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MIXING ENHANCEMENT IN FWW PAST RECTANGULAR CAVITIES 

AS A RESULT OF A PERIODICALLY PULSED FORCING FUNCTION 

Jeffrey S. Perkins 

Abstract-

Periodic elimination of the shear layer separating the mainstream and 

recirculatory regions in flow through a multi-cavity channel is possible by imposing a 

pulsatile forcing function on the otherwise steady fluid motion. Numerical and 

experimental results are correlated to show that pulsing the flow during half of a cycle 

leads to the destruction of the trapped vortex while simultaneously generating its 

replacement. During the other half of the cycle, where there is only steady flow, the 

new vortex grows to fill the cavity and protrudes into the mainstream, thus further 

enhancing mainstream and cavity mixing. The fluid motion is characterized by three 

non-dimensional parameters: a Reynolds number based on the steady velocity 

component, a Strauhal number based on the unsteady velocity component and a 

frequency parameter based on the frequency of oscillation. The effect of each 

parameter on fluid exchange between the mainstream and the cavity is discussed . 
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NOMENCLATURE 

d Cavity depth 

F Frequency parameter 
p 

h Channel width 

1 Cavity length 

L Geometric periodicity length 

Re Pulsatile Reynolds number 
p 

Re Steady Reynolds number 
s 

s Strouhal number 
l 
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Amtract-

Periodic elimination of the shear layer separating the roainstteam and 

rccirculatory regions in flow through a multi-cavity channel is possible by imposing a 

pulsatile forcing function on the otherwise steady fluid motion. Numerical and 

experimental results arc correlated to show that pulsing the flow during half of a cycle 

leads to the destruction of the trapped vortex while simultaneously generating its 

replacement. During the other half of the cycle, where there is only steady flow, the 

new vortex grows to fill the cavity and protrudes into the mainstream, thus further 

enhancing mainstream and cavity mixing. The fluid motion is characterized by three 

non-dimensional parameters: a Reynolds number based on the steady velocity 

component, a Strauhal number based on the unsteady velocity component and a 

frequency parameter based on the frequency of oscillation. The effect of each 

parameter on fluid exchange between the mainstream and the cavity is discussed. 
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Introduction-

Internal fluid motion past rectangular cavities such as that shown in Fig. 1, 

exists in devices such as electronic components on circuit boards and ribbed heat 

exchangers in cross flow. In these devices, steady forcing of the flow causes 

separation regions to fonn in the cavities. As a result of the steady fluid motion past 

the mouth of each cavity, there is a strong division between the straight and parallel 

streamlines found in the driving flow and the recirculating streamlines within the 

cavity. Transverse flow across the shear layer between the cavity and channel is 

absent. This lack of mixing inhibits effective heat removal from the cavity fluid, 

which in turn diminishes the removal of heat from the generating surfaces. 

To promote mixing of the fluid between the two regions, the shear layer must 

be severed by some means, showing interaction of the mainstream with the fluid 

trapped in the cavity. Several studies [ 1,2,3] show that forcing the flow sinusoidally 

leads to excellent mixing of the mainstream with that of a separated region. However, 

the sinusoidal motion has no net flow rate, which is needed to remove heat from the 

system. Superposing unidirectional fluid motion onto the oscillatory motion will 

cause heat removal since the unsteady component enhances lateral mixing, while the 

steady component provides transport of heat away from the cavity and out of the 

system. The effect on the flow field of one type of unsteady forcing is the focus of the 

present study. Although the results presented are restricted to the flow analysis, the 

ultimate goal of the study is to determine the optimum conditions for efficient heat 

removal. 

Forcing of the fluid can be accomplished by superposing an oscillatory 

component on a steady flow, however, a sinusoidal variation will at some times add to 

the forcing flow rate while at other times it will lessen it The reduction in the flowrate 

-2-
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will decrease the amount of heat removal in a system, thus if increased mixing can 

result by using the additive portion of the oscillatory component alone, there is no 

reason to use the detractive portion. The resulting forcing function varies sinusoidally 

as an additive pulse superposed onto the steady flow for half of a cycle, while for the 

other half cycle, only a steady flow exists (see Fig. 2). 

The fluid motion past the periodically repeated rectangular cavities, used in the 

experimental and numerical parts of the study, is assumed to be fully developed. This 

condition is easily imposed numerically by defining periodic boundary conditions. In 

the experiments, fully developed flow occurs after the sixth of seventh cavity such that 

the flow past one cavity is the same as that past any other cavity. 

Two-dimensional laminar fluid motion is assumed in the experiments and the 

numerical analysis which is justified if the geometry is infinite in breadth. 

Numerically, this assumption reduces the number of governing equations of motion by 

one. Experimentally, the two-dimensional flow assumption is approximated by an 

experimental channel with a large breadth dimension relative to the channel width 

such that the boundary layers in the breadth dimension do not affect the flow. The 

breadth to width aspect ratio is 15: 1 in the experimental channel. 
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Literature Review-
The present study examines periodically pulsed planar fluid motion past a 

series of rectangular ca~ties. Similar studies on planar flow past geometries with 

periodic cavities and periodic forcing functions have been reported numerically in 

Sobey (1980, 1982) and experimentally in Stephanoff, Sobey, and Bellhouse (1980). 

Geometries used in these investigations include channels with sinusoidally varying 

walls, both symmetric and asymmetric; channels with semi-circular scallops on the 

walls; and channels with rectangular cavities. In each paper the fluid motion resulting 

from a sinusoidal forcing with no mean velocity is discussed. It is found that during a 

cycle, recirculatory fluid motion (a vortex) develops within the cavities. The vortex in 

each cavity grows with deceleration and is then ejected into the center of the channel 

during flow reversal. Fluid previously comprising this vortex is then entrained in the 

accelerating mainstream and is transported away from the cavity, provided the 

magnitude of the oscillation is sufficient. 

Subsequent numerical work by Ralph ( 1986) on oscillatory motion through 

channels with sinusoidally varying walls reiterates the results discussed above but 

shows that neglecting effects of a flow' s time-history is not a uniformly valid 

assumption, as implied in Sobey ( 1980). It is shown that when the vorticity transport 

is low, the ejected vortex is not necessarily destroyed by the accelerating mainstream. 

Effects of the ejected vortex can persist well after the onset of reversal. 

Similar numerical work by Savvides and Gerrard (1984), illustrates oscillatory 

motion in a channel with walls varying as triangle waves. Steady forcing of the fluid 

past the periodic geometry shows that for a Reynolds number above a critical value, 

the mainstream appears largely unaffected by the presence of the irregular wall, aside 

from the local relaxation of the no-slip condition. Streamlines in the mainstream are 
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parallel and a shear layer spans each triangular cavity. The fluid motion within a 

cavity forms a well-defined vortex driven by the shear layer interface. This seems to 

be the only interaction between the two regions for a steady forcing function. Of 

primary interest are the solutions for oscillatory motion where an oscillatory 

component is imposed upon a steady flow. It is shown that when the steady and 

oscillatory components are of the same order of magnitude, periodic ejection of 

recirculatory fluid from a cavity occurs and is followed by a subsequent reformation of 

the vortex in this separated region. 

The results presented in the studies discuss¢ above have importance in 

applications needing enhanced transport of some quantity such as mass or heat from a 

separated region. Not only can the trapped fluid be ejected into the mainstream 

through the positive effects of oscillatory motion on separated regions, but by 

superimposing an oscillatory motion on a steady flow, the mass or heat energy can be 

washed downstream and eventually out of the system. Possible applications include: 

1) enhancing heat transfer from electronic components mounted on a circuit board; 

2) enhancing heat transfer from ribbed heat exchangers experiencing a cross flow; and 

3) removal of a substance which settles in notches on a wall of a device. 

Numerical solutions by Ghaddar, ~ . .ru.. (1986), further illustrates fluid motion 

through a flat wall channel with rectangular ca vi ties on one of the flat walls. As in 

previous studies, the steady flow solutions show a well defined vortex within the 

cavity and a cavity-spanning shear layer is present. In general, the center of the vortex 

is shifted downstream of the center of the cavity and again the mainstream and 

recirculatory regions are largely isolated from each other. Other than driving the 

cavity motion through this interface, the cavity and mainstream are essentially 

independent flows. 
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As in the work by Savvides and Gerrard, Ghaddar, e_t. Bl. examine motion with 

a steady and an oscillatory component. However, in the Ghaddar ~ . .Bl.study the 

magnitude of the oscillatory component is much less than that of the steady 

component. The sinusoidal variation is intrcxiuced as a small perturbation to the 

steady flow rate for moderate Reynolds numbers. It is shown that self-sustained 

oscillations develop in the shear layer which trigger the onset of transition to 

turbulence at Reynolds numbers lower than that which occurs for steady farcing of the 

fluid. As a result of the shear layer oscillations, there is a significant change in the 

flow structure in the vicinity of the cavity-mainstream interface. The self-sustaining 

oscillations indicate stronger interactions between the two regions than that of pure 

steady flow and are found to enhance the transport of heat from the cavity [ 16]. 

In this study, periodic fluid motion past a geometry similar to that used in 

Ghaddar, ~. al., i.e. spatially fully developed flow past rectangular cavities, is 

examined, although the nature of the flow field is quite different. The primary 

objective is enhancement of transport characteristics of flow past cavities, which leads 

to a slightly different flow profile. The fluid motion contains a steady component with 

a superimposed unsteady component of the same order of magnitude where the 

unsteady component is an additive sinusoidal pulse which exists for half of a cycle. 

Numerical and experimental comparisons will be made from results contained herein 

to results from the studies discussed above. 

-6-
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Flow Characterization in Dimensionless Parameters-
By grouping certain variables together, which describe the fluid motion and 

geometry, parameters can be formed such that all dimensional dependence cancels out. 

Choosing these dimensionless parameters properly yields an excellent means of 

comparing different flows without having to analyze each in detail. Since the 

parameters are dimensionless they apply to different dimensional scales without 

variation of the fluid motion; in other words, if two devices have the same 

dimensionless parameters, the flow structure will be the same. 

In this study the characterization of the flow field will be the mean velocity 

U(t) imposed by the forcing function. As previously described, the forcing function is 

a sinusoidal variation on a steady flow where only additive effects are used, resulting 

in steady forcing for half of a cycle with period T, and a steady plus a sinusoidal pulse 

for the other half cycle. Figure 2 shows a typical waveform which would exist in a 

parallel walled channel, which can be described as 

r lT 

U (t) = i. U' + U sin[ 21t (Tt -0.5) ] 
s p 

t 
0 ~ T ~ 0.5 

t 0.5 ~ T ~ 1.0 

where U is the velocity due to the steady component, and U is amplitude of the 
s p 

sinusoidal pulse present for the second half cycle. The forcing function accelerates the 

fluid from a velocity of U to a value of U + U during 0.5 ~ Tt ~ 0.75, and decelerates 
s s p 

it to U
1 
for 0.75 ~ ~ ~ 1.0. 

For convenience, a new time variable, t, is formed such that t = ~ . Since the 

flow is periodic and fully developed in the sense that the flow at t = t is exactly the 
1 

same as that at t = t 
1 
+ T, the variable 't is nonnalized such that O ~ 't s 1.0 . 

-7-
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In this study, the geometry and the type off orcing function are held constant. 

There are three independent variables U , U , and T, which suggests that three 
I p 

independent dimensionless parameters form the necessary basis to describe a uniquely 

determined flow. Since the velocity is assumed to be the superposition of a steady 

velocity and a time dependent velocity, the describing parameters are chosen such that 

time dependent effects are separate from effects due to the steady flow. The steady 

flow is characterized by a steady Reynolds number such that 

hU 
Re= s 

s V 

where h is the channel width and v is the kinematic viscosity, which is kept fixed. 

It is unclear whether U , U , or U + U should be used when defining the 
s p s p 

Strauhal number, S. Since the parameter normally describes time dependent motion, 
t 

it is chosen to be defined as 

S - Lh 
l - u 

p 

In support of this choice it can be shown by integrating U(t) from O ~ 1 ~ 1.0 that S 
t 

is function of only one variable, the volume of fluid added to the flow per cycle, q,, 
during the pulse. Each of the three defining parameters will similarly be a function of 

only one variable. 

In addition to Re and S, a third parameter is necessary to form a basis for full 
s t 

characterization of the flow. As this third dimensionless quantity, a frequency 

parameter, F , is used which is only a function of the frequency of oscillation. F is 
p p 

defined as 

f h2 
F --

P V 

-8-
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The flow is fully characterized by Re, S, and F, but there is a fourth 
I l p 

parameter which becomes useful in comparisons. This parameter is a pulsatile 

Reynolds number of the form 

hU 
Re= P 

p V 

Using the previous definitions for F and S , Re can be expressed as 
p t p 

F 
Re= SF . 

p l 

In analyzing the following results, it is important to realize that the pulsatile 

Reynolds number is achieved at only one instant in the cycle, at the peak of the input 

pulse, when 't = 0.75. Nevertheless, mixing is a very strong function of the ratio of 

this pulsatile Reynolds number to the steady Reynolds number. 

Using the three initial parameters, Re , F , and S , yields a useful set of directly s p t 

applicable relations. In the flow visualization experiments U , f, and the volume of 
s 

fluid added per pulse, 0 , are adjustable such that Re , F , and S are directly measured. "'), s p l 

The sinusoidal pulse is enforced with a piston such that ~ is controlled by adjusting 

the piston's stroke. The choices for the parameterization are therefore shown to be 

good in that each parameter is a function of only one variable, and convenient in that 

the independent variables are, in general, easily measurable quantities. 

-9-
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Experimental Setup-

The flow visualization experiments use water as the working fluid in a closed 

channel constructed of plexiglas. As shown in Fig. 3, the channel consists of five 

sections: a diffuser, a long upstream flat wall section to insure fully-developed plane 

Poiseuille flow prior to the test section, a replaceable test section, a long downstream 

flat wall section, and a convergent section. The test section and flat wall sections have 

inner dimensions of 22.9 x 1.52 cm, the former being the vertical, yielding an aspect 

ratio of 15: 1. 

The fluid enters the piping system through one of two inlet pipes shown in 

Fig. 4. Inlet #1 supplies fluid used to generate a pulse in the velocity profile while 

inlet #2 supplies a constant head steady flow. Valves A and B shown in Fig. 4 are one­

way valves which prohibit fluid motion up either of the two inlet pipes. The piston, 

which is connected to a Scotch yoke mechanism, oscillates at a frequency determined 

by the speed setting on the driving motor's controller. As the piston retracts, fluid is 

drawn through valve A from inlet #1; valve C, also a one-way valve, prevents the 

piston from drawing fluid from inlet #2 or the channel. The fluid drawn into the piston 

chamber is expelled through valve C when the piston moves toward the channel. This 

fluid joins the steady component which is supplied throughout the cycle. Immediately 

downstream, the velocity profile appears steady for the first half cycle when the piston 

draws fluid from inlet #1 and then pulsatile during the second half cycle. The 

resulting mean velocity profile is shown in Fig. 2. While the flow rate of the steady 

component is controlled by a needle valve (not shown) on inlet #2, the flow rate of the 

pulsatile component depends on the frequency of oscillation of the piston and its 

stroke (the volume of fluid expelled during each stroke). 

-10-
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After the steady and pulsatile flows merge, the fluid passes through the diffuser 

and then enters the channel. A three inch length of honeycomb and the following long 

flat wall section straighten the flow prior to entering the test section. Upon entering 

the test section, the walls are still flat until the first of 15 bars mounted transversely on 

one of the vertical walls. Extending from the top of the channel to the bottom, the bars 

have a square cross-section of 0.64 cm on a side and are spaced by a gap of 1.27 cm 

(see Figs. 1 and 5a). Each cavity formed between the bars is 0.64 cm deep and 

1.27 cm long. Since the bars protrude into the channel the effective channel width, h, 

is 0.89 cm. From Fig. 5a, the geometric periodicity length, L, is 1.91 cm. As the fluid 

passes the first few bars it adjusts to the spatially varying boundary along one wall and 

becomes fully developed by the seventh cavity. All photographs in the study are from 

the ninth cavity where the flow is fully developed. 

As the fluid exits the test section it enters another long parallel-wall section and 

then a nozzle with the same dimensions as the diffuser. The flow converges to the exit 

pipe which leads to a reservoir. The fluid in the reservoir is then pumped up to the two 

feed tanks which supply inlets #1 and #2. 

Flow rates are measured with a one U.S. gallon jug and a stopwatch. During 

an experiment, the steady flow rate is measured before the Scotch yoke is started. 

After the yoke is started, the fluid motion needs a few minutes to reach equilibrium 

conditions and then the total flow rate is measured. From the period of oscillation, the 

stroke of the piston, and the two flow rate readings, the dimensionless numbers, Re , 
I 

S , and F are calculated. 
t p 

Natural pearl essence, comprised of flake-like luminescent particles which 

have a settling time of roughly two hours in water, is mixed into the water so that the 

fluid motion is visible. The quantity of pearl essence added is dependent upon the 

-11-
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mixing between the mainstream and fluid in the cavity. If mixing in the cavity is 

good, a large number of particles enter the cavity so the fluid motion in both the cavity 

and mainstream is visible. However, if mixing between the two regions is poor, only a 

small number of particles enter the cavity, which does not illuminate this region 

sufficiently. As a result, more pearl essence must be added to the fluid for poorly 

mixing flows to illuminate the cavity region sufficiently. 

While talcing pictures, the entire test section is masked with an opaque material 

except for 1) a thin slit 0.64 cm wide which passes a horizontal plane of light at the 

centerplane of the channel, and 2) the top of the section where the camera sits. Light 

from a 750 Watt halogen spot light passes through a cylindrical plano-convex lens 

before entering the thin slit in the masking material. The piano-convex lens converges 

the light into an intense parallel beam so that the particles at the centerplane are highly 

illuminated. 

A Canon Al 35mm SLR camera with a 105mm macro lens is used for the 

photography. The camera is attached to an adjustable height bracket which is fixed to 

a platf onn on rails direct! y above the channel. During filming the camera points down 

through the top of the test section and is focused on the illuminated centerplane. Black 

and white Kodak Technical Pan film, which is a high resolution, variable speed film, is 

used at a speed of 160 ASA and is developed using a high contrast process. 

An external triggering device, connected to the camera's high speed motor 

drive, controls the timing of the photography. A magnetic switch is mounted on the 

flywheel of the Scotch yoke to provide a position reference signal for the triggering 

sequence. From this reference signal, the triggering device calculates the period of 

oscillation and emits a trigger signal to the motor drive at a specified time in the cycle. 
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The error involved in correct placement of the magnetic switch is 2-3 % of the period 

of oscillation. 

Correct shutter speed is crucial to obtaining the best visualization of the time 

dependent flow. Instantaneous streamlines, which are in reality particle pathlines, will 

only become visible if the particles travel a sufficient distance during the opening of 

the shutter. While long shutter speeds let excellent pathlines of individual particles be 

photographed, accurate results require that the shutter speed can only be a small 

fraction of the cycle time. Shutter speeds must be no more than five percent of the 

total cycle time, which ranges from two to six seconds. Depending on the period of 

1 1 1 the cycle, shutter speeds of / , / , and / of a second are used. 
4 8 15 

For cases involving strong mixing in the cavity throughout the cycle, velocities 

encountered within the cavity are of the same order as those in the mainstream, thus a 

particle in either field travels the same distance in a specified time. However, for 

steady flow and those which are similar to steady flow, velocities in the cavity are 

much lower than those in the mainstream. Shutter speeds for these cases must be at 

least 1
/ second to show any noticeable particle motion within the cavity and even when 
4 

the shutter speed is this long it is often difficult to capture the flow structure in the 

cavity region. 
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Numerical Analysis-
The numerical solutions, as well as the experimental results, mcxlel a 

two-dimensional, incompressible flow past a uniform series of rectangular cavities. 

Defining quantities in the x,y plane of a Cartesian coordinate system, the flow field is 

determined by calculating the velocity components u in the strcamwise (x) direction, 

and v in the transverse (y) direction. Fluid properties such as the kinematic viscosity, 

v, are assumed to be constant over the range of flow conditions studied and under the 

incompressible assumption, the density, p, is also a constant. Body forces, such as 

those due to gravity are assumed to act in a direction normal to the plane of motion 

and thus, not affect the flow. Fluid motion is then governed by the two-dimensional 

Navier-Stokes equations, which require the conservation of linear momentum in each 

of the coordinate directions: 

au au au 1 dP -+u-+v- = --- +v at ax ay p dx ( a
2 

u + a
2 

u J 
ax 2 ay 2 

(1) 

av av av 1 dP 
at+ U ax+ Vay = -p dy + V ( a

2 
v + a

2 
v J 

ax 2 ay 2 
(2) 

where P is the pressure. In addition to ( 1) and (2), a continuity of mass equation for 

two-dimensional flow is 

(3) 

The equations of fluid motion are solved by ridding their dependence on 

dimensional quantities such as length, time, and mass. The dimensionless parameters, 

which act as coefficients, determine the solution of the fluid motion. Flows with 

identical parameters yield identical solutions, independent of different dimensional 

scales. Nondimensionalization scales each tenn in the equations (1), (2), and (3) by a 

characteristic quantity of the same dimensions. For example, the tenn ~~ in eqn. (3) 
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would be nonclimensionalized by dividing u by some characteristic velocity, U, and x 

by some characteristic length, H. As this is done to each term in (1), (2), and (3), 

common tenns are canceled out leaving each term dimensionless. Cenain terms will 

retain coefficients f onned by groups of these characteristic quantities. It is these 

groups of quantities, or dimensionless parameters, which uniquely determine the flow 

field solution for a given set of boundary conditions. 

In the domain shown in Fig. 5a, all length dimensions are scaled on the 

dimensional channel width, h. Defining the dimesionless channel width, h as 1.0, the 

scaled cavity depth, dis 0.7, the cavity length, l, is 1.4, and the geometric periodicity 

length, L, is 2.1. In a similar way, the length variables x and y are nondimensionalized 

by forming the quantities 

(1) 

Since choosing the scale factor is somewhat arbitrary, the equations are not effectively 

changed in any way. U is chosen as the velocity scale factor and u and v are 
p 

nondimensionalized as follows, 

u u=u 
p 

V 
V=u· 

p 

Although not apparent here, U is used as the scaling velocity because it yields a 
p 

convenient form of the boundary conditions which are enforced on the numerical 

(2) ' 

solution. As before, time is nondimensionalized on the period of oscillation T as 

t 
't = T. (3) 

The Navier-Stokes equations, written in their nondimensional form, become 

s au + u au + v au = _ a P + 1_ ( a 
2 

u + a 
2 

u J -~, < 4) 
t a 't dX d y d X Re a 2 a 2 

P X y 

and 
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s av + ~ + v ~ = _ ~ + L ( a
2 

v + a
2 

v ] 
t ih; U ilx ily ily Rep ilx 2 ay2 , (5) 

where the coefficients S and Re arc as defined previously. In eqns. (4) and (5) the 
l p . 

terms on the left hand side of the equation represent the total change in the local 

velocity due to unsteady flow and convected effects. The terms on the right represent 

the effects of pressure variations and viscous effects in the absence of body forces 

such as gravity. The continuity equation in dimensionless form is 

(6) 

As is common in calculations of two-dimensional incompressible flows, the 

equations of motion, written in tenns of the primitive variables, u,v, and P, are 

transformed into equations in terms of the stream function, 'V, and the vorticity, ro. 

The stream function is defined such that 

U -~ - ay V - ~ - - ax 
which identically satisfies ( 6), and ro is defined as 

av au ro- - -- ax - ay . 
By cross-differentiation, the Na vier-Stokes equations can be replaced by a single 

equation for the vorticity, 

S a 0) + U a 0) + V aro = l_ ( a 2 
0) + a 2 

(1) J 
tat ax ay Re ax2 ay2 

and from the definition of ro and 'V, 

2 2 
a"'+ a"'= -ro. 
ax 2 ay 2 

(7) 

(8) 

(9) 

(10) 

The stream function-vorticity formulation reduces the number of equations and avoids 

the need to deal with the pressure term in the primitive variable equations. This is 

useful here, since the pressure field is not of direct interest for the present study. 
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Notice that (9) is similar to (4) and (5) so the equation can be thought of as a balance 

between the changes in vorticity due to unsteady and convective effects and the 

vorticity diffusion. 

Equations (9) and (10) are solved by approximating the each with a finite 

difference solution at node points on a grid overlaid on the domain shown in Fig. 5b. 

At each time step, (9) and (10) are solv~ using information from the previous two 

time steps. The solution then proceeds in time throughout each cycle. 

Leapfrog/ Dufort-Frankel, an explicit, unconditionally stable finite difference 

method which is second order accurate in both space and time, is used to solve the 

vorticity equation at each time step. Using the subscripts (i,j) to denote (x,y) spatial 

position, the superscript (n) to denote the time step, and writing u and v in terms of 'V, 

the terms on the left hand side of eqn. (9) become 

n + 1 n - 1 

am --a1 -
w. . - w. . 

1 , J 1 , J 
2 ~'t 

(11) 

() CO [ ljli , j + I - ljli , j - I J [ CO~ + I , j - CO~ - I , j J ( 12) 
u ax = - 2 ~y - 2 LU -

Cleo _ [ 'l'i + 1 , i - 'l'i - 1 , i J [ (0~ • i + 1 - co; . i - 1 J ( 13) 
V ay - - 2 Af 2 ~y 

and using the Dufort-Frankel method of replacing w~. by its average at times n-1 and 
lJ 

n+ 1 in the central differencing of the diffusion terms, 

n ron. +.I n-1 n a2 ro ( ro. . - m. . + ·ro. . J _ _1 _+ _I -'-' ..__J __ 1 -'--' ..__J __ 1 -'-' ..._J __ 1 _-_1--"--, ....._J 

ax2 (~)2 
(14) 

n n+l n- 1 n 

:: : _ [-
00

_i __ • _j _+ _1 _--~-~--~.._~ _
2 

_
00

_i -'-' ..._j _+_ro_i -'-' ..&-j _-_1 J . (15) 
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Defining the constants 

Ar 
r = t,.y , C At 

= 2axAy • 
D = 2tJ.t , 

Re( at) 2 (16) 

combining eqns. (11)-(15) into eqn. (9) and writing all n+ 1 time levels on the left hand 

side, the finite difference form of the vorticity equation is 

( S + D (l+r1) oo~+t = ( S - D (l+r2
)) w~-~ 

l I • j l 1 .J 

+ C (< 'V. 1 .- 'V. 1 ·) ( ot · 1- ro~ · 1 ) - (v .. 1- v. · 1)(ro~ 1 .- ro~ 1 .)) 
1+ J 1- J 1 J+ 1 J- 1J+ lJ- I + J 1 - J 

+ D [ (l):+lj + (l):.,j + r\c{ j+l + (I): j-1) J (17) 

which can be solved explicitly for w~+~ in tenns of ro and 'V values at the two previous 
I , J 

time levels, n and n-1. 

A standard five-point central difference form of the Poisson equation for the 

stream function ( l 0), yields 

'V. 1 . - 2 'V. . + 'V. 1 . 'V. . 1- 2 'V. . + 'V. . 1 
1+ ,J l,J l· ,J l,J+ 1,J 1,J-

= - w . . 
lJ 

Eqn. (18) is solved iteratively by successive-over-relaxation (SOR) in the form 

(18) 

i•1 
= n 2 [ r

2 l+.1 

1
+ 'V~+

1

1 .+ r2 
'V~. 

1
+ / 

1 
.+ (tuJ2 w . . ] + (1-n) I. (19) 

l .J 2 ( 1 +r ) 1, J - 1- J I J+ 1 + J 1J l J 

where the k index is the iteration level and n = 1.83 is the SOR acceleration parameter. 

In eqn. (19) values of 'Vat the iteration level k+l at (ij-1) and (i-lj) are used to apply 

the most recently acquired information, while values at the iteration k are used for 

nodes (ij), (i+lj), and (ij+l) which have not yet been updated to the k+l level. At 

each time step eqn. (19) is iterated until the maximum variation on 'V between 
I 

• . • -4 
Iterauons IS less than 1 x 10 . 

Necessary conditions that must be met on the boundary of the computational 

domain are that 1) oo and 'V must be periodic over the periodicity length, L, i.e. 

V {0,y) = V (LJ) co {0,y) = co (LJ) (20) 
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and 2), u and v must vanish at solid surfaces which requires 

U=~=O v=~=O 

along the top and bottom walls. From conditions imposed by (21 ), 'I' must be a 

constant along solid surfaces. 

(21) 

To determine the constant values of 'I' along each wall, a relation for the flow 

rate q( t) is found by integrating the u velocity component from the bottom surface to 

the top, that is 

q('t) = hU('t) = J u(y) dy, 

which, by the definition of 'Vin (7) can be changed to 

q ct ) = h u ct) = J dv = w -w . 
2 I 

(22) 

(23) 

For convenience, the value of 'V along the top surface (the more complicated surface 

due to changes in spatial direction), 'V , is set to zero. By (23), 'V along the bottom 
2 I 

surface is then equal to the negative of the flow rate at any time, 't. The dimensionless 

form of the boundary condition yields, 

'V (x,0) = -

Re 
s 

Re 
p 

Re 
Res + sin[ 21t ( 1-0.5)] 

p 

0.0 ~ 1 ~ 0.5 

(24) 

0.5 :$; 1 :$; 1.0 

In addition to the values of 'V along the walls, the fully developed flow condition on 'V 

in (20) must be satisfied to insure closure of the Poisson equation. Values of 'I' on the 

left boundary and those on the right boundary are therefore set equivalent 

To calculate 'V (0,y), the values on the left boundary, eqn. (19) needs 'I' (-1,y) which 

does not exist. However, periodicity requires that 'V (L-1,y) be the same as 'I' (-1.;y) 

and is applied as such. Toe stream function on the right boundary is treated similarly. 
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The boundary conditions in the vorticity equation, (17), require that: 1) the 

fully developed condition on ro in (20) again be satisfied and 2) a boundary vorticity 

condition be specified along the solid surf aces. Again using conditions imposed by 

(21 ), co along the solid boundary can be written as 

co -wall 

7 \If - 8 \If + \II 
Tw Tw+l Tw+2 

2 ( fln) 2 
(25) 

where w is the coordinate normal to the wall in the appropriate direction and fln is the 

differential spacing in that direction [8]. The problem is now solved except for one 

remaining difficulty, treatment of the vorticity at the sharp comers protruding into the 

domain. 

Vorticity at a sharp corner such as that shown in Fig. 5a leads to a singularity 

in the solution since the wall vorticity can be calculated with eqn. (25) in either the x 

or y direction. Three methods have been tried consisting of: 1) averaging the vorticity 

as the comer is approached in the x direction with the vorticity as the comer is 

approached in they direction, 2) summing these two values of vorticity, and 3) not 

requiring continuity of vorticity at the comer, i.e. letting the vorticity become a 

different value when calculated in the x direction than when calculated in they 

direction. The latter of the three can be applied since only the derivatives of the 

vorticity appear in eqn. (9). Instead of requiring continuity around the comer, n in 

eqn. (25) becomes x for terms containing partial derivatives of ro with respect to the x 

direction and similarly, n becomes y for terms containing partial derivatives with 

respect to they direction. At first glance, eqn. (10) appears to create some difficulty 

since it depends on the vorticity, not the derivatives of vorticity. However, this 

equation is not applied along the solid boundaries since 'V is specified there. The three 

methods yielded identical solutions except in the immediate vicinity of the comers, 
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which did not seem to significantly affect the flow field. Upon seeing only minor 

differences between the three, the third method of calculating the wall vorticity in the x 

direction for terms containing partial derivatives with respect to x and applying a 

similar procedure to terms containing partial derivatives with respect toy, is used in all 

solutions based on the recommendations in [8]. 

As the calculation starts from 't = 0.000, all values of ro and 'V are initialized to 

zero. Beginning with the first step in time, the flowrate, as well as the other boundary 

conditions are applied. At this first step, 't = 0.001, eqn. ( 17) requires infonnation 

from two prior time steps, of which only one exists. This problem is dealt with by 

using the initial infonnation for both of the required time steps. 

At each time index, n+ 1, the procedure first calculates the interior vorticity 

field using information on 'V at n and infonnation on co at n and n-1. Boundary values 

of 'V are then introduced which are dependent on the time within the cycle, 't. 

Eqn. (19) is then solved iteratively for the interior 'V field using the most recent 

information on w, that from time n+ 1,until the convergence criteria of the maximum 

variation in 'Vis less than 1 x 104
, as discussed above. Lastly, the wall vorticity is 

calculated from eqn. (25), once again using the most recent 'V values at time n+ 1. This 

is repeated for each of the one thousand time steps in a cycle. To rid the calculations 

of the initial condition of zero flow everywhere, the solution proceeds in time for 

several full cycles until no variation from cycle to cycle is seen. 

Initial calculations with a mesh size of 42 x 34 grid spacings in the x and y 

directions produce solutions with good experimental agreement in all but a few of the 

cases studied. In these cases, where Re and Re are high, oscillations occur in the 
s p 

vorticity field near the downstream protruding comer. A finer resolution mesh of 

84 x 68 (shown in Fig. Sb) resolved this problem and no further oscillations have been 
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observed. With the exception of the cases where there are oscillations at the 

impingement comer, solutions on a 84 x 68 mesh matched those on a 42 x 34 mesh. 

To reduce the CPU time used in the calculations, the 84 x 68 mesh is not used 

from the initial no-flow conditions. Instead, the solution starts with a 42 x 34 mesh 

and is developed from no-flow through three full cycles, which is 3000 time steps. 

The solution at the end of three cycles is is then linearly interpolated onto a 84 x 68 

mesh and used as the initial condition for the 84 x 68 mesh. The fine mesh solution is 

developed for another three full cycles to eliminate initial condition effects. All results 

in this study have been developed for at least 6000 steps in time, consisting of three 

cycles using the 42 x 34 mesh and then three subsequent cycles using the 84 x 68 

mesh. 
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Discussion of Results-
In this section, the structure of the unsteady fluid motion as a function of the 

defining parameters is discussed and an explanation is given for how improved 

interaction with trapped cavity fluid can be achieved. Before any results of time 

dependent motion are shown, steady flow experimental and numerical results for 

Re = 120 are compared (see Fig. 6). Identical fluid behavior in the experiments and 
I 

numerical solutions is apparent when the particle pathlines are compared with the 

numerically calculated streamlines. The vortex position within the cavity is the same 

and there is extremely good agreement where the particle pathlines and streamlines 

change direction quickly. Closer inspection of the experimental photograph in Fig. 6a 

also shows that the shear layer recedes slightly into the cavity in the vicinity of the 

attachment points at the cavity comers; this is also shown in the calculated streamlines 

plotted in Fig. 6b where positive values of the stream function are shown as solid lines 

and negative values are shown as dashed lines. Figure 6c, which shows a plot of the 

vorticity contours for Re= 120, suggests that the cavity, specifically, the comers of the 
II 

cavity, influence the fluid motion out to roughly one-fourth of the channel width into 

the mainstream. However, Figs. 6a and 6b show that little effect is felt on the 

streamlines and particle pathlines aside from the relaxation of the no-slip condition 

over the length of the cavity-mainstream interface. The recirculatory fluid within the 

cavity is driven by the mainstream but appears to have very little interaction across the 

shear layer. Velocities encountered within the cavity are much lower that those in the 

mainstream. The maximum value of the stream function is 4% of that in the 

mainstream, i.e. the flow rate in the cavity is on the order of 4% of the mainstream 

flow rate. 
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Detailed study of the time dependent motion with a velocity profile similar to 

that shown in Fig. 2, over the range of parameters of O s Re s 120, 0.10 s S s 0.50, 
I t 

and O s F s 40 shows that the fluid motion can be characterized into one of two types. 
p 

The criterion used for classification is whether the shear layer, which separates the 

cavity from the mainstream in steady flow, remains intact throughout an entire cycle. 

Points in the Re, S, and F parameter space where the shear layer is present at all 
I t p 

times in a cycle are said to exhibit sloshing mode behavior. The fluid motion in this 

mode is similar to steady flow and thus has the same drawbacks of steady flow. If, at 

some point in the cycle, the shear layer is severed by mainstream fluid entering the 

cavity, a mixing mode cycle is said to be present In this mode there is stronger 

interaction between the mainstream and cavity fluid than there is in the sloshing mode. 

In the sloshing mode, a well defined vortex remains in the cavity throughout 

the cycle. Although the shear layer is always present in this mode, its position shifts 

during the cycle. Figure 7a,b shows numerically calculated streamlines for a full cycle 

of a typical sloshing mode, and Fig. 8a,b shows the experimentally obtained particle 

pathlines for the same case. Notice that for 0.3 s t s 0.5, the fluid motion within the 

cavity and in the mainstream is similar to the steady flow shown in Fig. 6a,b. During 

the period 0.5 s 't s 0.75, the accelerating mainstream fluid displaces the shear layer 

into the cavity and for a short time the center of the vortex is shifted toward the 

upstream half of the cavity. As the motion starts to decelerate at 't = 0.75 down to 

where it reaches steady flow at 't = 1.0, the center of the vortex moves back to its 

original position and the vortex grows in size, expanding slightly into the mainstream. 

This growth in size of the vortex during deceleration is not uncommon and has been 

shown in [l,2,3]. Returning to the steady half cycle, the streamlines for 0.0 s t s 0.2, 

show that the motion does not instantly settle down to steady flow, but instead some 
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adjustment time is needed to recover from the previous pulse. The streamlines, 

however, appear similar to those resulting from steady forcing by t = 0.3. 

The sloshing mode is similar to steady flow because the forcing function which 

drives the fluid motion has a weak pulsatile component and a relatively strong steady 

component In the experiments, the pulsatile component depends on the piston 

displacement and on the frequency of oscillation of the piston. Weak pulsatile 

conditions, which yield a small Re , result from a relatively small piston displacement, ' p 

a low frequency of oscillation, or a combination of both. As implied when the 

dimensionless parameters were defined, the ratio of Re to Re is a strong indication of 
p I 

the characteristics of the fluid motion. For the sloshing case shown in Fig. 7 a,b and 
Re 

Fig. 8a,b, R~ = 0.56, thus the peak pulsatile Reynolds number is only a fraction of the 
s 

steady Reynolds number. In the numerical calculations, this ratio affects the driving 

mechanism through the boundary conditions imposed on 'V· In eqn. (24 ), the steady 
Re 

forcing component is the inverse of Re P , and the pulsatile component is expressed by 
s 

the sine term. For the case in Figs. 7 a,b and 8a,b, the magnitude of the steady term is 

o: 56 = 1.79 and the maximum value of the sine term is 1.0 at,:= 0.75. Since the steady 

term is always much larger than the time dependent term, the steady component 

controls the flow structure and the sloshing mode appears similar to steady forcing. 

The mixing mode is quite different from the sloshing mode. During a cycle in 

the mixing mode, the shear layer spanning the cavity does not rerhain intact throughout 

a cycle. Figure 9a,b shows numerically calculated instantaneous streamlines for a full 

cycle of a typical mixing mode, while Fig. 1 Oa,b shows the particle pathlines for the 

same cycle. In the first half cycle, where only a steady forcing function is present, the 

fluid in the cavity undergoes an adjustment period following the preceding cycle, 
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similar to that shown in a sloshing mode. A full recovery to a steady flow solution is 

not possible, however, before the pulsatile motion of the second half cycle starts at 

t = 0.5. 

The acceleration and subsequent deceleration in the second half cycle in a 

mixing mode forces interaction of the mainstream with the cavity fluid. As the 

accelerating mainstream encounters the sudden expansion of the cavity, fluid swirls 

around the upstream comer of the cavity, severing the shear layer. This process occurs 

between t = 0.5 and t = 0.6 since at t = 0.6 in Fig. 9b, the separation streamline does 

not exist and in Fig. 1 Ob, the movement of fluid into the cavity is very noticeable. As 

mainstream fluid enters the cavity, it simultaneously destroys the vortex by forcing 

this fluid out of the cavity and forms a new vortex from the swirling motion at the 

upstream cavity comer. As the deceleration begins at t = 0.75, the new vortex grows 

to fill the cavity and shift its center downstream. Growth of the vortex increases until 

it protrudes significantly into the mainstream shown at t = 1.0 in Fig. 9b, when the 

forcing function returns to steady conditions. 

Re 
For the mixing case shown in Figs. 9a,b and lOa,b, the ratio of Re P = 0.91, so the 

s 

magnitude of Re is approximately the same as the magnitude of Re. In eqn. (24), the p s 

steady forcing component has a magnitude of 0 _1 
91 = 1.10 which is comparable to the 

maximum value of the sine term. 

Re Re 
The transition from sloshing to mixing is a strong function of Re P • For Re P near 

I 

zero, the fluid motion is essentially steady with no noticeable change in flow 

characteristics in a cycle. Small values of the ratio yields sloshing behavior of the 

Re 

I 

cavity fluid. Forcing functions with Rt- near 1.0 mark the division between sloshing 
I 
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modes and mixing modes with higher values operating in a mixing mode. Large values 

Re 
of Re~ characterize strong mixing of the fluid. 

I 

In every Re= constant plane in parameter space, there is a locus of (F , S) 
I p l 

points that separate the sloshing mode from the mixing mode. For the Re= 120 plane, 
I 

a plot of F versus S in Fig. 11 shows a linear relationship. Operating points above 
p l 

the sloshing/mixing line are in the mixing mode while points below are in the sloshing 

mode. By definition 

F 
Re = f-, 

p t 

so the value of Re at any point on the sloshing/mixing line can be found by drawing a 
p 

Re 
ray from the origin. Since the sloshing/mixing line does not intersect the origin Re P 

s 

Re 
decreases weakly with increasing S . However, since R_£_ is approximately constant, 

1 e 
s 

this ratio makes an excellent means of comparing the relative behavior of two flows at 

Re= 120. 
s 

In Fig. 12, sloshing/mixing lines are plotted as a function of F and S for three 
p l 

different values of Re . Each line is approximately linear, indicating that as S 
s t 

increases, F also increases. Starting at a point in the sloshing regime for Re = 120, the 
p I 

mixing mode can be reached by either increasing F , decreasing S , or decreasing Re . 
p l I 

Starting at a point in the mixing regime, as Re increases, Re must also increase to 
s p 

maintain mixing behavior. 

Instantaneous streamlines for an excellent mixing case are shown in Fig. 13a,b 

and the corresponding experimentally obtained particle pathlines are shown in 

Fig. 14a,b. The parameters in these figures are: Re= 42, F = 26.3, and S = 0.147, so 
I p t 
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Re 
Re = 179. The pulsatile/steady ratio is R_£_ = 4.3, which means there is extremely 

P e 
I 

strong mixing. Comparing the numerical results of Fig. 13a,b with the experimental 

results of Fig. 14a,b, shows excellent agreement between the particle pathlines and the 

instantaneous streamlines. During the first half of the cycle (the steady half cycle), the 

vortex in the cavity is large and strong, and only a small portion of it dissipates before 

the next driving pulse at 't = 0.5. During acceleration, 0.5 ~ 't ~ 0.75, mainstream 

fluid enters the cavity near the upstream corner and simultaneodsly washes out the 

existing vortex in a manner that is similar to the weaker mixing case discussed before. 

At 't = 0.70, a new vortex can be seen forming near the upstream comer. During the 

deceleration, the new vortex grows to completely fill the cavity and its center shifts 

downstream. As the steady half cycle begins, careful examination of the streamlines 

show that the vortex is now so strong that fluid is driven back upstream slightly 

around the upstream corner. Other indications of the vortex strength are the large 

displacement of the streamlines in the channel and the recirculatory regions on the 

opposite flat wall. Since these recirculation regions are periodically washed 

downstream, the presence of these regions help the mixing process. Thus, as expected, 

Re 
a high Re P value yields an excellent mixing case which exhibits an extremely strong 

s 

cavity vortex. 
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Conclusions-
Up to a steady Reynolds number of Re= 120, the numerical results presented 

I 

here are assumed accurate as experimentally obtained particle pathlincs and 

numerically calculated instantaneous streamlines correspond closely. The ability of 

the finite difference code to accurately define the flow conditions has been tested and 

shown to be valid over the range of parameters O ~ Re ~ 120, 0.10 ~ S ~ 0.50, and 
I l 

0 ~ F ~ 40. 
p 

Periodic fluid motion of the type described in this study can be categorized as 

operating in one of two modes: a sloshing mode, or a mixing mode; the distinction 

being whether the shear layer spanning the cavity is severed at some point in the cycle, 

showing cavity-mainstream interaction aside from the mainstream merely driving the 

cavity flow through the shear layer. For a specific Re , an operating region can be 
s 

mapped out for each of the two modes. A plot of these regions shows an almost linear 

relationship between the frequency parameter, F , and the Strouhal number, S . 
p t 

Starting from a point in the sloshing regime, transition to mixing mode behavior can be 

achieved by increasing F , decreasing S , or decreasing Re . 
p l s 

Excellent cavity mixing is achieved by selectively choosing the operating point 

Re 
for a given Re such that the ratio of R P is sufficiently larger than that necessary to s e 

s 

cause mixing. It is postulated that the best operating points on a plot such as that 

shown in Fig. 12 are those that are in a direction perpendicular ( upwards and to the 

Re 
left) to the sloshing/mixing line for a given Re since this yields a large value of R-L. 

I e 
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Proposed Research-

Enhanced heat transfer in flow past a series of rectangular cavities can be 

achieved by increased mixing between the mainstream and the cavities. A method has 

been presented to promote fluid mixing between the two regions. To determine the 

effectiveness of the method in enhancing heat transfer from the separated regions, 

experimental and numerical modeling will be developed to include heat transfer from 

the surfaces which bound the cavity in the present study. 

In the experimental channel, the heat transfer surf aces will be supplied with 

constant heat flux sources and temperature measurements from these surf aces and 

from within the fluid will yield a means of determining an overall heat transfer 

coefficient. Measurement of the bulk fluid temperature as a function of axial position 

through the heated test section will provide the amount of heat transfer to the fluid and 

also provide correlations for the boundary conditions in the numerical simulation. 

The numerical solutions for the flow structure will be developed to include a 

finite difference approximation to the energy equation. This equation, which can be 

solved subsequent to the fluid flow solution, will use experimental data to impose the 

temperature boundary conditions in the solutions. Once the energy equation is solved, 

the temperature field throughout the fluid can be found at any time in a cycle under the 

forcing functions described in this thesis. By num~rical integration, an average heat 

transfer coefficient will then be found which is a function of the forcing parameters. 

The heat transfer coefficient is the factor necessary to compare the convection 

characteristics of different flows. This will yield a measure of the effects of using 

pulsatile components superimposed on steady flow in comparison to pure steady flow. 
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Fi1Wte Captions-

Figure 1 Cross-section of experimental test section and model of numerical 

method. Flow is planar past a series of rectangular cavities located on 

one wall only. 

Figure 2 Mean velocity U(t). The cyclic velocity consists of a steady velocity, U 
I 

for O ~ 't ~ 0.5, and a velocity U plus a sinusoidal acceleration and 
s 

deceleration of amplitude U for 0.5 ~ 't ~ 1.0. 
p 

Figure 3 Schematic drawing of the experimental channel. Flow enters from the left 

through the diffuser and then travels down a long flow straightening 

section before reaching the middle test section. After exiting the test 

section it passes through another long, flat section before converging 

down to the exit piping. 

Figure 4 Inlet flow schematic. The pulsatile flow component is supplied through 

one-way valve A while a constant head steady flow component is supplied 

through one-way valve B. Drawing fluid through valve A, the oscillating 

piston detennines the quantity and frequency of the added pulsatile 

component which is expelled through one-way valve C. 

Figure 5 a) Definition of cavity dimensions. (h-channel width, d-cavity depth, 

I-cavity length, L-geometric periodicity length). 

b) Mesh of numerical solutions, 84 x 68 grid spacings in the axial and 

transverse directions. 
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J 
Figure 6 a) Particle pathlines of steady flow at Re= 120. 

I 

b) Numerically calculated streamlines at Re= 120. 
I 

c) Numerically calculated vorticity contours at Re =120. 
I 

Figure 7 a) Streamlines showing sloshing mode for O ~ t ~ 0.5. 

(Re= 120, F = 13.2, S = 0.197) 
s p t 

b) Streamlines showing sloshing mode for 0.5 s t s 1.0. 

(Re= 120, F = 13.2, S = 0.197) 
s p t 

Figure 8 a) Particle pathlines showing sloshing mode for O s t s 0.5. 

(Re= 120, F = 13.2, S = 0.197). 
s p l 

b) Particle pathlines showing sloshing mode for 0.5 s t s 1.0. 

(Re= 120, F = 13.2, S = 0.197). 
s p t 

Figure 9 a) Streamlines showing mixing mode for O s 1 s 0.5. 

(Re= 120, F = 26.3, S = 0.241) 
s p t 

b) Streamlines showing mixing mode for 0.5 s t s 1.0. 

(Re= 120, F = 26.3, S = 0.241) 
s p t 

Figure 10 a) Particle pathlines showing mixing mode for O s t s 0.5. 

(Re = 120, F = 26.3, S = 0.241 ). 
s p t 

b) Particle pathlines showing mixing mode for 0.5 s t s 1.0. 

(Re= 120, F = 26.3, S = 0.241). 
s p t 
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Figure 11 Plot ofF vs. S showing the dividing lines between the sloshing and p l 

mixing modes (Re= 120). Mixing modes exist above, while sloshing 
I 

modes exist below the sloshing/mixing line. 

Figure 12 Plot of F vs. S showing the dividing lines between the sloshing and p l 

mixing modes as a function of Re (Re= 50, 90, 120). 
S 8 

Figure 13 a) Streamlines showing excellent mixing for O $ 't $ 0.5. 

(Re= 42, F = 26.3, S = 0.147) 
s p t 

b) Streamlines showing excellent mixing for 0.5 $ 't ~ 1.0. 

(Re= 42, F = 26.3, S = 0.147) 
s p l 

Figure 14 a) Particle pathlines showing excellent mixing for O ~ 't $ 0.5. 

(Re= 42, F = 26.3, S = 0.147) 
s p t 

b) Particle pathlines showing excellent mixing for 0.5 ~ 't $ 1.0. 

(Re= 42, F = 26.3, S = 0.147) 
s p t 
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