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Abstract 
The Top-and-Seat-Angle Connection, a type of semi-rigid beam-to-column 

connection, is analyzed using an approach which examines the connection as a 

substructure comprised of individual components. Insight on how the overall 

connection behaves can be developed by observing force paths, component 

deflections and rotations, and locations of yielding. 

A step-by-step, elastic-plastic computer procedure is used for theoretical 

study. It incorporates a line-type linear elastic structural analysis program 

supported by software which locates areas of yielding, updates the structure 

stiffness matrix, and increments the internal stresses and nodal deflections in a 

piecewise fashion. The connection is modelled within the structure as an 

assemblage of small beam type members. Several successful enhancements to 

the original model created a modified model which delivered a close 

approximation to actual behavior. 

A testing program was conducted using a propped cantilever test frame. 

Two thicknesses of angle and two bolt configurations were used, as were two 

different degrees of bolt tightening. The connection was instrumented to 

observe force paths, component deflection, and locations of yielding. 

The connection exhibited considerable strength and ductility. The bolts in 

the tension angle controlled the connection's behavior. Two pre-tension 

dependent modes of bolt behavior existed for multiple bolt row connections. 

Snug tight bolts performed better than full pre-tension bolts. 

1 
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Chapter 1 
INTRODUCTION 

Beam-to-column connections in steel buildings play a major role in a 

structures overall strength and stiffness. However, in many cases much of their 

rotational resistance is approximated or even ignored. Design occurs with the 

connection assumed to be purely simple (pinned) or purely rigid depending on 

the condition which is a closer approximation. In reality, there are no pure rigid 

or simple connections. The connections whose behavior falls well in between 

these pure conditions will be referred to as semi-rigid connections. 

1.1 Semi-Rigid Connections 

The reason that semi-rigid connections are approximated as rigid or 

simple is because of the complexities involved in using them. The moment­

rotation relationship, which is the accepted stiffness modulus of a connection, is 

nonlinear making insertion into traditional structural analysis programs 

difficult. To further complicate matters, there are many types of semi-rigid 

connections, each markedly different from the last. Finally, the configurations 

within a certain type of connection are endless and more importantly, cannot be 

interrelated by mathematical functions. The types of connections that fall 

within the semi-rigid range are the tee stub, shear tab, end plates, web angles, 

header plate, and the top-and-seat angles. 

2 



1.2 Top-and-Seat-Angle Connection 

This paper deals with the top-and-seat-angle beam-to-column connection, 

which consists of two angles framing the beam flanges (Fig. 1). The angles are 

fast.ened using bolts. Often the seat angle is fastened to the column in the shop 

(in some cases by welding) allowing a temporary ledge to support the beam 

during erection. The bolt pattern usually consists of one row of bolts on three of 

the four angle legs in the connection, while the seat angle's flush leg often is 

longer and takes as many as four rows. 

There are quite a few related connections. A stiffened seat connection has 

a vertical stiffener welded to the seat angle to restrict outstanding leg rotation. 

Occasionly the top angle is replaced by a web clip near the upper flange. The 

top and seat angles may be combined with web angles to create a stiffer, 

stronger connection. In some cases, bolting is replaced with welding. This 

paper's concentration will be the pure top-and-seat-angle connection. 

1.3 Current Design 

Current design of connections is based on equilibrium, not compatibility. 

No moment resistance is accounted for in the tables provided. In the case of a 

top-and-seat-angle connection, the designer would be required to provide a 

shear which the connection would have to carry. Presumably, this value is 

found with a conventional structural analysis program with a rotational release 

at any beam end joined by this type of connection. The AISC Allowable Stress 

Design (ASD) (AISC, 1980) and Load Resistance Factor Design (LRFD) (AISC, 

1986) manuals both contain tables to design the connection for a shear value. 

3 



1.8.1 Procedure 

The AISC ASD and LRFD manuals both contain step-by-step, tabular 

design procedures, as follows: 

1. Select a width of angle from column gage restrictions. 

2. Using this value, along with the beam web thickness and yield 
strength, determine the seat angle's required thickness. 

3. Using selected bolt size, type and fastening procedure, a bolt 
pattern is chosen from a group of six configurations depending on 
required capacity and column axis orientation. 

4. Finally, the angle leg sizes are chosen from the bolt pattern and 
required thickness. 

1.3.2 Backround Theory 

The angle thickness is based on the seat angle's moment capacity at the 

fillet of the outstanding leg. The critical moment is determined from assuming 

a bearing stress distribution across the outstanding leg. AlSC has adopted an 

assumed stress distribution which acts at the center of the required bearing 

length (Fig. 2). The calculations are as follows: 
p 

N= -k~k 
0.75F /w 

where 

tw = thickness of the beam web 
k = outer fiber to fillet toe 
P = connection shear 

determines the assumed bearing distance. The eccentricity at which an 

equivalent concentrated load acts is 

N 
e = - + ec - t - r

1 2 a 

where 

ec =z erection clearance 
ta == angle thickness 

't :::: radius of angle fillet ::= 3/8 in. 

4 
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Calculating bending at the critical section and using the allowable stress 

on solid rectangular sections bent about their weak axis, AISC-1.5.1.4.3, 

provides the formula for required seat angle thickness (Salmon and Johnson, 

1980), 

2 8Pe 
t =-t; 

1.3.3 I,imitations 

The following restrictions and intentional omissions in the AISC design 

should be noted: 

• No moment resistance is accounted for in the design tables. In fact, 
since the connection is intended and designed only for shear 
transfer, moment resistance is undesirable and the angles are 
specified for flexibility. 

• The design involves only one bolt row on the outstanding leg. 

• There are no design guidelines for the bolts on the outstanding leg. 

• Aside from specifying the need for the angle itself, no further design 
guidelines are given for the top angle. 

• The tables only have provisions for 36 ksi angles 

In this section on simple connections, the only mention of rotation stiffness are: 

No ... moment resistance is considered in determining the tabulated values. 

The inherent rigidity of the connection is a factor the designer should be 
aware of and consider where critical. 

5 
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1.4 Previou Studiea 

Previous studies on the ~p-and-seat-angle connection are relatively rare, 

however more frequent than most other semi-rigid connections. Batho and 

Rathbun (Rathbun, 1936) and Johnston (Johnston and Mount, 1942) conducted 

experiments in the 1930's and 40's on riveted top-and-seat-angle connections. 

The work published in 1947 by Hechtman and Johnston (Hechtman and 

Johnston, 1947) was a thorough study of the parameters which affect the 

rotational flexibility. Radziminski and Azizinamini (Radziminski and 

Bradburn, 1984) published work on both static and cyclic testing of the top-and­

seat-angle connection. This paper contains several important observation 

including the stiffening effect on the connection by the seat angle coming into 

bearing with the column on load reversal. Key parameters of the connection's 

response were identified as the bolt gage, angle thickness, and beam depth. 

Recently , a step-by-step, elastic-plastic computer model (Driscoll, 1987) was 

developed. This model will be discussed in detail in the next chapter. Chen and 

Kishi (Chen, 1985), in addition to some important work on semi-rigid effect on 

structures in general, and the development of a semi-rigid connection database 

(Kishi and Chen, 1986), recently produced work on the moment-rotation 

relationship of the top-and-seat angle connection ( Chen and Kishi, 1987). The 

procedure analytically formulates an initial stiffness and ultimate capacity of 

the connection by assuming a mechanism developed in a previous study 

(Azizinamini, et al., 1982) and using a mechanics of materials approach on the 

connection. The procedure is attractive because it does not require empirical 

results, but it is iterative in nature. 

6 
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l.S Be1earch Program 

The current study was undertaken in three parts. Initially a literature 

survey was conducted on all existing works in the area. A theoretical analysis of 

the connection followed, which included the development of a mathematical 

model for the connection's responBe. Finally, full-scale testing was performed to 

expand the knowledge base on the connection and verify and calibrate the 

analytical model. 

7 
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Chapter2 
THEORETICAL STUDY 

2.1 Modelling Philosophy 

Following a thorough literature survey on semi-rigid connection research 

(Chasten, 1987), it became apparent that development of an analytical 

mathematical computer model was the proper way to proceed. Because of the 

many configurations, empirical curve fitting involves a great deal of 

experimentation, while tables and charts become cumbersome. A rational 

computer model would not only overcome these obstacles, but would have the 

potential to be implemented directly into a structural analysis package. 

2.1.1 Common Practice 

Most analyses of connections involve treating the connection as a global 

unit linking a column to a beam. This method produces one number, a 

rotational stiffness. While compact in its information, it allows no inference on 

internal response of the somewhat complicated connection. The other tendency 

has been to study the connection using finite element methods. The exact 

opposite situation arises: the degree of detail of the connection is very high, but 

the volume of data makes it difficult to process into meaningful, concise 

conclusions. Furthermore, in this situation, finite element methods are too 

involved and expensive to be implemented by building designers, thus limiting 

this type of analysis to research. 

8 
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2.1.2 Component ModelJia1 

The rational model's underlying principle is to break the connection into a 

small number of structural component.a. A force path through the connection is 

obtained from the model, enabling the researcher to understand more fully the 

support provided by the connection, while giving the designer guidelines for 

fastener requirements. The individual rotations and deflections of the 

components allow the researcher to visualize the behavioral mechanics of the 

connection. Breaking the connection into a handful of components allows the 

engineer to comprehend the behavior of the connection with a manageable 

amount of data. 

2.2 STRUCTR Model 

Using this idea of modelling connection components, Driscoll 1 developed 

an elastic-plastic analytical procedure using a line type structural analysis 

computer program, STRUCTR. 

2.2.1 Topology 

The analysis involves modelling the top and-seat-angle connection as a 

subassemblage of two-dimensional beam-type members representing the legs of 

the angles (Fig. 3). For compatibility, dummy rigid members running from 

main member centerline to the angle were inserted to represent spatially the 

half-depth of the main members (beam or column). Thus the action of the 

angles would occur at the extreme fibers of the main members. Main member 

refers to either the beam or column connected by the top and seat angle, 

whether in the computer model or in the actual test frame. The angle members 

rnn from the heel to the center of the inner bolt line and have the cross-sectional 

1Profeeeor of Civil Engineering, Lehigh University, Bethlehem, PA 18015 
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properties of the actual angle. The entire assemblage of beams, columns, and 

angles is analyzed as a rigid frame. (Driscoll, 1987) 

2.2.2 Procedure 

The procedure is step by step in fashion, wherein the original rigid frame 

is loaded, and upon reaching a location of yielding, the stiffness at that location 

is modified. Then the process continues from that point; in other words, the 

internal forces and deflection incurred by the first loading on the original 

structure remain while the program loads the new ( once yielded) structure until 

the second occurrence. This procedure repeats until a mechanism is formed in 

the structure. 

2.2.3 Assumptions 

The original model was created with the intent of serving as a guide and 

easy educational tool for engineers to help them in understanding the 

connection's behavior. Therefore, there are several assumptions made by the 

model, many of which would not be found in a finite element analysis. They are 

as follows: 

• Plane sections remain plane. This allows dummy rigid members to 
define extreme fibers of main members. 

• No bending occurs in the angle from the inner bolt line to the outer 
edge of the angle. This allows angle member to run from the heel to 
the first bolt line. 

• A rigid connection exists at the bolt. This allows rigid interface 
between the angle and main members. 

• No local bending of the column flanges. 

• Perfectly plastic behavior. This allows yielding to be simulated by 
placing an internal hinge at the location of yielding. 

• No prying action occurs at the end of the angle legs. 

10 
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2.8 Theoretical Work 

A virtual work analysis based on the mechanism obtained from results of 

early S'l'RUCTR runs was used to perform a parametric study to assess the 

strength capacity and end moment developed at ultimate by the top-and-seat­

angle connection (Fig. 4). If we define 

where 

g
1 

= gage to first bolt row, top angle 
t
1 

= thickness of top angle 
ts = thickness of seat angle 
db = depth of beam . 

It can be seen from Figure 4 that the relationship between the virtual 

displacements is 

Li 
81 = 8-. 

L1 

Equating internal work with external wotk, 

w. = w 
1 e 

L 
- 0_!_p 

2 u 

where 

1 2 
Mpr = plastic moment of top angle = -b1t

1 
C\) 

4 ' 

Mps = plastic mome,u of seat angle = : b
5
t; ay 

MP = plastic moment of beam =-= ayzx 
b1 = width of top angle 
b s = width of seat angle 
cry ~ yield stress of member 
Zx :x: strong axis plastic nwdulus of beam 
Le == clear span of the beam. 

11 
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Substituting the virtual displacement relationship, c.ance]Hng and 

grouping t;erms, yields 

L,_ Mp, Mp, MP 
P = (4+8-)- + 4- + 4-

" L1 LC LC LC 

Recognizing P 
0

, the load that would form a plastic hinge in a simple span beam 

as 

MP 
p =4-

0 L 
C 

then a non-dimensionalized expression for the added capacity delivered to the 

beam by a given top-and-seat-angle is 

It was the results of a parametric study using this analysis that were used later 

to design the test specimens and frame. Though only a pilot for the later work, 

the study's findings are very accurate when compared to later test results. 

A comparison of our model with previous experiments (Hechtman and 

Johnston, 194 7, Yusof, 1986), showed a slight overestimation of the intial 

stiffness and a large underestimation of the ultimate strength. It was surmised 

that the inaccuracies stemmed from the flexibility (both rotational and 

translational) of the angle-column interface at the bolt line, which was not 

accounted for in the initial model (See Sec. 2.2.3). This flexibility would soften 

the initial slope of the load-deflection curve and also would tend to relieve the 

bending stresses in the angle's critical leg, allowing the connection to achieve a 

greater ultimate strength. The critical leg is defined as the region in the tension 

angle from the inner bolt line to the heel (Fig. 5). Likewise, the inner bolt line 

on the column face of the tension angle is referred to as the critical bolt line. 

The outer bolt line on this face, if any, is referred to as the secondary bolt line. 

12 
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Azjzinamini (Azizinamini, et al., 1982) not.ed this as the region involved in the 

collapse mechanism of the top-and-seat angle connection. Exactly where this 

leg extends and how it changes through the life of a connection are discussed in 

Sections 2.4.2 and 4.2. 

2.4 Model Modification 

Coincident with the conclusion of the second experiment was an attempt 

to incorporate this bolt line flexibility into the model. Modelling this effect is 

not trivial, especially if the simplicity of the original model is to be preserved. 

Several optionB have been explored. 

2.4.1 Bolt Members 

The first group of options involves including the bolt within the model. 

Accurate axial stiffness can be incorporated easily enough using data from bolt 

tensile tests. However, the key is to choose proper length and rotational 

properties of the bolt. While the bolt itself has a specific length, much of that 

length is not involved in the structural interface. If it is assumed that the 

portion of the bolt at the nut connects rigidly with the member, then the 

determination is how much of the bolt is active in controlling the deflection of 

the angle. There exists a one-sixteenth to one-eighth oversize in diameter of the 

bolt holes, so one cannot assume that the bolt remains perpendicular to the 

member with which it is connected except at the aforementioned nut-member 

contact point (Fig. 6). Ideally, the bolt, if pretensioned, will not initially 

elongate until the clamping force on the plates is overcome (Douty and McGuire, 

1965). Theoretically, there is no bolt bending prior to the bolt pre-tension being 

overcome since the plates that define the bolt's shape are clamped parallel to 

each other (Fisher and Struik, 197 4). Furthermore, the bolt head does not 

behave rigidly with the shank, allowing rotations of the plate greater than that 

13 
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of the bolt shank. It has been observed in the experiments that at ezceeaive 

deformation the inner half of the bolt head yields and rotates while the other 

half remains relatively horizontal. This is important to note, since it is the bolt 

head which controls the rotational orientation of the angle. The final 

consideration is indirectly noted earlier in the section. The model must 

somehow simulate the dormancy of the bolt's axial response until the tensile 

force on the bolt exceeds the pretension. 

2.4.1.1 Model Bolt A 

This model included bolts in the tension angle only (Fig. 7). The bolt 

member ran from centerline of the flange to centerline of the angle. The bolt's 

modulus of elasticity was taken from tensile tests as 1.13 times larger than the 

value for the structural steel. The cross-sectional properties were those of the 

two bolts making up the bolt row: 

1tfi2 
A= 2x(areaofbolt) = 2 
1.x = 2 x ( inertia of bolt) = 1Ul4 

32 

The axial degree of freedom was restrained until the pretension was overcome. 

This was handled similarly to the resetting of boundary conditions after the 

occurence of an internal plastic hinge (See Sec. 2.2.2). When a critical value is 

achieved in a bolt member, instead of inserting a hinge which is the case when a 

plastic moment occurs m an angle member, the axial material property 

identification is changed from rigid material to bolt material. The bolt's 

rotational flexibility was allowed from the onset. The value to overcome 

pretension for the the experiment with full pre-tension, for example, was 

2x0.7Fu or, 100 kips. Even though there were 4 bolts on a face for most of the 

experiments, it was assumed that the critical bolt row would carry all the load 

until this pre-tension was overcome (See Sec. 4.4.3). 
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1.4.1.1 Model Bolt B 

The second model also contained bolt members on both interfaces of the 

tension angle, but additional bolt members were added on the beam int:erface of 

the compression angle (Fig. 7). This was done because there is some relative 

rotation between the beam flange and the compression angle outstanding leg. 

Since the bolt between the seat angle and the beam is in compression, only the 

bolt's rotational flexibility is brought into play. The compression angle flush leg 

bears against the column flange outstanding leg and does not require bolt 

flexibility. 

2.4.2 Critical Leg Adjustment 

The second way to account for the bolt line flexibilty is to adjust the 

critical leg distance to the location of contact between the angle and the 

member. If the bolt line is pulling out and rotating, there still exists a location, 

farther up the angle where contact with the main member begins. It has been 

shown in experimental work that this surface migrates as the tension increases 

in the outstanding angle (See Sec. 4.2.1). Using the location of yield lines 

observed in this experiment, this leg has been taken empirically as one diameter 

from the center of the bolt line in one of the revised STRUCTR models (See 

Section 2.4.2.2). 

2.4.2.1 Model Leg A 

This model incorporated the bolt members of Bolt Model B; however there 

were two adjustments to the angle's configuration, a heel member and an 

additional angle member located between the critcal and secondary bolt line. 

As can be observed by examining a cut through a standard angle shape 

(Fig. 8), the region at and near the fillet has a variable thickness which is, at 
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every point through this region, larger than the nominal angle thickness. Since 

this is a smaU region, it was originally ignored and all previous models had 

angle members of constant cross-section. However, when considering that this 

enlarged section makes up about 30% of the critical bending leg, it seemed 

prudent to include it in the model. Using the observations from experiments 

and previous structural models, an additional heel member was inserted in each 

angle (Fig. 9). The heel member was oriented on the leg where the fillet hinge 

had occurred in previous analyses, correctly adjusting the critical leg length. In 

the other direction, the fillet was given infinite bending capacity because a 

hinge will only form on only one of the fillet's boundaries. The heel itself was 

also given infinite bending capacity. 

The second adjustment was to add an additional angle section from the 

critical to secondary bolt line on the critical leg only (Fig. 10). This corrected the 

unrealistic rotation allowed when the critical bolt line's pretension was 

overcome. This extra section would remain infinitely flexible until the first 

row's pretension was overcome. In other words, a perfect contact surf ace was 

assumed between this second angle section and the column flange initially, and 

therefore, it would have no stiffness contribution to the structure until the 

critical bolt line seperated from the column. 

2.4.2.2 Model Leg B 

This model was spawned from test observation. In all, two bolt row 

experiments, with either fully pre-tensioned and snug tight bolts, the yield line 

at the critical bolt line formed beyond the critical bolt line. This is a result of a 

combination of the bolt rotation and slight bolt elongation. With this in mind, 

Model Leg B was created. It resembles Model Leg A except that the angle 

segment beyond the critical bolt line extends only a short distance ( to the point 
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of contact with the column flange). There is no bolt member at this connection, 

of course, and the angle is given infinite capacity at the bolt line to allow the 

yield line to form at the node beyond the bolt line. 

2.5 Theoretical Results 

The original and modified STRUCTR model analyses were performed for 

the top-and-seat-angle connection using 1-1/8 inch and 7/8 inch thick angles 

containing two bolt rows. The analyses were performed using a surrounding 

frame in both a propped cantilever and cantilever situation. These structural 

analyses were patterned after the testing program. 

2.5.1 Hinge Occurence 

The results of the structural analyses are returned ot the user in the form 

of a tabular sequence of forces and deflections, one for each location of a stiffness 

change. The calculations are assumed to be linear between points. Using these 

results, a step-by-step history of the structure's response can be created using 

the load-deflection relationship. Likewise, a similar history of the connection's 

response is provided by the moment-rotation relationship. The following 

sections describe the results of the analysis for each type of model. The joint 

being modelled in each case is the top-and-seat-angle connection from test TP2A 

(See Sec. 3.2): Two bolt rows per leg; fully pre-tensioned, 1" A325 bolts; 7/8" 

thick, 50 ksi angles; propped-cantilever test frame. 

2.5.1.1 Original Model 

Figure 11 shows the hinge sequences, load-deflection, and moment 

rotation relationships obtained from the original model (This is the unmodified 

model which is described in section 2.2. The first hinge, which occurs 

moderately early is at the bolt line of the critical leg (Point A). This is followed 

some time later with a hinge at the tension angle heel (Point B). After a large 
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additional loading accompanied by a disproportionately small additional 

moment, a hinge at the outstanding leg bolt line (Point C) occurs, followed 

closely by a hinge on the seat fillet (Point D). Fina)]y, a plastic hinge under the 

load forms (Point E). 

2.5.1.2 Models Bolt A, Bolt B 

Figure 12 shows the hinge sequence, load-deflection, and moment-rotation 

relationships for models Bolt A and Bolt B. The order and time of occurrence are 

basically identical for these models. The first hinge forms at the tension angle 

heel (Point A) as opposed to the formation at the critical bolt line in the original 

model. A large load and moment increase occurs until the pretension is 

overcome on the critical leg bolt row. In both cases, the angle yielded at this 

location almost immediately after pretension was overcome (Point C). Then, 

after a large load increase with relatively no moment increase, the seat angle 

yielded at the heel (Point D). The final hinge was the plasticity under the load 

(Point E). The difference in hinge formation can be attributed to the rotational 

flexibility in the bolts which keeps the connection from yielding at the bolt lines. 

Instead, the large moments are redistributed to the angle heel which cannot 

accomplish the deflection of the flexible angle ends without yielding. This bolt 

line flexibility retarded the formation of a hinge in the column bolt line and 

completely eliminated the hinge at the beam bolt line. 

2.5.1.3 Model Leg A 

Figure 13 shows the hinge sequence, load-deflection, and moment-rotation 

relationships for Model Leg A. Because of the increased section at the heel, the 

first limit reached is the critical leg's pretension (Point A). Where in previous 

models, this would allow the angle at this bolt line to move quite flexibly, the 

added angle member provides the actual stiffness that the critical bending leg 

would feel from the rest of the angle. This causes the hinge to occur at the 
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releued bolt line (Point B). Shortly afterward, the region ~ the heel yields 

(Point C). As in the other models, this is where the connection loses a good part 

of its rotational resistance. The joint rapidly allows rotation while a very slight 

moment increase occurs; the tension angle-beam interface bolt line reaches the 

pretension force (Point D) and then after a very large increase in load, the beam 

forms a hinge under the load (Point E). 

2.5.1.4 Model Leg B 

Figure 14 shows the hinge sequence, load-deflection and moment-rotation 

relationships for Model Leg B. The model is not very accurate for stiffness, 

however it is extremely accurate for ultimate strength. The stiffness error is 

believed to be a result of the difficulty of modelling a contact surface in the 

simple line-type structural analysis computer program. The strengh accuracy 

stems from the empirical critical leg length, which provides the proper moment 

arm. 

2.5.1.5 General Model Characteristics 

There are quite a few behavioral traits shared by all the models. Note 

that there is very little stiffness change in the connection until after the first 

few hinges have occured. After the critical leg has hinged at both ends, the 

connection loses most of its rotational capacity. 

2.5.2 Force Path 

The initial (elastic) force path for the original model is shown in Figure 15. 

The force path gives one an idea of the completely different function of the two 

angles. The angle on the com press ion side of the beam is pushed into the 

column flange with the outstanding leg providing the rotational stiffness. The 

tension angle, on the other hand, uses both legs to partially resist rotation. 

According to the structural model, the tension angle carries more of the shear 
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reaction than the seat angle, which is opposite of what is implied by current 

design (See Sec. 1.3). An explanation as to why this occurs is offered (Hooper, 

1987). The seat angle's outstanding leg rot.ates an amount equal to the beam's 

end rotation, 8~nd" The top angle does the same, however, since the tension 

angle heel is being pulled out, it rotates upward about the first bolt line by an 

angle ~flush (Fig. 17). Therefore, to follow the beam's end rotation, the top angle's 

outstanding leg must rotate an angle whose value is the summation of the 

beam's end rotation and the flush angle leg, a = e end + ~flush' thus attracting a 

larger force (See the example on the following page). At ultimate (Fig. 16), the 

vertical shear increments are now evenly distributed between the top angle and 

the seat angle. The force symmetry is an effect of the hinge formation which 

eliminates the unequal rotation restraint. 

By using small displacement assumption, ignoring the smaller moment in 

the angle at the outstanding bolt line (for both the top and the seat), and using 

assumptions from in section 2.2.3, the forces can be approximated as shown 

acting in Fig. 18. Examining Fig. 18b, it is seen that the seat angle rotates an 

amount equal to the beam's end rotation, e end' due to the proportion of 

connection shear, V
5

, which is carried through the seat. As can be seen in Fig. 

18a, the flange force and a moment from the eccentrically applied top angle 

shear cause a rotation at the end of the flush leg. The outstanding leg is acted 

upon by the proportion of the connection shear, Vt . If we recognize that a is the 

relative rotation of the outstanding angle leg to the flush angle leg, the equation 

for a can be rewritten: 

e outs/flush - ~flush = e end 
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In order to establish t.o what proportion these shears are distribut;ed, the 
• 

following example will be provided, using geometries and force values from one 

of the experiments (TP2A): 

Th• angle leqa are modelled•• cantilever 
elementa. rrom virtual work, the end rotation 1a 

l ·8 = JI~ 
0 EI 

For the ca•• of the aeat anqle (Fiq. 18b), 

8 
= Jg(V,x)( I) d.x = V,g1 

erui o El 2£1 

2£/ 
---, V = -8 _J 

s g2- eTUJ · 

The rotation of the top angle ia compoaed 
of two term.a (Fig. 18a), 

= fg(Fx)(l)dx+fg(V,g)(l)dx = (F-2V,)g2-
$flush El El 2£/ 0 0 

8 = Jg( Vrx )(I) d.x = Vrg1 
outs O El 2£/ 

Uainq the relative anql• relationship, 

V r g2- ( F - 2 V r ) g2 ( 3 V r - F ) g2 

8 
erui = 2£1 - 2£1 = 2£1 

2£/ 1 
---, V = -8 _J + -F 

t 3g2- eTUJ 3 

Now, if a relationship for F, the flange force, can be derived, it will be possible to 

approximately compare Vr and Vs. At this point, experimental data is required. 

The %rigidity of the connection in experiment TP2A was approximately 40%. 

On the following page, this empirical value will be used to evaluate Vr 

21 

·I 



In •yabolic tenne, thi.• percentaga i• 

Mend 
--X 100 = 40 
Mmid 

Kxamioioq riq. 19, it 1• ••en that 

Moad= Fd 

PL 
Mmu1 = --Fd 

4 

Inaart.inq th••• relationahipa into the aymbolic 
equation, 

Fd = 0.4 
PL _Fd 
4 

F = PL 
6d 

From the teat £ram. geometry (Fig. 19), 

1 
Pz-(V+V) 

2 r s 

and 

L 
- z 10 
d 

Th••• two relationahips, combined with tha 
previoua equation, yield 

Subatituting thia value for Fin tha equation 
for Vt give• 

2£/ 1.67 ( Vt + Vs) 
V =-8nd+-----

r 3g2 e 3 

Inaerting the relationship for Vs and regrouping, 

v, - 0.5567 v, = 0.333 vs+ 0.5567 vs 

0.4433 v, = 0.8899 vs 
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2.1.8 Moment Capacity 

The results showed the angle develops 17 .8% of the beam simple plastic 

moment at ultimate in the original analysis. Models Bolt A and Bolt B 

developed a slightly higher value of 22.9% in the modified analysis. This can be 

attributed to the relieving of the bending stresses in the angle's critical section. 

Model Leg A developed 28.6% of the beam's simple plastic moment while Model 

Leg B achieved 42.9%. A complete summary of the STRUCTR results is 

presented in Table 1. 

2.6 Model Comparison 

Figure 20 shows a plot of the moment-rotation relationship for the five 

models. The first segment of each curve represents the pure cantilever initial 

portion of loading (See Sec.3.4.1). The original model, as expected without bolt 

flexibility, has the highest initial stiffness. The two bolt models are initially 

more flexible due to the bolt's small rotational freedom (Region A). The bolt 

model's stiffness lowers by a large amount in the next portion while the leg 

model's reduction is slighter (Region B). This is due to the additional member in 

leg model A. When the pretension is overcome at the critical bolt line, this model 

is able to provide the actual stiffness this area receives from the remainder of 

the angle beyond the critical bolt line. In the bolt models, the bolt line rotates 

and elongates with an unrealistic complete freedom. The bolt models achieve a 

greater ultimate moment than the original model because the critical leg 

mechanism occurs later due to the bolt's flexibility relieving the end conditions 

(Region C). Model Leg A achieves an even greater ultimate moment because the 

increased cross section at the fillet is recognized. Model Leg B is the most 

accurate for strength prediction because the critical moment arm is taken from 

empirical observation. However, the inability to correctly model the contact 

swface creates unrealistic stiffness. 
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Chapter3 
TESTING PROGRAM 

3.1 Experimentation Details 

The testing program for the top-and-seat-angle connection coDBisted of six 

separate full-scale tests experiments. The connection was on the strong axis of 

the column; in other words, connected to the column flange. All bolts had one 

washer and there were no shims between the angle and main members. All 

angles were cut to a width to match the beam flanges, ten inches. The beam's 

erection clearance was one-half inch. 

The angle configurations were the same for the first four tests (Fig. 2 la): 

each angle leg contained two rows of two bolts; the bolts were spaced five inches 

apart, the rows spaced at three inches; the distance from the heel to centerline 

of the first bolt line was also three inches. The tests were designed, with the 

help of the parametric study (See Sec 2.3), so that the bolts would retain their 

load carrying capacity throughout the usefullness of the test. They were all 

cyclically loaded, though more to determine shakedown effects (Sourochnikoff, 

1950) than to observe seismic response. 

The final two experiments used connections which had only one row of 

bolts on the critical leg (Fig. 21b). To carry the additional force per bolt, the 

diameter was increased from 1 inch to 1-1/8 inches. In this case, it was not 

possible within the design constraints to eliminate bolt fracture as a failure 

mode. These tests were monotonically loaded. 
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3.2 Varied Parameters 

The parameters which were varied through the testing program were the 

thickness of the angles, the number of bolt rows on the critical leg, and whether 

the bolts were friction tight or snug tight. Table 2 contains a complete 

description of the testing program. In the first experiment, test TPlA, the angle 

thickness was 1 1/8 inches. The reason for the extreme thickness of the first 

angle was that it was not certain how the angles would perform in a frame of 

the size used (See Sec. 3.4.1). AB it turned out, the angles were too strong. The 

next two tests, TP2A and TP2B used 7/8 inch angles. Tests TPlA and TP2A 

contained friction tight bolts, while TP2B and TP2C had bolts which were 

tightened to the snug condition. The bolts were 1 inch, A325. Friction tight 

refers to bolts tightened to the required prestress for a tensile connection, 0.7 F "' 

where F" is the ultimate tensile strength of the bolt. This is also referred to as 

fully pre-tensioned. Snug tight is loosely defined as "enough to pull the two 

plates together", ideally performed by one worker with a spud wrench. In our 

case, 0.7 F" is 50 kips. It was determined that the snug tight bolts carried a 

pretension of about 20-25 kips or about 0.3 Fu· The final tests, TP3A and TP3B, 

were identical to the TP2 series, except that only one bolt row was used on the 

critical leg. These bolts were A325, 1-1/8 inch in diameter. 

3.3 Material 

All the steel used in the frame with the exception of the base beam was 

A588, 50 ksi steel. This includes the connection detail material itself. The bolts 

in all tests were A325, 1 inch or 1-1/8 inch diameter, high-strength bolts. 
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3.4 Teat Frame 

Most past connection tests have been performed in a 'T' shaped frame 

where the beams act in a cantilever mode. This cantilever action causes high 

moments with unrealistic shear for a building frame situation (Chasten, 1987). 

Bolt strength, which is affected by shear-tension interaction (AISC, 1980), will 

be different for connections in cantilever frames than for building frames. 

3.4.1 Support Frame 

For the reasons of the previous paragraph, a propped cantilever test frame 

was designed and built (Fig. 22). The pin action was developed by allowing the 

free end of the beam to bear against a horizontal roller housed in a channel 

tower. Arriving at a frame which developed a large enough moment at the end 

before the beam reached its plastic moment in the middle, and which was able 

to withstand a large upward moment and axial force at the column base was 

quite a task. A suitable design located the load almost at center span, the span 

being 19 feet from column to the prop. Attached to the column were two braces, 

one below the beam to aid in resisting upward axial force, the second above the 

beam to provide extra rotational stiffness in the column for beam end moment 

increase. The pins were moved 3/4" from the initial resting postion of the beam 

to allow a small initial cantilever action to occur. This, in turn, developed a 

large initial moment at the connection. 

Not all of the tests were performed with the prop in place. For 

comparitive data, test TP2C was conducted in a pure cantilever frame. 

Otherwise, it was identical to test TP2B. The TP3 series was also conducted as 

a pure cantilever and the loads were applied monotonically. 
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The main members were quite massive. The column was a W14x193 and 

the beam was a W27x94. This is believed to be the deepest beam ever used in a 

top-and-seat-angle test. 

The loads were applied cyclically using a 5 million pound t.esting macbine2 

from above and a 400 kip railroad jack from below. The beam was prevented 

from out-of-plane torsional buckling with a lateral bracing system. 

3.5 Justification 

There are a few characteristics of this testing program which differ from 

current practice in industry: 

• The top-and-seat-angle connection is not normally used on sections 
as large as in the experimentation. 

• 50 ksi steel is almost never used for detail material. 

• 1 VB " thick angles are not used for this connection. 

• 8" x 8" angle legs are not used for this connection. 

• Two rows of bolts are not used on the outstanding leg. 

• Symmetry about the top and seat is not common practice. 

In defense of all these deviations from common practice, it is to be noted 

that this study is not an industrial test to add information on the current design 

situation. Rather, it is an experimental effort to view this connection in a 

completely different light, that is, as a moment-carrying structural member. 

Along these lines, the decisions to use details contrary to usual procedure were 

made in the best interest of expounding the untapped resources of this 

connection. 

2Tiniue-Oleen machine located at Fritz Laboratory, Lehigh University 
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3.8 Inatn1mentation 

The configuration of the instrumentation was based on the component 

model discussed in Section 2.1.2. The connection was gaged to aquire data on 

planar component deflection. Strain gages were mounted to the main members 

to determine force path data. For the component behavior, a combination of 

linear measuring devices was used to supply geometric data to quantify the 

kinematics. These devices measured deflection at the bolt line normal to the 

column face to determine flexibility at the bolt line, both at and in between the 

bolts; the angle's deflection at certain points (enabling the calculation of angular 

rotation of the angle legs); separation of the angle from main members at key 

locations; and slip of the angle along the members. The beam at the connection 

was monitored at two locations to find the center of rotation. 

For the overall frame response and global representation, the deflection 

under the load and the rotation at the connection were measured. Strain gages 

were applied to the channel prop section and the column braces to determine the 

redundant forces. 

3.6.1 Force Path 

Strain gages were mounted on three cross-sections of the beam to find the 

moment diagram. Only data from two cross-sections is required to determine 

the moment diagram, however, due to previous load cell calibration 

uncertainties, a redundant reading was desirable. The column was gaged 

above, below, and in between the angles. This was done not only to develop 

axial and bending moment diagrams, but also to examine the vertical shear 

distribution between the angles. 
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3.8.2 Angles 

Strain gages were mounted on the angles, however it was only possible to 

mount the gages on one outer face per cross-section because the other side was 

flush with a main member flange. This obviously did not allow a strain diagram 

through the section to be obtained, but it gave an idea of relative strains 

between sections of angle separated by bolt lines. In a forthcoming experiment, 

the angle is to be gaged on both sides of the cross-section (in a milled recess)to 

determine the actual forces travelling through sections of the angle. 

Unfortunately, results of this experiment will not be available before the 

completion of this pa per. 

3.6.3 Bolts 

The bolts were instrumented by machining flat surfaces opposite each 

other in the shank. The wires were run from the gage through the head of the 

bolt to avoid being crushed in bearing (Fig. 23). The bolts were positioned in 

two ways. Most were placed with the gages in the direction of the force, 

enabling the bending strain gradient to be read. A handful were oriented with 

the gages perpendicular to the bending. These, though only giving information 

on the average axial strain, were used to check the first orientation's 

susceptibility to the gage being crushed by the plate. 

3. 7 Equipment 

The equipment used was standard. For deflection, Linear Voltage 

Deflection Transducers, and one-thousandth and ten-thousandth inch dial gages 

were used. The rotation readings were obtained from Sperry Tiltmeters. 

Ordinary half-bridge strain gages were used on the beam, columns, angles and 

bolts. The load was measured with a Strainsert load cell. 
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The data were gathered and initially processed with a MEGADAC 2300C 

data aquisition eystem.8 Using an Ethernet network, the data were quickly 

transferred t.o a Microvax system where support software and plotting packages 

were used t.o process the data. 

8256 channel/20,000 Hz data aquieition system developed by Optim Software, Inc. 
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Chapter4 
EXPERIMENTAL RESULTS 

4.1 Strength, Ductility, and Failure Mode 

The top-and-seat-angle connection exhibited remarkable strength and 

considerable ductility in the tests. It should be noted, that for reasons discussed 

in Section 4.5, all results reported refer to the upward loading unless otherwise 

indicated. The experimental program included: test TPlA -- 1 1/8" angle 

thickness and friction tight bolts; test TP2A -- 7/8" angle thickness and friction 

tight bolts; test TP2B -- 7/8" angle thickness and snug bolts; test TP2C -- pure 

cantilever test of specimen identical to TP2B; test TP3A -- identical to TP2B 

except containing only one row of larger bolts and monotonical pure cantilever 

loading; test TP3B -- identical to TP3A except bolts were fully pre-tensioned. 

Hysteresis curves are presented in Section 4.5, while moment-rotation curves 

are presented in Section 4.3. 

4.1.1 Test TPIA 

The first test was halted due to test frame limitations a~ a load of 400 kips 

with the top-and-seat-angles connection still intact. The beam had reached a 

partial plastic hinge underneath the point load. Despite the frame related 

stoppage, the connection did achieve approximately 3<l>y while remaining intact, 

where <l>y is the rotation at initial yielding of the connection. A thinner angle 

was proposed for the next tests because of the unexpected strength of the 

connection. 
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4.1.2 Teat '1ftA 

When the 7 /8 inch angle was used in t.est TP2A, the test achieved a load of 

404 kips, while the moment under the jack was approximately 22,000 k-in, or 

about 1.2 times the beam's simple plastic moment. The bolts in the critical leg 

broke at 400 kips, introducing a dynamic impact which snapped a lateral brace. 

Even so, the connection performed for two more load increments and during the 

unloading. The bolts were then replaced and the connection was loaded in the 

opposite direction until failure. The test was stopped because of local yielding in 

the beam flange under the load, despite the stiffeners located at that point. At 

that point a rotation of approximately 3<1\r was achieved. The stiffness curve of 

the connection had reached a plateau as shown in Fig. 27. 

4.1.3 Test TP2B 

Test TP2B achieved a load of 409 kips and a maximum moment under the 

jack of 26,000 k-in or 1.4 times the beam's simple plastic moment. AB in test 

TP2A, the connection was ductile enough to allow a plastic hinge to form under 

the load, and the test was concluded due to the local yielding under the load. 

The rotation acheived at the test's conclusion was approximately 2.5<I>y. It 

should be noted that the if the connection were actually pinned, the load to 

cause a plastic hinge in the test frame would be 295 kips. In other words, the 

partial restraint of the top-and-seat-angle connection permitted a 40% increase 

in the load carrying capacity of the beam. 
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4.1.4 Teat 'l'PIC 

Test TP2C was identical to TP2B in every respect except the beam was 

supported in a pure cantilever mode to try to fail the connection. In both 

directions the load-deflection curve reached a long, flat plat.eau. The connection 

did not fail and the test concluded because the jack stroke reached its limit. 

4.2 Connection Behavior 

The connection stayed linear well into its loading: 378 kips in test TPlA, 

325 kips in test TP2A, and 354 kips in test TP2B. While this occured, the seat 

angle, in compression against the column, slid slightly down the column; the 

tension angle separated from the column by a hairline in the region between the 

critical bolt line and the heel. The second region of behavior involved a slightly 

softer load-deflection slope; the head of the critical bolts rotated very slightly in 

the direction of the tension angle's movement away from the column face and 

some minor flaking of the mill scale occured in the tension angle. In the final 

region of response, the bolts in the critical row elongated noticeably. The angle 

heel was now about 1/8 to 1/4 inch off the column and the separation traveled 

almost halfway between the two bolt lines. The bolts were now visible and 

curved in the space behind the angle. The flaking in the tension angle had 

turned into full-fledged bands of yielding about 1/2" thick across the angle (Fig. 

24). Location and order of occurence of these yield lines are dependent on 

factors which are discussed in Section 4.4.3. Comparison of order of occurrence 

to the computer analysis can be made by reviewing section 2.5.1. Yielding also 

initiated in the seat angle. It was in this region that the stiffness curves 

flattened dramatically. There was considerable bolt slip throughout the test. It 

occured in two cases. First, at high loads, when virgin territory was reached 

and second, at low loads during reversal in later cycles. 
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4.2.1 Teat TPM 

In the case of pre-tensioned bolts, at a load of about 175 kips, slight 

flaking occured at the critical bolt row. At approximately 310 kips, the bolt pre­

tension was exceeded and the bolts in the critical line elongated and rotated 

slightly, causing the critical leg length to increase. The corresponding larger 

moment arm caused the first yield line to occur just beyond the bolt line. This 

plasticity caused a redistribution of higher forces to the outstanding leg fillet. 

AB this yield line allows the flush leg to rotate, a yield line in the heel of the 

tension angle must form to follow the beam's end rotation. This freedom in the 

tension angle allowed the beam to rotate more and redistribute some of the force 

to the seat angle. It was there that the final binge occured (at the seat angle's 

outer fillet) due to the seat angle's outstanding leg rotation. What was 

interesting to notice during the experiment was the progressive yield lines 

caused by the elongating bolt row. Initial flaking occured at the bolt row; the 

first yield line appeared directly beyond the critical bolt row; the final yield area 

occured just in front of secondary bolt row (Fig. 25). 

4.2.2 Test TP2B 

In the case of snug tight bolts, light flaking near the bolt line occured at 

about 17 5 kips. At 290 kips, flaking was taking place in front of the second bolt 

line. A full yield line did not appear until 380 kips, and it was located a full 

diameter beyond the center of the critical boltline (See Fig. 24). The yield line at 

the tension angle's outstanding leg fillet occured later than in the full pre­

tension tests (390 kips). 
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4.2.S Testa TP3A, TP8B 

Both single row tests basically behaved the same, and their behavior will 

be present.ed jointly in this section. The yield line formed on the critical bolt 

line (Fig. 26), as opposed to all the multiple bolt row tests whose yield line(s) 

formed beyond the critical bolt line. The flaking of the yield line began later in 

the snug tight test TP3A, M nuJ = 2432 k-in., than in the fully-pretensioned test 

TP3B, Mend= 1688 k-in. However, both formed full-fledged yield bands at the 

same load, Mend = 3193 k-in. In both cases, at the ultimate load, 

Mend = 4350 k-in., the bolt heads broke off on the critical bolt line bolts. From 

the strain gage readings and the sounds at bolt fracture, it seems that one bolt 

broke and the second bolt followed almost immediately. The bolt fracture in 

both experiments was ductile. 

4.3 Rotational Stiffness 

The rotational stiffnesses of the connections were substantial and the 

beam end moment did reach a high percentage of the beams plastic moment, MP. 

The initial stiffness of the tests were in this order: TPlA was most stiff, 

followed by TP2A, TP2B, TP3B, and finally, TP3A which had the most flexible 

initial response. In test TPlA, the end moment reached about 48%M P; test 

TP2A reached 38%MP; test TP2B reached 49%MP; test TP2C reached 40%MP; 

and tests TP3A and TP3B reached approximately 27%MP. Note that test TP2B, 

identical to TP2A in every way except the degree of bolt tightening actually is a 

stiffer connection than its fully pre-tensioned counterpart. An attempt at an 

explanation is found in Section 4.4.3. It is also important to note that 

connection TPlA was not loaded to its ultimate strength and test TP2C was still 

able to carry additional moment when other constraints caused a stoppage of 

the experiment. It seems reasonable to assume that the 1-1/8" angles could 
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have developed over 60'I, of the beam's plastic moment, while TP2C was heading 

for 50%MP like TP'JB. A plot of each tests maximum-cycle moment-rotation 

curve if shown in Fig. 27. For a complete description of connection behavior see 

Table 3. 

4.4 Bolt Behavior 

The bolt groups under full pre-tension acted quite differently than the 

snug bolts. Table 4 contains the pre-tension values for test TP2A. The bolts 

that did not have strain gages were tightened using the turn-of-the-nut method. 

Table 5 contains the pre-tension values for test TP2B. The bolts were tightened 

using a two-pass, inner-to-outer pattern. Table 6 contains the pre-tension 

values for test TP3A. Table 7 contains pre-tension values for test TP3B. 

4.4.1 Bolt Behavior·· Two Rows 

This section will examine the behavior of bolts in the critical and 

secondary bolt line of the top-and-seat-angle connection with two bolt rows. 

Load increment refers to the bolt axial load above the pre-tension. The cycling 

of loads created hysteresis curves for the bolt load increment plots. Instead of 

plotting bolt response versus load or end moment, this section will usually 

present bolt data versus flange force, where flange force is taken as the end 

moment divided by the nominal beam depth, (; ). 

4.4.1.1 Full Pre-tension 

The bolts on the friction tight tests were pre-tensioned to 0. 7F u or 51 kips. 

The average yield load of these bolts was approximately 63 kips. 
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Bolt Load Increment -- Figure 28 shows the load increment of bolts from 

the critical and secondary bolt line. The critical bolts carry a disproportionate 

amount of the load. In fact, during the early cycles, the secondary bolt line 

carries none of the t;ensile force. The critical bolt's response is siroi1ar to an 

ordinary tensile coupon test with periods of unloading. The unloading in the 

actual experiment occurs when the load is reversed. The unloading curves have 

two slopes: The upper slope describes the bolts response as the angle travels 

back to its initial position against the column; The nearly vertical lower slopes 

pertains to the situation when on full load reversal, the original critical (tension) 

leg that we are examining becomes the compression angle. In this case, the bolt 

is only loaded in shear as there is no physical connection between the bolt head 

and the angle. 

Bolt Elongation -- The clearest way to examine the bolt elongation is to 

plot it versus load step. Figure 29 shows the elongation of the critical bolt line 

for this series of experiments. Examining, for now, only the friction tight 

situation, the bolt pre-tension is overcome between load step 30 and 50. The 

bolt line begins to elongate noticeably at load step 105. At this load step, the 

end moment was calculated as 3300 k-in, which corresponds to a flange force of 

near 120 kips or two times the bolt pre-tension even though there are four bolts 

total. This supports the finding in the previous paragraph that the secondary 

bolt line of friction tight bolts does not participate. As the experiment 

continues, notice the inelastic elongation of the bolt line i.e., it never returns to 

its original position despite load reversal. 

Bolt Bending -- From tensile and torque-tension tests it was determined 

that the yield strain of the bolts was approximately 2600 microstrains. 

Examining the strain gages on the tension side of the bending seperately, it was 
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found that the critical line bolts began to yield at a flange force of 105 kips or 

88% of the axial load that would yield the bolt line. This 12% reduction shows 

the significant effect.B of bending forces in bolts. A plot of bending versus flange 

force for the critical and secondary bolt rows (Fig. 30) shows, again, how the 

critical bolt row is taking the brunt of the applied stresses. 

Prying -- Figure 31 shows a plot of bolt force versus flange force for the 

friction tight case. The vertical difference between the plot and the solid line 

y = x represents the prying force, which is considerable. This prying force takes 

place at the contact surface between the bolt lines as will be explained in the 

section on connection behavior. 

4.4.1.2 Snug tight bolts 

The snug tight bolts were tightened with an ordinary wrench to 25 kips or 

Bolt Load Increment -- Figure 32 shows a plot of critical and secondary 

line bolt load versus flange force. Notice how both bolt rows share the tensile 

flange force, which is markedly different than the friction tight case. Also 

dissimilar to the friction tight test is the fact that, even though both 

experiments were identically loaded, the bolts show no permanent elongation 

until the final cycle. The critical bolt has a lower bound of its pre-tension while 

the secondary bolt loses almost all of its initial tightening. This is a result of 

different initial contact surfaces. When the critical bolt line was tightened, the 

faying surfaces were clamped tightly. However, when the secondary bolt row 

was tightened, there was an imperfect fit. On load reversal, when the angle 

goes into compression, it flattens against the column. Since the bolts are well 

within their elastic range, they will follow the angle and lose a portion of their 

pretension. 
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Bolt Elongation -- Referring back to Fig. 29, it is observed that the critical 

bolt line elongation for the snug-tight case does not show any excessive 

deformations until near the experiment's conclusion. Priof to this, the bolt line 

has minor deformations and returns to near its original postion. However, 

notice that the deformations begin immediately due to the low pre-tension. 

Near the conclusion of the experiment, at load step 170 and a corresponding 

moment of 6500 k-in, the first appreciable elongations occur. This corresponds 

to a flange force of about 240 kips which is four times the bolt yield force. This 

correlates the finding in the previous paragraph that all four bolts on the critical 

face partake in the load carrying. Since all the bolts yield at once the elongation 

propogates to the ultimate condition. 

Bending -- It should be expected that both bolt rows will bend more 

evenly and less severely than the corresponding fully pre-tensioned connection, 

and Fig. 33 corroborates this point. Notice, however, at low loads the curvature 

of the bolt rows is opposite. This is caused by the combination of low pre-stress 

and elastic behavior. The bolts allow the angle freedom, but do not elongate 

considerably. This causes a dishing effect of the angle which locates a contact 

surface in between the bolt lines and places the bolts in opposite curvature. 

(See Sec. 4.4.2) 

Prying -- Figure 34 is a plot of bolt force versus flange force for the entire 

bolt pattern on the critical face. Again, the vertical distance from the plot and 

the line y = x represents the prying force. This force is considerably smaller than 

the prying on the fully pre-tensioned connection and is also distributed to four 

bolts. The initial high prying force is believed to be a result of the dishing effect 

described in the previous paragraph. The lower prying forces in this experiment 

are a result of the different mode of behavior that a multiple bolt row tension 
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connection experiences for snug tight bolts. The two modes are described in 

Section 4.4.3. 

4.4.1.3 tntimate Condition 

The bolt tests with two bolt rows were designed so that the four bolts 

would not fail throughout the entire experiment. This was the case in the snug 

test, in fact, the critical bolts plastically elongated to the extent that they could 

be spun by hand while remaining in the unloaded frame. In the friction tight 

test, however, the critical bolts both fractured at the ultimate condition. 

4.4.2 Bolt Behavior -- One Bolt Row 

This section examines the behavior of the single bolt row in the critical leg 

for the monotonically loaded experiments. The characteristics of these plots will 

be different than in the previous section because of the absence of load reversal. 

Since the behavior of the snug tight and full pre-tension experiments were 

forced to be similar for the one bolt row experiments, they will be presented 

together in the following section. 

4.4.2.1 Full Pre-tension vs. Snug-Tight 

The bolts in this experiment are 1 1J8", A325. The tightening condition 

was 61 kips (0. 7F u) for the fully tightened and 27 kips (0 .3F u) for the snug-tight 

condition. 

Bolt Load Increment -- Figure 35 shows a plot of bolt load versus flange 

force for both tightening conditions. The curves are practically the same at the 

higher loads. At the low loadings, the snug tight experiment responds ear lier 

due to its lesser pre-tension. Note that there exists a region between 60 and 75 

kips of bolt load where both cases respond but at different levels. This is due to 
" 

prying action and will be discussed shortly. 
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Bolt Elongation -- Figure 36 shows the elongation at the bolt line for the 

fully pre-tiensioned experiment. The three curves are elongation at the two bolts 

and elongation of the angle at a point on the bolt line halfway between the bolts. 

The angle deflection between the bolts is much higher than at the bolts. This 

situation also occurs in the snug case for one bolt row. However, in the multiple 

bolt row tests the bolt line deflection was nearly rigid body motion. The bolt 

elongation travels inward at low loads, a phenomenon which did not occur in the 

multiple bolt row tests either. 

Bolt Bending -- Figure 3 7 shows a plot of bolt moment for the two 

tightening cases. The bolt moment relationships of the two tightening cases are 

similar, however in the snug case, bending is initiated at a lower flange force. 

Once the pre-tension is overcome in the full case, the curves are almost 

identical. 

Prying -- Figure 38 visually details the prying action in the two tests. 

The snug test exhibits low level prying almost immediately. When pre-tension 

is overcome for the full case, the two curves join together as was the case with 

the bolt bending plot. 

4.4.2.2 Failure Mode 

In both the fully pre-tensioned and snug-tightened cases the failure was 

the same. At approximately the same load the bolt heads broke off the critical 

line bolts. From the strain gage readings and the sounds at bolt fracture, it 

seems that one bolt broke and the second bolt followed almost immediately. The 

fracture surface in both cases was ductile. 
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4.4.1.1 One Bolt Bow 

The connections with one bolt row act;ed independently of degree of pre­

u,nsion. There were only subtle differences in response and the connections 

both developed the same ultimate moment and rotation. The snug test was 

slightly more susceptible to bending and prying at early loads. 

4.4.3.2 Two Bolt Rows 

The bolt groups under full pre-tension acted quite differently than those 

under snug-tightening. In fact, two modes of bolt-induced connection behavior 

exist. In the case of fully pre-tensioned bolts, the first bolt row becomes 

inelastic quite early. A progressive softening of the connection occurs on 

reversal. In snug bolts, the bolts remain linear until near the ma,amum 

capacity. 

Full Pre-tension Mode -- In the case of fully pre-tensioned bolts, ideally 

there exists an initial perfect contact surface between the secondary and critical 

bolt rows. Referring to Fig. 39, which shows the force-deflection relationship for 

an A325 high strength bolt, a force 

Pf= NxFpr 

where 

N = number of bolts per bolt row 
Pf = flange force 
F pr = pre-tension force 

will cause the first row of bolts to start travelling on their force-elongation 

curve, beginning at point A. Concurrently, the contact surface travels toward 

the secondary bolt line. Because the proportional limit (Point B) of the bolt is 

near its pre-tension value (Point A), the first row of bolts yield before the contact 

surface reaches the second row, i.e., before the second row of bolts begin to assist 
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in carrying the um&ile force. Thus, the ''Full Pre-Tension Mode" of multiple bolt 

row connections is one in which the inner bolt row deforms excessively due to an 

eccentric tensile force, while the remaining bolt rows do not participate (See Fig. 

40). This results in a much more flexible connection and the tendancy of an 

early yield line between the bolts. 

Snug Tight Mode -- In the case of snug-tight bolts, under low loads the 

pre-tension is overcome, but as the contact surface is travelling toward the 

second bolt row, the critical bolts are deflecting along the path beginning at 

C. This allows the first bolt line to act elastically while the small amount of pre­

tension is overcome in the secondary row. The second bolt line becomes useful 

and with four unyielded bolts a force of 

pf= 2xNxFY 

is required to put any bolt into yield, where 

FY::::: Fp, = yield load for the bolt. 

The deflected shape of the angle under moderate loads is close to the depiction 

in Fig. 41. The prying force actually occurs between the bolt lines and affects 

both rows. This is the dishing effect which caused the reverse curvature in 

section 4.2.2. 

It is not suprising that the snug connection achieved greater strength and 

stiffness, given the two modes of behavior. Even though the critical bolt arm is 

only about 3 inches, it holds tremendous leverage over the beam's end rotation 

(Refer back to Fig. 17). The occurence of yielding at the first bolt row in the full 

pre-tension case allows a considerable increase in connection flexibility. 
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Verification -- To verify the modal behavior, a check of proportional limit 

for the connection is performed. In the full pre-tension test case, a flange force 

of 

P1 = 2x60 = 120 kips , 

which represents an end moment of 

M = Pxd = I20x27 = 3240 k-in. 

will cause a full pre-tension mode of yielding to occur. This occurs by load step 

105. Note in Fig. 29, load step 105 is the location of the first excessive deflection 

of the bolt line. For the snug bolts, the load required for a snug tight mode of 

yield is 

P1 = 2xNxFY = 2x2x60 = 24-0kips 

which represents an end moment of 6480 k-in. This does not occur in test TP2B 

until loadstep 170. Refer back to Fig. 29 for verification. Note that when 

yielding finally does occur, all the bolts will yield at about the same time as 

witnessed by the rigid-plastic nature of the snug-tight curve. 

Modal Effect on the Connection -- The connection with snug bolts was 

stiffer than the connection with fully pre-tensioned bolts. At ultimate, the 7/8 

inch angle connnection developed about 35-40% of the beam's MP for fully pre­

tensioned bolts, while the snug bolts reached 45-50% MP (See Fig. 42). The 

lower value for the fully pre-tensioned case can be attributed to the yielding of 

the critical bolt line, coupled with the hinge in the angle as was shown in Fig. 

40. Though only of small length, this arm holds tremendous leverage over the 

rotation, and hence the stiffness of the joint. 

The friction tight test began with a slightly higher rotational stiffness, 

however, with each load reversal the connection softened considerably. This is 

not the case for the snug-tight bolt test. While beginning at only 75% stiffness 
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of its fully pre-um.&ioned counterpart, the snug test remained at that stiffness 

until the last cycle of loading. The snug test's rotational stiffness stayed linear 

further into the loading than the fully pre-tensioned: The fully pre-tensioned 

test showed nonlinearity at 0.8P u; the snug remained linear until 0.87P". 

4.5 Load Reversal 

Loading in two directions had the effect of delaying inelastic behavior in 

the second (downward) cycle. After the loading became high enough to 

overcome the bolt pre-tension in the tension angle, the bolt almost immediately 

enters the inelastic range. When unloading occurs, the bolt contains a 

permanent set and the angle heel remains off the column surface. Then, when 

the load is reversed, a considerable portion of the opposite loading in consumed 

pushing the angle back into bearing against the column. This had a cumulative 

effect on the downward loading, which was always after the upward loading in 

each cycle. For this reason, connection and bolt yielding occured much ear lier 

during the upward direction (Fig. 43, Fig. 44). 

When usmg friction tight bolts, the small permanent set has a 

propagative effect on the rotational stiffness as the connection undergoes load 

reversals (See Fig. 45). This is due in part to the complete change in function of 

the angle when the load direction iS'switched. This phenomenon did not occur 

in the snug tight connection (See Fig. 46). The cyclic fully pre-tensioned 

experiment experienced progressive yield lines caused by the elongating bolt 

row. Initial flaking occured at the bolt row; the first yield line appeared directly 

beyond the bolt row; the final yield area occured just in front of second bolt row 

(See Fig. 25). In the snug tight test, the full yield line was located a full 

diameter beyond the center of the critical boltline. 
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Upon load reversal, even before the load became very high, bolt slip 

occured. There were two kinds of slip, minor and major. Minor slip caused a 

small ping and did not cause any jump in the instrumentation readings. Major 

slip was accompanied with a deep resounding sound and caused a jump in 

readings. In the tests with snug bolts, the slip occured often and early, while in 

the tests with friction tight bolts this only occured in the later cycles. 
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Chapter& 
MODEL COMPARISON 

At this point, it would be advantageous to~mpare the original and 

modified models with the actual experiments. The following sections compare 

the moment-rotation relationship of each model with the actual moment­

rotation relationships from both the friction tight bolts and snug bolts top-and­

seat-angle connection tests. 

5.1 Original Model 

This was the original STRUCTR model (See Sec. 2.2) consisting of main 

members, rigid members to space the detail material properly, and beam-type 

members to represent the angle legs. By examining Fig. 4 7, one can see the 

overestimate of stiffness and large underestimate of strength for two bolt row 

connections. It, as is the case with the bolt models is fairly accurate with the 

single bolt row connections. 

5.2 Revised Model Bolt A,B 

The bolt model's flexibility at the bolt line caused a closer prediction of the 

moment rotation relationship to be attained when compared with the original 

model (Fig. 4 7). The initial stiffness is closer for model A which contains tension 

angle bolt flexibility and for model B which has an additional bolt member at 

the seat angle-beam interface. Since the tension angle controls the mechanism, 

they both reach the same ultimate moment which is also closer to actual than 

the original model. For the snug condition, the performance is encouraging, 

since it also indicates reserve strength over the fully pre-tensioned case (Fig. 

48). The comparison to the single bolt row tests are more favorable, since the 

models only contain a leg to the first bolt row. 
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&.3 Reviaed Model Leg A 

Model Leg A which incorporates the bolt members, has two features not 

found in the bolt models. It has a larger cross-section at the heel and has one 

additional angle member ~nding from the critical bolt line to the second bolt 

line. AB can be seen in Fig. 4 7, the two desirable effects of these features are a 

stiffer intermediate path (point 1 to 2) from the additional angle member; and a 

higher ultimate moment from the heel members. See Section 2.6 for an 

explanation. It does not reflect the reserve strength in the snug tight case as 

was shown in the experimentation. 

5.4 Revised Model Leg B 

Model Leg B is fairly accurate for strength prediction, because the 

moment arm was determined from empirical observation. The stiffness 

prediction is unrealistic, due to a crude model for the contact surface. 

5.5 Recommendation 

Model Leg A, which really is a combination bolt member and leg-adjusted 

modification of the original model, is the most accurate for the multiple bolt row 

full pre-tension tests. Model Leg B is fairly accurate for strength prediction. 

Model Bolt A or Bolt B are accurate for the single row experiment, and show 

increase in strength for the snug tight case. 
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Chapter& 
CONCLUSIONS 

6.1 Connection Behavior 

. .. -

In the experimental work performed for this paper, the top-and-seat-angle 

connection's behavior as a structural component is primarily dependent on the 

bolts of the critical line in the tension angle. For top-and-seat-angle connections 

in general, the most important parameter might be one which relates the bolt 

row pre-tension value to the angle's plastic modulus for a given bolt gage, and 

beam depth. 

6.1.1 Modal Behavior 

There existed three modes of behavior for the top-and-seat-angle 

connection: multiple bolt row, full pre-tension; multiple bolt row, snug tight; 

and single bolt row. 

6.1.1.1 Multiple Bolt Row 

Two modes of bolt-induced connection behavior exist. In the case of pre­

tension bolts, the first bolt row becomes inelastic quite early. A progressive 

softening of the connection occurs on reversal (Fig. 45). In snug bolts, the bolts 

remain linear until near the maximum capacity (Fig. 46). It can be construed 

that in these tests, the yield lines in the tension angle are responses to the 

deformation that the bolts are permitting the beam to impose on the angle. The 

plastification of critical angle sections occurs later than previous models have 

shown (Driscoll, 1987, Chen, 1985) presumably from the rotation of the bolt 

heads and the large area occupied by the thicker fillet. Secondly, from the bolt 

rotating and pulling out slightly, the hinge forms behind the bolt line. Again, if 

the bolts don't elongate, the plastic hinge is meaningless in describing the 
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conneeti.on stiffness. Another point that should be noted is that a line of 

plastification does not necessarily mean a substantial change in connection 

behavior. For instance, when the plastic binge forms on the outstanding leg 

fillet of the tension angle, the angle leg does not rotate freely, it rotates to 

wherever the beam end rotation takes it. In summary, 

• The connection with the snug bolts achieved more strength, while 
actually behaving stiffer for the majority of the experiment. This 
can be attributed to their lower (elastic) pre-tension. 

• The snug connection reacted less adversely to load ( wind) reversal 
and remained linear longer. 

• The snug connection developed 50% of the beam's plastic moment, 
while the fully pre-tensioned connection achieved 40%. 

• In the fully pre-tensioned experiment, only the inner bolt row 
participated in carrying the tensile force, while all bolts participated 
in the snug tight test. This different mode of behavior caused 
higher bending and prying forces in the fully pre-tensioned case. 

• The snug connection exhibited more ductile behavior than the fully 
pre-tensioned connection. The bolts in the snug connection survived 
the entire experiment, while the fully tightened bolts fractured at 
near the maximum load. 

6.1.1.2 Single Bolt Row 

The connections behaved almost identically, independent of pre­

tensioning level. The yield line occurred in line with the critical bolt row, not 

beyond it as was the case in the multiple bolt row experiments. The bolts 

fractured at the bolt head. 
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8.2 Connection Qualities 

8.2.1 Strength 

The connections' strength was admirable to say the least as 3 of the 6 

tests were performed in which an outside factor caused the stoppage of the test 

with the connection intact (See Sec. 4.1), and applied loads in excess of 400 kips. 

This points out an advantage of propped cantilever testing. The moment 

capacity of the connection was spent, however, the test frame allowed the 

examination of the connection's additional shear capacity. 

6.2.2 Ductility 

The snug tight, multiple bolt row connection's moment-rotation 

relationships contained a plateau of approximately 3~ without any angle or 

bolt failure. The fully tightened multiple bolt row achieved the same plateau 

but bolt fracture occured. This points out he usefulness of the top-and-seat­

angle connection: a connection which can deliver a good percentage of the 

beam's MP, yet remain ductile. Most connections which engage the beam flanges 

do not have such a forgiving nature. The single row connection achieved over 

4~ before the bolts fractured. The fracture surface was ductile. 

6.2.3 Rotational Stiffness 

The stiffness was high enough to justify taking advantage of it in design. 

The connection with snug bolts was stiff er than the connection with friction 

tight bolts. At ultimate, the 7/8 inch angle connnection developed about 30-40% 

of the beam's MP for friction tight bolts and 40-50% MP for snug bolts. The single 

bolt row experiments developed approximately 25% Mp· This lower value is 

expected since the single bolt row experiments had a longer gage length to the 

bolt line (4.5 in. versus 3.0 in.). 
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6.3 Insights 

Several insight.a on the top-and-seat-angle connection were discovered 

through the experimental program. They were as follows: 

1. Shear Force Path -- The connection carries the vertical shear at 
least evenly between the top angle and the seat angle, if not more 
going to the top angle. This is contrary to what is implied in 
current AISC design. 

2. Bolts -- The number of bolt rows and the degree to which they are 
tightened control the behavior of this connection. 

3. High Strength Steel -- The 50 ksi steel angles provided tremendous 
strength to a connection generally viewed as weak. The ductility of 
the connection did not seem to suffer. Since the higher cost of high 
strength steel is felt in volume, it seems that it would be ideal for 
detail material, especially if used in conjunction with A36 main 
members. 

4. Working Range Linearity -- All the connections exhibited linear 
behavior well into the tests. The earliest occurrence of 
nonlinearity was at a load of 300 kips in test TP2A. This 
corresponds to a value well above the working load in many 
building situations. 

5. Reversal Effects -- While the previous item could allow 
simplification of the connection analysis and design, the reversal 
effects that were observed point back toward complexities. When 
using friction tight bolts, the small permanent set has a 
propagative effect on the rotational stiffness as the connection 
undergoes load reversals. This is due in part to the complete 
change in function of the angle when the load direction is switched. 

6. Seat Angle Bearing Distribution -- The A1SC adopts a vertical 
shear distribution on the seat angle's outstanding leg which 
extends from the inner edge of the beam a distance equal to the 
required bearing area. In test observation, the beam flange and 
the seat angle separated at the inner edge. This locates the center 
of bearing near the centroid of the bolt pattern. This point may be 
moot since the total value of the end reaction is used in the AISC 
calculation. 

7. Snug vs. Tight -- Snug tight bolted connection performed equally 
for single bolt row experiments, and better for multiple bolt row 
experiments. The increased strength and stiffness is a result of 
the mode of behavior. The yielding of the critical leg allows much 
larger rotations because of the tremendous leverage it holds on the 
beam's end rotation. 
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6.4 STRUCTR Modelling 

If nothing else, the STRUCTR model for the top-and-seat-angle connection 

provides a simple, unintimidating tool for an engineer to help in visualizing the 

mechanics of a connection. The model, especially with the modifications, is 

fairly accurate and safely conservative. The trade off for the increased accuracy 

is an increase in nodes at the joint: the original model contains 9 nodes; the 

most accurate modified model contains 17 nodes. Even though this represents 

an almost 100% increase, the number of nodes is still quite small when 

compared to a finite element model of the same connection. A trial finite 

elements mesh created by the author contained 126 nodes. 
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Chapter7 
CONSIDERATIONS 

7.1 Comments on Semi-Rigid Connection Design 

While beam-to-column connections in a building are a key structural 

component and connection related expenses make up a large portion of 

fabrication and erection costs, the design, selection, and interaction between 

designers and fabricators remain in a primitive stage. Three main obstacles 

causing the lack of advancement are: 

1. Complex connection behavior 

2. Too many connection types 

3. Involvement of two or three parties, each with separate interests 
and roles in the final product. 

• Obstacle 1 requires rational, analytical computer models if it is to be 
overcome. 

• Obstacle 2 would not be a problem if a categorized database were 
available. 

• Obstacle 3 exists because there is no efficient interface between the 
parties. 

This paper makes an attempt to initiate thought and expand the 

knowledge on the first category. Charts and tables are not the answer. A 

moment-rotation relationship is not an independent description of a connection's 

behavior. There are variables such as beam depth, or cantilever versus frame 

loading, that are not connection properties, yet have a significant effect on the 

connection's response. With recent computer technology advancing at an 

accelerated rate, it seems that semi-rigid connection behavioral complexities can 

be overcome and the beneficial rotational stiffness should be utilized in 

structural design. 
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Even an accurate yet simple connection model cannot stand on its own if 

it is to be practical. An interactive, qualitative and quantitative knowledge­

based system for connections could incorporate these rational models to provide 

a complete tool for the designer. 

7.2 Future Work 

If the top-and-seat-angle connection is to become a dependable, fully 

utilized, partial moment developing structural component there is a 

considerable amount of future work to be done. The previous section touches on 

some of the support developments that are required. Within the area of 

connection behavior, studies must be undertaken on the effects of different bolt 

configurations, single bolt lines, and A490 bolts. A parametric study on bolt 

pretension vs angle thickness should be performed. Fatigue and fracture 

studies on high strength steel detail material would be of use. Wind reversal 

effects in sway frames could also be studied. Finally, it is imperative to build on 

the existing knowledge base on connections in general, and organize the 

information into an accessable and orderly set. 
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STRUCTR Model Results 

Model # nodes ~ (k-inJrad) Mo1n,i {k-in) 

Original 10 - -
snug 2380 X l(P 2400 
tight 2380 X l(P 2400 

BoltA/B 13 - -
snug 920 x HP 3450 
tight 2820 X 103 3180 

Leg A 18 - -
snug 2120 X 103 5400 
tight 1100 X 103 4000 

LegB 17 - -
snug 3500 X 103 6200 
tight 2200 x103 7600 

Table 1: Results of Theoretical Models. 
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Top-and-8eat--Angle Testing Program 

Teat ta (in.) #rows Tight Frame 

1 
TPlA 18 2 @3" full prop 

7 
TP2A 8 2 @3" full prop 

7 

TP2B 8 2 @3" snug prop 

7 

TP2C 
-

2 @3" cant 8 snug 

7 

TP3A - 1 @4.5" cant 8 snug 

7 

TP3B - 1 @4.5" full cant 8 

Table 2: Testing Program: Top-and-Seat-Angle. 

Experimental Results 

Test K Fl M (k") 
0 0 y 

TPIA 2846 1692 * 

TP2A 2164 954 4500 

TP2B 1411 1541 7255 

TP2C 686 172 4250 

TP3A 855 * 1000 

TP3B 860 * 1820 

Table 3: Experimental Results. 

K
0 

= Initial stiffness, l st cycle 

~ = Initial stiffness, Final cycle 

Units= (kin/rad) x 103 
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M (k") 
u 

* 
6000 

9650 

5800 

4520 

4780 



Bolt Pre-t.enaion 

Bolt E (ksi) F" (ksi) Tp, (k) 

SABI 33530 151 51.4 
SABO 34590 135 50.4 
TABI 34530 149 50.9 

TABO 34630 131 51.4 
SACO 33200 133 51.2 

TACI 32817 131 38.1 

SACI 39006 126 52.5 

TACO 33935 139 50.4 

Table 4: Bolt Pre-tension: Test TP2A. 

Bolt Pre-tension 

Bolt Fu (ksi) Tp, (k) 

SACI 142 26.2 

SACO 147 23.5 

SACI 143 28.3 

TACI 143 27.3 

TACO 139 25.5 

SABO 143 26.8 

TABI 145 25.4 

SABI 131 23.4 

TABO 130 27.2 

Table 5: Bolt Pre-tension: Test TP2B. 

SA = Seat Angle; TA = Top Angle; 
B = Beam· C = Column· 

' ' 
0 = Outer; I = Inner. 
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Bolt Pre-temion 

Bolt E (ksi) Fu (ksi) Tpr (k) 

CRIT 35730 147 25.47 

CRIT 32780 133 25.19 
COMP 32220 137 25.01 

COMP 35130 148 24.80 

Table 6: Bolt Pre-Tension: TP3A. 

Bolt Pre-tension 

Bolt Fu (ksi) Tp, (k) 

CRIT 144 59.2 

CRIT 139 62.7 

COMP 147 56.7 

COMP 141 61.2 

Table 7: Bolt Pre-Tension: Test TP3B. 
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Fi,ure 1: Top-and-Seat-Angle Connection. 
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Fipre 2: AISC Bearing Distribution on Seat-Angle 
(after Salmon and Johnston, 1980). 
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Fi,ure S: STRUCTR Model of Top-and-Seat Angle. 

63 



1, 

• 

~ I.C. 

Ft,ure 4: Plastic Mechanism for Simple Frame 
with Top-and-Seat-Angle Connections. 
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Fipre 5: Mechanism of Critical Leg 
( after Chen, 198 7). 
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Ft,ure 6: Angle Rotation Relative to Bolt. 
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Fipre 7: STRUCTR Models Bolt A, B. 
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Fillet---

Critical Lei 

Fipre 8: Angle Geometry at Heel in Reference to Critical Leg. 
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"---- Heel Member 

Fipre 9: Heel Member for STRUCTR Model Leg A. 
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Fipre 10: STRUC'l'R Model Leg A. 
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F'ipre 15: Initial Force Path from Original STRUC'l'R Model. 
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Fipre 17: Relative Rotational Displacement of Outstanding Leg: 
Top-Angle vs Seat-Angle. 
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Fipre 18: Cantilever Elements for Top-Angle 
and Seat-Angle Rotation. 

L 

PL 
-

4 

Fipre 19: Beam Moment Diagram: TP2A. 
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Figure 22: Propped Cantilever Test Frame for Beam-to-Column Connection. 
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Fipre 23: Strain Gage Locationa on Bolt.a. 
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Fipre 24: Initial Yield Line. 

Fipre 25: Progreaaive Yield Line: Test TPlA (Full Pre-tension Bolts). 

Fipre 28: Yield Line: Single Bolt Row. 
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