chapter 3, a tolerance chain data file must be input to the 

module before any analysis can take place. For this example, the name of the file 

containing the tolerance chain to be read in is comp.chn. At present, the module 

defaults to this tolerance chain data file; with some slight modifications to the 

module, the default could be modified to be the last chain worked on. This 

revision would allow saving a file at the end of a session that would be read at the 

beginning of the next session, just as the defaults.dat file that is read to give the 

module the system parameters. In this case, however, since the default tolerance 

chain data file is comp.chn, the user only has to hit return to accept it as a default. 

Next, the user must supply the link means and variances of the assembly. 

To initiate this process, the user selects "LS" from the tolerance control menu. 

Two methods, from the keyboard or from a pre-existing file, exist to input the link 

means and variances. This example shows how the link means and variances are 

input from the keyboard. Not all of the links but only the first few will be 

addressed, though the procedure is consistent for all. 

Since, for this example, we are assuming that the link means and variances 

do not exist in an ".lmv" file, we answer no to the question "read link means and 

variances from a file [ n] ?". This can be done by accepting the default of no by 

hitting return at the question. Link by link, the user goes through the chain and ask 

the user for the each links mean and variance. For the case of a gap, the module 

prompts the user for the mean and variance of each component of the gap. The 

link means and variances are selected from the list provided in Appendix I. Part 

tolerances are known, and the process dependent unit means and variances are 

selected from the table provided. All of the links' means and variances used in this 

analysis are listed in Table 4.3. 

The module determines that the first link is a line vector span and relays 

this information to the user and prompts for the unit mean and variance for this 
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Table 4.3 . ' CompresSton chamber link means and 
• vanances. 

link • mean vanance 

X1 0.5 0.045 

X2 0.5 0.045 

x3 0.5 0.028 

x4 0.5 0.040 

XSb 0.4 0.028 
Xs. 0.5 0.028 

x6 0.55 0.047 

x7b 0.5 0.047 
X1. 0.55 0.047 

Xs 0.55 0.047 

~ 0.5 0.047 
X9. 0.53 0.035 

X10 0.00 0.166 

xllb 0.5 0.047 
Xu. 0.53 0.035 

X12 0.00 0.166 

xl3b 0.5 0.047 
Xn. 0.53 0.035 

X14 0.5 0.040 

X1.s 0.55 0.035 

X16 0.60 0.045 

first link. Links 1 through 4 are all line vector spans and are handled in the same 

manner. Link 5 however is a clearance and therefore has two components. The 

module proceeds to prompt the user for both of the components means and 
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variances. P~rs for all of the gap type links ·are input sim,lady as is the· 

clearance. When all of the means and variances listed in Table 4.3 are input the 

module asks the user if he would like to save these values to a file. It is 

recommended that this is done in case the assembly being considered is to be 

analyzed again. A file is created having the name of the tolerance chain data file 

with the file extension ".lmv". The next time a. tolerance analysis is going to be 

run for these statistical parameters, the module can retrieve this file. By answering 

yes to the question "read link means and variances from a file [n] ?", the user 

directs the module to search the current directory for a file with the same name as 

the tolerance chain being analyzed with an ".lmv" file extension. 

After the statistical parameters of the links have been input to the module, 

the tolerance control menu is again displayed. At this point "AN" is selected to 

display the ANALYZE CHAIN menu shown below in Figure 4.3. 

ANALYZE CHAIN 

CD - Calculate distribution 
'IZ - Tolerance zone 

Figure 4.3 Analyze chain menu. 

Selecting "CD" instructs the module to determine the distribution of the sum 

dimension from the individual link parameters. "CD" must always be chosen before 

"TC". Once "CD" has been chosen and the distribution has been calculated, the 

chain can be analyzed for any number of tolerance zones. The "TC" choice allows 

the user to move the tolerance zone around within the distribution without re

calculating the distribution of the sum dimension each time. 

When "CD" is selected, the module first calculates the individual link 

parameters effect on the sum dimension. ff the module encounters a transition type 
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link: in the chain, it stops and prompts the user for additional information. This 

additional information is the expectation ~ and variance ~ of the ttansitions 

distribution, detennined from Figures 2.16 and 2.17, as was explained in Section 

2.4.2.2. The value of~ is calculated for the link is question and displayed to the 

user such that the values of ~ and ~vm can be detennined from the plots. Either 

curve · on the plots can be used depending on which cmve the user feels better 

describes the transition. 

In this compression chamber example, two of the links are transitions. Link 

number 9 is a transition that has s = 0.329. From the normal curves in the 

diagrams in Figure 2.16 and Figure 2.17: 

~ = 0.61 .svaa = o.46 

Link 11 is also a transition with s is calculated to be 3.19. The value of 

expectation and expectation are extrapolated from the diagrams to be: 

~ = 3.19 

After both of the transition links have been calculated the module continues 

uninterrupted to solve for the remainder of the individual link parameters and 

determine the distribution of the sum dimension. When the module has completed 

solved for the parameters of the beta distribution of the sum dimension, the user is 

prompted for the desired tolerance zone of the sum dimension. Since the tolerance 

zone is not static, i.e., it can be located anywhere within the bounds of the range of 

the sum dimension, the user must input the tolerance in the form of the tolerance 

zone and its midpoint. To enable the user to make a realistic choice for the 

tolerance zone, the parameters of the sum dimension are presented. For the 

compression chamber example, the message displayed for the parameters of the sum 

dimension presented are shown in Figure 4.4. 
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· Middle of range = 0.940 

Range = 1.070 

Lower limit of range = 0.405 

Upper limit of range = 1.4 7 5 

Expectation = 0.937 

Variance= 0.004 

Figure 4.4 Parameters of sum dimension. 

At the prompt for the tolerance zone in this example a value of 0.353 was entered. 

The midpoint of the tolerance zone was chosen to be the expectation of the 

distribution, 0. 937. 

TASM now has all of the information it needs to calculate the confidence 

level for the assembly based on the input tolerance zone. The integration routines 

are called, and the results are displayed on the screen. A confidence level of 99.73 

was calculated for the tolerance data input. Figure 4.5 illustrates the graphical 

output generated on the terminal by TASM. In this plot it is difficult to see the 

limits on the tolerance zone at 0. 7 6 and 1.11. Hard copy graphical output is 

generated by dumping the screen to an available plotter. A file of the input and 

calculated parameters can be saved by selecting "SA" from the tolerance distribution 

menu. 

The user may want to see what effect tightening the tolerance of the sum 

dimension will have on the confidence level of the assembly. . A "what if' type of 

analysis can be performed by recalculating the confidence level for a different 

tolerance on the sum dimension. If the tolerance is tightened, the confidence level 

decreases. Since the distribution has already been calculated, the module has only 

to integrate the distribution over a new tolerance zone. A new tolerance zone can 
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be specified by selecting "TZ" from the analyze chain menu. Whm '"IZ" is 

chosen, the user is again prompted to input a tolerance zone and the middle pointof 

the tolerance zone. For this example, a tolerance zone of .2 was chosen with a 

middle point again at the expectation of the distribution. This time the confidence is 

level is at 90.44%. Figure 4.6 shows the limits on the tolerance zone for this 

example are more apparent. 
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It may also be necessary to see what would happen if the same tolerance 

were applied at a different location within the range of the sum dimension. For th 

example a tolerance zone of 0.2 was used again but instead of being centered at the 

expectation, it has a middle point value of 1.0. This tolerance only has a 

confidence of 72.46 %. It can be seen that for the best results the middle point of 

the tolerance zone should be as close to the expectation of the distribution as 

possible. Figure 4.7 shows the distribution with the tolerance zone of 0.2 moved to 

a middle point value of 1.0. 
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4.1.2 Printed WCUit·~ model 

In this example an assembly process is actually used to model a 

manufacturing process. Figure 4.8 shows a cross section of a modeled segment of 

a printed circuit board. The dimensions in the geometry are unitless values that do 

not represent any particular circuit board's dimensions. They exist only to illustrate 

the technique and put some values on the dimensions. 

In this model, there are four horizontal plates denoting the layers of a 

printed circuit board. The holes in the plates represent the pads that a chip would 

be inserted into. Before any chips can be placed on a board, the board must be 

drilled. The process involves drilling holes through the pads that lie on the layers 

of the board. In order for the board to function properly, the holes drilled through 

the board must hit all of the pads without "breaking out". Breakout is a condition 

where the drill only hits a part of a pad. This phenomenon results from the shifting 

of the layers which causes the centers of the pads along a vertical line to be 

eccentric to one another. Even if the hole is drilled directly through the center of 

the top pad, a layer below may shift enough to allow the drill to miss the pad 

entirely or, just as bad, only partially hit the pad creating a breakout condition. 

In the model devised here by Ozsoy, Wang, and the author, the pad 

drilling process is modeled after a pin insertion assembly process through a series 

of holes. In order for a pin to be inserted successfully through a series of 

horizontal plates, the holes in those plates must be suitably concentric. If any one 

of the holes along a vertical line through the plates is not properly in line, the pin 

will fail to go all the way through the plates. For the printed circuit board model, a 

pin is analogous to the drill bit, and the pads on a layer are analogous to a hole in 

a plate. A clearance condition exists at each plate so that a pin can penetrate all 

the way through the plates. This clearance condition is similar to the breakout 

condition in drilling the circuit boards. The drill must pass through all of the pads 
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in a vertical line and be within each of the pads in a layer the same way a pin must 

be within each of the holes in a plate. 

One major difference exits between this example and others discussed 

throughout the thesis. This example is under the constraint that it has multiple 

tolerance chains that must be simultaneously satisfied. For the example shown in 

Figure 4.8 the four holes through the four plated require twelve tolerance chains. 

An example of one of these tolerance chains are shown in Figure 4.9. There are 

three tolerance chains for each hole i.e., a chain for each layer in reference by the 

to the top layer with the sum dimension as shown. Figure 4.9 shows the 

mechanical assembly with the plates at each of the extremes. The three ~hains per 

hole and a total of four holes provides a total of twelve tolerance chains . 

x, X3 x, 

1 . 
I I 

111 

I 
2 Xr X2 Xr 

x, x, 

Figure 4.9 Single tolerance chain in printed circuit board 
model (reproduced from Bjorke). 

The link statistics for each of the tolerance chains can be assumed to be the 

same because the same manufacturing process is used for each of the similar 

components for each of the chains. In this example it is therefore necessary only to 

perform the calculations for one of the tolerance chains and determine the 
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confidence level for one tolerance chain. Since each of the chains does not .effect 

the others, the probabilities of each of the chains are. mutually independent, and the 

total confidence of the assembly is the product of all of the individual confidence 

levels. Since the statistics for each C1f the chains are the same, the final confidence 

level of the entire assembly is . the confidence of one of the chains raised to the . 
number of chains n, which in this example is twelve. 

assembly confidence = (chain confidence)n-12 (eq~ 4.1) 

The analysis of one of the tolerance chains_ in the model is begun by 

reading the tolerance chain data file pcb.chn. The link means and variances used 

for the chain are listed in a file named pcb.chn. Both the dimensions of the 

components in the chain and their means and variances are listed in Table 4.4. 

Table 4.4 Nominal dimensions and statistical parameters of the 
components in the printed circuit board example. 

Variable Description of nominal 
. 

mean vanance 
variable dimension 

X1 distance to 15 0.5 0.028 
hole 

X2 hole diameter 11 0.55 0.028 

X) pin diameter 10 0.5 0.04 

The analysis is performed by selecting "AN:i from the tolerance distribution menu. 

The statistics calculated for the sum dimension that are displayed to the viewer are 

shown listed below in Figure 4.10 as they appear on the tenninal. 
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Middle of Range 1.000 

Range 0.930 

lower limit of range 0.535 

Upper limit of range 1.465 

Expectation 0.997 

Variance 0.007 

Figure 4.10 Sum dimension statistics presented to the user 
prior to a tolerance zone selection. 

With the above statistical infonnation on the sum dimension, a tolerance zone of 

0.48, centered at 1.0 was input to the module at the appropriate prompts. The 

confidence level calculated for the individual chain was 99.71 %. The graphical 

results displayed by the module are reproduced in Figure 4.11. 
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Another confidence level was calculated and plotted by selecdng "TZ" from 

the analyze chain menu and inputting a new tolerance zone. This time the 

tolerance zone was given a value of 0.3 and was again centered at 1.0. Toe 

confidence level yielded by this tolerance zone was 92.34% A plot of this out put 

is illustrated in Figure 4.12. Both of these ·distributions are for one of the twelve 

distributions. By placing the constraint that all of the chains will need the same 

tolerance specifications, the confidence of the entire assembly is cal~ by 

equation 4.1. The results of the confidence levels of the assembly for the two cases 

run are shown in Table 4.5 along with the a summary of the analysis. 

Examples 

Table 4.5 summary of analysis of printed circuit board 
model. 

Assembly Attributes 

o 12 tolerance chains 
o Assembly confidence= (Chain confidencet"'12 

Case 1 
o chain confidence 92.34% 

Assembly confidence 38.43% 
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Case 2 
99.71 % 
96.57% 
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4.2 Tolerance synthesis 

4.2.1 Transmission 

The example given for performing a tolerance synthesis uses the 

transmission shown in Figure 4.13 

x, 

Figure 4.13 Transmission gear box 
(reproduced from Bjorke). 

In Figure 4.13 the sum dimension X}: is the gap between the bushing on the left 

and the gear hub, This gap must be larger than zero to prevent jamming of the 

shaft, but less than a certain value to prevent axial motion of the gears. The actual 

length of the gear hub X3 is not as important as the size of the gap between the 

hub and the bushing. The length of the gear hub is, therefore, not the sum 

dimension; rather the combination of the lengths of the dimensions X
1 

- X
5 

determines the size of the gap that is the sum dimension. For the sum dimension 

shown for the gear assembly in Figure 4.13, the fundamental equation is: 

Examples 138 
. .. ' ..., 



>, ,, . ,'.' 

,: 

I, 

where: 

X1: width of the left side of the gear box 

X2: width of the right side of the gear box 

X3: distance between the fear hub faces 

X4: thickness· of the right side bushing flange" 

X5: thickness of the left side bushing flange 

It has been determined that, for the assembly to function properly, the sum 

dimension must be assigned a value of 1 + 0.125, which makes the size of the 

tolerance zone of the sum dimension TXt = 0.25. 

To start the tolerance synthesis, the "TD" choice is selected from the main 

menu. The terminal then displays the tolerance distribution menu (Figure 4.14). 

TOLERANCE DISTRIBUTION 

RE - Retrieve Chain 
LS - Link Statistics 
IE - Initial Estimate 
TU - Tolerance Update 

Figure 4.14 Tolerance distribution menu. 

At this point, the tolerance chain data file has not been read into the module 

yet. "RE", selected to retrieve a tolerance chain, prompts the user to input the file 

name for the tolerance chain. For the assembly in Figure 4.13, the tolerance chain 

data file is· named trans.chn. After the module has successfully read in the 

tolerance chain data file, the tolerance distribution menu is again displayed. The 

link means and variances must now be read into the module. The manner in which 

they are read from the keyboard is the same as that demonstrated in the 

compression chamber example and will not be repeated here. For this example a 

".lmv" file is already existing with the values listed in Table 4.6 for each of the 

links. 
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Table 4.6 Llnk means and. variances 
used in the transmissioo. cxaq,le. 

Bz1 = 0.4 
EZi = 0.4 
E~ = 0.6 
Ez4 = 0.5 
Ez5 = 0.5 

Vat'Z1 = 0.056 
Vat"Zi = 0.056 
van,= 0.056 
varz.. = 0.028 
varz, = 0.028 

: · .. ·:, ·: '.' 
... , ' . 

With all of the necessary link data read in, the procedure of assigning 

tolerances begins. "IE" is chosen from the menu to begin assignment of the 

tolerances. It was decided to determine the tolerance distribution based on a 90 % 

confidence level of the sum dimension. An estimate of the normalized range is 

calculated by the module and presented to the user, and the module prompts for 

the normalized tolerance. Appendix II contains a list of nonnalized beta 

distribution parameters. On a 90% confidence level and for a nonnalized skewness 

of zero, the normalized tolerance is found from Appendix II to be 3.28. 

The module detects the number of unassigned tolerances when it reads in 

the tolerance chain data file. For this assembly, three of the tolerances are 

unassigned and two are assigned. It is assumed that the bushing are standard parts, 

with the fallowing predetermined tolerances on the flanges. 

TX4 = TX5 = 0.15 

Complexity factors for the assembly must be designated for each of the 

links with unassigned tolerances. The complexity factors used for this example are 

listed in Table 4.7. 
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Table 4.7 Complexity· factors used . in 
the assipment of · tolerances in the 
transmisS1on example . 

Variable Complexity factor 

1.4 
1.4 
1.0 

The module prompts the user for the complexity factor for each unassigned link. 

The complexity factors listed above in Table 4.7 are entered at the prompt and the 

module calculates the weighting factors and distributes the tolerance~ and displays 

the values of both on the screen. 

A value for the expectation of the sum dimension is required for the module 

to calculate the middle of the tolerance zones for the links that just had tolerances 

assigned. The obvious choice to make for the expectation is the, value of the sum 

dimension that has been specified for the functional dimension. In this case, it was 

stated that, for the assembly to operate properly, the sum dimension is specified to 

be 1 +0.125. Ideally, the most suitable value of the expectation would be 1.0. 

With most of the values around 1.0, it can be expected that the confidence level 

would be appropriately high. Therefore, at the prompt for the expectation, the 

value of 1.0 is input. 

A list of all of the determinable links accompanied with their basic sizes is 

displayed, from which the user chooses one of the links to have its middle of the 

range solved for. In this example, link three was chosen to have its MX calculated. 

Values for the middle of the range must be entered by the user to complete the 

tolerance assignment and to solve for the MX for link three. Dimensions X1 and Xi 
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were chosen to have symmetric tolerances by selecting the basic size for the middle 

of the tolerance zone. Finally the calculated dimensions are displayed and the 

tolerance distribution menu is displayed again. The results for this example are 

shown below in Table 4.8. 

Table 4.8 Tolerance assigned by T ASM 
for the complexity factors in Table 4.7 

variable dimension 

X1 40 !0.086 
X2 50 .!0.086 

X3 79 + 0.024 
- 0.122 

Once the tolerance chain data file is complete, i.e., all of the dimension 

have associated tolerances, the assembly can be analyzed by the analysis part of the 

module and have the distribution of the sum dimension displayed for the tolerances 

that have been assigned. The graphical output of this process is shown below in 

Figure 4.15. The confidence level calculated for the tolerances assigned at a 90% 

confidence level is very close at 89.85o/o. The discrepancy can be expected because 

table consulted for the normalized tolerance employed the use of an estimate of the 

normalized range. The confidence displayed in Figure 4.15 has been calculated 

from the actual range made up of the assigned tolerances. 

If the user is not satisfied with the tolerance distribution, he can adjust the 

complexity factors, the link chosen to be solved for, the values assigned to the 

middle of the tolerance zones for the links that didn't have the middle points solved 

for, or any combination of the three. To demonstrate the effect of the mcxlifying 

complexity factors, another case was run, and the results are shown in Table 4.9. 

For this case, all of the parameters were left as they were in the previous case, 
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except for the complexity factors to illusttate the direct impact of altering the 

complexity factors. The general rule is that assigning a higher complexity factor to 

a component will result in the module assigning a looser tolerance to the 

component. Table 4.9 lists the ~odified complexity factors with their 

corresponding tolerances zones calculated by the module. 

Table 4.9 Modified complexity factors 
and tolerances for the transmission 
example. 

variable complexity tolerance 
factor zone 

X1 1.7 .184 
X2 1.4 .167 
x3 1.0 .141 

For each tolerance synthesis case that is perf onned, the data corresponding 

to the case is saved in an output file named case_study.out. In this file the 

fallowing parameters of the case are recorded. 

1) the sum dimension tolerance zone specified by the user 

2) the estimated normalized range 

3) the normalized tolerance zone input by the user 

4) the link chosen to have MX solved for 

5) the final values of MX for all of the undetermined links 

6) the updated contents of the data base if the results were saved. 

A listing of the file case_study.out for the two cases performed above in the 

transmission example is shown below in Figure 4.16. 
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TZ: 0.05 RW: 10.56 TW: 3.28 

CF: 1.40 1.40 1.00 

INPUf EX: 1.00 CHOSEN LINK: 3 

MXi: 40.00 50.00 78.89 

UPDATED CONTENTS OF THE WOULD BE DATABASE 
1.000 40.000 0.190 -0.190 
1.000 50.000 0.190 -0.190 

-1.000 79 .000 0.530 -0.269 
-1.000 5.000 0.750 -0.750 
-1.000 5.000 0.750 -0.750 

TZ: 0.05 RW: 10.56 TW: 3.28 

CF: 1.70 1.40 1.00 

INPUT EX: 1.00 CHOSEN LINK: 3 

MXi: 40.00 50.00 78.89 

UPDATED CONTENTS OF TI-IE WOULD BE DATABASE 
1.000 40.000 0.202 -0.202 
1.000 50.000 0.183 -0.183 

-1.000 79.000 0.470 -0.263 
-1.000 5.000 0.750 -0.750 
-1.000 5.000 0.750 -0.750 

Figure 4.16 Case_study.out file for the transmission tolerance synthesis 
example. 
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5. Conclusions 

This thesis has presented an experimental software module that is capable of 

both evaluating and assigning tolerances on component parts of an assembly. The 

project goals have been met in that a tool has been successfully implemented that 

interfaces a geometric ;nodel with the tolerance analysis. As the module stands it 

has eliminated much of the tedium of creating the tolerance chains in Bjorke's 

method by interfacing with the geometric modelling data base created by Ms. 

Wang. Although the user does have to provide certain data for the module such as 

the means and variances of the components of the assembly, the module makes the 

data entry process easy by allowing the user to save the link means and variances 

in a file if they will be used again. Although the module is only a prototype, a 

sucessful user interface has been developed. 

Bjorke has presented a clear and concise method most suitable for linking 

the geometric modelling environment with the concerns of tolerancing in 

mechanical engineering. The scheme presented in his text is not complete for many 

assemblies that can be conceived. In the work done here, augmentations have been 

added such as spreading tolerances across links that are gaps to the individual 

components. Presently the selection of a gap as having assignable links is limited 

to having both components of the link with unassigned tolerances. A future 

enhancement to the module might allow for independence in the assignment status 

of the individual components of a gap type link. 

T ASM as it exists is a useful tool that does yield important information 

about the effects of the individual components on an assembly functioning to 

specification. During the creation and testing of the module it was observed how 

varying an individual component's mean and variance affected the confidence of the 

overall assembly. It was not the intention of this study to perfonn a massive 

testing of the module. All of the cases that were run, however, served to confinn 
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our confidence in the analysis and synthesis routines developed. It is recommended 

that a future project consist of testing the module further to determine sensitive 

links in assemblies and to further delve into statistical attributes of machining and 

manufacturing processes. 

For a smooth transition into future additions to the concept of an overall 

design package, the T ASM module has been coded to operate as tool capable of 

interfacing with a larger scheme. By taking a modular approach additions and 

alterations to the code can be implemented without disrupting the entire module. 

Throughout the fonnulation of the method to analyze and assign the 

tolerances, a number of peripheral support concepts were uncovered. Some of them 

are actual enhancements of the existing module, while others are distinct additions 

that would serve to expand the module's capabilities. Because of the nature of 

developing a prototypical module within the time constraints, several capabilities 

that were envisioned were not fully developed. 

One such instance that should be noted exists in the tolerance synthesis 

section of the module. At present the user selects which link the module will solve 

for in placing the tolerances on the unassigned parts while the user places the 

remaining calculated tolerances. A suitable enhancement would be to allow the 

module to "spread" this delta MX across all of the unassigned links that have an 

MX that is not zero either evenly or according to some developed scheme. 

Much of the success or certainty in the results of a tolerance analysis or 

synthesis resides in the confidence one has in the values of the statistical data input 

to the routine. Not much work has actually been done in the area of statistical 

analysis of manufactured parts. With the onslaught of computer monitoring of 

machines in industry, more and more information about individual machines' 

statistical idiosyncrasies will become available. With either more confidence in 

statistical data for common machining practices, or better yet, with accurate 
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statistical data for a factory's particular machines, analysis conventions such as the 

one described in this paper will find greater acceptance in the market of industrial 

design and planning. 

Applications of certain Artificial Intelligence (A.I.) techniques such as 

knowledge based or expert system technology might prove to be suitable for 

interfacing with TASM. Presently based on a parts geometry and the tolerance 

necessary for proper performance of the part, an engineer knowledgeable in 

machining processes selects a process that is congruent with both the part's design 

and also the facility constraints placed upon him. Statistical data for the process is 

either known for the individual machine selected, or they are extracted from the 

table of typical machining capabilities. This work could be performed by an expert 

system module that would have access to the geometric model data base as well as 

the statistical data base. With access to the geometric data, the system could 

determine whether the part would be turned, milled, etc. Depending on the 

tolerance necessary for the part the system could then search the statistical data base 

for the machines in the factory to determine which process is to be used and also 

what statistical parameters of the selected process. Not only could the expert 

system be used to determine which processes are optimally compatible with 

facilities ability to manufacture the parts, it could also at the same time generate 

consistent process plans for the parts. A schematic of how such a system might be 

laid out is briefly illustrated in Figure 5.1. 
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Another area where Al. applications may yield positive results is in the 

selection of possible functional dimensions. A system could be envisioned to 

determine the dimensions where a variation in size may pose an ill effect on the 

assembly's functionality. Such dimensions could be presented to the design 

engineer for inspection followed by the automatic generation of the tolerance chains 

for analysis in TASM. 

Surely future work will continue in the area of analyzing and optimally 

assigning tolerances for assembly. Computer automation and a growing pool of 

design data existin·g in geometric model data bases will aid in providing the 

necessary data and a medium necessary for automated tolerance analysis. This 

paper describes only a small segment of all of the necessary data and procedures 

for a complete tolerance assessment at design time. 
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'l'X r::z va1·Z form element ·rechnological process 
min max min ma>: min max ' 

External cylinders Rou~Jh turninJ ITll I'1'13 0,40 O.GO 0. 0 14 0 . 0 S ·I 
Finishing turning IT7 IT9 0.40 O.GO 0.030 0.054 
Grinding IT5 IT7 0.50 0.55 0.028 0.047 

----·--

Internal cylinders Rough turninq ITll IT13 0.40 0.50 0. 0 34 0.054 
Drilling ITlO IT14 0.40 0.50 0.034 0.066 
Finishing turning ITS ITlO 0.40 0.50 0.030 0.054 
ReamincJ IT7 IT9 O . 4 5 o.so 0.028 0.040 
Grinding ITS IT7 0.40 0.50 0.028 0.047 
Honing IT4 ITG 0. 4 5 0.50 0.028 0.034 

--- --

Radi a 1 runout of Turning 0.02 0.10 0.30 0.40 0.035 0.040 
cylindric.:il sufaccs Grinding 0.01 0.02 0 . 30 0.40 0.035 0.038 

-
/ -

\ 

The distance betWCL~n Cut off IT12 IT16 0.30 0.70 0.040 0.083 
external parallel Turning ITlO IT13 0.50 0.65 0.028 0.054 
p l.:rncs MillincJ, pLrnin<J ITlO IT15 0.40 O.GO 0 .. p28 0.054 

Grinding ITS IT7 0.45 0.55 0.028 0.050 



TX EZ varZ Form element Technological process 
min max min max min max 

The distance between Turning ITlO IT13 0.40 0.60 0.034 0.054 
internal parallel Milling, planing ITlO IT15 0.38 0.62 0.034 0.054 
planes - Grinding ITS IT7 0.38 0. 6 2 0.040 0.050 

-

-

The distance between Turning 'ITlO IT13 0 . 4 0 0.60 0.034 0. 0 54 
external and internal Milling, planing ITlO IT15 0.50 0.55 0.034 0.054 
planes Grinding ITS IT7 0.48 0.52 0.034 0.050 

.- Parallelism, Planing 0.1 0.2 
0.50 0.50 0.034 0.054 

perpen-
300 300 dicularity and 

angularity between Mi 11 ing 0.1 0 . 3 
0.50 0.50 0.034 0.040 300 300 surfaces 

Grinding 0.02 0.1 
0.50 0.50 0.040 0.054 300 300 

·-----
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TX EZ varZ 
Form element Technolo<Jical process 

min max min max min max 

...... 
The distance from· a Boring IT7 ITlO 0.48 0.52 0.028 0.040 

center line to a race milling IT9 r·r12 0.50 0.65 0.028 0.047 

reference plane race grinding IT6 IT9 0.65 0.70 0.047 0.056 

------- -- - --·-----· ·---·--·--·- ----·--- ··----

Parallelism, !lor i n<J 
o.ns () . l u. s l) 0.:i'.) tl . i J J -I u. :1-I 7 pcrpcn- )!)(-) --- --

JLJU 

dicularity and lln<JU-

larity between F.:.ice mill 1nq 
() . ] ll. J 

ti • ~., o· 0 . ~dl . ' l) • t I -I: I .::i - - - ,J, II \·I 
Jl) 0 J.\) L) 

center line .::ind c1 

reference pL:ine 1-'uCC <Jri11clin1J 
o.os ll . I 

() . ~ 0 () . s u ii. L .j \J i) , , ,I l 'J 
JllO 1uo 't 

/ 

. 

- ·-· ---·-·- ·-----·- ·----- ------- ---··--·-

'l'he distance between Boring I'1'7 ITlO 0.50 0.55 0.028 0.047 

cl?n te r- lines 

" 



TX EZ varZ 
Form element Technological ·process 

min max min max min max 

Parallelism, perpen-

ducularity and Boring 0.05 0.2 0.5 0. 5 0.034 0.047 
300 300 

angularity between 

center lines 

... 
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t . ·t· eccen r1c1 ies 

A plane vector span with distributed direction will be denoted an 

eccentricity, and it is a dimension which can form any angle to the sum 

direction. In order to clarify the behaviour of eccentricities, we will give the 

following example. 

Let the distance bet,veen the center line of the shaft and that of the 

tapered pin, be the sum dimension in the assembly shown in fig. 3.4. This 

dimension will be influenced by other parts, among which is the bushing. 

Let us assume that the cylindrical surfaces of the bushing are eccentric to 

each other, and that the eccentricity is the only geometric deviation in the 

assembly. Then the dispersion of the sum dimension will be given from the 

magnitude and the direction of the eccentricity alone. The magnitude of 

the eccentricity is a quality of the bushing as a part, and it came into 

existence during the machining of the workpiece. The direction of the 

eccentricity is, on the other hand, a result of the assembly of the workpiece. 

It may therefore, be concluded that the magnitude and the direction of an 

eccentricity are uncorrelated. 

--
/ 

I 

I 
I 

----+--+ ~~ ~(:£)-·~...--xr 

Fig. 3.4. I3ushing with ecccnlricity 

The magnitude of an eccentricity is a result of errors occurring during 

machining of a workpiece. A detailed analysis of these errors is outside the 

scope of this text. We need, however, a basis for estimation of the 
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distributions of eccentricities. In order to illustrate such a basis, we will 

analyze the effect of the setting up errors in a four jaw chuck as an 

example. 

During the setting up procedure of a bushing in the chuck as shown 

in fig. 3.5, we make a positioning _error in X - direction and Y - direction 

independently. Due to the symmetry in the picture, we will expect the 

probability density of the positioning error to be the same in both X- and 

Y- direction. From practical experience, we know that these distributions 

are almost normal. The question we then ask is, 

y 

-x 

Fig. 3.5. Setting up a bushing in a chuck 

what distribution does the eccentricity of the cylindrical surfaces of the 

bushing follow, after internal turning? The mathematical formulation of 

this question is, what is the distribution of: 

when the independent variates X and Y both are normally destributed 

(O,a-). 

The bivariate density of X and Y is: 
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f{x,y) = 1 exp[ -(x2 + y2)/20'2] 
21"0'2 

.·· .... 

that is, the variate (x2 + y2
)/ u 2 is x2 distributed with 2 degrees of 

freedom. As a consequence of that the density of XR ma.y be given from: 

which is the density of a Rayleigh distribution (see fig. 3.6). From this 

deduction we may draw the important conclusion that the magnitude of an 

eccentricity is Rayleigh distributed to the same level of accuracy as its 

components are normally distributed. This result is general and it is valid 

not only for the case analyzed above. 

f1 {xR) 

0.6 1---~ok--~-r-----~-+--~-,. 

0 2 3 4 

Fig. 3.6. Rayleigh distribution 

The direction of an eccentricity is a result of the angular location of the 

bushing when it is put into the bore. If we study fig. 3.4, it is easy to 

realize that no direction could have any preference, and we may conclude 

that every direction ought to have the same probability. That is, the 

distribution of X<P has to be rectangular in the range [0,21r], with the 

probability density: 

The influence of the eccentricity on the sum dimension in fig. 3.4, may be 

given approximately by the projection of the eccentricity on the sum 
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direction. The fundamental equation of an eccentricity will, therefore, in 

general, be given by: 

where 

A a signed constant 

XR the magnitude of the eccentricity 

X <P - the direction of the eccentricity 

Equation (3.10) contains a product of two stochatastic, but uncorrelated 

variables, XR and cosX<P. The expectation and the variance of that 

product may be found by using (A.4) In order to do so the expectation and 

the variance of cosX<P have to be computed from: 

EY == EX 1 +EX 2 

varY == varX1 varX 2 + varX1(EX 2 )
2 + varX2(EX1 )

2 

(A.4) 

By substitution of (3.11) into (A.4) we get: 
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(3.12) 

where var0 XR is the variance of the magnitude of the eccentricity 

measured relative to the origin (remenber varXR is measured relative to the 

expectation EX R). 

As a summary of the influence of an eccentricity on the parameters of 

the sum dimension, we give the formulas where unit dimensions have been 

substituted: 

MXLR = 0 

R.1.XL = IAI 2TXR 

E.1.XL == 0 

var.1.XE = A 
2 

~TXR var0 ZR 

(3.13) 

Where var0 ZR is the variance of the unit distribution measured relative to 

the origin. 

Due to symmetry, both MXLR and E.1.XR are zero. From fig. 3.4, 

it can be seen that the range R.1.XE has te be twice that of XR, and since 

we use a model of the individual dimensions saying that the range is equal 

to the tolerance, equation (3.13) results. 

Normally distributed center location 

The probability density of a normal distribution is: 

1 1 (x-()2] g1(x) = ~ ex - 2 
"i 21r cr 2<1 

(3.25) 
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Let us assume that the center location of the internal pa,ri is given bytthe · 

density (3.25), and that the range [-XR,XR] corresponds to 30' limits of the 

distribution. That is: 

(=0 

Substituting into (3.25), we get the conditional probability density of XE 

given XR: 

g1(XEIXR) = &xR ex{~(~)] 
If we substitute (3.26) into (3.24) we get: 

Let us for a moment, suppose that the variate XE and Xu: 

and that 

f1 (XR) - the probability density of XR 

h(Xu) - the probability density of Xu 

By using the multiplication formula: 

y = X1 X2 

g(y) = J Ill f1(z) f2(~) dz 

where 

f1 (X1) is the probability density of X 1 
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f2(X2) is the probability density of X2 

we may under the above assumptions, express the probability density of XE 

as: 

(3.29) 

If we compare the integrals in (3.27) and ( 3.29), we may easily see that XE 

can be written as the product (3.28), if the probability density of Xu is: 

3 [ 9Xu J h(Xu) == ~ 
2

1r exp --2-
(3.30) 

Which is the density of a normal distribution having: 

(==0 a==! (3.31) 

As mentioned above, the aim of this analysis is to determine the statistical 

parameters of the variate XE. This can now be done by using our 

knowledge of the statistical parameters of the variates in the product (3.28), 

and it is, consequently, no longer necessary to perform the integration 

(3.27). By substitution of (3.31) into (A.4) we get: 

(3.32) 

As can be seen from this equation, we have succeeded in expressing 

the variance of the sum dimension as a function of the variance of the 
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mating parts, given by the va.ria.te X R. 

We a.re now in a. position to express the influence on the parameters 

of the sum dimension from a line vector ga.p with normal distributed 

magnitude: 

MXER = 0 

RilXE = IAI 2TXR 

EilXE = 0 

varilXE = A 
2 tTxR varoZR 

(3.33) 

Both MXER and E~XE are zero , due to the symmetry of the gap. 

The range R~XE has to be twice that of the variate XR, as was the case 

with eccentricities. The range of XR, may be found from: 

(3.34) 
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Main caJUng program f:· SUl)port,olb 
l"· TASM analyze_chain (: 

f 
~~- . axisl ' I ' 

:(·": axticd I · .. 
'~' .. 
\· 

! ·.,, 

i' beta 
; 

i:': . . 

-'~: Menu.olb bigfind 
\" dsply_menu clear 

: .·. 
: ·;. 

.• t. l 

get_option connect 
read_menus crlmv 

I. up_case defaults 
gamma_func 

Lclass.olb gauleg 
bivar get_chain 
eccentricity inest 
lspan labcalc 
I_ clearance labeldat 
l_dist_ctr open_file 
!_transition plot_dist 
p_gap_dd_lm qgauss_gen 
pspan read_lmv 
p_clearance save 
p_dist_ctr smallfind 
p_transition sr_ecc 
read_lmv sr_slant 

sum_sr 
sum_ss 
system_parameters 
ticl 
tolplot 
updat_dbase 
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I ,tf 

f( ) _ 1 ((x-a)),-l(l (x-a))TJ-l 
x - (b-a),8(-y,'I) (b-a) - b-a 

a == MX~R - R6X 

b == MX~R + R~X 

(EX-a)
2
(b-EX) - varX(EX-a) 1 

== varX(b-a) 

(EX-a)(b-EX) 2 
- varX(b-EX) 77 

== varX(b-a) 

EX == i\1X~R + E6X 

var X == var 6X 

(J( ) - I'(,)I'(17) 
,,TJ - I'(,+TJ) 
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