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MIXING ENHANCEMENT IN FLOW PAST RECTANGULAR CAVITIES
AS A RESULT OF A PERIODICALLY PULSED FORCING FUNCTION

Jeffrey S. Perkins

Abstract-

Periodic elimination of the shear layer separating the mainstream and
recirculatory regions in flow through a multi-cavity channel is possible by imposing a
pulsatile forcing function on the otherwise steady fluid motion. Numerical and
experimental results are correlated to show that pulsing the flow during half of a cycle
leads to the destruction of the trapped vortex while simultaneously generating its
replacement. During the other half of the cycle, where there is only steady flow, the
new vortex grows to fill the cavity and protrudes into the mainstream, thus further
enhancing mainstream and cavity mixing. The fluid motion is characterized by three
non-dimensional parameters: a Reynolds number based on the steady velocity
componernt, a Strouhal number based on the unsteady velocity component and a

frequency parameter based on the frequency of oscillation. The effect of each

parameter on fluid exchange between the mainstream and the cavity is discussed.
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Abstract-

Periodic elimination of the shear layer separating the mainstream and
recirculatory regions in flow through a multi-cavity channel is possible by imposing a
pulsatile forcing function on the otherwise steady fluid motion. Numerical and
experimental results are correlated to show that pulsing the flow during half of a cycle
leads to the destruction of the trapped vortex while simultaneously generating its
replacement. During the other half of the cycle, where there is only steady flow, the
new vortex grows to fill the cavity and protrudes into the mainstream, thus further
enhancing mainstream and cavity mixing. The fluid motion is characterized by three
non-dimensional parameters: a Reynolds number based on the steady velocity
component, a Strouhal number based on the unsteady velocity component and a
frequency parameter based on the frequency of oscillation. The effect of each

parameter on fluid exchange between the mainstream and the cavity is discussed.




Introduction-

Internal fluid motion past rectangular cavities such as that shown in Fig. 1,
exists in devices such as electronic components on circuit boards and ribbed heat
exchangers in cross flow. In these devices, steady forcing of the flow causes
separation regions to form in the cavities. As a result of the steady fluid motion past
the mouth of each cavity, there is a strong division between the straight and parallel
streamlines found in the driving flow and the recirculating streamlines within the
cavity. Transverse flow across the shear layer between the cavity and channel is
absent. This lack of mixing inhibits effective heat removal from the cavity fluid,
which in turn diminishes the removal of heat from the generating surfaces.

To promote mixing of the fluid between the two regions, the shear layer must
be severed by some means, showing interaction of the mainstream with the fluid
trapped in the cavity. Several studies [1,2,3] show that forcing the flow sinusoidally
leads to excellent mixing of the mainstream with that of a separated region. However,
the sinusoidal motion has no net flow rate, which is needed to remove heat from the
system. Superposing unidirectional fluid motion onto the oscillatory motion will
cause heat removal since the unsteady component enhances lateral mixing, while the
steady component provides transport of heat away from the cavity and out of the
system. The effect on the flow field of one type of unsteady forcing is the focus of the
present study. Although the results presented are restricted to the flow analysis, the
ultimate goal of the study is to determine the optimum conditions for efficient heat
removal.

Forcing of the fluid can be accomplished by superposing an oscillatory
component on a steady flow, however, a sinusoidal variation will at some times add to

the forcing flow rate while at other times it will lessen it. The reduction in the flowrate
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will decrease the amount of heat removal in a system, thus if increased m1xmg can
result by using the additive portion of the oscillatory component alone, there is no
reason to use the detractive portion. The resulting forcing function varies sinusoidally
as an additive pulse superposed onto the steady flow for half of a cycle, while for the
other half cycle, only a steady flow exists (see Fig. 2).

The fluid motion past the periodically repeated rectangular cavities, used in the
experimental and numerical parts of the study, is assumed to be fully developed. This
condition is easily imposed numerically by defining periodic boundary conditions. In
the experiments, fully developed flow occurs after the sixth of seventh cavity such that
the flow past one cavity is the same as that past any other cavity.

Two-dimensional laminar fluid motion is assumed in the experiments and the
numerical analysis which is justified if the geometry is infinite in breadth.
Numerically, this assumption reduces the number of governing equations of motion by
one. Experimentally, the two-dimensional flow assumption is approximated by an
experimental channel with a large breadth dimension relative to the channel width

such that the boundary layers in the breadth dimension do not affect the flow. The

breadth to width aspect ratio is 15:1 in the experimental channel.




Literature Review-

The present study examines periodically pulsed planar fluid motion past a
series of rectangular cavities. Similar studies on planar flow past geometries with
periodic cavities and periodic forcing functions have been reported numerically in
Sobey (1980, 1982) and experimentally in Stephanoff, Sobey, and Bellhouse (1980).
Geometries used in these investigations include channels with sinusoidally varying
walls, both symmetric and asymmetric; channels with semi-circular scallops on the
walls; and channels with rectangular cavities. In each paper the fluid motion resulting
from a sinusoidal forcing with no mean velocity is discussed. It is found that during a
cycle, recirculatory fluid motion (a vortex) develops within the cavities. The vortex in
each cavity grows with deceleration and is then ejected into the center of the channel
during flow reversal. Fluid previously comprising this vortex is then entrained in the
accelerating mainstream and is transported away from the cavity, provided the
magnitude of the oscillation is sufficient.

Subsequent numerical work by Ralph (1986) on oscillatory motion through
channels with sinusoidally varying walls reiterates the results discussed above but
shows that neglecting effects of a flow’s time-history is not a uniformly valid
assumption, as implied in Sobey (1980). It is shown that when the vorticity transport
is low, the ejected vortex is not necessarily destroyed by the accelerating mainstream.
Effects of the ejected vortex can persist well after the onset of reversal.

Similar numerical work by Savvides and Gerrard (1984), illustrates oscillatory
motion in a channel with walls varying as triangle waves. Steady forcing of the fluid
past the periodic geometry shows that for a Reynolds number above a critical value,
the mainstream appears largely unaffected by the presence of the irregular wall, aside

from the local relaxation of the no-slip condition. Streamlines in the mainstream are
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parallel and a shear layer spans each triangular cavity. The fluid motion within a
cavity forms a well-defined vortex driven by the shear layer interface. This seems to
be the only interaction between the two regions for a steady forcing function. Of
primary interest are the solutions for oscillatory motion where an oscillatory
component is imposed upon a steady flow. It is shown that when the steady and
oscillatory components are of the same order of magnitude, periodic ejection of
recirculatory fluid from a cavity occurs and is followed by a subsequent reformation of
the vortex in this separated region.

The results presented in the studies discussgd above have importance in
applications needing enhanced transport of some quantity such as mass or heat from a
separated region. Not only can the trapped fluid be ejected into the mainstream
through the positive effects of oscillatory motion on separated regions, but by
superimposing an oscillatory motion on a steady flow, the mass or heat energy can be
washed downstream and eventually out of the system. Possible applications include:
1) enhancing heat transfer from electronic components mounted on a circuit board,

2) enhancing heat transfer from ribbed heat exchangers experiencing a cross flow; and
3) removal of a substance which settles in notches on a wall of a device.

Numerical solutions by Ghaddar, ¢t. al. (1986), further illustrates fluid motion
through a flat wall channel with rectangular cavities on one of the flat walls. As in
previous studies, the steady flow solutions show a well defined vortex within the
cavity and a cavity-spanning shear layer is present. In general, the center of the vortex
is shifted downstream of the center of the cavity and again the mainstream and
recirculatory regions are largely isolated from each other. Other than driving the

cavity motion through this interface, the cavity and mainstream are essentially

independent flows.
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As in the work by Savvides and Gerrard, Ghaddar, ¢t. al. examine motion with
a steady and an oscillatory component. However, in the Ghaddar et. al. study the
magnitude of the oscillatory component is much less than that of the steady
component. The sinusoidal variation is introduced as a small perturbation to the
steady flow rate for moderate Reynolds numbers. It is shown that self-sustained
oscillations develop in the shear layer which trigger the onset of transition to
turbulence at Reynolds numbers lower than that which occurs for steady forcing of the
fluid. As a result of the shear layer oscillations, there is a significant change in the
flow structure in the vicinity of the cavity-mainstream interface. The self-sustaining
oscillations indicate stronger interactions between the two regions than that of pure
steady flow and are found to enhance the transport of heat from the cavity [16].

In this study, periodic fluid motion past a geometry similar to that used in
Ghaddar, et. al., 1.e. spatially fully developed flow past rectangular cavities, is
examined, although the nature of the flow field is quite different. The primary
objective 1s enhancement of transport characteristics of flow past cavities, which leads
to a slightly different flow profile. The fluid motion contains a steady component with
a superimposed unsteady component of the same order of magnitude where the
unsteady component is an additive sinusoidal pulse which exists for half of a cycle.
Numerical and experimental comparisons will be made from results contained herein

to results from the studies discussed above.




By grouping certain variables together, which describe the fluid motion and
geometry, parameters can be formed such that all dimensional dependence cancels out.
Choosing these dimensionless parameters properly yields an excellent means of
comparing different flows without having to analyze each in detail. Since ;hc
parameters are dimensionless they apply to different dimensional scales without
variation of the fluid motion; in other words, if two devices have the same
dimensionless parameters, the flow structure will be the same.

In this study the characterization of the flow field will be the mean velocity
U(t) imposed by the forcing function. As previously described, the forcing function is
a sinusoidal variation on a steady flow where only additive effects are used, resulting
in steady forcing for half of a cycle with period T, and a steady plus a sinusoidal pulse
for the other half cycle. Figure 2 shows a typical waveform which would exist in a

parallel walled channel, which can be described as

{Us 055505

VO= U usini2n G051 055510

where U’ 1s the velocity due to the steady component, and Up 1s amplitude of the
sinusoidal pulse present for the second half cycle. The forcing function accelerates the
fluid from a velocity of Us to a value of Us+ Up during 0.5 < ,tT s 0.75, and decelerates
itto U for 0.75 s % s 1.0,

For convenience, a new time variable, 1, is formed such that 1 =§T— . Since the

flow is periodic and fully developed in the sense that the flow at T = T, is exactly the

same as that at 1t = T+ T, the variable T is normalized suchthat0 < t < 1.0.




In this study, the geometry and the type of forcing function are held constant.
There are three independent variables U', Up, and T, which suggests that three
independent dimensionless parameters form the necessary basis to describe a uniquely
determined flow. Since the velocity is assumed to be the superposition of a steady
velocity and a time dependent velocity, the describing parameters are chosen such that
time dependent effects are separate from effects due to the steady flow. The steady
flow 1s characterized by a steady Reynolds number such that

hU

Re = —-
] \Y

where h is the channel width and v is the kinematic viscosity, which is kept fixed.
It 1s unclear whether Us, Up, or U8+ Up should be used when defining the
Strouhal number, St. Since the parameter normally describes time dependent motion,

it 1s chosen to be defined as

_fh
Sl =7
P
In support of this choice it can be shown by integrating U(t) from 0 < t < 1.0 that St
1s function of only one variable, the volume of fluid added to the flow per cycle, (%),
during the pulse. Each of the three defining parameters will similarly be a function of

only one variable.
In addition to Re and Sl, a third parameter is necessary to form a basis for full
characterization of the flow. As this third dimensionless quantity, a frequency
P

parameter, Fp, is used which is only a function of the frequency of oscillation. F is

defined as
B2
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The flow is fully characterized by Re’, S;’ and Fp, but there is a fourth

parameter which becomes useful in comparisons. This parameter is a pulsatile

Reynolds number of the form

hU
Re = —£&
P A%

Using the previous definitions for FP and Sl, ch can be expressed as

—_ P
Rep— g -

t

In analyzing the following results, it is important to realize that the pulsatile
Reynolds number is achieved at only one instant in the cycle, at the peak of the input
pulse, when © = 0.75. Nevertheless, mixing is a very strong function of the ratio of
this pulsatile Reynolds number to the steady Reynolds number.

Using the three initial parameters, Rcs, Fp, and St, yields a useful set of directly
applicable relations. In the flow visualization experiments Us, f, and the volume of
fluid added per pulse, (% are adjustable such that Res, Fp, and St are directly measured.
The sinusoidal pulse is enforced with a piston such that Qp is controlled by adjusting
the piston’s stroke. The choices for the parameterization are therefore shown to be

good in that each parameter is a function of only one variable, and convenient in that

the independent variables are, in general, easily measurable quantities.




Experimental Setup-

The flow visualization experiments use water as the working fluid in a closed
channel constructed of plexiglas. As shown in Fig. 3, the channel consists of five
sections: a diffuser, a long upstream flat wall section to insure fully-developed plane
Poiseuille flow prior to the test section, a replaceable test section, a long downstream
flat wall section, and a convergent section. The test section and flat wall sections have
inner dimensions of 22.9 x 1.52 cm, the former being the vertical, yielding an aspect
ratio of 15:1.

The fluid enters the piping system through one of two inlet pipes shown in
Fig. 4. Inlet #1 supplies fluid used to generate a pulse in the velocity profile while
inlet #2 supplies a constant head steady flow. Valves A and B shown in Fig. 4 are one-
way valves which prohibit fluid motion up either of the two inlet pipes. The piston,
which is connected to a Scotch yoke mechanism, oscillates at a frequency determined
by the speed setting on the driving motor’s controller. As the piston retracts, fluid is
drawn through valve A from inlet #1; valve C, also a one-way valve, prevents the
piston from drawing fluid from inlet #2 or the channel. The fluid drawn into the piston
chamber is expelled through valve C when the piston moves toward the channel. This
fluid joins the steady component which is supplied throughout the cycle. Immediately
downstream, the velocity profile appears steady for the first half cycle when the piston
draws fluid from inlet #1 and then pulsatile during the second half cycle. The
resulting mean velocity profile is shown in Fig. 2. While the flow rate of the steady
component is controlled by a needle valve (not shown) on inlet #2, the flow rate of the
pulsatile component depends on the frequency of oscillation of the piston and its

stroke (the volume of fluid expelled during each stroke).
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After the steady and pulsatile flows merge, the fluid passes through the diffuser
and then enters the channel. A three inch length of honeycomb and the following long
flat wall section straighten the flow prior to entering the test section. Upon entering
the test section, the walls are still flat until the first of 15 bars mounted transversely on
one of the vertical walls. Extending from the top of the channel to the bottom, the bars
have a square cross-section of 0.64 cm on a side and are spaced by a gap of 1.27 cm
(see Figs. 1 and 5a). Each cavity formed between the bars is 0.64 cm deep and
1.27 cm long. Since the bars protrude into the channel the effective channel width, h,
15 0.89 cm. From Fig. 5a, the geometric periodicity length, L, is 1.91 cm. As the fluid
passes the first few bars it adjusts to the spatially varying boundary along one wall and
becomes fully developed by the seventh cavity. All photographs in the study are from
the ninth cavity where the flow is fully developed.

As the fluid exits the test section it enters another long parallel-wall section and
then a nozzle with the same dimensions as the diffuser. The flow converges to the exit
pipe which leads to a reservoir. The fluid in the reservoir is then pumped up to the two
feed tanks which supply inlets #1 and #2.

Flow rates are measured with a one U.S. gallon jug and a stopwatch. During
an experiment, the steady flow rate is measured before the Scotch yoke is started.
After the yoke is started, the fluid motion needs a few minutes to reach equilibrium
conditions and then the total flow rate is measured. From the period of oscillation, the
stroke of the piston, and the two flow rate readings, the dimensionless numbers, Rcs,
Sl, and Fp are calculated.

Natural pearl essence, comprised of flake-like luminescent particles which
have a settling time of roughly two hours in water, is mixed into the water so that the

fluid motion is visible. The quantity of pearl essence added is dependent upon the
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mixing between the mainstream and fluid in the cavity. If mixing in the cavity is
good, a large number of particles enter the cavity so the fluid motion in both the cavity
and mainstream is visible. However, if mixing between the two regions is poor, only a
small number of particles enter the cavity, which does not illuminate this region
sufficiently. As a result, more pearl essence must be added to the fluid for poorly
mixing flows to illuminate the cavity region sufficiently.

While taking pictures, the entire test section is masked with an opaque material
except for 1) a thin slit 0.64 cm wide which passes a horizontal plane of light at the
centerplane of the channel, and 2) the top of the section where the camera sits. Light
from a 750 Watt halogen spot light passes through a cylindrical plano-convex lens
before entering the thin slit in the masking material. The plano-convex lens converges
the light into an intense parallel beam so that the particles at the centerplane are highly
illuminated.

A Canon A1 35am SLR camera with a 105mm macro lens is used for the
photography. The camera is attached to an adjustable height bracket which is fixed to
a platform on rails directly above the channel. During filming the camera points down
through the top of the test section and is focused on the illuminated centerplane. Black
and white Kodak Technical Pan film, which is a high resolution, variable speed film, is
used at a speed of 160 ASA and is developed using a high contrast process.

An external triggering device, connected to the camera’s high speed motor
drive, controls the timing of the photography. A magnetic switch is mounted on the
flywheel of the Scotch yoke to provide a position reference signal for the triggering
sequence. From this reference signal, the triggering device calculates the period of

oscillation and emits a trigger signal to the motor drive at a specified time in the cycle.
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The error involved in correct placement of the magnetic switch is 2-3 % of the period
of oscillation.

Correct shutter speed is crucial to obtaining the best visualization of the time
dependent flow. Instantaneous streamlines, which are in reality particle pathlines, will
only become visible if the particles travel a sufficient distance during the opening of
the shutter. While long shutter speeds let excellent pathlines of individual particles be
photographed, accurate results require that the shutter speed can only be a small
fraction of the cycle time. Shutter speeds must be no more than five percent of the
total cycle time, which ranges from two to six seconds. Depending on the period of
the cycle, shutter speeds of 1/4, 1/8, and 1/15 of a second are used.

For cases involving strong mixing in the cavity throughout the cycle, velocities
encountered within the cavity are of the same order as those in the mainstream, thus a
particle in either field travels the same distance in a specified time. However, for
steady flow and those which are similar to steady flow, velocities in the cavity are
much lower than those in the mainstream. Shutter speeds for these cases must be at
least 1/4 second to show any noticeable particle motion within the cavity and even when

the shutter speed is this long it is often difficult to capture the flow structure in the

cavity region.
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The numerical solutions, as well as the experimental results, model a i
two-dimensional, incompressible flow past a uniform series of rectangular cavities.
Defining quantities in the x,y plane of a Cartesian coordinate system, the flow field is
determined by calculating the velocity components u in the streamwise (x) direction,
and v in the transverse (y) direction. Fluid properties such as the kinematic viscosity,
v, are assumed to be constant over the range of flow conditions émdied and under the
incompressible assumption, the density, p, is also a constant. Body forces, such as
those due to gravity are assumed to act in a direction normal to the plane of motion
and thus, not affect the flow. Fluid motion is then governed by the two-dimensional
Navier-Stokes equations, which require the conservation of linear momentum in each

of the coordinate directions:

ou_ du__ du _ 1dP __ [a*u, 2*u)
A tUR-+VIo = — =5 +v + (1)
dt dx ay p dx | %2 8y2 )
v v av 1 dP (3*v  3*v

+us—+V = —=5—+ + 2
at U 9x dy pdy 7V | 9x2 8y2 ) )

where P is the pressure. In addition to (1) and (2), a continuity of mass equation for

two-dimensional flow is

du 8v
90X ay =0. 3)

The equations of fluid motion are solved by ridding their dependence on
dimensional quantities such as length, time, and mass. The dimensionless parameters,
which act as coefficients, determine the solution of the fluid motion. Flows with
identical parameters yield identical solutions, independent of different dimensional
scales. Nondimensionalization scales each term in the equations (1), (2), and (3)bya

characteristic quantity of the same dimensions. For example, the term gu in eqn. (3)
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would be nondimensionalized by dividing u by some characteristic velocity, U, and x

by some characteristic length, H. As this is done to each term in (1), (2), and (3),
common terms are canceled out leaving each term dimensionless. Certain terms will

retain coefficients formed by groups of these characteristic quantities. It is these

groups of quantities, or dimensionless parameters, which uniquely determine the flow

field solution for a given set of boundary conditions.

In the domain shown 1n Fig. 5a, all length dimensions are scaled on the

dimensional channel width, h. Defining the dimesionless channel width, s as 1.0, the

scaled cavity depth, d is 0.7, the cavity length, /, 1s 1.4, and the geometric periodicity

length, L, is 2.1. In a similar way, the length variables x and y are nondimensionalized

by forming the quantities

Y

X = Y=% (1)

| <

Since choosing the scale factor 1s somewhat arbitrary, the equations are not effectively

changed in any way. Up 1s chosen as the velocity scale factor and u and v are

nondimensionalized as follows,

u=l
=0

<
I
i<

p P
Although not apparent here, Up 1s used as the scaling velocity because it yields a

convenient form of the boundary conditions which are enforced on the numerical

solution. As before, time is nondimensionalized on the period of oscillation T as

_L
T=T- (3)
The Navier-Stokes equations, written in their nondimensional form, become
ou , du du _ 9P 1 [azu 3° u ]
S +uUus-+vy-=-5-+ + 4)
t 01 0x dy 0x Rep x> ay2

and
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Stax”ax*"ay‘ ay+ch ax2+ay2 ‘ ©5)

where the coefficients S( and Rep are as defined previously. In eqns. (4) and (5) the
terms on the left hand side of the equation represent the total change in the local
velocity due to unsteady flow and convected effects. The terms on the right represent
the effects of pressure variations and viscous effects in the absence of body forces

such as gravity. The continuity equation in dimensionless form is

du . dv

— 4 =— = .

ox Ty =0 (6)

As 1s common in calculations of two-dimensional incompressible flows, the
equations of motion, written in terms of the primitive variables, u,v, and P, are

transformed into equations in terms of the stream function, y, and the vorticity, .

The stream function is defined such that

= gy V=- —g—;g (7)
which identically satisfies (6), and o is defined as
_9v _du
0= 5 "3y (8)

By cross-differentiation, the Navier-Stokes equations can be replaced by a single

equation for the vorticity,

2 2
dm 30 do 1 (a ? 3 w} )
ox dy

StﬁJruﬁ * "ay ~ Re
and from the definition of  and v,

2 2
Ty, IV (10)
ox dy
The stream function-vorticity formulation reduces the number of equations and avoids

the need to deal with the pressure term in the primitive variable equations. This is

useful here, since the pressure field is not of direct interest for the present study.
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Notice that (9) is similar to (4) and (5) so the equation can be thought of as a balance
between the changes in vorticity due to unsteady and convective effects and the
vorticity diffusion.

Equations (9) and (10) are solved by approximating the each with a finite
difference solution at node points on a grid overlaid on the domain shown in Fig. 5b.
At each time step, (9) and (10) are solved using information from the previous two
time steps. The solution then proceeds in time throughout each cycle.

Leapfrog / Dufort-Frankel, an explicit, unconditionally stable finite difference
method which is second order accurate in both space and time, is used to solve the
vorticity equation at each time step. Using the subscripts (i,j) to denote (x,y) spatial
position, the superscript (n) to denote the time step, and writing u and v in terms of v,

the terms on the left hand side of eqn. (9) become

n+l O)n-l
9o _ iy i
at 2 A1 1D

3 ( n

@Loz[wi,jn_ Wi,j-lj\wi+l,j-mi-l,JJ 1
Uox 2 Ay 7 Ax (12)
_a_(l_)__[wl+1j_wi-IJJ\w1J+l-mij 1J 13
Yy 2 Ax 2 Ay (13)

and using the Dufort-Frankel method of replacing oo:"j by its average at times n-1 and

n+1 in the central differencing of the diffusion terms,

n n+l n-1 n

a_2£)= [mi+l'i- O)i-.i- O)i-.i+vmi'1»,.LJ (14)
ax’ (Ax)*

n n+l n-1 n
azm_[mi.jn'wi,j'mi,i+mi,j-1] 15
— = » : (15)
dy (Ay)
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Defining the constants

C At D 2A1 )
- Se———— — ———————— - ’ 1
' ay '’ Zaxay Rc(Ax)2 (

combining eqns. (11)-(15) into eqn. (9) and writing all n+1 time lévels on the left hand

side, the finite difference form of the vorticity equation is

[s‘ +D (1+r2)) m;'jj‘ = (S. -D (1+9 ) (o:':jl

+C (( Yy Vi, ) ( @ % ) - (Wij+l- WiJ-l)(mi+l.j- mi-lj)]
n n 2, n n
+D (mi+l,j+ Ot e, ,,'-1)] (17)

which can be solved explicitly for mi"*; in terms of o and y values at the two previous

time levels, n and n-1.

A standard five-point central difference form of the Poisson equation for the

stream tunction (10), yields

Vi 7 2V Vi1 Vo2Vt Vi
') ') ') N '] »12 J - o . (18)
(ax)* () - |
Eqn. (18) is solved iteratively by successive-over-relaxation (SOR) in the form
1 Q [ 2 k¢l k+1 | 2 &k 2 ] )
u{.j = 14 r \;fi‘.j_l+ LA A u{+lJ+ (Ax) ]+ (1-Q) “{J (19)

where the k index is the iteration level and Q = 1.83 is the SOR acceleration parameter.
In eqn. (19) values of v at the iteration level k+1 at (ij-1) and (i-1,j) are used to apply
the most recently acquired information, while values at the iteration k are used for
nodes (i,j), (i+1,j), and (ij+1) which have not yet been updated to the k+1 level. At
cach time step eqn. (19) is iterated until the maximum variation on v between
iterations is less than 1 x 10,

Necessary conditions that must be met on the boundary of the computational
domain are that 1), @ and y must be periodic over the periodicity length, L, i.e.

v(0y) = y(Ly) @ (0y) = o(Ly) (20)
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and 2), u and v must vanish at solid surfaces which requires
= 9V _ =9V _
u-ﬁ_o v==X=0 (21)
along the top and bottom walls. From conditions imposed by (21), y must be a
constant along solid surfaces.
To determine the constant values of y along each wall, a relation for the flow

rate q(7) is found by integrating the u velocity component from the bottom surface to

the top, that is
q(t) =hU(7) = [ u(y) dy, (22)
which, by the definition of y in (7) can be changed to
q(r)=hU('t)=de=w2-wl- (23)

For convenience, the value of y along the top surface (the more complicated surface
due to changes in spatial direction), v, 1s set to zero. By (23), v, along the bottom
surface is then equal to the negative of the flow rate at any time, 1. The dimensionless

form of the boundary condition yields,

7

Re
RCS 00s1ts05

vx0) =-1 p.’ L (24)
ﬁe_s + sin[ 2 (t-0.5)] 05<1ts<1.0

P

In addition to the values of y along the walls, the fully developed flow condition on v
in (20) must be satisfied to insure closure of the Poisson equation. Values of y on the
left boundary and those on the right boundary are therefore set cquivalan.

To calculate y (0,y), the values on the left boundary, eqn. (19) needs y (-1,y) which

| does not exist. However, periodicity requires that y (L-1,y) be the same as y (-1,y)

and is applied as such. The stream function on the right boundary is treated similarly.
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The boundary conditions in the vorticity equation, (17), require that: 1) the
fully developed condition on w in (20) again be satisfied and 2) a boundary vorticity
condition be specified along the solid surfaces. Again using conditions imposed by

(21), o along the solid boundary can be written as

Ty -8y +vy
m.u= w w;—l w+ 2 (25)
v 2 (An)

where w is the coordinate normal to the wall in the appropriate direction and An is the

differential spacing in that direction [8]. The problem is now solved except for one
remaining difficulty, treatment of the vorticity at the sharp comers protruding into the
domain.

Vorticity at a sharp corner such as that shown in Fig. 5a leads to a singularity
in the solution since the wall vorticity can be calculated with eqn. (25) in either the x
or y direction. Three methods have been tried consisting of: 1) averaging the vorticity
as the corner is approached in the x direction with the vorticity as the comer is
approached in the y direction, 2) summing these two values of vorticity, and 3) not
requiring continuity of vorticity at the corner, i.e. letting the vorticity become a
different value when calculated in the x direction than when calculated in the y
direction. The latter of the three can be applied since only the derivatives of the
vorticity appear in eqn. (9). Instead of requiring continuity around the corner, n in
eqn. (25) becomes x for terms containing partial derivatives of @ with respect to the x
direction and similarly, n becomes y for terms containing partial derivatives with
respect to the y direction. At first glance, eqn. (10) appears to create some difficulty
since it depends on the vorticity, not the derivatives of vorticity. However, this
equation is not applied along the solid boundaries since vy is specified there. The three

methods yielded identical solutions except in the immediate vicinity of the corners,

-20-




oy
which did not seem to significantly affect the flow field. Upon seeing only minor

differences between the three, the third method of calculating the wall vorticity in the x
direction for terms containing partial derivatives with respect to x and applying a
similar procedure to terms containing partial derivatives with respect to y, is used in all
solutions based on the recommendations in [8].

As the calculation starts from t = 0.000, all values of ® and v are initialized to
zero. Beginning with the first step in time, the flowrate, as well as the other boundary
conditions are applied. At this first step, © = 0.001, eqn. (17) requires information
from two prior time steps, of which only one exists. This problem is dealt with by
using the initial information for both of the required time steps.

At each time index, n+1, the procedure first calculates the interior vorticity
field using information on y at n and information on w at n and n-1. Boundary values
of y are then introduced which are dependent on the time within the cycle, .

Eqn. (19) 1s then solved iteratively for the interior v field using the most recent
information on o, that from time n+1,until the convergence criteria of the maximum
variation in v is less than 1 x 10™, as discussed above. Lastly, the wall vorticity is
calculated from eqn. (25), once again using the most recent y values at time n+1. This
is repeated for each of the one thousand time steps in a cycle. To rid the calculations
of the initial condition of zero flow everywhere, the solution proceeds in time for
several full cycles until no variation from cycle to cycle is seen.

Initial calculations with a mesh size of 42 x 34 grid spacings in the x and y
directions produce solutions with good experimental agreement in all but a few of the
cases studied. In these cases, where Res and Rep are high, oscillations occur in the
vorticity field near the downstream protruding corner. A finer resolution mesh of

84 x 68 (shown in Fig. 5b) resolved this problem and no further oscillations have been
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observed. With the exception of the cases where there are oscillations at the
impingement corner, solutions on a 84 x 68 mesh matched those on a 42 x 34 mesh.
To reduce the CPU time used in the calculations, the 84 x 68 mesh is not used
from the initial no-flow conditions. Instead, the solution starts with a 42 x 34 mesh
and is developed from no-flow through three full cycles, which is 3000 time steps.
The solution at the end of three cycles is is then linearly interpolated onto a 84 x 68
mesh and used as the initial condition for the 84 x 68 mesh. The fine mesh solution is
developed for another three full cycles to eliminate initial condition effects. All results
in this study have been developed for at least 6000 steps in time, consisting of three

cycles using the 42 x 34 mesh and then three subsequent cycles using the 84 x 68

mesh.
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In this section, the structure of the unsteady fluid motion as a function of the
defining parameters is discussed and an explanation is given for how improved
interaction with trapped cavity fluid can be achieved. Before any results of time
dependent motion are shown, steady flow experimental and numerical results for
Re'= 120 are compared (see Fig. 6). Identical fluid behavior in the experiments and
numerical solutions is apparent when the particle pathlines are compared with the
numerically calculated streamlines. The vortex position within the cavity is the same
and there is extremely good agreement where the particle pathlines and streamlines
change direction quickly. Closer inspection of the experimental photograph in Fig. 6a
also shows that the shear layer recedes slightly into the cavity in the vicinity of the
attachment points at the cavity corners; this is also shown in the calculated streamlines
plotted in Fig. 6b where positive values of the stream function are shown as solid lines
and negative values are shown as dashed lines. Figure 6¢, which shows a plot of the
vorticity contours for Rcs= 120, suggests that the cavity, specifically, the corners of the
cavity, influence the fluid motion out to roughly one-fourth of the channel width into
the mainstream. However, Figs. 6a and 6b show that little effect is felt on the
streamlines and particle pathlines aside from the relaxation of the no-slip condition
over the length of the cavity-mainstream interface. The recirculatory fluid within the
cavity is driven by the mainstream but appears to have very little interaction across the
shear layer. Velocities encountered within the cavity are much lower that those in the
mainstream. The maximum value of the stream function is 4% of that in the

mainstream, i.e. the flow rate in the cavity is on the order of 4% of the mainstream

flow rate.
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Detailed study of the time dependent motion with a velocity profile similar to
that shown in Fig. 2, over the range of parameters of 0 < Re < 120,0.10 < Sts 0.50,
and 0 < Fps 40 shows that the fluid motion can be characterized into one of two types.

The criterion used for classification is whether the shear layer, which separates the

cavity from the mainstream in steady flow, remains intact throughout an entire cycle.
Points in the Rel, Sl, and Fp parameter space where the shear layer is present at all
times in a cycle are said to exhibit sloshing mode behavior. The fluid motion in this
mode is similar to steady flow and thus has the same drawbacks of steady flow. If, at

some point in the cycle, the shear layer is severed by mainstream fluid entering the

cavity, a mixing mode cycle is said to be present. In this mode there is stronger
interaction between the mainstream and cavity fluid than there is in the sloshing mode.
In the sloshing mode, a well defined vortex remains in the cavity throughout
the cycle. Although the shear layer is always present in this mode, its position shifts
during the cycle. Figure 7a,b shows numerically calculated streamlines for a full cycle
of a typical sloshing mode, and Fig. 8a,b shows the experimentally obtained particle
pathlines for the same case. Notice that for 0.3 < 1 < 0.5, the fluid motion within the
cavity and in the mainstream is similar to the steady flow shown in Fig. 6a,b. During
the period 0.5 < 1t < 0.75, the accelerating mainstream fluid displaces the shear layer
into the cavity and for a short time the center of the vortex is shifted toward the
upstream half of the cavity. As the motion starts to decelerate at T = 0.75 down to
where it reaches steady flow at t = 1.0, the center of the vortex moves back to its
original position and the vortex grows in size, expanding slightly into the mainstream.
This growth in size of the vortex during deceleration is not uncommon and has been
shown in [1,2,3]. Returning to the steady half cycle, the streamlines for 0.0 < 1 < 0.2,

show that the motion does not instantly settle down to steady flow, but instead some

.,‘,l:i
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adjustment time is needed to recover from the previous pulse. The streamlines,
however, appear similar to those resulting from steady forcing by 1 = 0.3.

The sloshing mode is similar to steady flow because the forcing function which
drives the fluid motion has a weak pulsatile component and a relatively strong steady
component. In the experiments, the pulsatile component depends on the piston
displacement and on the frequency of oscillation of the piston. Weak pulsatile
conditions, which yield a small Rep, result from a relatively small piston displacement,
a low frequency of oscillation, or a combination of both. As implied when the
dimensionless parameters were defined, the ratio of ch to Re' is a strong indication of

the characteristics of the fluid motion. For the sloshing case shown in Fig. 7a,b and

Re

Fig. 8a,b, Re = 0.56, thus the peak pulsatile Reynolds number is only a fraction of the

s

steady Reynolds number. In the numerical calculations, this ratio affects the driving

mechanism through the boundary conditions imposed on y. In eqn. (24), the steady

Re
forcing component is the inverse of ﬁgﬂ , and the pulsatile component is expressed by
)

the sine term. For the case in Figs. 7a,b and 8a,b, the magnitude of the steady term is
%5—6—-: 1.79 and the maximum value of the sine term is 1.0 at T = 0.75. Since the steady
term 13 always much larger than the time dependent term, the steady component
controls the flow structure and the sloshing mode appears similar to steady forcing.

The mixing mode is quite different from the sloshing mode. During a cycle in
the mixing mode, the shear layer spanning the cavity does not remain intact throughout
a cycle. Figure 9a,b shows numerically calculated instantaneous streamlines for a full
cycle of a typical mixing mode, while Fig. 10a,b shows the particle pathlines for the
same cycle. In the first half cycle, where only a steady forcing function is present, the
fluid in the cavity undergoes an adjustment period following the preceding cycle,
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similar to that shown in a sloshing mode. A full recovery to a steady flow solution is
not possible, however, before the pulsatile motion of the second half cycle starts at
T =0.5.

The acceleration and subsequent deceleration in the second half cycle in a
mixing mode forces interaction of the mainstream with the cavity fluid. As the
accelerating mainstream encounters the sudden expansion of the cavity, fluid swirls
around the upstream corner of the cavity, severing the shear layer. This process occurs
between 1 = 0.5 and 1 = 0.6 since at © = 0.6 in Fig. 9b, the separation streamline does
not exist and in Fig. 10b, the movement of fluid into the cavity is very noticeable. As
mainstream fluid enters the cavity, it simultaneously destroys the vortex by forcing
this fluid out of the cavity and forms a new vortex from the swirling motion at the
upstream cavity corner. As the deceleration begins at T = 0.75, the new vortex grows
to fill the cavity and shift its center downstream. Growth of the vortex increases until
it protrudes significantly into the mainstream shown at 1 = 1.0 in Fig. 9b, when the

forcing function returns to steady conditions.

Re
For the mixing case shown in Figs. 9a,b and 10a,b, the ratio of R—eﬁ =0.91, so the

S

magnitude of Rep 1s approximately the same as the magnitude of Res. In eqn. (24), the
steady forcing component has a magnitude of GITI— = 1.10 which is comparable to the

maximum value of the sine term.

Re Re
The transition from sloshing to mixing is a strong function of R—CP— . For R—ep— near

zero, the fluid motion is essentially steady with no noticeable change in flow

characteristics in a cycle. Small values of the ratio yields sloshing behavior of the

Re
cavity fluid. Forcing functions with ﬁe—P— near 1.0 mark the division between sloshing
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modes and mixing modes with higher values operating in a mixing mode. Large values

Re
of l_{-é& characterize strong mixing of the fluid.

In every Rc‘= constant plane in parameter space, there is a locus of (Fp, S;)
points that separate the sloshing mode from the mixing mode. For the Rc'= 120 plane,
a plot of Fp Versus Sl in Fig. 11 shows a linear relationship. Operating points above
the sloshing/mixing line are in the mixing mode while points below are in the sloshing

mode. By definition

Y
Rep = Sl ,
so the value of Rep at any point on the sloshing/mixing line can be found by drawing a
Re
__P

ray from the origin. Since the sloshing/mixing line does not intersect the origin Re
8

Re
decreases weakly with increasing Sl. However, since I—{e—& 1s approximately constant,

this ratio makes an excellent means of comparing the relative behavior of two flows at
Rcs= 120.

In Fig. 12, sloshing/mixing lines are plotted as a function of Fp and Sl for three
different values of Res. Each line 1s approximately linear, indicating that as Sl
increases, Fp also increases. Starting at a point in the sloshing regime for Res= 120, the
mixing mode can be reached by either increasing Fp , decreasing St, or decreasing Re'.
Starting at a point in the mixing regime, as Res increases, Rep must also increase to
maintain mixing behavior.

Instantaneous streamlines for an excellent mixing case are shown in Fig. 13a,b

and the corresponding experimentally obtained particle pathlines are shown in

Fig. 14a,b. The parameters in these figures are: Re = 42, Fp= 26.3, and St= 0.147, so
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ch= 179. The pulsatile/steady ratio is ﬁgﬂ = 4.3, which means there is extremely

strong mixing. Comparing the numerical results of Fig. 13a,b with the experimental
results of Fig. 14a,b, shows excellent agreement between the particle pathlines and the
instantaneous streamlines. During the first half of the cycle (the steady half cycle), the
vortex in the cavity is large and strong, and only a small portion of it dissipates before
the next driving pulse at T = 0.5. During acceleration, 0.5 < t < (.75, mainstream
fluid enters the cavity near the upstream corner and simultaneodsly washes out the
existing vortex in a manner that is similar to the weaker mixing case discussed before.
At 1 =0.70, a new vortex can be seen forming near the upstream corner. During the
deceleration, the new vortex grows to completely fill the cavity and its center shifts
downstream. As the steady half cycle begins, careful examination of the streamlines
show that the vortex 1s now so strong that fluid is driven back upstream slightly
around the upstream corner. Other indications of the vortex strength are the large
displacement of the streamlines in the channel and the recirculatory regions on the
opposite flat wall. Since these recirculation regions are periodically washed

downstream, the presence of these regions help the mixing process. Thus, as expected,

Re

a high §P— value yields an excellent mixing case which exhibits an extremely strong

S

cavity vortex.
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Conclusions-

Up to a steady Reynolds number of Re = 120, the numerical results presented
here are assumed accurate as experimentally obtained particle pathlines and
numerically calculated instantaneous streamlines correspond closely. The ability of
the finite difference code to accurately define the flow conditions has been tested and
shown to be valid over the range of parameters 0 < Re's 120, 0.10 < Sl < 0.50, and
0< Fps 40.

Periodic fluid motion of the type described in this study can be categorized as
operating in one of two modes: a sloshing mode, or a mixing mode; the distinction
being whether the shear layer spanning the cavity is severed at some point in the cycle,
showing cavity-mainstream interaction aside from the mainstream merely driving the
cavity flow through the shear layer. For a specific Reg, an operating region can be
mapped out for each of the two modes. A plot of these regions shows an almost linear
relationship between the frequency parameter, Fp, and the Strouhal number, S[.
Starting from a point in the sloshing regime, transition to mixing mode behavior can be
achieved by increasing Fp, decreasing St, or decreasing Rcs.

Excellent cavity mixing 1s achieved by selectively choosing the operating point

Re
for a given Rc:S such that the ratio of ﬁgﬂ 1s sufficiently larger than that necessary to

8

cause mixing. It is postulated that the best operating points on a plot such as that

shown in Fig. 12 are those that are in a direction perpendicular (upwards and to the

Re
left) to the sloshing/mixing line for a given Res since this yields a large value of ﬁEL’




Proposed Research-

Enhanced heat transfer in flow past a series of rectangular cavities can be
achieved by increased mixing between the mainstream and the cavities. A method has
been presented to promote fluid mixing between the two regions. To determine the
effectiveness of the method in enhancing heat transfer from the separated regions,
experimental and numerical modeling will be developed to include heat transfer from
the surfaces which bound the cavity in the present study.

In the expeﬁmental channel, the heat transfer surfaces will be supplied with
constant heat flux sources and temperature measurements from these surfaces and
from within the fluid will yield a means of determining an overall heat transfer
coefficient. Measurement of the bulk fluid temperature as a function of axial position
through the heated test section will provide the amount of heat transfer to the fluid and
also provide correlations for the boundary conditions in the numerical simulation.

The numerical solutions for the flow structure will be developed to include a
finite difference approximation to the energy equation. This equation, which can be
solved subsequent to the fluid flow solution, will use experimental data to impose the
temperature boundary conditions in the solutions. Once the energy equation is solved,
the temperature field throughout the fluid can be found at any time in a cycle under the
forcing functions described in this thesis. By numerical integration, an average heat
transfer coefficient will then be found which is a function of the forcing parameters.
The heat transfer coefficient is the factor necessary to compare the convection
characteristics of different flows. This will yield a measure of the effects of using

pulsatile components superimposed on steady flow in comparison to pure steady flow.
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Figure Captions-

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Cross-section of experimental test section and model of numerical
method. Flow is planar past a series of rectangular cavities located on

one wall only.

Mean velocity U(t). The cyclic veloci’ty consists of a steady velocity, U'
for 0 < 1 < 0.5, and a velocity Us plus a sinusoidal acceleration and
deceleration of amplitude Up for 0.5 < 1 < 1.0.

Schematic drawing of the experimental channel. Flow enters from the left
through the diffuser and then travels down a long flow straightening
section before reaching the middle test section. After exiting the test
section it passes through another long, flat section before converging

down to the exit piping.

Inlet flow schematic. The pulsatile flow component is supplied through
one-way valve A while a constant head steady flow component is supplied
through one-way valve B. Drawing fluid through valve A, the oscillating
piston determines the quantity and frequency of the added pulsatile

component which is expelled through one-way valve C.

a) Definition of cavity dimensions. (h-channel width, d-cavity depth,
l-cavity length, L-geometric periodicity length).
b) Mesh of numerical solutions, 84 x 68 grid spaéings in the axial and

transverse directions.
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Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

a) Particle pathlines of steady flow at Re = 120.
b) Numerically calculated streamlines at Re'= 120.

¢) Numerically calculated vorticity contours at Re'=120.

a) Streamlines showing sloshing mode for 0 < 1 < 0.5.
(Re = 120, Fp= 13.2, Sf 0.197)

b) Streamlines showing sloshing mode for 0.5 < t < 1.0.
(Re =120, Fp= 13.2,§ = 0.197)

a) Particle pathlines showing sloshing mode for 0 < 1 < 0.5.
(Res-—- 120, sz 13.2, Sn: 0.197).

b) Particle pathlines showing sloshing mode for 0.5 < t < 1.0.
(Re = 120, Fp= 13.2, 5 =0.197).

a) Streamlines showing mixing mode for O < 1 < 0.5.
(Res= 120, Fp= 26.3, Sl= 0.241)
b) Streamlines showing mixing mode for 0.5 s 1 < 1.0.

(Res= 120, Fp= 26.3, sz 0.241)

a) Particle pathlines showing mixing mode for 0 < © < 0.5,
(Res= 120, Fp= 26.3, Sl= 0.241).
b) Particle pathlines showing mixing mode for 0.5 < t < 1.0.

(Res= 120, Fp= 26.3, sz 0.241).
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Figure 12

Figure 13

Figure 14

Enadiser oo 0 240,
Bl v L

Plot of Fp vS. St showing the dividing lines between the sloshing and
mixing modes (Re'= 120). Mixing modes exist above, while sloshing
modes exist below the sloshing/mixing line.

Plot of Fp VS. Sl showing the dividing lines between the sloshing and
mixing modes as a function of Res (Re8= 50, 90, 120).

a) Streamlines showing excellent mixing for 0 < 1 < 0.5.
(Rcsz 42, Fp= 26.3, Sl= 0.147)
b) Streamlines showing excellent mixing for 0.5 < t < 1.0.

(Rcs: 42, Fp= 26.3, Sl= 0.147)

a) Particle pathlines showing excellent mixing for 0 < 1 < 0.5.
(Res= 42, Fp= 26.3, Sl= 0.147)
b) Particle pathlines showing excellent mixing for 0.5 < © < 1.0.

(Rcs= 42, Fp= 26.3, St= 0.147)
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