Lehigh University
Lehigh Preserve

Theses and Dissertations

The development of a knowledge-based system for
semantic data modeling /

William H. Fenton
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Industrial Engineering Commons

Recommended Citation

Fenton, William H., "The development of a knowledge-based system for semantic data modeling /" (1989). Theses and Dissertations.
4953.
https://preservelehigh.edu/etd /4953

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4953?utm_source=preserve.lehigh.edu%2Fetd%2F4953&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

The Develcpment of a Knowledge-Based System for
Semantic Data Modeling

By

William H. Fenton

A Thesis
Presented to the Graduate Committee
of ILehigh University
in Candidacy for the Degree of
Master of Science
1n

Industrial Engineering

Lehigh University

December 1988

This thesis is accepted and approved in partial fulfillment of the
requirements for the degree of Master of Science.

i, 8 NtE

(date) ~

WAL

Professor in Charge

Chairman of Department

pte
PQ

Py o)

Chapter IT.
Chapter III.
Chapter 1IV.
Chapter V.
Chapter VI.
Chapter VII.
Chapter VIII.

Chapter IX.
APPENDIX A

APPENDIX B
APPENDIX C
APPENDIX D

Vita

Table of Contents

Semantic Data Structure Backgrourd .

SIM Rule Implementation

System Overview

Observations .

Future Enhancements

Conclusion .

Location of SIM/Prolog System
References .

SIM Data Definition language Syntax
SIM Tanker Monitoring Application
English Rule Interpretation

Prolog Implementation of SIM .

iii

14

15

17

19

20

21

23

28

38

43

58

The basis for a sound and logical organization of a corporation's data
is the building of logical data structures. Iogical data structures
support the data definitions and data relationships as related to an

organization's business processes and functions.

Organizations implement business processes and functions using database
management systems (DBMS). DEMS's are designed and engineered to
manipulate data from a physical aspect and do not represent the meaning
of the data. The semantics of business processes and data definitions
are embedded in program code and replicated across systems. This
Creates inconsistency and unnecessary expenditures in data processing

resources.

Limited research has been devoted to the development of a Semantic Data
Model (SIM) to support business processes and data definitions.

Information about the business and data is left to individual

interpretation by systems analysts.

This thesis deals with the development of a knowledge-based system to
assist in recording the definitions, relationships, and semantics of
data in an organization. The benefits of such a system are: (a) user
involvement in data definition; (b) the reduction of ambiguous data;
and (c) the basis for the implementation of a physical database,
regardless of the DEMS.

Today, many organizations and campanies develop information systems
to establish a position within their market place or to provide a

service that is new. Either way, the organization has an opportunity to
Jain an edge over its campetition. In doing so, information systems
departments are receiving requests to analyze and develop systems or
change the current data processing services their respective
departments receijve.

The operating department requests focus on the individual needs of each
department. In each case, the request satisfies a department
requirement, contributing to achieving its business goal. Typically,

how a request is satisfied and at what cost are overlooked.

When analysts review all department requests, they discover there is
duplication of effort and redundancy of information within the
organization's information systems. With duplication of effort,
inconsistencies arise between data and the rules to process and analyze
that data. These information systems interface and exchange data only
when required, and usually only after a political struggle occurs over
data ownership.

Following is an actual case of how a campany attempted to develop a

corporate information system.

Cowpeny X developed a new custamer database. The system is intended to
amtarﬂnuiitorﬂmedevelqmmxtof,wsbmeromtmctstrma
custamer's initial request through campletion. The custamer system
contains a price module. The price module records the price for
camputer hardware repair services. The system was developed and
jmplemented under the assumption that prices will not change for each
service charged, and that eighty percent of the contracts will use a
standard price.

The new customer database system was implemented but never used because
of two design oversights. The first was due to an original assumption.
The campany found that in practice only twenty percent of the contracts
were written with standard pricing, while the remaining eighty percent
were variations of the standard price. Secondly, the price module was
only one of ten modules to be developed. When work began on the other
modules, it was discovered that the price data did not meet the
requirements to support implementation of the system. A project
reassessment estimated it will cost the campany $1.5 million over their

budget to redesign the system.

The problem company X faces is that the time and effort needed to
develop a corporate data model consistent with the business rules
(i.e., the way business is actually conducted), is reflected in the
projected expenditure of $1.5 millon needed to revise the system. What
mayhavebeenasmallcosttodmangeintheearlypartofthesystm's

life cycle will now cost three to five times as much. Information is

e . T K HRRR ! [l b i aud h el o al < o |
(R e i TV iheda . Lo ’
A : : Rt

segregated among various files; hence, the high cost in time and
dollars to evaluate the impact of the soope change. Note that this is
thefifthtiminsixyeamthesystanhasbemdesignedarﬂ

implemented.

Manysystansfailbecausetheoatpanyorganizationsdomtexpemthe
necessary time and effort to design and develop a corporate data model.
Without a data model, departments camnot take advantage of the
corporation's data. With continued problems of inconsistent and
mistimed information, corporations will continue expending millions of
dollars to develop independent information systems, instead of
integrated information systems.

A data model defines the entities, attributes, and data relationships
of a business. The data meaning, usage, and relationships are left to
individual interpretation. This opening allows multiple meanings of
the data to exist. As a result, analysts can design and implement
independent applications; but, in an effort to reduce costs, the
meaning of the data must be extracted and documented so that it will be

given the same interpretation in each application.

For example, consider a car sale. To a salesman, the sale of the car

helps to meet a sales quota and to acbtain a comission. To the bank,

the car is collateral for a loan. To a mechanic, it is future work in
the form of repairs. 1In each case the car is viewed in a slightly

different manner.

In recognition of the critical need for a semantic database
model , ammberofrwearduershavereoentlyoonsidemdthe
design of such a model [Abrial 1974, Bachman 1977,
Biller+Neuhold 1978, Chen 1976, Codd 1979,
El-Masri+Wiederhold 1979, Hammer+McIeod.. -] Although there
are substantial and important differences in the detail of
these various semantic database models, they have all
attemptedtoincreasethedegreetowhimasdiemacaptums
the meaning of data in a form intelligible to its designers
and users (18, pp. 194].

Ibassistinthederivationanitocapmmthemeaningoftnsiness
data, Hammer & McLeod have developed a formalism called 'Semantic Data

Model' (SIM) [13]). They declare that the semantics of an

organization's business data can be represented by a data model's

entities, attributes, and data relationships; and SIM will provide more
of the meaning of business data than other data models of the current
day.

Hammer and Mcleod declare relationships between data extend farther
than data model entities. In contrast, Appleton defines a relationship
between entities as Business Rules [2]. The Business Rules explain the
constraints which exist among zero, one, or more entities. The
Business Rule controls the information contained within the business
model, and what data will be created from the business model.

Similarities exist between SIM and Business Rule methods, as shown in

Figure 1.
Hammer /Mcleod Appleton
Class Entity
Attribute(s) Attribute(s)
Interclass Business Rules
Connections
Figure 1

Each defin&svan entity or class (i.e., Purchase Order, Custamer, Part
Number) . Attributes describe the characteristics of the entity or
class (i.e., Name, Address, City, State). In addition, SIM extends
attributes to the entire entity called Class Attributes and occurrences

of each entity called Member Attributes. There is a difference between

Interclass Connections and Business Rules.

Hammer and Mcleod extend SIM relationships and constraints to the
entity and attribute level. They emphasize that attributes belong to a
class which is bound by constraints. These constraints exist not just

between entities but, as stated by Appleton attributes as well. This

SIM recursive format documents the data interrelations throughout the

data model, thereby extending the business rules to a class and an
attribute.

Hammer and Mcleod developed a detailed methodology. To understand and
document the methodology requires reviewing the entire publication and
the SIM syntax. The SIM syntax alane will not provide the entire set
of constraints for a class or attribute to exist. The major task in
UxedevelqmentoftheSM/PrnlogsystanismtranslatetheSD{syntax
(Appendix A) and validation criteria into a set of

Programming Logic (Prolog) rules.

Prolog is an interpretive programming lanquage developed at the
University of Marseille by Alan Colmerauer in the early 1970s [8,9].
Since 1970 a group at the University of Edinburgh has made several
improvements to Prolog, which is considered to be the defacto

standard [16].

Prolog is a declarative language, where the programmer specifies what
thepnogramissqposedtoad*lievebyusirgammberof facts and rules
to find a solution to the problem. Campared to procedural
languages — such as Pascal, Basic, or Cabol — Prolog instructs the

camputer what to do, not how to do it.

The intent of Prolog, used as a knowledge-based system for business
systems, is to capture as much knowledge of business rules as possible

fram an expert, and translate that knowledge into rules and facts the

camputer understands in order to assist or simulate the decision-making
process.

'mepartiaxlarvemimofPrologusedforthissystenisTurboPmlog
[5,6] for personal camputers. Turbo Prolog departs fram the Edinburgh
standard, particulary because it requires strong data typing. This
feature is required in order to campile code.

To manage SIM/Prolog development, each SIM rule is divided into small
manageable sections and placed into a hierarchical structure according
to function (see Figures 2 and 3 at end of the chapter). To translate
the rule hierarchy into Prolog syntax requires that an analyst first
translate the rule into an English sentence. Prolog lends itself more
readily to implementation of a rule if that rule is first translated

into an English-like structure.

Rule translation uses a numbering system similar to the standard
paragraph numbering system. When a new subsection is Created, a letter
or number is appended to the rule. For example, Rule 1A is the second
rule within Rule 1. This technique groups rules within the same
category and provides a cross reference between the rule's English

translation and the Prolog implementation of the rule. When a rnule is

used more than once, itisgeneralizedanidoam\entedbyaoament.
Each rule implemented in the SIM/Prolog system is translated into in
English-like sentence structure (see Apperdix C). For exanple, the

English translation of a valid SIM class name whether it is a Base
Class or Nonbase Class is:

Each CIASS has a CIASS NAME. A CIASS NAME is camposed of
uppercase letters and underscores. A CIASS NAME must be

unique with respect to all CIASS NAMEs used in the business
model. We will call this Rule 1.

The implementation of Rule 1 in Prolog will be a series of predicates.
For the rule to be true in Prolog, all of the predicates which camprise

it must be true. One possible translation is:

rule 1:-
lineinput (20,20,45,7,7,"Class name: ","", INPUT),
upper lower (INPUT, CLASS) ,
isname (CIASS),
class list(LIST),
not (member (CLASS, LIST)),
retract (class list(LIST)),
assertz(class list([CIASS|LIST)),
write("Class added"),
|

rule 1:-
~write("Class name is invalid or already exists").

Lineinput is a screen input predicate documented in Turbo Prolog
Toolbox (6, pp. 256], Class list is a Prolog database predicate, and

biexrberispredicatetodleckmmerxisanarberofaprologlist,

10

L Ry
. LTI e

discussed in Clocksin and Mellish [10, pp. 49]. All other predicates
are documented in Turbo Prolog [5].

The Prolog rule can be read as follows:

"Prampt the user for the class name, convert the class name
to lower case for validating and processing, check that the
classnaneiscaxposedmlyoflette.marﬂmﬁerscoms,
retrieve the existing list of classes from the database,
insure the class name is unique, delete the old class list,
Create the new class list by concatenating the new class and
old class list, write a message, and force Prolog to stop
backtracking.

If the first ooccurrence of the rule 1 predicate fails, write
an error message."

11

= o gt Y . . N ~ NO e ok NIRAALTY ¢ [5s. it dhdiin ‘i ‘L..-. ST R A RGNS S , Y s
q & s T b s 5 AYY e A LvE 22 Sartald ;”14 I ' LR ! R he. Y N Ay .
R i N\ y4 . . B . AR 2 A0 ALY
17 I's [s T T [N "y L]
IAERIEE (L . T ot E A A i
- [
"
g5
s
4
1]
fef
B

Base Class Nonbase Attrihute

Identifier
Alternate Key A
Duplicates

)

Subclass Grouping

— Attribute — Expression
— User Control — Emumerated

— Union
— Difference
— Existence

Iegend: Functions listed by a double line (=) are common SIM
features. A single line (—) indicates one of the following
must be selected, e.g. Class has the cammon features Name,

Synonyms, and Description and is either a Base Class or
Nonbase Class).

Figure 2

v 4 2 P C at) 3 TNt . & bad | L gea o i o Syt
7 . AR T , ol n R abh o vttt it B aheys i Y e ol igld { Bt ofd 14 ik Stk e i ! ; ﬁ\ L) i
U L 0t i aatl pritEianl it Lt ¢ LA A AR R Lo . ! o IR SR L e e+) 0 LA -
R v, s : .) : ,

SIM Features Hierarchy Diagram (cont.)

i Attribute

Name
Value
Synonym
Description
Single / Multi -
Value Class
Mandatory Attribute
Not Changeable
Exhaustive
— Inversion Non-Overlapping — Subvalue
— Matching Applicability — Count
— Mapping — Math
Derivation — Other Value
— Count Members
— Min / Max /
— Subvalue Avg / Sum
— Grouping
— Existence — Union /
— Ordering Difference
— Tracing Intersect
— Math
— Count — Min / Max /
— Other Attribute Avg / Sum
— Union / Intersect / Difference of Members
— Min / Max / Avg / Sum

Member
Interrelation

[T T T A B TR

Figure 3

13

hapter IV, System Ooverview

To test the SIM/Prolog system, this thesis will use the Tanker
Application example of Hammer and Mcleod [13]. This application is
designed to monitor and control ships that enter or leave the United

States coastal waters. A copy of the Tanker System example can be
fourd in Appendix B.

To validate the Tanker Application, SIM/Prolog is designed to be an
interactive system using question and answer menus to define an SIM
Class or attribute. A selection is processed by placing the cursor at
the function or data value. This menu selection method provides a
simple way to reduce rule coding, validate data, and control flow. If
a selection is aborted, the system ignores any changes and returns to
the main system memu. SIM/Prolog supports on-line reporting. It
allows a user to list data fraom the database as the system 1s built.

The limited reporting capabilities route the information to the screen.

14

Chapter V. Obeervations

An alternate validation technique would be to design and implement the
system by translating the SIM Tanker Application into Prolog clauses
and have the SIM/Prolog rules validate the clauses. This technique was
tested, but proved to be cumbersame and produced camplicated rule

definition.

SIM rules are flexible, with complexity based on limited data
requirements. A simple form of a Base Class requires a name, member
attribute, and logical key. Defining a Nonbase Class requires a name
and interclass connection. A more camplicated format is a member
attribute, with an attribute predicate defined with a mapping clause.
The logic rules coded into the SIM/Prolog system were input and/or
output driven, rather than deriving knowledge from the knowledge expert
to build a knowledge base similar in functionality to the Berkshire

MECHANIC autamobile knowledge-base system [3].

The degree of interpretation of a class, attribute, or data relation
still remains with an individual's business knowledge, experience, and
expertise. 1In the SIM Tanker Application, the Nonbase Class
HULL NUMBERS is defined as the:
interclass connection: subclass of STRINGS where format is number
where integer.
An alternative would be:

interclass connection: subclass of INTEGER.

15

SIM/Prolog's goal is to assist in managing these various
interpretations and to document the meaning of data so that it will be

given the same interpretation in every application.

16

This thesis lays the foundation work for future enhancements and
provides further functionality not addressed here. Due to time
constraints, the scope of the system was defined that not all functions
of SIM are included. Areas of SIM enhancements and directions for
further research include:

O Help System
Without a detailed background of SIM and knowledge of Prolog, the user

is limited to understanding the system functions. A Help system that

an in-house help system, or the help system documented in the Turbo

Prolog Toolbox [6].

O Screen Design

Design the system to display a full screen of data instead of
responding to one question at a time, as shown in Figure 4. This will
reduoethemmberofuserr%ponsesandspeeddataentry. The
suggested method is to use the screen definition and manipulation

facilities documented in Turbo Prolog Toolbox [6].

17

Class Name:

Base Class (Y/N): Nonbase (Y/N):

Member Attributes:

Class Attributes:

ILogical Key(s):
(1)
(2)

Create Class definition: (Y/N)

Figure 4

O Reports
Reports are generated on-line only. Additional reports may be
on-line and printed:
Cross Reference

Value class to member attribute

Member attributes to Class

Base Class

Nonbase Class
O System
Isolate the input/ocutput activity from the knowledge base for queries.
One Prolog system may be written to manage the creation of the

knowledge base and another to manage the queries.

18

The goal of this thesis was to demonstrate that Hammer and Mcleod's
Semantic Data Modeling methodology, based on a structured syntax and
set of constraints, can be implemented using Prolog, in a system called
SIM/Prolog.

The results of documenting the SIM Tanker Monitoring Application as a
skeletal semantic database model, using the SIM/Prolog system, supports
business data and rules can be extracted from a business knowledge
expertarxireoordedina}madledgebasedsystemsuddthattheywillbe

given the same interpretation in each business application.

19

In campliance with thesis preparation quidelines, the following
materials are on file in the office of thesis advisor

Professor John C. Wiginton.

. two SIM/PROLOG system abject code diskettes,
. two SIM/PROLOG source code diskettes,

. SIM/PROLOG program source listings,

. Thesis

Q0 oo

Professor Jahn C. Wiginton

Roam 479

Department of Industrial Engineering
Mohler Lab #200

Lehigh University

Bethlehem, Pennsylvania 18015

20

(1) Appleton, Daniel E., "Business Rules: The Missing Link,"
Datamation, Octaber 15, 1988, pp. 145-150.

, "Rule-Based Data Resource Management," Datamation,

[2]
May 1, 1986, pp. 86-99.

(3] Berkshire, Turbo Shell, (Berkshire Software, Iynbrook, New York,

1987) .

(4] Berman, Sonia, "A Semantic Data Model as the Basis for an
Autaomated Database Design Tool," Information Systems, Vol. 11,

No. 2, 1986, pp. 149-165.

[5] Borland, Turbo Prolog 2.0, IBM Version (Borland International,

1988) .

(6]

» Turbo Prolog Toolbox, IBM Version (Borland International,

1987).

(7] Brodie, Michael L., "The Application of Data Types to Database

Semantic Integrity," Information Systems, Vol. 5, No. 4, 1980,

pp. 287-296.

[8] Colmerauer, A., "Les Systemes—Q ou un Formalisme pour Analyser et
Synthesizer des Phrases sur Ordinateau," Publication Interne No.
43, Dept. d'Informatique, Universite de Montreal, Canada, 1973.

[9] Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P., "Un
Systeme de Cammunication Homme-machine en Francaie," Research
Report, Groupe Intelligence Artificielle, Universite Aix Marseille

IT, France, 1973.

(10] Clocksin, William F. and Mellish, Christopher S., Progqramming i
Prolog, third revised and extended edition (Springer-Verlag,

1987) .

(11] Doe, lLawrence W., Glemser, Raymond G., and Wiginton, John C.,
"A Knowledge-Based System for Evaluation of the Plan of Intermal
Control, " working paper 87-001, Lehigh University, Bethlehem,

Pennsylvania, June 15, 1987.

[12] Frost, R. A., "Using Semantic Concepts to Characterize Various
Knowledge Representation Formalisms: A Method of Facilitating the

Interface of Knowledge Base System Camponents," The Computer
Jaunal, Vol. 28, No. 2, 1985, pp. 112-116.

21

' ik’) il
' At Al
e T
LR

(13]

(14]

(15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

:v,,v.._

Hammer, Michael, and Mcleod, Demnis, "Database Deascription with
SIM: A Semantic Database Model, "
Systems, Vol. 6, No. 3, September 1981, pp. 351-386.

Kowalski, Robert, "AI and Software Engineering," Datamation,
November 1, 1984, pp. 92-102.

Implementation. 1 edition (sm 1983) .
—, Logic for Problem solving (North-Holland, 1979).

Mcleod, Dennis, "High Level Definition of Abstract Domains in a

Relational Database Systen, " Journal of Camputer Ianquages,
Vol 2., No. 3, 1977).

———, ard King, Roger, "Applying a Semantic Database Model , "

Proceedings of the Intemmational OOQfgrenoeé_Ltv&Latm_p
Approach to Systems Analysis and Design, Los Angeles, California,

December 1979, pp. 193-210.

Shafer, Dan, Turbo Prolog Primer, revised edition (Howard W. Sams
& Co, 1987).

Schur, Stephen, "Intelligent Databases," Database Programming &
Design, June 1988, pp. 46-53.

Ten Dyke, Richard P., "Outlook on Artificial Intelligence,"
Journal of Informatlcm Systems Management, Fall 1984, pp. 10-16.

Yin, Khin Maung, with Solomon, David, Using Turbo Prolog (Que,
1987)

Weiskamp, Keith and Hengl, Terry, Artificial Intelligence
Programming with Turbo Prolog (John Wiley and Sons, 1988).

22

5 -“- ‘ PR Y 8 .2 123
N ; Pl 114 A G
\ a 4 ™y y..glf < (S : e

APPENDIX A SDM Data Definition Lanquage Syntax

(Source: Hammer and Mcleod, [12, pp. 381-384])

23

" i
" el itk A
h 'ﬁ’..‘,'”_&‘-,

Legend

(1) 'mele'rtsideofaproductimisseparatedfmtherightby
a "=,

(2) The first level of indentation in the syntax description is used
to help separate the left and right sides of a production; all
other indentation is in the SIM data definition language.

(3) Syntactic categories are capitalized while all literals are in
lowercase.

(4) () means optional.

(5) [] means one of the enclosed choices must appear; choices are
separated by a ';' (when used with '{}' ane of the choices may
optionally appear).

(6) <> means one or more of the enclosed can appear, separated by
spaces with optional cama and an optional 'and' at the end.

(7) <<>> means ane or more of the enclosed can appear, vertically
apperded.

(8) * * encloses a 'meta' description of a syntactic category (to
informally explain it).

SCHEMA <<=
<< CLASS >>

CIASS <<=
< CLASS NAME >
{ description: CIASS DESCRIPTION)
([BASE CIASS FEATURES; INTERCIASS CONNECTION]}
{ MEMBER ATTRIBUTES)
{ CIASS ATTRIBUTES)
CIASS NAME <=
* string of capitals possibly including special characters *
CIASS DESCRIPTION <=
* string *

BASE CIASS FEATURES <=

([duplicates allowed; duplicates not allowed 1)
{<< TDENTIFIERS >>)

IDENTIFIERS <=
[ATTRTBUTE NAME; ATTRIBUTE NAME + IDENTIFIERS]

24

menber attributes:
«mmmmrm >>

CIASS ATTRIBUTES <=

class attributes:
<< CIASS ATTRIBUTE >>

INTERCIASS OONNECTION <=

[SUBCIASS; GROUPING CIASS)

SUBCIASS <=

subclass of CIASS NAME where SUBCIASS PREDICATE

GROUPING <==

[gmxpmgofCLASSNAMEmcammvalueof<ATIRIEUI’ENAME>
{gmpsdefinedasclass&am<CLASSNAME>),
grapmgofCLASSbN(Econslstugofclasseﬂ<CIASSNAME>-
grouping of CIASS NAME as specified]

SUBCIASS PREDICATE <

[ATTRIBUTE PREDICATE;

specified;
mmCLASSNAMEarxilsmCLASSNAME
is not in CIASS NAME:
isinCLASSNAMEorlsmCLASSNAME

mavaleeofM'IRIHII’ENAMEofCLASSNAME
format is FORMAT]

ATTRIBUTE PREDICATE <=

[SIMPLE_PREDICATE; (ATTRIBUTE PREDICATE) ;
not ATTRIBUTE PREDICATE;
ATTRIBUTE PREDICATE and ATTRIBUTE PREDICATE;
ATTRIBUTE PREDICATE or ATTRIBUTE PREDICATE]

SIMPLE PREDICATE <

[MS@L&MM[(INS’I’ANI‘ MAPPING],
MAPPING SET OOMPARATOR [OONSTANT; CIASS NAME; MAPPING]]

MAPPING <=

[ATTRIBUTE NAME; MAPPING.ATTRIBUTE NAME]

SCALER OCOMPARATOR <=

[BQUAL, OCOMPARATOR; >; >=; <; =<;]

BQUAL OOMPARATOR <

[=i ><]

SET COMPARATOR <=

[is{prcperly}omtainedin:{mly}mtains]

25

e s e _

v ALirS AT
., N frnT T N LN
N '-',‘/’{ ‘“ "
LA

* a name class definition pattern *
(see [16])

MEMBER ATTRIBUTE <=
< ATTRIBUTE NAME >
(A'I'IRIEJ’IE[E(RIPI‘I(N}
value class: CIASS NAME
{ inverse: A'I'IRIHHENAME}
([match: ATTRIBUTE NAME of CIASS NAME on ATTRIBUTE NAME;
derivation: MEMBER ATIRIHII'E , DERTVATION])
(single valued; multivalued { with size between CONSTANT and
QONSTANT))
{ may not be null)
{ not changeable)
{ exhausts value class)
{ no overlap in values)

CIASS ATTRIBUTE <<=
< ATTRIBUTE NAME >
{ ATTRIBUTE , DESCRIPTION)
value class: CIASS NAME
{ derivation: CIASS ATTRIBUTE . DERTVATION)
{ single valued; multivalued { with size between OONSTANT and
QONSTANT)}

{ may not be nmull)
{ not changeable)

ATTRIBUTE NAME <=

* strlng of lowercase letters beginning with a capital and possibly
including special characters *

ATTRIBUTE DESCRIPTION <=

* string *

MEMBER ATTRIBUTE DERIVATION <=—
[INTER ATTRIBUTE DERIVATION; MEMBER SPECIFIC DERIVATION]

CIASS ATTRIBUTE DERIVATION <—
[INTER ATTRIBUTE DERTVATION; CIASS SPECIFIC DERTVATION]

26

P Il . . ,
f ol i ' 1l i ! 5 13 iiclit Rt | o 9 o ! fgal od r ;i PR
Fan i’ [y as AR I A L i i L Tt L b o W o . He '3
RIESRE - EER S ST » i R M Lt 2 |
Rt ' o R
. ! .

INTER ATTRIBUTE DERIVATION <==
[same as MAPPING;
subvalue of MAPPING where [is in CIASS NAME;
ATTRIBUTE PREDICATE];
where [is In MAPPING and is in MAPPING; is in MAPPING or is in
mmnn;isinmmm;andismtmmm],
= MAPPING EXPRESSION;
[maximm; minimm; average; sum] of MAPPING;
nmber of { unique } members in MAPPING]

MEMBER SPECIFIC DERIVATION <=
[ordering by [increasing; decreasing] < MAPPING >
{ within < MAPPING >);
if in CIASS NAME;
[up to CONSTANT; all] levels of values of ATTRIBUTE NAME;
contents]

CIASS SPECIFIC DERIVATION <=
[nmrberof{mlque}nm‘bersmthlsclass,
[maximm; minimm; average; sum] of ATTRIBUTE NAME over members
of this class)

MAPPING EXPRESSION <=
[MAPPING; < MAPPING >; MAPPING NUMBER OPERATOR MAPPING]

NUMBER OPERATOR <=
[45 =7 % /5)

27

s > T
’] l Y. W P ' N
; . v
& (31

2 E-

R E -

. 8

» 4

' :
1 "A .
d B "
R . 0

t - ‘

('
& .
'.)

4 g
¢ "’
3
Lt
)
o

APPENDIX B SIM Tanker Monitoring Application

(Source: Hammer and Mcleod, (12, pp. 376-381])

28

SHIPS

description: all ships with potentially hazardous cargoes that may
enter U.S. coastal waters

member attributes:

Name
value class
Hull rumber
value class

: SHIP NAMES

: HULL NUMBERS

may not be null
not changeable

Type
description
value class

Country of registry

value class
inverse

: the kind of ship, for example, merchant or fishing

: SHIP TYPE NAMES
: OOUNTRIES
: Ships registered here

Name of hame port

value class:

Cargo_ types
description

value class:

multivalued
Captain
description

value class:

match
Engines

value class:

multivalued

PORT NAMES

: the type(s) of cargo the ship can carry
CARGO TYPE NAMES

: the current captain of the ship
OFFICERS
: Officer of ASSIGWMENTS on Ship

ENGINES
with size between 0 and 10

exhausts value class
no overlap in values
Incidents involved in

value class
inverse
multivalued
identifiers:
Name
Hull number

: INCIDENTS
: Involved ship

29

Order for tanker
description: the ordering of the inspections for a tanker with
the most recent inspection having value 1
value class: INTEGERS
derivation : order by decreasing Date within Tanker

class attributes:
Number
description: the mumber of inspections in the database
value class: INTEGERS
derivation : number of members in this class

identifiers:
Tanker + Date

QOUNTRIES
description: countries of registry for ships

member attributes:
Name
value class: CQOUNTRY NAMES
Ships registered here
value class: SHIPS
inverse : Country of registry
multivalued

ldentifiers
Name

30

OFFICERS]
deacription: all certified officers of ships §

member attributes:
4 Name
: value class: PERSON NAMES
’f Country of license
value class: COUNTRIES
Date comnissioned
value class: DATES
Seniority
value class: INTEGERS
derivation : order by Date camissioned
Cammander
description: the officer in direct cammand of this officer
value class: OFFICERS
Superiors '
value class: OFFICERS
derivation : all level of values of Commander
inverse : Subordinates
multivalued
Subordinates
value class: OFFICERS
inverse : Superiors
multivalued
Contacts
value class: OFFICERS
derivation : where is in Superiors or is in Subordinates

identifiers:
Name

ENGINES
description: ship engines

member attributes:
Serial number
value class: ENGINE SERTAL NUMBERS
Kind of engine
value class: ENGINE TYPE NAMES

identifiers:
Serial mumber

31

textual explanation of the accident

value class: INCIDENT DESCRIPTIONS
Involved captain
value class: OFFICERS

identifiers:
Involved ship + Date + Description

ASSTIGNMENTS
description: assigmments of captains to ships

member attributes:
Officer
value class: OFFICERS
Ship
value class: SHIPS

identifiers:
Officer + Ship

32

, TGRS

description: oil-carrying ships

interclass comnection: subclass of SHIPS where Cargo types
ocontains 'oil!

member attributes:
Hull type
description: specification of single or double hull
value class: HULL TYPE NAMES
Is tanker bamned
value class: YES/NO
derivation : if in BANNED SHIPS
Inspections
value class: INSPECTIONS
inverse : Tanker
nnltlvalued
Number of times inspected
value class: INTBGERS
derivation : mmber of unique members in Inspections
Last inspection
value class: MOST ' RECENT INSPECTIONS
inverse : Tanker
Last two inspections
value class: INSPECTIONS
derivation : subvalue of Inspections where Order for tanker =< 2
multivalued
Date last examined
value class: DATES
derivation : same as last _inspection.Date
0il spills involved in
value class: INCIDENTS
derivation : subvalue of Incidents involved in where is in
OIL SPILIS
multivalued

class attributes:

Absolute top legal speed
value class: KNOTS

Top legal speed in miles per hour
value class: MIIES PER HOUR
derivation : Absclute_top_legal_speed/l .1

RURITANIAN SHIPS
interclass connection: subclass of SHIPS where
Country.Name = 'Ruritania’

RURITANIAN OIL TANKERS

interclass comnection: subclass of OIL TANKERS where
Country.Name = 'Ruritania’

33

MERCHANT SHIPS
interclass camection: subclass of SHIPS where Type = 'merchant'

member attributes:

Cargo_types
value class: MERCHANT CARGO TYPE NAMES

OIL SPILIS
interclass comnection: subclass of INCIDENTS where
Description = 'oil spill!’

member attributes:
Amount spilled
value class: GALIONS
Severity
derivation : = Amount spilled/100,000

class attributes:
Total spilled
value class: GALIONS
derivation : sum of Amount spilled over members of this class

MOST RECENT INSPECTIONS
interclass connection: subclass of INSPECTIONS where
Order for tanker =

DANGEROUS CAPTAINS
description: captains who have been involved in an accident
interclass connection: subclass of OFFICERS where IS A VAIUE OF

Involved captain of INCIDENTS

BANNED SHIPS
description: ships banned from U.S. coastal waters
interclass connection: subclass of SHIPS where specified

member attributes:
Date banned
value class: DATES

OIL TANKERS REQUIRING INSPECTION
interclass comnection: subclass of OIL TANKERS where specified

BANNED OIL TANKERS
interclass camection: subclass of SHIPS where is in BANNED) SHIPS
arxiisinOIL'I'ANKERS

34

5
DR/

e
~ TR A PP
i BN N

SAFE SHIPS

description: ships that are considered good risks
interclass comnection: subclass of SHIPS where is not in
BANNED SHIPS

description: ships that are considered bad risks
interclass cannection: subclass of SHIPS where is in BANNED SHIPS or
is in OIL TANKERS REQUIRING INSPECTION

SHIP TYPES
description: types of ships
interclass comnection: grouping of SHIPS on common value of Type
groups defined as classes are MERCHANT SHIPS

member attributes:

Instances
description: the instances of the type of ship
value class: SHIPS
derivation : same as Contents
multivalued

Number of ships of this type
value class: INTEGERS
derivation : number of members in Contents

CARGO TYPE GROUPS
interclass connection: grouping of SHIPS on common value of

Cargo types

TYPES OF HAZARDOUS SHIPS
interclass connection: grouping of SHIPS consisting of classes
BANNED SHIPS, BANNED OIL TANKERS, SHIPS TO BE MONITORED

CONVOYS
interclass connection: grouping of SHIPS as specified

member attributes:
Oil tanker constituents
description: the oil tankers that are in the convoy (if any)
value class: SHIPS
derivation : subvalue of Contents where is in OIL TANKERS
multivalued

CARGO TYPE NAMES

description: the types of cargo
interclass comnmection: subclass of STRINGS

35

MERCHANT CARGO TYPE NAMES
interclass cornection: subclass of CARGO TYPE NAMES where specified

COUNTRY NAMES
interclass connection: subclass of STRINGS where specified

ENGINE_SERIAL_NLNM?S
interclass camection: subclass of STRINGS where format is
[} H !
mmber where integer and >= 1 and =< 999
! 1

number where integer and >= 0 and =< 999999

DATES

description: calendar dates in the range '1/1/85' to '12/31/89"

interclass connection: subclass of STRINGS where format is
month: mmber where >= 1 and =< 12
I/l
day :rumber where integer and >= 1 and =< 31
year :number where integer and >= 1970 and =< 2000
where if (month = 4 or = 5 or = 9 or = 11) then day
>= 30) and (if month = 2 then day =< 29)
ordering by year, month, day

ENGINE TYPE NAMES
interclass connection: subclass of STRINGS where specified

GALIONS

interclass connection: subclass of STRINGS where format is number
where integer

HULL NUMBERS

interclass connection: subclass of STRINGS where format is number
where integer

HULL TYPE NAMES
description: single or double
interclass connection: subclass of STRINGS where specified

INCI[ENT_DESCRIPI‘IONS
description: textual description of an accident
interclass connection: subclass of STRINGS

36

,..
i

interclass comection: subclass of STRINGS where format is mmber
where integer

MILES PER HOUR
interclass comection: subclass of STRINGS where format is mumber
where integer

PORT NAMES
interclass comnection: subclass of STRINGS

PERSON NAMES
interclass connection: subclass of STRINGS

SHIP NAMES
interclass connection: subclass of STRINGS

SHIP TYPE NAMES
description: the names of the ship types, for example, merchant
interclass connection: subclass of STRINGS where specified

37

I}

APPENDIX C English Rule Interpretation

38

Rule 1

Rule 2

Rule 3

Rule 4

Rule 4A

Rule 6

Clane Genaric Rules

'meclassnamemstbemiqaeardcmposedofumemse
letters and underscores. The class name will be stored
as lower case and converted to uppercase for display.

A class name can have synonyms (optional). Each
synonym must be unique, camposed of uppercase letters
and underscores. The synonym will be stored as lower
case and converted to uppercase for display.

A class name can have descriptive text (optional)
describing the meaning and contents of the class. The
text is a string of characters.

Base Class Rules

A class name must be a base class or nonbase class.

A base class must have at least one (1) logical key. A
logical key is composed of member attributes, and each
member attribute must exist within the base class. A
logical key can have duplicate or unique values. Its
default is duplicate values. A member attribute cannot
be repeated within a logical key.

Nonbase Class Rules

A nonbase class has one interclass connection, either a
sub-class or grouping class connection. A subclass

name must exist and cannot be equal to the nonbase
class name.

39

Rule 6A

Rule 6A1

Rule 6A2

Rule 6A3

Rule 6A4

Rule 6A5

Rule 6A6

Rule 6A7

A subclass can have one of one of the following
predicates (optional):

attribute-defined
difference
existence

format
intersection

none

union
where-specified

An attribute—defined predicate defines a subclass S,
canposed of members of C, based on a member attribute

equation:
equality

contains

A difference predicate defines a subclass S camposed of
members from class C that do not belong to class D.
Class D must exist and must be a subclass of C. Class
name S cannot be equal to class name C, D, or E.

An existence predicate defines a subclass S camposed of
members from class C, based on a member attribute of C.
The member attribute must exist in class C. Class name
S cannot be equal to class name C.

A format predicate is free form textual description.

An intersection predicate defines a subclass S camposed
ofmenbersfmnclassCthatbelongtoclasng[gE.
Class D and E must exist and both must be a subclass of

C. ClassnaneScannotbeequaltoclassnameC, D, or
E.

No predicate will be defined.

A union predicate defines a subclass S camposed of
members fram class C that belong to class D or E.
Class D and E must exist and both must be a subclass of

C. ClassnameScannotbeequaltoclassnameC, D, or
E.

40

Rule GA1A

Rule 6A1B

Rule 7

Rule 7A

Rule 7B

Rule 7C

A vhage ied predicate defines a subclass S,
sd of mewbers from class C, manually controlled.

Equality defines an equation based on equal (=), not
equal (><), greater than or equal (>=), greater than
(>), less than (<), less than or equal (=<). The
member attribute must exist, the comparator must be ane
of the above, and either a constant or another member
attribute. The member attributes cannot be equal, and
the second member attribute must exist. For example
cargo type = 'oil'. (Member attribute was not
implemented) .

contained, contained, properly contains, comtains. The
member attribute must exist, the set camparator must
one of the above, ard either a constant, member
attribute, or class name. The member attributes
cannot be equal, and the second member attribute must
exist. For example cargo type = 'oil'. The class name
must exist, and cannot be equal to the class being
Created. (Member attribute and class name were not
implemented) .

A member attribute name must be unique within the class
and all subclasses, composed of letters and

underscores. The member attribute name will be stored
as lower case and the first letter of the name will be

converted to uppercase for display.

A member attribute can exhaust its value class and
valid values are 'Yes' or 'No'. The default is 'No'.

A member attribute cannot be changed once a value is
assigned. The value can be changed only to correct an
error. Valid values are 'Yes' or 'No'. The default is
'No'.

A member attribute can be mandatory. Valid values are
'Yes' or 'No'. The default is 'No'. If a member
attribute has no value class (Rule 8), the member
attribute value cannot be mandatory.

41

Rule 7D1

Rule 7D1A

Rule 7D1B

Rule 7F

Rule 8

A member attribute can be single valued or miltivalued.
Valid values are 'S', single valued; or 'M',
miltivalued. The default is single valued.

A multivalued attribute can have one of the following
(optional):

nanoverlapping
value restriction

Nonoverlapping means each member of the value class of
the attribute is used only ance. Valid values are
'Yes' or 'No'. Default is 'No'.

Value restriction is a range of values a member
attribute can contain. The lower range is an integer.
The upper range is an integer. The upper range integer
must be greater than the lower range integer.

A member attribute can have descriptive text (optional)
describing the meaning and contents of the member
attribute. The text is a string of characters.

A member attribute can have a value class (optional).
The value class name must exist. If there is no value
Class, the member attribute cannot be mandatory

(Rule 7C). (The no value class option was not
implemented) .

42

APPENDIX D Prolog Implementation of SIM

43

1~)
1K
b

.
U

BRI

{4 Baninin 2 o L Ml

ATRRE R Y

e TN
o

o 1) LA = > ‘s I » T 3 0 1Yy { " . S (.- i B il o oY A e AuTie" ftary ot M bi ; 3
o 2 2 3 b EAERN . Ay . 2t)4 14 LA 4 s e e 17§ e A WY - RO T v PR R TR T
% ’W”’m AR 1 ...'Z;x‘ ok L i e A BARILLY AL daienka iyt 5 A b 14t A 35 adid 0 -
Al LRl i T L R 2 G i i L
: : .

code=4000
include "tdams.pro"

database - sdmdb

base class (string, stringlist)

class def (string, string)

class list (stringlist)

class members (string, stringlist)

class syn (string,stringlist)

member attr (string, string, string, string, stringlist)
non base (string, string, string, string, string)
strd class (stringlist)

include "tpreds.pro"
include "lineinp.pro"
include "memu2.pro"

include "status.pro"

predicates
asc order (string, string)
append (stringlist,stringlist,stringlist)
base list (string, string)
Create class (string, string)
Create def (string, string)
delete (string,stringlist,stringlist)
get class (symbol, string)
get class members (string, stringl ist)
g0
it
init stnd class (stringlist)
insert (string,stringlist,stringlist)
insert sort (stringlist, stringlist)
makenblist (string, stringlist)
member (string,stringlist)
menuchoice (integer)
pause
print class members (stringlist)
print list (stringlist)
print member (string)
print member attr list (stringlist)
print member attr (string)
print member def (string)
print_non base (string, string, string)
rulel (string)
rule2 (string, string)
rule3 (string)
rules (string, string, string, string, string)
rulesa (integer, string, string, string, string, string)
rulesal (string, string)
rule’ (string)
rule7a (string, string)

b oatbin ;‘}!’,‘ \ ik f;;fjg.‘-:j‘ B R ki 1o ek i
Sh r o . U
rule?d (stringlist)
3 rula7bl (integer, stringlist)
ﬂ rule7b2 (integer, stringlist)
4 salection (integer, stringlist, string)
$ update class menmbers (string,string)
' valid name (string)
goal

retractall (,sdmdb),
makewindow(1,23,14," Semantic Data Model ",0,0,24,80),
m.

clauses

go: -

init,

repeat,

mem: (8,27,31,11,
[" Class AdQ"," Synonym Add"," Class Definition",
" Member Attributes"," Non-base Add"," List Classes",
" List Synonyms"," List Class Definition",
" List Member Attributes "," List Nonbase Classes",
" Eb(it"],
" Main Meru ",1,Choice),

menuchoice (Choice),

clearwindow,

Choice=11,

exit.

init:-
assertz(class list([])),
assertz (stnd class(["integers",
"mumbers" ,"reals" , "StI'iI’KJS" , "y%/no"])),
stnd class(SLIST),
init stnd class(SLIST),
makestatus (112,"").

init stnd class([]).

init stnd class([X|TAIL]):-
init stnd class(TATL),
assertz (base class(X,[])).

45

menachoice(l) :- /* create class*/
changestatus ("),
lineinput(10,10,45,7,7,"Class name: ","", INPUT),
upper lower (INPUT,CLASS) ,
valid | | name (CLASS) ,
rulel (CIASS),
merm1(15,10,31, 11, ["No", "Yes"]," Create definition? ",1,S),
selectim(s ["n" "], DEFOPT) ,
Create def (DEFOPT,[EF),
memu(15,30,31,11, ["Base Class","Non | Base Class"],
" SelectClassType " 1,S82),
selection(S2, ["b","n"],CLASSOPT),
create class(CLASSOPT, CIASS),
class list(LIST),
retract(class list(LIST)),
insert sort([CLASSII:[ST] SORTED LIST),
assertz(class list(SORTED LIST)),
assertz(class def (CLASS,DEF)),
changestatus ("Class added").

menuchoice(2) :- /* create synonyms#*/
get class(all,CIASS),
upper lower (UPPER, CIASS),
concat (UPPER, " synonym: ",MENUTEXT),
lineinput (10,10,45,7,7,MENUTEXT, """, INPUT) ,
upper lower (INPUT,SYN),
valid name(SYN),
rule2 (CLASS, SYN) ,
class syn(CLASS,SYNLIST),
retract (class syn(CLASS,SYNLIST)),
insert sort([SYNISYNLISI‘] SORTLIST) ,
assertz(class syn(CILASS,SORTLIST)),
dxangeﬂtatus("Synonym added") ,

meruchoice(3) :- /* class definition*/
get class(all,CIASS),
rule3 (CIASS) .

meruchoice(4) :- /* member attributes*/
get class(all,CIASS),
rule7 (CLASS) .

Ve

menuchoice(5) :- /* non-base classes*/
get class(all,NBCIASS),
rules6.

*/

menuchoice(6) :- /* no classes existx/
class list([]),

dnngestatus("No Classes have been defined"), !

46

mﬂpice(sr- /* list all classes*/
class 1ist(LIST),
pu:int . 11t (LIST),

dmmgestams(""),!.
menuchoice(7) :- /* list synonyms*/

class syn(CLASS,LIST),
upper lmr(UPP:':R CLASS) ,

write("Class ",UPPER," synonym(s): "),
print_list(LISI‘) nl,

pause,

fail.

menuchoice(7) := /* no synonyms exist*/
not(class syn(_,)),
beep, |
changestatus ("No Synonyms have been defined").

menuchoice(8) :- /* list class definition */
class def(Class,Text),
Tex-t >< ""
upper lower(Upper Class)
write("Class ", Upper," deflnltlon "),nl,
write(Text),nl,
pause,
fail.

menuchoice(8) :- /* no definitions exist#/
not(class def(,)),

beep,
changestatus ("No Class definitions have been defined") .

meruchoice(9) :- /* list member attributes*/
class list(LIST),
print class members (LIST) .

menuchoice(10) :~/* list non-base class */
non_base (CLASS, SUBCIASS, TYPE, FORM, FORM2) |
upper lower (UPPER,CIASS),
write (UPPER) ,nl,
upper_lower(UPPE.’RZ SUBCLASS) ,
write(" interclass connection: subclass of " ,UPPER2) ,
print non base (TYPE, FORM, FORM2) ,nl,
pause,
fail.

menuchoice(). /* memuchoice will always succeed */

47

valid name(X) :- /* valid namet/
not:(isnzme (X)) ,

changestatus ("Invalid name"),
{,fail.

valid name().

rulel (CIASS) :- /* class camnot exist*/
class list(CLIST),
stnd class(STCIASS),
append (CLIST,STCIASS, LIST),
member (CLASS, LIST),
changestatus ("Class name already exists"),
!, fail.

rulel().

rule2(_,SYN):- /* syn cannot exist */
class syn(CLASS,CLIST),
stnd class (STCIASS),
append (CLIST, STCIASS, LIST),
member (SYN, LIST) ,
upper lower (UPPER, CIASS),
cancat ("Synonym exists for class ",UPPER, TEXT?),
fh?ngfstatus(TEXT2)
!, fail.

rule2(,SYN):- /* syn cannot exist as a class*/
class list (LIST),
member (SYN, LIST) ,

changestatus ("Synonym exists as a class"),
!, fail.

ruleZ(CLASS,_):—/* create dummy synonym*/
not(class_syn(CIASS,_)),
?ssertz(class_syn(CLASS,[])),

rule2(,).

rule3(Class) :- /* create class definition*/
class def(Class,Textin),
edit (Textin, Textout),
Textin >< Textout,
retract(class_def(Class,_)),
|

assertz(class def(Class,Textout)).

48

rule3(Class) : -
not(class def(Class,)),
edit("", Textout),
Textout >< "",
assertz(class def (Class,Textout)).

rule6 (NBCLASS, SUBCLASS, TYPE, FORM, FORM2) : -/* non-base class*/
get class(sub,SUBCIASS),
/* delete(Nm[ASS,SUMASSL,SUKIASSI.Z) , */
mer(13,10,31,11, ["Attribute defined ", "Difference",
"Existence", "Format", " Intersection",
"None", "Union", "Where Specified"),
" Select Subclass Type ",1,S),
MeGa(S,NHIASS,SJMASS,TM,m,FOHQ) .

rule6a(l, ,SUBCL,NBIYPE, FORM, FORM2) :- /* non-base type = attribute */
get class members (SUBCL,MLIST),
memu(13,10,31,11,MLIST," Select Attribute ",1,S),
selection(S,MLIST, FORM)
merm(13,10,31,11, ["equal”, "not equal","less than",
"less than or equal",'greater than",
"greate than or equal","contains",
"properly contains","contained in",
"is properly contained in "],
" Select Camparator ",1,S2),
selection(sz , [naequ , "ane" ,Malt" ,Male" , "agt" , nagen ,"aco" , "apc" ,
"acqd", namu] ,NBTYPE) ,
menu(13,10,31,11, ["Constant", "Attribute"]," Select 2nd type ",1,
S3),
selection(S3, ["C","A"],MAPTYPE2),
rule6al (MAPTYPE2 , FORM2) ,
|

rule6a(2, ,SUBCL,NBTYPE, FORM, FORM2) :=/* non-base type = difference*/
NBTYFE = ngn,
FORM? = ll"’
makenbl ist (SUBCL, NBLIST) ,

/* delete (NBCL, NBLIST, NBLIST?) ,/* change nblist = nblist3x/
delete (SUBCL, NBLIST2, NBLIST3) ,

*/ memu(15,20,31,11,NBLIST," Select Difference Sub class ".1,S),
selection(S,NBLIST, FORM) , -
|

rule6a(3, , ,NBIYPE,FORM,FORM) :=/* non-base type = existence*/

NBIYPE = "e",
FORM = "existence",
FORM2 = l"l’

49

rule6a(4, , ,NBTYPE,FORM, FORM2) :~/* non-base type = format*/
NBTYPE = "f",
FORM2 = """,
edit (""", FORM) ,
!,

rule6a(5, ,SUBCL,NBIYPE, FORM, FORM2) : -/* nan-base type = intersection */
NBTYFE = uin'
makenbl ist (SUBCL, NBLIST) ,
/* delete (NBCL, NBLIST,NBLIST?2) , */
menu (15,20,31,11,NBLIST,
" Intersection: select 1st Sub class ",1,S1),
selection(S1,NBLIST, FORM) ,
delete (FORM, NBLIST, NBLIST2) ,
merm (15,20,31,11,NBLIST2, " Select 2nd Sub class ",1,52),
selection(S2,NBLIST2, FORM2),
|

rule6a(6, , ,NBTYPE, FORM, FORM2) :=/* non-base type = none*/

NBIYPE = ™",
FORM - nn’
FORM? = nn,

rule6a(7, , SUBCL,, NBTYPE, FORM, FORM2) : -/* non-base type = union */
NBTYPE = ",
makenbl ist (SUBCL, NBLIST) ,
menu(15,20,31,11,NBLIST," Union: select 1st Sub class ",1,S1),
selection(S1,NBLIST, FORM) , N
delete (FORM, NBLIST, NBLIST?)
meru(15,20,31,11,NBLIST2," Select 2nd Sub class ",1,S2),
selection(S2,NBLIST2, FORM2) , N
|

rule6a(8, , ,NBIYPE, FORM, FORM2) :=/* non-base type = specified*/
NBIYPE = "s",
FORM ,

FORM2 = "",
!

noat (UFFl e ",MIEXT),
W(m'omv“ﬂﬂom' "",Irp.tt) ’

uppdr 1ower (INFUT,MEMBER) ,

valid name(MEMEER),

rule7a(CLASS ,MEMBEFR) ,

get class(value,WIASS),

rule7b (ATTRLIST) ,

memu(8,27,31,11, ["No", "Yes"]," Create definition? "1,S),
selection(s, ["n","y"), DEFOPT) ,

create def (DEFOPT,LEF),
asserta(mer_attr(ahss,mm,vaass,m,mmsr)),
update class members (CIASS,MEMEER) ,

changestatus ("Member attribute added"),

|

rule6al ("C", CONSTANT) : -
lineinput(10,10,45,7,7,"Contant is: ","" CONSTANT), !.

rule6al ("A",):-
changestatus ("Function not available"),
fail.

rule7a(C,M):~- /* member cannot exist*/
meuber_attr(C,M,_,_,_) ,
changestatus ("Member attribute already exlists"),
!, fail.

rule7a(,).

rule7b (ATTR CHARACTERISTICS) : -

meru repeat (10,10,31,11, ["Mandatory", "Optional"],
" Attribute is ",2,S1)

selection(S1, ["M", "O"],MANDOPT)

append ([], [MANDOPT] ,OPTLIST1) ,

menu_repeat (10,40,31,11, ["Changeable", "Not Changeable"],
" Attribute is ",1,S2)

selection(S2, ["C", "NC"), CHGOFT) ,

append (OPTLIST1, [CHGOPT] ,OPTLIST?) ,

menu_repeat(15,10,31,11, ["No", "Yes"],
" Exhausts Value Class ",1,S3),

selection(S3, ["™N","E"], EXHOPT) ,

append (OPTLIST2, [EXHOPT) ,OPTLIST3) ,

meru_repeat (15,40,31,11, ["Single Value","Mult-Value"],
" Attribuate is ",1,S54),

rule7bl (S4,SMLIST) ,

append (OPTLIST3, SMLIST,ATTR CHARACTERISTICS) ,

mmm,mim,mim,mewim,

!.

/

’

’

51

rule7bl (1, ["S"]).

rule7bl (2,MLIST) : -
meru_repeat(12,10,31,11, ["No", "Yes"]," Overlap in Values ", 1,81),
selection(S1, ["N", "O"],OVEROPT)
append ([], [OVEROPT] ,MLIST1)
merm_repeat(12,40,31,11, ["No", "Yes"]," Range Limitation ",1,S2),
rule7b2 (S2,RANGE) ,
append (MLIST1, RANGE,MLIST),
removewindow,
removewindow.

rule7b2(1,(]).

rule7b2 (2,RANGE) : -
lineinput(16,40,15,7,7,"Low Range: ","",NUMSTART)
lineinput(16,60,15,7,7,"High Range: ","" NUMEND)
append ([NUMSTART, NUMEND] , [] , RANGE) .

Create def ("y", Textout):-/* invoke Prolog editor * /
edit (""", Textout),
clearwindow,

Create def(,Text):-/* if editor aborted set null */
Text="",

Create class("b",BCIASS):-/* create base class*/
assertz(base class(BCIASS,[])), !.

Create class("n",NBCLASS):-/* create non base class*/
rule6 (NBCLASS, SUBCIASS, TYPE, FORM, FORM2) ,
assertz(nm_base(NBCLASS,SUBCLASS,TYPE,FORM,FOR)Q)),
base 1ist (NBCLASS,SUBCIASS) .

52

) ¢ | T
EARLTIMET (Ve | Ml i The
S W RN B! 4 .
¥y, s TR
nea Bt
. NRIVE TR
n"‘(
. B

print non bue("d",mu‘,_) :=/* print difference sub class */

upper._lower (UPPER, TEXT) ,
write(" where is not in ",UPPER), !.

print non base("f",TEXT,):-/* print format sub class*/
write(" where format is " , TEXT) ,

print non base("n", ,):- !./* print none sub class*/

print non base("s", ,) -/* prmt user controlled sub*/
write(" where specfied"),!.

print non base("™u",TEXT,TEXT2):-/* print intersection sub class */
upper lower (UPPER, TEXT), B
write(" where is in ",UPPER),nl,
upper lower(Usz TEXT2) ,
write(" and is in ",UPPER2),

print non base("aeq",TEXT,TEXT2) : -
frontstr (1, TEXT, FIRST, REST) ,
uppe.r_lwe.r(FUPPER FIRST) ,
concat (FUPPER, REST, MATTR) ,
concat ("'", TEXT2, CONSTANT) ,
concat (CONSTANT, """, CONSTANT?) ,
write(" where " MATTR," = "', CONSTANTZ) , !

print class members([])./* prmt member attributes*/
print class members([Class|Tail])
print class members(Tail),

upper lower (Upper,Class),

write (Upper) ,

write("\n member attributes: "),

print member(Class),

changestatus ("Press ENTER to return"),
pause.

print member (C):-/* print member details */
member attr(C,M,V,D,A),
frontstr(1,M, FIRST, REST) ,
upper lower (FUPPER, FIRST),
concat (FUPPER, REST, MATTR) ,
upper lower (VCIASS,V),
write("\n " ,MATTR),
print member def (D),
write("\n value class: ",VCIASS)),
print member attr list(a),
pause,
fail.

/*print member().*/

53

< oA

H|TAIL
menber
menber - attr list(TAIL)

- attr 1list([]).
“attr list
- attr(H)

N o o,
O.HH

print member
print member
print)
print

print member attr("M"):-
write("\n may not be mill").

print member attr("NC"):-
write("\n not changeable").

print member attr("E"):-
write("\n exhausts value class").

prirrt_naxber__‘attr ()= L.
print member def(D):-

D >< "",
write("\n description: ",D),

print member def().

d % Y Py CANTIY vedufol: . ™ o T . " iy
N Gis | Pt-A F) ".-,T-,A?,, 1yl Co ROTMEH AR ARt e 1 {1ty
wid e : o h . : BN o

get_class(all,C):-/* display mem of classes*/
changestatus (™),
class 1ist(ammsr),
metw(8,27,31,11,CHOICELIST, " Select Class from meru ",1,S),
selection(s CHOICELIST,C),!.

get class(all,):-
class list([]),
beep,
changestatus (""No Classes have been defined"),
|, fail.

get_class(sub,C) :-/* display memu of sub—classesk/
changestatus (""),
stnd class(STCLASS),
class list (CLIST),
append (CLIST, STCIASS, CIASSLIST) ,
insert sort (CIASSLIST,SORTLIST),
meru(8,27,31,11,SORTLIST," Select Subclass " ,1,S),
selectlon(s SORTLIST, C),

get class(value,C):-/* display memu of value classes*/
changestatus ("'"),
class list(CLIST),
stnd class (SLIST),
append (CLIST, SLIST, CHOICELIST) ,
insert sort(()iOICEIIIS'I‘ SORTLIST),

meru (8,27,31,11,SORTLIST, " Select Value Class ",1 ,S),
selectlon(s SORTLIST ,C),

get class members(C,ML) :-
class members(C,ML), !.

get class members(,):-

changestatus ("No members exist for non | base class ")
pause,
fail.

/

55

A '.

.‘
.
4

append ([} LIST, LIST) ./* append two lists into one#/
append ((X|11], LIsT2, [X|13]) :-
apperd (L1, LIST2,13).

base list(NB,SC):-/* add subclass to base class*/
base class(SC,LIST),
not (member (NB, LIST)) ,
retract (base class(C,LIST)),
insert sort([NBlLIST] SORTLIST) ,
assertz (base class(C,SORTLIST)), !.

base 1ist(NB,SC):-/* locate base class of sub class */
base class(C,LIST),
member (SC, LIST),
retract (base class(C,LIST)),
insert sort([NB|LIST],SORTLIST),
assertz (base class(C,SORTLIST)), !.

delete(,[],[])./* delete X from list#/

delete(X, [X|L1],L1):- !.

delete(X, [Y|11], [Y|I2]):-
delete(X,11,12).

insert sort((],[])./* sort routine*/

insert sort([x|mL],SORrED LIST) : -
insert sort (TAIL,SORTED) TAIL),
insert (X, SORTED TAIL,SORTED LIST).

insert (X, [Y|SORTED LIST], [Y|SORTED LIST1]):-
asc order(X,Y), !,
insert (X,SORTED LIST,SORTED LIST1).

insert (X,SORTED LIST, [X|SORTED LIST]).

asc order (X,Y) : - X>Y.

makenblist (SC,NBLIST) : -/* make non-base selection list */
base class(SC,NBLIST), !.

makenblist (SC,NBLIST) : -
base class(,LIST),

member (SC, LIST) ,
delete(SC, LIST,NBLIST), !.

member (X, [X|])./* is X a found in LIST*/

]
member (X, [|Y]):- member (X,Y) .

peuse: - /* peuset/
changestatus ("Press ENTER to contimue"),
readln().

print list([])):- !./* print a member list*/
print list([x|Y]):-

upper lower (UPPER, X) ,

write("\n " ,UPPER) ,

print list(y).

selection(0,(],):- fail./* convert memu select to value */
selection(1, [H|],H):- !.
selection(N, [|T],Item):-

N1=N-1,

selection(N1,T, Item).

update class members(C,M):-
class members(C,ML),
retract (class members(C,ML)),
insert sort([M|ML),SML),
assertz(class members(C,SML)),
|

update class members(C,M):-
assertz(class members(C, [M])),
!.

57

- i
At

) ety RN

Vita

The author was born in Abington, Pemnsylvania, on February 11, 1957,
and is the son of William H. Fenton and E. Charlotte Fenton. Upon
graduating from Northeast High School, Philadelphia, Pennsylvania, in
June of 1975, he attended Clarion State University (now Clarion
University), Clarion, Pemnsylvania. He graduated in May of 1979 with a
Bachelors of Science in Business Administration. Upon graduation from
Clarion he was employed at Air Products and Chemicals Inc. , Allentown,
Pennsylvania, where he was a cammercial business systems programmer.

In Jamary of 1985 he took a Project Manager position with Systems and
Camputer Technology, Malvern, Pennsylvania, where he managed the
development of a student information system for Colorado State
University, University of California at San Diego, Michigan State
University, and University of Southwest Iouisiana. In March of 1987 he
took a Database Analyst position with Sorbus, Frazer, Pennsylvania. 1In
Jamuary of 1988 he was transferred to Bell Atlantic Enterprises,
Princeton, New Jersey, where he administers database management systems
to support application systems development within Bell Atlantic

Enterprise subsidiaries. He currently holds the title of Senior

Database Analyst.

	Lehigh University
	Lehigh Preserve
	1989

	The development of a knowledge-based system for semantic data modeling /
	William H. Fenton
	Recommended Citation

	tmp.1551116526.pdf.Qd7g4

