
Lehigh University
Lehigh Preserve

Theses and Dissertations

1989

Carousel, a process management service to support
analog integrated circuit design /
Teresa E. Krieger
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Krieger, Teresa E., "Carousel, a process management service to support analog integrated circuit design /" (1989). Theses and
Dissertations. 4964.
https://preserve.lehigh.edu/etd/4964

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4964&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4964?utm_source=preserve.lehigh.edu%2Fetd%2F4964&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


; •,. ~\ ,;' ·,_~ ·;:,))f. '··' 
' 

,/' 

• 

CAROUSEL 

A PROCESS MANAGEMENT SERVICE 

TO SUPPORT ANALOG INTEGRATED CIRCUIT DESIGN 

by 

Teresa E. Krieger 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

. 
ID 

Computer Science 

Lehigh University 

1988 

i 

:; 

'.I 

'./ 



• 

. ;·.'· . .· . \' 

This thesis is accepted and approved in partial fulfillment of the requirements 

for the degree of Master of Science in Computer Science. 

Date 

J 

, 

Professor Samuel L. Gulden 

Department 

.. 
- 11 -

., 

• I 

'·' ·, 

1 
I 



ACKNOWLEDGEMENTS 

I would like to thank the management of AT&T Bell Laboratories in Reading, 

Pennsylvania for the financial and technical suppon that made this work possible. 

Aris A. Yiannoulos and Lew E. Miller were, in particular, supportive of the project. 

Aris, in addition, provided the initial specifications for the Carousel design service 

and continues to supervise the development of the service. Several of my co

workers deserve credit for the development of parts of the Carousel design service. 

L. Dreyer, P. Heiser, and R. Wolf were primarily responsible for development, 

population, and maintenance of the design library. C. Leveroni provided the panel 

interface. D. Diller and other co-workers mentioned above gave thoughtful input on 

parts of the system. Several Reading IC designers tested new releases of the service 

and provided input on future enhancements . 

... 
- 111 -

• 

.... 



• 

it 

. ! 
. .. 
; I 

CONTENTS 

ACKNOWLEDGEMENTS • • • • • • • • • • • • • • • • • 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . 

1. INTRODUCTION . • • . . . • • . . . . . . 

1.1 BACKGROUND . . . . . . . . . . . . . . . . . 
1.2 OVER VIEW . . . . . . . . . . . . . . . . . . 

2. TIIE DESIGN ENVIRONMENT . . . . . . . . . . . . . 

2.1 OPERATING ENVIRONMENT . . . . . . . . . . . . 
2.2 TIIE DESIGNER . . 

2.3 IC TECHNOLOGIES 

3. IC DESIGN . . . . . 

3.1 TIIE DESIGN PROCESS 

3.2 DESIGN TOOLS . . 

4. WHAT WAS AVAILABLE 

• • • . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

• • • • • • • • • • • • • . . 

• • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • 

• • • • • • • . . . • • • • • 

4.1 DESIGN LIBRARIES - EVOLUTION • • • • • • • • • • 

4.2 DESIGN TOOL ENVIRONMENT - SYSCAD . • • • • • • • 

• • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • 

5. REQUIREMENTS . 

5.1 GOALS . . . 

5.2 SPECIFICATIONS • • • • • • • • • • • • • • • • 

. 
- IV -

:.·. l ' •. . ,. ' I "'' 

... 
111 

1 

2 

2 

2 

6 

6 

7 

8 

9 

9 

10 

I I 

1 1 

13 

15 

16 

19 

... 



'' . . 
A 

, ' • I _. ' ~ 

5.3 PRIORITIES . . . . . . . . . . . . . . . . . . 21 

6. DESIGN • • . • • • • • • . . . • . . . . . . . . 22 

6.1 CAROUSEL - 1HE NAME • • • • • . . . . . . . . . 22 

6.2 PARTS OF Tiffi SYSTEM: VIEWS • • . • • • • • . • . 22 

6.3 DESIGN LIBRARY . . . . . . . . . . . . . . . . 25 

6.4 OPEN ARCHITECTURE • • • • • . • . . . . . . • 25 

6.5 TIIE DAT A MODEL • • • • • • • . • . . . . . . 26 

6.6 VERSION CONTROL . • • • • • . . . . • . . . . 27 

6.7 DISTRIBUTED DAT ABASE . . . . . . . . . . . . . 30 

6.8 SYSTEM INDEPENDENCE . • • . . . . . . . . . . 30 

6.9 QUALITY . • . . • . • • . . . . . . . . . 31 

7. IMPLEMENTATION . . . . • • • • • . . . . . . . . 33 

7.1 DESIGN LIBRARY • • • • • • • • . • . . • . . . 33 

7.2 USER IN1ERFACE • • • • • • • • • • • • . • • • 35 

7.3 CONTROL CODE • • • • . • • • • • • • . . . • 38 

7.4 LIBRARY LINKING • • • • . • • . • • . . . . . 40 

8. SUPPORT • • • • • • • • • • • • . . • . . . . • 42 

8.1 1ESTING • • • • • • • • • • • • • • • . • • • 43 

8.2 DESIGN SERVICE CUSTOMERS • • • • • • • • • • • 45 

8.3 DISTRIBUTION • • • • • • • • • • • • • • • • • 47 

8.4 DATABASE ARCHIVAL • • • • • • • • . • • • • • 49 

- V -



9. CAROUSEL EVALUATION 49 
1; 

• • • • • • • • • • • • • • • 

9.1 ADVANTAGES • • • • • • • . . • . . • . 50 
i 

9.2 DISADVANTAGES • . • . • • • • • . . . . 50 

9.3 ENHANCEMENTS • • • • • • • • • • • • • • 51 

10. SUMMARY . . . • • • • • • • • • • • • • 52 

REFERENCES • • • • • • • • • • • • • • • 67 

AUTHOR'S BIOGRAPHY . 68 

. 
- V1 -

~ . . ' ·, ' .. 



',.. ;, . ·. • * ,.. - ' •'. r,. ',. 

LIST OF FIGURES 

Figure 1. Process Flow for Analog IC Design . . . . . . . . 54 

Figure 2. Design Tools and Their Functions . . 55 

Figure 3. Levels of Specification in the Carousel Environment 56 

Figure 4. Database System Views . . . . . . . . . . . . 57 

Figure 5. Flow Diagram for Carousel Control Code • • • . . . 58 

Figure 6. Levels of Specification for the Library and Control Code 59 

Figure 7. REFLIB Structure . . . . . . . . . . 60 

Figure 8. Carousel Help Output . • • • • • • . . . 61 

Figure 9. Carousel Panel Interface • • • • • • • • • . . . . 62 

Figure 10. Pseudo Code for Carousel Control Code . • • • • • • 63 

Figure 11. Pseudo Code for Carousel Control Code Switches . . . . 64 

Figure 12. CBICM File Built by SCHEMA Switch • • • • • • • • • 65 

. . 
- vu -



.•. ",' ' 

• 

Figure 13. ADVICE CMOSA File . . . . . . . . . . . . . . 66 

... 
- V11l -



CAROUSEL 

A PROCESS MANAGEMENT SER VICE 

TO SUPPORT ANALOG INTEGRATED CIRCUIT DESIGN 

by Teresa E. Krieger 

ABSTRACT 

Carousel is a design service developed to support analog integrated circuit (IC) 

design. The goals of Carousel are first, to reduce IC product developn1ent cost by 

reducing IC design time, and second, to support the "quality by design" philosophy. 

The Carousel design service meets these goals by creating a custon1ized design 

environment in which the design process can further be automated. In this environ

ment, Carousel provides fast automatic access to the correct and consistent support 

information and tools needed at several phases of the IC product development pro

cess. Design support information is selectively extracted from a centralized library 

of tool- and technology-specific functions, data, and utilities. 

The Carousel design service is comprised of control code and a database. The data

base is a hierarchically structured collection of utilities and tool- and technology

specific data and functions needed for analog IC design. The control code provides 

a clean user view of the system and employs multi-level software switching to 

attach an appropriate library knowledge base to the current design session. The IC 

designer therefore, does not need to know where or how the information is stored, 

not how to retrieve it. 

- 1 -

J. ,, ,• .• 

'· 



1. INTRODUCTION 

1.1 BACKGROUND 

In the past fifteen years, the silicon industry has become highly competitive. Lead

ing edge competitors promote the ability to develop· increasingly complex, high 

quality integrated circuits (ICs) using state-of-the-art technologies while decreasing 

the design interval. Shorter design intervals in a competitive market assure early 

market penetration and can yield lower cost end products. Assuming quality has not 

been compromised by the shortened design interval, the timely inrroduction of a 

low cost end product can comer the market. Producing such a product is obviously 

the ultimate goal of every competitor. The two major goals in IC product develop

ment then, are short design intervals and high quality at low cost. 

In an effort to secure a competitive position, companies are making great strides 

toward reducing design intervals and cutting the cost of products while improving 

quality. Carousel is an example and a component of the systems needed to further 

this cause. 

1.2 OVERVIEW 

Quality in IC design relies on quality design information. Design quality can be 

aided and design intervals cut, by providing fast automatic access to design tools 

and reliable design libraries. In this thesis, Carousel is described as a service to 

facilitate sharing design information and automating part of the design process. 

Following is a description of the problems addressed in building the Carousel 

' 

- 2 -

. '. ,'! 

·-



system. These problems and in-depth Carousel solutions are described in detail in 

this thesis. 

The first problem was to define what information the users should share in the sys

tem. As a system to be used by a large base of designers using different design 

technologies, Carousel is implemented with an information base consisting of only 

the widely accepted technology-specific device and circuit data and commonly used 

functions and utilities; a small but critical subset of the design information available 

in the design universe. All information in Carousel is guaranteed to be supported. 

The second problem was where and how to store information to allow it to be 

easily shared. In the Carousel system, design information is collected into a cen

tralized database in the form of a hierarchical tree structure. Information is grouped 

in tree branches, first by design tool to which it applies, then by technology. For

mal naming conventions were established to label branches in the tree structure. 

These conventions created a parallelism among the branches of the tree, giving 

order to the structure. This solution eased the task of assuring information 

integrity, including completeness and correctness. Library administration and distri

bution became easier, thereby effecting overall system integrity. 

The third problem was tool and library access. How can the user easily access the 

information in the library for a given tool without knowing storage details? The 

Carousel solution provides control code which allows the user to simply specify the 

tool and technology he/she wishes to use. Using the parallelism in the tree struc

ture, generic control code is used to access various parts of the library, given this 

- 3 -



' . ,, . ._ ... 'j l • - ' I-, ) I.~ ~ , ' ( 

simple user input. Only design information applicable to the current design session 

is accessible. 

The fourth problem was how to manage versions of library data and tools. In 

Carousel, version branches were incorporated into the database structure to provide 

an archival system. The Carousel control code allows the user to specify a library 

version, then justifies any incompatibilities between the chosen library version and 

the specified tool version and finally, accesses information in the appropriate ver

sion branch. 

The fifth problem was how to automate parts of the design process. The Carousel 

system automatically links the correct tool-, version-, and technology-specific infor

mation needed by the designer for the current design session. The user need not 

know what information is available, what subset of that information he/she should 

use for the current design session, nor how to access that subset. The user's design 

environment is customized to fit the parameters of the current design. 

The sixth and greatest problem addressed in the Carousel project was how to build 

a system to support variable numbers and conbinations of tools, tool versions, tech

nologies, and information formats and versions. The goal was to develope generic 

code that, given minimal user input, could handle all reasonable combinations and 

could accomodate new combinations without code changes. In other words, the 

code must be data independent. Carousel achieves this goal through the use of 

multi-level software switching, in which the input data, when applied to the code, 

customizes the Carousel process. 

- 4 -



r , 

Carousel is described here from the product development point of view for several 

reasons. First, this approach provides a mechanism for fully documenting the pro

gression of Carousel development from conception to release and maintenance. 

Second, Carousel is a service comprised of several parts. Since the software code 

and the design library that comprise Carousel were developed concurrently and are 

critically interdependent, the descriptions of their respective development phases are 

interwoven in the text. The progressive development approach allows the relation

ships between the parts and the impact of the resultant system complexity to be 

better understood. Third, Carousel is a "living" service. It is not a once-and-done 

release. Given the general goals described in the requirements section, Carousel 

will be continually modified to further meet those goals. The design and imple

mentation of the first release of the service can have a great impact on the future 

development of the system. 

This thesis includes 

• an examination of IC design and the IC design environment. 

• identification of some of the user needs in that environment. 

• specification of data management problems in that environment. 

• a list of the goals and requirements set for the Carousel service. 

• an overview of the design strategy used to develop Carousel. 

- 5 -

..... ~... ! 



. 
"<' . 

• a full description of the solution to the environment needs as provided by 

Carousel. 

• a full description of the library structure developed to suppon IC design and 

capture design methodology. 

• a critical review of the Carousel solution. 

• discussion of future enhancements and improvements. 

2. THE DESIGN ENVIRONMENT 

Parts of the analog IC design environment include hardware and operating systems, 

design tools, design libraries and design experts. The design libraries contain tool

and technology-specific information used by the expens at various stages in the IC 

design process. Through multi-level software switching, Carousel links all 

appropriate library information for the tool and technology specified by the design 

expert and customizes the user environment, thereby automating part of the design 

process. To fully understand the issue of data management and the Carousel solu

tion in an IC design environment, one must first understand a little bit about the 

process of IC design and the environment in which it is pursued. 

2.1 OPERA TING ENVIRONMENT 

Carousel was originally designed to run on the Digital Equipment Corporation 

(DEC) VAX 11nso series computer running the Virtual Memory Operating System 

- 6 -



(VMS). Most of the steps in the IC design process were once done on this 

machine. Suppon has been discontinued on the VMS machines and migrated to a 

series of systems running AT&T's UNIX®* operating system, on which the design 

tools now run. Since UNIX is the curl"Cnt operating environment for Carousel, only 

the UNIX implementation of the service will be described here. Supported 

hardware systems running some flavor of UNIX include DEC VAX 11nso series 

running BSD 4.2, mainframe Amdahl running UTS, and SUN Microsystems 

workstations running SUN OS. Other machine types may be added to the list as the 
' 

Carousel customer base increases. The orily requirement is a UNIX-based operJting 

system environment. 

2.2 THE DESIGNER 

The people involved in IC product development are typically experts in the physical 

sciences such as electrical engineering and physics. They are highly trained, highly 

skilled, and highly paid. They are the most valuable resource to the industry. 

Optimal use of their time and talent is therefore vital to IC development efficiency. 

To maximize the output of an IC designer means to maximize use of his/her 

creative design skills. The Carousel design service aids this charter by removing 

details of data management from the user and automating part of the design pro

cess. 

* UNIX is a trademark of AT&T Bell Laboratories. 

- 7 -



''· ·_. 1' / '\ . . . 

2.3 IC TECHNOLOGIES 

Within the analog IC design environment, several technologies are used. They 

include the complementary bipolar IC (CBIC) technology, the complementary metal 

oxide semiconductor (CMOS) technology, and the dielectric isolation (DI) technol

ogy. Each of these three technologies has from three to six sub-technologies. Each 

sub-technology is denoted by an appended letter to the technology name. For 

example, one sub-technology of CBIC is CBICM. Another is CBICR. Listed 

below are the technologies used for analog IC design at AT&T Bell Laboratories. 

• CBIC: CBICL, CBICM, CBICR, CBICS, CBICU, CBICV 

• CMOS: CMOSA, CMOSB, CMOSC 

• DI: DIA, DIB, DIC 

In the rest of this paper, sub-technologies will be referred to simply as technologies. 

Different technologies exhibit different speed, power, and size trade offs, but the 

specifics of the technologies are not important here. The important point here is 

that the characteristics and associated design methodology of each technology can 

be defined and stored in a database. That technology-specific infonnation then 

needs to be retrieved each time an IC is designed using that technology. 

- 8 -

' '. I 



,I· 
,•. 

3. IC DESIGN 

The term "IC design" is used rather loosely in the silicon industry. It is used to 

refer to the IC product realization process, not just the design phase of realization. 

The actual design of IC's is only part of the IC product realization process although 

it is certainly a most critical part. The emphasis of the Carousel design service is 

on support for all phases of design. Hereafter, for the sake of simplicity, the IC pro

duct realization process will be referred to simply as the design process. 

As noted earlier, a major contributor to the final cost of a product is design time. 

Engineering hours are usually the highest priced commodity in product design. It is 

therefore critical to streamline the design process as much as possible while n1ain

taining and, ideally, improving product quality. To understand how the design pro

cess can be streamlined, it is necessary to understand the phases of IC design. 

3.1 THE DESIGN PROCESS 

The IC design process can be divided into several distinct steps. Figure 1 shows a 

process flow diagram delineating the various steps involved in analog IC design. 

Loops in the graph indicate an iterative process wherein parameters are fine-tuned 

in one phase and the changes must be reflected in a previous phase, either because 

of a data dependency or to force data consistency . 

. - 9 -

' . ~ . 



;,, .•.' ' " ~ ., ': . " ' 

3.2 DESIGN TOOLS 

Many powerful CAD/CAT software tools are used during the course of IC product 

development. There is generally one tool for each phase of development. For the 

AT&T application, Figure 2 lists the CAD/CAT tools associated with each phase of 

design shown in Figure 1. 

The strength of the tools used at AT&T lies in the fact that most of then, were 

developed by AT&T specifically for its own needs. Some of the tools are interac

tive graphics tools. Others are data processing tools which, given a set of input 

data, perform some function on that data and output either data files to interpret or 

be further processed, or a graphical representation of the processed data. 

A characteristic of the tools is that they were developed for a large diverse custo

mer base within AT&T. They are used for IC design, printed circuit board design, 

and system design. The needs and inherent methodologies of these three user bases 

are very different. IC design, furthermore, is comprised of digital design, analog 

design, and mixed digital and analog design. Because the methodologies of these 

three subdivisions are different, the need exists for a working environment tailored 

to smaller subsets of the user base. Carousel was specifically developed to present 

a working environment tailored to analog IC design. 

- 10 -

.~ 
,•.t 



4. WHAT WAS AVAILABLE 

4.1 DESIGN LIBRARIES - EVOLUTION 

Over the past five years, as design has increasingly come to depend on computer 

aids, libraries of design information have become extremely important to efficient 

IC design. Less than seven years ago, the need for such libraries did not even 

exist. Along with libraries, the need for efficient library administration techniques 

has grown. What the industry has experienced is as follows. 

With the emergence of computer-aided design (CAD) and test (CAT) tools, came 
$ 

the need to create and save files to input to the tools. Creating and storing these 

files saved entering design data interactively each time a tool was used. A design 

file might typically contain parameters associated with a component (resistor, capa

citor, transistor, etc.) used in a designer's circuit. Another file might contain a 

description of how several components could be connected to create a particular 

subcircuit. Yet another file might contain tool-specific procedures to simplify the 

use of that tool. Since designers working in the same technology and with the 

same design tools often needed some of the same components, subcircuits, and pro

cedures for their designs, it became comn1onplace to pass files among designers. 

Several problems are inherent in this type of information passing. 

When several designers maintain copies of the same files, computer storage is 

wasted. Designers who need a particular set of data may not know that the files 

they need already exist and therefore waste their time duplicating effort. If an error 

- 11 -



is present in a given file, the erroneous file could be propagated to many designers 

and cause an epidemic of design errors. If an error is found in a file, there is no 

good way of ensuring that the correction is propagated to all violated files. 

As the damage and inefficiency of this unchecked mode of operanon became 

apparent, moves were made to establish centralized libraries of each type of design 

data. An administrator was assigned to each library and held the responsibility for 

collecting, checking, and storing design fi.les. [I] Several libraries grew into trusted 

sources of information; one contained files of components, one contained files of 

subcircuits, one contained files of device models, and others contained files of setup 

parameters and procedures. Typically, each library contained data to be used with 

one specific design tool. As the demand for library data grew, library administra

tors were faced with the new problem of distributing libraries to more that one 

machine and maintaining consistency among all machines. Automatic procedures 

for propagating library changes were soon developed. 

Library development for analog IC design needs had come a long way when this 

point was reached, but several problems still existed. First, to access a file in a 

given library, the user had to specify the full path to that file. The user therefore 

had to know the location and structure of the library and the naming conventions 

used for files in that library. A high-level user view to the database was needed to 

remove the user from storage details. Second, several library administrators were 

doing similar administrative tasks but using different and often inefficient n1ethods. 

Again time was wasted on duplication of effort. One collective centralized library 

- 12 -



) 

' ' ~H '., I • 
', I ,' '• 

base was needed. Third, each time a library was updated, whether to fix an error or 

to improve old information, the risk was run of leaving some designers "high and 

dry" by destroying the old data. If the designer had started a design using the old 

data and tried to use the same data again, incompatibilities often occurred between 

the old and the new data. To avoid this problem, designers began copying needed 

files from the library into their own environment at the onset of a new design. 

Consequently, some of the pre-library problems began to re-appear. Library version 

control needed to be introduced. In summary, a true data management system was 

needed. 

The original charter of Carousel was to alleviate the first of these problems. Given 

the volume and complexity of design information being stored, a database system, 

not just a database, was needed. The designer needed to be protected from the 

details of data storage, access, and consistency. 

4.2 DESIGN TOOL ENVIRONMENT - SYSCAD 

Each design tool listed in Figure 2 is supported by a different group of tool 

developers. Until recently, the design tool developers released new versions of the 

design tools individually as updates and enhancements were made. Each version of 

each tool had a different name. So, to use a particular version of a tool, the user 

invoked the tool by using the name associated with that version. For example, for 

SCHEMA, the user could call SCH or NSCH (new SCHEMA). For ADVICE, the 

user could call ADVICE, or ADVICEX, or ADVICEXX. 

- 13 -



'" 

'.t,, 

Problems similar to those experienced with the previously mentioned library distri

butions were often encountered. Namely, incompatibilities existed between new 

and old versions of the same tool and between different versions of different tools. 

Since some tools must use the output of or provide the input to other tools, these 

inconsistencies could not be tolerated. Also, library data used in one tool version 

did not always play in new versions and the problem arose of keeping different ver

sions of the libraries to match versions of the tools. Users had to keep track of 

many tool version names. As with design libraries, IC designers should not be 

required to track tool versions and justify incompatibilities. 

In the past year, a new approach to design tool releases has been implen1ented. The 

newest versions of the design tools have been packaged into one structure called 

SYSCAD. The SYSCAD structure has three branches: one for current, fully tested 

and exercised versions of tools (called SY SCAD), one for new, fully tested but not 

extensively exercised versions of tools (called NSYSCAD), and one for experimen

tal versions of some tools (called TSYSCAD). This packaged approach eased 

tracking and distribution. 

The SYSCAD and NSYSCAD branches each contain one version of each design 

tool. Within each branch, all tools are guaranteed to be compatible. To decrease 

tool version change problems, a strict release strategy was implemented. Version 

changes are infrequent and are announced far in advance so users can adjust their 

tool calls appropriate I y. 

- 14 -

\ - .. 



To call a particular version of a tool or tool set, the user first specifies SYSCAD or 

NSYSCAD as the current tool environment. Specification of one of these environ

ments triggers a setup routine which defines the environment. The environment, in 

turn, restricts tool access to the version associated with that environment. The 

name of any one tool is identical in either environment, so the user does not have 

to remember different tool names. 

In summary, a disciplined strategy for tool releases has been adopted. And, since 

infonnation in the design libraries must be closely coupled with the tools, a compa

tible strategy needed to be developed for library distributions. The customized 

design environment that Carousel provides is built on top of the design tool 

environment. It overlays the tool environment with application-specific reference 

libraries. 

5. REQUIREMENTS 

The previous sections described the IC design environment and some of the needs 

in that environment. The environment is constantly growing more complex with 

the increase in number of technologies and growing sophistication of and reliance 

upon CAD/CAT tools. Carousel is a means of managing the current complexity 

and hiding the effects of added complexity. 

The requirements for Carousel define the goals of the service, specification of the 

functionality it is to provide, and priorities for the development of the service. 

- 15 -



i ~~ - ,,_ 
' ~' '.' J .. • • 

5.1 GOALS 

As mentioned earlier, two essential goals in IC product development are short 

design intervals and quality at low cost. Carousel's purpose is to help attain these 

goals. To show how Carousel is helpful, a discussion of the goals themselves and 

how they can generally be achieved, is given in the following section. 

5.1.1 DESIGN INTERVAL AND COST ISSUES 

Design cost is a maJor component of final product cost. It must be contained 

without sacrificing quality. The introduction of computer aids specifically aims to 

achieve this, as it also aims to shorten design intervals. 

How can design intervals and costs be reduced with computer aids? The largest 

component of development cost (in time and money), is engineering hours; high

priced hours spent training designers and at working at each phase of product reali

zation, from product specification to product design and documentation. Following 

is a list of some of the time and money cost components which computer aids can 

affect. 

• learning technology-specific design methods/constraints 

• learning to use different types of computer facilities 

• learning library structures and access methods 

- 16 -



• gathering technology-specific data from other designers and libraries 

• learning to use design tools 

• moving and reformatting data to input to tools 

• running CAD/CAT tools interactively 

• writing tool-specific software to make tool usage easier 

• interpreting output from tools 

• correcting errors due to data inconsistency 

• running design iterations through tools 

• checking tool results 

In what ways can integrated, effectively customized CAD solutions help? 

• capture technology-specific design data and methodology in a library 

• provide a clean, consistent interface to tools and libraries 

• provide a centralized library of commonly used tool functions and design data 

• automate steps in the design process where human interaction is not needed 

• provide automatic access to tool and technology data in libraries 

. \ 

- 17 -

l, 

1 •,' \1 

·'• ., 
~·, 

r ,,. 



, .,•, I . 

This list comprises a set of starting goals for the Carousel service. Carousel must 

provide for these opponuniries and must further be designed to easily accommodate 

future improvements to provide for others. 

5.1.2 QUALITY ISSUES 

Unreliable design information or unreliable access to such information, undennines 

the integrity of a design. Design integrity translates into p_roduct integrity, which is 

a major component of product quality. Carousel will make a direct contribution to 

the commitment to product quality by safeguarding the integrity of infonnation 

used for design. 

Carousel will also make indirect contributions to product quality. A design which 

requires iteration because the design information used proves unreliable, is a costly 

design, and a design that will take extra time to complete. If the need for iterations 

due to corrupt design data cannot arise, quality can be delivered at a lower cost. 

In the same spirit, an indirect contribution is made by lowering the cost of "quality 

by design." Producing quality products requires ongoing effort. An integral part of 

every good product development project, whether it be software or hard ware, is 

quality control. Recently, greater emphasis has been put on enforcing quality at all 

phases of product design because production of a high-quality product whose qual

ity is not controlled beginning at the design phase, is a coincidence; production of a 

high-quality product whose quality is controlled beginning at the design phase is a 

sure bet. This is the essence of the new "quality by design" philosophy for success. 

--
- 18 -

',· 



•,. 

, ... 

"Quality by design" requires extra effort during the design process and can multiply 

the cost of design by a large factor. The efficiencies gained through the design 

cycle by using the Carousel service can have a significant impact on the cost of this 

additive effort. 

5.2 SPECIFICATIONS 

Given the goals of reducing IC product development time and maximizing product 

quality, specifications for the Carousel design service were defined. 

5.2.1 DESIGN LIBRARY 

The design libraries are intended to capture technology-specific design methodol

ogy, commonly used tool-specific functions, tool- and technology-specific data, util

ities, and various representations of design information. The design libraries must 

contain complete, consistent, and correct design information at all times. Versions 

of library data must exist to support new and old tool versions and to support new 

designs and designs already in progress. Library management must be installed to 

provide security, fast, accurate updates, selective library distribution, and to impose 

standards on library contents and structure. New library information must be easily 

added to the libraries without structure or code changes. 

5.2.2 DESIGN SERVICE 

The Carousel design service must create a customized design environment for ana

log IC design. The environment must be built upon, and always be compatible 

- 19 -

•.< ., 



~ ;1>' I• ' ' 

with, the design tool environment. It should encompass the design libraries, design 

tools and special-purpose utilities to aid the design process. It must exhibit an open 

architecture wherein support for new tools, utilities, and technologies can be added 

to the system without extensive code changes or revised data structures. Additions 

of code and data are obviously unavoidable. The service must function quickly and 

efficiently. 

Functionally, Carousel should automate steps in the design process wherever possi

ble. This includes providing fast automatic access to library information and trim

ming the design environment to protect the user from version conflicts. All infor

mation accessed must be version-consistent. At the same time, it must not decrease 

the power of the design tools, nor replace the functionality provided by them or by 

the SYSCAD environment. Carousel is an additive service. 

The design service must be portable between UNIX systems. It should therefore 

contain no hard-coded paths or other machine-specific code. 

5.2.2.1 LIBRARY ACCESS 

Fast, efficient, automatic access must be provided to the design libraries. What is 

automatically accessed should be the subset of the database that is specific to the 

current design process. The accessed subset of the database should be all data that 

is needed for the current design phase, but not more. The data must match the tool 

version and technology specified by the user. Library access should be simplified 

by the standards imposed on library structure. Access routines should relieve the 

- 20 -

,,./ • : 1,< I 
- f ,_ l 

l, 

' 



', .,,.., ' ," I' , ,•' , . ., 'r .,, , '· 

user from knowing the details of library structure and naming conventions. Finally, 

the access routines should be independent of the data being accessed. 

S~~~ USERINTERFACE 

The Carousel design service must provide a clean, user-friendly interface that gives 

a clear view of the system. It should provide a single point of reference to design 

files in the libraries and to design tools. In the interface, machine and storage 

details should be invisible and the view of design tools should be consistent. The 

interface should allow batch or interactive tool execution. 

5.3 PRIORITIES 

Priorities for development of the Carousel service were defined as follows. Top 

priority for Carousel development should be given to imposing standards on the 

design libraries to achieve data integrity, consistency, and maintainability, and to 

developing a library autolinking service, first for SCHEMA, then for ADVICE. 

The library standards would provide a basis for future development of the service. 

Autolinking routines automate the process of tying design library data to the design 

tool session. 

The first release of Carousel should be implemented as quickly and efficiently as 

possible to relieve users of data access problems, especially since the library struc

tures will be changing as the Carousel service evolves. 

- 21 -



6. DESIGN 

The design of the Carousel service is the "how to" realization of the requirements 

set for the service. It is the creative phase of development where many decisions 

must be made that are critical to the future of the service. 

6.1 CAROUSEL - THE NAME 

Carousel is so named because conceptually, the design service resembles a nested 

series of carousels or wheels. Figure 3 shows the nested levels of environment 

specification or wheels. When a user accesses Carousel and specifies a tool and 

technology to be used, Carousel "rotates" the various wheels to n1atch up the 

appropriate environment definitions to create a customized design environment. 

6.2 PARTS OF THE SYSTEM: VIEWS 

Carousel, like every database system, is designed to have three layers or views; an 

internal layer, an external layer, and a conceptual layer. See Figure 4. l21 The 

lowest level layer is the physical layer or internal view. It represents the way data 

in the database is physically stored. The external view of the system is the user 

view. This is the view that the user sees when accessing the system. The concep

tual level or view is the level of indirection or mapping between the internal and 

external views. 

Database system views allow a complex database system to appear simple to the 

user. For Carousel, the internal view consists of the design library and design 

- 22 -



.. -. . . . . . ~ .. -. . . 1' .. 

tools. This view is complicated by tool and library versions and the interdependen

cies between them. The external view for Carousel is the user interface to the sys

tem. It provides a single point of reference to the complex webs of data in the 

internal view. The concepfal level of Carousel is the code which maps the exter

nal view to the internal view. This code is referred to as the control code. 

6.2.1 USER INTERFACE 

The user view of Carousel in the form of the user interface, is critical to the success 

of the design service. If the interface is too complex, unclear, or cumbersome, 

users simply will not use the service. Studies in Human Factors (Human Engineer

ing) have shown several simple but important points. 

• human beings can only absorb and process limited amounts of visual data at one 

time 

• levels of tension and frustration increase when too much data is presented visu

ally 

• human beings identify more quickly and easily with pictures (shapes and colors) 

than with words 

These hints are useful in developing a friendly user interface. For Carousel, the 

user interface must allow the user to present as little information as possible in as 

simple form as possible to specify what he/she wishes to do with the service. 

- 23 -



·- ...... J· 

6.2.2 CONTROL CODE 

At the conceptual level of Carousel, the control code is the heart and brain of the 

system. It has several functions. Generally, it must create a customized design 

environment for the user. Specifically, it must 

• present the user interface 

• parse the user input to check for completeness 

• evaluate the input to determine correctness 

• classify input to determine type and level of support 

• determine tool version and match to library version 

• set up the environment by creating any needed environment variables or data or 

control files 

• match and feed data to tools or users 

• invoke tools 

• clean up after control returns from tools 

• exit or allow further processing 

• provide system help if requested 

- 24 -

• 



' ,J,',' 

•• , ' '1/1 \ ·:· ,. 

• ttespond to errors intelligently 

Figure 5 shows a flow diagram for the control code. 

6.3 DESIGN LIBRARY 

Early in the design of Carousel, it became evident that the design libraries would 

have to be restructured to clean up the internal system view and meet the goals of 

the service. Given the unique structure of each library, no generic access or 

management routines could be employed. The SCHEMA and ADVICE libraries 

were the first to be revised since support for these two tools was a priority item. 

The best approach to library management required packing the libraries into one 

structure and setting standards for that structure so that other libraries could be 

integrated easily. The single structure was given the name REFLIB, for reference 

library. A single library manager was assigned to coordinate restructure, updates, 

and distribution. 

6.4 OPEN ARCHITECTURE 

To fulfill the open architecture requirement on Carousel, the control code and the 

design library (REFLIB) were designed on the basis of modularity and levels of 

specification. Individual modules consist of function-specific code or a specific 

class of information. The highest level of specification is the most general. The 

levels go from general to specific both as one traverses the design library structure, 

and as one follows the process flow of the control code. Figure 6 shows the levels 

- 25 -



• I,, •'+, •.• ·-,' 

~f specification for the library and for the control code. Since modular code and 

structures are employed, levels are distinct and definable. 

At every level, the data dependencies are easily distinguished. In the highest level 

modules, very few data dependencies exist. These modules have the broadest 

scope. Therefore, code and structure changes at that level are very infrequent. At 

the lowest levels, several distinct data dependencies exist. The code and data at 

this level are dependent upon tool version, library version, and technology. Updates 

are most frequent at this level because this is where the most raw fom1 of data 

resides. 

The Carousel control code also supports the open architecture goal by checking for 

the existence of directories and data in the system rather than maintaining a list of 

what is available and checking against the list. Therefore, new code and structures 

can be added to the system without code changes. 

6.5 THE DAT A MODEL 

REFLIB was designed to fit the hierarchical data model using the UNIX tree struc

ture. The hierarchical data model was chosen for the implementation of REFLIB 

for several reasons. 

First, the hierarchical data model best suits the levels of specification strategy 

defined for the design service. High levels in the REFLIB UNIX tree structure are 

the most general; low levels are the most specific. This is clear when each level in 

the tree structure is thought of as having a data dependency on the level above it. 

- 26 -

'· 



"· 

'{ 

' " •' ! 

Second, the individual libraries that were collected to form REFLIB, were already 

in the form of UNIX tree structures. It was therefore easy to patch the libraries 

together into a single structure by simply adding a new common level of hierarchy 

at the root of each library. Consequently, using the structures available was helpful 

in meeting the fast implementation goal set for Carousel. 

6.6 VERSION CONTROL 

One of the greatest problems in design library management is version control. The 

most up-to-date information must be available in the library immediately so that 

new designs will be developed using the best data and procedures available. Yet, 

this "fast install" approach poses some serious problems. In many cases, the old 

library data is not incorrect, but has simply been fine-tuned. The new data can not 

be substituted for the old because designs in progress may be using the old data and 

a change would cause havoc when running the design tools. It is therefore neces

sary to somehow maintain several versions of· data when substitutions can not be 

made. The following questions arise. How many versions should be kept? How 

long should they be kept? How can they be accessed? How can designers be 

encouraged to use the new when they can access the old? 

In the design of Carousel, these questions were carefully considered. No ideal solu

tion has been found, but an attempt has been made to at least reduce the version 

conflict problem. 

- 27 -

. . >· ' ,, ; 

., 



t , \' ·' I• • 

A strategy similar to the SYSCAD tool version approach has been adopted. Three 

branches were added to the design library tree structure under the tool level. Each 

branch contains one version of the library for that tool. The branches are c 

(current), n(new), and o (old) (and in some cases, x for experimental). The current 

and old branches are relatively static; new and experimental are constantly chang-
. 
1ng. 

The current branch of the library contains data that is tested and correct but current 

only up to a particular date. It may only be updated when errors are found or data 

can be added that does not conflict with the other data in that branch. When a 

"version release" occurs, the current data is propagated to the old branch and is 

replaced by the data in the new branch. 

The old branch contains the data that was last in the current branch. It will never 

be updated, only replaced by the data in the current branch when a version release 

occurs. The pre-release old branch data is lost when a version release occurs. 

The new branch contains the contents of the current branch plus any new data plus 

any changes made to the current data. Only tested and approved data is released to 

the new branch. Using the new branch is somewhat risky because the data in it 

could change at any unannounced time. Users who want the most up-to-date but 

tested data will use the new branch. When a version release occurs, a copy of the 

new branch replaces the current branch, but the new branch remains the same. 

- 28 -



•. 1'

1 

•,' ~ 1 • • ~' i. 

The experimental branch is used to store versions of data that are approved but not 

fully tested. Users who want the most up-to-date data can use the experimental 

branch at their own risk. The data in the experimental branch can change at any 

time. 

6.6.1 LIBRARY VERSION RELEASES 

When a library version release occurs, the new branch becomes the current, the 

current becomes the old and the old is lost. This propagation should happen as 

infrequently as possible. When and why a version release occurs are extremely 

critical to Carousel system integrity. 

There are two primary reasons for a version release. First, if a SYSCAD version 

release occurs and library data is matched to tool versions, either a library version 

release must be issued or Carousel must match the library version to the tool ver

sion in software. Carousel does this matching in the tool switches. Second, when 

the current library data starts to become outdated and most users are using the new 

data, a version release should be issued. 

When a release is to occur, users must be notified well in advance. Although 

Carousel matches the library version to the tool version chosen by the user, some 

users still need to access the library directly. In this case, they need to know which 

version to access. 

- 29 -



Ii., __ •. 

6.7 DISTRIBUTED DATABASE 

The Carousel design service must be available on several different machines. The 

distributed database approach was adopted for several reasons. First, this method of 

data access was the fastest and easiest to implement. No special-purpose network

ing routines are required and access routines on a local machine are sin1ple and 

efficient. The only data transfer activities required are updates to the system. 

Second, access to data on a local machine is faster than through network links. 

Third, it is easy to restore a corrupted machine by copying data from another 

machine. No formal archival system is necessary to ensure system integrity. 

Fourth, network integrity is not heavily relied upon. If the network fails, the sys

tem still can operate. Fifth, unreliable data transfer across network links is only a 

concern for updates, not the frequent transactions of everyday users. 

6.8 SYSTEM INDEPENDENCE 

Carousel was designed for system independence to meet the portability requ1re

ments. In Carousel, system independence is achieved by using relative paths and 

the UNIX "logdir" function. Since all code and files in UNIX must be referenced 

using the path name to their location or a symbol equivalent to that pathname, a 

method was needed for specifying the hardware-dependent root of any path. The 

"logdir" facility can be used to find the root-level name of any directory. There

fore, in the Carousel control code and design library, when a path needs to be 

defined or referenced, "logdir" is used. For example when paths to design library 

data for ADVICE are created, "logdir" and relative path names are used as 

- 30 -



. ··"' 

• ' ,, ;f, ' ' } ' • : ' • • !t ~ ' .•. ,'' ~ ' . ./ •, . . ' 

"path='logdir reflib'/aref'. In this assignment, 'logdir reflib' 1s evaluated and 

replaced with the physical location of REFLIB before the path variable is instan

tiated. 

6.9 QUALITY 

The quality requirements on Carousel demand that not only must the service n1eet 

its functional requirements, but it must also meet performance requirements. To 

meet the quality requirements on Carousel, good programming techniques were 

used in the design of the service. 

6.9.1 SCOPING 

In Carousel, minimal scoping is enforced. Scope is a measure of the life span of a 

variable (or procedure). It indicates where (in which processes, subroutines, func

tions, etc.) a variable can be used. In a clean programming application, a variable 

is available for use only where it is needed. This is called minimal scoping. 

At every level of specification in Carousel, variables are permitted to be live and 

active only if they are needed. In other words, variable scope is kept as close to 

the problem space as possible. This practice keeps the environn1ent clean and 

decreases the chances of naming conflicts. 

In the UNIX environment, this is done as follows. The user starts a program by 

calling it. That call starts a UNIX process. Every routine or program called by 

that process becomes a sub-process. Thus, a hierarchy of parent/child processes is 

- 31 -



established. To set up a variable in a process, the user simply initializes it (i.e. 

var=x). Once a variable is initialized in a process, it can be used in that process. 

There are two ways to make a variable that is initialized in a process, live in a 

sub-process. 

The first way is to export the variable from the process using the UNIX "export" 

command (i.e. export var). An exported variable is known to all subprocesses of 

the exporting process. It can then be referenced and modified by the subprocess but 

any modification is known only to the subprocess, not the parent process. 

The second way to make a variable known to a subprocess is to n1ake the subpro

cess part of the parent process by calling the subprocess using the ". subpro

cessname" UNIX call syntax. UNIX treats this type of call as if the subprocess 

code were installed directly into the process code. There is essentially one process 

running. Therefore, any changes made to the variable in the subprocess code, are 

seen by the parent process. This is the only way to make a variable initialized or 

modified by a subprocess, known to the parent process. Naturally, variables needed 

only by a subprocess are initialized in that subprocess and thereby have a scope of 

only that subprocess. 

6.9.2 EFFICIENT EXECUTION 

Another programming technique designed into the Carousel control code to achieve 

speed and efficiency, is minimal evaluation. With this strategy, if two or more 

choices exist at any decision point in the code, the most likely choice is placed first 

- 32 -

I ,, 

., 



.· . . r . 

in the code. Thus, chances are, only the first choice will ever be evaluated, thereby 

saving execution time. 

6.9.3 CLEAN ENVIRONMENT 

Another "quality by design" feature of Carousel involves env1ronn1ent order. 

Several steps in the Carousel process create temporary files in the user's directory. 

They are created in the user's directory for two reasons. First, since the running 

Carousel process is owned by the user, it can create and delete files from the 

current directory (user's directory) without concern for directory permissions and 

the user can always access files in his/her own directory with no problem. Second, 

since many users could be using Carousel at the same time, creating files in a cen

tralized location would cause file naming conflicts and require sophisticated code to 

generate unique file names. The cost of this code would be too great. 

After the design tool or the user uses the temporary files, they can be discarded. 

Carousel is designed to remember the names of all the files it creates by building a 

list of the names. The last thing the control code does before exiting is clean up 

the user's environment by deleting the files in the list. 

7. IMPLEMENTATION 

7.1 DESIGN LIBRARY 

As noted in the design section, the libraries for SCHEMA and ADVICE were com

bined into one library, REFLIB, and a "levels of specification" strategy was adopted 

- 33 -

·.,, 



for the structure. Naming standards were also imposed on the levels to make path 

names to every file more meaningful. These standards are used by the control code 

for level switching and information location. Figure 7 shows the general structure 

of REFLIB. 

Note that the tool-level directory for the SCHEMA branch was named SREF (for 

SCHEMA reference) and the tool-level directory for ADVICE was named AREF 

(for ADVICE reference). Below the tool level, the SCHEMA and ADVICE direc

tory structures are identical down to the sub-technology level. Below the sub

technology level, the branches become unique. Data at that level has dependencies 

on tool, library version, technology, and sub-technology. 

As seen in Figure 7, at most levels of specification of the REFLIB structure, a sub

directory named "com" (for common) was added. The "com" subdirectories were 

designed to store any information that is common to all other n1embers of that 

specification level. For example, any data that is common to all technologies in the 

old branch of SREF, should be stored in the "com" directory at the technology 

level. This structure provides a means of sharing information among several library 

branches rather than duplicating it needlessly. As with variable scoping, library 

information should be available as close to its problem space as possible. 

Another type of subdirectory found in the REFLIB structure is the "bin" directory. 

Each bin directory holds executable code that is applicable to the level of 

specification at which it is stored. For example, the top-level Carousel control code 

is stored in the bin directory at the tool level because it is applicable to all tools in 

- 34 -



1' , ,\' ' • ~·. ' . ,' . ) ""· ' ", • ' ~ I ' ,, .. ·,,, •I~':' 

REFLIB. The tool switch for each tool in the library is stored in the bin directory 

at the version level because it is used for all versions of that tool. 

The structure and naming standards applied to REFLIB have given logic and order 

to the design library. Even if automatic procedures were not available for library 

access, users would find it easier to locate data in REFLIB than in the old libraries. 

7.2 USER INTERFACE 

The user view of the Carousel design service takes one of two fonns. One is in the 

form of a command-line invocation and the other takes the fom1 of a SUN panel. 

7.2.1 COMMAND-LINE VIEW 

The command-line view of Carousel was designed to 

• require a minimal number of user keystrokes 

• maintain tool call syntax 

• allow batch job submittal 

• maintain normal UNIX option specification syntax 

To invoke the Carousel service via the command-line view, the user simply uses the 

syntax "car toolname [tool options] -x technology", where tool options are specified 

only if the user wants to use them or if the tool requires them. 

- 35 -



'., ;., .... ·'t 
•• j J. 

.. '• . '· ........ ·. 

Note that if SYSCAD design tools are needed, the user types SYSCAD or NSYS

CAD followed by a carriage return, then issues the Carousel invocation, or the user 

can type SYSCAD or NSYSCAD followed by the Carousel invocation all on one 

command line. For example, to use Carousel and the NSYSCAD version of 

ADVICE with CBICM, the user types "nsyscad car advice t=4014 -x cbicm". The 

benefit of allowing all specifications on one command line with no further user 

interaction, is that the tool session can be run in batch mode. The syntax "advice 

t=4014" is a normal ADVICE tool call. Carousel requires the "-x technologyname" 

part to define the design environment and link the appropriate design library infor

mation. 

Versions other than the current (default) version of design library data can be 

chosen by specifying n, o, or x in front of "technologyname" on the command line. 

For example, specifying "-x ncbicm" will provide access to the CBICM data in the 

new branch of the ADVICE directory. Note that if the library version chosen is not 

available or is incompatible with the tool version chosen, the Carousel control code 

will select an appropriate library version instead. 

The command-line view also allows the user to obtain online help by typing II II car 

followed by a carriage return or the letter h. In response, Carousel will list on the 

standard output, the tools supported by Carousel, the syntax for calling them 

through Carousel, example tool calls, the technologies supported in the design 

library, and syntax for specifying library versions. Figure 8 shows the help output 

that the user sees. 

- 36 -



t ' .• 

If the user calls Carousel with an unsupported tool, Carousel will tell the user that 

the tool is unsupported, then show the help listing and ask for new input. If the 

user fails to specify a technology, Carousel indicates that one is required and 

prompts for input. 

When Carousel has acquired all needed input data from the user, the user will see a 

list of files created by Carousel to be used in the tool (ADVICE only), followed by 

the start of the requested tool session. When the user exits the tool session, 

Carousel exits silently and the user will see the system prompt. 

7.2.2 PANEL INTERFACE 

The panel interface is available only on SUN workstations. It was designed to 

• give the user a pictorial view of his/her choices 

• use to advantage, the sophisticated capabilities of SUNVIEW software and win

dows on SUN workstations. 

• replace multiple keystrokes with singular key clicks ( using mouse) 

• allow multiple tool instances simultaneously 

To invoke the Carousel service via the panel interlace, several conditions must 

exist. First, the user must be logged directly onto the SUN system where Carousel 

is to run. Second, the user must be running SUNTOOLS software. Third, the user 

must type "car" followed by a carriage return (no other specification). Figure 9(a) 

- 37 -



>" 

shows what the user will see when the panel interface is invoked. 

Three types of fields are available on the panel; choice fields, where the user can 

scroll through the possible choices, keyboard fields, where the user can type in the 

desired specifications, and button fields, where the user can trigger the indicated 

action. Figure 9(b) shows the choices available at each choice field. To call a tool 

through the panel interface, the user fills in the panel accordingly and clicks the 

execute button. The user will see a list of files created by Carousel to be used in 

the tool (ADVICE only), followed by the start of the requested tool session. When 

the user exits the tool session, he/she is returned to the panel to choose another tool 

or exit. 

7.3 CONTROL CODE 

The Carousel control code is the software realization of the design strategies 

specified in the design section. It is written in the UNIX SHELL language, which 

offers all of the basic constructs available in a high-level language. 

The basic functions of the control code were shown in Figure 5. As the control 

code executes, it incrementally builds the customized design environn1ent by 

defining environment variables which delimit the scope of the design session. With 

the scope defined, access to the appropriate subset of the design library information 

is possible. 

The key to the control code execution is multi-level software switching. This tech

nique allows the use of generic code at the highest levels of execution and more 

- 38 -



.. · ,, .. 

specific code at the lowest levels. All control code levels perform a "match and 

feed" function on their input data. The match process determines if data is valid 

and compatible with the chosen design environment and rectifies any inconsisten

cies. The environment is defined by the user working environment and any previous 

Carousel environment definitions. The feed process passes the filtered and rectified 

data to the next step in the process, determining where to feed by using environ

ment definitions. The fed data, in tum, makes each Carousel task application 

specific. The benefit of this approach is that the more generic levels of code can be 

shared by many applications. As new applications are added to the system, only 

small pieces of low-level application-specific code need to be added to the system. 

In the case of new supported technologies, no code at all needs to be added! This 

level partitioning also saves storage space by eliminating duplicate procedures that 

are customized to the application. Instead, the generic procedures are customized to 

the application "on the fly" by software switching. 

Software switching is implemented in Carousel by progressively collecting environ

ment variable assignments for generic variable names, then applying those assign

ments to achieve an application-specific action. For example, environment variables 

are used to build pathes to the tool switches and to library files and directories. 

In the top-level Carousel control code, the user input is first parsed to determine 

which tool has been chosen. If, for example, the tool specified by the user is 

SCHEMA, the variable TOOL is assigned the value SREF. Note that SREF is the 

name of the branch of the library where all SCHEMA information is stored. Next, 

- 39 -

} 

1,: 



/ • • j '. ' • 

the control code determines which technology and library version have been chosen. 

If the technology specified 1s NCBICM, variables GENTECl-l=CBIC, 

SPECfECH=M, and TECHVERS=N, are defined. These four assignments are 

made in the top-level control code because they apply to every Carousel applica

tion. Next, Carousel calls the tool-specific switch using the TOOL variable. The 

path to the switch for every tool In the library Is 'logdir 

reflib'/$TOOUbin/$TOOL.switch. In this case, the switch will be 

/usr3/reflib/sref/bin/sref.switch. In the tool switches, the TOOL, GENTECH, SPEC

TECH, and TECHVERS variables are used to define pathes to library tiles used by 

the tool. 

The best way to fully describe the execution of the control code, is through pseu

docode. Figures IO and 11 list pseudocode descriptive of the control code flow. 

7.4 LIBRARY LINKING 

Library linking was the first part of the Carousel service to be implemented. For 

SCHEMA and ADVICE, a well-defined set of data from the associated library 

directories needs to be accessed each time the tools are used. It therefore n1ade 

sense to automate the process. 

7.4.1 SCHEMA LINKING 

SCHEMA is a graphics tool which allows the designer to capture design intent by 

building a schematic and descriptive files of the schematic (to be fed to other tools 

for further processing). Several types of information are available in the SCHEMA 

- 40 -



, _. , , .;" r'L ' " ,• I / •c.•, ' f I 11 ,, . ',._ ... , 

branch of the design library to aid in schematic capture. Some of these include 

SCHEMA functions to aid tool use, standardized symbols to graphically represent 

devices, and files to be used for processing in other tools. The information in the 

library files and directories can be made available for access within SCHEMA by 

using the SCHEMA command "link group directoryname rea", for directories and 

"link func pathtofunctionfile ", for function files. 

To automate this process, a file with the SCHEMA syntax and the paths to all 

needed files and directories is built by the SCHEMA switch and stored in the user's 

directory. Figure 12 shows an example of a file built by the SCHEMA switch for 

CBICM. The file is given the name of the technology (i.e. CBICM). SCHEMA is 

then invoked using the "-x technologyname" option. This option specifies to 

SCHEMA that the file, "technologyname", is to be executed in SCHEMA. 

SCHEMA tells the user which functions and directories have been linked. The 

effect is the same as if the user had typed the series of "link" commands interac

tively within SCHEMA. 

7.4.2 ADVICE LINKING 

ADVICE is a circuit simulation tool which allows device-level simulations of the 

electrical characteristics of circuits. In the ADVICE branch of the design libnlfy, 

device models and case files are available to use in simulations. The case files 

specify a list of files with variations on the parametric data applied to the models. 

Figure 13(a) shows a sample case file for CMOSA. In their stored form, the case 

files are not complete. One requirement of Carousel is that no hard-coded paths be 

- 41 -



.,,, - ,.. 

stored or referenced. The Carousel ADVICE switch therefore, builds complete case 

files using the stored case files and the "logdir" facility. One completed case file 

for CMOS A is shown in Figure 13(b ). 

The Carousel ADVICE switch builds all case files for the user-specified technology 

in the user's directory and writes to standard output, the names of the files built. 

File names are "co, cl, ... , ex" for CBIC and "ccO, eel, ... , ccx" and "acO, acl, ... , 

acx" for CMOS and DI, where x is the number of case files in the library. Carousel 

then invokes ADVICE. To use the case files, the user specifies the ADVICE syntax 

".lib libl=cx" (or ccx or acx), where x is the case file nurnber desired. When this 

command is issued, ADVICE makes ex one of it's internal library files. The data 

in the file can then be used for simulation. 

8. SUPPORT 

Like any other software product, Carousel is only as good as its suppoI1. The 

Carousel administrators are committed to ensuring the integrity of the service on all 

supported machines. Carousel support takes several forms. 

• Alpha and Beta testing with new releases 

• bug report logging and fast fix on a priority basis 

• distribution of updates and new releases 

- 42 -



~ . ~· . ... \ ' ' 

• solicitation and logging of feedback on current system performance and new 

features 

• counseling on system use 

• system enhancement 

Several individuals are responsible for different aspects of the Carousel systen1 sup

port. Each has a well defined problem space in which he/she takes ownership of 

support. The support team members also work closely together to find the cause of 

problems and to coordinate solutions that best benefit the overall systen1 perfor

mance. 

Each support team member is an expert in the area for which he/she is responsible. 

Team members include a Carousel administrator, a librarian, an interface developer, 

and a tool expert for each supported tool. 

8.1 TESTING 

The integrity of the Carousel design service depends heavily upon pre-release test

ing. Two testing phases are exercised before Carousel software is released: Alpha 

testing and Beta testing. 

8.1.1 ALPHA TESTING 

Alpha testing is testing done by the software developer to ensure that all 

specifications sef for the software are met in the end product. This means that the 

- 43 -

., 
I 



·~ ,.: 

software must not only perform the function for which it was designed, but n1ust 

also meet quality, speed, and other performance requirements defined at the onset of 

the project. 

For Carousel, the functional requirement specified that the user must be given a 

customized design environment for his/her current design session. This means that 

the user must see the appropriate user interface for the hardware he/she is using, 

proper environment variables must be set up to provide access to the correct utili

ties, tools, and data, and the correct knowledge base from the design library n1ust 

be automatically linked. These items can easily be checked. 

The speed requirements for the Carousel design service are not rigid. They sin1ply 

require that the service perform its actions in a "reasonable" amount of time: an 

amount that is not annoying to the user. Obviously, meeting the speed requirement 

demands a judgement call. 

The quality requirement on Carousel specifies that not only should Carousel per

form the given function, but it must do so well by using sman and accepted Com

puter Science technics. Carousel meets this specification by for exan1ple, cleaning 

up after itself (removing temporary files), using minimal scoping, responding to 

errors intelligently, and, in general, presenting a user friendly system view to the 

user. 

To fully Alpha test a version of Carousel, every possible combination of hardware, 

tool version, technology version, and call option would have to be run. Since there 

- 44 -



t'- . 

\, 
,• 

arc several hundreds of combinations of these variables, it would be unrealistic to 

try to test them all. Depending upon the nature of the change to the Alpha version, 

a minimal set of tests can be defined to approximately span the subset of the com

bination space that might have been affected by the change. If for example, only 

the SCHEMA tool switch has been modified, the other design tool switches do not 

need to be tested. 

In summary, the Alpha tester must understand the entire problem space and be able 

to map software changes onto that space efficiently and run tests accordingly. 

8.1.2 BET A TESTING 

Beta testing is software testing done by actual design service customers. The 

benefit of Beta testing is great. Carousel users are apt to try to use the design ser

vice in ways that were not considered by the developers. They also provide feed

back on the performance of the service: not only on whether or not it works, but 

also on whether or not it is what they really need and how it can be further 

developed to service them better. Many Carousel revisions have been the outcome 

of Beta testing feedback. 

8.2 DESIGN SERVICE CUSTOMERS 

Several types of customers have been identified for the Carousel design service. 

Each has different needs, different support priority, and requires different pro

cedures for receiving library distributions. The person distributing the libraries is 

responsible for knowing the customer class of a customer and distributing Ii braries 

-.45 -

' ,, 



.... '; 

appropriately. 

Type one customers are users in the design laboratory where Carousel was 

developed. They work on UTS machines and SUN workstations and have top prior

ity in receiving releases. They receive service automatically. They should always 

have access to the maximum capabilities of Carousel. In particular, they should be 

able to access all tool versions, all library versions, and all libraries. They should 
. . . 

receive continuous service. 

Type two customers are internal AT&T system-level custorners, OEM strategic 

partners, and AT&T design centers. They typically have SYSCAD tools available 

on their machines. They should receive only the new or the current version of the 

design library. They are to receive update support for one year on a contract basis. 

They must request service and provide a specific developn1ent case number to 

obtain support. 

Type three customers are all other OEM customers. They usually need to receive 

design tools as well as support libraries. They should receive only the new or 

current version of the design library. They should receive only the tools and por

tions of the library licensed to them. They must request service, provide a develop

ment case number, and specify a date for termination of service to receive service. 

Updates will be provided only up to that date. 

- 46 -



'~,-. .-'I ' • \ ., ' 

8.3 DISTRIBUTION 

Carousel supports the distributed database approach to data access. Therefore, 

every machine where Carousel is to provide service, must have all needed parts of 

the database resident on that machine. Since the Carousel control and interface 

code must also be locally resident, they have been stored in the design database 

itself. This provides several advantages. Namely, all Carousel-related code and 

data is contained in one tree structure (directory) on any given machine. It is there

fore easy to find all system parts. Updates are easier because the structure is identi

cal on every machine. Distribution is easier because the structure can be bundled, 

shipped, and unbundled as one unit. Given these comn1on attributes, highly 

automated procedures can be used to update and distribute the database. Finally, 

since the structure is controlled by the Carousel administrators, and not the 

hardware system administrators, the relationships between code and data locations 

are known and constant. These relationships are used to advantage in the Carousel 

environment definition and tool switches. 

The person responsible for library distribution has several duties. When a request 

for service is received, he/she must follow a very strict procedure to determine the 

variables for distribution. First, he/she must determine if the request should be 

granted. There are formal procedures for making a request which include obtaining 

proper approval for service. These procedures ensure that proprietary infonnation is 

not released to unapproved sites. 

- 47 -

,' ~ 



F ' \' ~ •' ; 

Second, if service is to be granted, the person doing distribution must evaluate and 

classify the target machine by answering the following questions: 

• Which type of customer has made the request? 

• Which tool supports are they requesting? 

• Given the answers to the first two questions, which parts of the design service 

should the customer receive and for how long? 

• Are the required design tools available on the machine'? 

• How must the service be sent? (i.e. via network links, on tape, etc.) 

When the distribution variables have been defined, the distributor n1ust set up the 

operating environment for Carousel on the target machine. This typically n1eans 

obtaining a computer account from the system administrator, ensuring that sufficient 

disc space for the database is available, and setting up any global symbols needed 

by Carousel (such as "car"). 

Next, the person doing distribution packages the appropriate parts of the service and 

sends them to the customer for installation. Once this has been done, the distribu

tor has responsibility for keeping track of the status of the Carousel account, mak

ing updates when needed (and approved), and terminating service if scheduled. 



8.4 DATABASE ARCHIVAL 

As with any database system, some form of data archival is critical to the integrity 

of the system. Archival is critical, first, to facilitate version control, and second, to 

prevent information loss with system failure. Version control is discussed in Sec

tion 6.6. Formal database archival procedures have not been installed for Carousel 

because it has been implemented as a distributed database system. One advantage 

of using a distributed database is that if the data on one hardware system is lost or 

violated, it can be restored from one of the other systems in the supported group. 
Therefore, integrity is not at stake. 

9. CAROUSEL EVALUATION 

Although the Carousel design service conception is only two years old, it has suc

ceeded in achieving its goals of reducing the design interval and maintaining pro

duct quality. The areas of design library management and automatically linking 

library data to design sessions have been especially successful. The design library 

is now a very reliable source of information that is easy to access. 

Some of the strategies used in the development of the service emphasized fast, easy 

implementation, rather than optimal ~fficiency. Now that the service has been 

installed and used, those same strategies can be reviewed and improved upon. Fol

lowing is an evaluation of Carousel; a description of the good points, the bad 

points, the insufficiencies, and the inefficiencies. Future improvements and 

enhancements slated for the service are also described. 

- 49 -

i 
:, 



.!t. 'W 

I' . , . ·r"~ r ,·, 

9.1 ADVANTAGES 

Carousel provides several advantages over pre-Carousel methods of tool and data 

access. It provides a single point of reference to the design tools and the design 

library. The library is a much cleaner, more reliable source of information than 

before. Users no longer need to know library structure and naming conventions to 

access library data. They also save time by typing fewer keystrokes since no full 

path names need to be specified. The data that is accessed by the service is only as 

much as the user needs, and no more. The user therefore does not have to sort out 

which data applies to his/her design process. Versions of library data are now sup

ported and matched with tool versions automatically by Carousel. The interface is 

clean and simple, both in the command-line fo1m and the panel form. The system 

provides an open architecture so other tools and libraries can easily be incorporated 

into the support group with few or no code changes. The foundation for a sophisti

cated design automation tool has thus been developed. 

9.2 DISADVANTAGES 

The current implementation of the Carousel design service has several disadvan

tages. Carousel allows specification of only one technology in the design environ

ment. In some few cases, designers need to access data for more than one technol

ogy. Carousel should allow a larger scope of information in the design environ

ment. Since the SCHEMA and ADVICE switches build files in the user's current 

directory, the danger exists of naming conflicts. Carousel does not overwrite their 

files, but if a conflict exists, no linking is done. The SCHEMA switch unlinks all 

- 50 -



I• ' ' • '., '>, I ' 

linked files and directories before it links new ones to avoid conflicts. In some 

cases, users have file's linked that they do not want unlinked. Carousel should 

unlink selectively. Carousel spawns several subprocesses as it executes. The 

requested design tool is in fact run as a subprocess. This is not the most efficient 

way to execute tools. The Carousel control code is dependent on the structure of 

the library. The panel interface is only available on the SUN workstations. A 

comparable interface should exist on the other systems as well. 

9.3 ENHANCEMENTS 

Several system improvements are slated for Carousel in the near future. The GRED 

(graphics editor) design tool will soon be supported in Carousel. For ADVICE, 

some users need to create customized case files rather than using the ones in the 

library. The ADVICE switch will be improved to give this flexibility. The 

SCHEMA switch must be altered to allow more that one technology. This will 

broaden the environment scope. It must also unlink files selectively. Facilities for 

building a panel user interface on systems other than SUN are now available. The 

interfaces should appear the same on all systems. A bug reporting facility will be 

installed to log problems. This system encourages follow-through procedures when 

a problem is reported. Some method of improving version control needs to be 

developed. More than three versions should be supported to satisfy user needs. 

- 51 -



I ''j •, ... 

10. SUMMARY 

Carousel is a process management service designed to improve the productivity of 

the analog IC design process. It has successfully reduced the design interval and 

helped to improve product quality and lower its cost. 

In this thesis, the environment, goals, development stages and evaluation of the ser

vice were discussed. Carousel was described from the product development point 

of view to document clearly why the project was undertaken and how it developed 

from definition of a design environment need to installation of a clean, useful 

design product. 

The first releases of Carousel, as described in this paper, are of limited scope. 

Carousel provides supports for only two of the design tools in the tool cadre. It has 

none-the-less built the environment and set the stage for further development 

toward design automation. Standards for both the design library and the control 

code were defined and applied to the initial releases. Given these standards, further 

tool supports can now be added to the system easily and process flow auton1ation 

can be integrated into the control code. 

Carousel was also described in the light of formal database theory. Specifically, 

database system views and data models were reviewed. Further, concerns from the 

science of "human factors" were incorporated into the design. This consideration 

yielded a highly user friendly end product: an attribute vital to product success. 

- 52 -



.. '· •... ' ~ ...... ,'' . ~ ~ ' .,, 

In summary, Carousel has both practical and theoretical foundations. It is the pro

duct, not only of application specific requirements but also of f onnal academic 

theory from the disciplines of computer science, electrical engineering, human fac

tors, database theory and quality assessment studies. The result is a design service 

that has already paid for itself at the very least, in saved engineering hours. 

C'.., 
- J;:J -



. ,, 

' 

~ -· 

TESTING 

,. 
'L 

,.> •,I 

SCHEMATIC CAPTURE 

LOGICAL _ 
SIMULATION -~-

AUTOROUTED _ 
LAYOUT 14----1 

• 

LOGICAL _ 
VALIDATION -~-

I t 

_ ELECTRICAL ~ 
.,___~- SIMULATION -~- HARDCOPY 

INTERACTIVE _ LAYOUT 11'4--+-~~~~---

LAYOUT 
ANALYSIS 

LAYOUT 
CERTIFICATION 

-

' ' If 

ELECTRICAL 
VERIFICATION 



' ...... ' ~ . . . ... ' 

TOOL FUNCTION 

SCHEMA schematic capture 

MOTIS logical simulation 

LTX2 autorouted layout 

MOTIS logical validation 

TPG2 testing 

ADVICE electrical simulation 

GRED interactive layout 

HCAP layout analysis 

GEMINI layout certification 

ADVICE electrical verification 

Figure 2. Des,ign Tools and Their Functions 

- 55 -



"'11 -· (JQ 
C: .., 
f"D 

w . 
~ n 
<: n -C/) 

0 
~ 

Cl) 
"O 
(l 
(') ..... 
~ 
(') 

Vl Po) 

°' P. 
0 
::, 
..... 
::, 

5-
n 
n 
~ 
0 
C: 
C/) 
(l -
tTl 
::, 
<: -· ""1 
0 
::, 

3 
(l 
::, .... 

USER INTERFACE 
CAROUSEL ENVIRONMENT DEFINITION -

LIBRARY LINKS _ __.. 
TOOL ENVIRONMENT __ ___. 

DESIGN TOOL -------

USER 



DATABASE SYSTEM 

EXTERNAL VIEW USER VIEW 

CONCEPTUAL VIEW 

INTERNAL VIEW PHYSICAL LA YER 

Figure 4. Database System Views 

- 57 -

.... 



I' 
J. 

VI 
00 

. ' . . . . , . ' \,. . ~· ,, ' 

~ CONTROL -· (JQ 
C .., 
t'D 
(II . 
~ -0 
~ 

t? -· ~ 
~ 
3 
8> 
~ 

n 
~ 
0 
C: 
V) 

0 -
(') 
0 
:::J 
q 
0 -
(') 
0 
0. 
0 

GIVE HELP 

GET INPUT 

PANEL INTERFACE 

SET UP DISPlA Y PANEL 

y GET USER INPUT 

FORMAT USER INPUT 

EXIT 

TOOL SWITCH 

DEFINE BMRONII 
GET LIBRARY VERSION 

CALL TOOL SWITCH CREATE COIIIIAND ALE 

' TOOL EXECUTION 

~TOOL 
USE COIIIIAND FILE ::-------LI 

' 

CLEAN ENVIRONMENT t----+----M EXJT 

MATCH 
VERSION 



:; 

·, 
,. 

Vl 
'-0 

. ·'l.',',' 

11!1 -· flea 
C ., 
~ 

°' • 

~ 
0 
< 
0 ...... 
en 

0 
l'-i") 

CJ') 

"O 
0 
() .... 
:::1) 
() 

~ 
o. 
0 
::, 

er 
"'1 

s-
0 

~ .... 
CT 
"'1 

~ 
~ 
::, 
p. 

n 
0 
:::J 
q 
0 ...... 
n 
8-
0 

. ~ - .. -; ' . . '" 

HIGH 

• 
• 
• 

LIBRARY 

TOOL 

LIBRARY VER.SION 

TECHNOLOGY 

SUB-TECHNOLOGY 

LOW DATA 

CONTROL CODE 

OPERA TING ENVIRONMENT 

TOOL ENVIRONMENT 

TOOL 

TECHNOLOGY 



REFUB 
LEVEL OF SPECIFICATION 

I l TOOL LEVEL , 
SREF AREF BIN 

~ ' ' -· ' 

l I 
(1Q 

' ' C 
' 

I I I I . ' I I I 
., 

' t'D , 
' ....... ' ' • VERSION LEVEL ' X N C 0 BIN X N C 0 BIN ' ' 

l I I 11 ~ ' ' ' I I I I I 
°" ' 0 fl ' ' ' TECHNOLOGY LEVEL ' CBIC CMOS COM 

AREF .SWITCH 
ea ' DI SREF.SWITCH CBIC CMOS DI COM ' 

l I 
' ' en 
' I I I I I ~ ' ' ' ' (") 

SUB-TECHNOLOGY LEVEL: A e C COM A B C COM -C: ' ' 

l I 
d ' ' ' 

I I I I 
' ' ' ' DATA LEVEL ' • • • • • • . 



,, 
' .. 1 • -

The tools currently supported by carousel are: 

schema 
format: 
example: 

advice 

schema (options) -x technology (options) 
schema -d ic -t 4014 -x cbicu 

format: advice (options) -x technology (options) 
example: advice t-4014 -x cmosb 

access 
format: access [options] 
example: access 

schadv 
format: schadv color -x technology 
example: schadv green -x cbicm 

Supported technologies include: 
cbicl, cbicm, cbicr, cbics, cbicu, cbicv, cmosa(cmos3.5), 
cmosb(cmosl.5), cmosc(cmos0.9), dia, dib, die. 

Library versions: 
to specify a particular library version, type 
xtechnology for experimental (ie. xcmosa) 
ntechnology for new (ie. ncbicr) 
technology for current or the default (ie. cbicm) 
otechnology for old (ie. ocrnosb) 
Note: If the specified library version does not exist or is 

incompatible with the specified tool version, you will 
automatically be given a default library version. 

Enter the command line for the tool and options you wish to use 
or h for help 
or q to quit the carousel. 

Figure 8. Carousel Help Output 

- 61 -



' ·,: 

I, 

;' 
'. 
1 

°' N 

~ -· (JQ 
C ., 
~ 

\0 
• 

(') 

~ 
0 
C: 
Cl) 

0 -
~ 
§ 
0 -
~ 
::, -0 

~ 
(") 
(D 

'" ' -. ' .. -, \, • • " I • r '•' 

Tool: C schema 

Design Directory: /usr4/pjh • 
Co••and Linc Options: 

[Execute] 

TOOLS TECH: 

SCHEMA CBICL 
ADVICE CBICM 
ADVICEX CBICR 
SCHADV CBICS 
ACCESS CBICU 

CBICV 
CMOSA 
CMOSB 
CMOSC 
DIA 
DIB 
DIC 

,,. 
Version: v current 

(a) 

VERSION 

CURRENT 
NEW 
OLD 
EXPERIMENT AL 

(b) 

-------~-~--- . -· -- '. ---r-------~- . . . . ' ---.----~--~-----.--·· - . .-.-- -- .. 

Catalog: C transistor-level 

(quit) 

CATALOG 

TRANSISTOR-LEVEL 
+ ANALOG CELLS 

" . - . - - -. ' . . . . ~----------~-~ .. •, . . . ' .. ,;.,·•; ( ' 



i 
)' 

I ~ • ' 

' '<·1 ,... .... '··. t ... _l,, '. 

call CAR [ tool options -x technology] 

CAR [ tool options -x technology] 
look at user environment 
if user on SUN workstation and no arguments issued 

then call PANEL INTERFACE 
else call CAROUSEL [tool options -x technology] 

PANEL INTERFACE 
show screen of panel options with defaults 
read user choices from panels 
set up call line for CAROUSEL using panel choices 
call CAROUSEL ( tool options -x technology) 

CAROUSEL [ tool options -x technology] 
set environment variable REFLIBPATH to location of library 

(ex. REFLIBPATH='logdir reflib'=/usr3/reflib) 
A: look at user or panel input 

if valid tool specified 
then set environment variable TOOL 

(ex. TOOL=SREF for SCHEMA, TOOL=AREF for ADVICE) 
elseif H specified 
then give help (see Figure 8) 

read new input 
goto A 

elseif Q specified 
then QUIT (EXIT) 
else tell user "input not valid" 

give help 
read new input 
gbto A 

if a technology is specified 
then set environment variables GENTECH and SPECTECH 

(ex. GENTECH=CMOS, SPECTECH•A for CMOSA) 
else tell user "technology required" 

read new input 
goto A 

if a library version is specified 
then set environment variable TECHVERS 

(ex. TECHVERS=N for new if technology specified as NCMOSA) 
else set environment variable TECHVERS to default value 

call .$REFLIBPATH/$TOOL/bin/$TOOL.switch ($var=value of var) 
(ex. /usr3/reflib/sref/bin/sref.switch (SCHEMA soft. switch)) 

on return from switch, call TOOL [ options] 
(ex. SCHEMA -t 4014 -x CMOSA) 

on return from TOOL, clean up files created by CAROUSEL 
EXIT 

NOTES:[] means arguments may or may not exist. 
"" in "call .pathtofile" means execute in the current shell 

Figure 10. Pseudo Code for Carousel Control Code 

- 63 -

' ' -



/l .. 

'. 

$reflibpath/sref/bin/sref.switch 
(SCHEMA software switch) 

check tool environment 

.. ,,, : ,,· '.,.,,,. . " . •. 

if lib. version not compatible with tool version in tool envir. 
then reset environment variable TECHVERS to SCHEMA default 

build a file in the user's current directory named 
$TECHVERS$GENTECH$SPECTEC8 (ex. NCMOSA) 
(contents of file that is built is a series of lines of form 
link gro /usr3/reflib/sref/n/cmos/a/com rea (see Figure 12)) 
(contents of switch that builds this file are lines of form 
echo "link gro "$REFLIBPATH"/sref/"$TECHVERS"/"$GENTECH"/" 
$SPECTECH"/com rea" >> $TECHVERS$GENTECH$SPECTECH 
(where ">>" means append)) 

EXIT 

$reflibpath/aref/bin/aref.switch 
(ADVICE software switch) 

check existance of lib. files for specified libeery version 
if no files exist 

then not a supported version 
reset environment variable TECHVERS to ADVICE default 

for each file in $REFLIBPATH/aref/$TECHVERS/$GENTECH/$SPECTECH 
/w2 directory, build a file with the same name in the user's 
current directory of the form shown in Figure 13(b) 
(built files are called cO, cl, c2, or ccO, eel, cc2, or acO, 
acl, ac2, depending on the technology) 
(files in the w2 directory are of form shown in Figure 13(a)) 
(editing commands are used on w2 files to create built files) 

set up environment for ADVICE to run 
EXIT 

Figure 11. Pseudo Code for Carousel Control Code Switches 

- 64 -

. '\ 



unlink all nosave 
unlink fun all 
link gro /usr4/syscad/nsyscad/lib/schema/groups rea 
link gro . wri 
link gro /usr4/reflib/sref/n/cbic/com rea 
link gro /usr4/reflib/sref/n/com rea 
link fun /usr4/reflib/sref/n/cbic/m/tech.cic 
link fun /usr4/reflib/sref/n/com/tnspec.cic 
link fun /usr4/reflib/sref/n/com/tspec.cic 
link fun schrnff 
link fun schadv 

Figure 12. CBICM File Built by SCHEMA Switch 

- 65 -



'i. 

* ccO 3.Sum 
/nch/nom 
/pch/nom 
/nchd/nom 
/nplus/nom 
/pplus/nom 
/ptub/nom 
/pcap/nom 
/npn/nom 
/par/nom 
/w2/cdev 

case 0 

(a) 

nominal 

* ccO 3.Surn case O nominal 
.use "/usr4/reflib/aref/c/cmos/a/nch/nom" 
.use "/usr4/reflib/aref/c/cmos/a/pch/nom" 
.use "/usr4/reflib/aref/c/cmos/a/nchd/nom" 
.use "/usr4/reflib/aref/c/cmos/a/nplus/nom" 
.use "/usr4/reflib/aref/c/cmos/a/pplus/nom" 
.use "/usr4/reflib/aref/c/cmos/a/ptub/nom" 
.use "/usr4/reflib/aref/c/cmos/a/pcap/nom" 
.use "/usr4/reflib/aref/c/cmos/a/npn/nom" 
.use "/usr4/reflib/aref/c/cmos/a/par/nom" 
.use "/usr4/reflib/aref/c/cmos/a/w2/cdev" 

(b) 

Figure 13. ADVICE CMOSA File 

- 66 -

" 
' ~ 



REFERENCES 

1. Luke, D. C. "A Comprehensive CAD Data Management System to Suppon 

Integrated Circuit Design and Development" Master's Thesis, Lehigh University, 

Bethlehem, Pennsylvania, 1984. 

2. Date, C. J. An Introduction to Database Systems. Volume 1. 4th ed. Reading, 

Massachusetts: Addison-Wesley Publishing Company, 1987. 

- 67 -



'f' /' ' . !'' •, •. ' •.' I/ 

AUTHOR'S BIOGRAPHY 

Teresa Elizabeth Krieger was born March 22, 1959 in Wilmington, Delaware to 

Paul 0. Krieger and Kathleen M. (Redmond) Krieger. She attended Susquenita 

Ele1nentary and Junior High Schools in Duncrumon, Pennsylvru1ia and Trinity High 

School in Shire1nanstown, Pennsylvania. Teresa received her Bachelor of Arts 

degree in Mathe1natics in May of 1981 from Rose1nont College in Rosen1ont, 

Pe1u1sylvania. In 1982, Teresa enrolled at Lehigh University in the Depart1nent of 

Electrical and Computer Engineering. While at Lehigh, she cornpleted several 

undergraduate courses in Electrical Engineering and Co1nputer Science, then began 

graduate work for a degree in Co1nputer Science. A Master's Degree in Con1puter 

Science will be awarded in January of 1989. 

On June l, 1981, she started working for AT&T Bell Laboratories as a Technical 

Editor, publishing IC design n1anuals. In October of 1983, she took an assignrnent 

at AT&T as a Sy stern Mat1ager for three VAX 11n80 co1nputer systerns (VAX is ~1 

trade1nark of Digital Equiprnent Corporation). In 1985, she becaine paJt of the 

Design Auto1nation Group at AT&T as a software developer. The syste1n described 

in this thesis is one product of that assigrunent. 

- 68 -


	Lehigh University
	Lehigh Preserve
	1989

	Carousel, a process management service to support analog integrated circuit design /
	Teresa E. Krieger
	Recommended Citation


	tmp.1551116526.pdf.OV0g1

